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Abstract

There exist in the literature several models to tackle the problem of aggregating preferences rankings where

each alternative is evaluated with the most favorable scoring vector for it (which can be considered as an

optimistic approach). Recently, Khodabakhshi and Aryavash [M. Khodabakhshi, K. Aryavash, Aggregat-

ing preference rankings using an optimistic-pessimistic approach, Computers & Industrial Engineering 85

(2015) 13-16] have suggested a new model where both the optimistic and the pessimistic approaches are

taken into account. In this paper we provide closed-form expressions for the scores of alternatives when

the model proposed by these authors is used. The expressions obtained allow us to analyze the model and

suggest some small modifications.

Keywords: Khodabakhshi and Aryavash’s model, Aggregating preference rankings, Scoring rules, Data

Envelopment Analysis (DEA).

1. Introduction

The problem of obtaining a collective ranking from a set of individual rankings has been extensively

studied by many authors, specially in some areas such as Social Choice Theory and Operations Research (it

is worth noting that this problem can be seen as a specific case of a multi-criteria decision making problem

where all the weights are equal). Among the wide variety of procedures existing in the literature (see

Chebotarev and Shamis, 1998, for a review of scoring methods), scoring rules play a major role due to their

simplicity and properties (see, for instance, Merlin, 2003; Llamazares and Peña, 2015b).

Each scoring rule is associated with a scoring vector (w1, . . . ,wm), so each alternative receives w1 points

each time it is ranked first, w2 points each time it is ranked second, and so on; and alternatives are ordered
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according to the total number of points they receive. Evidently, a crucial issue in this framework is the

choice of the scoring vector, since, as it is well known, the ordering of alternatives may depend on the

scoring vector used. It is worth mentioning that in addition to the numerous academic examples found in

the literature (see, for instance, Fishburn, 1981), Llamazares and Peña (2013) and Llamazares (2016) have

also shown this fact through scoring vectors used in some sports competitions (concretely, in the Formula

One World Championship and in the Motorcycle World Championship).

To avoid a subjective choice of the scoring vector, Cook and Kress (1990) proposed a model based on

Data Envelopment Analysis (DEA) to assess each alternative with the most favorable scoring vector for

it. Nevertheless, as it is usual in the DEA methodology, various alternatives are often efficient, that is,

they achieve the maximum score. For this reason, different models have been proposed in the literature to

discriminate among efficient alternatives (see, for instance, Green et al., 1996; Hashimoto, 1997; Obata and

Ishii, 2003; Foroughi et al., 2005; Foroughi and Tamiz, 2005; Wang and Chin, 2007; Wang et al., 2008). An

analysis of some of them can be found in Llamazares and Peña (2009).

Besides the above models, which are based on DEA methodology, there exist other similar models

where variable weights are also used (see, for instance, Hashimoto and Wu (2004); Contreras et al. (2005);

Wang et al. (2007a,b); Contreras (2011); Ebrahimnejad (2012); Foroughi and Aouni (2012); Hosseinzadeh

Lotfi et al. (2013); Llamazares and Peña (2013); Hadi-Vencheh (2014); Khodabakhshi and Aryavash (2015);

Llamazares (2016)).

Among this great variety of models, in this paper we focus on the approach proposed by Khodabakhshi

and Aryavash (2015). These authors consider both the optimistic and pessimistic approaches, for which

they maximize and minimize, respectively, the scores of alternatives by considering several restrictions on

the weights. Namely, they are a strictly decreasing sequence of values greater than zero and their sum has

to be equal to one divided by the number of voters. Once the minimum and maximum values of the scores

are obtained, it is necessary to get a single value that represents the score of each alternative. To do this,

these authors consider convex combinations of the minimum and maximum values of the scores by using

the same parameter λ ∈ (0, 1) for all of them, and impose that the sum of the overall scores has to be equal

to one.

In this paper we provide closed-form expressions for the minimum and maximum scores obtained by

the alternatives when the model proposed by these authors is used. The knowledge of these expressions has

a double advantage. On the one hand, it is possible to rank the alternatives without the need to solve the
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proposed model. On the other hand, they also allow us to analyze more deeply some features of the model

proposed by these authors. Following this analysis, some modifications are suggested to improve model

performance.

The rest of the paper is organized as follows. In Section 2 we recall Khodabakhshi and Aryavash’s

model. Section 3 is devoted to provide closed-form expressions for the minimum and maximum scores

assigned to the alternatives with Khodabakhshi and Aryavash’s model. In Section 4 we use the expressions

obtained to carry out an analysis of some features of the model. Finally, some concluding remarks are

provided in Section 5.

2. Khodabakhshi and Aryavash’s model

Let A = {A1, . . . , An} be a set of alternatives and suppose that each voter of a set of k voters selects m

alternatives and ranks them from the most to the least preferred. Under the scoring rule associated with the

scoring vector (w1, . . . ,wm), the alternative A j receives s j =
∑m

i=1 xi jwi points, where xi j (i = 1, . . . , n) is the

number of ith place votes of alternative A j and wi represents the weight of rank i.

Models based on DEA methodology usually propose to evaluate each alternative with the most favorable

scoring vector for him/her by assuming certain constraints on the weights. In the case of the model proposed

by Khodabakhshi and Aryavash, the normalization assumption
∑n

j=1 s j = 1 is imposed. From this condition,

the authors obtain the restriction

m∑
i=1

wi =
1
k
.

Moreover, since the ith place of ranking is preferred to the (i + 1)th place, the weights should satisfy

w1 > w2 > · · · > wm. Therefore, they also consider the constraints wi − wi+1 > 0 (i = 1, . . . ,m − 1).

Likewise, they add the constraint wm > 0 to avoid the appearance of zero weights.

The main difference between the model proposed by these authors and others existing in the literature is

that they suggest to determine the scores of alternatives by using both pessimistic and optimistic approaches.

To do this, the minimum and maximum scores of each alternative Ao is calculated by means of the following

model:
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min and max so =

m∑
i=1

xiowi,

s.t.
m∑

i=1

wi =
1
k

wi − wi+1 > 0, i = 1, . . . ,m − 1,

wm > 0,

(1)

Given that the feasible set of Model (1) is not closed, there exist the infimum and supremum (sin f
o and

ssup
o ), but not the minimum and maximum values of Model (1). For this reason, the authors suggest to solve

the following model,

min and max s̄o =

m∑
i=1

xiowi,

s.t.
m∑

i=1

wi =
1
k

wi − wi+1 ≥ 0, i = 1, . . . ,m − 1,

wm ≥ 0,

(2)

taking into account that the minimum value, s̄ min
o , coincides with sin f

o whereas the maximum value, s̄ max
o ,

coincides with ssup
o .

Notice that when we consider the feasible set of Model (1) the values so =
∑m

i=1 xiowi are located in the

interval
(
sin f

o , ssup
o

)
=

(
s̄ min

o , s̄ max
o

)
. To obtain a single value that represents the score of alternative Ao, these

authors propose the following method. Given that

sin f
j < s j < ssup

j , j = 1, . . . , n,

there exist parameters λ j ∈ (0, 1) ( j = 1, . . . , n) such that

s j = sin f
j λ j + ssup

j (1 − λ j), j = 1, . . . , n.

To get the scores of alternatives in a fair way, all parameters λ j should be equal. To do this, these authors

consider the normalization assumption
∑n

j=1 s j = 1. So, the values s j can be determined by solving the

following linear equations system:
s j = sin f

j λ + ssup
j (1 − λ), j = 1, . . . , n,

n∑
j=1

s j = 1.
(3)
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The scores obtained are denoted by sM
j and the alternatives are ordered according to these scores. If

two scores are equal, the tie is broken by using the lexicographic order of the vectors (x1 j, . . . , xm j). In

Algorithm 1 we show the algorithm given by Khodabakhshi and Aryavash for ranking the alternatives Ap

and Aq (notice that rank Ap denotes the position of this alternative in the overall order. Therefore, when

alternative Ap has a better score than Aq we write rank Ap < rank Aq).

Algorithm 1 Procedure for ranking alternatives.

if sM
p , sM

q then

if sM
p < sM

q then rank Ap > rank Aq

else rank Ap < rank Aq

end if

else

i← 0

repeat

i← i + 1

until (xip , xiq or i = n)

end if

if xip , xiq then

if xip < xiq then rank Ap > rank Aq

else rank Ap < rank Aq

end if

else rank Ap = rank Aq

end if

3. Closed-form expressions for Khodabakhshi and Aryavash’s model

In this section we provide closed-form expressions for the model proposed by Khodabakhshi and

Aryavash. Firstly, we give an alternative representation of the model where we replace the constraints

wi − wi+1 > 0 (i = 1, . . . ,m − 1) by nonnegativity of the variables.
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Proposition 1. Model (2) can be expressed as

min and max s̄o =

m∑
i=1

XioWi,

s.t.
m∑

i=1

iWi =
1
k

Wi ≥ 0, i = 1, . . . ,m,

(4)

where Xio =
∑i

j=1 x jo for all i ∈ {1, . . . ,m}.

Proof. In Model (2) we make the following change of variables:
Wi = wi − wi+1, i = 1, . . . ,m − 1,

Wm = wm.

It is easy to check that wi =
∑m

j=i W j for all i ∈ {1, . . . ,m}. Moreover,

m∑
i=1

xiowi =

m∑
i=1

xio

m∑
j=i

W j =
∑

1≤i≤m
i≤ j≤m

xioW j =
∑

1≤i≤ j≤m

xioW j =
∑

1≤ j≤m
1≤i≤ j

xioW j =

m∑
j=1

j∑
i=1

xioW j

=

m∑
j=1

W j

j∑
i=1

xio =

m∑
i=1

Wi

i∑
j=1

x jo,

where the last equality is got by switching the role of i and j. In a similar way we can obtain

m∑
i=1

wi =

m∑
i=1

iWi.

The result follows by using the notation Xio =
∑i

j=1 x jo.

It is worth mentioning that the values Xio =
∑i

j=1 x jo are called cumulative standing and play an impor-

tant role in many models built from scoring rules (see, for instance, Fishburn, 1974; Moulin, 1988, cap. 9;

Stein et al., 1994; Green et al., 1996; Llamazares and Peña, 2009, 2013, 2015a,b).

Next we give the optimal solution of Model (4) for both the pessimistic and optimistic approaches.

Theorem 1. Consider Model (4). Then

s̄ min
o =

1
k

min
i=1,...,m

Xio

i
,

s̄ max
o =

1
k

max
i=1,...,m

Xio

i
.
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Proof. It is well know that if a linear program has a finite optimal solution, it has an optimal extreme point

solution (see, for instance, Bazaraa et al., 2009). The result follows from the fact that the extreme points

of the feasible set of Model (4) are 1/(ki)ei, where ei denotes the vector with 1 in the ith coordinate and 0

elsewhere.

The knowledge of the closed-form expressions of the infimum and supremum scores of alternatives

allows us their calculation without solving Model (2). Moreover, it can be carried out easily through a

spreadsheet or by means of Algorithm 2.

Algorithm 2 Calculation of infimum and supremum scores of alternatives.

for j← 1, n do

X0 j ← 0

sin f
j ← 0

ssup
j ← 0

for i← 1,m do

Xi j ← Xi−1 j + xi j

sin f
j ← min(sin f

j , Xi j/i)

ssup
j ← max(ssup

j , Xi j/i)

end for

sin f
j ← sin f

j /k

ssup
j ← ssup

j /k

end for

Once we have obtained the infimum and supremum scores of alternatives, the value of λ in System (3)

can be easily obtained by means of the expression

λ =

n∑
j=1

ssup
j − 1

n∑
j=1

ssup
j −

n∑
j=1

sin f
j

, (5)

and the global score of each alternative is given by

sM
j = sin f

j λ + ssup
j (1 − λ), j = 1, . . . , n.
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4. Analysis of Khodabakhshi and Aryavash’s model

The knowledge of the closed-form expressions that represent the infimum and supremum scores of

alternatives allows us to analyze some features of the model. For instance, by Theorem 1 we know that

sin f
j =

1
k

min
i=1,...,m

Xi j

i
,

ssup
j =

1
k

max
i=1,...,m

Xi j

i
.

Therefore, if x1 j = · · · = xm j for some j ∈ {1, . . . , n}, then sin f
j = ssup

j , in which case the interval
(
sin f

j , ssup
j

)
is empty and we cannot find sM

j with sin f
j < sM

j < ssup
j . Consequently, Khodabakhshi and Aryavash’s model

can be employed only when mini=1,...,m xi j , maxi=1,...,m xi j for every j ∈ {1, . . . , n}.

When it comes to finding a global score, the authors suppose, without any proof, that there exists

λ ∈ (0, 1) solution of System (3). Again Theorem 1 allows us to justify the existence of λ ∈ (0, 1). Under the

assumption that sin f
j < ssup

j for each j ∈ {1, . . . , n}, we get
∑n

j=1 sin f
j <

∑n
j=1 ssup

j ; so λ is well defined through

expression (5). Moreover, notice that the condition 0 < λ < 1 is equivalent to
∑n

j=1 sin f
j < 1 <

∑n
j=1 ssup

j .

Since for any l ∈ {1, . . . ,m} we have
∑n

j=1 xl j = k, then
∑n

j=1 Xl j = lk, or, equivalently,
∑n

j=1 Xl j/l = k.

Therefore,

n∑
j=1

ssup
j =

1
k

n∑
j=1

max
i=1,...,m

Xi j

i
>

1
k

n∑
j=1

Xl j

l
= 1,

where l ∈ {1, . . . ,m} is chosen so that Xl1/l < maxi=1,...,m Xi1/i. The condition
∑n

j=1 sin f
j < 1 can be proven

in a similar way.

A comment also deserves the restriction
∑m

i=1 wi = 1/k. According to the authors, this restriction is

obtained from the normalization assumption
∑n

j=1 s j = 1 as follows:

1 =

n∑
j=1

s j =

n∑
j=1

m∑
i=1

xi jwi =

m∑
i=1

 n∑
j=1

xi j

 wi =

m∑
i=1

kwi = k
m∑

i=1

wi.

However, this result is based on the assumption that the weights wi are the same for all the alternatives,

which is not true in the model proposed by the authors. Notice that Model (1) is solved for each alternative

A j, so that the weights obtained for each alternative may be different. Nevertheless, given that

sM
j = sin f

j λ + ssup
j (1 − λ) =

1
k

(
λ min

i=1,...,m

Xio

i
+ (1 − λ) max

i=1,...,m

Xio

i

)
,
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the constant k (the number of voters) has no influence on the final order of the alternatives. Consequently,

the restriction
∑m

i=1 wi = 1/k could be replaced by
∑m

i=1 wi = 1, which is an usual constraint in this context

(see, for instance, Contreras et al., 2005).

The last comment on Khodabakhshi and Aryavash’s model refers to an important shortcoming, which

is also present in other models proposed in the literature (see Llamazares and Peña, 2009): although there

is not any change in the number of first, second, . . . , mth ranks achieved by two alternatives, their relative

order may be different due to a variation in the number of first, second, . . . , mth ranks obtained by other

alternatives. This shortcoming is illustrated in Example 1.

Example 1. Table 1 gathers the number of first, second, third and fourth ranks obtained by four alternatives

(for instance, two voters place A1 in the first position, six voters place it in the second position and so on).

Moreover, the sixth column of Table 1 shows the infimum and supremum scores of alternatives whereas the

seventh column displays the global scores. As we can see in the eighth column of Table 1, alternative A3 is

the winner.

Table 1: First set of data, scores and rankings of alternatives.

A j x1 j x2 j x3 j x4 j
(
sin f

j , ssup
j

)
sM

j Ranking

A1 2 6 7 5 (0.100, 0.250) 0.170 4

A2 4 4 3 9 (0.183, 0.250) 0.215 3

A3 6 9 5 0 (0.250, 0.375) 0.308 1

A4 8 1 5 6 (0.225, 0.400) 0.307 2

Now, suppose that alternatives A1 and A2 swap a first and a third rank without any variation in the ranks

of alternatives A3 and A4. Table 2 collects the new data, the scores and the rankings of alternatives. As we

can see in the eighth column of Table 2, alternative A4 is the new winner.

On the other hand, Khodabakhshi and Aryavash’s model presents another drawback that is even more

grave than the previous one: it is not monotonic; that is, a winning alternative may lose when it improves

its results. This fact is illustrated in Example 2.

Example 2. Consider again Table 1, where A3 is the winner. Suppose now that this alternative wins one

first rank (and loses one second rank) from alternative A1. The new data, the scores and the ranking of
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Table 2: Second set of data, scores and rankings of alternatives.

A j x1 j x2 j x3 j x4 j
(
sin f

j , ssup
j

)
sM

j Ranking

A1 1 6 8 5 (0.050, 0.250) 0.153 4

A2 5 4 2 9 (0.183, 0.250) 0.218 3

A3 6 9 5 0 (0.250, 0.375) 0.314 2

A4 8 1 5 6 (0.225, 0.400) 0.315 1

alternatives are gathered in Table 3. As we can see in the eighth column of this table, alternative A4 is the

new winner.

Table 3: Third set of data, scores and rankings of alternatives.

A j x1 j x2 j x3 j x4 j
(
sin f

j , ssup
j

)
sM

j Ranking

A1 1 7 7 5 (0.050, 0.250) 0.153 4

A2 4 4 3 9 (0.183, 0.250) 0.218 3

A3 7 8 5 0 (0.250, 0.375) 0.314 2

A4 8 1 5 6 (0.225, 0.400) 0.315 1

The previous shortcomings are due to the choice of λ, because changes in the results obtained by some

alternative may affect the global score of alternatives whose results do not change. An easy solution to avoid

the previous drawback is to fix the value of λ. Obviously the choice of λ determines the overall order of

alternatives. For instance, since sM
j = sin f

j λ+ ssup
j (1− λ), when λ = 0 the alternatives are ordered according

to the values of ssup
j , while sin f

j are the values used when λ = 1. Let us consider in more detail the order

between two alternatives Ap and Aq. We may assume, without loss of generality, that ssup
p ≥ ssup

q . We

distinguish the following cases:

1. If ssup
p > ssup

q :

(a) If sin f
p > sin f

q , then sM
p > sM

q for all λ ∈ [0, 1].

(b) If sin f
p = sin f

q , then sM
p > sM

q for all λ ∈ [0, 1), and sM
p = sM

q when λ = 1.

(c) If sin f
p < sin f

q , then sM
p > sM

q for all λ ∈ [0, αpq), sM
p = sM

q when λ = αpq, and sM
p < sM

q for all
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λ ∈ (αpq, 1], where

αpq =
1

1 +
sin f

q −sin f
p

ssup
p −ssup

q

.

2. If ssup
p = ssup

q :

(a) If sin f
p > sin f

q , then sM
p > sM

q for all λ ∈ (0, 1], and sM
p = sM

q when λ = 0.

(b) If sin f
p = sin f

q , then sM
p = sM

q for all λ ∈ [0, 1].

(c) If sin f
p < sin f

q , then sM
p < sM

q for all λ ∈ (0, 1], and sM
p = sM

q when λ = 0.

Clearly, when λ = 1/2, the global score of each alternative is the average of the infimum and supre-

mum scores, which seems a fair overall score. Notice that in the three cases considered in the previ-

ous examples the average of the infimum and supremum scores coincides for both alternatives A3 and A4(
(0.25 + 0.375)/2 = (0.225 + 0.4)/2 = 0.3125

)
, and the tie has to be broken through the lexicographic order

of the vectors (x1 j, x2 j, x3 j, x4 j). In this case, the winner is A4.

5. Concluding remarks

In this paper we have studied a model proposed by Khodabakhshi and Aryavash for aggregating prefer-

ence rankings into a single ranking by using variable weights. This model is based on considering both the

optimistic and pessimistic approaches, for which they maximize and minimize the scores of alternatives by

considering several restrictions on the weights. In our analysis, we have provided closed-form expressions

for the minimum and maximum scores obtained by the alternatives. These expressions are of great utility

because they allow us to know the score obtained by each alternative without solving the proposed model.

Moreover, they also allow us to carry out an analysis of some features of the model. As we have seen in

Section 4, some small modifications may be made to improve model performance.
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