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Abstract

We analyze a transboundary pollution differential game where, in addition to the standard tempo-

ral dimension, a spatial dimension is introduced to capture the geographical relationships among

regions. Each region behaves strategically and maximizes its welfare net of environmental damage

caused by the pollutant stock. The emission-output ratio is reduced by investment in region specific

clean technology which evolves over time. The spatio-temporal dynamics of the pollutant stock

is described by a parabolic partial differential equation. Using aggregate variables we study the

feedback Nash equilibrium of a discrete-space model which could be seen as a space discretization

of the continuous-space model. The discrete-space model presents the three main features of the

original formulation: the model is truly dynamic; the agents behave strategically; and the model

incorporates spatial aspects. For special functional forms previously used in the literature we an-

alytically characterize the feedback Nash equilibrium and evaluate the impact of the introduction

of the spatial dimension in the economic-environmental model. We show that our spatial model

is a generalization of the model that disregards the spatial aspects. We analytically show that

as the parameter describing how pollution diffuses among regions tends to infinity the equilibrium

policies converge to those in the non-spatial setting. In the non-cooperative framework the spatially

non-myopic behavior prescribes lower equilibrium emission rates, and consequently a lower global

pollution stock. This is compatible with greater long-run welfares. In the cooperative framework,

although the strategic interaction among the players does not exist, the only decision-maker still

makes spatially strategic decisions.
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1. Introduction

A review of the literature on dynamic models proposed for studying economic and environmental

problems clearly shows that these models focus on the temporal aspect and ignore the spatial aspect.

The addition of the spatial aspect obviously enriches the model and its possible predictions, but in

turn leads to greater technical difficulties in its analysis. However, recently some authors have added

the spatial dimension in the analysis of different economic problems such as allocation of economic

activity or technological diffusion (Brito (2004), Boucekkine et al. (2009, 2013a, 2013b), Camacho

et al. (2008), Brock & Xepapadeas (2008a), Desmet & Rossi-Hansberg (2010), Brock et al. (2014a)

and Fabbri (2016)) or environmental and climate problems (Brock & Xepapadeas (2008b, 2010),

Brock et al. (2014b), Camacho & Pérez-Barahona (2015), Xepapadeas (2010), Anita et al. (2013),

Desmet & Rossi-Hansberg (2015), La Torre et al. (2015) and De Frutos & Mart́ın-Herrán (2017)).

All these papers (except De Frutos & Mart́ın-Herrán (2017)) analyze finite or infinite time optimal

control problems extended to infinite dimensional state space and focus on the problem of a social

planner. The social planner allocates resources to maximize the present value of an objective over

the entire spatial domain taking into account the spatio-temporal evolution of the state variable.

To the best of our knowledge there is only one recent study (De Frutos & Mart́ın-Herrán (2017))

that considers agents who behave both dynamically and strategically and that takes into account

both the spatial and temporal dimension of the problem. The present paper tries to contribute

to this very limited literature and analyzes an intertemporal transboundary pollution dynamic

game where the pollution stock diffuses over a continuum of spatial sites and there are strategic

interactions among the decision-makers.

Other contributions which explore the spatial dimension in environmental economics can be

found in Anita et al. (2013, 2015), Brock et al. (2014b), Camacho & Pérez-Barahona (2015),

Desmet & Rossi-Hansberg (2015), La Torre et al. (2015) and Augeraud-Véron et al. (2017).

Brock et al. (2014b) review the applications of optimal control of diffusive transport processes

to environmental and climate problems in economics. Anita et al. (2013) analyze the large-time

behavior of a spatially structured economic growth model coupling physical capital accumulation

and pollution diffusion. Anita et al. (2015) ad to the previous model a possible taxation based

on the amount of produced pollution. The taxation rate depends upon the level of pollution at

each spatial location and time. La Torre et al. (2015) extend the analysis in Anita et al. (2013)

by introducing abatement activities. They introduce a spatial component in the Solow model and

in the Ramsey model and analyze the spatio-temporal dynamics through numerical simulations.

Desmet & Rossi-Hansberg (2015) analyze the geographic impact of climate change through a model

featuring two externalities: technology diffusion and emission from energy used in production.

Camacho & Pérez-Barahona (2015) analyze optimal land use from a social planner’s point of view

who decides the land use activities taking into account that local actions affect the whole space

because pollution flows across locations resulting on both local and global damages.

All these contributions focus on the problem of a social planner who allocates resources and

hence, disregard the strategic interactions among different decision-makers. These strategic inter-

actions are taken into account in the dynamic game with spatial effects analyzed in De Frutos &

Mart́ın-Herrán (2017). This last paper studies dynamic optimization for the pollution control in a

spatial setting with strategic agents and focuses on the equilibrium emission strategies in a multi-
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regional setting. Each economic agent responsible for controlling the emissions at each region takes

into account the spatial transport phenomena across space when making the emission decisions at

this region in order to maximize his profits.

The present paper shares the main general objective with De Frutos & Mart́ın-Herrán (2017):

to investigate the impact of the strategic and spatial dynamic behaviour of the economic agents

responsible for controlling the emissions of pollutant on the design of equilibrium environmental

policies. However, the functional specifications in the present work allow us to analytically treat the

conditions that characterize the Markov-perfect Nash equilibria of the space-discretized differential

game. Conversely, in De Frutos & Mart́ın-Herrán (2017) the space-discretized differential game

is solved using a numerical algorithm adapted from De Frutos & Mart́ın-Herrán (2015) and the

results are illustrated by means of numerical experiments even for the simplest case of two regions.

Furthermore, our present functional specification allows us, first, to introduce the possibility of

investment in clean technology in order to reduce the emission-output ratio and hence, to analyze

how the availability of new technology could affect the optimal emission strategies and the stock

of pollution. Second, the present specification allows us to answer our main research question.

We discuss the differences in optimal policies and value functions between models that consider

the spatial dimension (finite diffusion parameter) and models that do not consider the spatial

dimension. We show that our spatial model is a generalization of the standard dynamic model that

does not take into account the spatial dimension, in the sense that the behavior of the environmental

variables at the equilibrium in the non-spatial setting can be reproduced as a limit case of the spatial

setting; in particular, when the parameter describing how pollution diffuses among regions tends

to infinity and the stocks of pollution in both regions are instantaneously mixed, which is the main

hypothesis made in the non-spatial differential game.

Our paper contributes, on the one hand, to the literature on spatial economics, and more

specifically, to the pollution control in a spatial setting previously described by adding the strategic

behavior of economic agents. On the other hand, to the literature on transboundary pollution

dynamic games (see, for example, Jørgensen et al. (2010) for a survey of this literature) by adding

the spatial aspect.

The main objective of the present paper is to evaluate the effect of the strategic and spatially

dynamic behaviour of the agents responsible for controlling the emissions of pollutant on the design

of equilibrium strategies. Specifically, we aim at comparing the equilibrium strategies, long-run

pollution stocks and long-run discounted net welfare of a transboundary pollution dynamic game

when the spatial transport phenomena is either taken into account or is ignored. This analysis is

carried out both for a non-cooperative and a cooperative formulation of the dynamic game.

The model is originally stated in continuous space and continuous time with two spatial di-

mensions and one temporal dimension. There are J players and each player decides the emission

level and the investment in clean technology in order to maximize the present value of benefits

net of environmental damages due to the concentration of pollutants over his spatial domain. The

emission-output ratio in each region rather than assumed to be constant as in most of the papers

of the literature of environmental dynamic games (Jørgensen et al. (2010)), is assumed to be a

decreasing and strictly convex function of the stock of clean technology of this region. The maxi-

mization problem of each region is subject to the temporal evolution of the stock of clean technology
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which is assumed to be region specific (Jørgensen & Zaccour (2001)) and to the spatio-temporal

evolution of the stock of a pollutant. The spatio-temporal evolution of the stock of a pollutant

is described by a diffusion partial differential equation (PDE) and general boundary conditions

are assumed. This PDE is a generalization of the PDE describing this evolution in one of the

examples presented in Brock et al. (2014b). While their specification is one-dimensional, ours is

two-dimensional allowing to better describe the geographical or spatial aspect of the problem.

It is worth noting that in order to maintain the model simple and to focus on the spatial

dimension of pollution diffusion we do not allow the spatial diffusion of clean technology. This is

the standard assumption in the literature when spatial effects are disregarded. Therefore, in order

to emphasize the spatial aspect of pollution diffusion, we consider a spatial model where agents

behave strategically, the clean technology evolves over time and the pollution stock evolves across

space and over time.

Our original specification is a J-player differential game. Each player aims at maximizing his

profits net of environmental damages by choosing his level of emission and investment in new

technology at each spatial point in his region and at each time. When making his decisions, each

player takes into account the temporal evolution of his stock of clean technology described by a

ordinary differential equation (ODE) and the spatio-temporal evolution of the stock of a pollutant

described by a partial differential equation (PDE).

Along the same lines as in De Frutos & Mart́ın-Herrán (2017) we apply a spatial discretization

approach to simplify the model and characterize the equilibrium outcomes of the transboundary

pollution dynamic game with spatial effects. In the space-discretized model each player decides

the average total emission in his region and his investment in clean technology taking into account

the time evolution of the average pollution in each region and the stock of clean technology. The

new formulation has 2J state variables described by a system of 2J ordinary differential equations

(ODEs). A similar spatial discretization approach has been recently proposed in Graß & Uecker

(2017) in a optimal control framework and applied to the analysis of a shallow lake model with

diffusion. The structure of our space-discretized formulation is similar to that proposed in Mäler

& Zeeuw (1998) to analyze an acid rain differential game.

The space-discretized model is exactly solved, unlike the model in De Frutos & Mart́ın-Herrán

(2017) that has to be numerically solved using a numerical algorithm. From our results we can

conclude that the space-discretized formulation is a good first approach to characterize the equilib-

rium outcomes of the transboundary pollution dynamic game with spatial effects. Our analytical

results show that the space-discretized model is a clear generalization of the model which ignores

the spatial transport phenomena. Specifically, we analytically prove that for a two-player setting

and both for non-cooperative and cooperative frameworks the traditional equilibrium policies de-

rived ignoring the spatial dimension can be reproduced as a limit case of the space-discretized

formulation. The limit case is described by the diffusion pollution parameter tending to infinity,

when the stocks of pollution in both regions are instantaneously mixed, the assumption implicitly

considered in the non-spatial dynamic game.

Our analytical results show how the equilibrium emission policies in a spatial context differ from

those characterized ignoring the spatial dimension. If the regions behave myopically, disregarding

the spatial dimension of the problem, then they are considering that the stocks of pollution are
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instantaneously mixed. The consequence of this hypothesis in the non-cooperative framework is

that the players behave as free-riders. Each region emits at a greater level with respect to the

case without perfect mixing of the pollution stocks, because it recognizes that the effect of its own

emissions is instantaneously shared with the other region. The greater equilibrium emission rates

lead to a greater global pollution stock. On the contrary, the spatially non-myopic players, who

assume that the pollution stocks are mixed at a finite speed, optimally decide lower equilibrium

emission rates, resulting in a lower global pollution stock. Interestingly, this is compatible with

greater long-run welfares. Consequently, in the symmetric case the spatially myopic players under-

estimate their long-run welfares with respect to their welfares when the regions acknowledge the

geographical aspect of the problem.

In the cooperative framework, although the strategic interaction among the players does not

exist, the only decision-maker still makes spatially strategic decisions. If both regions are completely

symmetric, the stocks of pollution are equally valued by the only decision-maker. Therefore, he is

only interested in the average and his optimal emission decisions are identical regardless of whether

he behaves myopically or non-myopically from a spatial point of view. In consequence, the long-run

welfares are the same in both cases. This result is different from the result obtained in the non-

cooperative scenario. On the contrary, if the only factor of asymmetry is the environmental damage

cost, without a perfect mixing of the pollution stocks, the social planner will decide strategically

and prescribe greater emissions in the region with a lower environmental cost. However, with

perfect mixing of the pollution stocks, the optimal emission levels will be identical among regions

regardless of the environmental damage cost parameter.

Overall, the geographical aspects are essential ingredients when determining the equilibrium

values of the emission levels under both cooperative and non-cooperative frameworks.

The paper is organized as follows. In the next section we present the multiregional spatially

distributed control of pollution formulated initially as a continuous-space model, and in a second

step, as a discrete-space model. Section 3 analyzes a particular specification of the model and

presents the characterization of the Markov-perfect Nash equilibrium of the model. Section 4

analytically shows for the 2-player case the main differences between the environmental policies

in the formulation with and without spatial effects. Section 5 revisits this comparison but for a

cooperative setting, where there is a unique decision-maker and the strategic interactions among

the players disappear. Section 6 is devoted to present some concluding remarks. The proofs are

collected in the Appendix.

2. The model

The following table summarizes the notations used along the paper.
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Ω planar domain of interest

J number of players

Ωi region of Ω under control of player i, i = 1, . . . , J

P (x, t) pollution stock at x ∈ Ω and time t > 0

Yi(x, t) production of region i at x ∈ Ω and time t > 0

Ei(x, t) emissions of region i at x ∈ Ω and time t > 0

Ki(t) stock of clean technlogy of region i at time t > 0

αi(Ki) emissions-output ratio of region i

Ii(t) investment in clean technology of region i at time t > 0

b(x) x-dependent diffusion coefficient

pi(t) average of pollution stock in region i at time t > 0

ei(t) average of emissions in region i at time t > 0

p = [p1, . . . , pJ ]T vector of agregated stocks of pollution

e = [e1, . . . , eJ ]T vector of averaged emissions

K = [K1, . . . ,KJ ]T vector of stocks of clean technology

B = [bi,j ]
J
i,j=1 J × J matrix of diffusion coefficients

ρ constant time discount rate

ϕi environmental damage parameter in region i

ci investment cost parameter in region i

βi clean technology parameter in region i

qi aggregated normalized boundary data in region i

di decay rate of pollution stock in region i

ηi ratio of emission to pollution stock per unit of time in region i

µi rate of depreciation of clean technology in region i

D,Γ, Π diagonal matrices containing coefficients di, ηi and µi, i = 1, . . . , J

Table1: Notations

Let us denote by Ω a planar domain (open connected set) which is partitioned in J regions

(open connected sets) Ωj , j = 1, . . . , J , such that

Ω =
J⋃
j=1

Ωj , Ωi ∩ Ωj = ∅, i 6= j,

where Ω is the closure of Ω. The common boundary between regions Ωi and Ωj is given by

∂ij := ∂Ωi ∩ ∂Ωj = Ωi ∩ Ωj , i 6= j.

In each region there is one decision-maker. Player i wishes to choose the rate of pollutant

emissions in region Ωi as well as the investment in clean technology to maximize his own payoff.

Therefore, the differential game considers J players (regions) and each player has pollution emissions

and investments in clean technology as control variables. The J-player differential game is played

non-cooperatively.
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Each region i produces a single consumption good. We denote by Yi(x, t) the production of

the good at time t ≥ 0 at the particular point x ∈ Ω. The instantaneous net social benefits of

production of region i are given by Bi(Yi(x, t)), with function Bi being increasing and strictly

concave. The production of Yi(x, t) generates pollution emissions. Hence, the industrial activities

of the regions create pollution as an undesirable by-product. Let us denote by Ei(x, t), i = 1, . . . , J ,

the emission rate of region i at time t ≥ 0 and x ∈ Ω. It is convenient to think of Ei(x, t) and

Yi(x, t) as densities of emission rate and production which are distributed along the domain Ω. Also

it is convenient to assume that although Ei(x, t) and Yi(x, t) are defined for all x ∈ Ω, Ei(x, t) = 0,

Yi(x, t) = 0 for x 6∈ Ωi. Most of the papers of the literature of environmental dynamic games

(see Jørgensen et al. (2010) for a survey of dynamic games models used to analyze transboundary

pollution problems) assumed a constant emission-output ratio. However, following Ploeg & Zeeuw

(1992) and Jørgensen & Zaccour (2001) we assume that the emission-output ratio is dependent

on the stock of clean technology of region i at time t, denoted by Ki(t). The idea is that the

emission-output ratio can be reduced by investment in clean technology. Hence, the emission rate

Ei(x, t) resulting from production of region i is given by

Ei(x, t) = αi(Ki(t))Yi(x, t). (1)

Function αi is a decreasing and strictly convex function of the stock of clean technology of region i

to account for decreasing returns in the investment activities in clean technology. Ploeg & Zeeuw

(1992) assume that the stock of clean technology is public knowledge, while Jørgensen & Zaccour

(2001) consider the case where the stock of clean technology is region specific. We follow this last

hypothesis.

As a first step in the analysis and in order to maintain the model simple and to focus on the

spatial dimension of pollution diffusion, we do not allow the spatial diffusion of clean technology.

With this hypothesis we are assuming that the technology in each region Ωi is not transferred to

region Ωj , with j 6= i. Furthermore, the clean technology Ki is independent of the particular point

x ∈ Ωi. That is, clean technology is homogeneous within each region Ωi, although it is different

between regions. The clean technology is region specific. Therefore, in order to emphasize the

spatial aspect of pollution diffusion, we consider a spatial model where agents behave strategically,

the clean technology evolves over time and the pollution stock evolves across space and over time.

The dynamics of the stocks of clean technology over time is described by the following differential

equations:

K̇i(t) = f(Ii(t),Ki(t)), Ki(0) = Ki0, (2)

where a dot over a variable denotes its derivative with respect to time, Ii(t) is the investment in

clean technology in region i and Ki0 is the initial stock of clean technology in this region. The

cost associated with investment in clean technology is denoted by Ci(Ii(t)), where function Ci is

assumed to be increasing and strictly convex.

The emissions accumulate in a stock of pollution denoted by P (x, t) and defined for all x ∈ Ω.

In what follows we denote by ∇u the spatial gradient of a scalar function u : Ω→ R, and by ∇·u =
∂u1
∂x + ∂u2

∂y the divergence of a vectorial function u = [u1, u2] : Ω → R2. The following parabolic
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partial differential equation describes the spatio-temporal dynamics of the stock of pollution:

∂P

∂t
= ∇ · (b∇P )− dP +

J∑
j=1

Fj(Ej(x, t))1Ωj , x ∈ Ω,

P (x, 0) = P 0(x), x ∈ Ω,

a(x)P (x, t) + b(x)∇P T (x, t)n = a(x)Pb(x, t), x ∈ ∂Ω.

(3)

The velocity at which the stock of pollution is diffused away in a particular location x is measured

by b = b(x), a local diffusion coefficient which is assumed to be a smooth function satisfying

bm ≤ b(x) ≤ bM , for all x ∈ Ω, where 0 < bm ≤ bM are two given constants. The natural

decay of the pollutant is represented by the term dP , with d = d(x, t) ≥ 0. In the source term∑J
j=1 Fj(Ej(x, t))1Ωj , Fj , j = 1, . . . , J is a family of non decreasing smooth functions, with 1Ωj

denoting the characteristic function of set Ωj , that is, the function defined to be identically one

on Ωj , and zero elsewhere. With this specification, at a given time t, each region i emits at rate

Ei(x, t) in each point x ∈ Ωi contributing to enlarge locally the stock of pollution P (x, t). However,

the diffusion process modeled by the state equation (3) transfers part of the stock of pollution to

the whole region Ω. In consequence, all the regions Ωj , j = 1, . . . , J , are affected by the emissions

Ei(x, t) of a particular region Ωi. The diffusive character of the state equation implies that the

emissions in region Ωi instantaneously affect each one of the regions Ωj , i 6= j. How much region

j is affected by the emissions of region i depends on the time elapsed from the instant when the

emissions take place and the distance between regions i and j.

The initial distribution of the stock of pollution along region Ω is described in the second

equation in (3) and the boundary condition is stated in the third equation of (3). The boundary

condition states that the flux of pollution throughout ∂Ω is proportional to the difference Pb(x)−
P (x), where Pb(x) is a given function representing the concentration of pollution in the exterior of

Ω and n denotes the normal vector exterior to Ω. Function a(x) is a non-negative smooth function

that appears after applying Newton’s law of diffusion on the boundary of Ω.

The literature has used extensively diffusion models similar to equation (3) to describe math-

ematically the contaminant transport in different applications such as atmospheric dispersion of

pollutants, transport of pollutants in aquifers, groundwater pollution, or porous soil (Stockie 2011).

Player i, i = 1, . . . , J aims at maximizing his payoff

Ji(E1, . . . , EJ , Ii, P0,Ki0) =

∫ +∞

0

∫
Ωi

e−ρtGi(Ei, Ii, P,Ki) dxdt, (4)

taking into account the dynamics of the stocks of clean technology and the pollution stock given

in equations (2) and (3), respectively. In the expression above ρ > 0 denotes the time-discount

rate. This payoff can be understood as an average over Ωi of a density of revenue represented by

Gi(Ei, Ii, P,Ki). We remark that the emissions in region j, j 6= i, enter into the objective functional

of player i via the state equation (3).

The standard assumption in dynamic pollution games (see, for example, Jørgensen et al. (2010)

for a survey of this literature) establishes that the instantaneous welfare of each region is given by

a benefit from consumption (Bi(Yi(x, t))) minus the cost of the investment in clean technology
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(Ci(Ii(t))) and the damage caused by the stock of pollution Di(P (x, t)). The smooth function Di

is commonly assumed in the literature to be convex in its argument. Therefore, the net benefits

from consumption have the form

(Bi(Yi)− Ci(Ii)−Di(P )) 1Ωi . (5)

Taking into account the emission-production trade-off function in (1), the instantaneous benefits

of region i in (5) can be rewritten in terms of the emission rates and its own stock of clean technology:

Gi(Ei, Ii, P,Ki) =
(
Bi(α(Ki)

−1Ei)− Ci(Ii)−Di(P )
)
1Ωi . (6)

We restrict the analysis to stationary Markov-perfect Nash equilibria because the strategies

supporting this equilibria do not require precommitment to a course of action over time and have

been assumed to be a good description of realistic behaviour (see, for example, Haurie et al. (2012)

and Jørgensen et al. (2010)). From now on we assume that the dynamic game defined by (2)-(6)

has at least one stationary Markov-perfect Nash equilibrium (Başar & Olsder (1999)). From (2)

and (3) it can be easily deduced that the optimal strategies of each region will be independent of

the stock of clean technology of the other regions. Therefore, the emission and investment decisions

of an agent at any point in time and space only depend on the state of the pollution stock and his

own stock of clean technology at that moment and point in space.

In order to answer our main research questions and focus on the comparison of the equilibrium

strategies when the spatial aspects are either taking into account or disregarded, we introduce

aggregated variables for the environmental variables and reformulate the model. The discrete-

space model derived using these aggregate variables can be obtained along the same lines as in De

Frutos & Mart́ın-Herrán (2017). The discrete-space model can also be seen as a space discretization

of the continuous-space model. It is worth noting that the discrete-space model is truly dynamic,

incorporates spatial aspects and the decision makers behave strategically.

The aggregated stock of pollution and the averaged emissions in each region i are defined by

pi(t) =
1

mi

∫
Ωi

P (x, t) dx, ei(t) =
1

mi

∫
Ωi

Ei(x, t) dx, i = 1, . . . , J, (7)

where mi represents the area of region Ωi.

Let us define

Ĝi(ei, Ii, pi,Ki) = miGi(ei, Ii, pi,Ki),

which is an approximation to
∫

Ωi
Gi(Ei, Ii, P,Ki) dx.

The objective of Player i in the discrete-space model is to maximize the space averaged payoff

Ĵi(e1, . . . , eJ , Ii,p
0,Ki0) =

∫ ∞
0

e−ρtĜi(ei, Ii, pi,Ki) dt, (8)

taking into account the dynamics of his own stock of clean technology given by (2) and the dynamics

of the aggregated stock of pollution in each region described by the following system of ordinary
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differential equations:

miṗi =
J∑
j=1
j 6=i

bij(pj − pi) + bi0(pi0 − pi)−miδipi +miFi(ei), i = 1, . . . , J. (9)

System (9) is supplemented with initial conditions given by

pi(0) =
1

mi

∫
Ωi

P0(x) dx := p0
i , i = 1, . . . , J,

where P0(x) is the initial data in (3). From now on we use the notation p0 = [p0
1, . . . , p

0
J ]T .

Coefficients bij measure how fast the pollution spreads across boundary ∂ij between regions Ωi

and Ωj in absence of external transport phenomena. Of course, it is understood that bij = 0 if

regions Ωi and Ωj have no common boundary and bij 6= 0 in the opposite case when ∂ij 6= ∅, that

is, regions Ωi and Ωj share a common boundary. It is implicitly assumed that bij = bji for all

i, j. Region corresponding to index i = 0 represents the exterior of Ω. The stock of pollution pi0

can be obtained by aggregation on ∂Ωi ∩ ∂Ω of the boundary data Pb in formula (3), so that it

is a known function of time in (9). The first two terms in the right hand side of the differential

equation in (9) collect the diffusion effect that tends to equilibrate the pollution between regions:

the pollution entering Ωi is proportional to the difference between the stock of pollution in the

adjacent regions, the pollution moves from regions with high levels of concentration to regions with

low levels of concentration (Flick’s law of diffusion). The third term is pollution degradability or

natural degradation of the pollution stock, where δi = 1/mi

∫
Ωi
d(x)dx represents the averaged

value of the natural decay of the pollutant. Finally, the fourth term is the flow of emissions where

Fi(ei) represents the contribution to the stock of pollution in Ωi, pi, by the averaged emissions in

region i.

The discrete-space model described by (2), (8) and (9) is a J-player infinite horizon differential

game with two decision variables for each player (the averaged emission rates in his region and

the investment in his own clean technology) and 2J state variables (the stock of clean technology

and the averaged stock of pollution in each region) with time evolution described by the system of

ODEs in (2) and (9).

3. A particular specification of the discrete-space model

We adopt the simplest version of the economics and environment model that still captures the

main ingredients of the more general model described in the previous section. First, the strategic

behavior of the players, emissions by one player affects the environment of all; and second, the

spatial aspect that allows us to analyze how our results compare to those obtained using standard

dynamic game models which disregard the spatial dimension of the problem.

From now on we use the special functional forms proposed in Jørgensen & Zaccour (2001). The

functional forms for instantaneous benefits, costs of investment in clean technology, emission-output
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ratio and the damage environmental cost are assumed as follows:

Bi(Yi) = log(Yi), Ci(Ii) =
1

2
ciI

2
i , αi(Ki) = σie

−βiKi , Di(P ) = ϕiP, i = 1, . . . , J,

where ci, σi, βi and ϕi are positive constants.3

The clean technology stocks evolve in time according to the standard dynamics:

K̇i(t) = Ii(t)− µiKi(t), Ki(0) = Ki0, i = 1, . . . , J, (10)

where µi is the rate of depreciation of technology which as usual is assumed to be constant and Ki0

is a given initial stock of clean technology for region i.

The source function in (9) is given by:

Fi(ei) = ηiei, i = 1, . . . , J.

Under these hypotheses the J-player differential game played over an infinite-time horizon

defined by (2), (8) and (9) particularizes as follows: Each region i chooses its control variables, the

average emission rate ei and the investment in clean technology Ii in order to maximize

J̃i(ei, Ii,p
0,Ki0) =

∫ ∞
0

e−ρt
(
log(ei) + βiKi −

1

2
ciI

2
i − ϕipi

)
dt, (11)

subject to the dynamics of its own stock of clean technology given by (10) and of the aggregated

stock of pollution in each region defined by

ṗi =

J∑
j=1
j 6=i

bij(pj − pi)− di(pi − qi) + ηiei, pi(0) = p0
i , i = 1, . . . , J, (12)

where di = δi + bi0 and qi = bi0pi0/di. bi0 represents how fast the pollution stock in Ωi spreads

out of Ωi to the exterior of Ω. Parameter di incorporates the effect in Ωi of the natural decay rate

of pollution (via δi) as well as the effect of the transfer of the pollution stock to the exterior of Ω

(via bi0). From now on we assume that qi, i = 1 . . . , J , are independent of time and, for the ease

of notation, we will denote by bij the diffusion coefficient once it has been normalized by mi, the

total area of region Ωi.

Let us note that a constant term − log(σi) should appear in the objective (11). Because this

term does not affect the optimal policies it has been omitted for simplicity.

Next we will use vectorial notation. Then, we introduce vectors p = [p1, . . . , pJ ]T , K =

[K1, . . . ,KJ ]T , e = [e1, . . . , eJ ]T , q = [q1, . . . , qJ ]T and diagonal matrices Π = diag(η1, . . . , ηJ),

Γ = diag(µ1, . . . , µJ), D = diag(d1, . . . , dJ), and B is the symmetric matrix B =
[
bij
]J
i,j=1

, with

3The model can be easily generalized to allow each player to invest in different clean technologies. We opt to
present here the simplest version that allows us to answer our research questions.
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bii = −
∑

j 6=i bij , so that the dynamics (10)-(12) can be written in the condensed form

K̇(t) = I(t)− ΓK(t), K(0) = K0, (13)

ṗ(t) = Bp(t)−D(p(t)− q) + Πe(t), p(0) = p0. (14)

With the particular functional forms considered here, the dynamic game belongs to the class of

state separable or linear-state differential games. For this class of games it is well-known that the

Hamilton-Jacobi-Bellman equations that characterize the non-cooperative feedback Nash equilib-

rium are satisfied for value functions linear in the state variables, in our case Ki, pi, pj for player i

(Dockner et al. (2000)). It is well-known that the feedback Nash equilibria in linear-state differen-

tial games can be analytically characterized although they are degenerated in the sense that they

are constant over time. However, we select this simplest specification in order to clearly identify

the impact of introducing spatial diffusion effects (or geographical effects) in equilibrium strategies.

Proposition 1. The equilibrium emission and investment rates of the differential game defined by

(10), (11) and (12) are constant and given by:

Ii =
Mi,i

ci
, ei = − 1

ηiRi,i
, (15)

where

Mi,i =
βi

ρ+ µi
and Ri,i =

1

ϕi
RT
i (B− ρId−D)Ri < 0, i = 1, . . . , J, (16)

with Ri = [Ri,1, . . . , Ri,J ]T , i = 1, . . . , J the solution of the following system of linear equations

(
B− ρId−D

)
Ri = ϕiui, i = 1, . . . , J, (17)

where Id denotes the J × J identity matrix and ui is the i-th vector of the usual base of RJ .

The discounted net welfare of player i is given by:

Vi(p,K) = MT
i K + Ri

Tp +Xi, (18)

with M i = [Mi,1, . . . ,Mi,J ]T , Mij = 0, j 6= i,Mii defined in (16) and

Xi =
1

ρ

(
log(ei)−

1

2
ciI

2
i +Mi,iIi + RT

i

(
Πe +Dq

))
, (19)

where ei and Ii, i = 1, . . . , J are the values given in (15).

The stationary equilibrium of the dynamics is globally asymptotically stable.

3.1. Numerical examples

We present now a couple of numerical examples that help us understand the spatial problem of

transboundary pollution. These two examples have been chosen in order to illustrate the differences

with respect to the equilibrium environmental policies prescribed by the standard dynamic game

models which disregard the spatial aspect.
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The parameter values used in the numerical examples are the following:

ηi = 1, ϕi = 1, d = 0.5, ρ = 0.01, i = 1, . . . , J.

The entries bij of matrix B are chosen as bij = 1 if regions Ωi and Ωj are neighbors (∂ij 6= ∅).
Note that with this choice of the parameter values we are highlighting the fact that the players

are completely symmetrical in every respect, except in their geographical positions described by

the entries bij of matrix B. Recall that bij indicates how fast pollution spreads across the common

boundary between Ωi and Ωj .

It is worth noting that for this completely symmetric framework the equilibrium emission rates

prescribed by the non-spatial dynamic game would be identical for all the regions.
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Figure 1: Four regions. Ωi, i = 1, 2, 3, 4, isolated. Emissions (left); Steady-state pollution level (right)

Both examples consider four regions (J = 4), each region i controlling the averaged emissions

over region Ωi. As Figures 1 and 2 show in this spatial configuration region 1 shares boundary

with region 2 and the exterior of the whole region under consideration, Ω; region 2 shares boundary

with the other three regions; and regions 3 and 4 are completely symmetric with respect to their

geographical position, they share a common boundary and a boundary with region 2 as well as

with the exterior of the whole region Ω. It is worth noting that this example is genuinely two

dimensional in the sense that the particular spatial configuration showed in this example cannot

be reproduced in a one-dimensional setting.

This example can represent a groundwater reservoir or a lake shared by four neighbouring

regions. In the case of the groundwater reservoir pesticides or other contaminants (for example,

phosphore) as a by-product of the agricultural activities in these regions pollute the reservoir. In

the case of the lake, waste-water as a by-product of economic activities located in the regions

pollutes the lake.

In the first example these four regions Ω1, . . . ,Ω4 are isolated from outside, in the sense that

there is no flux of pollution neither entering nor exiting the geographical space formed by the

four regions (bi0 = 0, i = 1, . . . , 4). The groundwater reservoir or the lake is isolated from other

sources or sinks of pollution. Figure 1 shows the equilibrium emission rates (left) and steady-state

pollution level (right) for this example. As this figure shows region 3 and 4 emit at an identical

rate, and hence, their steady-state pollution levels are identical too, because there is no difference
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between these two regions from a spatial (geographical) point of view. Figure 1 clearly illustrates

the geographical advantage of region 2. Because this region has three neighbours to which the

pollution can flow, along the equilibrium strategy it can emit at a rate clearly greater than that

of regions 3 and 4 (Figure 1 left), but the steady-state level of the stock of pollution is similar for

all these three regions (Figure 1 right). The region emitting at the lowest emission rate (region 1)

attains the lowest stock of pollution in the long run.
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Figure 2: Four regions. Ωi, i = 1, 2, 3, isolated, Ω4 has a clean neighbour. Emissions (left); Steady-state pollution
level (right)

The second example is quite similar to the previous one, but presents a main difference. Unlike

the previous example regions 1, 2 and 3 are isolated from outside (b10 = 0), while region 4 shares a

boundary with the exterior of the whole region Ω which is assumed to have a lower concentration

of pollutants than region 4. This external region acts as a sink of pollution. In particular, as an

extreme case, here we assume that the pollution stock in this additional region is zero (q40 = 0).

With this geographical configuration there is a flux of pollution from region 4 to the pollution sink,

but not in the opposite direction. Using the example of the aquifer, this external region could be a

part of the aquifer that is not affected by human activities and shares boundary with region 4. The

size of the clean part of the aquifer is large enough to absorb pollutants with negligible increment

of the concentration of pollutants.

As Figure 2 shows the region emitting at the highest level (region 4) presents the lowest stock

of pollution in the long run. This in principle counterintuitive behavior comes as a result that

there is a flow of pollution from region 4 to outside Ω while no flow is entering region 4 from

outside Ω. Because the stock of pollution is assumed to be zero outside Ω, there is an important

flow of pollution exiting region 4 towards the exterior of the whole region Ω, allowing region 4

considerably increase its emissions in comparison with those of the other regions that because of

their geographical positions only can ”exchange” pollution concentration with the other regions in

Ω.

Figure 2 also shows that the regions closest to region 4 (regions 2 and 3) also benefit from the

geographical position of the latter and their emission rates are greater than those of region 1 more

distant from region 4. However, the steady-state values of the stock of pollution in regions 1, 2

and 3 are quite similar, despite the fact that region 1 emits at a much softer level than the other

regions. The sole reason for this behaviour is that region 1 only can exchange pollution with region
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2, while the other regions have two or three neighbours which can be the recipients of the flow of

pollution.

It is worth noting that the somehow counterintuitive result “the higher the emissions, the lower

the pollution stock” is due exclusively to the inclusion of the spatial aspect in the model at hand,

stressing the importance of taking into account this aspect. This result cannot be reproduced in

a transboundary pollution dynamic game with symmetric players when the spatial transport of

pollution is neglected.

These two numerical illustrations clearly show the impact of the strategic and spatially dynamic

behaviour of the agents on the design of the environmental policies. Although the linear-state

structure of the differential game prescribes equilibrium strategies which are constant over time,

these two examples illustrate that the equilibrium strategies are very different depending on the

geographical position of the players.

4. Spatial vs. non-spatial model in a non-cooperative framework

This section compares the equilibrium environmental policies of the spatial transboundary pol-

lution problem stated in the previous sections which takes into account the spatial context with

those equilibrium emission rates obtained as the optimal solution of a dynamic game that ignores

the spatial transport phenomena. In order to simplify as much as possible this comparison we

restrict to the two-player case. Although this assumption could be seen to be restrictive it allows

us to easily characterize the equilibrium emission and investment rates of both differential games

and present clear-cut results from the comparison.

Next proposition completely characterizes the feedback Nash equilibrium and the discounted

net welfare of each player in the case of a 2-player differential game.

Proposition 2. The equilibrium emission and investment rates of the 2-player differential game

defined by (10), (11) and (12) are constant and given by:

Ii =
βi

ci(µi + ρ)
, ei =

(dj + ρ)b+ (b+ dj + ρ)(di + ρ)

ηi(b+ dj + ρ)ϕi
, i = 1, 2, i 6= j, (20)

where b = bij = bji for i 6= j.

The discounted net welfare of player i is given by:

Vi(Ki, pi, pj) = Mi,iKi +Ri,ipi +Ri,jpj +Xi, (21)
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where

Mi,i =
βi

µi + ρ
, Ri,i = − ϕi(b+ dj + ρ)

(di + ρ)(b+ dj + ρ) + b(dj + ρ)
,

Ri,j = − bϕi
(di+ρ)(b+dj+ρ)+b(dj+ρ)

, Xi = − 1

2ciρ(b+di+ρ)ϕj
(Xi1+Xi2) ,

Xi1 =
2ci

(di+ρ)(b+dj+ρ)+b(dj+ρ)
[(b+di+ρ)(b+dj+ρ)(di+ρ+qidiϕi)ϕj

+ b [b(di+ρ)ϕi+(b+di+ρ) ((ρ+dj)(ϕi+ϕj)+djqiϕiϕj)]] ,

Xi2 = −(b+ di + ρ)ϕj

(
β2
i

(µi + ρ)2
+ 2ci log

(
(di + ρ)(b+ dj + ρ) + b(dj + ρ)

ηi(b+ dj + ρ)ϕi

))
,

for i, j = 1, 2, i 6= j.

The steady-state levels of clean technology and pollution stocks are given by:

KSS
i =

βi
ciµi(µi + ρ)

,

pSSi =
NumpSSi

(didj + b(di + dj))(b+ di + ρ)(b+ dj + ρ)ϕiϕj
,

NumpSSi = (b+ dj)(b+ di + ρ)(b(dj + ρ) + (b+ dj + ρ)(di + ρ+ qidiϕi))ϕj

+ b(b+ dj + ρ)ϕi(b(di + ρ) + (b+ di + ρ)(dj + ρ+ qjdjϕj)),

for i, j = 1, 2, i 6= j, where the superscript SS stands for steady-state levels and qk is the aggregation

of the boundary data defined in (12). The steady-state equilibrium is globally asymptotically stable.

As expected the discounted net welfare of each region depends positively on its own stock of

clean technology and negatively on both stocks of pollution. As a result of the linearity of the

value function, the equilibrium emission and investment rates are constant with respect to the

state variables and hence they are constant over time. It is worth noting that b and qi, two of the

most significant parameters of the spatial diffusion model, affect the equilibrium emission rate and

the steady-state levels of the stock of pollution. Next corollary collects the results of the sensitivity

analysis with respect to these two main parameters.

Corollary 1. 1. The equilibrium emission rate, ei, increases as the diffusion parameter b in-

creases.

2. The steady-state levels of the stocks of pollution, pSSi i = 1, 2, increase as parameters qi and

qj increase.

3. In a completely symmetric setting, the steady-state levels of the stocks of pollution pSSi i = 1, 2,

increase as the diffusion parameter b increases.

The first item establishes that the higher b, the faster the stock of pollution diffuses from one

region to another, and as a result, the region takes advantage of the opportunity to emit at a higher

rate. A greater qk indicates a greater stock of pollution in the neighbourhood of the region under

consideration, and by the Fick’s law this region would be the recipient of pollution coming from
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outside until the stock of pollution inside and outside the region stabilizes. As a consequence, the

result in the second item follows. The third item shows that for the completely symmetric scenario,

di = dj = d, qi = qj = q, ϕi = ϕj = ϕ the effect of the diffusion parameter b on the steady-state of

the stock of pollution is clearly positive.

However, in general the effect of the diffusion parameter b on the steady-state of the stock of

pollution is unclear as the following corollary shows.

Corollary 2. Under assumptions di = dj = d, qi = qj = q, the following results apply:

1. If ϕi ≥ ϕj, then the steady-state level of the stock of pollution in region i, pSSi , increases as

the diffusion parameter b increases.

2. If ϕi < ϕj, then

(a) for large b, pSSi , increases with b;

(b) for small b, pSSi , decreases with b if and only if ϕi <
ρ

d+ ρ
ϕj.

From Corollary 1 any increase in the diffusion parameter b leads to an increase of the equilibrium

emission rates in both regions. One should expect that these greater emissions rates would always

imply a greater steady-state level of the pollution stock in both regions. Corollary 2 shows that this

is not always the case. Although the total average long-run pollution stock (pSSi + pSSj )/2 always

increases with b, it can be the case that for small b, pSSi decreases with b if ϕi <
ρ
d+ρϕj . Under

this last condition, and for fixed values of the other parameters, the emission rate in region j, ej ,

would be small compared to ei. Hence, the global effect on pSSi of a greater b due to the diffusion

process could be a lower pSSi .

In order to evaluate the impact of the introduction of the spatial aspect in the economic-

environmental model we briefly describe the differential game proposed by Jørgensen & Zaccour

(2001) where the spatial dimension is ignored. For brevity we refer to this model as the non-spatial

model and we add a tilde on the variables and parameters linked to the environmental part of the

model to distinguish them from those used in the spatial model. We have used identical notation

in both models for the variables and parameters related to the investment in clean technology and

to the stock of clean technology because we have not included any spatial aspect in this part of the

model.

Region i in the non-spatial model chooses its control variables, the emission and investment

rates, ẽi and Ii in order to maximize

J̃i(ẽi, Ii, P̃0,Ki0) =

∫ ∞
0

e−ρt
(

log(ẽi) + βiKi −
1

2
ciI

2
i − ϕ̃iP̃

)
dt, (22)

subject to the dynamics of its own stock of clean technology given by (10) and of the stock of

pollution which evolves over time according to:

˙̃
P = η̃1ẽ1 + η̃2ẽ2 − d̃P̃ , P̃ (0) = P̃0. (23)

For comparison purposes next proposition characterizes the feedback Nash equilibrium and the

discounted net welfare of each player of the non-spatial 2-player differential game.
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Proposition 3. The equilibrium emission and investment rates of the 2-player differential game

defined by (10), (22) and (23) are constant and given by:

Ii =
βi

ci(µi + ρ)
, ẽi =

ρ+ d̃

η̃iϕ̃i
, i = 1, 2, i 6= j.

The discounted net welfare of player i is given by:

Ṽi(Ki, P̃ ) = MiKi + R̃iP̃ + X̃i, (24)

where

Mi =
βi

µi + ρ
, R̃i = − ϕ̃i

ρ+ d̃
,

X̃i =
1

2ρ

(
β2
i

ci(µi + ρ)2
− 2(ϕ̃i + ϕ̃j)

ϕ̃j
+ 2 log

(
ρ+ d̃

η̃iϕ̃i

))
,

for i = 1, 2, i 6= j.

The steady-state levels of clean technology and pollution stocks are given by:

KSS
i =

βi
ciµi(µi + ρ)

, P̃SS =
(ρ+ d̃)(ϕ̃i + ϕ̃j)

d̃ϕ̃iϕ̃j
,

for i = 1, 2, i 6= j. The steady-state equilibrium is globally asymptotically stable.

From the comparison of both models it is clear that the equilibrium investment rates and the

steady-state levels of the stock of clean technology are identical. This result is completely expected

because the spatial differential game has only incorporated the spatial aspect in the pollution

dimension and has disregarded this aspect in the stock of clean technology. Hence, both models are

identical as far as the equilibrium investment rates and the steady-state levels of the stock of clean

technology are concerned. Therefore, from now on we focus on the comparison of the environmental

variables, equilibrium emissions rates and steady-state levels of the stocks of pollution, as well as

the discounted net welfare.

Next proposition shows one of the main results of our study because it establishes that our

spatial model is a generalization of the non-spatial model in the sense that the behaviour of the

environmental variables at the equilibrium in the non-spatial setting can be reproduced as a limit

case of the spatial setting. In particular, this link is obtained when the parameter describing how

pollution diffuses among regions increases unboundedly. Specifically, when the diffusion parameter

tends to infinity, the mixing of the stocks of pollution in both regions is instantaneous, which is the

main hypothesis in the non-spatial differential game.

In order to have comparable models from now on we assume that the following hypotheses are

satisfied:

Hypotheses (H). Parameters ρ, µi, βi, ci, i = 1, 2 are identical in the differential games described
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by (10), (11) and (12), and (10), (22) and (23), respectively, and

η1 = η2 = 2η̃1 = 2η̃2; d1 = d2 = d̃; b10 = b20 = 0; ϕi = ϕ̃i, i = 1, 2.

We remark that hypotheses H allow the two models to be comparable. More explicitly the

hypothesis d1 = d2 = d̃ simply means that the rate of natural decay of the pollution stock is

identical in both regions Ω1 and Ω2 and corresponds to the rate of decay of the only region in

the model defined by (10), (22) and (23). Furthermore, in the non-spatial model the region under

consideration is supposed by definition to be isolated from the exterior. This is exactly the meaning

of hypothesis b10 = b20 = 0 (see (9)). It is more interesting the meaning of η1 = η2 = 2η̃1 = 2η̃2.

First, we are in both cases in a symmetric scenario (η1 = η2 and η̃1 = η̃2); and, second, in the

non-spatial dynamics (23) the emissions of both players instantaneously affect the whole domain Ω

under consideration. Conversely, in the spatial dynamics (12) the emissions of player i only affect

region Ωi. The size of Ωi is supposed, if the rest of parameters are identical for both players, to be

half the total area of domain Ω. So, the effect of emissions on the rate of change of the pollution

stock in domain Ω are comparable for η1 = η2 = 2η̃1 = 2η̃2.

Proposition 4. Under hypotheses H, as the diffusion parameter b tends to infinity, then

i) the equilibrium emission rate ei converges to ẽi;

ii) the average of the steady-state levels of the pollution stocks
pSSi + pSSj

2
converges to P̃SS.

Furthermore, if both regions are completely symmetric, then pSSi = pSSj = P̃SS.

The results in Proposition 4 show that even for this simple model where equilibrium strategies

are constant, our formulation of the spatial model is a generalization of the non-spatial version of

the model capturing the main ingredients of the spatial dynamics. The gaps above tend to zero as

the diffusion parameter b goes to infinity, which represents an instantaneous mix of the pollution

stocks. However, the largest gaps arise when the diffusion parameter is zero, which can be viewed

as the extreme case where there is not diffusion of pollution from one region to another.

In view of these results and in order to evaluate the effect of the diffusion parameter on the

equilibrium emissions rates and steady-state levels of the stocks of pollution, next proposition

compares the environmental variables under hypotheses H.

Proposition 5. Under hypotheses H, for any finite value of the diffusion parameter b:

i) the equilibrium emission rate ei satisfies:

ẽi
2
≤ ei ≤ ẽi.

ii) the average of the steady-state levels of the pollution stock satisfies

P̃SS

2
≤
pSSi + pSSj

2
≤ P̃SS ;

When b = 0, there is not diffusion of pollution from one region to another. All the accumulated

emissions of regions i remain in Ωi, and there is no flux of pollution coming from outside. Region
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Ωi is isolated from Ωj . On the contrary, as the diffusion parameter b goes to infinity, there is a

perfect mixing of the pollution stocks. In the completely symmetric scenario both regions have

identical size, which is half of the total area of domain Ω. Therefore, under perfect mixing half of

the emission of region i instantaneously flows to region j. As a consequence, region i doubles the

emission rate with respect to the case b = 0.

When b is positive and finite, the optimal amount of emissions in Ωi depends on how fast part

of the stock of pollution in region i is transferred to region j via the diffusion process. The greater

parameter b, the greater the speed of diffusion. Note that the units of b are the inverse of the units

of time.

Finally, we assess the impact of the diffusion parameter on the discounted net welfare. Next

proposition compares the discounted net welfare for both spatial and non-spatial dynamic games.

Proposition 6. Under hypotheses H, then,

i) As the diffusion parameter b tends to infinity, the long-run discounted net welfare of player

i in the spatial model, Vi(K
SS
i , pSSi , pSSj ), converges to the long-run discounted net welfare of

player i in the non-spatial model, Ṽi(K
SS
i , P̃SS).

ii) For the completely symmetric scenario ϕi = ϕj = ϕ, and for any finite value of the diffusion

parameter b, Vi(K
SS
i , pSSi , pSSj ), is always greater than Ṽi(K

SS
i , P̃SS).

The second item in Proposition 6 shows that for the completely symmetric scenario, the effect

of taking into account the spatial aspect of the problem on the long-run discounted net welfare is

clearly positive.

However, in general this effect is unclear as the following corollary shows.

Corollary 3. 1. For any fixed value of ϕj, if the environmental damage cost parameter of player

i, ϕi, is large enough, then Vi(K
SS
i , pSSi , pSSj ) is greater than Ṽi(K

SS
i , P̃SS).

2. For any fixed value of ϕi, if the environmental damage cost parameter of player j, ϕj and d

are large enough, then Vi(K
SS
i , pSSi , pSSj ) is lower than Ṽi(K

SS
i , P̃SS).

If the regions behave myopically, disregarding the spatial dimension of the problem, then they

are considering that the diffusion parameter b, that measures the speed at which pollution stocks are

mixed, is infinity. In other words, the regions are assuming that there is an instantaneous mixing of

the pollution stocks. This is the standard hypothesis in the literature which does not consider the

spatial dimension. From Proposition 4 when the regions do not take into account their geographical

positions when deciding their optimal emission levels, both regions will be emitting ẽi, above their

optimal equilibrium level ei, (ei < ẽi). These spatially myopic optimal levels of emissions lead to a

long-run pollution stock P̃SS greater than the average of both steady-state pollution stocks when

the regions acknowledge the spatial aspect when taking their optimal strategic decisions
pSS
i +pSS

j

2 .

The myopic optimal levels of emissions can be explained through what could be considered a free-

riding effect. In the infinite diffusion case (spatially myopic case, b converging to infinity), there

is perfect mixing of the pollution stocks, and hence, this implies that each region can emit at a

greater level because it knows that the effect of its own emissions is instantaneously shared with

the other region.
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On the contrary, as shown in Proposition 5 in the finite diffusion case (spatially non-myopic

case, b finite), without perfect mixing of the pollution stocks, each region takes into account that it

is affected by its own emissions for a longer period of time; in the sense that although asymptotically

the pollution stocks in both regions tend to equilibrate, in every finite time interval the accumulated

pollution due to its own emissions is greater than in the infinite diffusion case. The greater the

diffusion parameter, the shorter the time interval from which the effect of diffusion is negligible.

If the regions behave myopically with respect to their spatial position there are two opposite

forces affecting their long-run welfares. On the one hand, a greater emission level rises up the

revenues related to production described by log(ẽi). On the other hand, a greater long-run pollution

stock P̃SS pushes up the environmental damages represented by ϕ̃P̃SS . Hence, at a first glance,

the global effect on long-run welfares is unclear. However, if both regions are completely symmetric

the second effect is stronger and more than overcompensates the first effect. Consequently, the

symmetric regions are underestimating their long-run welfares with respect to their welfares when

the regions acknowledge the geographical aspect of the problem (Proposition 6 item ii)). For

asymmetric regions and depending on the value of the environmental damage cost parameter each

region could over or under-estimate their long-run welfares (Corollary 3).

The managerial implications are that the geographical/spatial aspects are essential ingredients

when determining the equilibrium values of the emission levels. The spatially non-myopic behav-

ior prescribes lower equilibrium emission rates, and consequently, a lower global pollution stock.

Interestingly, this is compatible with greater welfares in the long run.

5. Spatial vs. non-spatial model in a cooperative framework

In order to assess the impact of the spatial aspects on the definition of the emissions and

investment policies in a cooperative setting, in this section we focus on the comparison of the

cooperative strategies of the transboundary pollution dynamic games with and without spatial

effects. For the ease of presentation and as in the previous section we restrict ourselves to the two-

player case. However, the main conclusions derived along this section can be easily extended to the

more general case where the number of players is greater than 2. Next proposition characterizes the

cooperative solution obtained solving an optimal control problem where the unique decision-maker

chooses both regions’ emission policies as well as the investment in the stock of clean technology in

order to maximize the joint welfare of both regions

Jc(e1, e2, I1, I2,p
0,K10,K20) =

∫ ∞
0

2∑
i=1

e−ρt
(

log(ei)+βiKi−
1

2
ciI

2
i −ϕipi

)
dt, (25)

subject to the dynamics of both stocks of clean technology given by (10) and of the aggregated

stock of pollution in each region defined by (12).

Proposition 7. The cooperative emission and investment rates of the optimal control problem

defined by (10), (12) and (25) are constant and given by:

Ici =
βi

ci(µi + ρ)
, eci =

(dj + ρ)b+ (b+ dj + ρ)(di + ρ)

ηi((b+ dj + ρ)ϕi + bϕj)
, i = 1, 2, i 6= j,
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where b = bij = bji for i 6= j and the superscript c stands for cooperative.

The optimal cooperative discounted net welfare is given by:

V c(Ki,Kj , pi, pj) = M cKi +N cKj +Rcpi + T cpj +Xc, (26)

where

M c = Mi,i =
βi

µi + ρ
, N c = Mj,j =

βj
µj + ρ

,

Rc = − ϕi(b+dj+ρ)+bϕj
(di+ρ)(b+dj+ρ)+b(dj+ρ)

, T c = − ϕj(b+di+ρ)+bϕi
(di+ρ)(b+dj+ρ)+b(dj+ρ)

,

Xc =
1

2ρ
(Xc

1 +Xc
2) ,

Xc
1 = −2− diqi((dj + ρ)ϕi + b(ϕi + ϕj)) + djqj((di + ρ)ϕj + b(ϕi + ϕj))

(di + ρ)(dj + ρ) + b(di + dj + 2ρ)
,

Xc
2 =

β2
i

ci(µi+ρ)2
+

β2
j

cj(µj+ρ)2
+2 log

(
(b(di+ρ)+(b+di+ρ)(dj+ρ))2

ηiηj((b+dj+ρ)ϕi+bϕj)((b+di+ρ)ϕj+bϕi)

)
,

for i, j = 1, 2, i 6= j.

The cooperative steady-state levels of clean technology and pollution stocks are given by:

KSSc
i =

βi
ciµi(µi + ρ)

, pSSci =
NumpSSci

didj + b(di + dj)
,

NumpSSci = bqjdj + qidi(b+ dj)

+((di+ρ)(dj+ρ)+b(di+dj+2ρ))

(
b

(b+di+ρ)ϕj+bϕi
+

b+dj
bϕj+(b+dj+ρ)ϕi

)
,

for i, j = 1, 2, i 6= j. The steady-state equilibrium is globally asymptotically stable.

Similarly, in the cooperative formulation of the non-spatial model the unique decision-maker

chooses both regions’ emission policies as well as the investment in the stock of clean technology in

order to maximize the joint welfare of both regions

J̃c(ẽ1, ẽ2, I1, I2, P̃0,K10,K20) =

∫ ∞
0

2∑
i=1

e−ρt
(

log(ẽi)+βiKi−
1

2
ciI

2
i −ϕ̃iP̃

)
dt, (27)

subject to the dynamics of both stocks of clean technology given by (10) and of the stock of

pollution defined by (23). Next proposition characterizes the cooperative solution of this optimal

control problem.

Proposition 8. The cooperative emission and investment rates of the optimal control problem

defined by (10), (23) and (27) are constant and given by:

Ici =
βi

ci(µi + ρ)
, ẽci =

ρ+ d̃

η̃i(ϕ̃i + ϕ̃j)
, i = 1, 2, i 6= j.
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The optimal cooperative discounted net welfare is given by:

Ṽ c(Ki,Kj , P̃ ) = M cKi + +N cKj + R̃cP̃ + X̃c, (28)

where

M c = Mi,i =
βi

µi + ρ
, N c = Mj,j =

βj
µj + ρ

, R̃c = − ϕ̃i + ϕ̃j

ρ+ d̃
,

X̃c =
1

2ρ

(
β2
i

ci(µi + ρ)2
+

β2
j

cj(µj + ρ)2
− 4 + 2 log

(
(d̃+ ρ)2

η̃iη̃j(ϕ̃i + ϕ̃j)

))
,

for i = 1, 2, i 6= j.

The cooperative steady-state levels of clean technology and pollution stocks are given by:

KSSc
i =

βi
ciµi(µi + ρ)

, P̃SSc =
2(ρ+ d̃)

d̃(ϕ̃i + ϕ̃j)
,

for i = 1, 2, i 6= j. The steady-state equilibrium is globally asymptotically stable.

As one can note, the cooperative investment rates for both optimization problems are the same

as the equilibrium investment strategies obtained in the non-cooperative frameworks. This result

implies that the Nash equilibrium investment strategies are Pareto optimal. This comes as a result

of the structure of the model where there is no interaction between the investment decisions of

the players. The interaction between the emission decisions of the players through their effect on

the accumulation of the pollution stock(s) implies that the cooperative emission rates are different

from the equilibrium emission strategies obtained in the non-cooperative settings. It can be easily

shown that, as expected, the emission levels are lower under cooperation (both for the spatial and

non-spatial differential games). The difference between cooperative and non-cooperative emission

rates lies in the fact that in the non-cooperative setting each region (player) takes into account only

his marginal damage cost (ϕi or ϕ̃i for the spatial and non-spatial models, respectively), while in

the cooperative setting the decision-maker takes into account both players marginal damage costs

(ϕi, ϕj or ϕ̃i, ϕ̃j). Because the emission levels are lower under cooperation, the steady-state level

of each stock of pollution is lower under cooperation too.

Next three propositions follow the same patterns as Propositions 4, 5 and 6 but now for the

cooperative setting. Similarly to Proposition 4 and under the same assumptions on the model

parameters next we show that also for the cooperative framework our spatial model generalizes the

non-spatial model: As the diffusion parameter tends to infinity, the environmental variables at the

equilibrium in the spatial model converge to those variables in the non-spatial setting.

Proposition 9. Under hypotheses H, as the diffusion parameter b tends to infinity,

i) the cooperative emission rate eci converges to ẽci ;

ii) the average of the cooperative steady-state levels of the pollution stocks
pSSci + pSScj

2
converges

to P̃SSc. Furthermore, if both regions are completely symmetric, then pSSci = pSScj = P̃SSc.

23



As in the non-cooperative setting, the gaps above tend to zero as the diffusion parameter b

goes to infinity (instantaneous mix of the stocks of pollution) and the gaps increase as the diffusion

parameter tends to zero (the stock of pollution does not spread from one region to another).

Next proposition compares the cooperative emissions rates and cooperative steady-state levels

of the stocks of pollution for the spatial and non-spatial models under hypotheses H, in order to

evaluate the effect of the diffusion parameter on the environmental variables.

Proposition 10. Under hypotheses H, for any finite value of the diffusion parameter b:

i) the cooperative emission rate satisfies

min
{
ẽci ,

ϕi + ϕj
2ϕi

ẽci
}
≤ eci ≤ max

{
ẽci ,

ϕi + ϕj
2ϕi

ẽci
}

;

ii) the average of the cooperative steady-state levels of the pollution stocks satisfies

P̃SSc ≤
pSSci + pSScj

2
≤ (ϕi + ϕj)

2

4ϕiϕj
P̃SSc;

iii) If the marginal environmental damage costs are identical for the two regions (ϕi = ϕj), then

eci = ẽci , and consequently,
pSSci + pSScj

2
= P̃SSc.

It is worth noting that the lower and upper bounds of the equilibrium emission rate eci in item

i) depend on how the marginal environmental damage costs of the regions compare. If ϕi > ϕj ,

then eci runs between
ϕi + ϕj

2ϕi
ẽci and ẽci , and the cooperative emission rate of region i in the spatial

model is always lower than the corresponding rate in the non-spatial model. However, if ϕi < ϕj ,

then eci runs between ẽci and
ϕi + ϕj

2ϕi
ẽci , and the cooperative emission rate of region i in the spatial

model is always greater than the corresponding rate in the non-spatial model.

Proposition 9 shows that if b tends to infinity, the same underlying mechanism as in the non-

cooperative scenario is applicable.

When b is zero, the regions are completely isolated and there is no interaction between the

emission variables neither in the net benefit functions of each region nor in the dynamics of the

pollution stocks. Therefore, the social planner will optimally choose the emission rate for each

region identical to what each region would choose by itself in the non-cooperative framework,

eci = ei, i = 1, 2. Let us note that this result is completely different from that obtained in the

non-spatial setting, where cooperative emission rates are strictly lower than non-cooperative ones.

In the spatial cooperative framework for any finite value of the diffusion parameter b if the

environmental damage parameters are identical in both regions ϕi = ϕj , the social planner is

indifferent about the location of emissions, and hence, the effect of diffusion disappears. The

unique decision-maker equally values that the pollution stock lasts for a longer period in one region

or in its neighbour, and what interests him is the average pollution (Proposition 10 item iii)).

If the environmental damage cost parameters are different, for example, ϕi > ϕj , the social

planner values in a greater extent the environmental damage in region Ωi than in region Ωj . For

any fixed value of b, he will optimally decide to emit at a greater level in region j than in region i

(Proposition 7). As parameter b is increasing, the mixing of the pollution stocks becomes faster, and
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therefore, the optimal emission in region Ωi could be greater, because part of the pollution stock

in this region is diffused faster to Ωj , where the environmental damage is smaller. The opposite

reasoning applies if ϕi < ϕj .

We can conclude that in the completely symmetric scenario the spatial effect disappears in the

cooperative framework. However, as soon as the symmetry disappears, the spatial aspect plays an

important role again.

Next proposition compares the long-run discounted net welfare for both spatial and non-spatial

cooperative dynamic games.

Proposition 11. Under hypotheses H, then,

i) As the diffusion parameter tends to infinity, the long-run cooperative discounted net welfare

in the spatial model, V c(KSSc
i ,KSSc

j , pSSci , pSScj ), converges to the the corresponding value in

the non-spatial model, Ṽ c(KSSc
i ,KSSc

j , P̃SSc).

ii) For the completely symmetric scenario (ϕi = ϕj = ϕ), and for any value of the diffusion

parameter V c(KSSc
i ,KSSc

j , pSSci , pSScj ) and Ṽ c(KSSc
i ,KSSc

j , P̃SSc) are identical.

The second item in Proposition 11 shows that for the completely symmetric scenario, the effect

of taking into account or disregarding the spatial aspect of the problem on the long-run discounted

net welfare is null.

However, this effect could be positive or negative as the following corollary shows.

Corollary 4. 1. For any finite value of the diffusion parameter b, if d ≥ 2ρ, then

V c(KSSc
i ,KSSc

j , pSSci , pSScj ) is greater than Ṽ c(KSSc
i ,KSSc

j , P̃SSc).

2. If d < 2ρ, then Vi(K
SS
i , pSSi , pSSj ) is greater (lower) than Ṽi(K

SS
i , P̃SS) for b small (large).

Summarizing the results in this section, in the cooperative framework and if the regions are com-

pletely symmetric, the only decision-maker equally values the stocks of pollution of both regions.

Hence, his decisions are identical regardless of whether the pollution stocks are or not instanta-

neously mixed. Because the decision maker values the pollution stocks equally in both regions,

what matters is the average (Proposition 10 item iii). As a result the long-run welfare is the same

regardless of whether or not the geographical dimension is taken into account (Proposition 11 item

ii).

If the regions do not evaluate equally the environmental damage caused by pollution, the only

decision-maker in the cooperative setting behaves strategically from a spatial point of view. If

the only factor of asymmetry is the environmental damage cost (and all the other parameters

remain unchanged) the optimal emission will be greater in the region with a lower environmental

damage cost (Proposition 7). On the contrary, with a perfect mixing of the pollution stocks (b

converging to infinity), the optimal emission levels are identical among regions regardless of the

environmental damage cost parameters (Proposition 8). Without a perfect mixing of the pollution

stocks (b finite), the social planner will decide strategically under (over) emit in one region with

respect to the perfect mixing scenario (b converging to infinity) when the environmental damage cost

parameter is greater (lower) than in the other region (see (A.9)). The decision-maker is applying a

sharing rule of emissions between the regions taking into account the free-riding effect previously

described in the non-cooperative framework at the end of Section 4.
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The analysis above clearly shows the relevance of the spatial dimension in the optimal social

planners decisions also in the cooperative framework.

There are two main implications of the previous analysis carried out in the cooperative frame-

work. First, if both regions are completely symmetric, the optimal emission rates prescribed by the

social planner will be identical regardless of whether he considers or he disregards the spatial aspect

of the problem. This result is completely different from that obtained in the non-cooperative case.

Second, in the more realistic case in which the regions value differently the environmental damage

caused by the pollution stocks, the spatial aspect is essential in the social planner’s decision making

process. In this case, the strategic interactions among the players have disappeared, but the social

planner can make decisions in a strategic manner from a spatial point of view.

6. Concluding remarks

This paper analyzes a transboundary pollution differential game where, in addition to the stan-

dard temporal dimension, a spatial dimension is introduced to capture the different geographical

relationships among regions. There is a fairly recent literature devoted to the analysis of different

economic and environmental problems by means of dynamic models that include the spatial di-

mension. However, most of this literature either neglects the strategic interactions among decision

makers or neglects the dynamic aspect of the model. In the first case, the papers focus on the

problem of a social planner; while in the second case, the decision-makers behave myopically in

both the temporal and the spatial dimensions, and hence, agents solve static problems. As far as we

know De Frutos & Mart́ın-Herrán (2017) is the only recent study that considers both the temporal

and spatial dimensions of the problem as well as decision makers who behave both dynamically and

strategically. In the present paper we follow the same approach and characterize the equilibrium

outcomes of an intertemporal pollution problem where there is a continuum of spatial sites and the

pollution stock diffuses over these sites. The functional specifications of the present work allow us

to analytically treat the conditions that characterize the Markov-perfect Nash equilibrium of the

space-discretized differential game. With the particular functional forms considered in this paper,

borrowed from Jørgensen & Zaccour (2001), the dynamic game belongs to the class of linear-state

differential games. For this class of games it is well-known that the Markov-perfect Nash equilibria

can be analytically characterized, although they are degenerated in the sense that they are constant

over time. The simplest specification has been considered in order to be able to evaluate the effect

of the spatial diffusion of the pollution stock in the definition of the environmental policies. In

De Frutos & Mart́ın-Herrán (2017) the results are illustrated by means of numerical experiments

even for the simplest case of two regions. Furthermore, our present functional specification allows

the regions to invest in clean technology in order to reduce the emission-output ratio. Hence, the

present specification allows us to analyze the effect of this new technology on the optimal emission

strategies and the stock of pollution.

Our analytical results show how the equilibrium emission policies in a spatial context differ from

those characterized ignoring the spatial dimension. In the non-cooperative framework, the spatially

non-myopic behavior prescribes lower equilibrium emission rates, and as a consequence, a lower

global pollution stock. However, this behavior is compatible with greater long-run welfares. In the

cooperative framework, although the strategic interaction among the players does not exist, the only
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decision-maker still makes spatially strategic decisions. Furthermore, both in the cooperative and

non-cooperative frameworks, the comparison of the equilibrium emission policies we have obtained

in our spatial differential game version and those obtained for the same model when the spatial

aspects are disregarded allows us to show that our spatial model can be viewed as a generalization

of the non-spatial model. The equilibrium of the non-spatial formulation can be reproduced as a

limit case of the spatial differential game. Specifically, the equilibrium environmental policy of the

spatial model coincides with the equilibrium policy of the non-spatial model when the diffusion

parameter, that describes how pollution diffuses among regions, tends to infinity. In this case,

the stocks of pollution in the regions are instantaneously mixed, as is implicitly assumed in the

standard hypothesis in a non-spatial setting.

One first further step in the analysis could be to evaluate the impact of the adoption of cleaner

technology on the equilibrium emission rates and the long-run value of the pollution stock when the

spatial dimension is taken into account and the clean technology and the pollution stock are not

separable state variables. In this new formulation there would be a greater interrelation between

the clean technology and pollution stocks. The characterization of the equilibrium strategies in

this case would require the development of new numerical methods. Recently, Benchekroun &

Ray Chaudhuri (2014, 2015) have shown that the adoption of a cleaner technology may imply

that the countries respond by increasing their emissions resulting in an increase of pollution that

may be detrimental to welfare. The strategic behavior of the players may lead at first glance to

counterintuitive results when the free-riding effect is exacerbated (Benchekroun & Mart́ın-Herrán

(2016) study this effect in a transboundary pollution game with myopic and farsighted players).

In the present formulation pollution has a local dimension as a direct consequence of the pro-

duction of the consumption good in a particular region. Another possible extension could be to add

a second dimension for the pollution and consider that pollution produced in other regions may also

harm welfare. In this case, the environmental damage function would depend on the pollution over

the entire spatial domain. In a different framework Camacho & Pérez-Barahona (2015) introduced

the local and global dimension of pollution in their study of optimal land use and environmental

degradation. This analysis is one of the subjects of our future research.
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[3] Augeraud-Véron, E., Choquet, C., & Comte, E. (2017). Optimal control for a groundwater

pollution ruled by a convection-diffusion-reaction problem. Journal of Optimization Theory

and Applications, 173, 941-966.
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Appendix A. Proofs of Propositions and Corollaries

Proof of Proposition 1

The value function for player i, Vi = Vi(p,K), i = 1, . . . , J , satisfies the stationary Hamilton-

Jacobi-Bellman equations

ρVi = max
Ii,ei

{
log(ei)+βiKi−

1

2
ciI

2
i −ϕipi+∇KVi

(
I−ΓK

)
+∇pVi

(
Bp−D(p−q)+Πe

)}
, (A.1)

where ∇KVi and ∇pVi denote the gradients of Vi with respect to the variables K1, . . . ,KJ and

p1, . . . , pJ , respectively.

Therefore, we postulate

Vi(p,K) = MT
i K + Ri

Tp +Xi, (A.2)

with Xi constant and M i = [Mi,1, . . . ,Mi,J ]T and Ri = [Ri,1, . . . , Ri,J ]T constant vectors to be

determined.

The first-order conditions in (A.1) proportionate the values for the equilibrium investment and

emissions rates in (15). Substituting in (A.1) and using the linearity of the value function we get

that Mi,j = 0 for j 6= i and Mi,i = βi/(ρ+ µi). Coefficients Ri, i = 1, . . . , J , satisfy the system of

linear equations in (17).

System (17) possesses a unique solution because matrix B − ρId − D is strictly diagonally

dominant. Furthermore, as the diagonal terms of B−ρId−D are strictly negative, matrix B−ρId−D

is negative definite which proves that Ri,i can be expressed as in (16) and, in consequence ei > 0,

i = 1, . . . , J .

The constant term Xi in (A.2) has the expression in (19).

The stationary equilibrium of the dynamics (13), (14) subject to (15) is globally asymptotically

stable because the matrix system B −D is negative definite if at least one of the di, i = 1, . . . , J is

different from zero.

Proof of Proposition 2

The sufficient condition for a stationary feedback Nash equilibrium requires us to find bounded

and continuously differentiable functions, denoted by Vi(Ki, pi, pj), which satisfies, for all Ki(t),

pi(t), pj(t) ≥ 0, the Hamilton-Jacobi-Bellman (HJB) equations for both players. We first concen-

trate on finding solutions for the HJB equations. These equations are given by

ρVi(Ki, pi, pj) = max
Ii≥0,ei≥0

[
log(ei) + βiKi −

1

2
ciI

2
i − ϕipi +

∂Vi
∂Ki

(Ii − µiKi)

+
∂Vi
∂pi

(
b(pj − pi)− di(pi − qi) + ηiei

)
+

∂Vi
∂pj

(
b(pi − pj)− dj(pj − qj) + ηjej

)]
. (A.3)

The first-order optimality conditions read

Ii(Ki, pi, pj) =

∂Vi
∂Ki

ci
, ei(Ki, pi, pj) = − 1

∂Vi
∂pi
ηi

(A.4)
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if these expressions are positive, and zero otherwise.

Guided by the model’s linear-state structure, we assume that the players’ value functions are

linear functions in the state variables and given by (21). Taking into account this specification

for players’ value functions in (A.4) and inserting these optimal strategies into (A.3), the eight

equations that characterize the coefficients of the value functions Mi,i, Ri,i, Ri,j , Xi, i = 1, 2, i 6= j

are determined by identification. These equations read as follows:

(ρ+ µi)Mi,i − βi = 0,

(b+ di + ρ)Ri,i − bRi,j + ϕi = 0,

(b+ dj + ρ)Ri,j − bRi,i = 0,

1− log

(
− 1

Ri,iηi

)
+ ρXi −

M2
i,i

2ci
+
Ri,i
Rj,i
−Ri,iqidi −Ri,jqjdj = 0.

From these equations the expressions of Mi,i, Ri,i, Ri,j , Xi, i = 1, 2, i 6= j in the statement of the

Proposition can be easily derived.

A sufficient condition guaranteeing that the expressions in (21) are the players’ value functions

and that (20) are the investment and emission strategies is given by

lim
t→∞

e−ρtVi(Ki(t), pi(t), pj(t)) = 0, (A.5)

where (Ki(t), pi(t), pj(t)) is the solution of the closed-loop dynamics obtained after substituting

the optimal investment and emission strategies (20) into the clean technology and pollution stocks

dynamics given by (10) and

ṗi = b(pj − pi)− di(pi − qi) + ηiei, i, j = 1, 2, i 6= j.

The steady-state levels of the clean technology and pollution stocks can be easily obtained

replacing the optimal investment and emission strategies given by (20). The eigenvalues of the

matrix associated with the closed-loop linear dynamical system are:

−µi, −µj ,
1

2

(
−(2b+ di + dj)±

√
4b2 + (di + dj)2

)
.

The four eigenvalues are negative and hence, the steady-state equilibrium is globally asymptotically

stable.

The linear functional specifications in (21) allow conditions in (A.5) to be satisfied whenever

the state variables, the clean technology and pollution stocks, are bounded. This condition is

guaranteed because the steady state is globally asymptotically stable.

Proof of Corollary 1

The results immediately follows from

1.
∂ei
∂b

=
(dj + ρ)2

ηi(b+ dj + ρ)2ϕi
> 0, i, j = 1, 2, i 6= j.
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2.
∂pSSi
∂qi

=
di(b+ dj)

didj + b(di + dj)
> 0,

∂pSSi
∂qj

=
bdj

didj + b(di + dj)
> 0, i, j = 1, 2, i 6= j.

3.
∂pSSi
∂b

∣∣∣ di=dj=d
qi=qj=q
ϕi=ϕj=ϕ

=
(d+ ρ)2

ηid(b+ d+ ρ)2ϕ
> 0, i = 1, 2.

Proof of Corollary 2

∂pSSi
∂b

∣∣∣di=dj=d
qi=qj=q

=
(d+ ρ)Ξ(b, d, ρ, ϕi, ϕj)

d(2b+ d)2(b+ d+ ρ)2ϕiϕj
, i, j = 1, 2, i 6= j,

where

Ξ(b, d, ρ, ϕi, ϕj) = 4bd(d+ ρ)ϕi + d(d+ ρ)(dϕi + ρ(ϕi − ϕj)) + 2b2(2dϕi + ρ(ϕi + ϕj)).

If ϕi − ϕj ≥ 0, then Ξ(b, d, ρ, ϕi, ϕj) > 0, and
∂pSS

i
∂b

∣∣∣di=dj=d
qi=qj=q

> 0.

If ϕi − ϕj < 0 and b is large, then Ξ(b, d, ρ, ϕi, ϕj) > 0, and
∂pSS

i
∂b

∣∣∣di=dj=d
qi=qj=q

> 0.

If ϕi − ϕj < 0 and b is small, then the sign of Ξ(b, d, ρ, ϕi, ϕj) coincides with the sign of

dϕi + ρ(ϕi − ϕj). Hence, the last result immediately follows.

Proof of Proposition 3

The proof of this proposition follows the same steps as in the proof of Proposition 2.

Proof of Proposition 4

The results can be derived straightforwardly from Propositions 2 and 3 taking into account the

expressions of P̃SS and ẽi as well as the following differences

ei − ẽi = − (d+ ρ)2

2η̃i(b+ d+ ρ)ϕi
, (A.6)

P̃SS −
pSSi + pSSj

2
=

(d+ ρ)2(ϕi + ϕj)

2d(b+ d+ ρ)ϕiϕj
, (A.7)

The gaps above tend to zero as the diffusion parameter b goes to infinity.

Proof of Proposition 5

Under hypotheses H the following equalities apply:

ei =
2b+ d+ ρ

2(b+ d+ ρ)
ẽi,

pSSi + pSSj
2

=
2b+ d+ ρ

2(b+ d+ ρ)
P̃SS .

The ratio 2b+d+ρ
2(b+d+ρ) monotonously increases with the diffusion parameter b, converges to one half as

b tends to zero and converges to one as b goes to infinity. Therefore, ei and
pSS
i +pSS

j

2 runs between

the lower and upper bounds given in items i) and ii). Furthermore, the ratio decreases with the

natural regeneration rate of pollution, d, and the temporal discount rate, ρ.

Proof of Proposition 6
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The difference of the long-run discounted net welfares reads:

Ṽi(K
SS
i , P̃SS)− Vi(KSS

i , pSSi , pSSj ) (A.8)

=
1

ρ
log

(
2(b+ d+ ρ)

2b+ d+ ρ

)
− (d+ ρ) [d(d+ ρ)ϕi + b(2d+ ρ(ϕi + ϕj))]

dρϕj(2b+ d)(b+ d+ ρ)
,

and item i) immediately follows.

For the completely symmetric scenario (ϕi = ϕj = ϕ), the difference above simplifies

Ṽi(K
SS
i , P̃SS)− Vi(KSS

i , pSSi , pSSj ) =
1

ρ
log

(
2(b+ d+ ρ)

2b+ d+ ρ

)
− (d+ ρ)2

dρ(b+ d+ ρ)
.

It can be easily proved that the RHS of the equation above increases with b, takes a negative value

for b = 0 and tends to zero as b converges to infinity, and as a result, the difference is always

negative.

Proof of Corollary 3

The results in both items can be easily derived taking the corresponding limit in the expression

of the difference Ṽi(K
SS
i , P̃SS)− Vi(KSS

i , pSSi , pSSj ) given in (A.8).

Proof of Proposition 7

Following the same steps as in the proof of Proposition 2 the equations that characterize the co-

efficients of the value function M c, N c, Rc, T c, Xc are determined by identification. These equations

read as follows:

(ρ+ µi)M
c − βi = 0,

(ρ+ µj)N
c − βj = 0,

(b+ di + ρ)Rc − bT c + ϕi = 0,

(b+ dj + ρ)T c − bRc + ϕj = 0,

2− log

(
− 1

Rcηi

)
− log

(
− 1

T cηj

)
+ ρXc − (M c)2

2ci
− (N c)2

2cj
−Rcqidi − T cqjdj = 0.

From these equations the expressions of M c, N c, Rc, T c, Xc in the statement of the Proposition can

be easily derived. Once these coefficients have been determined, the steady-state levels of clean

technology and pollution stocks are immediately computed.

Proof of Proposition 8

The proof follows the same steps as in the proof of Proposition 7.

Proof of Proposition 9

From Propositions 7 and 8 we derive the following gaps:

eci − ẽci = − (d+ ρ)2(ϕi − ϕj)
2η̃i(ϕi + ϕj)((b+ d+ ρ)ϕi + bϕj)

, (A.9)

P̃SSc−
pSSci + pSScj

2
= − (d+ρ)3(ϕi−ϕj)2

2d(ϕi+ϕj)((b+d+ρ)ϕi+bϕj)((b+d+ρ)ϕj+bϕi)
. (A.10)
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These gaps tend to zero as the diffusion parameter b tends to infinity.

Proof of Proposition 10

Under hypotheses H the following equalities apply:

eci =
(2b+ d+ ρ)(ϕi + ϕj)

2((d+ ρ)ϕi + b(ϕi + ϕj))
ẽci = Λiẽ

c
i ,

pSSci + pSScj

2
=

(2b+ d+ ρ)2(ϕi + ϕj)
2

4((d+ ρ)ϕi + b(ϕi + ϕj))((d+ ρ)ϕj + b(ϕi + ϕj))
P̃SSc = ΛcP̃SSc.

The ratio Λi monotonously increases with the diffusion parameter b if ϕi > ϕj and decreases

with b if ϕi < ϕj . The ratio Λi converges to
ϕi+ϕj

2ϕi
as b tends to zero and converges to one as b

goes to infinity. Furthermore, the ratio Λi decreases (increases) with d and ρ if ϕi is greater (lower)

than ϕj .

The ratio Λc decreases with the diffusion parameter b and increases with d and ρ. The ratio

Λc tends to
(ϕi+ϕj)2

4ϕiϕj
as b tends to zero and converges to 1 as b tends to infinity. Therefore, eci and

pci+pSSc
j

2 runs between the lower and upper bounds given in items i) and ii). Furthermore, the ratio

decreases with d and ρ.

Proof of Proposition 11

The difference of the long-run cooperative discounted net welfares reads:

V c(KSSc
i ,KSSc

j , pSSci , pSScj )− Ṽ c(KSSc
i ,KSSc

j , P̃SSc) =

1

ρ
log

(
(2b+ d+ ρ)2(ϕi + ϕj)

2

4((d+ ρ)ϕi + b(ϕi + ϕj))((d+ ρ)ϕj + b(ϕi + ϕj))

)

−b (d+ ρ)2(ϕi − ϕj)2

d(2b+ d)((d+ ρ)ϕi + b(ϕi + ϕj))((d+ ρ)ϕj + b(ϕi + ϕj))
. (A.11)

From the expression above the proof easily follows.

Proof of Corollary 4

It is easy to show that the difference V c(KSSc
i ,KSSc

j , pSSci , pSScj )− Ṽ c(KSSc
i ,KSSc

j , P̃SSc) given

in (A.11) is positive as b tends to zero. Easy but tedious computations show that the sign of the

derivative of this difference with respect to b coincides with the sign of a fourth-order polynomial

in b. If d ≥ 2ρ all the coefficients of the polynomial are negative, and hence, the difference

monotonously decreases as b increases from a positive value to zero, which proves the first item. If

d < 2ρ the coefficients of the polynomial present different signs. The second term follows because

the independent term is negative and the coefficient of the highest order is positive.

34


