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RESUMEN 

 

En estudios recientes se ha mostrado la existencia de un nuevo tipo de 

‘interacciones no covalentes’, llamadas ‘enlaces de Berilio’
[1]

, cuyas propiedades 

químicas parecen indicar un futuro prometedor en áreas como la ciencia de 

materiales. Estos enlaces de Berilio se producen como aductos entre moléculas de 

berilio que actúan como ácidos de Lewis y otras moléculas que actúan como bases 

de Lewis. En este marco, el presente estudio analiza el enlace entre las pequeñas 

moléculas BeX2 (X = H, F, Cl) actuando como ácidos y el acetileno o etileno 

actuando como bases. Para un primer estudio se utilizan métodos DFT, seguidos de 

optimizaciones a nivel MP2 y CCSD, usándose para todos los métodos la base 6-

311+G(d,p), y adicionalmente se realizan cálculos a nivel MP2 y CCSD con la base 

aug-cc-pVTZ para proporcionar resultados más precisos para la energía. 

Finalmente, se usan los programas AIMAll y NBO para llevar a cabo análisis 

topológicos y de orbitales naturales de enlace que permitan el estudio de la natura 

del enlace. Efectivamente, se encuentra que existe un enlace relativamente fuerte de 

berilio en cada uno de los complejos y también se observan las principales 

participaciones de los orbitales y las deformaciones de cada molécula 

características de los enlaces de berilio. Dentro de cada serie, sin embargo, la 

tendencia seguida por la densidad del enlace de berilio y la de la energía de 

interacción del complejo son opuestas. Sospechamos que la deformación sufrida 

por la subunidad de berilio juega un papel importante en este, a priori, extraño 

comportamiento, y es necesario investigar más esta cuestión para poder explicarla. 
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ABSTRACT 

 

Recent studies have shown the existence of a new type of ‘non-covalent 

interactions’, called Beryllium bonds
[1]

, whose chemical properties seem to indicate 

a promising future in material science. These Beryllium bonds are found to be 

established as an adduct formation between beryllium molecules that act as Lewis 

acids and other molecules that act as Lewis bases. In this general framework, the 

present study analyses the bonding between the small BeX2 (X = H, F, Cl) 

molecules acting as acids and acetylene or ethylene acting as bases. DFT methods 

are used for early studies, followed by MP2 and CCSD optimization calculations, all 

of them with the 6-311+G(d,p) basis set, and additional MP2 and CCSD(T) 

calculations with the aug-cc-pVTZ basis are employed to provide more precise 

energy results. Finally, topological and natural bond orbital analyses with AIMAll 

and NBO programs are carried out to study the nature of the bonding.  It is indeed 

found that there is a relatively strong beryllium bond in each of the corresponding 

complexes and its expected characteristics regarding the orbitals main participations 

and the deformation of the moieties are also observed. Within each of the series, 

however, the trends followed by the density of the beryllium bond and the 

interaction energy of the complex are opposing. We suspect the deformation 

undergone by the beryllium subunit plays a key role in this a priori strange 

behavior, and further researches are required to clarify this point. 
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1. INTRODUCTION 

 

The term “bond” represents one of the most basic concepts in chemistry. It has been 

usually and roughly defined just as some type of force that keeps some atoms together, 

but nowadays a more common and correct description states that a bond is “an 

interaction that stabilizes the system”. 

There are many types of bonds, and they all are usually classified in two main groups: 

the strong ones and the weak ones. Strong bonds are, at the same time, divided into the 

covalent and the ionic ones. The latter are characteristic of crystals, while covalent 

bonds are characteristic of molecules -though in molecules a mixture of ionic and 

covalent nature is actually very common-. Following this classification, the weak bonds 

that take place either within of between molecules are collected in the general term 

“non-covalent bonds” or “non-covalent interactions”. 

However, it is known that there are a lot of different non-covalent interactions with very 

different properties, and it is also known that most of them are very important, for they 

are responsible of the stabilization and correct functionality of practically all molecular 

assemblies, not only artificial but natural ones, such as the DNA. 

One of the most important non-covalent interactions, that nearly has the strength of a 

conventional covalent bond
[2]

, is the hydrogen bond. We are all well aware of how 

important the hydrogen bond is in life, starting by its role in our essential water to our 

essential DNA passing by synthetic polymers and drugs, etc., that we use in our 

everyday life. 

Well, the characteristics of a hydrogen bond are not necessarily exclusive to them. 

In fact, the same type of interaction can be found whenever a not very electronegative 

element with low-lying empty orbitals is covalently bonded to a more electronegative 

one. The difference in electronegativity makes the element more positive, and another 

atom –from a different molecule- with negative net charge can feel the electrostatic 

attraction, which is the predominant force in a hydrogen bond. Besides, the low empty 

orbitals of the element allows it to behave as a good electron acceptor, which then 

makes possible the secondary but important force that characterizes the hydrogen bond: 

the covalent backbonding from the lone pairs of the atom of the molecule nearby to the 

mentioned  low empty orbitals of the element. 

Beryllium is an element that fulfill these requirements, and it also has been shown that 

BeX2 derivatives are good Lewis acids
[3]

, which therefore makes the molecule in 

principle capable of forming this type of non-covalent interaction with molecules that 

act as Lewis basis. 
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As a matter of fact, the group of Estructura Molecular y Reactividad Química at the 

Universidad Autónoma de Madrid leaded by Professor Manuel Yañez Montero has 

recently discovered this new type of non-covalent interaction in Beryllium complexes, 

and the group found out that it indeed has several similarities with the hydrogen bond. 

Due to these similarities, they decided to call it “Beryllium bond”. 

In the paper entitled Beryllium Bonds, Do They Exist? of 2009, which is cited several 

times in the present work, Yañez et al. analyzed the complexes between BeX2 (Z=H, F, 

Cl, OH) with different Lewis basis and discussed the beryllium bonds existence and its 

characteristics
[1]

. 

The conclusions of that study are the background of this work, and I’d like to briefly 

review here the most important ideas: 

The similarity between beryllium bonds and hydrogen bonds are firstly about their 

nature. As said before, there is a predominant electrostatic component, but the group 

also found evidence that indicated a non-negligible covalent contribution for beryllium 

bonds, as there also is in hydrogen bonds. In beryllium bonds, however, this was 

associated to an electron transfer from the lone pairs of the Lewis base toward the 

empty p orbital of the beryllium atom and the σBeX* antibonding orbital instead of just 

from the lone-pairs of the hydrogen bond acceptor to the antibonding orbital of the 

hydrogen bond donor. As a consequence of the electron transfer to the p orbitals of 

beryllium, the BeX2 subunit of the complex is distorted. Also, since there is an electron 

transfer to an antibonding orbital of BeX, these bonds lengthen, and there is a red shift 

of the BeX2 antisymmetric stretch. However, a blue shift of the symmetric stretch is 

also noticed. This is due to the fact that the stretch is coupled with the stretching of the 

berlyllium bond, so that a compression of the beryllium bond leads to a symmetric 

elongation of Be-X bonds. Therefore, the stronger the beryllium bond is the larger the 

blue shifting of the Be-X symmetric stretch becomes. This can be used as an 

experimental signature of beryllium bonds, as the red-shifting of the XH stretching is 

used for hydrogen bonds. Finally, an important difference they found is that beryllium 

bonds are, in general, significantly stronger that hydrogen bonds. 

The fact that beryllium bonds have similar or even more strength than hydrogen bonds 

already opens the door to a vast new world of possibilities, for beryllium bonds have 

then enough strength to become the building blocks of new ensembles and, in the end, 

this can give rise to new materials, with new or specifically modulated properties. This 

possible application alone would suffice to make this topic worth studying, if not only 

for the progress of our knowledge and science in general, but beryllium also has other 

interesting properties that need to be studied to take advantage of them. 

In fact, beryllium cation can behave as what has been called ‘tetrahedral proton’, and 

can displace H
+
 in the situations where the proton acts as such

[4]
. 
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In addition, in these cases the tetrahedral coordination of beryllium allows to produce 

chiral-at-metal complexes, i.e. molecules where the stereogenic center is the beryllium 

atom, so that if the rest of the complex has another stereogenic center, two diasteromeric 

complexes can be generated with different properties. 

Besides, this behavior of the beryllium cation may be related to the beryllium disease, 

for which the causes are still unknown. 

Finally, beryllium bonds have been shown to be able to modulate the strength of other 

non-covalent interactions such as the already mentioned hydrogen bonds
[5]

. 

The aim of this work is to contribute to the next step on the research on beryllium bonds 

by studying the possible existence of them –and their characteristics- between BeX2 (X 

= H, F, Cl) molecules and small unsaturated hydrocarbons that can act as Lewis bases, 

specifically acetylene and ethylene.  



14 

 



15 

 

2.  METHODOLOGY 

 

All of the calculations of this research have been carried out within the Centro de 

Computación Científica at the Universidad Autónoma de Madrid. 

This center has more than a hundred servers with more than 1400 cores specifically 

dedicated to research, and it is characterized by the great variety in both the servers and 

the processors, for we can find servers of different trademarks (HP, Dell, Sun, SGI…) 

and both AMD and Intel processors (AMD Opteron, Intel Xeon, Intel Itanium). 

All of the calculations have been done with the Gaussian 09 program package
[6]

 in a 

Linux-based environment. 

In order to study the interaction between the beryllium atom of BeX2 (X = H, F, Cl) and 

the CC bonds of ethylene (C2H4) or acetylene (C2H2) an initial geometry for the system 

must be set. Since the two molecules are symmetric, a symmetric system as a whole is 

also expected from their interaction. However, a symmetric system can be achieved 

with several dispositions in both the cases of ethylene and acetylene, with a change in 

the direction of the planes of the molecules (being perpendicular all the same): 

 

Figure 1. Possible relative symmetric dispositions of the two molecules. Notice that since C2H2 and BeX2 are linear 

there are more planes that would fit, but these ones were chosen for the sake of clarity. 
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However, the dispositions showed in figure 1 are not the actual geometries expected for 

the complexes, for if a bond forms between the molecules, each of the two molecules -

now the subunits of the complex- will experiment a deformation. 

In both cases the CH bonds of acetylene or ethylene are expected to be bent towards the 

outside, and so are also the BeX bonds. Therefore, the BeX2 molecule will not be linear 

anymore, nor will the acetylene/ethylene remain linear/planar. 

The magnitude of this deformation is an indication of the strength of the beryllium bond 

between the molecules, so that the stronger the deformation is, the stronger the 

beryllium bond is likely to be. This deformation occurs due to the charge transfer from 

the high electronic density of the triple or double CC bond of acetylene or ethylene, 

respectively, towards the empty low p orbital of the beryllium atom. This produces a 

small change in the hybridization of both the acetylene/ethylene and the beryllium 

orbitals, for they have now electronic density in a new direction of space and need to 

adapt the directions of the rest in order to avoid repulsion forces and maintain the 

stability. Besides, the more electronic density displaced towards the beryllium bond, the 

stronger will the beryllium bond be and the more will the orbitals need to modify in 

order to adapt to the new situation, giving rise to the statement that the more 

deformation the system acquires, the stronger the beryllium bond is. In addition to this, 

in a beryllium bond there is also a charge transfer from the CC bond of 

acetylene/ethylene to the antibonding orbitals of BeX, σBeX* and therefore the Be-X 

bonds lengthen. It is easy to see that the more long the BeX bond becomes, the more 

strong the beryllium bond is likely to be. 

Finally, although maybe obvious, it is important to remark that, despite this 

deformation, the system as a whole will maintain a C2v symmetry. 

 

 

 

 

 

 

 

 

 

Figure 2. Possible symmetric dispositions between BeX2 (X=H,F,Cl) molecules and acetylene. Since 

X1=X2 the system is symmetric and the different distances and angles will also be symmetric. 
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Please notice that the two first dispositions for the BeX2-C2H4 system showed in Figure 

1 are not showed in Figure 3. The reason is that they were very likely to be more 

unstable –if they were stable at all- than the other two. Nevertheless a few calculations
1
 

were done with those initial dispositions and they were definitely discarded. 

Since two possible dispositions remained for each case, optimization calculations were 

carried out with density functional theory in order to find which one was more stable for 

each system, if any of them was. 

                                                           
1
 At B3LYP/6-311+G(d,p) level. 

Figure 3. Possible symmetric dispositions between BeX2 (X=H,F,Cl) molecules and ethylene. Since 

XH1=XH2 the system is symmetric and the different distances and angles will also be symmetric. 
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The functionals chosen were B3LYP (the known hybrid functional that combines 

Becke’s exchange functional and Lee, Yand and Parr correlation functional)
[7-11]

 and 

M06 and M06-2X (meta-GGA hybrid functionals of Truhlar and Zhao)
[12]

.  

B3LYP was chosen because it usually gives good values for the molecular properties 

with fast non-expensive calculations and thus it is nowadays used in most initial 

calculations. M06 and M06-2X functionals were selected because they are semi-local, 

and usually give good results for main group, organometallics, kinectics and –the part of 

our interest- non-covalent bonds. Dispersion is somewhat taken into account in these 

functionals because of the way they are defined: they have many parameters which, in 

addition to be constrained to reproduce the uniform electron gas limit behavior, are 

empirically fitted using many data sets, and these data sets correspond not only to 

thermochemistry but also to non-covalent interactions and kinetics. The main difference 

between them is the amount of HF exchange energy they include, as it is explained later 

in section 3. 

The basis used with these functionals was the small 6-311+G(d,p) basis of Pople
[13]

 for 

not much precision was needed at this point. 

Once these calculations of optimization were done, a preferential structure for each 

system was found. For these optimal structures, second order Moller-Plesset 

perturbation theory (MP2)
[14-17]

 and coupled cluster singles and doubles (CCSD)
[18-23]

 

calculations were carried out to obtain more precise values of the molecular properties 

and, at the same time, compare the values obtained with the four used methods. 

In order to be able to compare results, however, additional calculations were needed to 

obtain the interaction enthalpy of the beryllium bond of the system, also known as 

dissociation energy, and its vertical dissociation energy as well. 

The dissociation energy of the system (D0 or ΔHint) is mathematically calculated as the 

negative of the enthalpy obtained by subtracting from the enthalpy of the complex the 

enthalpy of the two isolated monomers (in their isolated equilibrium geometry): 

                                                    







 

molec

i

icomplex HHD 00

0                                (2.1)  

 

It is usually defined either as the energy that the system loses when the bond is made or 

as the energy it is needed to break it (homolytically), although that is not entirely true. 

The vertical dissociation energy (Eint or ΔHvert) or interaction energy is actually the one 

that accounts for the energy of the bond and only the bond, because it is defined as the 

energy required to separate the interacting subunits at infinite distance but keeping 

frozen the structure they have in the complex. The point is that the dissociation energy 

D0 also collects the energy of relaxation of the two subunits from their structure within 

the complex to their isolated equilibrium structures, which are just that, relaxation 

energies, not part of the energy of the beryllium bond. Since these relaxation energies 
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are always negative, it is easy to see that Eint > D0, and that the vertical dissociation 

energy Eint can be calculated by adding the absolute values of the relaxation energies of 

the subunits to the dissociation energy D0 of the complex: 

                                                            
molec

i

relax

icomplex HDE 0

int
                               (2.2) 

                                                     
molec

i

i

molec

i

complex

i

molec

i

relax

i HHH 0                  (2.3) 

 

Thus, in order to obtain the values of D0 and Eint, the corresponding optimization 

calculations were done for each isolated molecule at the four methods, as well as single-

point calculations for the isolated molecules at the frozen geometry they have within 

each of the complexes and also at the four methods. In all of these calculations the 6-

311+G(d,p) was logically maintained. 

It is worth noting that the values of D0 will vary a lot from one complex to another 

because they depend on the relaxation energies of the subunits, whose substituents are 

different, while the change in Eint should show a smaller but very important change that 

will indicate how does the strength of the beryllium bond vary with the substituents of 

the two molecules of the complex. 

Apart from these calculations, a deeper study of the bonds was made by using Natural 

Bond Order theory and Atoms In Molecules theory. 

The NBO
[24, 25]

 analysis gives an idea of the participation of each atomic orbital in the 

molecular bonds. These calculations were carried out from Gaussian with the NBO 5.0 

program
[26]

. 

The Bader analysis of AIM theory
[27-29]

 allows us to determine if there really is a bond 

between a pair of atoms and helps in defining its nature. These calculations were made 

with the AIMAll program package
[30]

. 

Finally, to obtain the most precise results for the energy, additional single-point 

calculations were carried out at the MP2 and CCSD(T)
[21]

 levels of theory using the 

aug-cc-pVTZ basis set of Dunning
[31, 32]

 and starting with the optimized geometry found 

previously with the 6-311+G(d,p) basis in each case. 

The MOLDEN program package
[33]

 was also used during the whole research for the 

visualization of structures and the identification of frequencies. 
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3. THEORETICAL FOUNDATIONS 

 

3.1. BASIS SETS. 

 

Generally, in quantum chemistry methods, the wavefunction of the system is expressed 

as a linear combination of certain basis functions. These basis functions constitute the 

basis set. If the basis set is complete, any mathematical function can be exactly 

represented this way, but achieving this would involve an infinite number of functions, 

which is not possible computationally. Therefore a finite basis is used as an 

approximation. The type and size of the chosen basis can determine the accuracy of the 

calculation. 

Two of the first and simplest basis sets are Slater Type Orbitals (STO) and Gaussian 

Type Orbitals (GTO). 

STO
[34]

 have the general form: 

                                                          rn

mlmln erNYr ·1

,,,, ,,, 
                                       (3.1.1) 

where N is a normalization constant,   ,,mlY are the spherical harmonics and  is the 

effective nuclear charge. The exponential dependence on r gives a good description of 

the maximum of the function, on the nucleus and a rapid convergence. However, two 

electron integrals centered on three or four atoms cannot be solved analytically, and as a 

result the use of STO has been limited to the treatment of atoms and diatomic molecules 

mostly. 

GTO were proposed by Boys
[35]

 in order to overcome the disadvantages of STO, and 

indeed with this basis all the integrals can be calculated analytically. Its functions have 

the general form: 

            2·22

,,,, ,,, rln

mlmln erNYr 
    or   

2·

,,, ,, rlll

mln ezyNxr zyx 
         (3.1.2) 

where the sum zyx lll   determines the type of orbital, being an s orbital if it is equal 

to 0, a p orbital if it is equal to 1 and so on. 

The exponential dependence on r
2
 does not describe correctly the behavior at the 

nucleus. In addition, GTO decrease too quickly with the nuclear-electron distance, and 

the long distance region of the orbital is also not well reproduced. 
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3.1.1. MINIMAL BASIS SET. 

The most common minimal basis sets are STO-NG basis sets. It was proposed by Pople 

and coworkers
[36]

 and consists in a combination of the two basis set mentioned before. 

The basis set uses a set of GTOs (N = 3-6) to fit by least squares to a STO function: 

                                                                

i

GTOiiNGSTO a ,                                                      (3.1.3) 

Where GTOi, is a gaussian function and is called primitive, while the STO-NG are called 

contracted. The expansion can include as many terms as desired, but from N = 3 the 

inclusion of more terms does not provide much improvement compared to the increase 

in the computational cost. That is why the most used is the STO-3G. 

In minimal basis set the number of functions used are the minimum one to describe the 

core and valence orbitals of the atoms, but not any virtual orbitals. As a consequence the 

results obtained are very rough, for a minimal basis set is not flexible enough to 

describe correctly the atoms in a molecular environment. 

 

3.1.2. SPLIT-VALENCE BASIS SET. 

Following the idea that in most chemical bonds the valence electrons are the one which 

mainly participate, in these basis sets the atomic orbitals corresponding to the valence 

atomic orbitals are described with more than one basis function. They usually are split 

in two parts, an inner compact one and an outer and diffuse other. If the split is in two 

basis functions, the basis is called double zeta, DZ, in a reference to the two exponents 

of the two basis functions. Similarly we can have a triple zeta, quadruple zeta and so on 

basis set. The coefficients of each of these functions can be varied and thus the size of 

the orbital changes, allowing the adjustment to a particular molecular environment. 

The most common basis sets of this type are Pople basis sets
[37]

. 

The notation of these basis sets is X-YZG, where G stands for Gaussian, X represents 

the number of primitive Gaussians of each core atomic orbital basis functions, and Y 

and Z indicate as well the number of primitive Gaussian functions that form each 

valence function, but each of Y and Z are composed of two basis functions instead of 

one. The hyphen implies its split-valence character. These are, then double zeta basis 

sets, but more number can be added indicating triple zeta, quadruple zeta and so on. 

However, in some cases additional flexibility is needed to the correct description of the 

system. In those cases polarization and diffuse functions are used. 

Polarization functions are orbitals with higher angular momentum than the ones an atom 

has in its ground state. It owes its name to the fact that it provides the atom with new 

directions that can accommodate the electron density in cases where it is deformed such 
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as in polarization processes. Polarization is usually notated with an asterisk following 

the normal notation of the basis set or alternatively by adding a P. An additional set of p 

orbitals on each hydrogen is indicated by a second asterisk or alternatively by adding 

2P. Also, the orbitals added can be notated in parenthesis, firstly for the heavy atoms 

and secondly for hydrogen atoms. For instance, a 6-31G(d) basis set is equal to 6-31G* 

and indicates that each core atomic orbital is described by a function with 6 Gaussian 

primitive functions, that the valence atomic orbitals are split in two, each of which is 

described by two functions, the first two with 3 Gaussian primitives and the second two 

with 1 Gaussian primitive. In addition, heavy atoms have a d polarization function. 

Diffuse functions are needed in cases where the atomic orbitals reach farther distances 

from the nuclei due to it having more charge, as in ionic atoms, or in the case of weakly 

bonded systems. In general, they are included as an s function and a set of p functions 

for each atom of the system, with the exponents obtained variationally for the anion or 

hydride anion of the corresponding atoms. In Pople basis sets the inclusion of diffuse 

functions is denoted by a symbol +, if they have been added to heavy atoms only, and 

with two symbols ++ if they have also been added to hydrogens. 

One of the most common basis sets used, and one of the two that have been used in the 

present work in 6-311+G(d,p). This basis, therefore, indicates that each core atomic 

orbital is described by a function with 6 Gaussian primitive functions, that the valence 

atomic orbitals are split in three, each of which is described by two functions, the first 

two with 3 Gaussian primitives and the remaining four with 1 Gaussian primitive each. 

In addition, heavy atoms are described with a diffuse function, and for heavy atoms and 

hydrogen atoms a d and p polarization function, respectively, is included. 

 

3.1.3. CORRELATION CONSISTENT BASIS SETS 

These basis sets were developed by Dunning
[31, 32]

. They are designed to converge 

systematically to the complete basis set. The notation for them is ‘cc-pVXZ’ where cc-p 

stands for correlation consistent polarized, the V stands indicates they are only valence 

basis sets and X can be D, T, Q, etc which stands for double zeta, triple zeta, quadruple 

zeta and so on. These basis set include progressively more polarized functions, and for 

instance cc-pVDZ includes 2s and 1p orbital to describe hydrogens while cc-pVTZ 

includes 3s, 2p and 1d. 

However, these basis set do not include diffuse functions. When they are needed, an 

extra function with a smaller exponent is added for each angular momentum of each 

atom, and the basis set adds ‘aug-‘ in front of its name. For instance, a basis set used in 

the present work is aug-cc-pVTZ, which describes H with 3s, 2p, 1d and additional 

diffused orbitals 1s, 1p, 1d, while Be is described by 4s, 3p, 2d, 1f and additional 

disffused orbitals 1s, 1p, 1d, 1f. 
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3.2. DENSITY FUNCTIONAL THEORY 

 

The density functional theory owes its name to the use of functionals, i.e. functions of 

another function, of the electron density, and is a method that allows the properties of 

many electron systems to be determined. 

The main idea of DFT is using the electron density, which only depends on 3 spatial 

coordinates, instead of the complex wavefunction to solve Schrödinger’s equation. 

Since the Hamiltonian depends only on the total number of electrons and the positions 

and atomic numbers of the nuclei, it is reasonable to think that the electronic density 

could well define the Hamiltonian, calculating the energy with the electron density. 

However, the exact mathematical relation between energy and electron density is 

unknown, and some approximations must be done. In spite of them, though, DFT is 

nowadays known as one of the most versatile methods available in computational 

chemistry due to the very accurate results it provides at a very low computational cost. 

The probability density is the probability of certain random variable to take on a given 

value per unit volume at a certain point. Applied to this case, we can define a 

probability density function  that describes the probability of having certain number of 

electrons per unit volume at a given point, which, in quantum chemistry, is equal to the 

squared wave function of the system. For instance, if we had a system with a single 

electron of α spin described by the spin orbital      srx 


 , then we would have the 

following expression for the probability density function:     2
xx


 . Therefore, the 

probability of finding that determined electron in a certain given volume, for instance dx 

= dr·ds would be the product of the probability density by the volume dx: 

 

        xdxxxdxxdx


 *
2

                    (3.2.1) 

 

However, if we only want to know how the electron is distributed in space no matter 

what spin it has, then we can integrate out the spin, i.e. make the integration over the 

spin as if the spatial part was constant. Since the one-electron spin functions form an 

orthonormal basis, we obtain the following expression: 

 

                 rdrdsssrdrrdsrdxxdx
 2

*)(*     (3.2.2) 

 

The new probability density we obtain as a result,   2
)( rrP


 , is the one that has been 

called electron density, that only depends on the spatial part of the wave function of the 

electron, which is the only part we need in order to describe the energy of the system. 
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Now, in order to generalize the expression, let’s consider a system with N electrons 

described by the wave function  Nxxx


,...,, 21 , where ix


 represents the spatial and spin 

coordinates of electron i:  

 

                         NNNN xdxdxdxxxxdxdxdxxx


...,...,,...),...,,( 21

2

212121     (3.2.3) 

               NNNNN xdxdxdxxxxxxxdxdxdxxx


...,...,,,...,,*...),...,,( 2121212121    (3.2.4) 

 

The expression above is then the probability of finding a first electron in a volume of 

dx1=dr1ds1 and at the same time a second electron in a volume of dx2=dr2ds2 and so on 

up to the last electron in a volume of dxN=drNdsN. 

 

However, since the Hamiltionian is a two-electron operator we only need to know the 

probability of one electron and two electrons simultaneously, not all of them. Therefore 

we can integrate out unwanted coordinates, just as with the spin coordinate. Thus, the 

probability of finding the first electron in volume dx1 regardless of where the rest of 

electrons simultaneously are is given by: 

 

                               NNN xdxdxxxxxxxdxdx


...,...,,,...,,*)( 221211111       (3.2.5) 

 

Since electrons are indistinguishable particles the probability of finding any electron 

instead of a determined one is N times larger: 

 

                               NNN xdxdxxxxxxxNdxdx


...,...,,,...,,*)( 221211                  (3.2.6) 

 

xdx


)(1 is the one-particle density function of the system. 

Notice that the subscript 1 on the x is no longer there because we now consider any 

electron in a single, arbitrary and infinitesimal volume dx at position vector x. Again, 

we can obtain the spin-less electron density function by integrating out the remaining 

spin coordinate: 

 

         dsxrP )(11


                                                             (3.2.7) 

 

Similarly, we can obtain the expression for the two-electron electronic density function 

as the probability of finding an arbitrary electron in volume dx1 and simultaneously 

another in dx2 by integrating over all coordinates except x1 and x2. Also bear in mind 

that the electron pairs are undistinguishable as well, and mathematically the amount of 

possible ways to choose two different electrons is given by a permutation:  

 

                   ;...,...,,,...,,*),( 321212121212   NNN xdxdxxxxxxxdxdxdxdxx


    (3.2.8) 
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 

  
 

 1
!2

!21

!2

!
2 







 NN

N

NNN

N

N
PN                    (3.2.9) 

 

                NNN xdxdxxxxxxxdxdNNdxdxxx


...,...,,,...,,*1),( 321212121212  (3.2.10) 

 

Notice that subscripts 1 and 2 in the last equation are to differentiate the two arbitrary 

infinitesimal volumes dx1 and dx2 at positions x1 and x2 respectively, and they are not 

referred to specific electrons 1 and 2 anymore. 

 

Finally we can obtain the spin-less electron density by integrating out the two spin 

coordinates s1 and s2: 

 

                                                            21212212 ),(),( dsdsxxrrP


                                  (3.2.11) 

 

This function accounts for the correlated movement of interacting electrons. 

 

Since the one-electron operator  irh
ˆ  of the Hamiltonian contains a differential operator, 

in order to solve the Schrödinger equation we need also the density matrix for one-

electron terms. The first-order or Fock-Dirac density matrix is defined as: 

 

                                      NNN xdxdxxxxxxNxx


...,...,,,...,,'*);'( 22121111  (3.2.12) 

 

As we have seen before we can integrate out the spin in order to have a spin-less 

version, which in this case is called first-order reduced density matrix: 

 

                                                               11111111 ');'();'( dsdsxxrrP


                              (3.2.13) 

 

The diagonal of this matrix is equal to the density function but the rest of the elements 

have no physical meaning. Also, the sum of the diagonal elements is equal to the total 

number of electrons N: 

 

                                                       NrdrPrdrrPPtr   11111111 )();'(


                             (3.2.14) 

 

The time-independent Schrödinger equation is, in general: 

 

                                                                 EĤ                                                           (3.2.15) 
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Where  is the wave function, which contains all the information of the system, and 

Ĥ is the Hamiltonian operator, which contains the kinetic  T̂  and potential  V̂ energy 

terms: 

 

                                                   
nenneeen VVVTTVTH ˆˆˆˆˆˆˆˆ                               (3.2.16) 

 

Where n is the label for nuclear coordinates (R) and e is the label for electron 

coordinates (r). 

 

It is well known that since the nuclei are much heavier than the electrons the latter move 

much faster and they can barely feel the movement of the nuclei, and due to that we can 

decouple nuclear and electronic velocities, in what is known as the Born-Oppenheimer 

approximation. Therefore, an electronic Hamiltonian is defined by separating the term 

of the kinetic energy of the nuclei: 

                          

                                                                                                                                  (3.2.11) 

                                                                                                        (3.2.12) 

 

This means that the Hamiltonian depends now only parametrically on the coordinates of 

the nuclei. For a system of N electrons and M nuclei, we can write the electronic 

Hamiltonian as follows: 
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
 (3.2.13) 

 

Where e and me stand for charge and mass of an electron, Zk and Zl stand for the charge 

of the nuclei, 0 is the permittivity of free space and   is the reduced Planck's constant. 

 

To make things easier, we can use atomic units. That way the elementary constants me, 

e and   are equal to 1, the corresponding length unit would be Bohr’s radius 0a = 1 

bohr = 5.292 · 10
-11

m and the energy would be in Hartrees EH = 1 Hartree = 27.21 eV. 

Using these units the electronic Hamiltonian simplifies to: 

 

 

                (3.2.14) 
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 (3.2.16) 
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Since equation (3.2.12) is an eigenvalue problem, for a certain given geometry many 

eigenvalues Ek will be obtained. The lowest Ek corresponds to the ground state, while 

higher ones correspond to excited states. Therefore, by varying the geometries we 

would obtain high-dimensional potential energy surfaces for each state, so that, for 

instance, a minima found for the ground state surface E0(R1, R2, …, RM) would 

correspond to a energetically stable geometry, while the first-order saddle points would 

correspond to transition structures. 

 

In order to solve the Schrödinger’s equation (3.2.12) we have to obtain the electronic 

energy as the expectation value of the electronic Hamiltonian: 

 

                 (3.2.17) 

                                                                                            (3.2.18) 

 

By substituting in the last equation the expression for the electronic Hamiltonian, we 

finally arrive to an expression of the expected value of the electron density in terms of 

the first-order density matrix and of the two-electron density: 

 

    

                (3.2.19) 

 

 

Notice that in the previous section we used P instead of ρ to remark the difference 

between the densities depending on r and depending on x. Since from now on we will 

only deal with the density depending on r, we recover the general notation ρ for the 

density. 

 

The two-electron density  212 ,rr


 contains information about the correlated motion of 

two electrons. Since it’s a probability, if the electrons were independent this density 

would be equal to the product of the densities of each separated electron, but since that 

is not the case, we have a conditional probability  21,rr


 : 

 

                                                                     211212 ,, rrrrr


                                             (3.2.20) 

 

The exchange-correlation density  21 ,rrXC


  is defined as: 

 

                  (3.2.21) 
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Therefore, dividing by   :1r


  

 

                                                  
 
 

     21221

1

21 ,,
,

rrrrr
r

rr
XC

XC 










               (3.2.22) 

We obtain the density  21,rrXC


 , which is known as the Exchange-Correlation hole. It 

designates a region around an electron where the presence of another electron is 

excluded to some extent. This hole can be a Fermi hole, if the electrons considered are 

of the same spin, or a Coulomb hole, if the electrons have different spin: 

 

                                                                  212121 ,,, rrrrrr XCXCXC

                   (3.2.23) 

 

We can then separate  212 ,rr


  of equation (3.2.19) in two terms, and the expression for 

the electronic energy would be as follows: 

 

(3.2.24) 

 

In this expression the first term accounts for the kinetic energy of the electrons  eT̂ , 

the second term is the electron-nuclear potential energy  ,ˆˆ vVne , the third corresponds 

to the classical Coulomb electron repulsion  Ĵ  and the fourth one represents the non-

classical electronic exchange-correlation energy  NCÊ . Notice that then we have 

divided the potential energy between the electrons  eeV̂  in two terms: 

 

                                                            NCee EJV ˆˆˆ                                       (3.2.25) 

 

And therefore: 

 

                                           nucNCneee EEJvVTE ˆˆˆ),(ˆˆ                       (3.2.26) 

 

It is possible then to express the energy as a function of first and secon-order density 

functions and density matrices, and therefore it can be said that the energy is a 

functional of the density.  
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3.2.1. HOHENBERG AND KOHN THEOREMS. 

 

The Hohenberg and Kohn theorems gave rise to the DFT methodology, because with 

them the theory became useful: the first theorem showed its applicability and the second 

paved the way for the mathematical equations to make it work. 

 

The first Hohenberg-Kohn theorem
[38]

 states that, for non-generate ground states, the 

external electron-nuclei potential vext(r), and hence the total energy, is a unique 

functional of the electron density n(r). The demonstration of the theorem is achieved by 

reduction ad absurdum. The very important consequence of this theorem is that, since 

vext(r) and N completely define de Hamiltonian of the system, the electrons determine 

not only this potential and the energy but also all the electronic properties of the ground 

state of the system. Furthermore, this means that any observable of a stationary non-

degenerate ground state can be written as a functional of the electron density of the 

ground state and be calculated exactly. 

 

Since for a specific external potential vext(r) the energy is a functional of the density, the 

terms of equation (3.2.26) that don’t depend directly on this external potential, namely 

the kinetic energy of the electrons  eT̂  and the repulsion potential of the electrons 

 eeV̂ , are gathered, to simplify, in what is called the Hohenberg-Kohn functional 

 HKF : 

 

                (3.2.27) 

 

 

Since this Hohenberg-Kohn functional does not depend on N or vext(r), it will be the 

same for all of the systems that the theorem is valid for. 

 

The second theorem corresponds to the variational principle for the energy E(ρ), and 

states that the electron density of a non-degenerate ground state can be calculated 

exactly by determining the density that minimizes the energy of the ground state. 

The variational principle grants that any density used gives an energy greater or equal to 

the exact energy of the ground state. In order to obtain the exact density of the ground 

state we have to find the density that minimizes the energy, i.e. the one that makes zero 

the derivative of the energy with respect to the density: 

 

 

                            (3.2.28) 

 

In this approach the second-reduced density matrix is intended to be applied directly, 

without previous knowledge of the N-electron wave function from which it is derived. 

This is a problem because one has to know that there exists indeed an N-electron wave 
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function that could result in such electron density. In order to ensure this, one has to 

determine what Coleman called the N-representability conditions
[39]

 that the second 

reduced density matrix has to fulfill. 

 

One way of solving this problem is by means of the Lagrange undetermined multipliers 

method. 

We have a functional E of the variable function P. Applied to this case the method 

proposes an equation with an added parameter, the solution of which will give the 

values of the parameter and ρ for the energy to be stationary (and therefore granting the 

existence of a corresponding stationary state or wave function): 

 

                  (3.2.29) 

 

Where µ is the undetermined Lagrange multiplier and, as we know   0 Nrdr


 . 

However, the stationary energy we need has to be the lowest one, and therefore the 

derivative of the previous equation has to be zero: 

 

      

                ___(3.2.30) 

 

The differential of a functional has the form: 
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The minimum value for the undetermined Lagrange multiplier µ is defined as: 
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Introducing the expression of the energy of equation (3.4.3): 
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This constitutes the fundamental equation of density functional theory. 
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The problem now is that the exact mathematical relation between the functional and the 

density is unknown. More specifically, the exact form of  eT̂  is unknown. 

 

3.2.2. KOHN AND SHAM METHOD 

 

Kohn and Sham
[40]

 considered separating this unknown kinetic energy in a known term 

and an unknown term. The known term would correspond to a system of reference in 

where the electron-electron interactions are not considered, but defined by the electron 

density of the real system. In this way we would have a Hartree-Fock exact value for 

this kinetic energy rT̂ , which would be the same as part of the kinetic density of our 

system, for they would have the same density. The other term, cT̂ , would account for 

some electron correlation and would remain inexact: 

 

cre TTT ˆˆˆ                                                                (3.2.35) 

 

Therefore: 
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Since it accounts for some electron correlation, it can be gathered to  NCÊ  in what 

constitutes the exchange-correlation energy. Applying the fundamental equation of DFT 

we have: 
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We can simplify this expression by defining the following potentials: 

 

 

(3.2.40) 

 

The first one is the sum of the nuclear-electron potential energy and the electron 

repulsion term. Both appear due to Coulomb forces, and the potential is known as the 

Coulomb potential. The second one is called exchange correlation potential. 

Finally, the compact equation we obtain is: 
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            (3.2.41) 

 

This result only differs from the result for the non-interacting system in the expression 

for the potential. Therefore, we will have a very similar equation for the Hamiltonian 

which will be solved through very similar HF equations: 

 

                     rvh effKS


ˆ

2

1ˆ 2                                                     (3.2.42) 

 

A set of Kohn-Sham orbitals can be written to define a Slater determinant that allows 

obtaining the electron density, and are solutions to the Schrödinger equation: 

 

                                       (3.2.43) 

 

 

                    (3.2.44) 

 

Them the most precise solution for the energy and wave function of the system is 

obtained through an iterative procedure until convergence. The exact procedure of the 

method is as follows: 

 

1. An initial guess for the Kohn-Sham molecular orbitals i  is selected. 

2. The electron density is calculated from them (equation (3.2.43)) 

3. The exchange-correlation potential is calculated with equation (3.2.40b) with the 

expression given by a previously selected exchange-correlation functional. 

4. With the density and the exchange correlation potential the effective potential is 

calculated (equation (3.2.43c) and (3.2.43a)). 

5. The Hamiltonian is now known (equation (3.2.42)) and the KS equations 

(equation (3.2.44)) can be written and solved. A new set of KS orbitals are 

obtained. 

6. The electron density is calculated again with the new orbitals. If the result is the 

same as the one obtained in step 2, then the convergence is reached and the 

orbitals and energy obtained in this cycle are the most precise ones this method 

can give. If the results differ, the cycle is repeated from step 3 until convergence. 

 

It is important to point out the main differences of DFT with respect to HF. 

In HF the energy is minimized with respect to the coefficients of the basis set 

expansion, while in DFT the energy is minimized with respect to the density. Also, in 

HF the molecular orbitals and its energies have physical meaning, but KS orbitals and 

its energies do not. The KS wave function is an approximation to the exact wave 

function, and using it to calculate values of observables is not correct. However the KS 
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orbitals have the same shape, symmetry and energetic order as the HF ones, and due to 

this they can be correctly used for reactivity studies. Besides, unlike HF, DFT is able to 

take into account all correlation energy if the exchange-correlation functional is 

appropriate. Finally, although an approximate Hamiltonian is used, it is important to 

notice that in DFT the electron density is exact for as long as the exchange-correlation 

is, for it is the only source of error in the method. 

 

Therefore, in DFT the exchange-correlation functional chosen is the key to obtain the 

most precise results. However, one of the main disadvantages of the method is that there 

is no systematic way of improving the results because it is impossible to know in 

advance which exchange-correlation functional is going to give better results for a given 

system. 

 

 

3.2.3. EXCHANGE-CORRELATION POTENTIAL TYPES 

 

 

There are lots of different exchange-correlation potential types. In the present work only 

a brief description of the main ones is provided. 

 

 

3.2.3.1. Local Density Approximation (LDA) and Local Spin Density 

Approximation (LSDA) 

 

In this approximation the exchange-correlation effects are considered just local, and its 

energy depends only on the density. The energy is usually divided into exchange and 

correlation energy, with the homogeneous gas constant density taken as a model for the 

exchange part: 

 

                          (3.2.46) 

 

Thus, this approximation works very well in systems in which the density doesn’t 

change much. If it does, though, it is still possible to obtain good approximations by 

applying it to infinitesimal volumes. 

One of the most known functional of this type is the VWN of Vosko, Wilk and Nusair
[9]

 

If we have an open shell system instead of a closed one, and therefore we have different 

α and β densities, this method is used instead of just LDA. It follows the same concepts 

but the densities must be calculated separately. This method is also known as the 

unrestricted Kohn-Sham (UKS) method. In this method the kinetic and exchange energy 

depend only on one of the spins, α, while the Coulomb repulsion and the correlation 

energy depend on both. 

 

          (3.2.47) 
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The energies in the end are minimized separately but not independently, because for the 

energy of the α electrons we need the β density and vice versa. 

 

Since both methods are based in a uniform electron gas, the results are not very good for 

real molecules. The overall results for geometries are similar to HF ones, but the 

distances are underestimated, overestimating the strength of the bonds (the bond 

energy). They are not good for systems with weak bonds but they have been used to 

study extended systems like metals where the description of a constant electron density 

can be valid. 

 

 

3.2.3.2.       Generalized Gradient Approximations (GGA) and Meta-GGA 

functionals (meta-GGA). 

 

This approximation is semi-local and the exchange-correlation energy is described in 

terms of the density and density gradients, i.e., considering the value of the density and 

its variation around the point. 

                                (3.2.48) 

                                (3.2.49) 

 

This method modifies the LDA exchange correlation energy in order to have correct 

scaling properties and correct asymptotic behavior, i.e. to behave correctly in the limits 

of Fermi and Coulomb holes, which have to be -1 and 0 respectively. There are 

empirical and non-empirical approaches to this problem. 

In 1988 Becke proposed the B88 or B GGA functional
[7]

, from an empirical approach. It 

was based in adding a correction term to the LDA exchange energy, because it was the 

term with more error in LDA: 

                      (3.2.50) 

 

The correction term is a function of the density and of a parameter x, which at the same 

time depends on the density gradient. However, the expression of x is such that it 

remains dimensionless for the integral to maintain its energy units: 

 

        (3.2.51) 
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With these conditions, the asymptotic behavior of the density could be corrected using 

any of two mathematical functions. Becke found that one of them, that had a parameter 

β, fitted better than the other one, for a series of atoms, when β=0.0042: 

 

         (3.2.52) 

 

 

As to the correlation functionals, more complex analytic expressions were developed. 

One of the most famous is the one of Lee, Yang and Parr correlation
[8]

:  
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Where a, b, c and d are parameters that are fitted to the data of the helium atom. 

 

These two constitute one of the most used functionals, the BLYP, but there are many 

other possibilities due to the fact that all exchange and correlation functionals can be 

combined. 

 

The GGA functionals successfully improve the values for the geometries, frequencies 

and charge densities with respect to the LDA functional and even work well for 

hydrogen bonds, but they still fail to describe weaker interactions and therefore they are 

not good to describe van der Waals complexes. 

 

The meta-GGA functionals improve GGA functionals by adding higher order 

derivatives of the density. Therefore, the exchange-correlation energy does not only 

contain the density and its gradient but also the Laplacian of the density. Since the 

orbital kinetic energy density and the Laplacian are related by the effective potential 

they contain, both magnitudes can be used, and since the calculation of the orbital 

kinetic energy is numerically more stable than the one of the Laplacian, the orbital 

kinetic energy is preferred: 

 

                              (3.2.54) 

 

 

      (3.2.55) 

 

 

3.2.3.3. Hybrid Functionals. 

 

Hybrid functionals include part of the exact exchange energy from a HF calculation. 

The adiabatic connection justifies the existence of this type of methods: 
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Given a system with a two-electron interaction
12r

 , an external potential  rvs

  can be 

fitted so that for any value of λ one obtains the same density  r : the one that 

corresponds to λ=1. λ is called coupling constant because its value depends on the 

interaction between electrons, so that it is 0 for a system without electron-electron 

interactions and is 1 for a system with Coulomb electron-electron interactions. 

This parameter is continuous, and therefore it gradually connects the model system 

without electron-electron interactions with the real system. 

For the system with the two-electron interaction
12r

 , we have: 

 

             (3.2.56) 

 

          (3.2.57) 

      

The energies of the systems with λ=0 and λ=1 are given by: 

 

                          (3.7.3) 
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Therefore: 
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The Hellmann-Feynman theorem says that the derivative of the total energy with respect 

to a parameter is equal to the expectation value of the derivative of the Hamiltonian 

with respect to the same parameter: 
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Integrating the two first terms with respect to λ: 
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Therefore: 

 

 

              (3.2.64) 

 

              (3.2.65) 

 

 

And this equation can be written as a function of the interaction of  with its exchange 

correlation hole XC : 

 

                      (3.2.68) 

 

 

Where  XCW is the electronic part of the exchange-correlation energy for a system 

with electron-electron interaction 
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  and is mathematically defined as: 
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The equation (3.2.68) is the adiabatic connection formula for the exchange-correlation 

energy. Since for the exchange correlation energy of a system with electron-electron 

interactions we obtain an integral between λ=1 and λ=0 for  XCW , a term of   XCW  

for λ=0 in the exchange correlation energy of that system is granted. This means that  

since that  0

XCW  corresponds to systems where there are no electron-electron 

interactions, i.e. to the exchange HF energy, the existence of hybrid methods, that 

include part of this exchange HF energy to describe systems with electron-electron 

interactions (λ=1), is clearly possible. It is important to remark that  0

XCW  is therefore 

exact while  1

XCW  is approximated. 
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The first approximation for these hybrid functionals was made by Becke, who proposed 

the Half & Half method in which  XCW  depends linearly on λ. Another famous 

method he proposed was the three parameters method B3PW91
[41, 42]

, in which the 

exchange-correlation energy followed the expression: 
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0a , xa  and ca  are parameters fitted to experimental thermochemical data, and the best 

fitted values for them are 0.20, 0.72 and 0.81 respectively. 

 

Many others functionals were developed with this same procedure, varying the amount 

of HF exchange energy included, but the most famous hybrid functional is B3LYP, due 

to the surprisingly good results it provides. It this hybrid functional the exchange 

correlation energy has the following expression: 
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The only difference between B3PW91 and B3LYP is in the correlation functional used, 

and the parameters a , b  and c  are not fitted to B3LYP but simply directly taken from 

those of B3PW91, i.e. 20.0a , 72.0b  and 81.0c . This functional, however, 

usually gives good results with these default parameters. However, the parameters can 

be modified in Gaussian, not only for this particular one but for any hybrid method, for 

Gaussian has a general equation for hybrid methods: 

 

  (3.2.72) 

 

Therefore we would only need to adapt the values of Pi to result in the values we want 

for the parameters of our hybrid functional and set the values of Pi in Gaussian with the 

keyword IOp. 

 

 

3.2.3.4. The hybrid-meta-GGA functionals. 

 

These functionals are based in including HF exchange energy to some extent in meta-

GGA functionals. To this type of functionals belongs the M06 series family. 

They are, as GGA functionals, functionals with parameters that are fitted empirically. 

 

The M06 series are, in addition, constrained to the uniform electron gas. We have tried 

M06 and M06-2X because they are known to be good for non-covalent interactions, 

specially the first one. M06 has a 27% of HF exchange energy, while M06-2X doubles 

that quantity to a total of 54% of HF exchange energy. 
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The main problem of DFT for our case of interest is that the correlation-exchange 

functionals in a weakly bonded system are not able to treat properly the dispersion 

energy. The failure lies in the impossibility of the local or semilocal functionals to 

describe an interaction whose nature is non-local. In fact, for weakly bonded systems it 

is generally necessary to correct the correlation-exchange functionals. However, for 

systems that are not strictly dispersive such as hydrogen bonds, which we already are 

similar to beryllium bonds, the GGA and meta-GGA functionals give quite reasonable 

results, and that is why M06 and M06-2X were chosen, along with B3LYP, for the early 

study of the molecules of the present work. 

 

  
3.3. MØLLER PLESSET PERTUBATION THEORY. 

 

 

Moller-Plesset perturbation theory is a post-Hartree-Fock method. Post-Hartree-Fock 

methods try to solve one of the main issues of the Hartree-Fock method, which is the 

inclusion of the electron correlation. The Hartree-Fock motion averages the field where 

electrons move and therefore only considers one electron and a field at a time, being 

imposible then to consider the correlation in the movement of the electrons. It is, then, 

the only amount of energy that the Hartree-Fock method doesn’t account for, and the 

correlation energy can be therefore defined as the difference between the exact energy 

and the Hartree-Fock method’s one: 

 

                                                   HFexactcorr EEE                                                   (3.3.1) 

 

Moller-Plesset perturbation theory tries then to add the electron correlation effects by 

means of the Rayleigh-Schrödinger perturbation theory (RS-PT), which is one of the 

best and more common approaches and has the advantage of being size-consistent. 

It can be applied to any order, but the most used ones are to second order (MP2), third 

(MP3) and fourth (MP4).  

 

Perturbation theory is based on supposing that the Hamiltonian of a system, whose 

eigenvalues and eigenfunctions cannot be exactly calculated, is similar to the 

Hamiltionian of a system whose eigenvalues and eigenfunctions are known exactly, so 

that the first Hamiltonian can be considered as a slightly perturbed self of the second 

one. The idea behind it is that, as a consequence, the wavefunctions and energies 

associated with the exact Hamitonian will also be similar to the ones of the real system, 

and therefore one could use them to obtain good approximations to the wavefunctions 

and energies of the real system. The Hamiltonian can thus be separated in two terms: 

 

                                                            VHH ˆˆˆ 0                                                     (3.3.2) 
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where V̂ is the perturbation and 0Ĥ is the Hamiltonian of the known system. It is 

possible to demonstrate that this separability of the Hamiltonian is correct and exact.  

The system with 0Ĥ  has known zero-order solutions: 

 

                                                             0000ˆ
kkk EH                                               (3.3.3) 

 

From here, when applying the perturbation theory one has to choose the form of the 

known Hamiltonian. Moller and Plesset method considers this zero order as the sum of 

the one particle Fock operators: 

 

                          
i

ifH ˆˆ 0                                                  (3.3.4) 

Therefore the eigenfunctions of f̂  are the occupied and virtual Hartree-Fock orbitals of 

the system and the eigenvalues are the associated one electron energies: 

 

                                                              iiif  ˆ                                                   (3.3.5) 

 

And the corresponding Hartree-Fock wavefunction would be: 

 

                                        NAN N ...21ˆ,...,2,1 21

0                             (3.3.6) 

 

where Â  is the corresponding anti-symmetric operator. This wave function is an 

eigenfunction of 0Ĥ  with an eigenvalue equal to the sum of the one electron energies of the 

occupied spin orbitals: 

                                                                



N

i

iE
1

0                                                   (3.3.7) 

 

 

Besides, a key idea of Moller-Plesset perturbation theory is that all Slater determinants 

for electron excitations are also eigenfunctions of 0Ĥ  with an eigenvalue equal to the 

sum of the one electron energies of the occupied spin orbitals, so that the determinant 

formed by exciting the electron of spin orbital i  to spin orbital a  is: 

 

                                           NiiiA Niai

a

i  ...11...21ˆ
1121                    (3.3.8) 

 

And it has the eigenvalue: 

 

                                                         
ia

a

i EE   0                                              (3.3.9) 
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Similarly, a double excitation in which one electron goes from spin orbital i  to spin 

orbital a  and another from spin orbital j  to spin orbital b  would have the eigenvalue: 

 

                                                  
jbia

ab

ij EE   0                                  (3.3.10) 

 

With N electrons we have N ground state spin orbitals ( ),...,2,1 Ni  , but the number of 

virtual orbitals depends on the number of functions in the expansion basis. 

 

Since all the eigenvalues and eigenfunctions of 0Ĥ  are known, perturbation theory can 

be used with them in order to find the energies and eigenfunctions of Ĥ . 

 

 

From the definition of the Fock operator for an electron i , we have: 

 

                                                         



N

ji

jj iKiJihif ˆˆˆˆ                                   (3.3.11) 

 

Therefore: 

 

                 































i

N

ji ij

jj

i

HF

i

N

ji

jj
r

iKiJiVihiKiJihHHV
1ˆˆˆˆˆˆˆˆˆˆ 0

                                                                                                                                                          

                                                                                                                                 (3.3.12) 

 

Thus, the perturbation is the difference between the electron-electron interaction 

between each electron pair and the average electron-electron interaction. Due to this, 

this perturbation is sometimes called ‘fluctuation potential’, for it can be seen as a 

measure of the deviation from the mean of the electron-electron interaction. 

 

To find the relation between perturbed and unperturbed systems, a parameter λ is 

introduced in the range [0, 1], so that it is equal to zero when the system is unperturbed 

and as it increases towards 1 the system is more and more perturbed: 

 

                                                             VHH ˆˆˆ 0                                               (3.3.13) 

 

 

As this Hamiltonian depends now on λ, its eigenfunctions and eigenvalues also depend 

on it, and they can be written as Taylor’s expansions: 

 

                                                       ...2210  nnnn                                (3.3.14) 
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                                                       ...2210  nnnn EEEE                                  (3.3.15) 

 

Substituting in the Schrödinger equation: 

 

 

                                                             

(3.3.16) 

 

Identifying terms with the same power of λ one obtains: 

 

For λ
0
:       0000ˆ

nnn EH                                                                              (3.3.17) 

For λ
1
:             1001100 ˆˆ

nnnnnn EEHV                                                 (3.3.18) 

For λ
2
:                 022011201 ˆˆ

nnnnnnnn EEEHV                               (3.3.19)                                

 

The first equation is easily recognized as the Schrodinger equation of the unperturbed 

system, while the other two provide a link between perturbed and unperturbed 

quantities. In fact, projecting the second equation into the  0

n states, one finds: 

 
                   10000110000 ˆˆ

nnnnnnnnnn EEHV                       (3.3.20)                                   

 

Since 0Ĥ  is hermitian, it is fulfilled that        001100 ˆˆ
nnnn HH  , and thus 

               100010100 ˆ
nnnnnnnn EEH  . Finally, since the wavefunctions 

 0

n are normalized to unity,     100  nn , and therefore equation (3.3.20) transforms 

into: 

 

                                                                   001 ˆ
nnn VE                                               (3.3.21) 

 

This equation allows evaluating the first order correction to the energy as the mean 

value of the perturbation potential but, and this is the most important fact, using the 

known wavefunctions of the unperturbed system. 

 

Similarly, by projecting the third equation (3.3.19) into the  0

n states, establishing 

that    
0

0

m

m

nn   and noticing that we have intermediate normalization 

  10  nn , one finally obtains: 

                      .........ˆˆ 2210221022100  nnnnnnnnn EEEVH 

                    ......ˆˆˆ 10010001000  nnnnnnnnn EEEVHH 
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                                                        102 ˆ
nnn VE                                               (3.3.22) 

 

And in general, for a k -order correction: 

 

                                                      10 ˆ  k

nn

k

n VE                                              (3.3.23) 

 

If the potential is substituted in the equation (3.3.21), and taking into account the Slater-

Condon rules one obtains: 
                     ;ˆˆˆˆ 0000001

n

i

HFnn

ij

jjnnnn iViKiJVE  


          (3.3.24) 

 
elel

bababa

eleleleln VbaabbaabbaabVVE    ˆ
2

1

2

1ˆ2ˆ

,,,

1           (3.3.25) 

   
HF

ba

N

i

inn EbaabEE  
 ,1

10

2

1
                                                                               (3.3.26) 

 

This result means that the first-order correction to the energy is already included in the 

Hartree-Fock energy of the real system. The first correction of the perturbation theory to 

the HF energy comes after first order. 

 

The second order correction to the energy depends on the first order correction to the 

wavefunction, and this is obtained by projecting the equation (3.3.18) into the 
 0

i states and using the expressions    
ijji  00 , which is 0 when ji  and 1 

otherwise, and      110

iji c : 

 

     
   

   
     

   

   
 0

00

00

011

00
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ˆˆ

i

in

ni

iin

in

ni

nii
EE

V
c

EE

V
c 









     (3.3.27) 

 

That expression is for the correction of one single state. To account for all: 

 

                                                     

   

   
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EE
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00
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                                          (3.3.28) 

 

And by substituting in the equation above (3.3.22): 

 

                   

   

   
 

   
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ˆˆ
ˆ                   (3.3.29) 

 



45 

 

While the first order correction term was very easy to calculate, these two last 

expressions contain an infinite number of terms (the summation is over any state 

different from the ground state i ), and the summation has to be cut at a point in order to 

allow its calculation. That is why the perturbation potential V must be weak, so that the 

convergence is achieved, preferably, at first order. Another thing to consider is that 

since the denominator contains energy differences between unperturbed states, the 

unperturbed system must not be degenerate, for it would make the equation lead to 

divergencies. 

 

It is important to notice that these equations are reached by granting the intermediate 

normalization between the higher order wavefunctions corrections and the  

wavefunctions of the unperturbed system, and therefore they must be orthogonal. A set 

of wavefunctions which fulfills this constrain is the set that represent the excitations 

from the occupied a in  0

n to spin orbitals which are unoccupied in it. As we saw 

before, its wavefunctions are also eigenfunctions of the Hamiltonian of the unperturbed 

system and this if very convenient for that way it provides easy expressions for the 

energy. Moller-Plesset perturbation theory is based on this last idea, and specifically the 

second order Moller-Plesset perturbation theory is the method most commonly used 

because higher order perturbation expansions become more computationally expensive 

and do not perform as well as other methods which have more or less the same 

computational cost. 

 

The Slater rules applied to the second order energy correction expression states that 

only doubly excited determinants will have non-zero contributions to the MP2 energy. 

The first order wavefunction correction can be expressed as: 

 

                                                            



srba

rs

ababrsnn C
;

1

,

1                                                           (3.3.30) 

 

Where the coefficients are determined by: 

 

                                  

 


 




srba srba

n

rs

ab

n

rs

ababrsnC
;

1

11

,


                          (3.3.31) 

 

Substituting this in the expression for the second order energy correction (3.3.29) one 

obtains: 

 

 

 



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  (3.3.32) 
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The same issue with degenerate states the perturbation theory has appears in Moller-

Plesset perturbation theory as well, and it is easily identified with the degeneration 

between occupied ( ba, ) and virtual ( sr, ) orbitals. When the separation between them 

is too small, the method gives wrong results. This turns especially evident when 

studying a dissociation process, for this orbital separation decreases at long distances, 

and the second order correction to the energy would increase more and more as the 

atomic distance increases and the occupied and virtual orbitals get closer, therefore 

giving overestimated energy results. This effect can be so acute that it may give rise to a 

negative dissociation energy. It is important therefore to grant that the system does not 

have such degenerations, and if it has, one may find the solution is applying 

multireference methods instead. There is also evidence that the use of large basis sets 

can give rise to this unwanted effect of divergence
[43]

. 

 

Although MP2 is quite inexpensive, has a correct separability (is size consistent) and 

accounts for 80-90% of the correlation energy, it is a non-variational method and, as 

such, it is not possible to know the sign of the error of the estimated energy. 

 

 

 

3.4. COUPLED CLUSTER. 

 

Coupled cluster is another post-Hartree-Fock method, and as such it tries to improve the 

HF method by accounting for electron correlation. 

In CC theory, as in perturbation theory, the wavefunction  of the system is expressed 

in terms of the reference wavefunction 0 , but this methods does so through an 

exponential expression: 

                                                              0ˆ
 Te                                                     (3.4.1) 

Where T̂  is the cluster operator and can be expanded as a sum of cluster operators: 

                                                        ...ˆˆˆˆ
321  TTTT                                            (3.4.2) 

The indexes of the operators indicate the excitation degree they account for: 


ra

ar

r

a aatT
,

*

1
ˆˆˆ                                                                                                            (3.4.3) 





srba

absr

rs

ab aaaatT
;

**

2
ˆˆˆˆˆ                                                                                                 (3.4.4) 





tsrcba

abctsr

rst

abc aaaaaatT
;

***

3
ˆˆˆˆˆˆˆ                                                                                       (3.4.5) 
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where ,...,, rst

abc

rs

ab

r

a ttt  are the cluster amplitudes, iâ are the annihilation operators and 

*ˆ
ia are the creation operators. These operators belong to the language of second 

quantization, in which the quantum states are expressed in terms of the number of 

particles that occupy each eigenstate. The annihilation operator lowers by one the 

number of particles in a given state, while the creation operator increases by one the 

number of particles, and the latter is the adjoint of the former. The particle removed or 

added comes from or goes to the eigenstate indicated by the operator subscript. 

The exponential of the cluster operator can be expanded in a Taylor series: 

                                                  ...ˆ
!3

1ˆ
!2

1ˆ1̂ 32ˆ
 TTTeT                                   (3.4.6) 

From equation (3.4.2) and (3.4.6) it can be written: 
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ˆ
 TTTTTTTTTeT      (3.4.7) 
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






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




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






 TTTTTTTTTTTTTTeT

             (3.4.8) 

 

It can be seen from this equation that there is only a way of having a single excitation, 

1T̂ , but two ways of having double excitations: a pure double excitation 2T̂  or two 

consecutive single excitations 1T̂ , which then fulfill 2

111
ˆˆˆ TTT  . Similarly there are three 

ways of generating a triple excitation: a pure triple excitation 3T̂ , a single and a double 

consecutive excitations 21
ˆˆTT or three successive single excitations 3

1111
ˆˆˆˆ TTTT   and so on. 

 

These pure excitations are known as connected cluster components, while the 

excitations whose excitation degree is achieved by the product of two or more operators 

of lower excitation are called disconnected components. 

 

An operator can be defined to group these types of excitations: 

 

For single excitations: 11
ˆˆ TC                                                                         (3.4.9) 

For double excitations: 2

122
ˆ

2

1ˆˆ TTC                                                            (3.4.10) 

For triple excitations:  3

12133
ˆ

!3

1ˆˆˆˆ TTTTC                                                   (3.4.11) 
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For quadruple excitations: 4

1312

2

1

2

244
ˆ

!4

1ˆˆˆˆ
2

1ˆ
2

1ˆˆ TTTTTTTC                       (3.4.12) 

And so on. 

One can then rewrite the exponential operator in a simpler form: 

                                                         ...ˆˆˆ1̂ 321

ˆ
 CCCeT                                                  (3.4.13) 

If one substitutes in the Schrödinger equation: 

(3.4.14) 

 

To obtain the equation for evaluating the correlation energy one has to multiply on the 

left by 
*0 and integrate over all space: 

    0

321

*00

321

0*0 ...ˆˆˆ1̂...ˆˆˆ1̂ˆ  CCCECCCEH CCcorr (3.4.15) 

By definition, 0ˆ 0000*0  EEEH , and since 0 is the HF eigenfunction, 

Brillouins theorem states that 0ˆˆ 0

1

0*0  CEH . Also, Slater Condon rules 

dictate that only the double excitation term on the left and the zero excitation term on 

the right survive. Therefore one obtains: 

                                             CCcorrECEH  0

2

0*0 ˆˆ                                     (3.4.16) 
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


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
 THTHTTEHECCcorr   (3.4.17) 
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0                         (3.4.18) 

The second term corresponds to two electron integrals over molecular orbitals: 

                    
 


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ba

vir

sr

srbarsba

r

b

s

a

s

b

r

a

rs

abCCcorr tttttEE 0             (3.4.19) 

This result shows that the coupled cluster correlation energy is determined just by the 

amplitudes of single and double excitations and only two electron integrals are needed. 
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To obtain the equations to evaluate these amplitudes one has to multiply the 

Schrödinger equation (3.4.14) on the left by a single excitation r

a : 

                                           0ˆ0ˆ0ˆ  Tr

aCCcorr

Tr

a eEeEH                                 (3.4.20) 

And substituting the exponential operator: 

      0

321

0

321

0 ...ˆˆˆ1̂...ˆˆˆ1̂ˆ  CCCECCCEH r

aCCcorr

r

a  (3.4.21) 

Here the Slater-Condon rules state that only up to triple excitations contribute to the 

term on the left and only the single excitation r

a contributes to the term on the right: 

                                r

aCCcorr

r

a tECCCEH  0

321

0 ˆˆˆ1̂ˆ                          (3.4.22) 

And from that expression, once the correlation energy is known, the single excitation 

amplitude can be obtained. Similarly, the double excitation amplitude can be obtained 

by multiplying the Schrödinger equation (3.4.14) on the left by a double excitation 
rs

ab and so on. 

 

The first approximation of CC methods truncates this expansion at the double 

excitations 21
ˆˆˆ TTT  , which leads to the CCSD approximation: 
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The equations for the energy and the amplitudes are obtained following the same 

procedure described for the general CC, by successively projecting into ,...,,0 rs

ab

r

a   

the corresponding Schrödinger equation: 

                                                       0ˆˆ
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The resulting equation for the energy is:  
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And for the amplitudes:  
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Notice that the expression of the exponential operator for the energy is equal to 

21
ˆˆ1̂ CC   and thus the expression for the correlation energy will be the same as the one 

for the general CC (3.4.19), while the expressions for the amplitudes do change. 

In both sides of the equations for the amplitudes there are disconnected contributions 

that therefore cancel out, and this ensures the size-consistency of the method. 

Triple excitations are also included in different CC methods, being the most common 

CCSDT, the method that includes them exactly  321
ˆˆˆˆ TTTT  , and CCSD(T), in 

which singles and doubles are treated with coupled cluster theory, as CCSD, and an 

estimate to the connected triples 3T̂  is calculated non-iteratively by means of perturbation 

theory
[21]

. 

The main drawback of this method is that the equation to solve is not linear anymore 

and algorithms to solve non-linear equations are needed. Also, as the perturbational 

method, CC methods need the HF wavefunction to give a qualitatively correct 

description of the system. Multirreference CC methods exist but they are complex and 

are not normally used. 

 

 

3.5. ATOMS IN MOLECULES. 

 

The Quantum Theory of Atoms in Molecules (QTAIM), developed by Professor 

Richard F. W. Bader and coworkers
[27, 28]

, is based on the supposition that, since atoms 

and bonds are concepts that have been proved to be very useful in the understanding of 

chemistry and its predictions, there should be a physical explanation to that fact. 

According to this theory, the electron density, together with the gradient paths of the 

electron density, reveals the structure of the system through its stationary points. 

QTAIM is able to define atoms and chemical bonding from the topology of the electron 

density, justifying the concept of functional groups of atoms with certain characteristic 

properties that is so commonly used in chemistry. In addition, the theory allows the 

calculation of some physical properties in terms of atoms basis, dividing it into terms 

containing exactly one nucleus, justifying the additive characteristic of those properties. 
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Besides, as it was seen for density functional theory, the density is directly derived from 

the wavefunction of the system (see equation 3.2.6) and therefore there is no lost 

information in taking this approach. 

At those points where the first derivative of the density, i.e. its gradient  , is equal to 

zero, we have what it is called a critical point CP, and the density surface accordingly 

presents a minimum, maximum or saddle point at the point with the coordinates given 

by cr . 

                                                    0
dz

d
k

dy

d
j

dx

d
irc


                                             (3.5.1) 

The gradient at this point must be zero in all directions of space and therefore each 

individual derivative must be zero and not just their sum. It also goes to zero as r goes to 

infinity, where there is no molecule and therefore there is no electronic density.  

The gradient of a scalar function, as is the density, in a point of space, is a vector which 

points towards the direction in which the increase of the density is greatest, and has a 

magnitude equal to the rate of increase in that direction. 

To determine if at a certain critical point we have a local minimum, maximum or saddle 

point mathematics states the second derivative 2 must be calculated. 2 , as the 

derivative of a vector, constitutes then a tensor, and each second derivative of the 

density is written in the matrix called ‘Hessian matrix’: 
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This matrix is real and symmetric and thus diagonalizable. 

Its diagonalization, naturally, gives a series of eigenvalues 321 ,,   with their 

associated eigenvectors. The final shape for the diagonal form of the Hessian matrix is 

as follows: 
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Therefore the eigenvalues are the second derivatives of the density with respect to the 

three principal axes x, y, z, i.e., are the curvatures of the density at the critical point, 

while the eigenvectors are their associated directions in space. Thus, a negative sign on 

any of the eigenvectors indicates that the density decreases from the critical point in the 

direction of its eigenvector and a positive sign indicates that the density increases from 

the critical point. As a result, a local maximum will be the critical point that has the 

three curvatures with a negative sign, while a local minimum would have the three of 

them with positive sign. A saddle-point, similarly, would have two negative curvatures 

and only a positive one. 

In order to indicate this more easily, a critical point is labeled with two values. The first 

one is called rank  , the second one is called signature  , and the label is written as 

 , . The rank is the number of non-zero curvatures of the density and the signature is 

the sum of the algebraic signs of the three curvatures. A critical point of rank less than 

three indicates a change in the topology of the density, i.e. a change in the molecular 

structure, and therefore they are not commonly found in equilibrium distributions. As to 

the signature, the way it is defined allows it having just the values -3,-1,1,3 in 

equilibrium charge distributions. Therefore, there are four types of stable critical points 

having non-zero eigenvalues: 

(3, -3) Three negative curvatures, the density decreases in every direction from the 

critical point: local maximum. 

(3, -1) Two negative curvatures and a positive one, the density decreases in two 

directions from the critical point and increases in just one direction. 

(3, +1) Two positive curvatures and a negative one, the density increases in two 

directions from the critical point and decreases in just one direction. 

(3, +3) Three positive curvatures, the density increases in every direction from the 

critical point: local minimum. 

Each type of critical point is identified with a concept of the chemical structure: 

(3, -3) Local maximum: Nuclear critical point (NCP). 

(3, -1) Saddle point: Bond critical point (BCP). 

(3, +1) Reverse saddle point: Ring critical point (RCP). 

(3, +3) Local minimum: Cage critical point (CCP). 

A ring critical point appears in a plane space closed by bond paths, while a cage critical 

point appears in a volume closed by several ring surfaces. The gradient of the density 

function is discontinuous at a NCP, and therefore these are not true critical points, but 

they are considered as such because in practice they behave as a NCP would do.  
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The gradient path is the trajectory the gradient follows considering the maximum 

increase in the density. This path starts at an arbitrary point, the derivatives of the 

density are calculated and the vector points to the maximum increase of the density. The 

next point of the gradient path is selected by moving in that direction a small distance, 

and then the derivatives are calculated again, a new direction chosen, a new point and so 

on. When the gradient paths of the whole molecule are calculated, the gradient vector 

field is obtained, and it can be seen that every trajectory starts and ends at a critical 

point where the derivative of the density is zero, as NCP do. As a result, NCP are 

referred to as point attractors of the gradient vector field. 

The basin of the attractor is defined as the region that contains all the trajectories of the 

gradient that end into the attractor. As a result of this, the space the molecular density is 

distributed in can be separated into atomic basins, separated regions that contain only 

one point attractor or nucleus. Thus, in this theory an atom is defined as a point attractor 

and the associated gradient paths that constitute its atomic basin. 

Between an atom and a bonded other there is an interatomic surface, and that makes 

possible another definition of an atom in terms of the limits of its basin with the other 

atom’s basins, i.e. delimited by one or more interatomic surface. Since the trajectories 

of the gradient of the density never cross and terminate at a critical point, in this 

interatomic surface the flux of the gradient of the density is zero, i.e. no gradient path 

crosses it or exists within it.  

Usually (3, -3) critical points only appear in the center of a nucleus, but in some cases a 

local maximum of the density can be found at different positions, and behave as those 

point attractors. These are known as non-nuclear attractors (NNA) and are topologically 

undistinguishable from nuclear attractors, for they also have an associated basin and are 

bounded by a zero-flux surface. They are also called pseudo-atoms and can be bonded 

to other atoms and pseudo-atoms. In some cases the density of a BCP behaves as a 

NNA and artificial bonds between atoms and BCP or between BCPs are found. 

The gradient path that links two neighboring atoms with the maximum electron density 

is called ‘atomic interaction line’. The accumulation of density in this line is showed by 

the fact of presenting a (3, -1) critical point. This is a necessary condition for two atoms 

to be bonded
[44]

 but is also sufficient when the system possess the minimum energy, 

which is the case of the equilibrium geometry. Therefore in those cases the atomic 

interaction line is called bond path and the (3, -1) critical point is called bond critical 

point. 

With these bond paths and BCPs a molecular graph can be drawn for a given geometry 

of the system, showing its bondings. The bond paths of this molecular graph are usually 

found to coincide with the ones determined chemically, regardless of the character of 

the bond and including weak interactions such as van der Waals’s. This fact is an 

indication that the topology of the electron density can account for the physics of atomic 

interactions and its corresponding chemical properties.  



54 

 

The molecular graph provides then a good definition of the molecular structure and can 

be used to locate changes in the mentioned structure along a reaction path. 

Besides, the value of the density at the BCP is usually correlated with the bond energy, 

and from it one could define the bond order n of the bond. For instance: 

                                                                         BA BCPen



                                                              (3.5.4) 

Where A and B are constants that depend on the nature of the bonded atoms. 

It is important to remark, though, that although it is the general case, not every bond 

path is a bond
[45]

. In addition, unless dictated by symmetry, the length of the bond path 

will be greater than the interatomic distance due to the bond path being slightly bent. 

This bending can be quantified by means of the bond path angle and is more acute on 

cases of strain in which the deformation is needed to maximize the binding. 

The Hessian eigenvalues of the density can also provide information about the 

characteristics of the bond. The two negative curvatures at a BCP indicate if there is a 

preferential direction of the density in the bonding, as happens in  bonds. If their 

magnitude is similar, then there is no preference, otherwise it is said that the density is 

preferentially accumulated in the plane associated to the smallest curvature, for a 

smaller curvature means a smaller decrease of the density along its axis, which 

determines the mentioned plane. 

The elipticity is defined as: 

                                                                       1
2

1 



                                                                    (3.5.5) 

And it is used to give this measure of the preferential accumulation of the density on a 

plane. When there is no preference, 21   and 0 . If there is preferential 

accumulation on the plane associated to 2 then the ellipticity is positive, while if the 

accumulation is preferential on the perpendicular plane, associated to 1 , then the 

ellipticity is negative. 

If the negative curvatures determine the preferential concentration along the bond path, 

in either of the planes, the positive remaining curvature determines the depletion of 

charge in the region and the distribution of that density towards the atomic basins. The 

Laplacian, as the sum of the three curvatures, can then be used to know where the 

density is locally depleted or concentrated, providing important information about the 

character of the bond. If the Laplacian is greater than zero it means that in the 

surroundings of cr  the average density is greater and the density at cr is locally depleted, 

while if the Laplacian is lower than zero there is a local concentration of the density in 

the surrounding of cr . 
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It is useful to define a function )(rL as the negative of the Laplacian, so that a positive 

value of )(rL  indicates a local concrentation of density and a negative value of )(rL  

indicates a density depletion. 

This local depletion on the density is characteristic of closed shell systems, especially of 

ionic character or with ionic character predominancy, such as hydrogen bonds and van 

der Waals interactions. Due to this the density at the bond critical point usually is very 

low, of about 0.10 and below, in this type of bonds. It is worth noting, though, that 

QTAIM has been found to overestimate the atomic charge or electron density in the 

atoms
[46]

, giving rise to bonds that are more ionic than they should. 

A local concentration, on the contrary, is characteristic of a shared interaction, being the 

covalent bonds the most common type of bonds that present this character. They usually 

have a high density, of about 0.2 and up. 

Of course, there are intermediate unclassified types of bonding which have a value of 

)(rL  close to zero and may have any density. 

All in all, AIM theory is a useful tool in determining the structure and bonds of 

chemical species, being able to characterize even conjugation and hyperconjugation, but 

it is not exempt of flaws, and therefore it should be used with caution. 

 

 

3.6. NATURAL BOND ORBITALS. 

 

Mathematically, the Natural Orbitals (NO) k  of a wavefunction  can be defined as 

the orbitals that are eigenfunctions of the first-order reduced density matrix that was 

seen in the DFT method (see equation 3.2.12), also called first-order reduced density 

operator: 

                                                     kkk pxx  ˆˆ);'( 111


                                             (3.6.1) 

Where the eigenvalue kp  represents the population i.e. the occupancy of the 

eigenfunction k . From the expression of the first-order reduced density matrix it can 

be seen that the wavefunction  is the only variable that participates in the definition of 

the NOs, and therefore natural orbitals are like the eigenfunctions of the eigenfunctions 

of the system. That is why they are called own eigenorbitals or natural orbitals, and 

they are seen as the orbitals chosen by the wavefunction as being optimal for its own 

description of the electron density and other single-electron properties. Since this in an 

Hermitian eigenvalue problem, the NOs form a complete orthonormal set. 



56 

 

The NOs can be characterized as maximum occupancy orbitals, and they can be 

calculated by a variational maximization of the occupancy of each orbital, starting with 

a trial orbital   . The electronic occupancy of the trial orbital, p , is evaluated as the 

expectation value of the density operator: 

                                                           Op ˆ*                                                   (3.6.2) 

And the variational equations are: 

                                                        Op ˆmax *

1
                                             (3.6.3) 

                                                                  ''* ˆmax
2

 Op                                             (3.6.4) 

                                                                 '''*' ˆmax
3

 Op                                             (3.6.5) 

And so on. Each of the equations follows a variational procedure, starting by the trial 

orbital, obtaining the value of the population, finding another set of orbitals by equation 

(3.6.1) and recalculating the population until convergence. Each of the equations leads 

to optimal populations and orbitals. The populations, according to Pauli exclusion 

principle, fulfill 20  p . 

The wavefunction of a system is commonly described with basis orbitals that form a 

basis set, and it is important to know that, in spite of this, the natural orbitals are in 

principle independent of the particular basis orbitals chosen. 

Natural orbitals are intrinsic and unique to the wavefunction of the system, while the 

basis orbitals are general fitting functions numerically convenient.  

Natural Bond Orbitals (NBO) are localized natural orbitals whose N/2 leading members 

give the most accurate Lewis-like description of the total N-electron density. The 

program search all possibilities of drawing the bonds and lone pairs of the system to 

reproduce the variationally optimal bonding pattern which places the electron density 

precisely in the leading N/2 Lewis type NBOs. These Lewis-type NBOs are the ones 

that determine the Natural Lewis Structure (NLS) representation of the wavefunction, 

and the rest of the NBOs, the non-Lewis type, complete the basis and account for 

residual delocalization effects. Lewis is at the core of valence bond theory, and in this 

way NBOs provide a valence bond-like description of the wavefunction, linking it to 

classical Lewis structure concepts. 

The NBOs have a unique association to the wavefunction of the system, and are 

practically insensitive to the variation of the basis set and method. Besides, its 

occupancies are generally non-degenerate, and its variations indicate a variation on the 

idealized Lewis structure, which may then indicate that for a more appropriate 

description of the system additional resonance delocalization corrections are needed. In 
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general, however, each NBO is uniquely determined by its local properties as 

eigenorbital. 

NBOs are composed of Natural Hybrid Orbitals (NHO) Ah , and each of them is an 

optimized linear combination of Natural Atomic Orbitals (NAO) in a given center: 

                                                            
k

kkA ah                                                  (3.6.6) 

Natural Atomic Orbitals are localized 1-center orbitals and are defined as the effective 

natural orbitals of a certain atom in the molecular environment. They differ from 

isolated atom orbitals (and standard basis orbitals) in two important features. 

The first one is that they are optimized to the effective atomic charge, and adapts to the 

molecular environment contracted if the atom is more cationic of diffusing if the atom is 

more anionic, in what is called breathing. This effect commonly requires several basis 

functions of variable range (DZ, TZ…) in other basis sets, as it has seen in section 3.1. 

The second one is that NAOs also adapt their oscillatory features and kinetic energy as 

neighboring NAOs overlap, preserving the nodal behavior with respect to both its inner 

core and the filled orbitals of other atoms, fulfilling thus the interatomic orthogonality 

required by the Pauli exclusion principle. This effect is commonly ignored in standard 

basis orbitals. 

The NHOs form a complete orthonormal basis set that spans the full basis space, just as 

NAOs do. 

Core NBOs are commonly of nearly pure NAO character, and are labeled as CR in 

NBO outputs. 

A 1-center lone pair An  of atom A that does not participate in any bond is labeled LP 

and is composed of a single normalized NHO: 

                                                                            AA hn                                                           (3.6.7) 

A two center bond between atoms A and B is labeled BD and is a normalized linear 

combination of two normalized NHOs: 

                                                                  BBAAAB haha                                              (3.6.8) 

Where BA aa ,  are polarization coefficients that fulfill 1
22
 BA aa . These coefficients 

are a measure of the covalent  BA aa   and ionic  BA aa   character of the bond. 

The problem is that it is not possible to distinguish a highly polar bond from a 1-center 

NBO  0;1  BA aa . In an attempt to avoid this error as much as possible, a value of 

95% is set in the NBO program for the amount of density that has to be in a single 

center A with respect to B, as a minimum, for the program to identify a highly polarized 
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bond as a lone-pair. Two center bonds are often classified as sigma  A  or pi  A  

according to the local diatomic symmetry, but it is important to remark that the NBO 

procedure has no constraints regarding the shape of the orbitals. 

Each of these two center bonds must have its orthogonal antibonding NBO, labeled as 

BD*: 

                                                                BAABAB haha *                                             (3.6.9) 

These orbitals are of non-Lewis type and don’t participate in the ground-state natural 

Lewis structure description, but as we can see in the equation, they are derived from the 

same unfilled valence hybrids orbitals that give rise to the bonding NBOs, and therefore 

they represent the unused valence shell capacity of atoms A and B. These orbitals are 

usually the most important non-Lewis acceptor orbitals due to its participation in 

intermolecular donor-acceptor processes. To know the shapes and energies of the 

available antibonding NBOs is usually very important in understanding species which 

present delocalization or non-covalent interactions that result in structures different to 

the idealized Lewis strcutre. 

Finally, a set of Rydberg-type 1-center NBOs, labeled RY, are used to complete the 

span of the NBO basis. These orbitals are commonly ignored due to its usually 

negligible occupancy. 

There are more NBO types, especially in excited states, but the ones reviewed are the 

most common ones. 

Natural orbitals are important because they concentrate in one-electron functions the 

multiconfigurational character of the wavefunction, including electron correlation. In 

fact, this inclusion of the electron correlation is what causes the populations to not being 

integers anymore: some virtual orbitals participate in the wavefunction, obtaining some 

occupation, and some occupied orbitals participate in excitations to virtual orbitals, 

losing some occupation. Furthermore, the one-electron functions are actually orbitals, 

and as such they result to be qualitatively easier to understand.  
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4. RESULTS AND DISCUSSION 

 

4.1. COMPLEXES BETWEEN BEX2 (X = H, F, CL) AND ACETYLENE. 

 

As said in the methodology, several calculations with the DFT method were carried out 

in order to establish which of the two geometries is preferred by each pair of molecules 

when interacting together in the complex. 

 

The calculations with acetylene were made first, and 3 different functionals were used, 

namely B3LYP, M06 and M06-2X, all with the same 6-311+G(d,p) basis set. 

For the three functionals the first of the structures of Figure 2 was preferred by all 

complexes: 

 

 

 

Figure 4. MOLDEN visualization of the optimized structures at the B3LYP/6-311+G(d,p) level for the 

complexes between acetylene and BeH2 (white), BeF2 (yellow) and BeCl2 (green). 
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The optimizations with the other geometry either didn’t converge or converged with an 

imaginary frequency that, as a matter of fact, corresponded to the one in which the 

complex moved towards a more planar structure. 

 

At the same levels of theory, the corresponding calculations for each isolated molecule 

were carried out in order to provide the dissociation energy. Of course, in all of them an 

additional calculation of frequencies was carried out to obtain the zero-point vibrational 

energies that contribute to the total energy. 

The results for the energy of the three complexes are: 

 

Complex B3LYP/6-311+G(d,p) M06/6-311+G(d,p) M06-2X/6-311+G(d,p) 

C2H2-BeH2 26.8 27.2 39.8 

C2H2-BeF2 22.0 34.2 43.5 

C2H2-BeCl2 7.8 21.6 31.6 
 

Table 1. Dissociation energies (D0 or ΔHint, kJ mol
-1

) of DFT methods. 

 

The rest of the energy values used to obtain these dissociation energies, including the 

values of the energy of the isolated molecules, along with the frequencies and the rest of 

the spectroscopic data that these calculations provide can be found in the Appendix 

section (I-III, VII-X). 

 

The energy for M06-2X/6-311+G(d,p) calculations is considerably higher than for the 

other two functionals. This could mean that the interactions are too weak for general 

DFT methods to describe them correctly, and since M06-2X includes more HF 

exchange energy it describes them more precisely, or could mean just the opposite. The 

same applies when comparing M06 with B3LYP results. Due to the nature of DFT 

methods, as seen in the methodology, it isn’t easy to know which the most reliable 

results are without comparing them with the values given by either more precise 

methods or experimental data. 

However, the next step of the methodology will allow us to know, for, once we know 

what the preferential geometry is, optimization calculations with more precise methods 

are used on it. In this case, MP2/6-311+G(d,p) and CCSD/6-311+G(d,p) optimization 

calculations were carried out. If we add the results of these methods to those of Table 1: 

 

Complex B3LYP M06 M06-2X MP2 CCSD 

C2H2-BeH2 26.8 27.2 39.8 24.7 19.5 

C2H2-BeF2 22.0 34.2 43.5 29.0 28.4 

C2H2-BeCl2 7.8 21.6 31.6 20.9 14.5 
 

Table 2. Dissociation energies (D0 or ΔHint, kJ mol
-1

) of DFT methods (with functionals B3LYP, M06 and 

M06-2X), MP2 and CCSD methods, all of them with the 6-311+G(d,p) basis. 
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As with the DFT calculations, the rest of the energy values of MP2 and CCSD 

calculations used to obtain these dissociation energies, including the values of the 

energy of the isolated molecules, along with the frequencies and the remaining 

spectroscopic data can be found in the Appendix section (I-III, VII-X). 

 

Comparing with the DFT methods, we can now see that the M06-2X functional 

provides a very different result. Furthermore, M06-2X gives a much higher result than 

the other DFT methods, while M06 method was already overestimating the results, 

according to the lower values obtained at the CCSD level of theory. The M06-2X 

method practically doubles the CCSD results. Consequently, the M06-2X functional 

was discarded for the calculations with ethylene. 

 

It is worth noting, though, that both M06 and M06-2X qualitatively reproduce the series 

behavior, in the sense that the energy increases from the complex with X = H to the 

complex with X = F and then decreases to the complex with X = Cl. B3LYP, on the 

contrary, doesn’t. 

 

However, both trends are different to what was expected according to bibliography, for 

Yañez, M., et al., recently studied these interactions between the same beryllium 

molecules and different bases and found that the dissociation energy, concerning the 

beryllium derivatives, followed the trend: F2Be > Cl2Be > H2Be.
[1]

 

 

The different relaxation of the isolated molecules in each complex has a strong 

influence on this dissociation energy, and therefore it might be the cause to these 

discrepancies. In order to make further and proper method comparisons, the vertical 

dissociation energy must be calculated. 

 

Besides, in order to give the most accurate values of the energy for the complexes and at 

the same time to compare the methods, MP2 and CCSD(T) single-point calculations 

were carried out with the aug-cc-pVTZ basis on the MP2/6-311+G(d,p) and CCSD/6-

311+G(d,p) optimized geometries, respectively. 

 

The vertical dissociation energy was calculated at all the levels of theory with 6-

311+G(d,p) basis and also at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels 

of theory. The corresponding calculations for the isolated molecules in both geometries 

were carried out, and can be found in the Appendix section (XII-XXI).  

 

As it was indicated in the section 3.3, MP2 can give rise to wrong results when dealing 

with an equilibrium state that is close in energy to another. As it will be discussed later 

on, with the results from AIM theory, we also find mathematical instabilities which may 

point to this idea of an energetically nearby different unstable geometry. Also, this type 

of issue with MP2 was favored when using large basis sets
[43]

. Therefore, this is likely 

the reason why for the calculation of the C2H2-BeCl2 complex at the MP2/aug-cc-pVTZ 
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the result provides an unstable structure with a negative dissociation energy, while MP2 

with a smaller basis showed a perfectly stable geometry. The dissociation energy and 

the vertical dissociation energy results for each complex and method are:  

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H2-BeH2 26.8 27.2 24.7 19.5 28.5 29.5 

C2H2-BeF2 22.0 34.2 29.0 28.4 30.2 33.0
b 

C2H2-BeCl2 7.8 21.6 20.9 14.5 -
a 

27.1
b 

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H2-BeH2 61.3 57.6 47.9 41.8 51.5 49.9 

C2H2-BeF2 41.7 52.3 48.8 48.8 48.7 50.0
b 

C2H2-BeCl2 48.3 56.5 58.8 52.6 -
a 

59.7
b 

 

Table 3. Dissociation energies (upper table, D0 or ΔHint, kJ mol
-1

) and vertical dissociation energies 

(lower table, Eint or ΔHver, kJ mol
-1

)  of DFT methods (with functionals B3LYP and M06), MP2 and CCSD 

methods with the 6-311+G(d,p) basis, and MP2 and CCSD(T) methods with the aug-cc-pVTZ basis. 

(*)aug-cc-pVTZ basis set used. (
a
)the structure was not stable. (

b
)due to lack of time this data was 

calculated with the ZPVE from CCSD/6-311+G(d,p). 

 

What is immediately seen is that the values for the vertical dissociation energy or 

interaction energy are more than twice the value of the hydrogen bond in water 

molecules, which is of about 20 kJ mol
-1 [47]

. Therefore, these are significantly strong 

non-covalent interactions. 

 

In addition, another thing that is clear is that when we take into account the energy of 

relaxation of the subunits of the complex, i.e. when we consider the interaction energy, 

the general trend observed before for the dissociation energy is not maintained. In fact, 

if we take a look at the relaxation energies: 

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H2-BeH2 34.5 30.3 23.3 22.3 22.9 20.4 

C2H2-BeF2 19.7 18.1 19.9 20.4 18.5 17.0
 

C2H2-BeCl2 40.5 34.9 38.0 38.1 -
 

32.3
 

 

Table 4. Relaxation energies (ΔHrelax, kJ mol
-1

) for all methods with the 6-311+g(d,p) basis. (*)aug-cc-

pVTZ basis set used. 

 

The values vary, but the general trend is that this relaxation energy is much lower for X 

= F than for X = Cl, while X = H gives higher values than the former and lower than the 

latter. Due to this, the vertical dissociation energy for X = Cl increases dramatically, and 

though its complex gave the lowest dissociation energy of the three, in turns out to give 
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the highest vertical dissociation energy.Besides, the complex with BeH2, which had 

lower dissociation energy than the complex of BeF2 for all methods but B3LYP, also 

turns out to give higher vertical dissociation energy than the complex with fluoride. 

 

These values of the relaxation energies mean that the subunits of the complex with 

BeCl2 are the more unstable ones when they keep the geometry they have within the 

complex, and this likely indicates that they are the most deformed and therefore the 

beryllium bond between them is the strongest, for much energy was needed to 

compensate this effect and make the complex stable. Following the same reasoning, the 

complex with H should be the second more bent or the second in the strength of its 

beryllium bond, and the complex with F should be the last one in both terms.  

 

If we now see the values of distances and angles of the optimized geometries for each 

complex and we compare them with the ones of the isolated molecules for each method:  

 

Property B3LYP M06 MP2 CCSD 

HBeH 137.787 138.723 141.059 142.090 

HBeC 92.971 92.674 91.739 92.014 

BeC 1.954 1.967 2.070 2.091 

HCC 170.930 172.722 174.988 175.406 

BeH 1.347 1.347 1.347 1.349 

CC 1.216 1.213 1.227 1.219 

CBeC 36.272 35.929 34.462 33.883 

BeCC 71.864 72.036 72.769 73.059 

CH 1.065 1.066 1.066 1.068 

 

Table 5. Distances and angles for the optimized geometries of the complex BeH2-C2H2 for each 

method, all of them with the 6-311+G(d,p) basis. 

 

Property B3LYP M06 MP2 CCSD 

FBeF 148.200 148.197 148.194 148.009 

FBeC 90.722 90.600 90.488 90.658 

BeC 2.298 2.277 2.295 2.293 

HCC 179.314 179.806 179.554 179.499 

BeF 1.415 1.408 1.418 1.414 

CC 1.203 1.202 1.220 1.213 

CBeC 30.355 30.602 30.829 30.674 

BeCC 74.822 74.699 74.585 74.663 

CH 1.065 1.067 1.067 1.068 

 

Table 6. Distances and angles for the optimized geometries of the complex BeF2-C2H2 for each method, 

all of them with the 6-311+G(d,p) basis. 
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Property B3LYP M06 MP2 CCSD 

ClBeCl 136.764 138.241 137.987 138.075 

ClBeC 95.965 95.323 95.191 95.391 

BeC 2.234 2.244 2.241 2.262 

HCC 177.152 177.811 176.866 177.035 

BeCl 1.858 1.851 1.844 1.847 

CC 1.205 1.204 1.221 1.214 

CBeC 31.307 31.112 31.632 31.143 

BeCC 74.347 74.444 74.184 74.429 

CH 1.065 1.067 1.067 1.068 

 

Table 7. Distances and angles for the optimized geometries of the complex BeCl2-C2H2 for each 

method, all of them with the 6-311+G(d,p) basis. 

 

Bond B3LYP M06 MP2 CCSD 

CH 1.063 1.064 1.065 1.066 

CC 1.199 1.197 1.216 1.210 

BeH 1.327 1.327 1.329 1.330 

BeF 1.387 1.380 1.293 1.387 

BeCl 1.799 1.797 1.792 1.794 

 

Table 8. Bond distances for acetylene and BeX2 molecules in their isolated equilibrium geometries 

optimized by the indicated methods and the 6-311+G(d,p) basis set. 

 

At any level of theory it can be seen that, as expected, there is a bending of both BeX2 

and acetylene molecules, as a consequence to the adaptation of the orbitals to the new 

electronic distribution due to the new beryllium bond. 

In fact, since B3LYP and M06 overestimated the relaxation energy of the complex with 

BeH2, in the optimized geometries for that complex the BeH2 molecule is almost as bent 

as BeCl2 in BeCl2 complexes, while for MP2 and CCSD the angle ClBeCl of the BeCl2 

complexes is clearly the lowest and therefore its BeCl2 molecule is the most bent. This 

result follows the relaxation energy trend: C2H2-BeCl2 > C2H2-BeH2 > C2H2-BeF2. 

The angle HCC of acetylene may not change so much because it is measured as the 

angle between CC and CH bonds, and since the two carbons share the interaction, with 

the displaced charge more probably being between them, the hydrogen atoms may not 

feel the interaction as much as the atoms directly bonded to the beryllium atom. It is 

worth noting that the HCC angle changes much more in the BeH2 complex when 

changing the method, from the almost 171º and 173º of B3LYP and M06 to the 175º of 

MP2 and CCSD, while the same angle for the other two complexes only varies in one 

degree at the most. The fact that the angle is significantly lower at B3LYP and M06 
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levels than at the rest is probably one of the causes for the relaxation energy to increase. 

However, even small, a lengthening of the CC bond can be observed, what constitutes 

an additional indication of the small hybridization of the carbons, which share now 

some electronic density in a new direction and therefore lose a bit of their strict sp 

hybridization. 

Besides, in these values the second effect of beryllium bonding can also be seen: as a 

consequence of the charge transfer to the antibonding orbitals σBeX* of Be-X bonds, 

these bonds weaken and they become longer. This effect is very clear in the case of the 

Be-Cl bond for which the change is of about 0.05 Å, but it is also still clear for Be-F and 

Be-H bonds, for which the change is of about 0.03 Å and 0.02 Å, respectively. This 

means that more electronic density is going into the antibonding orbital of Be-Cl than 

on the one of Be-F or Be-H, contributing to reinforce the strength of the beryllium bond 

for the C2H2- BeCl2 complex. This result agrees with the vertical dissociation energy 

trend: C2H4-BeCl2 > C2H4-BeF2 ~ C2H4-BeH2. 

 

 

In order to study in depth the bonding between the interacting molecules, an AIM study 

was performed for the optimized geometries of all methods. The qualitative results were 

practically the same for all methods when X = Cl, but when X = H and X = F we 

obtained a different result depending on the methods. 

 

For X = H we obtained: 

 

 
Figure 5. Density plots for the complex BeH2-C2H2 at B3LYP/6-311+G(d,p)  (left) and at CCSD/6-

311+G(d,p) (right) from aimstudio. 
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The green points are what are called bond critical points, which mathematically states 

the existence of a bond between the linked atoms, and the line they fall into are the so-

called bond paths, which have not to be misjudged as bonds. 

 

With X = H, both B3LYP and M06 give the same qualitative result, as so do MP2 and 

CCSD methods, but they are different between them, as shown in Figure 5. 

 

The positive result is that, in fact, a critical point is found for all the methods between 

the molecules, granting some kind of bonding between them. However, the plots are not 

as conventional as expected. 

 

Firstly, it is important to notice that in both cases the bond path ends into the critical 

point for the CC bond, instead of into an atom. This constitutes an example of what has 

been called the conflict catastrophe. It is caused by the competition of the two carbons 

for the line of maximum charge density which links the beryllium. It is mathematically 

unstable, for the gradient of the density defines one and only one direction for each 

point r, and therefore there should be no intersection of both paths. This effect usually 

occurs when the structure under study is an unstable one in the limits of a change 

between stable structures, but, as it was briefly explained in the theory section, it can 

also happen for weak bonds in equilibrium structures
[48]

 and therefore the QTAIM plots 

are to be considered carefully. In these cases, the two-dimensional manifold of CC acts 

as an attractor of the bond path of the beryllium, and in fact this kind of issue is now 

being studied regarding the possibility of having an ‘atomic basin’ with more than a 

single nucleus in an equilibrium geometry, which can therefore act together
[49]

.  

 

As to the difference between the plots, it seems to be another catastrophe issue, but of 

bifurcation. Mathematically, a bifurcation appears when a small change in the parameter 

values of a system -the gradient in our case- produces a sudden change in the qualitative 

behavior of its solutions –a topological change in our case-. More specifically, in this 

case we seem to have a supercritical pitchfork bifurcation, which is a local bifurcation 

that generally occurs in systems with symmetry, and consists in the separation of a point 

where the gradient is zero into three, where the one that follows the previous direction is 

unstable and the other two remain stable. Indeed these situations arise when the electron 

density is very flat and depending on the threshold value used to locate the bond critical 

points, the code sometimes finds three or only one. This is evident when looking at the 

values of the density in Figure 5. In the molecular graph at the right three critical points 

are located, but clearly they have practically the same electron density. In the molecular 

graph on the left, only one critical point is found because the differences in the electron 

densities are marginal.  

 

 

 

 



67 

 

 

If we take a look at the following table that collects all the AIM data for the complex at 

the CCSD/6-311+G(d,p) level: 

 

 

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.033086 +0.038472 2.223705 -0.034550 -0.010717 +0.083739 

Be1 - H2 0.088601 +0.202039 0.085841 -0.181113 -0.166795 +0.549946 

Be1 - C4 0.033086 +0.038472 2.223705 -0.034550 -0.010717 +0.083739 

Be1 - H3 0.088601 +0.202039 0.085841 -0.181113 -0.166795 +0.549946 

Be1 - C4 0.033165 +0.176881 13.749168 -0.050304 -0.003411 +0.230596 

C4 - C5 0.390660 -1.115323 0.021235 -0.619322 -0.606444 +0.110442 

C4 - H6 0.285960 -1.047795 0.002813 -0.803327 -0.801073 +0.556605 

C5 - H7 0.285960 -1.047795 0.002813 -0.803327 -0.801073 +0.556605 
 

Table 9. AIM data at the CCSD/6-311+G(d,p) level for the BeH2-C2H2 complex. 

 

The data for the rest of the methods can be found in the Appendix section (XXII). 

 

By looking at the density and its second derivative, the Laplacian, we can see that the 

character of the bonds is well described for the bonds within the acetylene, which shows 

the big density values and negative Laplacian values characteristic of covalent bonds, 

while for the Be-H bonds the character appears as slightly ionic, for they have a small 

density and, though small, they also have a positive value for the Laplacian. This 

positive value of the Laplacian is characteristic of Lewis acids, as we expected the BeH2 

to be in the complex
[3]

. Therefore we have more like a Be
+δ

-H
–δ

 bond. 

 

Similarly, for the beryllium bond (Be1-C5) we obtain an even smaller density, although 

not so small recalling that it constitutes a non-covalent interaction, and a more positive 

value for the Laplacian. This agrees with what has been said about the beryllium bonds 

having an important ionic character, such as hydrogen bonds do. 

 

Regarding the ellipticity, the high value it has for the beryllium bond shows the strong 

preferential accumulation in the plane of λ2, which agrees with the fact that the bonding 

is made through an orbital p of beryllium. However, such a high value of the ellipticity 

also indicates the presence of an approaching instability and a change in structure, 

which could also explain the bifurcation catastrophe mentioned before.  

 

If we take a look at the plot when X=F: 
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Figure 6. Density plots for the complex BeF2-C2H2 at B3LYP/6-311+G(d,p)  (left) and at CCSD/6-

311+G(d,p) (right) from aimstudio. 

 

In this case only the B3LYP/6-311+G(d,p) method gave a different result, while the rest 

gave qualitatively the same topological structure. 

 

The first thing to notice here is that the paths for the beryllium bond are also split and 

we have again the pitchfork bifurcation catastrophe –with the central unstable line not 

completely described-, although the overall plot is a bit more complicated to study, as it 

seems that we don’t have the conflict catastrophe but for most of the methods the bond 

path links the carbon atoms with the fluoride atoms, instead of beryllium. This could be 

due to the flatness of the density in this region or could mean that the fluoride atoms -or 

BeF orbitals- significantly participate in the bond, trying to retain more electron density, 

which could be due to the electronegativity of its nature, or giving away charge due to 

the lone pairs of fluoride, which is a good -donor. This would also explain why the 

BeF2 molecule doesn’t bend as much as expected: if the fluoride is participating in the 

bond in some way the distance towards it should shorten. Should this be the cause, we 

would have two opposed effects: the bending and lengthening of Be-F bonds from the 

beryllium bond alone and the unbending and shortening from the fluoride participation 

in the beryllium bond. Since the participation of fluoride is not as much as the one of 

beryllium, the BeF2 molecule ends up bent and the Be-F lengthens, but not as much as 

was expected, and the general trend changes. We will discuss this possibility later when 

we check the results of the NBO calculations. 

 

The second thing is that the bond path is drawn with a dashed line. The program has a 

default value of 0.025 for the density to consider that there is a bond and draw it in a 

continued line. It is clear then that there is less density between the molecules of this 

complex than in the previous one. If we look at the AIM data: 
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BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - F2 0.120523 +1.118560 0.009020 -0.338810 -0.335781 +1.793151 

Be1 - F3 0.120523 +1.118560 0.009020 -0.338810 -0.335781 +1.793151 

F3 - C4 0.023449 +0.037247 1.066192 -0.020441 -0.009893 +0.067580 

F2 - C5 0.023449 +0.037247 1.066192 -0.020441 -0.009893 +0.067580 

C4 - C5 0.393961 -1.128493 0.022376 -0.621270 -0.607673 +0.100450 

C4 - H6 0.285025 -1.042295 0.004915 -0.800797 -0.796881 +0.555383 

C5 - H7 0.285025 -1.042295 0.004915 -0.800797 -0.796881 +0.555383 

 

Table ¡Error! No hay texto con el estilo especificado en el documento.10. AIM data at the CCSD/6-

311+G(d,p) level for the BeF2-C2H2 complex. 

 

The data for the rest of the methods can be found in the Appendix section (XXIII). 

We can see that the character of the bonds is, as in the previous complex, correctly 

described for the bonds within the acetylene, and for the Be-F bonds we find a quite big 

positive value of the Laplacian and a small density having thus a stronger ionic 

character than Be-H bonds in the previous complex. This effect is probably produced 

for the much greater electronegativity of fluoride with respect to hydrogen. As to the 

beryllium bond, we obtain a very small density, in the edge of AIMAll limit, and a very 

small positive value for the Laplacian. Therefore, the beryllium bond still has a 

predominant ionic character.  

Regarding the ellipticity, the beryllium bond still has a high value, which shows the 

same strong preferential accumulation in the plane of λ2, and could also explain the 

bifurcation catastrophe mentioned before.  

 

Finally, if we look at the plot when X=Cl: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Density plot for the complex BeCl2-C2H2 at the 

CCSD/6-311+G(d,p) level of theory from aimstudio. 
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In this case the result is qualitatively the same for all the methods. 

 

The only strange thing here is that, as for the BeH2 complex, the beryllium bond path 

ends in a bond critical point instead of on the carbon atoms, due to the conflict 

catastrophe. If we look at the AIM data: 

 

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - Cl2 0.082507 +0.324241 0.020538 -0.144598 -0.141688 +0.610527 

Be1 - Cl3 0.082507 +0.324241 0.020538 -0.144598 -0.141688 +0.610527 

Be1 - C5 0.025196 +0.095569 8.439991 -0.028389 -0.003007 +0.126965 

C4 - C5 0.394250 -1.139970 0.041338 -0.634903 -0.609699 +0.104631 

C4 - H6 0.285912 -1.051170 0.005778 -0.807456 -0.802818 +0.559104 

C5 - H7 0.285912 -1.051170 0.005778 -0.807456 -0.802818 +0.559104 
 

Table 11. AIM data at the CCSD/6-311+G(d,p) level for the BeCl2-C2H2 complex. 

 

The data for the rest of the methods can be found in the Appendix section (XXIV). 

We can see that the character of the bonds is, as in the previous complexes, correctly 

described for the bonds within the acetylene, and for the Be-Cl bonds we find a positive 

value of the Laplacian, greater than that of Be-H bonds but smaller than that of Be-F 

bonds, and a small density, even a bit smaller than that of Be-H bonds. Thus, Be-Cl 

bonds have more ionic character than the Be-H bonds but less than the Be-F bonds. This 

is just natural since the electronegativity of chloride is also greater than that of hydrogen 

but lower than that of fluoride. 

 

As to the beryllium bond, we obtain a very small density, higher than the one of BeF2 

complex but still much lower than the BeH2 one, and a very small positive value for the 

Laplacian, higher than the one of BeF2 complex but still much lower than the BeH2 one. 

Therefore, the beryllium bond still has a predominant ionic character, a bit more than 

the one of BeF2 complex but still much lower than the BeH2 one.  

 

Regarding the ellipticity, the beryllium bond of the complex has the highest value of the 

three –and it is even bigger for the other methods-, which shows the same strong 

preferential accumulation of density in the plane of λ2, but it seems that it is not enough 

to produce any bifurcation catastrophe, as it happens in other complexes, which had to 

have a larger ellipticity at the critical point. 

 

All in all, what we have is that, regarding the beryllium bond under study, both the 

value of the density, that serves as an indication of the strength of the bond, and the 

positive value of the Laplacian, that serves as an indication of the ionic character of the 

bond due to the density being small, follow the trend: BeH2 > BeCl2 > BeF2. This result 

disagrees with the values of the vertical dissociation energies, which follow the trend 

BeCl2 > BeF2  BeH2. Therefore, some other effect must be affecting these bonds.  
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The NBO analysis were firstly made with B3LYP and M06 methods, but given the 

results obtained for the energy and densities of these methods, an additional calculation 

at the CCSD level was carried out, in order to try to justify the trends observed all under 

the same approach. 

 

From what has being explained, in the NBO analysis a beryllium bond is expected to 

present population in orbitals p of Be, labeled LP*(Be) and initially empty, due to the 

charge transfer from the triple CC bond that constitutes the main contribution to the 

beryllium bond. Also, some population should be found in the antibonding orbitals of 

the Be-X bond, labeled BD*(BeX), due to the charge transfer that comes also from the 

CC bond to these orbitals. As a consequence, the bonding orbitals of the CC bond, 

labeled BD(CC), should have less population. Accordingly, there hybridization of C and 

Be should also be seen in the different bonds as a consequence of the beryllium 

bonding. Finally, important contributions to the energy should be found corresponding 

to the charge transfer processes. 

If we take a look at the following tables: 

 

Complex BD*(BeX) BD (CC) LP*(Be) 

C2H2-BeH2 0.003 1.989; 1.979; 1.868 0.149; 0.021 

C2H2-BeF2 0.011 1.990; 1.993; 1.918 0.136; 0.102 

C2H2-BeCl2 0.020 1.990; 1.985; 1.859 0.222; 0.174 

 

Table 12. NBO populations obtained at the CCSD/6-311+G(d,p) level of theory. 

 

 

Complex BD (CC) BD (CH) LP* (Be) BD* (BeX) 

C2H2-BeH2 sp1.22; p100%; p94% sp1.04 sp7.29(p87%); p97% sp1.27 

C2H2-BeF2 sp1.00; p100%; p98% sp1.06 sp7.86(p88%); p100% sp1.26 

C2H2-BeCl2 sp1.11; p100%; p96% sp1.04 sp6.72(p87%); p99% sp1.31 

 

Table 14. NBO hybridization of C and Be atoms in certain bonds, at the CCSD/6-311+G(d,p) level of 

theory. 

Complex BD(CC) → LP*(Be) BD(CC) → BD*(Be-X) 

C2H2-BeH2 467.08 0.25 

C2H2-BeF2 222.32 2.93 

C2H2-BeCl2 416.38 8.04 

Table 13. NBO second order perturbational correction energies at the CCSD/6-311+G(d,p) level of 

theory, in kJ/mol. 
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As a matter of fact, it is indeed found everything just said: there is population in 

BD*(BeX) and LP*(Be), there is less population in the BD(CC), the C and Be atoms 

show different hybridization and there are contributions to the energy for the two main 

processes of the Beryllium bond. 

 

On the one hand, the trend for the charge transfer BD(CC) → BD*(Be-X) is Cl > F > H. 

This agrees with the observed trend for the elongation of the Be-X bond, with the 

population of the BD*(BeX) orbital and, more importantly, with the interaction energy 

trend. 

 

On the other hand, the trend observed for the charge transfer BD(CC) → LP*(Be) is H 

> Cl > F, that is the same trend that was followed by the density at the BCP of the 

beryllium bond. 

 

In addition, it can be seen that Wiberg bond order (BO) follows the same trend too: 

 

Complex Wiberg BO (BeC)
a
 Density ρ(r)

 

C2H2-BeH2 0,174 0,033 

C2H2-BeF2 0,086 0,023
b
 

C2H2-BeCl2 0,148 0,025 

 

Table 15. Density at the BCP of the beryllium bond of each complex at the CCSD/6-311+G(d,p) level of 

theory and its corresponding Wiberg bond order. (a) For one carbon only, the other one has the same 

value. (b) The density is that of a bifurcation point, not exactly at the BCP. 

 

Therefore, as we saw with AIM results, we find again that the trend of the density of the 

beryllium bond and the trend of the interaction energy are not the same. Since both 

indicate the strength of the beryllium bond, they should, and therefore there must be 

some effect that we are not considering. 

 

Studying further the NBO analysis, additional contributions to the energy for other 

charge transfers which are not expected are found: 

 

Complex BD(BeX) → BD*(CC) LP(X) → BD*(CC)
 

C2H2-BeH2 35.55 - 

C2H2-BeF2 2.60 0.000; 6.531; 0.544  

C2H2-BeCl2 4.65 0.502; 6.113; 0.921  

Table 16. Other important contributions to the energy from the NBO analysis at the CCSD/6-

311+G(d,p) level of theory, in kJ/mol. The contributions are per bond/atom. 
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If there is such a great contribution from the BD(BeH) of the C2H2-BeH2 complex to the 

antibonding orbital of the BD*(CC) that participates in the bond, the density at the BCP 

of the beryllium bond increases. Besides, since Wiberg BO depends on the square of the 

density
[50]

, it is only natural that it increases even if the electronic density is 

accommodated in the antibonding orbitals of the bond, decreasing its strength. 

In other words, the fact that a significant amount of electronic density is placed on an 

antibonding orbital would explain why, despite the fact that the C2H2-BeH2 complex has 

more density at the BCP than the other complexes, its interaction energy turns out to be 

the lowest one. 

 

If we look for the populations of these BD(BeX), BD*(CC) and LP(X) orbitals we find: 

 

 

The population of the BD(BeH) of the complex where X = H  clearly shows a loss that 

is also reflected in the increase of the BD*(CC) orbital. For X = F, Cl the populations do 

not show much of a difference because the contribution to the energy for this process 

was not as much. In any case, the observed trend for this sort of retrodonation is H > Cl 

> F, a trend that is also reflected in the small elongation of the CC bond of acetylene 

observed in Table 5. 

 

Even though there is a significant LP(X) → BD*(CC) charge transfer, the influence of 

it over the populations of LP(X) are not easily determined because within the BeX2 

molecule these orbitals participate in the bonds, and charge transfers from the LP(X) 

orbitals to Be are also found that indeed follow the corresponding inverse trend, being 

the greatest the one of the third lone pair, then the second and lastly the first lone pair. 

 

There are flaws to this reasoning, however, mainly in the elongation of the Be-H, which 

should be larger due to the loss of density of its bonding orbital. Besides, similar strange 

behaviors were found to happen in literature with similar systems
[51]

, and it was found 

that the deformation undergone by the moieties were the cause. Further researches are 

needed, though, to confirm and understand this point. 

 

 

 

 

Complex BD(BeX)  BD*(CC)
 

LP(X)
 

C2H2-BeH2 1.967 0.016; 0.000; 0.057 - 

C2H2-BeF2 1.998 0.013; 0.001; 0.010 1.991; 1.960; 1.950 

C2H2-BeCl2 1.996 0.012; 0.002; 0.018 1.983; 1.940; 1.917 

Table 17. Population of indicated orbitals from the NBO analysis at the CCSD/6-311+G(d,p) level of 

theory.  
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4.2. COMPLEXES BETWEEN BEX2 (X=H, F, CL) AND ETHYLENE. 

 

In this case the DFT functionals used in the calculations made in order to establish 

which of the two geometries is preferred were B3LYP and M06, both with the same 6-

311+G(d,p) basis set. 

 

For the two of them the complex BeH2-C2H4 preferred the first of the structures of 

Figure 3 while the second was preferred by the other two complexes: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. MOLDEN visualization of the optimized structure at the B3LYP/6-311+G(d,p) level for the 

complex between ethylene and BeH2. 
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 Figure 9. MOLDEN visualization of the optimized structures at the B3LYP/6-311+G(d,p) level for the 

complexes between ethylene and BeF2 (yellow) or BeCl2 (green). 
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The optimizations with the other geometries either didn’t converge or converged with 

an imaginary frequency that, as happened for the acetylene complexes, corresponded to 

the one in which the complex moved towards a more planar structure. 

 

At the same levels of theory, the corresponding calculations for each isolated molecule 

were carried out in order to provide the dissociation energy, as well as an additional 

calculation of frequencies to obtain the zero-point vibrational energies that contribute to 

the total energy. 

 

The results for the energy of the three complexes are: 

 

Complex B3LYP/6-311+G(d,p) M06/6-311+G(d,p) 

C2H4-BeH2 13.0 15.7 

C2H4-BeF2 18.0 30.3 

C2H4-BeCl2 7.7 23.4 
 

Table 18. Dissociation energies (D0 or ΔHint, kJ mol
-1

) of DFT methods. 

 

The rest of the energy values used to obtain these dissociation energies, including the 

values of the energy of the isolated molecules, along with the frequencies and the rest of 

the spectroscopic data that these calculations provide can be found in the Appendix 

section (IV-VI, VII-IX, XI). 

The energy for the C2H4-BeH2 complex is similar for both methods but when dealing 

with the C2H4-BeF2 and C2H4-BeCl2 complexes the energy varies a lot from one 

functional to the other. With the preferential geometry, additional optimization 

calculations at MP2/6-311+G(d,p) and CCSD/6-311+G(d,p) levels were carried out. If 

we add the results of these methods to those of Table 1: 

 

Complex B3LYP M06 MP2 CCSD 

C2H4-BeH2 13.0 15.7 15.5 9.2 

C2H4-BeF2 18.0 30.3 28.4 26.4 

C2H4-BeCl2 7.7 23.4 27.1 19.0 
 

Table 19. Dissociation energies (D0 or ΔHint, kJ mol
-1

) of DFT methods (with functionals B3LYP, M06 and 

M06-2X), MP2 and CCSD methods, all of them with the 6-311+G(d,p) basis. 

As with the DFT calculations, the rest of the energy values of MP2 and CCSD 

calculations used to obtain these dissociation energies, including the values of the 

energy of the isolated molecules, along with the frequencies and the remaining 

spectroscopic data can be found in the Appendix section (IV-VI, VII-IX, XI). 
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All the methods qualitatively follows the same trend, in the sense that the energy 

increases from the complex with X = H to the complex with X = F and then decreases to 

the complex with X = Cl. B3LYP provides very low results of the complex where X = F 

and X = Cl, to a point that its trend changes, and for this method the trend is X = F > X= 

H > X= Cl. With the exception of B3LYP, the methods follow the expected trend F2Be 

> Cl2Be > H2Be.
[1]

 It is important to remark that the complex with X = H has a different 

geometry from the other two and therefore it may not follow any trend. 

 

Since the different relaxation of the isolated molecules in each complex has a strong 

influence on this dissociation energy, the vertical dissociation energy must be calculated 

in order to allow a proper comparison. Besides, as we did for the series of complexes 

with the acetylene, MP2 and CCSD(T) single-point calculations were carried out with 

the aug-cc-pVTZ basis on the MP2/6-311+G(d,p) and CCSD/6-311+G(d,p) optimized 

geometries, respectively, in order to give the most accurate values of the energy for the 

complexes and at the same time to compare the methods. 

 

The vertical dissociation energy was calculated at all the levels of theory with 6-

311+G(d,p) basis and also at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels 

of theory. The corresponding calculations for the isolated molecules in both geometries 

were carried out, and can be found in the Appendix section (IV-VI, VII-IX, XI, XV-

XVII).  

 

The dissociation energy and the vertical dissociation energy results for each complex 

and method are: 

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H4-BeH2 13.0 15.7 15.5 9.2 20.0 18.4 

C2H4-BeF2 18.0 30.3 28.4 26.4 28.7 29.0
a 

C2H4-BeCl2 7.7 23.4 27.1 19.0 33.8 27.1
a 

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H4-BeH2 47.4 44.7 41.2 33.5 45.6 42.1 

C2H4-BeF2 38.9 49.0 50.8 49.3 50.1 49.6
a 

C2H4-BeCl2 40.0 51.7 59.1 51.6 62.7 56.2
a 

 

Table 20. Dissociation energies (upper table, D0 or ΔHint, kJ mol
-1

) and vertical dissociation energies 

(lower table, Eint or ΔHver, kJ mol
-1

)  of DFT methods (with functionals B3LYP, M06 and M06-2X), MP2 

and CCSD methods with the 6-311+G(d,p) basis, and MP2 and CCSD(T) methods with the aug-cc-pVTZ 

basis. (*)aug-cc-pVTZ basis set used. (
a
)due to lack of time this data was calculated with the ZPVE from 

CCSD/6-311+G(d,p). 
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As was pointed out for acetylene, in this case it is also clear that the values for the 

vertical dissociation energy or interaction energy are also more than twice the value of 

the hydrogen bond in water molecules, which, as said before, is of about 20 kJ mol
-1

 
[47]

. 

Therefore, these are significantly strong non-covalent interactions too. 

 

Again, although the dissociation energy at the MP2/aug-cc-pVTZ level already gave a 

different trend, it is clear that the general trend observed for the dissociation energy 

does not hold when the relaxation energies of the subunits of the complex are taken into 

account, as the interaction energy trend regarding the beryllium molecule of the 

complex is BeCl2 > BeF2 > BeH2. If we take a look at the relaxation energies: 

 

Complex B3LYP M06 MP2 CCSD MP2* CCSD(T)* 

C2H4-BeH2 34.4 29.0 25.7 24.3 25.6 23.7 

C2H4-BeF2 20.9 18.7 22.4 22.9 21.3 20.7 

C2H4-BeCl2 32.3 28.2 32.0 32.7 28.9 29.1 
 

Table 21. Relaxation energies (ΔHrelax, kJ mol
-1

) for all methods with the 6-311+g(d,p) basis. (*)aug-cc-

pVTZ basis set used.  

 

With the exception of DFT methods, which give a similar value for the complexes 

where X = H and X = Cl, being slightly higher for the complex with X = H, and 

similarly to what was found above for acetylene complexes, the relaxation energy has a 

much lower value for X = F than for X = Cl, while X = H gives higher values than the 

former and lower than the latter, which results in the general trend:  C2H4-BeCl2 ≥ C2H4-

BeH2 > C2H4-BeF2. Due to this, the vertical dissociation energy for X = Cl increases and 

though its complex gave the lowest dissociation energy of the three, it turns out to give 

the highest vertical dissociation energy. Besides, as it happened in the previous complex 

series with acetylene, the relaxation energy of the C2H4-BeH2 complex is overestimated 

by the B3LYP and M06 functionals. The overestimation is not as much as in that case, 

though, and the M06 values almost follow the general trend. However, this 

overestimation causes the B3LYP method to give a much higher value for the C2H4-

BeH2 complex, to the point that it no longer follows the trend for the interaction energy 

stated by the rest of the methods, which is: C2H4-BeCl2 > C2H4-BeF2 > C2H4-BeH2.  

This result is the same that we obtained for the energies with the acetylene complexes, 

although the difference between F and H is larger in this case. As explained before, 

these values of the relaxation energies means that the subunits of the complex with Cl 

are the more unstable ones when they keep the geometry they have within the complex, 

which may mean the BeCl2 molecule the most bent and its beryllium bond is the 

strongest. Following the same reasoning, the complex with F should be the second more 

bent or the second in the strength of its beryllium bond, and the complex with H should 

be the last one in both terms. 
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If we now see the values of distances and angles of the optimized geometries for each 

complex and compare them with the ones of the isolated molecules for each method:  

 

 

 

Property B3LYP M06 MP2 CCSD 

HBeH 138,309 140,670 142,787 143,180 

HBeC 91,869 91,008 90,358 90,486 

BeC 2,077 2,100 2,163 2,197 

HCC 121,940 122,048 121,610 121,746 

BeH 1,347 1,347 1,347 1,348 

CC 1,351 1,344 1,355 1,352 

HCH 115.891 115.759 116.700 116.436 

CBeC 37,953 37,315 36,497 35,848 

BeCC 71,024 71,343 71,752 72,076 

CH 1,084 1,085 1,085 1,086 

HCCBe 92,861 92,292 91,671 91,598 

 

Table 22. Distances and angles for the optimized geometries of the complex BeH2-C2H4 for each 

method, all of them with the 6-311+G(d,p) basis. 

 

 

Property B3LYP M06 MP2 CCSD 

FBeF 150,329 150,819 149,545 149,189 

FBeC 104,205 103,958 104,537 104,709 

BeC 2,344 2,311 2,291 2,293 

HCC 121,348 121,328 120,901 121,129 

BeF 1,411 1,405 1,418 1,412 

CC 1,338 1,333 1,349 1,348 

HCH 117.280 117.333 118.184 117.721 

CBeC 33,166 33,524 34,243 34,199 

BeCC 73,417 73,238 72,879 72,901 

CH 1,085 1,087 1,086 1,087 

HCCBe 90,934 90,627 90,687 90,859 

 

Table 23. Distances and angles for the optimized geometries of the complex BeF2-C2H4 for each 

method, all of them with the 6-311+G(d,p) basis. 
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Property B3LYP M06 MP2 CCSD 

ClBeCl 142,674 144,318 142,924 142,795 

ClBeC 107,839 107,045 107,674 107,750 

BeC 2,32 2,294 2,276 2,293 

HCC 121,337 121,334 120,971 121,151 

BeCl 1,848 1,844 1,837 1,840 

CC 1,341 1,335 1,351 1,350 

HCH 117.284 117.310 118.008 117.643 

CBeC 33,597 33,829 34,535 34,249 

BeCC 73,201 73,085 72,732 72,875 

CH 1,085 1,087 1,086 1,087 

HCCBe 91,221 90,854 91,307 91,362 

 

Table 24. Distances and angles for the optimized geometries of the complex BeCl2-C2H4 for each 

method, all of them with the 6-311+G(d,p) basis. 

 

Bond B3LYP M06 MP2 CCSD 

CH 1.085 1.086 1.085 1.087 

CC 1.329 1.323 1.339 1.340 

HCC 121.759 121.810 121.409 121.568 

HCH 116.482 116.379 117.182 116.865 

BeH 1.327 1.327 1.329 1.330 

BeF 1.387 1.380 1.293 1.387 

BeCl 1.799 1.797 1.792 1.794 

 

Table 25. Bond distances and angles for ethylene and BeX2 molecules in their isolated equilibrium 

geometries optimized by the indicated methods and the 6-311+G(d,p) basis set. 

 

At any level of theory it can be seen that, as expected, there is a bending of the BeX2 

molecules. Since B3LYP and M06 overestimated the relaxation energy of the complex 

with BeH2, in the optimized geometries for that complex the BeH2 molecule is almost as 

bent as BeCl2 in BeCl2 complexes, while for MP2 the difference is just of 0.2 Å and 

finally for CCSD the angle ClBeCl of the BeCl2 complex is clearly the lowest and 

therefore its BeCl2 molecule is the most bent. This result follows the relaxation energy 

trend for each of the methods. 

The ethylene molecule has a small but significant bending that can be seen through the 

sum of the HCH and the two HCC angles. When ethylene is planar, this value is, 

obviously, of 360º. 

 

If we take a look at the following table containing these angle sums: 
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C2H4-BeH2 B3LYP M06 MP2 CCSD 

Angle sum 359.771 359.855 359.920 359.928 

Difference -0.229 -0.145 -0.080 -0.072 

 

C2H4-BeF2 B3LYP M06 MP2 CCSD 

Angle sum 359.976 359.989 359.986 359.979 

Difference -0.024 -0.011 -0.014 -0.021 

 

C2H4-BeCl2 B3LYP M06 MP2 CCSD 

Angle sum 359.958 359.978 359.950 359.945 

Difference -0.042 -0.022 -0.050 -0.055 

 

Table 26. Sum of the HCH and HCC angles of ethylene in each complex and method, all with the 6-

311+G(d,p) basis set, and difference with respect to the 360° of a planar ethylene.  

 

Similarly to what happened in acetylene, the deformation over the angles with the C-H 

bonds is not so much because since the two carbons share the interaction with the 

displaced charge more probably being between them, the hydrogen atoms don’t feel the 

interaction as much as the atoms directly bonded to the beryllium atom. 

 

Here we see again that the deformation changes much more in the BeH2 complex when 

changing the method, while the same angle for the BeCl2 complex varies slightly with 

the methods and the one of BeF2 complex practically does not vary. These variations, 

however, are in agreement with the variations of the relaxation energy. 

 

In addition to that, a small lengthening of the CC bond can be observed, what 

constitutes an additional indication of the light hybridization of the carbons, which in 

this case lose a bit of their strict sp2 hybridization. 

 

The angle HCH does also vary slightly, and it is easy to see that since the structures of 

the complexes with X = F, Cl and the complex with X = H are different these angles 

vary accordingly. Therefore, hydrogen atoms of the ethylene move to avoid some 

electronic repulsion tension, and therefore in the case of the transversal BeH2 they move 

slightly towards the edges of the ethylene, making the HCC angle bigger and the HCH 

smaller, while in the case of BeF2 and BeCl2 they move laterally, making the HCC 

angle smaller and the HCH bigger. 

 

Besides, as it was seen for acetylene complexes, it can also be seen in these values the 

second effect of beryllium bonding: as a consequence to the charge transfer to the 

antibonding orbitals σBeX* of Be-X bonds, these bonds weaken and they become longer. 

This effect is very clear in the case of the Be-Cl bond for which the change is of about 

0.05 Å, but it is also still clear for Be-F and Be-H bonds, for which the change is of 
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about 0.025 Å and 0.015 Å, respectively. This means that more electronic density is 

participating in the antibonding orbital of Be-F than of Be-H, i.e. the strength of the 

beryllium bond should be higher for the C2H4-BeF2 complex, in spite of the FBeF being 

less bent. 

This result follows the vertical dissociation energy trend of each method, and as a 

general trend we find: C2H4-BeCl2 > C2H4-BeF2 > C2H4-BeH2, and therefore we expect 

the beryllium bond in the BeCl2 complex to be the strongest one, followed by the one in 

the BeF2 complex and finally the one in the BeH2 complex. 

In order to study in depth the bonding between the interacting molecules, an AIM study 

was performed for the optimized geometries of all methods. The qualitative results were 

practically the same for all methods when X = Cl and X = F but when X = H we 

obtained a different result depending on the methods. 

 

For X = H we obtained: 

 

 
Figure 10. Density plots for the complex BeH2-C2H4 at B3LYP/6-311+G(d,p)  (left) and at CCSD/6-

311+G(d,p) (right) from aimstudio. 

 

With X = H, both B3LYP and M06 give the same qualitative result, as so do MP2 and 

CCSD methods, but they are different between them, as shown in Figure 10. 

Again, in fact, a critical point is found for all the methods between the molecules, 

granting some kind of bonding between them. However, the plots are as unconventional 

as the ones of acetylene complexes. 

 

We find again the conflict catastrophe that causes the bond path to end into the critical 

point for the CC bond, instead of into an atom, already discussed above. As to the 

difference between the plots, we also have the same bifurcation catastrophe when 

passing from DFT methods to MP2 and CCSD, with the third unstable part of the 
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bifurcation not completely drawn by the program as in the BeF2-C2H2 complex. 

Therefore, a high value of the ellipticity is expected for the beryllium bond. 

 

If we take a look at the following table, that collects all the AIM data for the complex at 

the CCSD/6-311+G(d,p) level: 

 

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.030019 +0.021129 0.979185 -0.030142 -0.015229 +0.066500 

Be1 - C5 0.030019 +0.021129 0.979185 -0.030142 -0.015229 +0.066500 

Be1 - H2 0.088976 +0.200081 0.078837 -0.182214 -0.168899 +0.551194 

Be1 - H3 0.088976 +0.200081 0.078837 -0.182214 -0.168899 +0.551194 

C4 - C5 0.327225 -0.944279 0.365209 -0.692804 -0.507471 +0.255996 

C4 - H6 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C4 - H7 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C5 - H8 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C5 - H9 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 
 

Table 27. AIM data at the CCSD/6-311+G(d,p) level for the BeH2-C2H4 complex. 

 

The data for the rest of the methods can be found in the Appendix section (XXV). 

 

By looking at the density and its second derivative, the Laplacian, we can see that the 

character of the bonds is well described for the bonds within the ethylene, which show 

the big density values and negative Laplacian values characteristic of covalent bonds, 

while for the Be-H bonds the character appears as slightly ionic, for they have a small 

density and, though small, they also have a positive value for the Laplacian. As it was 

said before, this positive value of the Laplacian is also a characteristic of Lewis acids, 

and we have a Be
+δ

-H
–δ

 bond
[3]

. Similarly, for the beryllium bond (Be1-C4 and Be1-C5) 

we obtain a relatively small density, although not so small for a non-covalent 

interaction, and a more positive value for the Laplacian. This agrees with the fact that 

beryllium bonds have an important ionic character, such as hydrogen bonds do. 

 

Regarding the ellipticity, it has a high value in BCP of Be1-C4 and Be1-C5 which, as 

said before, indicates an approaching instability and a change in structure, but when the 

BCP stays –without pitchfork bifurcation- unsplit, for other methods, this value is even 

higher, up to 16, which explains the appearance of the bifurcation catastrophe. Also, the 

densities at those points are very similar to the density at the unsplit BCP, which 

indicates a flat density that reinforces the explanation of the bifurcation catastrophe 

appearance. 

 

If we now take a look at the plot when X=F: 
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In this case all methods gave the same qualitative result. 

Here, as for most of the complexes, the beryllium bond path ends in a bond critical 

point instead of on the carbon atoms, due to the conflict catastrophe. In addition, the 

bond path is drawn with a dashed line, since the electronic density at the BCP of the 

beryllium bond does not reach the default minimum value of 0.025 of the program to be 

drawn in a continuous line. It is clear then that there is less density between the 

molecules of this complex than in the previous one. 

 

If we look at the AIM data: 

 

 

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.024593 +0.080526 2.287989 -0.019619 -0.005967 +0.106111 

Be1 - F2 0.120977 +1.131909 0.006764 -0.340070 -0.337785 +1.809764 

Be1 - F3 0.120977 +1.131909 0.006764 -0.340070 -0.337785 +1.809764 

C4 - C5 0.330869 -0.969917 0.349859 -0.703457 -0.521134 +0.254675 

C4 - H6 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C4 - H7 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C5 - H8 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C5 - H9 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 
 

Table 28. AIM data at the CCSD/6-311+G(d,p) level for the BeF2-C2H4 complex. 

 

The data for the rest of the methods can be found in the appendix section (XXVI). 

 

Figure 11. Density plot for the complex BeF2-C2H4 at the 

CCSD/6-311+G(d,p) level of theory from aimstudio. 
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We see that in fact the BCP of the beryllium bond has a value of 0.0246 that is much 

lower to the value found for the BCP of the same bond of the previous complex, which 

was, in total, of 0.06. It can also be seen that it has a very low positive value for the 

Laplacian, which means its character is less ionic but with still has ionic predominance. 

With respect to the rest of the bonds, we can see that their character is correctly 

described within the ethylene, and for the Be-F bonds we find again a quite big positive 

value of the Laplacian and a small density, having thus a stronger ionic character than 

Be-H bonds in the previous complex, as it should due to the much greater 

electronegativity of fluoride with respect to hydrogen.  

 

Regarding the ellipticity, the beryllium bond still has a high value, which shows the 

same strong preferential accumulation in the plane of λ2, but it is not enough to produce 

any bifurcation catastrophe, as it happens in other complexes.  

 

Finally, if we look at the plot when X=Cl: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case the result is qualitatively the same for all the methods. 

 

The only strange thing here is that, as for the BeH2 complex, the beryllium bond path 

ends in a bond critical point instead of on the carbon atoms, due to the conflict 

catastrophe. 

 

If we look at the AIM data: 

 

Figure 12. Density plot for the complex BeCl2-C2H4 at the 

CCSD/6-311+G(d,p) level of theory from aimstudio. 
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BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.026199 +0.077499 1.136194 -0.020875 -0.009772 +0.108146 

Be1 - Cl2 0.083568 +0.332620 0.011042 -0.146854 -0.145251 +0.624725 

Be1 - Cl3 0.083568 +0.332620 0.011042 -0.146854 -0.145251 +0.624725 

C4 - C5 0.329999 -0.966765 0.339055 -0.699959 -0.522726 +0.255921 

C4 - H6 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C4 - H7 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C5 - H8 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C5 - H9 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 
 

Table 29. AIM data at the CCSD/6-311+G(d,p) level for the BeCl2-C2H4 complex. 

 

The data for the rest of the methods can be found in the appendix section (XXVII). 

We can see that the character of the bonds is, as in the previous complexes, correctly 

described for the bonds within the ethylene, and for the Be-Cl bonds we find a small 

density, even a bit smaller than that of Be-H bonds, and a positive value of the 

Laplacian, greater than that of Be-H bonds but smaller than that of Be-F bonds. Thus, 

Be-Cl bonds have more ionic character than the Be-H bonds but less than the Be-F 

bonds, which is just natural since the electronegativity of chloride is also greater than 

that of hydrogen but lower than that of fluoride. It also confirms the acidity order: BeF2 

> BeCl2 > BeH2. 

As to the beryllium bond, we obtain a very small density, slightly higher than the one of 

BeF2 complex but still much lower than the BeH2 one, and a very small positive value 

for the Laplacian, higher than the one of BeF2 complex but still much lower than the 

BeH2 one. Therefore, the beryllium bond still has a predominant ionic character, a bit 

more than the one of BeF2 complex but still much lower than the BeH2 one. 

 

Regarding the ellipticity, the beryllium bond of the complex has the lowest value of the 

three but it is still quite large, which shows the same strong preferential accumulation of 

density in the plane of λ2, but it is not enough to produce any bifurcation catastrophe, as 

it happens in other complexes.  

 

All in all, what we have is that, regarding the beryllium bond under study, both the 

value of the density, that serves as an indication of the strength of the bond, and the 

positive value of the Laplacian, that serves as an indication of the ionic character of the 

bond due to the density being small, follow the trend: BeH2 > BeCl2 > BeF2. 

It is worth noting that once more there is not a clear correlation between the electron 

density at the Beryllium bond critical point and the interaction energies. We have 

already shown that the interaction energies vary as Cl > F > H whereas de electron 

densities follow a different trend, H > Cl  F. This likely indicates that, as it has been 

found previously in the literature, the deformation undergone by the Lewis acid may 

affect its intrinsic acidity.
[52]

 The investigation of this particular point is the main goal of 

our future work regarding these complexes.  
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As to the NBO calculations, at the CCSD/6-311+G(d,p) level of theory the NNBO 

analysis separates the atoms of the BeCl2 molecule and treats them as separate units, 

making impossible to see the interactions properly. As explained in section 3.4 of 

Theoretical Foundations this indicates that the bonds are highly polar, to a point where 

the program separates them. Anyhow, the following discussion is based then in the 

NBO calculations obtained at the M06/6-311+G(d,p) level of theory. 

 

Again, what is expected in the NBO analysis are populations in the initially empty 

orbitals p of Be, labeled LP*(Be), and in the antibonding orbitals of the Be-X bond, 

labeled BD*(BeX). As a consequence, the bonding orbitals of the CC bond, labeled 

BD(CC), should have less population. Also, these charge transfers should be reflected in 

the hybridization of C and Be in the different bonds and, finally, important contributions 

to the energy should be found corresponding to the charge transfer processes. 

 

If we take a look at the following tables: 

 

Complex BD*(BeX) BD (CC) LP*(Be) 

C2H4-BeH2 0.003 1.996; 1.858 0.159; 0.006 

C2H4-BeF2 0.015 1.996; 1.908 0.165; 0.134 

C2H4-BeCl2 0.023 1.996; 1.871 0.244; 0.220 

 

Table 30. NBO populations obtained at the M06/6-311+G(d,p) level of theory. 

 

 

Complex BD (CC) BD (CH) LP* (Be) BD* (BeX) 

C2H4-BeH2 sp1.71; p96% sp2.35 sp7.02(p89%); p97% sp1.28 

C2H4-BeF2 sp1.51; p99% sp2.37 sp8.96(p90%); p100% sp1.23 

C2H4-BeCl2 sp1.61; p98% sp2.35 sp8.99(p90%); p100% sp1.23 

 

Table 32. NBO hybridization of C and Be atoms in certain bonds, at the M06/6-311+G(d,p) level of 

theory. 

 

As a matter of fact, it is indeed found that there is population in BD*(BeX) and 

LP*(Be), there is less population in the BD(CC), the C and Be atoms show different 

Complex BD(CC) → LP*(Be) BD(CC) → BD*(Be-X) 

C2H4-BeH2 315.48 2.55 

C2H4-BeF2 150.35 5.36 

C2H4-BeCl2 228.01 6.80 

Table 31. NBO second order perturbational correction energies at the M06/6-311+G(d,p) level of 

theory, in kJ/mol. 
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hybridization and there are contributions to the energy for the two main processes of the 

Beryllium bond. 

 

Again, we find two opposed trends: 

On the one hand, the trend for the charge transfer BD(CC) → BD*(Be-X) is Cl > F > H, 

as it was for acetylene complexes. This also agrees with the observed trend for the 

elongation of the Be-X bond, with the population of the BD*(BeX) orbital and, more 

importantly, with the interaction energy trend. 

 

On the other hand, and again as obtained for acetylene complexes, the trend observed 

for the charge transfer BD(CC) → LP*(Be) is H > Cl > F, that is the same trend the 

density at the BCP of the beryllium bond follows. 

 

Additionally, the Wiberg bond order (BO) follows the same trend too: 

 

Complex Wiberg BO (BeC)
a
 Density ρ(r)

 

C2H4-BeH2 0,186 0,036 

C2H4-BeF2 0,089 0,024 

C2H4-BeCl2 0,127 0,027 

 

Table 33. Density at the BCP of the beryllium bond of each complex at the CCSD/6-311+G(d,p) level of 

theory and its corresponding Wiberg bond order. (a) For one carbon only, the other one has the same 

value.  

 

Therefore, the trend of the density at the beryllium bond and the trend of the interaction 

energy are not the same. Here again, he find that there must be some effect that we are 

not considering. 

 

Studying further the NBO analysis, checking the additional contributions to the energy 

for other charge transfers which were found for acetylene complexes, one finds: 

 

Complex BD(BeX) → BD*(CC) LP(X) → BD*(CC)
 

C2H4-BeH2 36.47 - 

C2H4-BeF2 - 0.000; 0.000; 0.251  

C2H4-BeCl2 - -  

Table 34. Other important contributions to the energy from the NBO analysis at the M06/6-

311+G(d,p) level of theory, in kJ/mol. The contributions are per bond/atom. 
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It is here more evident that the different relative disposition of the BeH2 molecule with 

respect to the ethylene allows the orbital overlap necessary for the charge transfer 

BD(BeX) → BD*(CC) to be possible. The change in this disposition prevents the other two 

complexes to present this process. It is also clear that this change also mostly prevents 

the charge transfer from lone pairs of the X atoms to the CC bond, probably because 

they are too far to overlap. 

 

As it was explained before, such a great contribution from the BD(BeH) of the C2H2-

BeH2 complex to the antibonding orbital of the BD*(CC) increases the density at the 

BCP of the beryllium bond and also the Wiberg BO, for it depends on the square of the 

density
[50]

. As a result, the fact that a significant amount of electronic density is placed 

on an antibonding orbital would explain why, despite the fact that the C2H2-BeH2 

complex has more density at the BCP than the other complexes, its interaction energy is 

the lowest one. 

 

If we look for the populations of these BD(BeX), BD*(CC) and LP(X) orbitals we find: 

 

 

The population of the BD(BeH) of the complex where X = H  shows an even higher loss 

than in the case of C2H2-BeH2 and, correspondingly, there is an even higer increase in 

the population of the BD*(CC) orbital. For X = F, Cl the populations show no evidence 

of any transfer. We can see here that in spite of this, the population of the lone pairs of F 

or Cl are lower, due to the fact that they partially give it away to beryllium, as we 

explained before. In any case, this sort of retrodonation observed for the C2H2-BeH2 

complex may be the cause that increases the elongation of CC with respect to the 

elongation achieved for the other complexes, which can be seen in Table 5, even when 

the C2H2-BeH2 complex is the less stable of the three. 

 

There are here the same flaws to this reasoning, as explained for the acetylene series, 

and only further researches will clarify the cause for this behavior.  

 

 

 

 

 

Complex BD(BeX)  BD*(CC)
 

LP(X)
 

C2H4-BeH2 1.935 0.009; 0.119 - 

C2H4-BeF2 1.999 0.003; 0.007 1.989; 1.950; 1.929 

C2H4-BeCl2 1.999 0.004; 0.012 1.983; 1.927; 1.884 

Table 35. Population of indicated orbitals from the NBO analysis at the CCSD/6-311+G(d,p) level of 

theory.  
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APPENDIX 

 

I. Energies and structural data for C2H2-BeH2 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 3,577 3,465 3,917 3,902 

ZPVE /kcal/mol 27,24 27,18 27,27 27,30 

-E /H/P 93,3 93,2 92,9 93,0 

-E /Kcal/mol 58541,3 58.489,8 58325,9 58344,0 

-Et (E+ZPVE) /Kcal/mol 58514,0 58.462,6 58298,6 58316,7 

ΔHint /Kcal/mol 6,4 6,5 5,9 4,7 

ΔHint /KJ/mol 26,8 27,2 24,7 19,5 

ΔHvert /Kcal/mol 14,6 13,8 11,4 10,0 

ΔHvert /KJ/mol 61,3 57,6 47,9 41,8 

ν1 (a2,  a1,  a2,  a2) 365 307 298 281 

ν2 (a1,  a2,  a1, a1) 366 335 300 291 

ν3 (b2) 448 461 407 399 

ν4 (b2) 486 490 577 576 

ν5 (b1,  b1,  a2,  a2) 660 671 629 640 

ν6 (b2) 712 710 660 677 

ν7 (a2,  a2, b1, b1) 720 727 693 694 

ν8 (a1) 779 780 795 804 

ν9 (b1) 791 797 796 814 

ν10 (a1) 825 848 883 881 

ν11 (a1) 1952 1961 1917 1977 

ν12 (a1) 1981 1988 2005 1995 

ν13 (b2) 2082 2098 2140 2118 

ν14 (b2) 3399 3372 3445 3428 

ν15 (a1) 3488 3468 3530 3522 

A /GHz 28,700 28,697 28,143 28,342 

B /GHz 16,769 16,626 15,157 14,840 

C /GHz 10,585 10,527 9,851 9,740 

HBeH /° 137,787 138,723 141,059 142,090 

HBeC /° 92,971 92,674 91,739 92,014 

BeC /Å 1,954 1,967 2,070 2,091 

HCC /° 170,930 172,722 174,988 175,406 

BeH /Å 1,347 1,347 1,347 1,349 

CC /Å 1,216 1,213 1,227 1,219 

CBeC /° 36,272 35,929 34,462 33,883 

BeCC /° 71,864 72,036 72,769 73,059 

CH /Å 1,065 1,066 1,066 1,068 
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II. Energies and structural data for C2H2-BeF2 

 

 

 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 3,608 3,601 3,863 3,861 

ZPVE /kcal/mol 22,11 22,12 21,93 22,10 

-E /H/P 292,0 291,9 291,3 291,3 

-E /Kcal/mol 183255,8 183.166,3 182810,0 182817,2 

-Et (E+ZPVE) /Kcal/mol 183233,7 183.144,2 182788,1 182795,1 

ΔHint /Kcal/mol 5,3 8,2 6,9 6,8 

ΔHint /KJ/mol 22,0 34,2 29,0 28,4 

ΔHvert /Kcal/mol 10,0 12,5 11,7 11,6 

ΔHvert /KJ/mol 41,7 52,3 48,8 48,8 

ν1 (a2) 74 72 59 59 

ν2 (b2) 174 176 186 185 

ν3 (a1) 188 182 206 208 

ν4 (b2) 245 258 259 261 

ν5 (a1) 315 322 332 334 

ν6 (b1) 395 398 403 408 

ν7 (a2) 695 716 596 604 

ν8 (b2) 709 721 648 666 

ν9 (a1) 737 743 740 750 

ν10 (b1) 800 805 795 802 

ν11 (a1) 813 810 818 830 

ν12 (b2) 1367 1382 1377 1392 

ν13 (a1) 2046 2042 1955 2019 

ν14 (b2) 3401 3368 3437 3419 

ν15 (a1) 3505 3477 3525 3520 

A /GHz 5,974 6,019 5,924 5,969 

B /GHz 4,659 4,747 4,678 4,679 

C /GHz 2,618 2,654 2,614 2,623 

FBeF /° 148,200 148,197 148,194 148,009 

FBeC /° 90,722 90,600 90,488 90,658 

BeC /Å 2,298 2,277 2,295 2,293 

HCC /° 179,314 179,806 179,554 179,499 

BeF /Å 1,415 1,408 1,418 1,414 

CC /Å 1,203 1,202 1,220 1,213 

CBeC /° 30,355 30,602 30,829 30,674 

BeCC /° 74,822 74,699 74,585 74,663 

CH /Å 1,065 1,067 1,067 1,068 
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III. Energies and structural data for C2H2-BeCl2 

 

 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 4,585 4,297 4,908 4,873 

ZPVE /kcal/mol 20,85 20,90 20,75 20,85 

-E /H/P 1012,7 1.012,6 1011,3 1011,3 

-E /Kcal/mol 635482,3 635.393,0 634561,9 634585,3 

-Et (E+ZPVE) /Kcal/mol 635461,5 635.372,1 634541,1 634564,5 

ΔHint /Kcal/mol 1,9 5,1 5,0 3,5 

ΔHint /KJ/mol 7,8 21,6 20,9 14,5 

ΔHvert /Kcal/mol 11,5 13,5 14,1 12,6 

ΔHvert /KJ/mol 48,3 56,5 58,8 52,6 

ν1 (a2) 46 45 17 23 

ν2 (b2, a1,  b2,  b2)   165 160 175 171 

ν3 (a1, b2, a1, a1) 191 168 206 198 

ν4 (a1) 201 200 214 209 

ν5 (b2) 273 296 275 272 

ν6 (b1) 310 297 321 322 

ν7 (a1) 498 487 522 514 

ν8 (a2) 698 718 611 620 

ν9 (b2) 712 762 635 655 

ν10 (b1) 798 802 794 801 

ν11 (a1) 824 864 834 848 

ν12 (b2) 934 946 997 993 

ν13 (a1) 2036 2032 1949 2014 

ν14 (b2) 3400 3370 3438 3423 

ν15 (a1) 3502 3477 3529 3523 

A /GHz 3,304 3,338 3,345 3,294 

B /GHz 2,266 2,260 2,277 2,271 

C /GHz 1,344 1,348 1,355 1,344 

ClBeCl /° 136,764 138,241 137,987 138,075 

ClBeC /° 95,965 95,323 95,191 95,391 

BeC /Å 2,234 2,244 2,241 2,262 

HCC /° 177,152 177,811 176,866 177,035 

BeCl /Å 1,858 1,851 1,844 1,847 

CC /Å 1,205 1,204 1,221 1,214 

CBeC /° 31,307 31,112 31,632 31,143 

BeCC /° 74,347 74,444 74,184 74,429 

CH /Å 1,065 1,067 1,067 1,068 
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IV. Energies and structural data for C2H4-BeH2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 3,389 3,254 3,763 3,729 

ZPVE /kcal/mol 42,49 42,09 42,99 42,79 

-E /H/P 94,5 94,5 94,2 94,2 

-E /Kcal/mol 59328,2 59271,4 59097,7 59123,8 

-Et (E+ZPVE) /Kcal/mol 59285,7 59229,3 59054,7 59081,0 

ΔHint /Kcal/mol 3,1 3,8 3,7 2,2 

ΔHint /KJ/mol 13,0 15,7 15,5 9,2 

ΔHvert /Kcal/mol 11,3 10,7 9,8 8,0 

ΔHvert /KJ/mol 47,4 44,7 41,2 33,5 

ν1 (a2) 267 230 216 194 

ν2 (a1) 308 256 269 247 

ν3 (b2) 350 340 322 303 

ν4 (b2,  b1,  b1,  b1) 465 479 451 436 

ν5 (b1,  b2,  b2, b2) 502 486 532 536 

ν6 (b1) 676 684 698 700 

ν7 (a1, b1, b1, b1) 810 794 825 829 

ν8 (b1, a1, a1, a1) 823 830 856 853 

ν9 (b2) 975 958 965 976 

ν10 (a1) 995 976 1005 1014 

ν11 (a2) 1054 1046 1076 1067 

ν12 (a2) 1236 1200 1243 1249 

ν13 (a1) 1356 1341 1370 1376 

ν14 (b2) 1479 1434 1489 1496 

ν15 (a1) 1623 1624 1637 1659 

ν16 (a1) 1964 1972 2004 1988 

ν17 (b2) 2085 2104 2142 2126 

ν18 (b2) 3143 3124 3187 3168 

ν19 (a1) 3151 3134 3199 3182 

ν20 (a2) 3218 3205 3280 3253 

ν21 (b1) 3243 3228 3303 3276 

A /GHz 21,204 21,274 21,063 21,071 

B /GHz 13,540 13,330 12,674 12,304 

C /GHz 9,297 9,213 8,867 8,686 

HBeH /° 138,309 140,670 142,787 143,180 

HBeC /° 91,869 91,008 90,358 90,486 

BeC /Å 2,077 2,100 2,163 2,197 

HCC /° 121,940 122,048 121,610 121,746 

BeH /Å 1,351 1,344 1,355 1,352 

CC /Å 115.891 115.759 116.700 116.436 

HCH /° 1,347 1,347 1,347 1,348 

CBeC /° 37,953 37,315 36,497 35,848 

BeCC /° 71,024 71,343 71,752 72,076 

CH /Å 1,084 1,085 1,085 1,086 

HCCBe /° 92,861 92,292 91,671 91,598 
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V. Energies and structural data for C2H4-BeF2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 3,613 3,655 4,012 4,027 

ZPVE /kcal/mol 37,20 36,96 37,75 37,72 

-E /H/P 293,3 293,1 292,6 292,6 

-E /Kcal/mol 184045,0 183949,7 183584,0 183599,1 

-Et (E+ZPVE) /Kcal/mol 184007,8 183912,8 183546,2 183561,4 

ΔHint /Kcal/mol 4,3 7,2 6,8 6,3 

ΔHint /KJ/mol 18,0 30,3 28,4 26,4 

ΔHvert /Kcal/mol 9,3 11,7 12,1 11,8 

ΔHvert /KJ/mol 38,9 49,0 50,8 49,3 

ν1 (a2) 29 -13 56 60 

ν2 (b2) 136 159 140 142 

ν3 (b1,  a1,  b1,  b1) 162 179 196 198 

ν4 (a1,  b1,  a1,  a1) 175 189 204 204 

ν5 (b2) 276 289 272 284 

ν6 (a1) 319 323 350 349 

ν7 (b1) 374 374 389 390 

ν8 (a1) 736 736 743 754 

ν9 (b2) 843 815 842 846 

ν10 (b1) 1014 1004 998 1003 

ν11 (a1) 1034 1020 1031 1036 

ν12 (a2) 1072 1070 1082 1070 

ν13 (a2) 1247 1212 1254 1259 

ν14 (a1) 1375 1353 1379 1381 

ν15 (b2) 1385 1397 1380 1400 

ν16 (b1) 1473 1427 1483 1491 

ν17 (a1) 1662 1662 1653 1671 

ν18 (b1) 3130 3110 3181 3159 

ν19 (a1) 3138 3120 3192 3172 

ν20 (a2) 3211 3197 3280 3248 

ν21 (b2) 3236 3221 3303 3272 

A /GHz 5,550 5,582 5,515 5,556 

B /GHz 3,852 3,966 3,975 3,961 

C /GHz 2,681 2,740 2,737 2,741 

FBeF /° 150,329 150,819 149,545 149,189 

FBeC /° 104,205 103,958 104,537 104,709 

BeC /Å 2,344 2,311 2,291 2,293 

HCC /° 121,348 121,328 120,901 121,129 

BeF /Å 1,347 1,347 1,347 1,348 

CC /Å 1,411 1,405 1,418 1,412 

HCH /° 1,338 1,333 1,349 1,348 

CBeC /° 33,166 33,524 34,243 34,199 

BeCC /° 73,417 73,238 72,879 72,901 

CH /Å 1,085 1,087 1,086 1,087 

HCCBe /° 90,934 90,627 90,687 90,859 
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VI. Energies and structural data for C2H4-BeCl2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 4,265 4,115 4,715 4,717 

ZPVE /kcal/mol 36,12 35,83 36,64 36,56 

-E /H/P 1014,0 1013,8 1012,5 1012,5 

-E /Kcal/mol 636272,6 636177,8 635337,5 635368,9 

-Et (E+ZPVE) /Kcal/mol 636236,5 636142,0 635300,9 635332,4 

ΔHint /Kcal/mol 1,8 5,6 6,5 4,5 

ΔHint /KJ/mol 7,7 23,4 27,1 19,0 

ΔHvert /Kcal/mol 9,5 12,3 14,1 12,3 

ΔHvert /KJ/mol 40,0 51,7 59,1 51,6 

ν1 (a2) 70 56 82 81 

ν2 (a1) 143 153 145 145 

ν3 (b2) 165 167 177 176 

ν4 (b2,  b1,  b1,  b1) 183 202 207 206 

ν5 (b1,  b2,  b2, b2) 212 206 244 235 

ν6 (b1) 287 283 277 288 

ν7 (a1, b1, b1, b1) 300 314 307 306 

ν8 (b1, a1, a1, a1) 480 484 516 507 

ν9 (b2) 843 814 841 844 

ν10 (a1) 967 985 996 1002 

ν11 (a2) 1019 1003 1020 1015 

ν12 (a2) 1044 1027 1033 1039 

ν13 (a1) 1072 1067 1075 1065 

ν14 (b2) 1247 1212 1254 1259 

ν15 (a1) 1375 1353 1379 1382 

ν16 (a1) 1475 1428 1485 1492 

ν17 (b2) 1656 1654 1649 1668 

ν18 (b2) 3134 3111 3179 3162 

ν19 (a1) 3141 3120 3189 3174 

ν20 (a2) 3216 3199 3278 3252 

ν21 (b1) 3240 3222 3300 3274 

A /GHz 2,874 2,974 2,974 2,934 

B /GHz 2,153 2,142 2,171 2,167 

C /GHz 1,341 1,358 1,371 1,361 

ClBeCl /° 142,674 144,318 142,924 142,795 

ClBeC /° 107,839 107,045 107,674 107,750 

BeC /Å 2,32 2,294 2,276 2,293 

HCC /° 121,337 121,334 120,971 121,151 

BeCl /Å 1,848 1,844 1,837 1,840 

CC /Å 1,341 1,335 1,351 1,350 

HCH /° 117.284 117.310 118.008 117.643 

CBeC /° 33,597 33,829 34,535 34,249 

BeCC /° 73,201 73,085 72,732 72,875 

CH /Å 1,085 1,087 1,086 1,087 

HCCBe /° 91,221 90,854 91,307 91,362 
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VII. Energies and structural data for BeH2 in its equilibrium geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

VIII. Energies and structural data for BeF2 in its equilibrium geometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 0,000 0,000 0,000 0,002 

ZPVE /kcal/mol 8,26 8,25 8,26 8,13 

-E /H/P 15,9228 15,9084 15,8232 15,8393 

-E /Kcal/mol 9991,5 9982,5 9929,0 9939,2 

-Et (E+ZPVE) /Kcal/mol 9983,3 9974,3 9920,8 9931,1 

ν1 (π) 739 724 711 688 

ν2 (π) 739 724 711 688 

ν3 (σ) 2042 2047 2070 2049 

ν4 (σ) 2259 2274 2285 2261 

A /GHz 0,000 0,000 0,000 0,000 

B /GHz 142,417 142,464 141,950 141,747 

C /GHz 142,417 142,464 141,950 141,747 

BeH /Å 1,327 1,327 1,329 1,330 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

μ /D 0,000 0,000 0,000 0,004 

ZPVE /kcal/mol 4,25 4,26 4,19 4,24 

-E /H/P 214,6747 214,5952 214,2046 214,2017 

-E /Kcal/mol 134708,4 134658,5 134413,4 134411,6 

-Et (E+ZPVE) /Kcal/mol 134704,1 134654,2 134409,2 134407,4 

ν1 (π) 368 352 350 352 

ν2 (π) 368 352 350 352 

ν3 (σ) 708 717 705 714 

ν4 (σ) 1530 1558 1527 1546 

A /GHz 0,000 0,000 0,000 0,000 

B /GHz 6,916 6,980 6,858 6,911 

C /GHz 6,916 6,980 6,858 6,911 

BeF /Å 1,387 1,380 1,393 1,387 
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IX. Energies and structural data for BeCl2 in its equilibrium geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

X. Energies and structural data for C2H2 in its equilibrium geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

ZPVE /kcal/mol 2,92 3,01 2,98 2,97 

-E /H/P 935,3597 935,2799 934,1310 934,1562 

-E /Kcal/mol 586938,2 586888,1 586167,2 586183,0 

-Et (E+ZPVE) /Kcal/mol 586935,3 586885,1 586164,2 586180,1 

ν1 (π) 254 262 246 246 

ν2 (π) 254 262 246 246 

ν3 (σ) 399 407 412 411 

ν4 (σ) 1137 1172 1180 1175 

A /GHz 0,000 0,000 0,000 0,000 

B /GHz 2,234 2,248 2,246 2,246 

C /GHz 2,234 2,248 2,246 2,246 

BeCl /Å 1,799 1,797 1,792 1,794 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

ZPVE /kcal/mol 16,96 17,00 16,61 16,72 

-E /H/P 77,3566 77,2889 77,1132 77,1278 

-E /Kcal/mol 48541,3 48498,8 48388,6 48397,7 

-Et (E+ZPVE) /Kcal/mol 48524,3 48481,8 48371,9 48381,0 

ν1 (π) 657 690 561 575 

ν2 (π) 657 690 561 575 

ν3 (π) 773 781 767 773 

ν4 (π) 773 781 767 773 

ν5 (σ) 2062 2062 1963 2026 

ν6 (σ) 3420 3388 3457 3437 

ν7 (σ) 3522 3497 3547 3536 

A /GHz 0,000 0,000 0,000 0,000 

B /GHz 35,581 35,658 34,812 35,082 

C /GHz 35,581 35,658 34,812 35,082 

CH /Å 1,063 1,064 1,065 1,066 

CC /Å 1,199 1,197 1,216 1,210 
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XI. Energies and structural data for C2H4 in its equilibrium geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XII. Energies of the isolated molecules with their geometries fixed to those they have in the complex 

C2H2-BeH2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeH2 C2H2 BeH2 C2H2 BeH2 C2H2 BeH2 C2H2 

ZPVE /kcal/mol 15,60 6,99 15,66 7,05 7,13 15,38 7,06 15,49 

-E /H/P 77,3540 15,9081 77,2871 15,8947 15,8114 77,1124 15,8279 77,1271 

-E /Kcal/mol 48.539,7 9.982,3 48.497,6 9.973,9 9.921,6 48.388,0 9.932,0 48.397,2 

-Et (E+ZPVE) /Kcal/mol 48.524,1 9.975,3 48.482,0 9.966,9 9.914,5 48.372,7 9.924,9 48.381,7 

 

 

 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

ZPVE /kcal/mol 31,86875 31,6 32,09 31,97 

-E /H/P 78,6155126 78,538467 78,346303 78,3740729 

-E /Kcal/mol 49331,2 49282,9 49162,3 49179,7 

-Et (E+ZPVE) /Kcal/mol 49299,4 49251,3 49130,2 49147,8 

v1 (b2u) 835 807 829 832 

v2 (b3u) 974 961 889 905 

v3 (b2g) 977 970 966 966 

v4 (au) 1058 1051 1061 1045 

v5 (b3g) 1238 1206 1237 1242 

v6 (ag) 1378 1355 1382 1382 

v7 (b1u) 1472 1431 1481 1487 

v8 (ag) 1684 1691 1675 1688 

v9 (b1u) 3123 3109 3175 3153 

v10 (ag) 3137 3126 3193 3172 

v11 (b3g) 3194 3188 3265 3234 

v12 (b2u) 3223 3214 3292 3260 

A /GHz 147,300 147,146 146,103 146,128 

B /GHz 30,177 30,367 29,886 29,808 

C /GHz 25,046 25,172 24,811 24,758 

HCH /° 116,482 116,3794 117,182 116,865 

CH /Å 1,085 1,0862 1,0853 1,087 

CC /Å 1,3288 1,3231 1,3391 1,340 

HCC /° 121,759 121,8103 121,409 121,568 
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XIII. Energies of the isolated molecules with their geometries fixed to those they have in the 

complex C2H2-BeH2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeF2 C2H2 BeF2 C2H2 BeF2 C2H2 BeF2 C2H2 

ZPVE /kcal/mol 15,81 3,55 15,82 3,58 3,58 15,48 3,62 15,58 

-E /H/P 77,3566 214,6643 77,2889 214,5854 214,1943 77,1132 214,1912 77,1277 

-E /Kcal/mol 48.541,3 134.701,8 48.498,8 134.652,4 134.406,9 48.388,5 134.405,0 48.397,6 

-Et (E+ZPVE) /Kcal/mol 48.525,5 134.698,3 48.483,0 134.648,8 134.403,4 48.373,1 134.401,4 48.382,1 

 

 

XIV. Energies of the isolated molecules with their geometries fixed to those they have in the 

complex C2H2-BeH2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeCl2 C2H2 BeCl2 C2H2 BeCl2 C2H2 BeCl2 C2H2 

ZPVE /kcal/mol 15,91 2,37 15,82 2,39 2,50 15,45 2,49 15,56 

-E /H/P 77,3563 935,3420 77,2887 935,2640 934,1142 77,1129 934,1394 77,1275 

-E /Kcal/mol 48.541,1 586.927,1 48.498,7 586.878,1 586.156,7 48.388,4 586.172,5 48.397,5 

-Et (E+ZPVE) /Kcal/mol 48.525,2 586.924,8 48.482,9 586.875,8 586.154,2 48.372,9 586.170,0 48.381,9 

 

 

 XV. Energies of the isolated molecules with their geometries fixed to those they have in the 

complex C2H4-BeH2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeH2 C2H4 BeH2 C2H4 BeH2 C2H4 BeH2 C2H4 

ZPVE /kcal/mol 31,70 6,99 31,43 7,04 31,95 7,13 31,87 7,07 

-E /H/P 78,6145 15,9084 78,5377 15,8959 78,3459 15,8118 78,3737 15,8286 

-E /Kcal/mol 49.330,6 9.982,5 49.282,4 9.974,7 49.162,0 9.921,9 49.179,5 9.932,4 

-Et (E+ZPVE) /Kcal/mol 49.298,9 9.975,5 49.251,0 9.967,7 49.130,1 9.914,8 49.147,6 9.925,4 

 

 

XVI. Energies of the isolated molecules with their geometries fixed to those they have in the 

complex C2H4-BeF2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeF2 C2H4 BeF2 C2H4 BeF2 C2H4 BeF2 C2H4 

ZPVE /kcal/mol 31,79 3,57 31,51 3,59 31,98 3,58 31,88 3,63 

-E /H/P 78,6154 214,6657 78,5383 214,5870 78,3461 214,1951 78,3739 214,1920 

-E /Kcal/mol 49.331,1 134.702,7 49.282,8 134.653,3 49.162,2 134.407,4 49.179,6 134.405,5 

-Et (E+ZPVE) /Kcal/mol 49.299,3 134.699,1 49.251,3 134.649,8 49.130,2 134.403,9 49.147,8 134.401,9 
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XVII. Energies of the isolated molecules with their geometries fixed to those they have in the 

complex C2H4-BeCl2 

Method/6-311+G(d,p) B3LYP M06 MP2 CCSD 

Molecule BeCl2 C2H4 BeCl2 C2H4 BeCl2 C2H4 BeCl2 C2H4 

ZPVE /kcal/mol 31,77 2,40 31,49 2,44 31,96 2,53 31,87 2,51 

-E /H/P 78,6153 935,3467 78,5383 935,2682 78,3460 934,1181 78,3738 934,1432 

-E /Kcal/mol 49.331,1 586.930,0 49.282,8 586.880,8 49.162,1 586.159,1 49.179,6 586.174,8 

-Et (E+ZPVE) /Kcal/mol 49.299,3 586.927,6 49.251,3 586.878,4 49.130,2 586.156,6 49.147,7 586.172,3 

 

 

XVIII. Energies of the acetylene complexes at the MP2 and CCSD(T) methods with the aug-cc-

pVTZ basis set. (a) Data from a CCSD/6-311+G(d,p) calculation. 

Complex C2H2-BeH2 C2H2-BeF2 C2H2-BeCl2 

Method/aug-cc-pVTZ MP2 CCSD(T) MP2 CCSD(T) MP2 CCSD(T) 

ZPVE /kcal/mol 27,01 26,77 21,96 22,10
a 

19,90 20,85
a 

-E /H/P 93,0 93,1 291,5 291,6 1011,2 1011,5 

-E /Kcal/mol 58364,9 58392,4 182926,0 182952,9 634555,0 634728,6 

-Et (E+ZPVE) /Kcal/mol 58337,9 58365,6 182904,1 182930,8 634535,1 634707,7 

 

 

XIX. Energies of the ethylene complexes at the MP2 and CCSD(T) methods with the aug-cc-pVTZ 

basis set. (a) Data from a CCSD/6-311+G(d,p) calculation. 

Molecule C2H4-BeH2 C2H4-BeF2 C2H4-BeCl2 

Method/aug-cc-pVTZ MP2 CCSD MP2 CCSD MP2 CCSD 

ZPVE /kcal/mol 42,72 42,17 37,77 37,72
a 

36,54 36,56
a 

-E /H/P 94,2 94,3 292,8 292,8 1012,7 1012,8 

-E /Kcal/mol 59141,5 59175,6 183704,5 183738,1 635459,4 635514,8 

-Et (E+ZPVE) /Kcal/mol 59098,8 59133,5 183666,7 183700,3 635422,8 635478,2 

 

 

XX. Energies of the isolated beryllium molecules in the equilibrium geometry at the MP2 and 

CCSD(T) methods with the aug-cc-pVTZ basis set. 

Molecule BeH2 BeF2 BeCl2 

Method/aug-cc-pVTZ MP2 CCSD MP2 CCSD MP2 CCSD 

ZPVE /kcal/mol 8,24 8,14 4,19 4,25 2,91 2,90 

-E /H/P 15,8 15,8 214,3 214,4 934,3 934,3 

-E /Kcal/mol 9.935,5 9945,4 134497,3 134505,9 586250,9 586282,9 

-Et (E+ZPVE) /Kcal/mol 9.927,3 9937,3 134493,1 134501,6 586248,0 586280,0 
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XXI. Energies of the isolated acetylene and ethylene molecules in the equilibrium geometry at the 

MP2 and CCSD(T) methods with the aug-cc-pVTZ basis set. 

Molecule C2H2 C2H4 

Method/aug-cc-pVTZ MP2 CCSD MP2 CCSD 

ZPVE /kcal/mol 16,62 16,82 31,985 31,647 

-E /H/P 77,2 77,2 78,4 78,4 

-E /Kcal/mol 48.420,4 48438,1 49.198,8 49223,4 

-Et (E+ZPVE) /Kcal/mol 48.403,8 48421,3 49.166,8 49191,8 

 

XXII. Data from the topologycal analysis of C2H2-BeH2 

B3LYP/6-311+G(d,p) 
      

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.047560 +0.233101 4.091103 -0.081025 -0.015915 +0.330041 

Be1 - H2 0.089584 +0.176662 0.151137 -0.184625 -0.160385 +0.521671 

Be1 - H3 0.089584 +0.176662 0.151137 -0.184625 -0.160385 +0.521671 

C4 - C5 0.401017 -1.190145 0.023259 -0.671271 -0.656012 +0.137137 

C4 - H6 0.288997 -1.062823 0.002094 -0.825152 -0.823428 +0.585756 

C5 - H7 0.288997 -1.062823 0.002094 -0.825152 -0.823428 +0.585756 

       

M06/6-311+G(d,p) 
      

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.045369 +0.239976 3.940720 -0.078673 -0.015923 +0.334572 

Be1 - H2 0.091744 +0.180140 0.120010 -0.190231 -0.169848 +0.540219 

Be1 - H3 0.091744 +0.180140 0.120010 -0.190231 -0.169848 +0.540219 

C4 - C5 0.393169 -1.075982 0.027072 -0.631043 -0.614410 +0.169471 

C4 - H6 0.285499 -1.019070 0.003075 -0.807201 -0.804727 +0.592857 

C5 - H7 0.285499 -1.019070 0.003075 -0.807201 -0.804727 +0.592857 

       

MP2/6-311+G(d,p) 
      

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.034204 +0.038428 2.248883 -0.035969 -0.011071 +0.085468 

Be1 - H2 0.088867 +0.205724 0.091187 -0.182447 -0.167201 +0.555372 

Be1 - C4 0.034204 +0.038428 2.248883 -0.035969 -0.011071 +0.085468 

Be1 - H3 0.088867 +0.205724 0.091187 -0.182447 -0.167201 +0.555372 

Be1 - C5 0.034361 +0.185036 12.587705 -0.052924 -0.003895 +0.241855 

C4 - C5 0.384505 -1.074687 0.017623 -0.609393 -0.598840 +0.133546 

C4 - H6 0.285557 -1.056259 0.002175 -0.805067 -0.803320 +0.552129 

C5 - H7 0.285557 -1.056259 0.002175 -0.805067 -0.803320 +0.552129 

       

CCSD/6-311+G(d,p) 
      

BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.033086 +0.038472 2.223705 -0.034550 -0.010717 +0.083739 

Be1 - H2 0.088601 +0.202039 0.085841 -0.181113 -0.166795 +0.549946 

Be1 - C4 0.033086 +0.038472 2.223705 -0.034550 -0.010717 +0.083739 

Be1 - H3 0.088601 +0.202039 0.085841 -0.181113 -0.166795 +0.549946 

Be1 - C4 0.033165 +0.176881 13.749168 -0.050304 -0.003411 +0.230596 

C4 - C5 0.390660 -1.115323 0.021235 -0.619322 -0.606444 +0.110442 

C4 - H6 0.285960 -1.047795 0.002813 -0.803327 -0.801073 +0.556605 

C5 - H7 0.285960 -1.047795 0.002813 -0.803327 -0.801073 +0.556605 
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XXIII. Data from the topologycal analysis of C2H2-BeF2 

B3LYP/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - F2 0.122778 +1.082980 0.012515 -0.341600 -0.337378 +1.761959 

Be1 - F3 0.122778 +1.082980 0.012515 -0.341600 -0.337378 +1.761959 

Be1 - C4 0.024247 +0.034218 1.953394 -0.021609 -0.007317 +0.063144 

Be1 - C5 0.024247 +0.034218 1.953394 -0.021609 -0.007317 +0.063144 

C4 - C5 0.409819 -1.232420 0.026593 -0.681813 -0.664151 +0.113544 

C4 - H6 0.288821 -1.068121 0.004613 -0.829878 -0.826068 +0.587825 

C5 - H7 0.288821 -1.068121 0.004613 -0.829878 -0.826068 +0.587825 

       

M06/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - F2 0.124129 +1.123402 0.012296 -0.354762 -0.350453 +1.828617 

Be1 - F3 0.124129 +1.123402 0.012296 -0.354762 -0.350453 +1.828617 

F3 - C4 0.024148 +0.037978 1.424855 -0.021251 -0.008764 +0.067994 

F2 - C5 0.024148 +0.037978 1.424855 -0.021251 -0.008764 +0.067994 

C4 - C5 0.401267 -1.110348 0.023573 -0.637798 -0.623109 +0.150559 

C4 - H6 0.285166 -1.023502 0.004780 -0.811133 -0.807274 +0.594905 

C5 - H7 0.285166 -1.023502 0.004780 -0.811133 -0.807274 +0.594905 

       

MP2/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - F2 0.118710 +1.091982 0.009452 -0.329640 -0.326553 +1.748175 

Be1 - F3 0.118710 +1.091982 0.009452 -0.329640 -0.326553 +1.748175 

F3 - C4 0.023532 +0.036600 1.001253 -0.020318 -0.010153 +0.067071 

F2 - C5 0.023532 +0.036600 1.001253 -0.020318 -0.010153 +0.067071 

C4 - C5 0.388461 -1.091477 0.021304 -0.613340 -0.600546 +0.122410 

C4 - H6 0.284673 -1.051175 0.004637 -0.802770 -0.799065 +0.550661 

C5 - H7 0.284673 -1.051175 0.004637 -0.802770 -0.799065 +0.550661 

       

CCSD/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - F2 0.120523 +1.118560 0.009020 -0.338810 -0.335781 +1.793151 

Be1 - F3 0.120523 +1.118560 0.009020 -0.338810 -0.335781 +1.793151 

F3 - C4 0.023449 +0.037247 1.066192 -0.020441 -0.009893 +0.067580 

F2 - C5 0.023449 +0.037247 1.066192 -0.020441 -0.009893 +0.067580 

C4 - C5 0.393961 -1.128493 0.022376 -0.621270 -0.607673 +0.100450 

C4 - H6 0.285025 -1.042295 0.004915 -0.800797 -0.796881 +0.555383 

C5 - H7 0.285025 -1.042295 0.004915 -0.800797 -0.796881 +0.555383 
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XXIV. Data from the topologycal analysis of C2H2-BeCl2 

B3LYP/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - Cl2 0.081771 +0.289104 0.037310 -0.141404 -0.136318 +0.566827 

Be1 - Cl3 0.081771 +0.289104 0.037310 -0.141404 -0.136318 +0.566827 

Be1 - C4 0.028230 +0.089015 4.158417 -0.032413 -0.006284 +0.127712 

C4 - C5 0.409404 -1.239670 0.045852 -0.694568 -0.664117 +0.119015 

C4 - H6 0.289394 -1.075714 0.005147 -0.836240 -0.831958 +0.592484 

C5 - H7 0.289394 -1.075714 0.005147 -0.836240 -0.831958 +0.592484 

       

M06/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - Cl2 0.083004 +0.291620 0.029324 -0.145147 -0.141012 +0.577780 

Be1 - Cl3 0.083004 +0.291620 0.029324 -0.145147 -0.141012 +0.577780 

Be1 - C4 0.026124 +0.097533 6.698441 -0.030086 -0.003908 +0.131527 

C4 - C5 0.400726 -1.116378 0.038985 -0.647907 -0.623596 +0.155125 

C4 - H6 0.285608 -1.028739 0.005006 -0.815732 -0.811669 +0.598662 

C5 - H7 0.285608 -1.028739 0.005006 -0.815732 -0.811669 +0.598662 

       

MP2/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - Cl2 0.082485 +0.327658 0.024236 -0.144429 -0.141011 +0.613098 

Be1 - Cl3 0.082485 +0.327658 0.024236 -0.144429 -0.141011 +0.613098 

Be1 - C5 0.026128 +0.099629 7.712991 -0.029840 -0.003425 +0.132894 

C4 - C5 0.388605 -1.102550 0.039372 -0.626608 -0.602872 +0.126930 

C4 - H6 0.285454 -1.060131 0.005487 -0.809673 -0.805254 +0.554796 

C5 - H7 0.285454 -1.060131 0.005487 -0.809673 -0.805254 +0.554796 

       

CCSD/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - Cl2 0.082507 +0.324241 0.020538 -0.144598 -0.141688 +0.610527 

Be1 - Cl3 0.082507 +0.324241 0.020538 -0.144598 -0.141688 +0.610527 

Be1 - C5 0.025196 +0.095569 8.439991 -0.028389 -0.003007 +0.126965 

C4 - C5 0.394250 -1.139970 0.041338 -0.634903 -0.609699 +0.104631 

C4 - H6 0.285912 -1.051170 0.005778 -0.807456 -0.802818 +0.559104 

C5 - H7 0.285912 -1.051170 0.005778 -0.807456 -0.802818 +0.559104 
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XXV. Data from the topologycal analysis of C2H4-BeH2 

B3LYP/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.039009 +0.150425 11.706499 -0.063134 -0.004969 +0.218528 

Be1 - H2 0.090112 +0.173729 0.135022 -0.186560 -0.164367 +0.524657 

Be1 - H3 0.090112 +0.173729 0.135022 -0.186560 -0.164367 +0.524657 

C4 - C5 0.328327 -0.937594 0.325682 -0.697456 -0.526111 +0.285974 

C4 - H6 0.282498 -0.977433 0.010950 -0.760731 -0.752491 +0.535790 

C4 - H7 0.282498 -0.977433 0.010950 -0.760731 -0.752491 +0.535790 

C5 - H8 0.282498 -0.977433 0.010950 -0.760731 -0.752491 +0.535790 

C5 - H9 0.282498 -0.977433 0.010950 -0.760731 -0.752491 +0.535790 

       

M06/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.036049 +0.156489 16.308358 -0.057651 -0.003331 +0.217471 

Be1 - H2 0.092184 +0.177659 0.100144 -0.191523 -0.174090 +0.543272 

Be1 - H3 0.092184 +0.177659 0.100144 -0.191523 -0.174090 +0.543272 

C4 - C5 0.327304 -0.900899 0.314947 -0.679953 -0.517095 +0.296148 

C4 - H6 0.277357 -0.923800 0.000725 -0.731043 -0.730513 +0.537756 

C4 - H7 0.277357 -0.923800 0.000725 -0.731043 -0.730513 +0.537756 

C5 - H8 0.277357 -0.923800 0.000725 -0.731043 -0.730513 +0.537756 

C5 - H9 0.277357 -0.923800 0.000725 -0.731043 -0.730513 +0.537756 

       

MP2/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.031705 +0.022903 1.254163 -0.032681 -0.014498 +0.070083 

Be1 - C5 0.031705 +0.022903 1.254163 -0.032681 -0.014498 +0.070083 

Be1 - H2 0.089035 +0.203577 0.088072 -0.183112 -0.168290 +0.554979 

Be1 - H3 0.089035 +0.203577 0.088072 -0.183112 -0.168290 +0.554979 

C4 - C5 0.324450 -0.919559 0.354646 -0.681685 -0.503220 +0.265345 

C4 - H6 0.280746 -0.980606 0.012610 -0.747068 -0.737764 +0.504226 

C4 - H7 0.280746 -0.980606 0.012610 -0.747068 -0.737764 +0.504226 

C5 - H8 0.280746 -0.980606 0.012610 -0.747068 -0.737764 +0.504226 

C5 - H9 0.280746 -0.980606 0.012610 -0.747068 -0.737764 +0.504226 

       

CCSD/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.030019 +0.021129 0.979185 -0.030142 -0.015229 +0.066500 

Be1 - C5 0.030019 +0.021129 0.979185 -0.030142 -0.015229 +0.066500 

Be1 - H2 0.088976 +0.200081 0.078837 -0.182214 -0.168899 +0.551194 

Be1 - H3 0.088976 +0.200081 0.078837 -0.182214 -0.168899 +0.551194 

C4 - C5 0.327225 -0.944279 0.365209 -0.692804 -0.507471 +0.255996 

C4 - H6 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C4 - H7 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C5 - H8 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 

C5 - H9 0.280403 -0.971200 0.013244 -0.741946 -0.732248 +0.502994 
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XXVI. Data from the topologycal analysis of C2H4-BeF2 

B3LYP/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.023869 +0.053625 2.883861 -0.017170 -0.004421 +0.075216 

Be1 - F2 0.123755 +1.100520 0.009496 -0.344568 -0.341327 +1.786416 

Be1 - F3 0.123755 +1.100520 0.009496 -0.344568 -0.341327 +1.786416 

C4 - C5 0.338621 -1.003816 0.307079 -0.727193 -0.556349 +0.279726 

C4 - H6 0.282480 -0.979541 0.009947 -0.762747 -0.755234 +0.538440 

C4 - H7 0.282480 -0.979541 0.009947 -0.762747 -0.755234 +0.538440 

C5 - H8 0.282480 -0.979541 0.009947 -0.762747 -0.755234 +0.538440 

C5 - H9 0.282480 -0.979541 0.009947 -0.762747 -0.755234 +0.538440 

       

M06/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.024395 +0.069234 2.865309 -0.018597 -0.004811 +0.092643 

Be1 - F2 0.125065 +1.138949 0.010418 -0.357740 -0.354051 +1.850739 

Be1 - F3 0.125065 +1.138949 0.010418 -0.357740 -0.354051 +1.850739 

C4 - C5 0.336706 -0.961481 0.300206 -0.707151 -0.543876 +0.289546 

C4 - H6 0.277215 -0.924481 0.005987 -0.735107 -0.730732 +0.541358 

C4 - H7 0.277215 -0.924481 0.005987 -0.735107 -0.730732 +0.541358 

C5 - H8 0.277215 -0.924481 0.005987 -0.735107 -0.730732 +0.541358 

C5 - H9 0.277215 -0.924481 0.005987 -0.735107 -0.730732 +0.541358 

       

MP2/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.024805 +0.079136 2.509926 -0.019385 -0.005523 +0.104044 

Be1 - F2 0.118782 +1.099840 0.007097 -0.329307 -0.326986 +1.756133 

Be1 - F3 0.118782 +1.099840 0.007097 -0.329307 -0.326986 +1.756133 

C4 - C5 0.329333 -0.952354 0.337753 -0.695871 -0.520179 +0.263696 

C4 - H6 0.280866 -0.982534 0.014146 -0.749639 -0.739182 +0.506287 

C4 - H7 0.280866 -0.982534 0.014146 -0.749639 -0.739182 +0.506287 

C5 - H8 0.280866 -0.982534 0.014146 -0.749639 -0.739182 +0.506287 

C5 - H9 0.280866 -0.982534 0.014146 -0.749639 -0.739182 +0.506287 

       

CCSD/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.024593 +0.080526 2.287989 -0.019619 -0.005967 +0.106111 

Be1 - F2 0.120977 +1.131909 0.006764 -0.340070 -0.337785 +1.809764 

Be1 - F3 0.120977 +1.131909 0.006764 -0.340070 -0.337785 +1.809764 

C4 - C5 0.330869 -0.969917 0.349859 -0.703457 -0.521134 +0.254675 

C4 - H6 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C4 - H7 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C5 - H8 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 

C5 - H9 0.280214 -0.970596 0.015309 -0.743525 -0.732314 +0.505242 
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XXVII. Data from the topologycal analysis of C2H4-BeCl2 

B3LYP/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.026458 +0.055462 0.940075 -0.019737 -0.010173 +0.085371 

Be1 - Cl2 0.083456 +0.299551 0.021677 -0.144827 -0.141755 +0.586133 

Be1 - Cl3 0.083456 +0.299551 0.021677 -0.144827 -0.141755 +0.586133 

C4 - C5 0.337185 -0.997545 0.296157 -0.722072 -0.557087 +0.281613 

C4 - H6 0.283157 -0.984839 0.009577 -0.767579 -0.760298 +0.543038 

C4 - H7 0.283157 -0.984839 0.009577 -0.767579 -0.760298 +0.543038 

C5 - H8 0.283157 -0.984839 0.009577 -0.767579 -0.760298 +0.543038 

C5 - H9 0.283157 -0.984839 0.009577 -0.767579 -0.760298 +0.543038 

       

M06/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.026569 +0.070672 1.103054 -0.020986 -0.009979 +0.101636 

Be1 - Cl2 0.084137 +0.298842 0.018868 -0.147475 -0.144744 +0.591061 

Be1 - Cl3 0.084137 +0.298842 0.018868 -0.147475 -0.144744 +0.591061 

C4 - C5 0.335283 -0.955248 0.290305 -0.702206 -0.544217 +0.291175 

C4 - H6 0.277520 -0.927192 0.007580 -0.739197 -0.733636 +0.545642 

C4 - H7 0.277520 -0.927192 0.007580 -0.739197 -0.733636 +0.545642 

C5 - H8 0.277520 -0.927192 0.007580 -0.739197 -0.733636 +0.545642 

C5 - H9 0.277520 -0.927192 0.007580 -0.739197 -0.733636 +0.545642 

       

MP2/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C4 0.027149 +0.079183 0.977880 -0.021627 -0.010934 +0.111745 

Be1 - Cl2 0.083593 +0.336660 0.013733 -0.146748 -0.144760 +0.628167 

Be1 - Cl3 0.083593 +0.336660 0.013733 -0.146748 -0.144760 +0.628167 

C4 - C5 0.328152 -0.947744 0.325763 -0.691263 -0.521408 +0.264926 

C4 - H6 0.281087 -0.984703 0.013504 -0.752553 -0.742526 +0.510376 

C4 - H7 0.281087 -0.984703 0.013504 -0.752553 -0.742526 +0.510376 

C5 - H8 0.281087 -0.984703 0.013504 -0.752553 -0.742526 +0.510376 

C5 - H9 0.281087 -0.984703 0.013504 -0.752553 -0.742526 +0.510376 

       

CCSD/6-311+G(d,p) 

      BCP ρ(r) -∇2
ρ(r) ε λ1 λ2 λ3 

Be1 - C5 0.026199 +0.077499 1.136194 -0.020875 -0.009772 +0.108146 

Be1 - Cl2 0.083568 +0.332620 0.011042 -0.146854 -0.145251 +0.624725 

Be1 - Cl3 0.083568 +0.332620 0.011042 -0.146854 -0.145251 +0.624725 

C4 - C5 0.329999 -0.966765 0.339055 -0.699959 -0.522726 +0.255921 

C4 - H6 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C4 - H7 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C5 - H8 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 

C5 - H9 0.280740 -0.974603 0.014440 -0.747154 -0.736518 +0.509069 
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XXVIII. AIMAll density plots for C2H2-BeH2 at the B3LYP (up left), M06 (up right), MP2 (down 

left) and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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XXIX. AIMAll density plots for C2H2-BeF2 at the B3LYP (up left), M06 (up right), MP2 (down left) 

and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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XXX. AIMAll density plots for C2H2-BeCl2 at the B3LYP (up left), M06 (up right), MP2 (down left) 

and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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XXXI. AIMAll density plots for C2H4-BeH2 at the B3LYP (up left), M06 (up right), MP2 (down left) 

and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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XXXII. AIMAll density plots for C2H4-BeF2 at the B3LYP (up left), M06 (up right), MP2 (down 

left) and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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XXXIII. AIMAll density plots for C2H4-BeCl2 at the B3LYP (up left), M06 (up right), MP2 (down 

left) and CCSD (down right) levels of theory with the 6-311+G(d,p) basis set. 
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