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Abstract. It is well-known that a foliation by curves of degree greater than or equal to

two, with isolated singularities, in the complex projective space of dimension greater than or
equal to two, is uniquely determined by the scheme of its singular points. The main result

in this paper is that the set of foliations which are uniquely determined by a subscheme (of

the minimal possible degree) of its singular points, contains a nonempty Zariski-open subset.
Our results hold in the projective space defined over any algebraically closed ground field.

1. Introduction and statement of the results

Let Pn = PnK be the projective space of dimension n ≥ 2 over an algebraically closed ground
field K and let OPn ,ΘPn and H denote its structure, tangent and hyperplane sheaves. For an
OPn -sheaf E , we will write E(d) for E ⊗H⊗d, if d ≥ 0 and E ⊗ (H∗)⊗|d|, if d < 0.

Let

(1.1) E = E(n, r − 1) = H0(Pn,ΘPn(r − 1)), and e = e(n, r − 1) = dimKE.

A foliation by curves with singularities (or simply a foliation in the sequel) of degree r on Pn is
the class [s] ∈ PE of a global section s ∈ E. We denote the scheme of zeroes of [s] by ([s])0. We
say [s] has isolated singularities if dim ([s])0 = 0 and we say is non-degenerate, if it has isolated
singularities and ([s])0 is reduced.

It is known that a foliation [s] of degree r ≥ 2 in Pn with isolated singularities is uniquely
determined by ([s])0, in the sense that ([s′])0 ⊇ ([s])0 for some [s′] of degree r, implies that
[s′] = [s] (that is, s′ = λ · s, for some λ ∈ K∗): For K = C, the result was first established for [s]
non-degenerate, in [10] and the general statement was later obtained in [6]. For an algebraically
closed ground field K, it was established for n = 2 in [5], and the general version was finally
established in [1].

Let [s] be a foliation of degree r > 2 in Pn, with isolated singularities. At least if K = C,
there always exist proper subschemes Z ⊂ ([s])0 such that [s] is uniquely determined by Z in
the sense that ([s′])0 ⊇ Z for some [s′] of degree r, implies that [s′] = [s]. This is the content
of Proposition 1.1 below. Given n ≥ 2, and r ≥ 2, the degree of such subschemes Z is bounded
from below by a certain integer m(n, r − 1) which we compute in Lemma 1.2 below. The main
result of the paper, Theorem 1.3 below, is that the set of foliations [s] (with isolated singularities
or not) which are uniquely determined by a Z ⊂ ([s])0 having this minimal degree contains a
nonempty Zariski open subset of PE.

Our main reference is [3]. Our notation comes from there.
Let U ⊂ Pn be an open affine that trivializes ΘPn(r − 1), and let p ∈ U . The restriction of a

section s ∈ E to U is an affine vector field ŝ = (s1, . . . , sn). The multiplicity µ(s, p) of s at p, is
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the intersection multiplicity at p of the hypersurfaces sj = 0, i.e., the vector-codimension in the
local ring OPn,p of the ideal generated by {sj}nj=1:

(1.2) µ(s, p) = dimKOPn,p/(s
1, ..., sn) · OPn,p.

It is clear that µ(s, p) = µ(λs, p), for every λ ∈ K∗, so that µ([s], p) = µ(s, p) is well-defined and,
moreover, that p is a singularity of [s] if and only if µ(s, p) 6= 0 and that µ(s, p) is non-zero and
finite if and only if p is an isolated singularity of [s]. Moreover, [s] is non-degenerate if and only
if µ([s], p) = 1, for every p ∈ ([s])0.

It follows from the Euler sequence

(1.3) 0 −→ OPn(r − 1) −→ OPn(r)⊕(n+1) Π∗−→ ΘPn(r − 1) −→ 0,

that e = (n+ 1)
(
n+r
n

)
−
(
n+r−1
n

)
and that a foliation [s] with isolated singularities has

deg([s])0 = cn(ΘPn(r − 1)) =

n∑
j=0

rj

zeroes, counting multiplicities.
The subsets Und ⊂ U0 of foliations which are non-degenerate resp. have isolated singularities

are both non-empty Zariski-open in PE.
The sheaf of ideals of a closed subscheme Z ⊂ Pn will be denoted by IZ . For a zero-dimensional

subscheme Y ⊂ Pn, the space of sections H0(Pn,ΘPn⊗IY (r−1)) that vanish on Y will be denoted
by

(1.4) EY = H0(Pn,ΘPn ⊗ IY (r − 1)), with eY = dimKEY .

If Y has degree y and it is reduced, we may consider it as a point in the symmetric product
SyPn.

Our first result generalizes [7, Corollary 3.3]:

Proposition 1.1. Let n ≥ 2 and r ≥ 2 be integers, let [s] be a foliation with isolated singularities
of degree r in the complex projective space Pn, and let s1 ∈ H0(Pn,ΘPn(r− 1)) be a section that
vanishes at a subscheme Z ′ ⊂ ([s])0 whose degree satisfies degZ ′ ≥ deg([s])0 − (n(r − 1) − r).
Then s1 = λs for some λ ∈ C∗ and hence [s1] = [s].

Lemma 1.2. Let n ≥ 2 and r ≥ 2, be integers, let e be given by (1.1). Let ω = ω(n, r−1) = [e−1
n ]

be the integral part of the number between brackets and let 0 ≤ ρ ≤ n − 1 be the unique integer
such that e− 1 = n · ω + ρ.

Let Y be a zero-dimensional closed subscheme of Pn of degree y, and assume that

eY = h0(Pn,ΘPn ⊗ IY (r − 1)) = 1.

Then y ≥ ω, if ρ = 0 and y ≥ ω + 1, if 1 ≤ ρ ≤ n − 1. In consequence, the minimal possible
degree m(n, r − 1) of a zero-dimensional subscheme Y ⊂ ([s])0 such that eY = 1 is

m(n, r − 1) =

{
ω if ρ = 0 , and

ω + 1 if 1 ≤ ρ ≤ n− 1.

Theorem 1.3. Let n ≥ 2 and r ≥ 2, be integers. Let ω = [e−1
n ] and 0 ≤ ρ ≤ n − 1 be as in

Lemma 1.2, and eY , as in (1.4).

(a) If ρ = 0, then the subset

Bω = {[s] ∈ PE | ∃Y ∈ SωPn with Y ⊂ ([s])0 and PEY = {[s]}}
contains a nonempty Zariski-open subset Vω of PE.
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(b) If 1 ≤ ρ ≤ n− 1, then the subset

Bω+1 = {[s] ∈ PE | ∃Y 1 ∈ Sω+1Pn with Y 1 ⊂ ([s])0 and PEY 1 = {[s]}}
contains a nonempty Zariski-open subset Vω+1 of PE.

It follows in particular that for U = Und or U0 and V = Vω or Vω+1 (depending on (a) or (b)
above, resp.), the subsets U

⋂
V are nonempty Zariski-open subsets of PE.

2. The proofs

Proof of Proposition 1.1. Consider X = Pn, E = ΘPn(r − 1), Z = (s)0 and a fixed divisor L of
degree ` on Pn. It is then clear that detE = OPn(nr + 1) and that F in the complete linear
system |detE − L| has degree nr + 1 − ` = r + 1 if and only if ` = (n − 1)r. Hence, the linear
system |KPn +L| = PH0(Pn,OPn(`− (n+ 1))) = PH0(Pn,OPn(n(r−1)− r−1))) is (k−1)−very
ample [14, Definition 1.1] if and only if k = n(r − 1)− r. It follows from [14, Theorem 1.2] that
any F ∈ |detE−L| = PH0(Pn,OPn(r+ 1)) that passes through a subscheme Z ′ ⊂ (s)0 of degree
degZ ′ ≥ deg(s)0 − (n(r− 1)− r) necessarily passes through all of (s)0. Now, for an s1 as in the
statement, each of its components satisfy the conditions of the F above, and hence (s1)0 ⊇ (s)0.
This, together with [6, Theorem 3.5], gives the desired conclusion. �

Proof of Lemma 1.2. Let Y ∈ SyPn be a zero-dimensional closed subscheme of Pn of degree y,
with sheaf of ideals IY . We have a short exact sequence of sheaves

(2.1) 0 −→ IY −→ OPn −→ OY −→ 0.

It follows that h2(Pn, IY (j)) = 0, for n = 2 and j ≥ −2 from [9, Lemma 2.4] and for n > 2 and
every j, from Serre’s computations.

Now, consider the short exact sequence obtained by tensoring (1.3) with the sheaf IY above
and its associated long exact cohomology sequence. Using an appropriate twist of (2.1), it follows
easily that

h0(Pn,ΘPn ⊗ IY (r − 1))−h1(Pn,ΘPn ⊗ IY (r − 1))

= h0(Pn,ΘPn(r − 1))− n · y, or
(2.2)

eY − e1
Y = e− n · y, where e1

Y = h1(Pn,ΘPn ⊗ IY (r − 1)).

For a closed point p ∈ Pn, the (linear) space Ep has codimension n in PE. Hence, the term

e1
Y = h1(Pn,ΘPn ⊗ IY (r − 1)) in (2.2) is equal to the number of dependent conditions imposed

by the points of Y in E.
Now assume eY = 1.
It then follows from (2.2) that n · y − e1

Y = e − eY = e − 1 ≤ n · y, and hence, that
ω = [e−1

n ] ≤ e−1
n ≤ y, which is the first assertion. In the same vein, it is easy to see that if

eY = 1 and y = ω, then e1
Y = 0 if and only if ρ = 0.

On the other hand, if 1 ≤ ρ ≤ n − 1, then e − 1 = ω · n + ρ = e − eY = y · n − e1
Y , hence

(y − ω) · n = (e1
Y − ρ): This equation cannot hold for y = ω and hence y − ω ≥ 1, which is the

second assertion. We close by recalling that if y = ω+ 1 and eY = 1, then e1
Y = n− ρ > 0, as is

easy to see. �

Proof of Theorem 1.3 (a). This is a straight-forward consequence of [3, Theorem 0.1]. The proof
is included to fix our further notation.

For y ≤ ω = ω(n, r − 1), let Ny,k = {Y ∈ SyPn | eY = e − n · y + k}. It follows that
Ny = Ny,0 ⊂ SyPn is open (because it is the subvariety of Y ∈ SyPn where eY attains its
minimum value) and nonempty (because of [3, Theorem 0.1(a)]). It is hence dense in SyPn and
dim Ny = n · y.
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Let

SyPn Π̂1←− SyPn × PE
Π̂2−→ PE.

be the product variety with canonical projections. Let A be the universal family of foliations of
degree r − 1 from [10], and consider the variety

Zy = {(Y, [s]) ∈ SyPn × PE |A(p, [s]) = [s](p) = 0, for every p ∈ Y }
= {(Y, [s]) ∈ SyPn × PE | p ∈ ([s])0, for every p ∈ Y }
= {(Y, [s]) ∈ SyPn × PE |Y ⊂ ([s])0}
= {(Y, [s]) ∈ SyPn × PE | [s] ∈ PEY } ⊂ SyPn × PE,

(2.3)

with restrictions Π1 = Π̂1|Zy : Zy −→ SyPn and Π2 = Π̂2|Zy : Zy −→ PE. Let

Zy,0 = Π1
−1(Ny) = {(Y, [s]) ∈ Zy |Y ∈ Ny}.

Zy,0 is open in Zy. It is moreover irreducible and has the same dimension

n · y + e− n · y − 1 = e− 1

as PE does, because all fibers Π1
−1(Y ) are irreducible and have the same dimension

dim PEY = e− n · y − 1

(which is equal to zero, if y = ω and ρ = 0). Now consider the restrictions

Π1 = Π1|Zy,0 : Zy,0 −→ Ny ⊂ SyPn

and Π2 = Π2|Zy,0 : Zy,0 −→ PE and recall that, set-theoretically,

Π2(Zy,0) = {[s] ∈ PE | ∃Y ∈ Ny such that Y ⊂ ([s])0}.

Π2 is a regular map between irreducible varieties of the same dimension which we claim to
be dominant (the closure of its image Π2(Zy,0) is PE or B = Π2(Zy,0) is contained in no
hypersurface). Assuming this for a moment, we may finish the proof applying [11, Proposition
6.4.1] which shows the existence of a subset

(2.4) Vy ⊂ B

which is open and dense in B = PE and the desired conclusion follows taking y = ω in (2.4).
We prove that Π2 is dominant by contradiction: If it were not, then we may assume that

B = C is an irreducible hypersurface and there exists a nonempty subset V ′ ⊂ B open and
dense in C such that dim Π2

−1([s0]) = dim Zy,0 − dim C = 1, for every [s0] ∈ V ′. Since

(2.5) Π2
−1([s0]) = {(Y, [s0]) |Y ∈ Ny and Y ⊂ ([s0])0},

the condition dim Π2
−1([s0]) = 1 implies that some p ∈ Y is a non-isolated singularity of [s0].

Since V ′ = C ∩W for some non-empty open set W ⊂ PE, it follows that Π2
−1(V ′) is a non-

empty open subset of the irreducible Zy,0, hence it is dense. Consider a Y ∈ Ny from (2.5).

Then Π2
−1(V ′) ∩ (Y × PEY ) 6= ∅ is therefore open and dense. This implies that

{[s] ∈ PEY | ∃p ∈ Y with dimp([s])0 = 1}

is non-empty and open, therefore is dense in PEY .
On the other hand, for Y ∈ Ny, the subspace EY is the transversal intersection

⋂
p∈Y Ep of

the linear subspaces Ep ⊂ E and E1
p = {s ∈ E |µ([s], p) = 1} is open and dense in Ep (by [10,

Lemma 1.2]), so that ⋂
p∈Y

E1
p ⊂ EY is also open and dense in EY ,
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and

(2.6) P(
⋂

p∈Y
E1
p) ⊂ PEY is open and dense.

These two open sets of PEY should have non-empty intersection, which is clearly absurd. This
finishes the proof of Theorem 1.3 (a). �

To prepare for the proof of Theorem 1.3 (b), we keep the previously introduced notation. We
still consider y = ω and the unique ρ with 1 ≤ ρ ≤ n− 1 such that e− 1 = n · ω + ρ. It follows
that eY = ρ + 1 if Y ∈ Nω. For each such Y , let s = {s0, . . . , sρ} be a K-basis of EY : These
sections define a vector-bundle map

φ = φs : T −→ ΘPn(r − 1)

from the trivial vector bundle T of rank ρ+ 1. In an open affine U ⊂ Pn that trivializes both T
and ΘPn(r − 1), φ is represented by the matrix

(2.7) A = As = [ŝ0, . . . , ŝρ] ∈Mn×(ρ+1)(OPn(U))

whose column ŝi = (s1
i , . . . , s

n
i ) ∈ OPn(U)⊕n is the restriction of si to U , for i = 0, . . . , ρ.

On the other hand, let M = Mn×(ρ+1)(K) be the affine variety of matrices with n rows and
(ρ + 1) columns with coefficients in K. It is well-known (see [4]) that the subvariety Mρ of
matrices A ∈M with rkA ≤ ρ is irreducible and has codimension n− ρ in M. This means that
the ideal Iρ of Mρ is generated by some n− ρ (maximal) minors

(2.8) AJ ⊂ A of size |J | = ρ+ 1,

and Mρ is (arithmetically) Cohen-Macaulay. The matrix As corresponds to a morphism
f : U −→ M; x 7→ As(x), and Uρ+1 = f−1(Mρ) is independent of the trivialization chosen.
This allows to define the degeneracy locus Dρ+1(s) of the collection of sections s by

Uρ+1 = Dρ+1(s)
⋂
U

(see [2, II, §4]). It is clear form this construction that

(2.9) Dρ+1(s) = {p ∈ Pn | (s0 ∧ · · · ∧ sρ)(p) = 0}, and that codimDρ+1(s) ≤ n− ρ.
Similarly, we have

Dρ(s) = {p ∈ Pn | (si1 ∧ · · · ∧ siρ)(p) = 0, for every {i1, . . . , iρ} ⊂ {0, . . . , ρ}}.
Our interest in these degeneracy loci comes from the following facts:

Lemma 2.1. Let n ≥ 2 and r ≥ 2, and assume that e − 1 ≡ ρ mod n, with 1 ≤ ρ ≤ n − 1.
Let Y ∈ Nω and let s = {s0, . . . , sρ} be a K-basis of EY . Then Dρ+1(s) is the locus of singular
points p ∈ Pn of sections s = sλ ∈ EY , and, moreover, Dρ+1(s) \ Dρ(s) is the locus of points
p ∈ Pn such that there exists a unique [s] ∈ PEY that vanishes both at Y and at p.

Proof. Recall that

Uρ+1 =Dρ+1(s)
⋂
U = {x ∈ U | rkAs(x) ≤ ρ}

={x ∈ U |As(x) · ~λ = ~0, for some 0 6= ~λ = (λ0, . . . , λρ)
t ∈ Kρ+1}

={x ∈ U | there exists ~λ 6= ~0 ∈ Kρ+1 such that ŝλ(x) = (

ρ∑
i=0

λiŝi)(x) = ~0}

={x ∈ U | ŝλ(x) = 0, for some sλ ∈ EY },
which proves the first statement.
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For the second one, recall that (Dρ+1(s)\Dρ(s))
⋂
U is the set of x ∈ U such that rkAs(x) = ρ,

so that there exists a unique ~0 6= ~λ (modulo scalar multiplication) such that sλ(x) = 0 for
sλ =

∑ρ
i=0 λisi ∈ EY . �

Remark 2.2. Under the conditions of Lemma 2.1:

(1) We have Dρ+1(s) \ Dρ(s) 6= ∅: Indeed, if (Dρ+1(s) \ Dρ(s))
⋂
U = ∅ for every such U ,

then the sections in s are linearly dependent in all Pn and hence, they form no basis of
EY , which is absurd.

(2) It is easy to see that, for τ = ρ and ρ+1, we have Dτ (s) = Dτ (s′), for any other K-basis
s′ of EY . This allows us to define Dτ (Y ) to be Dτ (s), for some K-basis s of EY , and

CY = Dρ+1(Y ) \Dρ(Y ).

Hence, CY is nonempty for every Y ∈ Nω and it follows from Lemma 2.1 that, for every
Y 1 = Y × {p} ∈ Nω × CY ⊂ Sω+1Pn, there exists a unique [s] ∈ PEY 1 . It follows
moreover that

dim CY = dim Dρ+1(Y ), for every Y ∈ Nω.

We have the following refinement of [2, II§4 Proposition 4.1]:

Proposition 2.3. Let n ≥ 2 and r ≥ 2 be integers such that

e− 1 ≡ ρ mod n, with 1 ≤ ρ ≤ n− 1

and let Y ∈ Nω. Then, Dρ+1(Y ) has the expected codimension n− ρ and hence it is a complete
intersection. In consequence, it is not only (arithmetically) Cohen-Macaulay, but also equidi-
mensional of dimension ρ. In particular, CY is equidimensional of dimension ρ.

Proof. Let s = {s0, . . . , sρ} be a K-basis of EY . On the one hand, it follows from (2.6) that
we may assume that µ([si], p) = 1, for every p ∈ Y and every i = 0, . . . , ρ. On the other hand,
consider the matrix As(x) from (2.7), with x in some such U ⊂ Pn. For J = {j1 < · · · < jρ+1},
let

As(x)J =

 sj10 (x) · · · sj1ρ (x)
...

. . .
...

s
jρ+1

0 (x) · · · s
jρ+1
ρ (x)


be a (maximal) minor of As(x) from (2.8). We have already seen in (2.9) that

codimDρ+1(Y ) ≤ n− ρ.

If ρ = n − 1, then it is clear that Dn(Y ) is a hypersurface, so we can assume that ρ < n − 1:
Assume that codimDρ+1(Y ) is strictly smaller than n − ρ, say, equal to n − ρ − 1, then one of
these (maximal) minors As(x)J has determinant identically equal to zero and hence, at least one
of its rows is linearly dependent to the others. This implies that, for every si ∈ s, no p ∈ Y ∩ U
is an isolated singularity of si, because (s1

i,p, . . . , s
n
i,p) ⊂ OPn,p is not a regular sequence. This

contradiction shows that codimDρ+1(Y ) = n− ρ. The Cohen-Macaulay and equidimensionality
properties of Dρ+1(Y ) follow from [8] (Proposition 18.13 and Corollary 18.14, respectively). The
last statement is clear from Remark 2.2. �

Proof of Theorem 1.3 (b). In analogy with (2.3), let

Zω+1 = {(Y 1, [s]) ∈ Sω+1Pn × PE |Y 1 ⊂ ([s])0} ⊂ Sω+1Pn × PE,
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with restrictions Π1 : Zω+1 −→ Sω+1Pn and Π2 : Zω+1 −→ PE. Consider

Ñω+1 = {Y 1 = Y × {p} |Y ∈ Nω and p ∈ Dρ+1(Y )} ⊂ Sω+1Pn,

Ñ ′ω+1 = {Y 1 = Y × {p} |Y ∈ Nω and p ∈ Dρ(Y )} ⊂ Ñω+1, and

Mω+1 = {Y 1 = Y × {p} |Y ∈ Nω and p ∈ CY } ⊂ Ñω+1.

(2.10)

Let

Z̃ω+1 = Π−1
1 (Ñω+1) ⊂ Zω+1

and let Π̃1 : Z̃ω+1 −→ Ñω+1 and Π̃2 : Z̃ω+1 −→ PE be the restrictions to Z̃ω+1 of the projections
Π1 and Π2 above, respectively.

Ñω+1 is a nonempty quasiprojective subvariety, possibly reducible (for Dρ+1(Y ) may have
components), singular (for Dρ+1(Y ) is singular along Dρ(Y )), but equidimensional of dimension
equal to n · ω + ρ = e− 1.

We claim that, set-theoretically:

Π̃2(Z̃ω+1) = Π2(Zω,0) ⊃ Vω 6= ∅,

and in consequence, Π̃2 is dominant (because Vω = PE).
It only remains to prove the equality in the claim and this goes as follows: [s] ∈ Π2(Zω,0) if and

only if [s] = Π2(Y, [s]), for some Y ∈ Nω and Y ⊂ ([s])0 ⊂ Dρ+1(Y ) by Lemma 2.1. In particular,

any q ∈ ([s])0 \ Y lies in Dρ+1(Y ) so that [s] = Π̃2(Y × {q}, [s]), with Y 1 = Y × {q} ∈ Ñω+1.
The reciprocal inclusion is trivial.

We claim moreover that there exist

(2.11) [s] ∈ Vω such that [s] = Π̃2(Y × {p}, [s]), with p ∈ CY (Y ∈ Nω).

Otherwise, for every [s] ∈ Vω, [s] = Π̃2(Y ×{q}, [s]), for some q ∈ Dρ(Y ) and the restriction rΠ̃2

of Π̃2 to Π̃−1
1 (Ñ ′ω+1):

Z̃ω+1 ⊃ Π̃−1
1 (Ñ ′ω+1)

rΠ̃2−→ PE

is dominant. This is absurd, for dim Π̃−1
1 (Ñ ′ω+1) < e− 1, by Remark 2.2, and (2.11) follows.

Finally by the moment, we claim that

(2.12) µ([s0], q) = 1, for every [s0] and q ∈ Y × {p} ∈Mω+1 satisfying (2.11) :

It follows from Lemma 2.1 that [s0] is the unique foliation that vanishes at every

q ∈ Y 1 = Y × {p},

so that {[s0]} = PEY 1 ⊂ PE is zero-dimensional. By [10, Lemma 1.2],

{[s] ∈ PEY 1 |µ([s0], q) > 1, for some q ∈ Y 1}

is a proper closed subset of PEY 1 , hence is empty, and the conclusion follows.
Now, let

Z̃1
ω+1 = Π̃−1

1 (Mω+1) ⊂ Z̃ω+1

(which is non-empty by (2.11)) and let Π̃1 : Z̃1
ω+1 −→ Mω+1 and Π̃2 : Z̃1

ω+1 −→ PE be the

restrictions to Z̃1
ω+1 of the projections Π̃1 and Π̃2.

The quasiprojective variety Mω+1 is non-empty, possibly reducible but equidimensional of

dimension equal to e−1, by Proposition 2.3. Moreover, Π̃1 is surjective and for every Y 1 ∈Mω+1,

the fibre Π̃−1
1 (Y 1) has dimension zero (it is a closed point (Y 1, [s]) because [s] is unique, by
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Lemma 2.1). This, together with [13, Theorem 1.26], shows that for every irreducible component
M c
ω+1 of Mω+1,

Z̃1,c
ω+1 = Π̃−1

1 (M c
ω+1) ⊂ Z̃1

ω+1

is irreducible and has dimension e− 1. It is hence a component of Z̃1
ω+1.

Now consider a component Z̃1,c
ω+1 containing a (Y × {p}, [s]) satisfying (2.11) and let

(2.13) Π̃c
2 : Z̃1,c

ω+1 −→ PE

be the restriction to Z̃1
ω+1 of the map Π̃2. As with part (a), the proof of Theorem 1.3 (b) follows

if we prove that Π̃c
2 is dominant for, in this situation [11, Proposition 6.4.1] gives the existence

of the Zariski-open set we are seeking for: Vω+1 ⊂ Π̃c
2(Z̃1,c

ω+1), open and dense in PE, the closure

of Π̃c
2(Z̃1,c

ω+1).

We prove that Π̃c
2 is dominant modifying the previous proof that

Π2 : Zy,0 −→ PE is dominant, this time letting B = Π̃c
2(Z̃1,c

ω+1): If it were not, then we

may assume that B = C is an irreducible hypersurface and there exists a nonempty subset

V ′ ⊂ B open and dense in C such that dim (Π̃c
2)−1([s0]) = dim Z̃1,c

ω+1 − dim C = 1, for every
[s0] ∈ V ′. Since

(2.14) (Π̃c
2)−1([s0]) = {(Y 1, [s0]) |Y 1 ∈Mω+1 and Y 1 ⊂ ([s0])0},

the condition dim (Π̃c
2)−1([s0]) = 1 implies that some p ∈ Y 1 is a non-isolated singularity of

[s0], for every [s0] ∈ V ′.
But on the other hand, these [s0] certainly do satisfy (2.11) for some Y 1 = Y × {p} ∈Mω+1

and hence, they also must satisfy (2.12). This contradiction shows that (2.13) is dominant and
the proof of Theorem 1.3 (b) has been completed.

�

3. Closing remarks

For n = 2 and r ≥ 2, let Mr = r(r + 5)/2. It is easy to see that

m(2, r − 1) = Mr − (t− 1), either if r = 2t or 2t+ 1 .

Recall form [7, Theorem 3.5] that for every non-degenerate foliation [s] of degree r in P2, there
exists a subscheme Z ⊂ ([s])0 of degree Mr which determines [s] uniquely (although K = C
in [7], the attentive reader will notice that the results therein hold for an algebraically closed
ground field K).

For small values of r, we have the following values:

r m(2, r − 1) Mr c2(ΘP2(r − 1))
2 7 7 7
3 12 12 13
4 17 18 21
5 24 25 31
6 31 33 43
7 40 42 57

We conclude that for a non-degenerate foliation [s] of degree 2 in P2 no proper subscheme of
([s])0 may uniquely determine [s] and that every non-degenerate foliation [s] of degree 3 in P2

has a minimal subscheme which uniquely determines it.
At this point, we can moreover prove (see [12]) that for any such Z ⊂ ([s])0, there exists a

subscheme of degree Mr−1 of Z which still determines [s] uniquely. The conclusion is that every
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non-degenerate foliation [s] of degrees 4 and 5 in P2 has a minimal subscheme which uniquely
determines it.

The question wether every non-degenerate foliation [s] of degree r ≥ 6 in P2 has a minimal
subscheme which uniquely determines it remains open.
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