
ar
X

iv
:1

61
2.

03
16

9v
1 

 [
he

p-
th

] 
 9

 D
ec

 2
01

6

The κ-(A)dS quantum algebra in (3+1) dimensions

Ángel Ballesteros1, Francisco J. Herranz1, Fabio Musso2 and Pedro Naranjo1

1 Departamento de F́ısica, Universidad de Burgos, E-09001 Burgos, Spain
2 Istituto Comprensivo “Leonardo da Vinci”, Via della Grande Muraglia 37, I-0014 Rome, Italy

E-mail: angelb@ubu.es, fjherranz@ubu.es, fmusso@ubu.es, pnaranjo@ubu.es

Abstract

The quantum duality principle is used to obtain explicitly the Poisson analogue of the κ-
(A)dS quantum algebra in (3+1) dimensions as the corresponding Poisson–Lie structure on
the dual solvable Lie group. The construction is fully performed in a kinematical basis and
deformed Casimir functions are also explicitly obtained. The cosmological constant Λ is
included as a Poisson–Lie group contraction parameter, and the limit Λ → 0 leads to the
well-known κ-Poincaré algebra in the bicrossproduct basis. A twisted version with Drinfel’d
double structure of this κ-(A)dS deformation is sketched.
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1 Introduction

Since Classical Gravity is essentially a theory describing the geometry of spacetime, it seems
natural to consider that a suitable definition of a “quantum” spacetime geometry emerging at
the Planck energy regime could be a reasonable feature of Quantum Gravity. Indeed, specific
mathematical frameworks for such “quantum geometry” have to be proposed. In particular,
“quantum spacetime” is frequently introduced as a noncommutative algebra whose noncommu-
tativity is governed by a parameter related to the Planck scale, thus leading to minimum length
frameworks through generalized spacetime uncertainty relations (see, for instance, [1, 2, 3, 4, 5]
and references therein).

In this context, quantum groups [6, 7, 8] provide a consistent approach to noncommutative
spacetimes, since the latter are obtained as noncommutative algebras that are covariant under
the action of quantum kinematical groups. For instance, the well-known κ-Minkowski space-
time [9, 10, 11, 12] was obtained as a byproduct of the κ-Poincaré quantum algebra, which
was introduced in [13] (see also [14, 15, 16]) by making use of quantum group contraction
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techniques [17, 18]. One of the main features of the κ-Poincaré quantum algebra (which is
the Hopf algebra dual to the quantum Poincaré group, and is defined as a deformation of the
Poincaré algebra in terms of the dimensionful parameter κ) consists in its associated deformed
second-order Casimir, which leads to a modified energy-momentum dispersion relation. From
the phenomenological side, this type of deformed dispersion relations have been proposed as
possible experimentally testable footprints of quantum gravity effects in very different contexts
(see [19, 20, 21] and references therein).

Moreover, if the interplay between quantum spacetime and gravity at cosmological distances
is to be modeled, then the curvature of spacetime cannot be neglected and models with non-
vanishing cosmological constant have to be considered [22, 23, 24, 25]. Thus, the relevant
kinematical groups (and spacetimes) would be the (anti-)de Sitter ones, hereafter (A)dS, and
the construction of quantum (A)dS groups should be faced. In (1+1) and (2+1) dimensions, the
corresponding κ-deformations have been constructed [26, 27] (see also [28, 29, 30] for classifica-
tion approaches). In fact, it is worth stressing that the κ-(A)dS deformation introduced in [27]
was proposed in [31] as the algebra of symmetries for (2+1) quantum gravity (see also [32]),
and compatibility conditions imposed by the Chern–Simons approach to (2+1) gravity have
been recently used [33] in order to identify certain privileged (A)dS quantum deformations [34]
(among them, the twisted κ-(A)dS algebra [35, 36, 37, 38]).

Concerning (3+1) dimensions, we recall that in the papers [13, 14, 15, 16] the κ-Poincaré
algebra was obtained as a contraction of the Drinfel’d–Jimbo quantum deformation [6, 39] of
the so(3, 2) and so(4, 1) Lie algebras, by starting from the latter written in the Cartan–Weyl or
Cartan–Chevalley basis, and then obtaining suitable real forms of the corresponding quantum
complex simple Lie algebras. However, to the best of our knowledge, no explicit expression of
the (3+1) κ-(A)dS algebras in a kinematical basis (rotations J , boosts K, translations P ) and
including the cosmological constant Λ has been presented so far, thus preventing the appropriate
physical analysis of the interplay between Λ and the quantum deformation. Moreover, explicit
expressions for the (3+1) κ-(A)dS Casimir operators cannot be found in the literature.

The aim of this paper is to fill this gap and to provide the Poisson version of such (3+1)
κ-(A)dS algebra together with its two deformed Casimirs with non-vanishing cosmological con-
stant: the deformed second-order invariant –which is related to the energy-momentum disper-
sion relation– as well as the deformed fourth-order Casimir, which would be related to the
spin/helicity of the particles [40, 41]. We recall that in the case Λ = 0 such deformed Pauli–
Lubanski 4-vector was obtained for the (3+1) κ-Poincaré algebra in [42].

From a technical perspective, the quantum (Poisson) algebra will be fully constructed without
making use neither of real forms nor of contraction techniques, thus solving the kinematical
basis problem since the basis is fully fixed from the initial data. As it was presented in [43],
by making use of the Poisson version of the quantum duality principle (see [6, 44, 45, 46]
and references therein), it is possible to construct the full Poisson–Hopf algebra structure from
the Lie bialgebra that defines the cocomutator δ (i.e., the first-order of the coproduct ∆) of
the κ-(A)dS deformation. In short, it can be said that a quantum Poisson algebra is just a
Poisson–Lie structure on the dual Lie group G∗, which has as Lie algebra g∗ (the one obtained
by dualizing the cocommutator δ). In fact, this method was already used in [43] in order to
recover the Poisson κ-Poincaré algebra in (3+1) dimensions. Moreover, in all the expressions of
the κ-(A)dS algebra that we will present, the cosmological constant Λ will be introduced as an
explicit parameter, and the Λ → 0 limit will automatically provide the κ-Poincaré algebra in
the so-called bicrossproduct basis [8, 10, 47, 48].

Evidently, the proper quantum κ-(A)dS algebra would be obtained by substituting the Pois-
son brackets here obtained by commutators and by replacing the Poisson algebra generators by
noncommuting operators. This would lead to many ordering ambiguities that have to be solved
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by the appropriate choice of a symmetrization prescription, which has to be also implemented
on the coproduct map (see the discussion in [43]). Nevertheless, the Poisson approach here
presented is enough to get a quite comprehensible description of the deep changes that the non-
vanishing cosmological constant generates within the κ-deformation. In particular, the influence
of the cosmological constant on the deformed Casimir operators and on the noncommutative
spacetime can be explicitly evaluated. Moreover, the interplay between the cosmological con-
stant and the (1+1) κ-dS Poisson algebra has been recently presented in [49, 50] in the context
of curved momentum spaces and relative locality frameworks [51, 52, 53, 54]. Thus, the results
here presented provide the tools needed in order to get a deeper insight about the remnants of
the quantum geometry that are encoded at the Poisson level in the more realistic (3+1) case.

The paper is structured as follows. In the next section, the kinematical basis for the (A)dS
and Poincaré algebras in (3+1) dimensions is revisited by considering the one-parameter Lie
algebra AdSω whose parameter ω is related with the cosmological constant in the form ω = −Λ.
In Section 3, the Poisson κ-deformation of the (3+1) AdSω algebra is fully constructed as a
Poisson–Lie structure on the dual Poisson–Lie group defined by the Lie bialgebra structure that
underlies the κ-defomation. The explicit expresssion of the two Casimir functions is then ob-
tained and the κ-Poincaré limit is straightforwardly computed. This method can be further
applied to the twisted κ-AdSω algebra arising from a Drinfel’d double structure in (3+1) dimen-
sions, and whose first-order noncommutative spacetime has been recently introduced in [55]. A
final section including several comments and open problems closes the paper.

2 The (3+1) AdSω algebra

Let us consider the three (3+1) Lorentzian Lie algebras as the one-parameter family AdSω,
where ω is a real (graded) contraction-deformation parameter [41]. In the kinematical basis
{P0, Pa,Ka, Ja} (a = 1, 2, 3) of generators of time translation, space translations, boosts and
rotations, respectively, the commutation rules for AdSω read

[Ja, Jb] = ǫabcJc, [Ja, Pb] = ǫabcPc, [Ja,Kb] = ǫabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −ǫabcJc,

[P0, Pa] = ωKa, [Pa, Pb] = −ωǫabcJc, [P0, Ja] = 0,

(2.1)

where hereafter a, b, c = 1, 2, 3 and sum over repeated indices will be assumed. In particular,
the contraction parameter ω is related with the cosmological constant in the form ω = −Λ, thus
AdSω contains the AdS Lie algebra so(3, 2) when ω > 0, the dS Lie algebra so(4, 1) for ω < 0,
and the Poincaré one iso(3, 1) for ω = 0.

The Lie algebra AdSω is endowed with two Casimir operators (see, e.g., [41, 56]). The
quadratic one comes from the Killing–Cartan form and is given by

C = P 2
0 −P2 + ω

(

J2 −K2
)

, (2.2)

where P 2
0 −P2 is the square of the energy-momentum 4-vector (P0,P). For ω = 0, (2.2) gives

the square of the Poincaré invariant rest mass.

The second AdSω Casimir is a fourth-order invariant that reads

W = W 2
0 −W2 + ω (J ·K)2 ,

W0 = J ·P, Wa = −JaP0 + ǫabcKbPc, (2.3)

where (W0,W) are just the components of the Poincaré Pauli–Lubanski 4-vector. For ω = 0,
the invariant W 2

0 − W2 provides the square of the spin/helicity operator (see [40, 41]), which
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in the rest frame it is proportional to the square of the angular momentum. As a consequence,
the Casimir W (2.3) generalizes this operator to the case with a non-vanishing cosmological
constant.

Notice that setting ω = 0 in all the above expressions corresponds to apply an Inönü–Wigner
contraction leading to the flat Λ → 0 limit [18]. The Cartan decomposition of AdSω is given by

AdSω = h⊕ p, h = Span{K,J} ≃ so(3, 1), p = Span{P0,P},

where h is the Lorentz subalgebra. Thus, the family of the three (3+1) Lorentzian sym-
metric homogeneous spaces with constant sectional curvature ω is defined by the quotient
AdS3+1

ω ≡ SOω(3, 2)/SO(3, 1), where the Lie groups SO(3, 1) and SOω(3, 2) have h and AdSω
as Lie algebras, respectively. The specific spaces are:

• ω > 0,Λ < 0: AdS spacetime AdS3+1 ≡ SO(3, 2)/SO(3, 1).

• ω < 0,Λ > 0: dS spacetime dS3+1 ≡ SO(4, 1)/SO(3, 1).

• ω = Λ = 0: Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1).

We emphasise that, throughout the paper, the cosmological constant parameter ω will be ex-
plicitly preserved and all the results presented hereafter will hold for any value of ω.

3 The Poisson κ-deformation of the (3+1) AdSω algebra

The approach presented in [43] for the construction of the Poisson version of quantum algebras is
fully determined by the first-order (in the deformation parameter z) of the quantum deformation,
which is provided by the cocommutator map δ. In our case, the classical r-matrix for the κ-
deformation of the (3+1) AdSω, given in terms of the kinematical generators, is [18]

r = z
(

K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 +
√
ωJ1 ∧ J2

)

, (3.1)

and from δ(X) = [X ⊗ 1 + 1⊗X, r] we obtain the κ-cocommutator map

δ(P0) = 0, δ(J3) = 0,

δ(J1) = z
√
ωJ1 ∧ J3, δ(J2) = z

√
ωJ2 ∧ J3,

δ(P1) = z
(

P1 ∧ P0 − ωJ2 ∧K3 + ωJ3 ∧K2 +
√
ωJ1 ∧ P3

)

,

δ(P2) = z
(

P2 ∧ P0 − ωJ3 ∧K1 + ωJ1 ∧K3 +
√
ωJ2 ∧ P3

)

,

δ(P3) = z
(

P3 ∧ P0 − ωJ1 ∧K2 + ωJ2 ∧K1 −
√
ωJ1 ∧ P1 −

√
ωJ2 ∧ P2

)

, (3.2)

δ(K1) = z
(

K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2 +
√
ωJ1 ∧K3

)

,

δ(K2) = z
(

K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +
√
ωJ2 ∧K3

)

,

δ(K3) = z
(

K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 −
√
ωJ1 ∧K1 −

√
ωJ2 ∧K2

)

.

Here the zero cosmological constant limit corresponds to setting ω = 0, and the quantum
deformation parameters q, κ and z are related as q = ez and z = 1/κ.

Now, the quantum duality principle [6, 44, 45, 46] implies that the Poisson version of the
quantum AdSω algebra is just a Poisson–Lie structure on the dual group G∗

ω, whose Lie algebra
g∗ω is obtained as the dual of the cocommutator map (3.2). Moreover, the coproduct map for
κ-AdSω is exactly the dual of the product on G∗

ω, i.e., the multiplication law for the dual group
in terms of the corresponding local coordinates. Therefore, if {p0,p,k, j} is the basis for the
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dual coordinates to {P0,P,K,J}, then δ (3.2) defines the following (solvable) 10-dimensional
dual Lie algebra g∗ω:

[j1, j2] = 0, [j1, j3] = z
√
ωj1, [j2, j3] = z

√
ωj2,

[j1, p1] = −z
√
ωp3, [j1, p2] = zk3, [j1, p3] = −z(k2 −

√
ωp1),

[j2, p1] = −zk3, [j2, p2] = −z
√
ωp3, [j2, p3] = z(k1 +

√
ωp2),

[j3, p1] = zk2, [j3, p2] = −zk1, [j3, p3] = 0,

[j1, k1] = −z
√
ωk3, [j1, k2] = −zωp3, [j1, k3] = z(

√
ωk1 + ωp2),

[j2, k1] = zωp3, [j2, k2] = −z
√
ωk3, [j2, k3] = z(

√
ωk2 − ωp1),

[j3, k1] = −zωp2, [j3, k2] = zωp1, [j3, k3] = 0,

[ka, p0] = zka, [ka, kb] = 0, [ka, pb] = 0,

[pa, p0] = zpa, [pa, pb] = 0, [p0, ja] = 0.

(3.3)

Indeed, the limit z → 0 gives rise to an Abelian Lie algebra whose group law is additive for all
coordinates, thus giving rise to the undeformed (primitive) coproduct ∆(X) = X ⊗ 1 + 1 ⊗X
for the non-deformed quantum algebra.

Therefore, at the Poisson level the deformation induces a non-Abelian dual group G∗
ω, whose

group law provides the explicit coproduct for the Poisson–Hopf algebra AdSω. Since the adjoint
representation ρ of g∗ω is faithful, we can use it to obtain the corresponding 10-dimensional
matrix representation of a generic Lie group element in the form:

G∗
ω = exp

(

−J3ρ(j3)
t
)

exp
(

−J2ρ(j2)
t
)

exp
(

−J1ρ(j1)
t
) (

−K3ρ(k3)
t
)

exp
(

−K2ρ(k2)
t
)

exp
(

−K1ρ(k1)
t
)

exp
(

−P3ρ(p3)
t
)

exp
(

−P2ρ(p2)
t
)

exp
(

−P1ρ(p1)
t
)

exp
(

−P0ρ(p0)
t
)

.

A long but straightforward computation (see [43, 57] for details abouth the specific procedure)
leads to the group law for G∗

ω, which can be written as the following coproduct for the Poisson
AdSω algebra:

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J3) = J3 ⊗ 1 + 1⊗ J3,

∆(J1) = J1 ⊗ ez
√
ωJ3 + 1⊗ J1, ∆(J2) = J2 ⊗ ez

√
ωJ3 + 1⊗ J2,

∆(P1) = P1 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P1 −

√
ωK2 ⊗ sinh(z

√
ωJ3)

−z
√
ωP3 ⊗ J1 + zωK3 ⊗ J2 + z2ω

(√
ωK1 − P2

)

⊗ J1J2e
−z

√
ωJ3

−1

2
z2ω

(√
ωK2 + P1

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆(P2) = P2 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P2 +

√
ωK1 ⊗ sinh(z

√
ωJ3)

−z
√
ωP3 ⊗ J2 − zωK3 ⊗ J1 − z2ω

(√
ωK2 + P1

)

⊗ J1J2e
−z

√
ωJ3

−1

2
z2ω

(√
ωK1 − P2

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆(P3) = P3 ⊗ 1 + e−zP0 ⊗ P3 + z
(

ωK2 +
√
ωP1

)

⊗ J1e
−z

√
ωJ3

−z
(

ωK1 −
√
ωP2

)

⊗ J2e
−z

√
ωJ3 ,
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∆(K1) = K1 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗K1 + P2 ⊗

sinh(z
√
ωJ3)√

ω

−zP3 ⊗ J2 − z
√
ωK3 ⊗ J1 − z2

(

ωK2 +
√
ωP1

)

⊗ J1J2e
−z

√
ωJ3

−1

2
z2

(

ωK1 −
√
ωP2

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆(K2) = K2 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗K2 − P1 ⊗

sinh(z
√
ωJ3)√

ω

+zP3 ⊗ J1 − z
√
ωK3 ⊗ J2 − z2

(

ωK1 −
√
ωP2

)

⊗ J1J2e
−z

√
ωJ3

+
1

2
z2

(

ωK2 +
√
ωP1

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆(K3) = K3 ⊗ 1 + e−zP0 ⊗K3 + z(
√
ωK1 − P2)⊗ J1e

−z
√
ωJ3

+z(
√
ωK2 + P1)⊗ J2e

−z
√
ωJ3 . (3.4)

We stress that we have obtained a two-parametric deformation, which is ruled by a “quantum”
deformation parameter z = 1/κ together with a “classical” deformation parameter ω (the cos-
mological constant). Notice also that this coproduct is written in a “bicrossproduct-type” basis
that generalizes the one corresponding to the (2+1) κ-AdSω algebra [38].

The Poisson brackets compatible with the previous coproduct as a Poisson–Hopf algebra are
given, by Drinfeld’s theorem [58], as the unique Poisson–Lie structure on G∗

ω whose tangent
Lie bialgebra is given by the dual of the AdSω commutation rules (2.1). Since this dual Lie
bialgebra is not a coboundary one, we have no Sklyanin bracket available and the Poisson
algebra relations have to be obtained by making use of the computational procedure introduced
in [43]. In particular, we will assume that such Poisson tensor is quadratic in the “elementary”
functions that appear in the previous coproduct, namely

{

1, P0, P1, P2, P3,K1,K2,K3, J1, J2, J3, e
−zP0 , e±z

√
ωJ3 , J1e

−z
√
ωJ3 , J2e

−z
√
ωJ3 ,

J2
1 e

−z
√
ωJ3 , J2

2 e
−z

√
ωJ3 , J1J2e

−z
√
ωJ3

}

,

and the most general antisymmetric quadratic Poisson bracket depending on these functions has
to be constructed. Afterwards, we impose on this bracket the Poisson homomorphism condition
for the deformed ∆ (3.4) that we have previously obtained. This requirement gives rise to a
huge system of linear equations, that can be solved by using a symbolic manipulation program.
Finally, we require that the linearization of this tentative Poisson tensor gives back the AdSω
brackets (2.1). After enforcing this last requirement we get the uniquely determined Poisson
brackets, which fulfill the Jacobi identity and are explicitly given by:

{J1, J2} =
e2z

√
ωJ3 − 1

2z
√
ω

− z
√
ω

2

(

J2
1 + J2

2

)

, {J1, J3} = −J2, {J2, J3} = J1,

{J1, P1} = z
√
ωJ1P2, {J1, P2} = P3 − z

√
ωJ1P1, {J1, P3} = −P2,

{J2, P1} = −P3 + z
√
ωJ2P2, {J2, P2} = −z

√
ωJ2P1, {J2, P3} = P1,

{J3, P1} = P2, {J3, P2} = −P1, {J3, P3} = 0,

{J1,K1} = z
√
ωJ1K2, {J1,K2} = K3 − z

√
ωJ1K1, {J1,K3} = −K2,

{J2,K1} = −K3 + z
√
ωJ2K2, {J2,K2} = −z

√
ωJ2K1, {J2,K3} = K1,

{J3,K1} = K2, {J3,K2} = −K1, {J3,K3} = 0,

{Ka, P0} = Pa, {P0, Pa} = ωKa, {P0, Ja} = 0,
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{K1, P1} =
1

2z

(

cosh(2z
√
ωJ3)− e−2zP0

)

+
z3ω2

4
e−2z

√
ωJ3

(

J2
1 + J2

2

)2
+

z

2

(

P 2
2 + P 2

3 − P 2
1

)

+
zω

2

[

K2
2 +K2

3 −K2
1 + J2

1

(

1− e−2z
√
ωJ3

)

+ J2
2

(

1 + e−2z
√
ωJ3

)]

,

{K2, P2} =
1

2z

(

cosh(2z
√
ωJ3)− e−2zP0

)

+
z3ω2

4
e−2z

√
ωJ3

(

J2
1 + J2

2

)2
+

z

2

(

P 2
1 + P 2

3 − P 2
2

)

+
zω

2

[

K2
1 +K2

3 −K2
2 + J2

1

(

1 + e−2z
√
ωJ3

)

+ J2
2

(

1− e−2z
√
ωJ3

)]

,

{K3, P3} =
1− e−2zP0

2z
+

z

2

[

(P1 +
√
ωK2)

2 + (P2 −
√
ωK1)

2 − P 2
3 − ωK2

3

]

+zωe−2z
√
ωJ3

(

J2
1 + J2

2

)

,

{P1,K2} = z
(

P1P2 + ωK1K2 −
√
ωP3K3 + ωJ1J2e

−2z
√
ωJ3

)

,

{P2,K1} = z
(

P1P2 + ωK1K2 +
√
ωP3K3 + ωJ1J2e

−2z
√
ωJ3

)

,

{P1,K3} =
1

2

√
ωJ1

(

1− e−2z
√
ωJ3

[

1− z2ω
(

J2
1 + J2

2

)]

)

+ z
(

P1P3 + ωK1K3 +
√
ωK2P3

)

,

{P3,K1} =
1

2

√
ωJ1

(

1− e−2z
√
ωJ3

[

1− z2ω
(

J2
1 + J2

2

)]

)

+ z
(

P1P3 + ωK1K3 −
√
ωP2K3

)

,

{P2,K3} =
1

2

√
ωJ2

(

1− e−2z
√
ωJ3

[

1− z2ω
(

J2
1 + J2

2

)]

)

+ z
(

P2P3 + ωK2K3 −
√
ωK1P3

)

,

{P3,K2} =
1

2

√
ωJ2

(

1− e−2z
√
ωJ3

[

1− z2ω
(

J2
1 + J2

2

)]

)

+ z
(

P2P3 + ωK2K3 +
√
ωP1K3

)

,

{K1,K2} = −sinh(2z
√
ωJ3)

2z
√
ω

− z
√
ω

2

(

J2
1 + J2

2 + 2K2
3

)

− z3ω3/2

4
e−2z

√
ωJ3

(

J2
1 + J2

2

)2
,

{K1,K3} =
1

2
J2

(

1 + e−2z
√
ωJ3

[

1 + z2ω
(

J2
1 + J2

2

)]

)

+ z
√
ωK2K3,

{K2,K3} = −1

2
J1

(

1 + e−2z
√
ωJ3

[

1 + z2ω
(

J2
1 + J2

2

)]

)

− z
√
ωK1K3,

{P1, P2} = −ω
sinh(2z

√
ωJ3)

2z
√
ω

− z
√
ω

2

(

2P 2
3 + ω(J2

1 + J2
2 )
)

− z3ω5/2

4
e−2z

√
ωJ3

(

J2
1 + J2

2

)2
,

{P1, P3} =
1

2
ωJ2

(

1 + e−2z
√
ωJ3

[

1 + z2ω
(

J2
1 + J2

2

)]

)

+ z
√
ωP2P3,

{P2, P3} = −1

2
ωJ1

(

1 + e−2z
√
ωJ3

[

1 + z2ω
(

J2
1 + J2

2

)]

)

− z
√
ωP1P3. (3.5)

This deformed Poisson algebra, together with the deformed coproduct ∆ (3.4), provides the
Poisson version of the κ-AdSω algebra in (3+1) dimensions. Moreover, the deformed counterpart
of the second-order Casimir invariant (2.2) is found to be

Cz =
2

z2
[

cosh(zP0) cosh(z
√
ωJ3)− 1

]

+ ω cosh(zP0)(J
2
1 + J2

2 )e
−z

√
ωJ3

−ezP0

(

P2 + ωK2
)

[

cosh(z
√
ωJ3) +

z2ω

2
(J2

1 + J2
2 )e

−z
√
ωJ3

]

(3.6)

+2ωezP0

[

sinh(z
√
ωJ3)√

ω
R3 + z

(

J1R1 + J2R2 +
z
√
ω

2
(J2

1 + J2
2 )R3

)

e−z
√
ωJ3

]

,
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where Ra = ǫabcKbPc. The deformation of the fourth-order “Pauli–Lubanski” invariant (2.3)
leads to the (quite complicated) expression

Wz = −sinh2(zP0)

z2

[

sinh2(z
√
ωJ3)

z2ω
+

1

2

(

1 + e−2z
√
ωJ3

)

(J2
1 + J2

2 )

]

+
sinh2(z

√
ωJ3)

2z2ω

[

2e2zP0(P 2
3 + ωK2

3 )− (e2zP0 − 1)(P2 + ωK2)
]

−1

4
e2zP0

[

sinh(z
√
ωJ3)√

ω
(P2 + ωK2)− 2R3 cosh(z

√
ωJ3)

]2

+
(e2zP0 − 1) sinh(2z

√
ωJ3)

2z2
√
ω

R3 − e2zP0

[

R2
1 +R2

2 − 2e−2z
√
ωJ3J1J2(P1P2 + ωK1K2)

]

+e2zP0

[

1− e−2z
√
ωJ3

z
√
ω

+ z
√
ω e−2z

√
ωJ3(J2

1 + J2
2 )

]

[

(J1P1 + J2P2)P3 + ω(J1K1 + J2K2)K3

]

+
e2zP0 − 1

2z

(

1 + e−2z
√
ωJ3

)

(J1R1 + J2R2) + e2zP0e−2z
√
ωJ3

[

J2
1 (P

2
1 + ωK2

1 ) + J2
2

(

P 2
2 + ωK2

2

)]

−1

4
(J2

1 + J2
2 )

[

(e2zP0 − 1)(L− + e−2z
√
ωJ3(P2 + ωK2)) + 2e2zP0(e−2z

√
ωJ3 − 1)(P 2

3 + ωK2
3 )
]

+
z

2
e2zP0e−2z

√
ωJ3(J1R1 + J2R2)

[

L+ + e2z
√
ωJ3L− + ω(1− e−2zP0)(J2

1 + J2
2 )
]

−z2ω e2zP0e−2z
√
ωJ3(J1R1 + J2R2)

2 − z2

8
e2zP0(J2

1 + J2
2 )L−(L− + e−2z

√
ωJ3L+)

−z2

4
ω e−2z

√
ωJ3(J2

1 + J2
2 )

2

[

sinh2(zP0)

z2
− e2zP0(P 2

3 + ωK2
3 ) +

e2zP0 − 1

2
L−

]

+
z3

2
ω e2zP0e−2z

√
ωJ3(J2

1 + J2
2 )L−

[

J1R1 + J2R2 −
z

8
(J2

1 + J2
2 )L−

]

, (3.7)

where we have used the notation L± = P2 + ωK2 ± 2
√
ωR3. Both the “classical” and “flat”

limits z → 0 and ω → 0 are always well–defined.

Indeed, what we have obtained is a commutative Poisson–Hopf algebra, whose quantization
has to be performed in order to obtain the proper κ-AdSω quantum algebra. Once this had been
completed, a (presumably nonlinear and complicated) change of basis should exist between the
kinematical basis and the Cartan–Weyl or Cartan–Chevalley basis used in [13, 14, 15, 16].
Nevertheless, most of the physically relevant features of this quantum deformation can already
be extracted from the kinematical Poisson structure here obtained.

3.1 The Poisson κ-Poincaré algebra

Under the ω → 0 limit the classical r-matrix (3.1) and the cocommutators (3.2) reduce to

r = z (K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) ,

δ(P0) = 0, δ(Ja) = 0, δ(Pa) = zPa ∧ P0,

δ(Ka) = z (Ka ∧ P0 + ǫabcPb ⊗ Jc) ,

which means that the dual group is “more Abelian” than the ω 6= 0 one. Therefore the dual
group law is simpler, and the ω → 0 limit of (3.4) and (3.5) lead to the following coproduct and

8



Poisson brackets

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja,

∆(Pa) = Pa ⊗ 1 + e−zP0 ⊗ Pa,

∆(Ka) = Ka ⊗ 1 + e−zP0 ⊗Ka + zǫabcPb ⊗ Jc,

{Ja, Jb} = ǫabcJc, {Ja, Pb} = ǫabcPc, {Ja,Kb} = ǫabcKc,

{Ka, P0} = Pa, {Ka,Kb} = −ǫabcJc, {P0, Ja} = 0,

{P0, Pa} = 0, {Pa, Pb} = 0,

{Ka, Pb} = δab

(

1

2z

(

1− e−2zP0

)

+
z

2
P2

)

− zPaPb .

Since all the coordinate functions Poisson-commute, ordering ambiguities do not exist and the
quantization of this Poisson–Hopf algebra is immediate, thus giving exactly the κ-Poincaré
algebra in the bicrossproduct basis [10, 47, 48]. The deformed quadratic Casimir function
providing the deformed mass-shell condition is obtained through the ω → 0 limit of (3.6);
namely

Cz =
2

z2
[cosh(zP0)− 1]− ezP0P2 =

4

z2
sinh2(zP0/2) − ezP0P2. (3.8)

The deformed Pauli–Lubanski invariant, coming from the ω → 0 limit of (3.7), can be written
in the form

Wz =

(

cosh(zP0)−
z2

4
ezP0P2

)

W 2
z,0 −W2

z ,

Wz,0 = e
z

2
P0 J ·P, Wz,a = −Ja

sinh(zP0)

z
+ ezP0ǫabc

(

Kb +
z

2
ǫbklJkPl

)

Pc , (3.9)

to be compared with (2.3) with ω = 0.

3.2 A twisted κ-AdSω algebra

If we add to the r-matrix (3.1) a Reshetikhin twist of the type rϑ = ϑJ3 ∧ P0, we are led to
consider the two-parametric Lie bialgebra structure generated by

rz,ϑ = z
(

K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 +
√
ωJ1 ∧ J2

)

+ ϑJ3 ∧ P0, (3.10)

which is just the r-matrix that generates a Drinfel’d double quantum deformation of the AdSω
algebra in (3+1) dimensions that has been recently considered in [55]. The corresponding
cocommutator map is the sum of two terms δz,ϑ = δ + δϑ where δ is given in (3.2) while the
twisted component δϑ reads

δϑ(P0) = 0, δϑ(J3) = 0,

δϑ(J1) = −ϑJ2 ∧ P0, δϑ(J2) = ϑJ1 ∧ P0,

δϑ(P1) = −ϑ (P2 ∧ P0 + ωJ3 ∧K1) ,

δϑ(P2) = ϑ (P1 ∧ P0 − ωJ3 ∧K2) ,

δϑ(P3) = −ϑωJ3 ∧K3,

δϑ(K1) = −ϑ (K2 ∧ P0 − J3 ∧ P1) ,

δϑ(K2) = ϑ (K1 ∧ P0 + J3 ∧ P2) ,

δϑ(K3) = ϑJ3 ∧ P3. (3.11)
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The Poisson version of the corresponding twisted κ-AdSω algebra can be obtained by fol-
lowing the same method as in the untwisted case, and will be presented elsewhere. In fact, the
additional twist contribution (3.11) to the cocommutator would lead to a dual Poisson–Lie group
G∗

ω,ϑ which would be “less Abelian” than G∗
ω, thus leading to a more complicated dual group

law. Nevertheless, the Poisson–Lie brackets compatible with such two–parametric coproduct
will be the same as in the non-twisted case. Again, the Lie bialgebra underlying the correspond-
ing Poisson twisted κ-Poincaré algebra is obtained from (3.10) in the vanishing cosmological
constant limit ω → 0 and, its full Hopf structure has been worked out in [35, 36, 37, 43].

4 Concluding remarks

Several features of the κ-(A)dS Poisson–Hopf algebra presented in the previous section are
worth to be commented. Firstly, it becomes apparent that the existence of a non-vanishing
cosmological constant implies a significantly more complicated Hopf algebra structure. This
will have a deep impact as far as the quantization of the Hopf algebra is concerned, since many
ordering ambiguities (which are absent in the κ-Poincaré case) appear. As it was already pointed
out in [43], such ordering issues can be minimized if we consider a basis in which the deformed
coproduct is invariant under the composition of the flip operator σ(X ⊗ Y ) = Y ⊗ X with
the change z → −z in the deformation parameter. This “symmetrical” basis for the κ-(A)dSω
algebra can be found and turns out to be

P̃0 = P0, J̃3 = J3, J̃1 = J1e
− z

2

√
ωJ3 , J̃2 = J2e

− z

2

√
ωJ3,

P̃1 = cosh
(z

2

√
ωJ3

)

e
z

2
P0P1 +

√
ω sinh

(z

2

√
ωJ3

)

e
z

2
P0K2

+
z

2

√
ωe−

z

2
(
√
ωJ3−P0)

(

J1P3 −
√
ωJ2K3

)

,

P̃2 = cosh
(z

2

√
ωJ3

)

e
z

2
P0P2 −

√
ω sinh

(z

2

√
ωJ3

)

e
z

2
P0K1

+
z

2

√
ωe−

z

2
(
√
ωJ3−P0)

(

J2P3 +
√
ωJ1K3

)

,

P̃3 =
[

P3 +
z

2

√
ω
(

J2(
√
ωK1 − P2)− J1(

√
ωK2 + P1)

)

]

e
z

2
P0 ,

K̃1 = cosh
(z

2

√
ωJ3

)

e
z

2
P0K1 −

sinh
(

z
2

√
ωJ3

)

√
ω

e
z

2
P0P2

+
z

2
e−

z

2
(
√
ωJ3−P0)

(

J2P3 +
√
ωJ1K3

)

,

K̃2 = cosh
(z

2

√
ωJ3

)

e
z

2
P0K2 +

sinh
(

z
2

√
ωJ3

)

√
ω

e
z

2
P0P1

−z

2
e−

z

2
(
√
ωJ3−P0)

(

J1P3 −
√
ωJ2K3

)

,

K̃3 =
[

K3 −
z

2

(

J1(
√
ωK1 − P2) + J2(

√
ωK2 + P1)

)

]

e
z

2
P0 .

Under this change of basis functions we have, for instance, that

∆(J̃1) = J̃1 ⊗ e
z

2
J̃3 + e−

z

2
J̃3 ⊗ J̃1, ∆(J̃2) = J̃2 ⊗ e

z

2
J̃3 + e−

z

2
J̃3 ⊗ J̃2. (4.1)

All the remaining new coproducts in this basis can straightforwardly be written, but we omit
them for the sake of brevity. The full solution of the quantization problem is currently under
investigation.

It is also worth mentioning that expressions (4.1) reflect that the rotation sector of the (3+1)
κ-(A)dS algebra is a quantum so(3) subalgebra, which is generated by the

√
ωJ1 ∧ J2 term in
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the classical r-matrix (3.1). This constitutes an essential difference with respect to the Poincaré
case, since in the limit ω → 0 this rotation subalgebra becomes a non-deformed one. The
same happens for ω 6= 0 in the (2+1) κ-(A)dS deformation, which is generated by the classical
r-matrix

r = z (K1 ∧ P1 +K2 ∧ P2) ,

where the cosmological constant does not appear. Moreover, both in the (2+1) and (3+1) cases
the Lorentz sector is not a Hopf subalgebra for any value of ω.

On the other hand, it can also be appreciated that the Casimirs (3.6) and (3.7) are pro-
foundly modified by the cosmological constant when they are compared with their κ-Poincaré
counterparts (3.8) and (3.9). In particular, the quadratic one (3.8) giving rise to the κ-Poincaré
dispersion relation is now transformed into (3.6), where both boost and rotation generators
do contribute. The physical significance of this fact deserves further study, that could be ap-
proached by taking into account the results obtained in [49, 50] for the (1+1) κ-dS case, and
the common features with respect to the (2+1) κ-(A)dS Casimirs that were commented in [33].

Another important aspect to be considered is the noncommutative κ-(A)dS spacetime as-
sociated with the deformation here presented. This noncommutative spacetime will be a non-
linear algebra whose first-order can be directly obtained as a Lie subalgebra of the dual Lie
algebra (3.3). If we identify x̂0 ≡ p0 and x̂a ≡ pa, we find that the first-order κ-(A)dSω noncom-
mutative spacetime reads

[x̂a, x̂0] = z x̂a, [x̂a, x̂b] = 0, z = 1/κ, a, b = 1, 2, 3. (4.2)

This is just the well known (3+1) κ-Minkowski spacetime (see [9, 10, 11, 12]), and the cosmo-
logical constant does not appear at this first-order level. Higher-order contributions will indeed
contain ω, and they will arise when the full Hopf algebra duality for the κ-(A)dS coproduct (3.4)
is computed (see [59]). Alternatively, such all–orders (3+1) noncommutative spacetime can be
obtained as a Poisson subalgebra within the Poisson–Lie structure defined by the Sklyanin
bracket coming from the classical r-matrix (3.1) (see [38] for the (2+1) case). In the same
manner, the first-order twisted version of this noncommutative spacetime is obtained by adding
to (4.2) the contributions coming from (3.11), and yields

[x̂1, x̂0] = z x̂1 + ϑ x̂2, [x̂2, x̂0] = z x̂2 − ϑ x̂1, [x̂3, x̂0] = z x̂3,

[x̂a, x̂b] = 0, a, b = 1, 2, 3 ,

which is not isomorphic to the (3+1) κ-Minkowski spacetime (see [55]). Again, the cosmolog-
ical constant will appear for higher-orders within the full commutation rules. We recall that
in the (2+1) case the twist guarantees the compatibility with the Chern–Simons approach to
gravity [33]. Work on all these problems is in progress and will be presented elsewhere.
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