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Abstract

One of the most important issues for aggregating preferences rankings is the determination of the weights

associated with the different ranking places. To avoid the subjectivity in determining the weights, Cook

and Kress (1990) suggested evaluating each candidate with the most favorable scoring vector for him/her.

With this purpose, various models based on Data Envelopment Analysis have appeared in the literature.

Although these methods do not require predetermine the weights subjectively, some of them have a serious

drawback: the relative order between two candidates may be altered when the number of first, second, . . . ,

kth ranks obtained by other candidates changes, although there is not any variation in the number of first,

second, . . . , kth ranks obtained by both candidates. In this paper we propose a model that allows each

candidate to be evaluated with the most favorable weighting vector for him/her and avoids the previous

drawback. Moreover, in some cases, we give a closed expression for the score assigned with our model to

each candidate.

Keywords: Decision analysis, Scoring rules, Variable weights.

1. Introduction

This paper deals with voting systems in which each voter (of a collective of n individuals) selects k

candidates from a set of m candidates, {A1, . . . , Am}, and ranks them from top to kth place. In this context,

scoring rules are well-known systems to get a social ranking or a winning candidate. These procedures are

based on fixed scores, which are assigned to the different ranks obtained by the candidates. Thus, the score

obtained by the candidate Ai is Zi =
∑k

j=1 vi jw j, where vi j is the number of jth place ranks that candidate Ai

occupies and (w1, . . . ,wk) is the scoring vector used. Once the scores are obtained for all candidates, they
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are ordered according to these scores. The plurality rule, where w1 = 1 and w j = 0 for all j ∈ {2, . . . , k}, and

the Borda rule, where k = m and w j = m − j for all j ∈ {1, . . . ,m}, are possibly the best known examples of

scoring rules.

One of the most important issues in the field of scoring rules is the determination of the scoring vector

to use, because a candidate that is not the winner with the scoring vector imposed initially could be it

if another one is used. For instance, the Formula One World Championship uses k = 10 and the scoring

vector (25, 18, 15, 12, 10, 8, 6, 4, 2, 1) for obtaining the winner of the championship. In 2010, the winner was

Sebastian Vettel, followed by Fernando Alonso. However, if the scoring vector utilized in the Motorcycle

World Championship had been used, (w1, . . . ,w15) = (25, 20, 16, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), then the

winner would have been Fernando Alonso.

To avoid this problem, Cook & Kress [5] suggested evaluating each candidate with the most favorable

scoring vector for him/her. With this purpose, they introduced Data Envelopment Analysis (DEA) in this

context. The model DEA/AR proposed by these authors is

Z∗o(ε) = max
k∑

j=1

vo jw j,

s.t.
k∑

j=1

vi jw j ≤ 1, i = 1, . . . ,m,

w j − w j+1 ≥ d( j, ε), j = 1, . . . , k − 1,

wk ≥ d(k, ε),

(1)

where ε ≥ 0 and the functions d( j, ε), called the discrimination intensity functions, are nonnegative and

nondecreasing in ε. Furthermore, d( j, 0) = 0 for all j ∈ {1, . . . , k}.

The principal drawback of this procedure is that several candidates are often efficient, i.e., they achieve

the maximum attainable score (Z∗o = 1). To avoid this weakness, Cook & Kress [5] proposed to maximize

the gap between consecutive weights of the scoring vector and, in this way, to reduce the feasible set of
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Problem (1). Thus, the model considered by these authors is

max ε,

s.t.
k∑

j=1

vi jw j ≤ 1, i = 1, . . . ,m, (a)

w j − w j+1 ≥ d( j, ε), j = 1, . . . , k − 1,

wk ≥ d(k, ε),
(b)

(2)

where ε and the functions d( j, ε) satisfy the conditions imposed in Model (1). Cook & Kress [5] demon-

strated that, at optimality, at least one of the constraints in (2a) and all the constraints in (2b) hold as

equalities. The candidate(s) Ai for which
∑k

j=1 vi jw j = 1 are the winning candidates (see Cook & Kress [5,

p. 1308]). The candidate(s) in second place can be found by re-solving Model (2) after deleting the binding

constraint(s) from (2a). This process can be repeated until the order of all candidates is fixed.

Since all the constraints in (2b) hold as equalities, Model (2) can be written as

max ε,

s.t.
k∑

j=1

 k∑
l= j

d(l, ε)

 vi j ≤ 1, i = 1, . . . ,m,

ε ≥ 0.

(3)

Cook & Kress [5] gave a closed form solution for this model when d( j, ε) = g( j)h(ε) and h(ε) is strictly

monotonic increasing. Later, Green et al. [10] noticed that, in this case, the previous procedure amounts to

the scoring rule given by the weights w j =
∑k

l= j g(l). In the general case, this result is true when we only

seek the winning candidates; that is, regardless of the discrimination intensity functions used, the winning

candidates provided by Model (3) are the same as those obtained with a scoring rule: if ε∗ is the optimum

value of Model (3), the winning candidates are those that, at optimality, satisfy

k∑
j=1

 k∑
l= j

d(l, ε∗)

 vi j = 1.

Therefore, they are the same candidates than those obtained with the scoring rules given by w j =∑k
l= j d(l, ε∗). Consequently, when Model (3) is used, the aim pursued by Cook & Kress [5] (evaluating each

candidate with the most favorable scoring vector for him/her) is not reached.

Since the pioneering work of Cook & Kress [5], several models have appeared in the literature in order

to deal with this kind of problems (see Green et al. [10], Hashimoto [11], Noguchi et al. [16], Obata & Ishii
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[17], Hashimoto & Wu [12], Foroughi et al. [8], Foroughi & Tamiz [9], Wang & Chin [21], Wang et al.

[22], Wang et al. [23], Wang et al. [20], Wu et al. [24], Amin & Sadeghi [1], Soltanifar et al. [18], Contreras

[4], Hosseinzadeh Lotfi & Fallahnejad [13], Ebrahimnejad [6], Hosseinzadeh Lotfi et al. [14] and Foroughi

& Aouni [7]). A thorough analysis of some of them can be found in Llamazares & Peña [15]. In this work

the authors show that an important shortcoming of some of these models is that the relative order between

two candidates may be altered when the number of first, second, . . . , kth ranks obtained by other candidates

changes, although there is not any variation in the number of first, second, . . . , kth ranks obtained by both

candidates. It is worth noting that this behavior is very questionable from the point of view of Social Choice

Theory.

In this paper we propose a model that avoids the previous problem. To do this, from Cook and Kress’s

model, we put together in a single restriction the constraints of the candidates that are not being evaluated

(Section 2). The main shortcoming of this initial model is that several candidates could be winners. In

Section 3 we solve this problem by removing in the initial model the constraint of the evaluated candidate.

On the other hand, in this aggregating preferences rankings’ framework, the models that use non-null dis-

crimination intensity functions have the following drawback: it is necessary to choose a specific value for ε

and the winner may change depending on the value of ε. To avoid this problem, in Section 4 we consider the

average of the function that provides, for each value of ε, the score obtained for each candidate. Moreover,

for some specific values of d( j, ε), we give a closed expression for the scores assigned to the candidates.

These expressions allow us to get the winning candidates without solving the proposed model. Finally,

some concluding remarks are made in Section 5.

2. An initial model

The initial model that we propose is based on that of Cook & Kress [5] but putting together in a single

restriction the constraints of the candidates that are not being evaluated. So, we replace the constraints

relative to the candidates that are not being evaluated,
k∑

j=1

w jvi j ≤ 1 i = 1, . . . ,m, i , o,

by their sum,

m∑
i=1
i,o

k∑
j=1

w jvi j ≤ m − 1.
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Since
m∑

i=1
i,o

k∑
j=1

w jvi j =

k∑
j=1

w j

m∑
i=1
i,o

vi j,

and vo j is the number of jth place ranks that candidate Ao occupies, the number of jth place ranks obtained

by the remaining candidates is n − vo j, where n is the number of voters. Therefore, the sum constraint can

be written as follows:
k∑

j=1

w j(n − vo j) ≤ m − 1,

and the model proposed is

Θ∗o = max
k∑

j=1

vo jw j,

s.t.
k∑

j=1

vo jw j ≤ 1,

k∑
j=1

(n − vo j)w j ≤ m − 1,

w j − w j+1 ≥ d( j, ε), j = 1, . . . , k − 1,

wk ≥ d(k, ε).

(4)

It is worth noting that the constraint

k∑
j=1

(n − vo j)w j ≤ m − 1

(and then the feasible set of Model (4)) do not change when the number of ranks obtained by the candidates

that are not being evaluated at that moment is altered. So, the score obtained by each candidate (and

therefore the relative order between two candidates) do not depend on the individual evaluations of the

remaining candidates.

Note that, for the sake of simplicity, we have used Θ∗o instead of Θ∗o(ε). Moreover, in order to facilitate

the analysis of this model, in the following lemma we give an alternative representation of it.
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Lemma 1. Model (4) can be expressed as

Θ∗o = max
k∑

j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε),

s.t.
k∑

j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε) ≤ 1,

k∑
j=1

( jn − Vo j)W j +

k∑
j=1

( jn − Vo j)d( j, ε) ≤ m − 1,

W j ≥ 0, j = 1, . . . , k,

where
W j = w j − w j+1 − d( j, ε), for all j ∈ {1, . . . , k − 1},

Wk = wk − d(k, ε),

Vo j =

j∑
l=1

vol, for all j ∈ {1, . . . , k}.

It is worth noting that the values Vo j =
∑ j

l=1 vol are called cumulative standing (see, for instance, Green

et al. [10] and Stein et al. [19]), and that satisfy 0 ≤ Vo1 ≤ · · · ≤ Vok ≤ n.

Now, if we consider

δo1 = 1 −
k∑

j=1

Vo jd( j, ε),

δo2 = (m − 1) −
k∑

j=1

( jn − Vo j)d( j, ε),

the previous model can be written as

Θ∗o = max
k∑

j=1

Vo jW j + (1 − δo1),

s.t.
k∑

j=1

Vo jW j ≤ δo1,

k∑
j=1

( jn − Vo j)W j ≤ δo2,

W j ≥ 0, j = 1, . . . , k.

(5)

In order to guarantee that the above problem is feasible, we need to impose the conditions δo1 ≥ 0

and δo2 ≥ 0. Moreover, it is worth noting that the feasible set of the previous model varies according
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to the evaluated candidate. Therefore, if we want that all the feasible sets are non-empty, we need that

min
o=1,...,m

δo1 ≥ 0 and min
o=1,...,m

δo2 ≥ 0.

In the following theorem we give the optimal value for Model (5).

Theorem 1. Consider Model (5). The following statements hold:

1. If Vo1 = n, then Θ∗o = 1.

2. If Vo1 < n, then

Θ∗o =


1 − (δo1 − δo2V∗o ) if δo2 = 0 or δo1/δo2 > V∗o ,

1 if δo1/δo2 ≤ V∗o ,

where V∗o = max
j=1,...,k

Vo j

jn − Vo j
.

The main shortcoming of this model is that usually provides more of one winning candidate. For

instance, consider d( j, ε) = 0 for all j ∈ {1, . . . , k}. Then δo1 = 1 and δo2 = m − 1. According to Theorem 1,

the winning candidates are those that Vo1 = n or V∗o ≥ 1/(m − 1). This fact may produce unfair outcomes

for some candidates. For instance, consider k ≥ 2 and two or more candidates where one of them, A,

obtains all the first ranks and another, B, gets all the second ranks. Obviously Θ∗A = 1 and, given that

V∗B = 1 ≥ 1/(m−1), we also have Θ∗B = 1. Therefore, both are winning candidates although it seems logical

to think that candidate A should be the winner.

Multiple winning candidates also appear when we consider non-null discrimination intensity functions.

For instance, consider Table 1, taken from Cook & Kress [5, p. 1309], and the following discrimination

intensity functions (also considered by them): d( j, ε) = ε, d( j, ε) = ε/ j and d( j, ε) = ε/ j!

Table 1: Ranks obtained by each candidate.

Candidate vi1 vi2 vi3 vi4

A 3 3 4 3

B 4 5 5 2

C 6 2 3 2

D 6 2 2 6

E 0 4 3 4

F 1 4 3 3
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For each candidate, we show in Table 2 the value V∗o , and also the values δo1/δo2 for each family of

discrimination intensity functions considering two values of ε. One of them is the maximum value that we

can take in order to both min
o=1,...,m

δo1 and min
o=1,...,m

δo2 be greater than or equal to zero; and the other is a value

close to the half of the previous one.

Table 2: Values of V∗o and δo1/δo2 for the candidates of Table 1.

d( j, ε) = ε d( j, ε) = ε/ j d( j, ε) = ε/ j!

Candidate V∗o ε = 0.01 ε = 1/43 ε = 0.03 ε = 3/52 ε = 0.04 ε = 8/99

A 0.2000 0.2048 0.2340 0.2091 0.2468 0.2102 0.2488

B 0.3043 0.1662 0.0000 0.1557 0.0070 0.1623 0.0437

C 0.4286 0.1834 0.0943 0.1585 0.0177 0.1502 0.0000

D 0.4286 0.1765 0.0545 0.1538 0.0000 0.1508 0.0020

E 0.1594 0.2422 0.5676 0.2800 0.7455 0.2839 0.7192

F 0.1594 0.2308 0.4500 0.2554 0.5401 0.2561 0.5120

When d( j, ε) = 0 for all j ∈ {1, . . . , 4}, δo1/δo2 = 0.2 for all candidates. Therefore, the winning

candidates are A, B, C and D. When the discrimination intensity functions are not null, B, C and D continue

to be winning candidates in all considered cases. This shortcoming of multiple winning candidates is solved

in the next section.

3. Breaking ties

As we have seen in the previous section, it is usual that several candidates achieve the maximum score

when Model (5) is applied. One possibility to avoid this fact is to remove the constraint relative to the

evaluated candidate. This procedure is the same as that used in the DEA exclusion method (see Andersen

& Petersen [2] and, in this context, Hashimoto [11]). Therefore, the model proposed is
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Λ∗o = max
k∑

j=1

vo jw j,

s.t.
k∑

j=1

(n − vo j)w j ≤ m − 1,

w j − w j+1 ≥ d( j, ε), j = 1, . . . , k − 1,

wk ≥ d(k, ε).

(6)

If, as in the previous section, we consider W j = w j − w j+1 − d( j, ε) for all j ∈ {1, . . . , k − 1}, Wk =

wk − d(k, ε) and Vo j =
∑ j

l=1 vol for all j ∈ {1, . . . , k}, then Model (6) becomes

Λ∗o = max
k∑

j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε),

s.t.
k∑

j=1

( jn − Vo j)W j +

k∑
j=1

( jn − Vo j)d( j, ε) ≤ m − 1,

W j ≥ 0, j = 1, . . . , k.

Moreover, if we put

δo =

k∑
j=1

Vo jd( j, ε),

δo2 = (m − 1) −
k∑

j=1

( jn − Vo j)d( j, ε),

the previous model can be written as

Λ∗o = max
k∑

j=1

Vo jW j + δo,

s.t.
k∑

j=1

( jn − Vo j)W j ≤ δo2,

W j ≥ 0, j = 1, . . . , k.

(7)

The condition δo2 ≥ 0 is necessary in order to ensure that the above problem is feasible. As in Model (5),

the feasible set varies according to the evaluated candidate. So, in order to all the feasible sets are non-empty

we need that min
o=1,...,m

δo2 ≥ 0.
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When Vo1 = n, then Vo2 = · · · = Vok = n and the feasible set is

S =
{
(W1, . . . ,Wk) ∈ Rk

+ | nW2 + 2nW3 + · · · + (k − 1)nWk ≤ δo2
}
.

Therefore Model (7) is unbounded and, consequently, candidate Ao is the winner. In the following theorem

we give the optimal value of this program for the remaining cases.

Theorem 2. Consider Model (7) when Vo1 < n. Then Λ∗o = δo2V∗o + δo, where V∗o = max
j=1,...,k

Vo j

jn − Vo j
.

It is worth noting that the value of Λ∗o coincides with that of Θ∗o when δo2 = 0 or δo1/δo2 > V∗o . So, the

value δo2V∗o + δo can be seen as a natural way to break ties in Model (5).

In the following subsections we analyze the proposed model according to whether the discrimination

intensity functions are null or not.

3.1. Null discrimination intensity functions

Consider d( j, ε) = 0 for all j ∈ {1, . . . , k}. In this case δo = 0, δo2 = m − 1 and Model (7) becomes

Λ∗o = max
k∑

j=1

Vo jW j,

s.t.
k∑

j=1

( jn − Vo j)W j ≤ m − 1,

W j ≥ 0, j = 1, . . . , k.

(8)

By Theorem 2, if Vo1 < n, the score obtained by the candidate Ao is

Λ∗o = (m − 1) max
j=1,...,k

Vo j

jn − Vo j
.

Let Ao and Ai be two candidates such that Vo1 < n and Vi1 < n. Given that

Vo j

jn − Vo j
>

Vil

ln − Vil
⇔ Vo j(ln − Vil) > Vil( jn − Vo j) ⇔ Vo jl > Vil j ⇔

Vo j

j
>

Vil

l

for all j, l ∈ {1, . . . , k}, we have

Λ∗o > Λ
∗
i ⇔ max

j=1,...,k

Vo j

j
> max

j=1,...,k

Vi j

j
. (9)

On the other hand, if Ao is a candidate such that Vo1 = n, then n = max
j=1,...,k

Vo j

j
> max

j=1,...,k

Vi j

j
for all

i , o; that is, Ao is also the winner when we consider the score max
j=1,...,k

Vo j

j
. Taking into account the previous
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remarks, the rank given by Model (8) is the same as obtained using the expression Ẑo = max
j=1,...,k

Vo j

j
, which

is simpler. This value, Ẑo, is used to determine the winning candidate when we take the L1-norm and

d( j, ε) = 0 in the model given by Obata & Ishii [17] (see Llamazares & Peña [15, p. 720]).

It is worth noting that the winning candidate obtained with this model may be, in some cases, less

controversial than that obtained with other procedures. For instance, consider Table 3, where it is shown the

number of first, second, third and fourth ranks obtained by four candidates.

Table 3: Ranks obtained by each candidate.

Candidate vi1 vi2 vi3 vi4

A 5 0 2 2

B 4 0 5 0

C 0 0 2 7

D 0 9 0 0

If we apply the Borda rule, which is superior in many respects to other scoring rules (see, for instance,

Brams & Fishburn [3, p. 216]), the following scores are obtained:

ZA = 17, ZB = 17, ZC = 2, ZD = 18.

Therefore, candidate D is the winner despite not getting any first rank. However, when Model (8) is

applied for each of the four candidates, and taking into account the equivalence (9), the following rank is

obtained:

A � D � B � C.

Note that candidate A is the Condorcet winner (that is, a candidate that pairwise defeats every other can-

didate) since he/she has obtained more than half of the first ranks. As we show in the following proposition,

Model (8) guarantees this property: if a candidate receives more than half of the first ranks, then he/she is

the winner.

Proposition 1. Let Ao be a candidate such that vo1 > n/2. Then Ao � Ai for all i , o.

3.2. Non-null discrimination intensity functions

When the discrimination intensity functions are not null we have to fix the value of ε, as well as choose

these functions. Moreover, as we shall see below, the choice of this value may determine the winning

11



candidate.

Note that, although to simplify the notation we have used Λ∗o, δo and δo2, these values are actually

functions of ε, Λ∗o(ε), δo(ε) and δo2(ε). Furthermore, since the functions d( j, ε) are nondecreasing in ε, the

feasible set of Model (6) (or, equivalently, the feasible set of Model (7)) does not increase when the value

of ε increases. Therefore Λ∗o(ε) is a nonincreasing function; that is, if ε1 > ε2, then Λ∗o(ε1) ≤ Λ∗o(ε2).

Consider, for instance, d( j, ε) = ε for all j ∈ {1, . . . , k}. Then

δo(ε) = ε

k∑
j=1

Vo j and δo2(ε) = (m − 1) + ε

 k∑
j=1

Vo j −
nk(k + 1)

2

 .
According to Theorem 2, we have

Λ∗o(ε) = (m − 1)V∗o + ε

(V∗o + 1)
k∑

j=1

Vo j − V∗o
nk(k + 1)

2

 ,
that is, the graph of Λ∗o(ε) is a straight line. Moreover, since Λ∗o(ε) is a nonincreasing function, the slope of

this straight line is negative or null.

Consider now the example given by Table 1. In this case

Λ∗o(ε) = 5V∗o + ε

(V∗o + 1)
4∑

j=1

Vo j − 200V∗o

 .
When we focus on candidates B and D we have

Λ∗B(ε) =
35
23
−

110
23

ε, Λ∗D(ε) =
15
7
−

200
7
ε.

Both functions appear drawn in Figure 1 (Note that we have considered different scales on both axes; a

hundredth on the x-axis is equal to one unit on the y-axis).

As we can see in Figure 1, when we take values of ε less than 10/383 we have D � B. However, if the

values of ε are greater than 10/383, then B � D. In Table 4 we show this behavior for two specific values

of ε, ε = 0.01 and ε = 5/178. This last value is the maximum possible value for ε, that is, the maximum

value for which min
o=1,...,m

δo2(ε) ≥ 0.

Therefore, it is not obvious how to choose a specific value of ε. One possibility would be to always

take the maximum possible value for ε (in the same spirit that in Cook and Kress’ model), although in the

previous example (see Figure 1), it does seem the best choice. On the other hand, this solution has a serious

shortcoming: the order between two candidates may depend on the ranks obtained by other candidates. For

instance, suppose that candidates A, E and F obtain the ranks shown in Table 5, which are different from
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Figure 1: Graphs of the functions Λ∗B(ε) and Λ∗D(ε).

Table 4: Values of δo2(ε) and Λ∗o(ε) for the candidates of Table 1.

ε = 0.01 ε = 5/178

Candidate δo2(ε) Λ∗o(ε) δo2(ε) Λ∗o(ε)

A 3.32 0.9840 0.2809 0.9551

B 3.43 1.4739 0.5899 1.3874

C 3.38 1.8286 0.4494 1.2600

D 3.40 1.8571 0.5056 1.3403

E 3.22 0.7333 0.0000 0.6180

F 3.25 0.7681 0.0843 0.7157

those shown in Table 1. Now, the maximum possible value for ε is 5/194, and, with this value, D � B

(Λ∗B(ε) and Λ∗D(ε) are still the functions of Figure 1 and 5/194 < 10/383; see also Table 5).

A solution to avoid taking a fixed value of ε is to consider the average of the functions Λ∗o(ε). Moreover,

for each candidate Ao we only consider the constraint δo2(ε) ≥ 0 instead of the restriction min
o=1,...,m

δo2(ε) ≥ 0.

This prevents that the average of the function Λ∗o(ε) may depend on the results obtained for the remaining

candidates. This proposal will be developed in the next section.
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Table 5: New ranks and values of δo2(ε) and Λ∗o(ε) for ε = 5/194.

Candidate vi1 vi2 vi3 vi4 δo2 Λ∗o(ε)

A 3 3 6 3 0.7732 1.1211

B 4 5 5 2 0.9536 1.3985

C 6 2 3 2 0.8247 1.3328

D 6 2 2 6 0.8763 1.4065

E 0 0 1 4 0.0000 0.1546

F 1 8 3 3 0.7990 1.1856

4. Averaging the functions Λ∗o(ε)

Consider again Model (7):

Λ∗o(ε) = max
k∑

j=1

Vo jW j + δo(ε),

s.t.
k∑

j=1

( jn − Vo j)W j ≤ δo2(ε),

W j ≥ 0, j = 1, . . . , k,

(10)

where

δo(ε) =

k∑
j=1

Vo jd( j, ε),

δo2(ε) = (m − 1) −
k∑

j=1

( jn − Vo j)d( j, ε).

We have seen that when Vo1 = n, then the candidate Ao is the winner. On the other hand, if Vo j = 0 for

all j ∈ {1, . . . , k}, then Λ∗o(ε) = 0 for all ε ≥ 0.

Consider now the remaining cases. When d( j, ε) = 0 for all j ∈ {1, . . . , k}, we know, from Subsec-

tion 3.1, that

Λ∗o(ε) = (m − 1) max
j=1,...,k

Vo j

jn − Vo j
,

that is, Λ∗o(ε) does not depend on ε. If d( j, ε) is not null for some j ∈ {1, . . . , k}, Model (10) is feasible if

and only if δo2(ε) ≥ 0. Since δo2(ε) is a nonincreasing function (because d( j, ε) are nondecreasing in ε), we
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can consider the maximum value for which the feasible set is not-empty, that is,

ε∗o = sup {ε ≥ 0 | δo2(ε) ≥ 0} .

Once known the value of ε∗o, the score assigned to the candidate Ao is

Λ̂o =
1
ε∗o

∫ ε∗o

0
Λ∗o(ε) dε,

that is, the average of the function Λ∗o(ε) (on the assumption that this value exists). Obviously, if ε∗o = 0,

then we consider Λ̂o = Λ∗o(0). Moreover, note that the value of ε∗o may not be finite. In this case, the value

of Λ̂o could be defined as

Λ̂o = lim
b→∞

1
b

∫ b

0
Λ∗o(ε) dε.

In any case, from now on we suppose that ε∗o is finite, non-null and that
∫ ε∗o

0
Λ∗o(ε) dε exists. Given that

Λ∗o(ε) = δo2(ε)V∗o + δo(ε) =

(m − 1) −
k∑

j=1

( jn − Vo j)d( j, ε)

 V∗o +

k∑
j=1

Vo jd( j, ε)

= (m − 1)V∗o +

k∑
j=1

(
Vo j − ( jn − Vo j)V∗o

)
d( j, ε),

we have

Λ̂o = (m − 1)V∗o +
1
ε∗o

∫ ε∗o

0

 k∑
j=1

(
Vo j − ( jn − Vo j)V∗o

)
d( j, ε)

 dε.

Now we focus on some specific cases of d( j, ε). Consider d( j, ε) = g( j)h(ε), where h(ε) is strictly

monotonic increasing in ε (see Cook & Kress [5, p. 1309]). In this case,

Λ̂o = (m − 1)V∗o +
1
ε∗o

 k∑
j=1

(
Vo j − ( jn − Vo j)V∗o

)
g( j)

 ∫ ε∗o

0
h(ε) dε. (11)

In the following proposition we show the values of ε∗o and Λ̂o when h(ε) = ε, that is, d( j, ε) = g( j)ε.

Proposition 2. Consider Model (10) and Λ̂o given by (11). If d( j, ε) = g( j)ε, then

ε∗o =
m − 1

k∑
j=1

( jn − Vo j)g( j)
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and

Λ̂o =
m − 1

2


V∗o +


n

k∑
j=1

jg( j)

k∑
j=1

Vo jg( j)

− 1



−1 
.

It is worth noting that the order among the candidates does not depend on the number of candidates;

that is, in order to rank the candidates we can use the value Λ̂o or the following one:

V∗o +


n

k∑
j=1

jg( j)

k∑
j=1

Vo jg( j)

− 1



−1

.

We now show the values of Λ̂o for three specific cases proposed by Cook & Kress [5]:

1. If g( j) = 1, that is, d( j, ε) = ε, then

Λ̂o =
m − 1

2


V∗o +


nk(k + 1)

2
k∑

j=1

Vo j

− 1



−1 
.

2. If g( j) = 1/ j, that is, d( j, ε) = ε/ j, then

Λ̂o =
m − 1

2


V∗o +


nk

k∑
j=1

Vo j

j

− 1



−1 
.

3. If g( j) = 1/ j!, that is, d( j, ε) = ε/ j!, then

Λ̂o =
m − 1

2


V∗o +


n

k∑
j=1

1
( j − 1)!

k∑
j=1

Vo j

j!

− 1



−1 
.

Consider again the candidates of Table 1. In Table 6 we show the values of Λ̂o for the previous discrim-

ination intensity functions.
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Table 6: Values of Λ̂o for the candidates of Table 1.

Candidate d( j, ε) = ε d( j, ε) = ε/ j d( j, ε) = ε/ j!

A 0.9762 0.9666 0.9548

B 1.4456 1.4439 1.4481

C 1.6578 1.7418 1.8268

D 1.6964 1.7629 1.8235

E 0.7075 0.6414 0.5809

F 0.7557 0.7122 0.6739

As we can see, D is the winning candidate when d( j, ε) = ε or d( j, ε) = ε/ j, while C is the winner

when d( j, ε) = ε/ j! These results coincides with that obtained by Cook & Kress [5] when d( j, ε) = ε/ j or

d( j, ε) = ε/ j! However, when d( j, ε) = ε, we get that D is the winner while the winning candidate with their

model is B. In our case, as we can see from Figure 1, it seems reasonable that D be the winner. Note that in

Figure 1 the functions Λ∗B(ε) and Λ∗D(ε) are plotted up to the value of ε = 5/178. However, the averages of

the functions Λ∗B(ε) and Λ∗D(ε) are calculated in the intervals [0, 5/157] and [0, 5/160], respectively.

5. Concluding remarks

Scoring rules are decision rules usually used in some areas (for instance, in sports competitions) to rank

a set of candidates. The main problem that they present is the choice of the weights associated with the

different ranking places. For this reason, several models have appeared in the literature trying to evaluate

each candidate with the most favorable scoring vector for him/her. However, most of them are not fully

convincing from the point of view of the Social Choice Theory. The score that our model assigns to each

candidate (the average of the function provided for Model (10)) avoids the problems that the other models

have. In addition to this, it is worth noting that, in some important cases, we give a closed expression for

obtaining the scores of the candidates. So, it is not necessary to solve the proposed model.
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Appendix A. Proofs

Proof of Lemma 1. Given Model (4), consider the following change of variables:
W j = w j − w j+1 − d( j, ε), for all j ∈ {1, . . . , k − 1},

Wk = wk − d(k, ε).

In this case, w j =

k∑
l= j

(
Wl + d(l, ε)

)
for all j ∈ {1, . . . , k} and

k∑
j=1

vo jw j =

k∑
j=1

vo j

 k∑
l= j

(
Wl + d(l, ε)

) =
∑

1≤ j≤k
j≤l≤k

vo j
(
Wl + d(l, ε)

)
=

∑
1≤ j≤l≤k

vo j
(
Wl + d(l, ε)

)

=
∑

1≤l≤k
1≤ j≤l

vo j
(
Wl + d(l, ε)

)
=

k∑
l=1

(
Wl + d(l, ε)

)  l∑
j=1

vo j

 =

k∑
j=1

(
W j + d( j, ε)

)  j∑
l=1

vol

 ,
where the last equality is obtained by changing the role of j and l.

If we denote
∑ j

l=1 vol by Vo j, then we have

k∑
j=1

vo jw j =

k∑
j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε).

Analogously,

k∑
j=1

(n − vo j)w j =

k∑
j=1

(n − vo j)

 k∑
l= j

(
Wl + d(l, ε)

) =
∑

1≤ j≤k
j≤l≤k

(n − vo j)
(
Wl + d(l, ε)

)

=
∑

1≤ j≤l≤k

(n − vo j)
(
Wl + d(l, ε)

)
=

∑
1≤l≤k
1≤ j≤l

(n − vo j)
(
Wl + d(l, ε)

)

=

k∑
l=1

(
Wl + d(l, ε)

)  l∑
j=1

(n − vo j)

 =

k∑
l=1

(
Wl + d(l, ε)

)
(ln − Vol)

=

k∑
j=1

(
W j + d( j, ε)

)
( jn − Vo j) =

k∑
j=1

( jn − Vo j)W j +

k∑
j=1

( jn − Vo j)d( j, ε).
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Therefore, Model (4) can be written as

Θ∗o = max
k∑

j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε),

s.t.
k∑

j=1

Vo jW j +

k∑
j=1

Vo jd( j, ε) ≤ 1,

k∑
j=1

( jn − Vo j)W j +

k∑
j=1

( jn − Vo j)d( j, ε) ≤ m − 1,

W j ≥ 0, j = 1, . . . , k.

Proof of Theorem 1. Model (5) is equivalent to the following one:

Θ̃∗o = max
k∑

j=1

Vo jW j,

s.t.
k∑

j=1

Vo jW j ≤ δo1,

k∑
j=1

( jn − Vo j)W j ≤ δo2,

W j ≥ 0, j = 1, . . . , k.

Moreover, Θ∗o = Θ̃∗o + 1 − δo1. It is well known that if a linear program has an optimal solution, then

its dual also has an optimal solution and the optimal values for both problems are equal. Therefore, it is

sufficient to solve the dual of the previous problem, that is,

min δo1X1 + δo2X2,

s.t. Vo jX1 + ( jn − Vo j)X2 ≥ Vo j, j = 1, . . . , k,

X1, X2 ≥ 0.

Let S be the feasible set of this problem; i.e.,

S =
{
(X1, X2) ∈ R2

+ | Vo jX1 + ( jn − Vo j)X2 ≥ Vo j, j = 1, . . . , k
}
.

We distinguish two cases:
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1. If Vo1 = n, then Vo2 = · · · = Vok = n and S =
{
(X1, X2) ∈ R2

+ | X1 ≥ 1
}
. Therefore Θ̃∗o = δo1 and

Θ∗o = 1.

2. If Vo1 < n, then Vo jX1 + ( jn − Vo j)X2 = Vo j is the straight line that passes through the points (1, 0)

and
(
0,Vo j/( jn − Vo j)

)
. Let V∗o and p ∈ {1, . . . , k} such that

V∗o = max
j=1,...,k

Vo j

jn − Vo j
=

Vop

pn − Vop
.

Then S =
{
(X1, X2) ∈ R2

+ | VopX1 + (pn − Vop)X2 ≥ Vop
}
. We distinguish two cases:

(a) If δo2 = 0, then the objective function is δo1X1 and an optimal solution is (0,V∗o ). Therefore,

Θ̃∗o = 0 and Θ∗o = 1 − δo1.

(b) If δo2 , 0, then the contours of the objective function are straight lines with slope −δo1/δo2. We

distinguish the following cases:

i. If δo1/δo2 < V∗o , then the optimal point is (1, 0) (see Figure A.2). Therefore Θ̃∗o = δo1 and

Θ∗o = 1.

1 X1

X2

δo1/δo2

V∗o
S

Figure A.2: Optimal point when δo1/δo2 < V∗o .

ii. If δo1/δo2 = V∗o , then the optimal solution is any point on the line segment between (1, 0)

and (0,V∗o ). In this case Θ̃∗o = δo1 and Θ∗o = 1.

iii. If δo1/δo2 > V∗o , then the optimal point is
(
0,V∗o

)
. Therefore Θ̃∗o = δo2V∗o and Θ∗o = δo2V∗o +

1 − δo1.
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Proof of Theorem 2. Model (7) is equivalent to the following one:

Λ̃∗o = max
k∑

j=1

Vo jW j,

s.t.
k∑

j=1

( jn − Vo j)W j ≤ δo2,

W j ≥ 0, j = 1, . . . , k.

Just as in the previous proof, it suffices to solve the dual of this problem, that is,

min δo2X,

s.t. ( jn − Vo j)X ≥ Vo j, j = 1, . . . , k,

X ≥ 0.

It is easy to check that the optimal solution is X∗ = V∗o = max
j=1,...,k

Vo j

jn − Vo j
. Therefore, Λ̃∗o = δo2V∗o and

Λ∗o = δo2V∗o + δo.

Proof of Proposition 1. Given that max
j=1,...,k

Vo j

j
= vo1 > n/2 and max

j=1,...,k

Vi j

j
≤ n/2 for all i , o, the proof is

obvious from equivalence (9).

Proof of Proposition 2. If d( j, ε) = g( j)ε, then we have

ε∗o = sup {ε ≥ 0 | δo2(ε) ≥ 0}

ε∗o = sup

ε ≥ 0 |
k∑

j=1

( jn − Vo j)d( j, ε) ≤ m − 1


= sup

ε ≥ 0 | ε
k∑

j=1

( jn − Vo j)g( j) ≤ m − 1


= sup


ε ≥ 0 | ε ≤

m − 1
k∑

j=1

( jn − Vo j)g( j)


=

m − 1
k∑

j=1

( jn − Vo j)g( j)
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and

Λ̂o = (m − 1)V∗o +
1
ε∗o

 k∑
j=1

(
Vo j − ( jn − Vo j)V∗o

)
g( j)

 ∫ ε∗o

0
ε dε

= (m − 1)V∗o +
ε∗o
2

 k∑
j=1

(
Vo j − ( jn − Vo j)V∗o

)
g( j)


= (m − 1)V∗o +

m − 1

2
k∑

j=1

( jn − Vo j)g( j)

 k∑
j=1

Vo jg( j) − V∗o
k∑

j=1

( jn − Vo j)g( j)



= (m − 1)V∗o +
m − 1

2

k∑
j=1

Vo jg( j)

k∑
j=1

( jn − Vo j)g( j)

−
m − 1

2
V∗o

=
m − 1

2


V∗o +

k∑
j=1

Vo jg( j)

n k∑
j=1

jg( j) −
k∑

j=1

Vo jg( j)





=
m − 1

2


V∗o +


n

k∑
j=1

jg( j)

k∑
j=1

Vo jg( j)

− 1



−1 
.
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