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Abstract. We consider the value µ̂(ν) = limm→∞ m−1a(mL), where a(mL) is the last
value of the vanishing sequence of H0(mL) along a divisorial or irrational valuation ν
centered at OP2,p, L (respectively, p) being a line (respectively, a point) of the pro-
jective plane P2 over an algebraically closed field. This value contains, for valuations,
similar information as that given by Seshadri constants for points. It is always true
that µ̂(ν) ≥

√

1/vol(ν) and minimal valuations are those satisfying the equality. In
this paper, we prove that the Greuel-Lossen-Shustin Conjecture implies a variation of
the Nagata Conjecture involving minimal valuations (that extends the one stated in [15]
to the whole set of divisorial and irrational valuations of the projective plane) which
also implies the original Nagata’s conjecture. We also provide infinitely many families
of minimal very general valuations with an arbitrary number of Puiseux exponents, and
an asymptotic result that can be considered as evidence in the direction of the above
mentioned conjecture [15].

1. Introduction

In [6] an analogue of the Seshadri constant for real valuations ν is introduced. We denote
this quantity by µ̂(ν). This value turns out to be very hard to compute. Considering rank
one valuations of the projective plane and denoting vol(ν) the volume of the valuation ν, it

holds that µ̂(ν) ≥
√

1/vol(ν) and ν is said to be minimal whenever the equality is satisfied.
Minimal valuations of the complex projective plane whose dual graphs are determined by
a unique real number are studied in [15], where the authors conjecture that every very
general valuation as above such that 1/vol(ν) ≥ 9 is minimal. There, it is also proved that
this conjecture implies Nagata’s conjecture and is implied by the Greuel-Lossen-Shustin
Conjecture [24]. The present paper has two goals. Firstly, following the ideas in [15],
we extend the above conjecture and implications to any divisorial or irrational valuation
of the projective plane. Our development works for any algebraically closed field, and
we only fall on complex numbers when the Greuel-Lossen-Shustin Conjecture is needed.
Secondly, we prove an asymptotic result which gives support to the conjecture in [15]. In
addition, we give an upper bound of µ̂ for a wide class of very general (see Definition 4.2)
divisorial valuations of the projective plane, including those considered in [15]. Also, we
provide infinitely many families of minimal very general valuations, with arbitrarily many
Puiseux exponents, and determined only by their dual graphs. The three previous results
are achieved with the help of valuations, non-positive at infinity.

According to some authors, valuations were introduced by Dedekind and Weber in 1882
to give a rigorous presentation of Riemann surfaces. It seems that the first axiomatic defi-
nition is due to Kürschák in 1912; since then they have been used in several mathematical
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areas. In the forties and fifties, Zariski and Abhyankar applied valuation theory to resolu-
tion of singularities of algebraic varieties [28, 29, 30, 1, 2] and, although Hironaka proved
resolution of singularities in characteristic zero without using valuations, they seem to be
the preferred tool to try to get resolution in positive characteristic [27]. Valuations are
essentially local objects which are expected to be useful for proving local uniformization.
Recently, they also appear as a tool in global geometry and, at least certain classes of
valuations that reproduce the behavior of plane curves at infinity [3], allow us to deter-
mine the cone of curves, the nefness of certain divisors or the finite generation of the Cox
ring of their attached surfaces [22]. Some of the results in this paper will use this class of
valuations.

Although there is no complete classification of valuations, valuations of quotient fields
of two-dimensional regular local rings (R,m), centered at R, were classified by Spivakovsky
[26] (see also [23, 18]). We call those valuations plane valuations and they are in bijective
correspondence with simple sequences of point blowing-ups starting with the blow-up of
SpecR at m. Spivakovsky’s classification is based on the structure of the dual graphs of the
valuations, which are defined by the exceptional divisors of the above mentioned sequences.
These dual graphs can be determined by sequences of values called the Puiseux exponents
of the valuations. The above mentioned classification contains five types of valuations but
we are only interested in two of them, the so-called divisorial and irrational valuations.
Puiseux exponents for them are of the form {β′i}

g+1
i=0 and they are rational numbers except

for the last one in the irrational case, which satisfies β′g+1 ∈ R \Q.
Both divisorial and irrational plane valuations are Abhyankar valuations and their re-

spective triples (rank, rational rank, transcendence degree) are (1, 1, 1) and (1, 2, 0). We
recall that Abhyankar valuations admit local uniformization in any characteristic [25] and
satisfy a strengthened form of Izumi’s Theorem [17] (see also [5]). In [17] the authors
introduce the concept of volume of a rank one valuation ν, defined as

vol(ν) = lim sup
α→∞

length(R/Pα)

αn/n!
,

where dimR = n and Pα = {f ∈ R|ν(f) ≥ α} ∪ {0}. There, it is also proved that

vol(ν) = lim
α→∞

e(Pα)

αn
,

where e(Pα) is the multiplicity of the valuation ideal. In our plane case, the normalized
volume of a valuation can be easily computed as β̄20/β̄g+1, where β̄0 and β̄g+1 are the first
and last elements of the so-called sequence of maximal contacts of ν (see Sections 2.3 and
2.5).

Seshadri constants are objects that measure local positivity and were considered by De-
mailly for studying the Fujita’s conjecture [14]. Analogous objects for ideal sheaves were
introduced in [11] and named s-invariants. Rationality of those constants is an interesting
issue which is open even in the two-dimensional case. In [6], the authors introduce the
vanishing sequence along a valuation ν of H0(B), B being a line bundle over a normal pro-
jective variety; we denote µ̂B(ν) = limm→∞m−1a(mB), where a(mB) is the last value for
the line bundle mB of the above mentioned sequence. This value is close to the s-invariant
attached to the valuation and basically contains the same information for valuations as
Seshadri constants for points; in addition, when applied to smooth projective surfaces, the
blowing-up at one point and ample line bundles, it coincides with that constant in case of
being irrational [4] (see also [16]).
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In [6], it is proved that the value µ̂D(ν), for a real valuation ν centered at a point of an
algebraic surface X and an ample divisor D, satisfies the inequality

µ̂D(ν) ≥
√

D2/vol(ν). (1)

In this paper, we are interested in divisorial and irrational plane valuations of the fraction
field K of R = OP2,p centered at R, P2 = P2

k being the projective plane over an algebraically
closed field k of arbitrary characteristic. Valuations of this type and satisfying, for a line
D, the equality in (1) are named minimal and their study is the objective of this paper.
Let (u, v) be local coordinates at p. The quantity µ̂D(ν) = µ̂(ν) is defined as follows. Let
µd(ν) = max{ν(f) | f ∈ k[u, v], deg(f) ≤ d} and then

µ̂(ν) = lim
d→∞

µd(ν)

d
.

Recently in [15], minimal divisorial and irrational valuations (of K centered at R) whose
dual graphs are given by a unique positive rational or non-rational real value, and where k =
C, have been treated (see Remark 4.6 for a description in our terminology of the mentioned
specific case studied in [15]). There, a variation of the Nagata Conjecture (implying that
conjecture) in terms of minimality of very general valuations is given. Specifically, the
conjecture asserts that if ν is a very general divisorial or irrational valuation as above,
whose inverse normalized volume is not less than 9, then ν is minimal. Notice also that
the value µ̂(ν) is essential for computing the Newton-Okounkov bodies of flags given by
divisors (and points on them) defining divisorial valuations as mentioned [10].

This paper has two main goals. First, we extend to any divisorial and irrational valuation
(of K centered at R) the result in [15] that asserts that the mentioned variation of the
Nagata Conjecture (Conjecture 4.5) is true under the assumption that the so-called Greuel-
Lossen-Shustin Conjecture (Conjecture 4.4) holds. More specifically, we prove

Theorem (A). Under the assumption that k = C, the Greuel-Lossen-Shustin Conjecture
implies that any very general divisorial or irrational valuation of the projective plane ν such
that [vol(νN )]−1 ≥ 9 is minimal, where νN is the normalization of ν, obtained by dividing
by ν(m).

To this purpose, we consider a classical tool for the treatment of curves and valuations in
the positive characteristic case, the Hamburger-Noether expansions [7, 13]. Section 2 of the
paper provides the information we need with respect to the Hamburger-Noether expansions
and the most useful invariants of our valuations and Section 3 proves the technical results
to be used to show that Conjecture 4.4 implies Conjecture 4.5. Here, our main result,
Proposition 3.2, extends, by a very different procedure, the result on the continuity of the
function µ̂ given in [15] to arbitrary valuations. Our definition of µ̂ does not depend on
the characteristic of the field k and our reasoning does not depend on the characteristic,
but our conclusion on the variation of the Nagata Conjecture must be over the complex
field C because Conjecture 4.5 was stated over C.

The second goal of the paper is developed in Sections 5 and 6. It is valid for arbitrary
characteristic and, as a fundamental tool, we use divisorial valuations, non-positive at
infinity, which were introduced in [22] (see Definition 5.1). Here, our first main result,
Theorem 5.5 in the paper, provides an upper bound of µ̂ for a wide class of very general
divisorial plane valuations.

Theorem (B). Let ν be a very general divisorial valuation of the projective plane (which

is not the m-adic one), set {β̄i}g+1
i=0 its sequence of maximal contact values and assume
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that β̄21 ≥ β̄g+1. Then µ̂(ν) ≤ β̄1. If, in addition, the set Aν := {a ∈ Z | 1 ≤ a ≤
⌊β̄1/β̄0⌋ and a2β̄20 ≥ β̄g+1} is not empty, then µ̂(ν) ≤ β̄0 ·min(Aν).

Next we state our second main result (see Theorem 5.10 for the precise details).

Theorem (C). Fix any divisorial valuation, different from the m-adic one. Let Γ be its
dual graph. Dual graphs of minimal very general valuations can be obtained from Γ by
adjoining chains with a suitable number of vertices (corresponding to divisors obtained by
blowing-up free points) at the beginning and at the end of Γ.

Notice that this result provides (infinitely many) families of minimal very general divi-
sorial valuations (of K centered at R). These families are characterized only by the dual
graphs of their valuations.

The described minimal valuations cannot be defined by satellite divisors; however we
prove the following asymptotic result.

Theorem (D). For each positive real number t, denote by νt a very general quasi-monomial
valuation (in the sense of the definition given in [15]) with normalized volume 1/t. Then

lim
t→∞

µ̂(νNt )√
t

= 1.

This result, Theorem 6.1 in the paper, can be considered as evidence in the direction of
Conjecture 4.5 (more specifically, of the restricted form of the conjecture stated in [15]).

2. Preliminaries

2.1. Plane valuations. Let F be a field, G a totally ordered abelian group, and set
F ∗ := F \ {0}. A valuation of F is a surjective map ν : F ∗ → G such that

ν(f + g) ≥ min{ν(f), ν(g)} and ν(fg) = ν(f) + ν(g)

for f, g ∈ F ∗. The group G is called the value group of the valuation ν.
Assume that F is the quotient field of a local regular ring (R,m) and that the residue

field k := R/m is contained in R. We write Rν for the valuation ring of ν, that is

Rν = {f ∈ F ∗|ν(f) ≥ 0} ∪ {0}.
This ring is also a local ring whose maximal ideal is mν = {f ∈ F ∗|ν(f) > 0} ∪ {0}. The
valuation ν is said to be centered at R whenever R ∩mν = m.

There are several invariants of ν introduced by Zariski [29, 30] for the classification of
plane valuations—a certain kind of valuations which we will define later: the rank rk(ν) of
ν, which is the Krull dimension of the ring Rν , and the rational rank of ν, written r.rk(ν),
which is the dimension of the Q-vector space G⊗ZQ. Moreover, if one considers the residue
field kν := Rν/mν , then the transcendence degree of the field extension kν/k is called the
transcendence degree of ν, denoted by tr.deg(ν).

We assume that the field k is algebraically closed. It is a result by Abhyankar [2] that

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dim(R). (2)

If the second inequality turns out to be an equality, then G is isomorphic to Zr.rk(ν) with
some ordering, and when the equality rk(ν)+tr.deg(ν) = dimR holds, then G is isomorphic

to Zr.rk(ν) with the lexicographical ordering.
For a valuation ν as above, we can attach to the ring R the monoid

S = {ν(f)|f ∈ R \ {0}} ∪ {0},
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which is called the value semigroup of ν associated to R. Ideals in R which are contraction
of ideals in Rν are the so-called valuation ideals. They can be characterized as those ideals
a in R of the form

{f ∈ R|ν(f) ≥ ν(a)} ∪ {0},
where ν(a) := min{ν(f)|f ∈ a\{0}}. In particular, when G = Z, for a nonnegative integer
α, the ideal Pα = {f ∈ R \ {0}|ν(f) ≥ α} ∪ {0} is a valuation ideal in R.

A valuation ν is called divisorial if both rk(ν) = 1 and tr.deg(ν) = dimR − 1. Given
a birational morphism π : X → SpecR and an irreducible component D of π−1(m) such
that OX,D is a discrete valuation ring, the map

ν(f) = c · ordD(f), f ∈ F (3)

(for some non-zero constant c) defines a divisorial valuation; in fact, all divisorial valuations
centered at R are of this form [26, Remark 2.7]. Notice that for a (commutative, with unit)
ring T , an ideal n of T and an element h ∈ T , one may define the multiplicity of h at n as

multn(h) = max{s ∈ N ∪ {0}|h ∈ n
s}.

In addition, consider an integral scheme X with function field F , and an integral subscheme
D such that OX,D is a regular local ring with maximal ideal n; for an element f = a/b ∈ F ,
with a, b ∈ R, the order of f at D is defined to be

ordD(f) = multnπ
∗a−multnπ

∗b.

Divisorial valuations as in (3) associated with different non-zero constants c are called
equivalent. Along this paper, for each equivalence class of divisorial valuations, we will
only consider two of them: the valuation ν corresponding to c = 1 (this will be the default
case) and its normalization νN , where c = 1/ν(m), ν(m) being the minimum of the values
ν(ϕ) for ϕ ∈ m \ {0}.

Let us restrict ourselves now to Noetherian regular local rings (R,m) of dimension 2.
In this situation, plane valuations play a central role. A plane valuation is a valuation
of a field K which is the fraction field of such an R, and centered at R. As mentioned
above, Zariski gave an algebraic classification for plane valuations based on the values
of the invariants involved in (2) may take. In this work, we are mainly interested in two
types of plane valuations: divisorial and irrational valuations. A plane valuation ν is called
divisorial if, according to the general definition, satisfies the equalities

rk(ν) = r.rk(ν) = tr.deg(ν) = 1;

on the other hand, if ν is such that rk(ν) = 1, r.rk(ν) = 2 and tr.deg(ν) = 0, then it is
called irrational. Again Zariski found a fruitful geometric viewpoint in dealing with plane
valuations:

Theorem 2.1. There is a one-to-one correspondence between the set of plane valuations
of K centered at R (up to equivalence) and the set of simple sequences of point blowing-ups
of the scheme Spec R.

Theorem 2.1 means that we may associate a valuation ν with a sequence

π : · · · −→ XN+1
πN+1−→ XN −→ · · · −→ X1

π1−→ X0 = X = Spec R, (4)

where π1 is the blowing-up of X0 at p1 = m and, for i ≥ 1, πi+1 the blowing-up of Xi at
the unique closed point pi+1 of the exceptional divisor Ei, defined by πi, for which ν is
centered at the local ring Ri := OXi,pi+1

.
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The sequence (4) of blowing-ups needs not be finite and defines a sequence (or confi-
guration) of infinitely near points which will be denoted by Cν := {pi}i≥1. A point pi is
said to be proximate to pj, denoted by pi → pj, whenever i > j and pi belongs either to
Ej or to the strict transform of Ej on Xi−1. A point pi is called satellite if there exists
j < i − 1 satisfying pi → pj; otherwise, it is called free. Divisors obtained by blowing-up
free (respectively, satellite) points are also called free (respectively, satellite).

The dual graph of a valuation ν as above is a labeled tree (with infinitely many vertices if
Cν is infinite) where each vertex represents an exceptional divisor appearing in the sequence
of blowing-ups (4) and two vertices are joined whenever their corresponding divisors meet.
Each vertex is labeled with the number of blowing-ups needed to create the corresponding
divisor. Equivalently, some authors label each vertex with the self-intersection of the
divisor. When the valuation ν is divisorial, we add an arrow to the vertex that represents
the defining divisor of ν.

2.2. Hamburger-Noether expansions. Puiseux series are not suitable for the treatment
of curve singularities in positive characteristic. This treatment can be addressed by using
Hamburger-Noether expansions, which work with zero and positive characteristic (see [7]).

In this paper we are interested in plane valuations. We start by briefly explaining the
concept of Hamburger-Noether expansion of a plane valuation ν, from which we will read
off the invariants of the valuation. Starting from a regular system of parameters (u, v) for
R, Hamburger-Noether expansions allow us to classify plane valuations according to the
expansion’s shape and explicitly determine a regular system of parameters for the rings
R1, R2, . . . , RN , . . . given by the blow-ups sequence π (4). Next we describe this concept;
an alternative version for divisorial valuations can be found in [23].

To begin with, as mentioned, choose a regular system of parameters (u, v) for the ring
R, and assume that ν(u) ≤ ν(v). As a first step, we can choose an element a01 ∈ k such
that

(u1 := u, v1 := (v/u) − a01)

is a regular system of parameters for the ring R1, and therefore v = a01u+ uv1.
In the second step there are two possibilities: either ν(v1) ≥ ν(u), and we can then

choose an element a02 ∈ k such that

(u2 = u, v2 = (v1/u)− a02)

is a regular system of parameters for the ring R2 in such a way that

v = a01u+ u(a02u+ uv2) = a01u+ a02u
2 + u2v2,

or ν(v1) < ν(u), and we stop the algorithm: this is the case ν(v) = ν(u).
We keep doing the same procedure until we obtain

v = a01u+ a02u
2 + · · ·+ a0hu

h + uhvh,

where either ν(u) > ν(vh) or ν(vh) = 0, or

v = a01u+ a02u
2 + · · ·+ a0hu

h + · · · ,
with infinitely many steps. In the last two cases we are done, and we get the Hamburger-
Noether expansion for ν. Moreover, Rν = Rh when ν(vh) = 0. Otherwise, set w1 := vh
so that (w1, u) is a regular system of parameters for Rh with ν(w1) < ν(u), and we start
with the process again.

This procedure can continue indefinitely or we can obtain a last equality. In any case
we have attached to ν a set of expressions of the form given in Figure 1, which is called
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the Hamburger-Noether expansion of the valuation ν in the regular system of parameters
(u, v) of the ring R.

w−1 = v = a01u+ a02u
2 + · · · + a0h0

uh0 + uh0w1

w0 = u = wh1

1 w2
...

...

ws1−2 = w
hs1−1

s1−1 ws1

ws1−1 = as1k1w
k1
s1 + · · ·+ as1hs1

w
hs1
s1 + w

hs1
s1 ws1+1

...
...

wsg−1 = asgkgw
kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1

...
...

wi−1 = whi

i wi+1
...

...
(wz−1 = w∞

z ).

Figure 1. Hamburger-Noether expansion of a plane valuation

The nonnegative integers s0 = 0, s1, . . . , sg correspond to rows with some nonzero ele-
ments asj l ∈ k: these rows are called free, and are given by free blowing-up points. Notice
that g ∈ N ∪ {∞} and kj = min{n ∈ N | asjn 6= 0}.

Plane valuations can be classified in five types according to the shape of their Hamburger-
Noether expansions [13, Section 1.4]. Two of the classes are the divisorial and irrational
valuations:

⋄ Divisorial valuations have a finite sequence (4), and therefore the associated Ham-
burger-Noether expansion is finite; the last row of the expansion has the form

wsg−1 = asgkgw
kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1, (5)

with g <∞, hsg <∞, wsg+1 ∈ Rν and ν(wsg+1) = 0.

. . .

...

Γ1

ℓ1

st11 . . .

...

Γi

ℓi

sti

· · ·

. . .

...

Γg

ℓg

stg

· · ·

. . .
︸ ︷︷ ︸

Tail

Figure 2. Dual graph of a divisorial valuation

In Figure 2 we have depicted the dual graph associated with the configuration Cν , when
ν is a divisorial valuation (without the above mentioned labels). Here, we add some more
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labels: the vertex labeled with 1 corresponds to the exceptional divisor of the first blowing-
up. Vertices different from 1 which are adjacent to a unique vertex are called dead ends
(labeled as ℓ1, ℓ2 . . . , ℓg in Figure 2), and those adjacent to three vertices are called star
vertices. We have labeled the star vertices with st1, st2, . . . , stg (where the index refers
to the order of appearance in the sequence of blowing-ups). Consider also the following
ordering on the set of vertices: α 4 β iff the path in the dual graph joining 1 and β goes
through α. For each i = 1, 2, . . . , g, we denote by Γi the subgraph given by the vertices α
such that sti−1 4 α 4 ℓi (where st0 := 1) and the edges joining them. The vertices of each
subgraph Γi corresponding to free divisors are some of the first (consecutive) ones and ℓi
(we call them the free part of Γi); moreover, they correspond with the coefficients asi−1β

of the ith free row of the Hamburger-Noether expansion. The free rows are the first one,
those rows whose left-hand side term is ωsj−1 for j = 1, 2, . . . , g − 1, and the last row (5)
whenever there exists a coefficient asgkg .

If the divisor defining ν is free, then there is a finite sequence of vertices corresponding
to free divisors which appear after stg (the tail, in Figure 2). Otherwise this tail does not
appear (this case corresponds to the fact that (5) is not a free row).

Setting t := wsg and z := wsg+1, by backward substitution in the Hamburger-Noether
expansion of ν, we obtain parametric equations u = u(t, z), v = v(t, z) in k[[t, z]] such that,
if h ∈ R, then ν(h) = ordt h(u(t, z), v(t, z)) [19, Section 3]. Notice that the series u(t, z)
and v(t, z) have a finite number of non-zero terms.

⋄ Irrational valuations have a Hamburger-Noether expansion whose last part consists of
a free row as (5), with ν(wsg+1) 6= 0, followed by infinitely many rows of the form

wi−1 = whi

i wi+1 with i > sg. (6)

This means that the the configuration Cν = {pi}∞i=1 is infinite and satisfies the following
condition: there exists an index i0 such that, for all j ≥ i0, all the points pj are satellite
and they are not proximate to the same point. The rows (6) of the Hamburger-Noether
expansion describe the last infinitely many satellite points. The dual graph of Cν (with
infinitely many vertices) is shown in Figure 3 (see also [26, Section 9]).

Let k〈t〉 be the ring of formal series
∑

r∈R art
r, ar ∈ k, such that the set {r ∈ R | ar 6= 0}

is well-ordered. Consider the non-rational number defined by the infinite continued fraction

γ := hsg+1 +
1

hsg+2 + · · · .

If we write wsg+1 = t and wsg = tγ in the Hamburger-Noether expansion of ν and we
perform backward substitution, we obtain parametric equations u = u(t), v = v(t) ∈ k〈t〉
such that ν(h) = ordt h(u(t), v(t)) for all h ∈ R [19, Section 6]. Notice that the series u(t)
and v(t) have finitely many non-zero terms.

A third type of plane valuations which will be a useful tool for our purposes are the so-
called curve valuations: these plane valuations have Hamburger-Noether expansion with
the shape showed in Figure 1, but with a last row of the form

wsg−1 = asgkgw
kg
sg + · · · . (7)

Notice that the values asgi, for i > kg, may vanish, but asgkg 6= 0. The configuration Cν is
also infinite in this case: there exists an index i0 such that pj is free for all j ≥ i0. The
coefficients in the row given in (7) of the Hamburger-Noether expansion determine this last
infinite sequence of free points. In Figure 4, we have depicted the dual graph of a curve
valuation.
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. . .

...

Γ1

ℓ1

st11 . . .

...

Γi

ℓi

sti

· · ·

. . .

...

Γg

ℓg

stg

· · ·

. . . . . .
...
...

Infinitely many
vertices

ℓg+1

Figure 3. Dual graph of an irrational valuation

. . .

...

Γ1

ℓ1

st11 . . .

...

Γi

ℓi

sti

· · ·

. . .

...

Γg

ℓg

stg

· · ·

. . . . . .

Infinitely many
free vertices

Figure 4. Dual graph of a curve valuation

As mentioned, Hamburger-Noether expansions were first introduced for irreducible germs
of plane curves. Indeed, the Hamburger-Noether expansion of a germ Cf defined by
f(u, v) = 0 has an expression as in Figure 5, where ū = u + (f) ∈ R/(f) and v̄ =
v + (f) ∈ R/(f) (see [7]).

v̄ = a01ū+ a02ū
2 + · · ·+ a0h0

ūh0 + ūh0w̄1

ū = w̄h1

1 w̄2
...

...

w̄s1−2 = w̄
hs1−1

s1−1 w̄s1

w̄s1−1 = as1k1w̄
k1
s1 + · · ·+ as1hs1

w̄
hs1
s1 + w̄

hs1
s1 ws1+1

...
...

w̄sg−1 = asgkg w̄
kg
sg + · · · .

Figure 5. Hamburger-Noether expansion of a germ

We conclude by adding that, when ν is divisorial, choosing suitable coordinates and
germs: q0 given by u = 0 and qi, 1 ≤ i ≤ g+1, whose Hamburger-Noether expansion is as
in Figure 5 but with last row

w̄si−1−1 = asi−1ki−1
w̄

ki−1
si−1

+ · · ·+ asi−1hsi−1
w̄

hsi−1
si−1

+ · · · ,

it happens that {qi}g+1
i=0 is a generating sequence of the valuation ν, with qg+1 a general

element of ν and ν(qi) = β̄i, cf. [26].
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2.3. Further invariants of plane valuations. Plane valuations admit some numerical
invariants that help to study them. Since we are only interested in divisorial and irrational
valuations, we will briefly recall these invariants for the mentioned valuations. We preserve
notations as above.

First we consider the sequence of values. For each pi ∈ Cν , set mi := min{ν(ϕ) | ϕ ∈
mi\{0}}, where mi is the maximal ideal of the ring Ri = OXi−1,pi . The sequence {mi}i≥1 is
called the sequence of values of ν, and by construction of the Hamburger-Noether expansion
of ν, it can be obtained from the sequence {ν(ωi)}i≥0 by repeating hi times each value
ν(ωi) (with ω0 := u) [13, 1.5.1].

We consider also the Puiseux exponents: they are real numbers β′0, β
′
1, . . . , β

′
g+1, defined

by β′0 := 1 and for 0 ≤ j ≤ g,

β′j+1 := hsj − kj + 1 +
1

hsj+1 +
1

. ..

,

where the integers sj , hsj , hsj+1 and kj can be read off from the Hamburger-Noether
expansion of ν. The Puiseux exponents are in fact rational numbers except for β′g+1 in the
case ν is irrational.

Hence we can write β′j = pj/nj with gcd(pj, nj) = 1, ej = ν(wsj ) for 0 ≤ j ≤ g

(ws0 := w0 = u), and ri = ν(wi) for i ≥ 0, and define the characteristic sequence {βj}g+1
j=0

of ν as

β0 := e0, βj+1 := βj + (hsj − kj)ej + rsj+1,

as well as the sequence {β̄j}g+1
j=0 of maximal contact values of ν as

β̄0 := e0, β̄j+1 := njβ̄j + (hsj − kj)ej + rsj+1.

It is worth mentioning that the value semigroup S of ν (associated to R) is generated by
the set of maximal contact values of ν.

From the previous formulae for Puiseux exponents and maximal contact values, one can
deduce that nj = ej−1/ej , where ej = gcd(β̄0, β̄1, . . . , β̄j), and

β′j+1 =
β̄j+1 − nj β̄j

ej
+ 1, for 0 ≤ j ≤ g. (8)

All the previous formulae involving Puiseux exponents and maximal contact values are
also valid for curve valuations, but in this case j can only take values strictly less than g
(i.e., only β̄0, β̄1, . . . , β̄g and β′0, β

′
1, . . . , β

′
g are defined).

The dual graph of a valuation ν is an equivalent datum to the structure of its Hamburger-
Noether expansion (that is, all the rows except the specific choice of the coefficients aαβ),
cf. [13]. Both of them determine, and are determined by, the Puiseux exponents of ν. In
fact, for each i ∈ {1, 2, . . . , g}, the continued fraction expression of the rational number β′i
determines the subgraph Γi (see Figures 2, 3 and 4) and, if ν is divisorial (respectively,
irrational), β′g+1 determines the tail (respectively, the infinite subgraph Γ \ ∪g

i=1Γi); see
[13] for more details.

Each of the data — the sequence of values, Puiseux exponents, maximal contact values
and dual graph — can be obtained from any of the others [13, Theorem 1.11].
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2.4. Irrational valuations as limits of divisorial valuations. Unlike the case of di-
visorial valuations, in which we distinguish between non-normalized (ν) and normalized
(νN ) equivalent valuations, all the irrational valuations ν that we will consider in this pa-
per will be assumed to be normalized in the sense that ν(m) = 1; in this case, we use ν or
νN interchangeably.

The following result is a straightforward consequence of the proof of Theorem 6.1 in
[19]:

Proposition 2.2. Let ν be an irrational valuation and, for all i ≥ 1, let νi be the divisorial
valuation associated to the divisor Ei defined by πi in the sequence of blowing-ups (4)
corresponding to ν. Then

ν(f) = lim
i→∞

νNi (f), for all f ∈ K.

2.5. Volume and normalized volume of a valuation. Let ν be a divisorial valua-
tion. Set Cν := {pi}si=1 for the corresponding configuration of infinitely near points. The
sequence of values {mi}si=1 determines ν because of the equality

ν(ψ) =

s∑

i=1

mi ·multpi(ψ), for every ψ ∈ R. (9)

According to [17], the volume of ν is defined as

vol(ν) := lim
α→∞

length(R/Pα)

α2/2
.

Write α = r
∑s

i=1m
2
i for some r ∈ N, then length(R/Pα) =

∑s
i=1

rmi(rmi+1)
2 (cf. [9,

4.7]), and therefore

vol(ν) =

(
s∑

i=1

m2
i

)−1

=
1

ν(qg+1)
=

1

β̄g+1
.

We also define the normalized volume of ν, volN (ν), as the volume of the normalized
valuation νN , that is:

volN (ν) := vol
(
νN
)
=

β̄20
β̄g+1

.

Proposition 2.2 allows us to define the volume (or normalized volume) of an irrational
valuation ν as vol(ν) = volN (ν) := limi→∞ volN (νi), where {νi}i≥1 is the sequence of
divisorial valuations defined by the exceptional divisors appearing in the sequence (4).

2.6. Minimal valuations. Let P2 := P2
k be the projective plane over an algebraically

closed field k and fix projective coordinates X,Y,Z. For the sake of simplicity, assume
that p = p1 = (1 : 0 : 0) ∈ P2 and consider local coordinates (u, v), u = Y/X and
v = Z/X, around p. Let ν be a divisorial or irrational valuation of the fraction field of the
local ring R := OP2,p, centered at R.

For each positive integer d we denote

µd(ν) := max{ν(f) | f ∈ k[u, v] and deg(f) ≤ d},
µNd (ν) := µd(ν

N ) = max{νN (f) | f ∈ k[u, v] and deg(f) ≤ d},
as well as

µ̂(ν) := lim
d→∞

µd(ν)

d
, µ̂N (ν) := µ̂

(
νN
)
= lim

d→∞

µNd (ν)

d
.
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As stated in [15]), the following inequality holds:

µ̂(ν) ≥
√

[vol(ν)]−1; or, equivalently, µ̂N (ν) ≥
√

[volN (ν)]−1

and, accordingly, we present the following definition.

Definition 2.3. A valuation ν as above is said to be minimal if

µ̂(ν) =

√

1

vol(ν)
; or, equivalently, if µ̂N (ν) =

√

1

volN (ν)
.

3. The metric spaces of valuations Vδ and continuity of µ̂N

From now on, let us fix a curve (plane) valuation δ with Hamburger-Noether expansion
H (with respect to a fixed system of parameters (u, v)) as explained in Subsection 2.2. We
define Vδ as the set of divisorial or irrational plane valuations ν satisfying the following
conditions:

⋄ The Hamburger-Noether expansions of ν and δ coincide up to the row where wsg−2

is the left-hand side of the equality.
⋄ The row with left-hand side equal to wsg−1 has the form given in (5) and, either

all the coefficients asgβ are zero and kg = hsg (in this case ν is divisorial and this
is the last row), or this is the last free row and all the (finitely many) coefficients
asgβ coincide exactly with the corresponding coefficients of the last row of the
Hamburger-Noether expansion of δ.

In other words, Vδ consists of those divisorial and irrational valuations whose dual graph
Γ (see Figures 2 and 3) contains g subgraphs Γ1,Γ2, . . . ,Γg, the subgraph given by ∪g

i=1Γi

coincides with the one of δ, and the infinitely near points corresponding to vertices in
∪g
i=1Γi and the free part of Γ \ ∪g

i=1Γi also coincide with those of δ.
It is clear that ν ∈ Vδ is determined from both H and the Puiseux exponent β′g+1 of

ν. Notice that ν has g + 2 Puiseux exponents, {β′j}
g+1
j=0 , when either ν is divisorial and

the divisor defining ν is either free or corresponds to the vertex stg (see Figure 2), or ν is

irrational. Otherwise, ν has g + 3 Puiseux exponents, {β′j}
g+2
j=0 with β′g+2 = 1.

As a consequence, the normalized volume of a divisorial valuation ν in Vδ is either

volN (ν) = β̄20/β̄g+1 or volN (ν) = β̄20/β̄g+2 (10)

depending on which of the above two cases we are in.
When considering an irrational valuation ν ∈ Vδ, let {νi}∞i=1 be the sequence of divisorial

valuations associated to the exceptional divisors of the blowing-ups πi appearing in the
sequence (4). It is clear that there exists an index i0 such that νi belongs to Vδ for all
i ≥ i0, and has g + 3 associated Puiseux exponents; therefore

vol(ν) = volN (ν) = lim
i→∞

volN (νi) = lim
i≥i0

(β̄i0)
2

β̄ig+2

= lim
i≥i0

β̄i0
eig

β̄i0
β̄ig+1

,

where the superscript i stands for those values associated with the valuation νi, and the
equality β̄ig+2 = eigβ̄g+1 comes from Equality (8) and the fact that β′ig+2 = 1, because νi is
defined by a non-free divisor for all i ≥ i0. Notice that

lim
i≥i0

β̄i0
β̄ig+1

=
1

β̄g+1
,

where β̄g+1 is the (g + 2)-th contact maximal value associated to ν.
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Moreover, denoting by β̄δ0 the first maximal contact value of the curve valuation δ, the
quotient β̄i0/e

i
g equals β̄δ0 for all i ≥ i0, and we obtain that

vol(ν) = volN (ν) =
β̄δ0
β̄g+1

.

Inverses of the normalized volumes of valuations ν in Vδ are related with the Puiseux
exponents β′g+1 by means of an affine function, as the following result shows:

Lemma 3.1. There exist positive rational numbers A and B, depending only on the dual
graph of δ, such that [volN (ν)]−1 = A(β′g+1 − 1) +B for any valuation ν ∈ Vδ, where β′g+1

is the corresponding Puiseux exponent of ν.

Proof. Firstly, assume that ν is divisorial and is defined by either the divisor associated
with the vertex stg or a free divisor. Equality (8) implies that

β̄g+1 = (β′g+1 − 1)eg + ngβ̄g,

and by (10) it holds that

1

volN (ν)
=
β̄g+1

(β̄0)2
=

1

(β̄0)2
(β′g+1 − 1)eg +

ngβ̄g

(β̄0)2
.

Note that here eg = 1, ng = eg−1, β̄0 = β̄δ0 , eg−1/β̄0 = eδg−1/β̄
δ
0 and β̄g/β̄0 = β̄δg/β̄

δ
0 , e

δ
g−1

being the greatest common divisor of the first g maximal contact values of δ. Hence

1

volN (ν)
=

1

(β̄δ0)
2
(β′g+1 − 1) +

eδg−1β̄
δ
g

(β̄δ0)
2
. (11)

When ν is divisorial but defined by a non-free divisor which is not the one associated to
stg, it holds that β̄g+2 = ng+1β̄g+1 and so

β̄g+2 = e2g(β
′
g+1 − 1) + ng+1ngβ̄g,

which gives

1

volN (ν)
=
β̄g+2

(β̄0)2
=

(
eg

β̄0

)2

(β′g+1 − 1) +
eg−1

β̄0

β̄g

β̄0
.

Taking into account that β̄0/eg = β̄δ0 , we obtain Formula (11) in this case too.
If ν is irrational and {νi}i≥1 is the sequence of divisorial valuations associated with the

exceptional divisors of the blowing-ups πi in (4), we have that
[
volN (ν)

]−1
= lim

i→∞
[vol(νi)]

−1 and β′g+1 = lim
i→∞

β′ig+1.

This extends Formula (11) also to irrational valuations.
�

Observe that 1 is the minimum value for the Puiseux exponent β′g+1 of a valuation in

Vδ (attained for the divisorial valuation defined by the divisor associated with the vertex
stg). Therefore, by the proof of Lemma 3.1, the set of inverses of normalized volumes,
[
volN (ν)

]−1
, when ν varies in Vδ, runs over the interval

∆δ :=

[

eδg−1β̄
δ
g

(β̄δ0)
2
,+∞

)

.

Any valuation in Vδ is determined by the Puiseux exponent β′g+1. Indeed, the infinitely

near points associated with the vertices of the subgraph ∪g
i=1Γi and the free part of the
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graph Γ\∪g
i=1Γi are determined by δ; since β′g+1 allows us to recover the subgraph Γ\∪g

i=1Γi,
the remaining satellite points are determined too. This fact together with Lemma 3.1 proves
the existence of a bijection φ : ∆δ → Vδ that assigns, to each t ∈ ∆δ, the unique valuation

νt ∈ Vδ such that
[
volN (νt)

]−1
= t (see [18], where the inverse of the normalized volume

of a valuation is named skewness). Hence, we can write

Vδ = {νt}t∈∆δ
.

Moreover, we endow Vδ with a structure of metric space induced by φ and the absolute
value in ∆δ.

Proposition 3.2. With the above notation and under the assumptions in Section 2.6, for
any fixed element f ∈ R := OP2,p, the map ηf : Vδ → R, ηf (νt) = νNt (f) is Lipschitz

continuous. As a consequence, the map Vδ → R defined by νt 7→ µ̂N (νt) is also Lipschitz
continuous.

Proof. We have to prove that, for every pair of indices t1, t2 ∈ ∆δ, there exists a real
constant D, depending only on H and f , such that

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ ≤ D |t1 − t2| .

Our second statement follows easily from the fact that µ̂N (νt) = supf∈k[u,v]{νNt (f)/deg(f)}.
By the triangle inequality, we may assume that f is an analytically irreducible element.

In addition, by Lemma 3.1, denoting by β
′i
j the j-th Puiseux exponent of νti , i = 1, 2, we

can replace t1 − t2 with β
′1
g+1 − β

′2
g+1 when necessary.

Consider the embedded resolution of the germ of curve Cf given by f(u, v) = 0 and,
when necessary, successive blows-ups at the points where the germ meets the exceptional
divisor. Denote by αi

f that vertex in the dual graph of νti corresponding to the last created
divisor Eαi

f
that meets the strict transform of Cf ; for i = 1, 2, the superscript i always

refers to the valuation νti .
For a start, assume that αi

f ≤ stig. Clearly, the above inequality happens for both

indexes i because st1g = st2g := stg. Then (9), and Proposition 2.2 in the irrational case,

prove that νNt1 (f) = νNt2 (f) and the inequality in the statement holds.

From now on, assume that stg < α1
f , stg < α2

f and that the two valuations νt1 and νt2
are divisorial. The irrational case follows from the divisorial case and Proposition 2.2, so
let us restrict ourselves to the divisorial case. From [12], it can be deduced that, if Ci

denotes a suitable germ of curve in R defined by a general element of the valuation νti and
(·, ·) intersection multiplicity at p, the values νti(f) = (Ci, Cf ) only admit the following
three possibilities:

a): νti(f) = efg−1β̄
i
g + cfi e

f
geig, where cfi is the number of common free points after

stg corresponding to the dual graphs of Ci and Cf . This situation happens when
the free points in the dual graphs of Ci and Cf do not coincide up to the last free
point of one of them (which must have a satellite point after that last free point).

b): νti(f) = efg β̄ig+1, which holds when αi
f ∈ [stig+1, ℓ

i
g+1], i.e., stig+1 4 αi

f 4 ℓig+1.

c): νti(f) = eigβ̄
f
g+1, which holds when αi

f 6∈ [stig+1, ℓ
i
g+1] and it does not correspond

to a free divisor.

Let us show that the result follows for any pair coming from the above three possibilities
and the proposition will be proved. We also notice that the situation where one valuation
(say νt1) corresponds to the case a) and the other one to the case c) is not possible. This
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is so because νt1 and νt2 either have the same free points or one of them adds new ones to
the other.

Let us prove the inequality for the five remaining cases:
i) If both valuations νt1 and νt2 are in case a), then

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ = efg−1

(

β̄1g

β̄10
−
β̄2g

β̄20

)

+ efg

(

e1g

β̄10
cf1 −

e2g

β̄20
cf2

)

and since β̄1g/β̄
1
0 = β̄2g/β̄

2
0 and e1g/β̄

1
0 = e2g/β̄

2
0 = eδg/β̄

δ
0 , we get

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ ≤

efgeδg

β̄δ0

∣
∣
∣β

′1
g+1 − β

′2
g+1

∣
∣
∣ ,

where efgeδg/β̄
δ
0 depends only on H and Cf and the inequality holds from the expression of

the values β
′1
g+1 and β

′2
g+1 as continued fractions.

ii) If the valuations νt1 and νt2 are in cases a) and b) respectively, then by (8), we get
the equality

efg β̄
2
g+1 = efge

2
g(β

′2
g+1 − 1) + efgn

2
gβ̄

2
g .

Taking into account that efg−1 = efgn2g, we deduce that

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ =

∣
∣
∣
∣

νt1(f)

β̄10
− νt2(f)

β̄20

∣
∣
∣
∣
=
efge1g

β̄10

∣
∣
∣c

f
1 − (β

′2
g+1 − 1)

∣
∣
∣ ≤

efgeδg

β̄δ0

∣
∣
∣β

′1
g+1 − β

′2
g+1

∣
∣
∣ ,

which concludes this case.
iii) If the valuations νt1 and νt2 are both in case b), then

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ =

∣
∣
∣
∣

νt1(f)

β̄10
− νt2(f)

β̄20

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

efg β̄1g+1

β̄10
−
efg β̄2g+1

β̄20

∣
∣
∣
∣
∣
.

Multiplying by e1g/β̄
1
0 = e2g/β̄

2
0 = eδg/β̄

δ
0 , we obtain that

eδg

β̄δ0

∣
∣
∣
∣

νt1(f)

β̄10
− νt2(f)

β̄20

∣
∣
∣
∣
=
efgeδg

β̄δ0

∣
∣
∣
∣
∣

β̄1g+1

β̄10
−
β̄2g+1

β̄20

∣
∣
∣
∣
∣

= efg

∣
∣
∣
∣
∣

e1gβ̄
1
g+1

(β̄10)
2

−
e2gβ̄

2
g+1

(β̄20)
2

∣
∣
∣
∣
∣
= efg

∣
∣
∣

[
volN (νt1)

]−1 −
[
volN (νt2)

]−1
∣
∣
∣ = efg |t1 − t2| .

iv) If the valuation νt1 corresponds to case b) and νt2 to case c), then

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ =

∣
∣
∣
∣

νt1(f)

β̄10
− νt2(f)

β̄20

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

efg β̄1g+1

β̄10
−
e2gβ̄

f
g+1

β̄20

∣
∣
∣
∣
∣
.

Now, on the one hand, it holds that

efg β̄1g+1

β̄10
=
e1gβ̄

f
0

β̄10
·
β̄1g+1

β̄10
= β̄f0

(

e1gβ̄
1
g+1

(β̄10)
2

)

.

On the other hand, we get

e2gβ̄
f
g+1

β̄20
= β̄f0

(

e2gβ̄
f
g+1

β̄f0 β̄
2
0

)

= β̄f0

(

e2ge
f
g β̄

f
g+1

β̄f0 β̄
2
0e

f
g

)

.
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Formula (8) implies that

β̄fg+1

efg
=
(

β
′f
g+1 − 1

)

+
nfg β̄

f
g

efg
=
(

β
′f
g+1 − 1

)

−
(

β
′2
g+1 − 1

)

+
β̄2g+1

e2g
,

because (nfg β̄
f
g )/e

f
g = (n2gβ̄

2
g )/e

2
g. Thus

e2gβ̄
f
g+1

β̄20
= β̄f0

(

e2ge
f
g

β̄f0 β̄
2
0

)(

β̄2g+1

e2g
+ η

)

,

where η = β
′f
g+1 − β

′2
g+1. Since efg/β̄

f
0 = e2g/β̄

2
0 , we get

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ ≤

∣
∣
∣
∣
∣
β̄f0
e1gβ̄

1
g+1

(β̄10)
2

− β̄f0
e2ge

f
g β̄2g+1

β̄f0 β̄
2
0e

2
g

+
e2ge

f
g

β̄20
η

∣
∣
∣
∣
∣

≤ β̄f0

∣
∣
∣
∣
∣

e1gβ̄
1
g+1

(β̄10)
2

−
e2gβ̄

2
g+1

(β̄20)
2

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

e2ge
f
g β̄

f
0

β̄20 β̄
f
0

η

∣
∣
∣
∣
∣

= β̄f0

∣
∣
∣

[
volN (νt1)

]−1 −
[
volN (νt2)

]−1
∣
∣
∣+

(efg )2β̄
f
0

(β̄f0 )
2

∣
∣
∣β

′f
g+1 − β

′2
g+1

∣
∣
∣ .

This concludes the proof in this case because it holds that β
′1
g+1 < β

′f
g+1 < β

′2
g+1 and, as a

consequence, ∣
∣
∣β

′f
g+1 − β

′2
g+1

∣
∣
∣ ≤

∣
∣
∣β

′1
g+1 − β

′2
g+1

∣
∣
∣ .

Indeed, the former chain of inequalities can be deduced from the position of the vertices
α1
f and α2

f within the dual graphs of νt1 and νt2 , and the fact that the continued fraction

given by the value β
′1
g+1 (respectively, β

′2
g+1, β

′f
g+1) determines the subgraph Γg+1 of the

dual graph of νt1 (respectively, νt2 , Cf ).
v) If both valuations are in case c), the result follows easily, since

∣
∣νNt1 (f)− νNt2 (f)

∣
∣ =

∣
∣
∣
∣

νt1(f)

β̄10
− νt2(f)

β̄20

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

e1gβ̄
f
g+1

β̄10
−
e2gβ̄

f
g+1

β̄20

∣
∣
∣
∣
∣
= 0,

which finishes our proof. �

From the above proposition, it can be deduced that the map Vqm → R, given by ν 7→
µ̂N (ν), is continuous, where Vqm is the tree of divisorial, curve and irrational valuations
endowed with the strong topology of [18]. This fact will not be used in this paper.

4. A Nagata-type conjecture for divisorial and irrational valuations

In this section, we consider divisorial and irrational valuations of the fraction field of
R = OP2,p centered at R, and use the notations given in Section 2.6.

4.1. Very general valuations. Let ν be as above and let Γ be its dual graph. Con-
sider the set VΓ of plane valuations whose dual graph is Γ. Notice that the Hamburger-
Noether expansions of valuations in VΓ have the same structure, that is, the same values
g, s1, s2, . . . , sg, k1, k2, . . . , kg, h0, h1, . . . , hsg , . . . and the same number and size of free rows
(they differ only in the coefficients asiki). In fact different choices of coefficients give rise
to different valuations in VΓ. Since the coefficients asiki , 1 ≤ i ≤ g − 1, and asgkg , when-
ever its corresponding row is free, must be different from 0, the set VΓ can be identified
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with the set of closed points of a Zariski open subset UΓ of the affine space A
b(Γ)
k , where

b(Γ) := h0 +
∑g′

j=1(hj − kj + 1), g′ being equal to g (respectively, g − 1) if the row whose

left-hand side equals wsg−1 is free (respectively, otherwise).

Proposition 4.1. Let Γ be the dual graph of a divisorial or irrational valuation. Then,
for each positive integer d, the function VΓ → R, given by ν 7→ µd(ν), gives rise (via the
above identification) to an upper semicontinuous function φ : UΓ → R.

Proof. It is enough to prove that, for any α ∈ R, the preimage φ−1[α,+∞) is Zariski-closed.
Consider a ∈ UΓ and νa its corresponding valuation. As mentioned, the Hamburger-

Noether expansion of νa provides parametric equations u = ua(t, z), v = va(t, z), where
ua(t, z), va(t, z) ∈ k[[t, z]] (respectively, u = ua(t), v = va(t), where ua(t), va(t) ∈ k〈t〉),
when ν is divisorial (respectively, irrational). These equations allow us to compute the
valuation ν(f) for any f ∈ R as follows: ν(f) = ordt[f(ua(t, z), va(t, z))] (respectively,
ν(f) = ordt[f(ua(t), va(t))]) in case ν is divisorial (respectively, irrational).

Since the series involved in the above parameterizations have a finite number of non-zero
terms, there exists a real number M (that depends only on Γ and d) such that the series
which can be obtained by expressions f(ua(t, z), va(t, z)) (respectively, f(ua(t), va(t))),
where f is a polynomial in k[u, v] whose degree is not larger than d and a ∈ UΓ, belong
to the finite-dimensional vector subspace Q of k[[t, z]] (respectively, k〈t〉) generated by
monomials of degree less than or equal to M .

To finish, consider the map ψ : UΓ×k[u, v]d → Q defined by ψ(a, f) = f(ua(t, z), va(t, z))
(respectively, ψ(a, f) = f(ua(t), va(t))) if Γ corresponds to a divisorial (respectively, irra-
tional) valuation. The set {(a, f) ∈ UΓ × k[u, v]d | νa(f) ≥ α} is Zariski-closed because it
coincides with the pre-image ψ−1(S), by ψ, of the set S := {γ ∈ Q | ordt(γ) ≥ α} which
is, clearly, a Zariski-closed subset of Q. Since ψ−1(S) is closed under scalar multiplication
on the second component, it determines a Zariski-closed subset of UΓ × P(k[u, v]d), whose
projection to UΓ is {a ∈ UΓ | µd(νa) ≥ α} = φ−1([α,+∞)), which concludes the proof. �

Definition 4.2. Let Γ be dual graph of a divisorial or irrational valuation. We will say
that a property S holds for a general (respectively, very general) valuation in VΓ if there
exists a finite (respectively, countable) collection of Zariski-open subsets of UΓ such that S
holds for every valuation in the intersection of those sets.

For simplicity, when in a statement we say that a divisorial or irrational valuation ν is
general (respectively, very general), we mean that certain property given in the statement
(which is implicitly understood) holds for a general (respectively, very general) valuation
in VΓ, where Γ is the dual graph of ν.

An immediate consequence of Proposition 4.1 is the following corollary.

Corollary 4.3. Let Γ be the dual graph of a divisorial or irrational valuation ν. Then
µ̂N (ν) takes its smallest value for very general valuations in VΓ.

4.2. The conjecture. Let (C, r) be a finite weighted configuration over P2, that is, a pair
such that C is a finite configuration of infinitely near points of P2 and r is a map that
assigns, to each point p ∈ C, a non-negative integer rp called its multiplicity. Assume also
that the weighted configuration is consistent, that is, rp ≥

∑

q→p rq for all p ∈ C. Consider
also the ideal sheaf

H(C,r) := π∗OX



−
∑

p∈C
rpE

∗
p



 ,



18 CARLOS GALINDO, FRANCISCO MONSERRAT AND JULIO-JOSÉ MOYANO-FERNÁNDEZ

where π : X → P2 denotes the composition of the blowing-ups centered at the points of
C and each E∗

p denotes the total transform on X of the exceptional divisor given by the
blowing-up centered at p.

If d is a large enough positive integer, it holds that

h0(P2,OP2(d)⊗H(C,r)) =
(d+ 1)(d + 2)

2
−
∑

p∈C

rp(rp + 1)

2
.

The following conjecture is proposed in [24] and predicts that, when the weighted con-
figuration is general enough, the dimension of the space of global sections of the sheaf
OP2(d)⊗H(C,r) has the expected value (given by the above formula).

Conjecture 4.4. Assume that k = C. Let (C, r) be a consistent finite weighted con-
figuration of the projective plane. Suppose that (C, r) is general among all the weighted
configurations with the same proximities and let d be an integer which is larger than the
sum of the three biggest multiplicities involved in C. Then

h0
(
P2,OP2(d)⊗H(C,r)

)
= max






0,

(d+ 1)(d+ 2)

2
−
∑

p∈C

rp(rp + 1)

2






.

Our purpose now is to prove that the above conjecture implies the following one for very
general valuations:

Conjecture 4.5. Assume that k = C. If ν is a very general divisorial or irrational

valuation such that
[
volN (ν)

]−1 ≥ 9, then ν is minimal.

Remark 4.6. In [15] it is proved that Conjecture 4.4 implies the same statement as
in Conjeture 4.5 but, only, for what the authors call quasi-monomial valuations; in our
terminology, these are those valuations ν such that: either ν is irrational and the number
g + 2 of its Puiseux exponents is 2, or it is divisorial and either g + 2 = 2, or g + 2 = 3
and ν is defined by a satellite divisor (notice that this notion of quasi-monomial valuations
does not coincide with the one given in [18]).

Given a finite configuration C = {pi}si=1 as above, consider the sequence of blowing-ups
π : X → P2 centered at the points of C and denote by E∗

i the total transform on X of
the exceptional divisor Ei of the blowing-up centered at pi. For each i, 1 ≤ i ≤ s, let
Di :=

∑s
j=1mijE

∗
j be the divisor on X given by the sequence of values {mij}ij=1 of the

valuation defined by the divisor Ei and mij = 0 whenever j > i. Consider also the s × s-
matrix GC = (gij), defined by gij = −9Di ·Dj−(KX ·Di)(KX ·Dj) for all i, j ∈ {1, 2, . . . , s},
where KX denotes the canonical divisor.

Definition 4.7. A finite configuration C is P-sufficient if xGCx
t > 0 for all x ∈ Rs \ {0}

with non-negative coordinates.

The cone of curves of a surface X obtained by blowing-up at the points of a P-sufficient
configuration is (finite) polyhedral [21, Theorem 2]. For proving that Conjecture 4.4 implies
Conjecture 4.5, we will use the following weaker concept.

Definition 4.8. A finite configuration C as above is almost P-sufficient if xGCx
t ≥ 0 for

all x ∈ Rs with non-negative coordinates.

An unibranch finite configuration C is P-sufficient if and only if the (s, s)-entry of the
matrix GC is strictly positive. That is to say, if and only if 9

∑s
j=1mj − (

∑s
j=1mj)

2 > 0,
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where, for simplicity, we have set mj = mjs. This fact was proved in [21, Lemma 2] and
an analogous proof allows us to show that, C unibranch is almost P-sufficient if and only
if 9
∑s

j=1mj − (
∑s

j=1mj)
2 ≥ 0.

Lemma 4.9. Assume that k = C. Let ν be a very general divisorial valuation, let {β̄i}g+1
i=0

be its maximal contact values and assume that the configuration Cν is almost P-sufficient.
If Conjecture 4.4 holds then µ̂(ν) ≤ 3β̄0.

Proof. Suppose that Cν = {pi}si=1 and let {mi}si=1 be the sequence of values of ν. Let
d be a large enough positive integer. Take a polynomial f(u, v) of degree d such that
f(0, 0) = 0 and denote by Cf the projective curve of P2 of degree d defined by f . For each
i ∈ {1, 2, . . . , s}, let ri be the multiplicity of the strict transform of Cf at pi.

Let Xν be the surface obtained after blowing-up the points in Cν . Denote by C̃f the

strict transform of Cf in Xν , then C̃2
f = d2 −∑s

i=1 r
2
i . Since Cν is almost P-sufficient,

reasoning as in the proof of [20, Lemma 2], we deduce that 9
∑s

i=1 r
2
i − (

∑s
i=1 ri)

2 ≥ 0,
and so

9(d2 − C̃2
f ) ≥

(
s∑

i=1

ri

)2

.

Then

[ν(f)]2 =

(
s∑

i=1

miri

)2

≤ β̄20

(
s∑

i=1

ri

)2

≤ 9β̄20

(

d2 − C̃2
f

)

. (12)

By Conjecture 4.4 we have that

(d+ 1)(d + 2)

2
−

s∑

i=1

ri(ri + 1)

2
≥ 1,

that is equivalent to

C̃2
f ≥

s∑

i=1

ri − 3d.

In particular, C̃2
f ≥ −3d and, then, by (12):

[ν(f)]2 ≤ 9β̄20(d
2 + 3d).

This implies that µd(ν) ≤ 3β̄0
√
d2 + 3d (for every positive integer d) and therefore µ̂(ν) ≤

3β̄0. �

We will also use the following straightforward result.

Lemma 4.10. Let ν be a divisorial valuation, and d and α positive integers such that the
cohomology H0(P2,OP2(d)⊗ Pα) vanishes. Then, µd(ν) < α.

Proof. On the contrary, suppose that µd(ν) ≥ α. Then there exists a polynomial f(x, y)
of degree less than or equal to d such that ν(f) ≥ α. But this defines a non-zero global
section of OP2(d)⊗ Pα, a contradiction. �

Theorem 4.11. Conjecture 4.4 implies Conjecture 4.5.

Proof. Consider a curve valuation δ whose first centers are those in Cν up to its last free
point (which is included) and the remaining centers are free. By Proposition 3.2, one can

suppose that
[
volN (ν)

]−1
> 9 and ν is divisorial.
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Let {mi}si=1 be the sequence of values of ν and let {β̄i}g+1
i=0 be its sequence of maximal

contact values. For each k ∈ N, define dk := ⌊k(β̄g+1)
1/2⌋ and consider the weighted

configuration Kν,k := (Cν , (kmi)
s
i=1). Notice that dk > 3kβ̄0 for k large enough. If αk :=

kβ̄g+1, by [15, Lemma 2.5] one has that Pαk
= π∗OXν (−

∑s
i=1 kmiE

∗
i ) and, therefore,

Pαk
= HKν,k

, where π : Xν → P2 is the composition of the blowing-ups centered at the
points in Cν .

Assume that k is large enough. If we prove that h0(P2,OP2(dk) ⊗ Pαk
) = 0 then, by

Lemma 4.10, we get that µdk(ν) < αk and, therefore,

µ̂(ν) = lim
k→∞

µdk(ν)

dk
≤ lim

k→∞

αk

dk
=
√

β̄g+1,

concluding the equality µ̂(ν) =
√

β̄g+1.

Hence, it only remains to show that the inequality h0(P2,OP2(dk) ⊗ Pαk
) ≥ 1 cannot

hold. Reasoning by contradiction, since 3kβ̄0 is an upper bound of the sum of the three
largest multiplicities in {kmi}si=1, by Conjecture 4.4, it holds that:

(dk + 1)(dk + 2)

2
−

s∑

i=1

kmi(kmi + 1)

2
≥ 1.

Taking into account that dk ≤ (β̄g+1)
1/2k and that

∑s
i=1m

2
i = β̄g+1, it is straightforward

to check that the left hand side of the above inequality is less than or equal to

1

2

(

3k
√

β̄g+1 − k

s∑

i=1

mi + 2

)

and, therefore,

3
√

β̄g+1 −
s∑

i=1

mi ≥ 0,

which implies that

9

s∑

i=1

m2
i −

(
s∑

i=1

mi

)2

≥ 0.

This shows that Cν is an almost P-sufficient configuration. Therefore, since µ̂(ν) ≤ 3β̄0
by Lemma 4.9, we get that

√

β̄g+1 ≤ µ̂(ν) ≤ 3β̄0

and, as a consequence,
[
volN (ν)

]−1 ≤ 9, which gives the desired contradiction. �

5. Families of minimal valuations

In this section, we consider a large family of divisorial valuations ν over the projective
plane for which we are able, on the one hand, to compute explicitly the value µ̂(ν), and
on the other hand, to determine a subset of minimal valuations. These facts, via semicon-
tinuity, give rise to a large family of very general divisorial valuations for which an upper
bound of µ̂(ν) is provided, and a subset of minimal very general valuations is obtained.
Every mentioned family and subfamily contains valuations with arbitrarily many Puiseux
exponents.

Throughout this section, we will use the notation as in Section 2.6: p = (1 : 0 : 0) ∈ P2

in projective coordinates (X : Y : Z), (u = Y/X, v = Z/X) are local coordinates around
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p and (x = X/Z, y = Y/Z) are coordinates in the affine chart defined by Z 6= 0; also, the
line L defined by Z = 0 will be called the line at infinity. Notice that v = 0 is a local
equation of L at p.

Definition 5.1. A plane divisorial valuation ν, of the quotient field K of the ring R =
OP2

k
,p and centered at R, is said to be non-positive at infinity whenever ν(f) ≤ 0 for any

element f ∈ k[x, y] \ {0}, where (x, y) are affine coordinates in the chart Z 6= 0.

Remark 5.2. Notice that if a plane divisorial valuation ν as above is non-positive at
infinity, then either it is the m-adic valuation (where m is the maximal ideal of R) or
ν(v) > ν(u).

Valuations non-positive at infinity have an easy characterization:

Proposition 5.3. Let ν be a plane divisorial valuation of K centered at R which is not
the m-adic one. Let β̄g+1 be the last maximal contact value of ν. Then ν is non-positive
at infinity if, and only if, ν(v) > ν(u) and the inequality ν(v)2 ≥ β̄g+1 holds.

The above result was proved in [22, Theorem 1], where good geometrical properties of
surfaces defined by non-positive valuations are proved and it is characterized when the Cox
ring of those surfaces is finitely generated.

The following result provides the value of µ̂ (see Section 2.6) for valuations non-positive
at infinity.

Proposition 5.4. If ν is a valuation non-positive at infinity, then µ̂(ν) = ν(v).

Proof. We are going to show that, for any positive integer d, it holds that µd(ν) = dν(v),
which concludes the proof. Indeed, let g(u, v) be a polynomial in k[u, v] of degree d. Then
g(u, v) = g(y/x, 1/x) and there exists a polynomial g̃(x, y) ∈ k[x, y] such that

g(u, v) =
g̃(x, y)

xd
.

Therefore, on the one hand, ν(g) = ν(g̃) − dν(x) = ν(g̃) + dν(v) ≤ dν(v), where the
inequality holds because g̃ ∈ k[x, y] and ν is non-positive at infinity and, on the other
hand, ν(vd) = dν(v), proving that µd(ν) = dν(v) and the result. �

As a consequence of the above proposition and semicontinuity (Corollary 4.3), we get
an upper bound for µ̂ for a wide class of very general divisorial plane valuations.

Theorem 5.5. Let ν be a very general divisorial plane valuation (which is not the m-adic

one), let {β̄i}g+1
i=0 be its sequence of maximal contact values and assume that β̄21 ≥ β̄g+1.

Then µ̂(ν) ≤ β̄1. If, in addition, the set Aν := {a ∈ Z | 1 ≤ a ≤ ⌊β̄1/β̄0⌋ and a2β̄20 ≥ β̄g+1}
is not empty, then µ̂(ν) ≤ β̄0 ·min(Aν).

Proof. Let ν be a plane valuation satisfying the conditions of the statement and let Γ be
its dual graph.

Assume first that Aν is empty. Let ν ′ be a valuation in VΓ (see Section 4 for the
definition) such that the strict transforms of the line at infinity pass through all the initial
free points in Cν′ . Then ν ′(v) = β̄1 and, therefore, ν ′ is non-positive at infinity (by
Proposition 5.3). Then µ̂(ν ′) = β̄1 by Proposition 5.4 and, using semicontinuity (Corollary
4.3), it holds that µ̂(ν) ≤ µ̂(ν ′) = β̄1.

It remains to consider the case when Aν is not empty. Then there exists a valuation
ν ′′ ∈ VΓ such that the strict transforms of the line at infinity pass through the first min(Aν)
free points in Cν′′ . Moreover ν(v) = β̄0·min(Aν) and, therefore, ν ′′ is non-positive at infinity
(by Proposition 5.3). Reasoning as before, µ̂(ν) ≤ µ̂(ν ′′) = β̄0 ·min(Aν). �
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The following result is a direct consequence of Propositions 5.3 and 5.4; it shows how to
construct minimal valuations, non-positive at infinity. For stating it, we say that a plane
divisorial valuation of K centered at R, ν2, enlarges another valuation ν1 whenever the
inclusion Cν1 ⊆ Cν2 , of their corresponding sequences of infinitely near points, holds.

Proposition 5.6. Let be a plane valuation ν non-positive at infinity (not the m-adic one)
and denote by β̄g+1 its last maximal contact value. Then, any divisorial valuation ν ′

enlarging ν and such that Cν′ \ Cν consists of ν(v)2 − β̄g+1 free points is minimal.

Remark 5.7. Notice that the m-adic valuation is minimal.

Proposition 5.8. There is no minimal plane valuation ν non-positive at infinity defined
by a satellite divisor.

Proof. Let {β̄0, β̄1, . . . , β̄g+1} be the sequence of maximal contact values of a minimal non-
positive at infinity plane divisorial valuation ν defined by a satellite divisor. It is clear that
either ν(v) = aβ̄0 for some positive integer a or ν(v) = β̄1, depending on the infinitely near
points in Cν through which the strict transforms of the line at infinity L pass. Since ν is
defined by a satellite divisor, one gets β̄g+1 = ngβ̄g, where ng = gcd(β̄0, β̄1, . . . , β̄g−1).

Now, when ν(v) = aβ̄0, from the fact that ν is minimal, we obtain a2β̄20 = ngβ̄g and so
(
a2β̄0
ng

)

β̄0 = β̄g,

which is a contradiction because a2β̄0/ng is a positive integer and β̄g does not belong to
the semigroup generated by {β̄0, β̄1, . . . , β̄g−1}.

When µ(v) = β̄1, we also get a contradiction since β̄21 = ngβ̄g is not possible because
(β̄1/ng)β̄1 = β̄g and β̄1/ng is a positive integer. �

The next theorem provides a wide family of minimal very general divisorial valuations,
and its proof is straightforward by semicontinuity (Corollary 4.3) from Proposition 5.6.

Theorem 5.9. Let ν and ν ′ be as in Propositon 5.6 and let Γν′ be the dual graph associated
to ν ′. Then, very general valuations in VΓν′

are minimal.

Now, we will give an explicit description of the family of valuations provided in the
preceding theorem. For this purpose, fix a plane divisorial valuation ω (which is not the

m-adic one) and let {β̄i}g+1
i=0 be its sequence of maximal contact values. Let Γω be its dual

graph and, for each positive integer k, denote by Γ(k) the dual graph of any divisorial
valuation η whose configuration Cη has cardinality k and all its points are free.

We define a new dual graph, Γω,k, obtained in the following way: Re-label the vertices
of Γω adding k to each label, and join with an edge the last vertex of Γ(k) and the root
of Γω. Γω,k is the obtained rooted tree after considering the root of Γ(k) as the new root
(see Figure 6). Define Γω,0 := Γω.

Consider the real number ι(ω) := 1
2β̄0

[

β̄0 − 2β̄1 +
√

β̄20 − 4β̄0β̄1 + 4β̄g+1

]

. Also, for

each non-negative integer k ≥ ι(ω), consider the set

Bω,k :=

{

a ∈ Z |
√

β̄g+1

β̄20
+ k ≤ a <

β̄1
β̄0

+ k

}

∪
{
β̄1
β̄0

+ k

}

and, for each a ∈ Bω,k, define Γa
ω,k the graph obtained as follows: Add n to the labels of

all vertices of the graph Γ((a2 − k)β̄20 − β̄g+1), where n is the number of vertices of Γω,k,
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k. . .21 . . .

...

ℓ1 + k

st1 + k1 + k . . .

...

. . .

︸ ︷︷ ︸

Γω with re-labeled vertices
︸ ︷︷ ︸

Γ(k)

Figure 6. Graph Γω,k

and join with an edge the last vertex of Γω,k with the root of Γ((a2 − k)β̄20 − β̄g+1). Γa
ω,k

is the obtained rooted tree, whose root is the one of Γω,k.

Theorem 5.10. Keeping the preceding notations, it holds that for each divisorial valuation
ω (which is not the m-adic one), for each non-negative integer k ≥ ι(ω) and for each value
a ∈ Bω,k, very general valuations in VΓa

ω,k
are minimal.

Proof. Let ω, k and a be as in the statement. If ν is any valuation in VΓω,k
, its sequence

of maximal contact values is
{

β̄0, β̄1 + kβ̄0, . . . , β̄i + k
β̄20
ei−1

, . . . , β̄g + k
β̄20
eg−1

, β̄g+1 + kβ̄20

}

.

This follows, by using Noether’s formula, from the fact that each maximal contact value
attached to ν, β̄νi , coincides with the intersection multiplicity at p between a general
element of ν and an analytically irreducible germ of curve whose strict transform by the
sequence π, given by ν, becomes regular and transversal to the exceptional divisor Eli (see
Figure 2). Notice that we denote by Elg+1

the exceptional divisor defining ν.

It holds that

√

β̄g+1

β̄2
0

+ k ≤ β̄1

β̄0
+ k because k ≥ ι(ω). Assume first that

√

β̄g+1

β̄20
+ k ≤ a <

β̄1

β̄0
+ k. (13)

By the second inequality in (13) and since β̄1 + kβ̄0 is the second maximal contact value
of ν, Cν has, at least, a + 1 initial free points. So, we can add the assumption that the
strict transforms of the line at infinity L pass exactly through the first a (free) points
in Cν . This means that ν(v) = aβ̄0 and, by the first inequality in (13), the inequality
ν(v)2 ≥ β̄g+1 + kβ̄20 holds. Therefore ν is non-positive at infinity. Enlarging ν, by adding
to Cν

ν(v)2 − (β̄g+1 + kβ̄20) = (a2 − k)β̄20 − β̄g+1

free points, we obtain, by Proposition 5.6, a minimal valuation ν ′, whose associated dual
graph is Γa

ω,k. As a consequence, by Corollary 4.3, very general valuations in VΓa
ω,k

are

minimal.
To finish we consider the remaining case, where a = (β̄1/β̄0) + k. Pick the valuation

ν with the condition that the strict transforms of the line at infinity L pass through
all the initial free points in Cν . Then ν(v) = β̄1 + kβ̄0, and taking into account that
(β̄1 + kβ̄0)

2 ≥ β̄g+1 + kβ̄20 if, and only if, k ≥ ι(ω), condition that is fulfilled, we conclude
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that ν is non-positive at infinity. Reasoning as before, we also deduce that very general
valuations in VΓa

ω,k
are minimal.

�

The following result, already proved in [15], can be trivially derived from the preceding
theorem.

Corollary 5.11. If ν is a very general divisorial valuation such that Cν consists of t2 free
points for some t ∈ Z>0, then ν is minimal.

Proof. It follows by Theorem 5.10 after taking into account that the dual graph of ν is
Γt
ν,0. �

Remark 5.12. The instrumental valuations used in the proof of Theorem 5.10 correspond
with valuations ν ′ provided in Theorem 5.9. In fact, they are exactly the same ones. Indeed,
consider ν and ν ′ as in Theorem 5.9 and let {β̄i}g+1

i=0 be the sequence of maximal contact
values of ν. Since ν is non-positive at infinity, one has that ν(v) = aβ̄0 and ν(v)2 ≥ β̄g+1,
where either a is a positive integer such that 1 ≤ a < β̄1/β̄0, or a = β̄1/β̄0. Then it is clear
that the dual graph of ν ′ is Γa

ν,0.

6. An asymptotic result

By Proposition 5.8, we cannot use valuations non-positive at infinity defined by satellite
divisors for obtaining, via semicontinuity, minimal very general valuations. However, the
next theorem provides an asymptotic result concerning the values µ̂N (ν), where ν is a very
general quasi-monomial valuation in the sense of the definition given in [15] (see Remark
4.6). Before stating it, notice that the dual graph of such a valuation ν is completely
determined by the value [volN (ν)]−1, which is β̄1/β̄0, where β̄0 and β̄1 are the first two
maximal contact values of ν. Therefore, for each positive real number t, we can denote by
Θt the dual graph of a valuation ν as above such that [volN (ν)]−1 = t.

Theorem 6.1. Consider, for each positive real number t, a very general valuation νt ∈ VΘt.
Then

lim
t→∞

µ̂N (νt)√
t

= 1.

Proof. Notice that, by Proposition 3.2, we can assume that t runs over the set of rational
numbers. So, let t ≥ 2 be a positive rational number and let ωt be a (divisorial) valuation
in VΘt such that the strict transforms of the line at infinity pass exactly through the first
⌈√

t
⌉

points of the configuration Cωt . This means that ωt(v) =
⌈√

β̄1/β̄0

⌉

β̄0, where β̄0 and

β̄1 are the first two maximal contact values of ωt. Notice that [ωt(v)]
2 ≥ t and, therefore, ωt

is non-positive at infinity. Hence µ̂N (ωt) =
⌈√

t
⌉

by Proposition 5.4, and thus the quotient

µ̂N (ωt)√
t

=

⌈√
t
⌉

√
t

converges to 1 when t tends to infinity. Finally, by Corollary 4.3 we have that

µ̂N (νt)√
t

≤ µ̂N (ωt)√
t

and the result follows because the quotient µ̂N (νt)√
t

is greater than or equal to 1. �
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