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Abstract

In this paper we characterize the reconstruction of a fuzzy set from its subsets by
means of  Lukasiewicz triplets. This result allows us to introduce a new definition
of fuzzy strict preference, which is also satisfied in the crisp framework. The usual
definitions of fuzzy indifference and fuzzy incomparability together with this one
enable to construct and to characterize fuzzy preference structures from a reflexive
fuzzy binary relation.
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1 Introduction

It is usual in the theory of preference modelling to represent the agents’ pref-
erences on a set of alternatives A by means of three binary relations: the
strict preference relation P , the indifference relation I and the incompara-
bility relation J . The relation P shows whether an alternative is preferred
to another or vice versa. I is used for representing the indifference between
two alternatives. Finally, J shows the pairs of alternatives which cannot be
compared in terms of preference or indifference.

In the crisp theory, starting from the relation R = P ∪ I, it is possible to
reconstruct P , I and J by means of P = R ∩ Rd, I = R ∩ R−1 and
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J = Rc ∩ Rd. However, in the fuzzy framework, it has been proven that if
we represent the complement, the intersection and the union of fuzzy sets
through De Morgan triplets then the equality B = (B ∩C)∪ (B ∩Cc) is not
satisfied for all two fuzzy subsets B and C of A (see Alsina [1] and Fodor
and Roubens [12]). Consequently, the relationships P = R∩Rd, I = R∩R−1
and R = P ∪ I are inconsistent for some reflexive fuzzy binary relation R.

Due to this result, some authors, such as Fodor [8] and [9], Fodor and Roubens
[10], [11] and [12], and Ovchinnikov and Roubens [14] and [15], have proposed
and developed an axiomatic model. A survey of this development can be found
in De Baets and Fodor [5] and in Perny and Roubens [16].

On the other hand, Van de Walle, De Baets and Kerre [21] have proven that if
we use De Morgan triplets with strong negations for defining fuzzy preference
structures, then φ-transforms of  Lukasiewicz t-norm are the most suitable can-
didates. Consequently, De Morgan triplets have two automorphisms: the first
one corresponds to the φ-transform of  Lukasiewicz t-norm and the second one
corresponds to the strong negation. However, in many instances,  Lukasiewicz
triplets are used in the literature without being justified. On this, De Baets
and Fodor [5] give the following argumentation in order to use  Lukasiewicz
triplets:

To avoid unnecessarily complicated notations and definitions we restrict our-
selves to the case φ1 = φ2. (. . . ) A second reason for sticking to a single
[0, 1]-automorphism is given by the following relationships between the com-
pleteness conditions in case of a  Lukasiewicz triplet.

A similar assertion is given in Van de Walle, De Baets and Kerre [22]. Nev-
ertheless, this argumentation is weak and the use of  Lukasiewicz triplets can
condition the relations between the completeness conditions.

Moreover, Van de Walle, De Baets and Kerre [22] give a non-trivial condition
under which the fuzzy binary relations P , I and J are uniquely determined
from R. However, they express the intersection of fuzzy sets through two
different t-norms, which belong to the Frank t-norm family. Thus, they obtain
similar expressions to the crisp theory (R = P ∪∞φ I, P = R∩1/sφ Rd, I = R∩sφ
R−1, J = Rc∩sφRd ) but these relations are expressed by means of two different
t-norms instead of utilizing  Lukasiewicz triplets for their representation.

In this paper we give a solution to the previous problems. Firstly, although
there is no De Morgan triplet such that the equality B = (B ∩C)∪ (B ∩Cc)
holds for any two fuzzy subsets B and C of A, since (B ∩ C) ⊆ B, the
problem is to reconstruct a fuzzy set B from its subsets. Therefore, if we
consider C ⊆ B, the problem can be formulated as B = C ∪ (B \ C) or,
equivalently, B = C∪(B∩Cc). In Theorem 12 we characterize the t-norms, the
t-conorms and the strict negations for which the previous equality is satisfied
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for any two fuzzy subsets B and C of A such that C ⊆ B. These t-norms,
t-conorms and strict negations form  Lukasiewicz triplets.

From this result, since I = R ∩ R−1, we introduce a new definition of fuzzy
strict preference, P = R∩Ic = R∩ (R∩R−1)c. This definition is also satisfied
in the crisp framework; in fact, it is equivalent to P = R∩Rd, and therefore,
there are no reason for using P = R∩Rd and not P = R∩(R∩R−1)c. Corollary
13 guarantees that we can reconstruct R from P and I if and only if we use
 Lukasiewicz triplets. For obtaining this result, it is not necessary to take De
Morgan triplets like starting point.

Furthermore, the fuzzy preference structure obtained in Theorem 28, given by
P = R∩ (R∩R−1)c, I = R∩R−1 and J = Rc∩Rd, satisfies a factorization of
R into P and I that it is also satisfied in the crisp theory and, consequently,
it seems that this fuzzy preference structure is the best-suited. As Bufardi [3]
stand out:

In any method of construction of a fuzzy preference structure from a reflex-
ive fuzzy relation, it is very important to preserve as much as possible the
features of the classical method of the construction of preference structures.

We also extend the results obtained by Van de Walle, De Baets and Kerre
[21] to any t-conorm. Moreover, although we obtain the same minimal for-
mulation for fuzzy preference structures that De Baets and Van de Walle [6]
and Bufardi [4], the construction of fuzzy preference structures by means of
fuzzy partitions is more straightforward than the use of completeness condi-
tions and it allows to have the same definition for crisp and fuzzy preference
structures (Remark 2 and Definition 19, respectively). Lastly, in Theorem 22
we give a representation of all fuzzy preference structures and we show that
the strict preference relation and the incomparability relation depend on the
indifference relation.

The paper is organized as follows. In Section 2 we show notation and basic
definitions. In Section 3, crisp and fuzzy preference structures are formally
introduced. Finally, Section 4 contains the main results of the paper.

2 Notation and basic concepts

Let A be a not empty set of alternatives with |A| ≥ 2. Subsets of A will
be called crisp subsets of A. A partition of A is a family of crisp subsets
{A1, . . . , An} of A such that

(1) Ai
⋂
Aj = ∅ for all i, j ∈ {1, . . . , n} such that i 6= j.
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(2)
n⋃
i=1

Ai = A.

A crisp binary relation Q on A is a crisp subset of A2. We will use aQb to
denote (a, b) ∈ Q. Given a crisp binary relation Q on A, the relations Q−1,
Qc and Qd are defined by

Q−1 = {(a, b) ∈ A2 | (b, a) ∈ Q},

Qc = {(a, b) ∈ A2 | (a, b) /∈ Q},

Qd = {(a, b) ∈ A2 | (b, a) /∈ Q} = (Q−1)c.

A crisp binary relation Q on A is:

(1) reflexive if aQa for all a ∈ A.
(2) irreflexive if not aQa for all a ∈ A.
(3) symmetric if Q ⊆ Q−1 (aQb ⇒ bQa, for all a, b ∈ A).
(4) asymmetric if Q ∩Q−1 = ∅ (aQb ⇒ not bQa, for all a, b ∈ A).
(5) complete if Q ∪Q−1 = A2 (aQb or bQa, for all a, b ∈ A).

A function φ : [0, 1] −→ [0, 1] is an order automorphism if it is bijective and
increasing. Any order automorphism φ is strictly increasing, continuous and
satisfies φ(0) = 0, φ(1) = 1. Furthermore, the function φ−1 is also an order
automorphism. An order automorphism φ is reciprocal if φ(1−x) = 1−φ(x)
for all x ∈ [0, 1]. It is easy to check that φ is reciprocal if and only if φ−1 is
reciprocal. On this, see Garćıa-Lapresta and Llamazares [13].

A fuzzy subset B of A is defined through its membership function, µB : A −→
[0, 1], where µB(a) is the grade of membership of a in B. The value µB(a)
will be denoted by B(a). Given two fuzzy subsets B and C of A, C ⊆ B if
C(a) ≤ B(a) for all a ∈ A.

The complement of a fuzzy set is defined through negations. A function N :
[0, 1] −→ [0, 1] is a negation if it is decreasing and satisfies N (0) = 1 and
N (1) = 0. A negation N is called strict if it is bijective. Consequently, a
strict negation N is continuous and strictly decreasing. Moreover, its inverse,
N−1, is also a strict negation. A negation N is called strong if N (N (x)) = x
for all x ∈ [0, 1]. If N is a strong negation then it is also a strict negation and
N−1 = N . Trillas [20] has proven that N is a strong negation if and only if
there exists an order automorphism φ such that N (x) = φ−1(1 − φ(x)) for
all x ∈ [0, 1]. N (x) = 1−x is called the standard negation. Given a negation
N , the complement of a fuzzy subset B of A is defined by Bc(a) = N (B(a))
for all a ∈ A.
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The intersection and the union of fuzzy sets are defined by means of triangular
norms and conorms, respectively. These functions satisfy the following prop-
erties: commutativity, monotonicity, associativity and a boundary condition.
Triangular norms and conorms were widely studied by Schweizer and Sklar
[19] in the context of probabilistic metric spaces.

A function T : [0, 1]2 −→ [0, 1] is a triangular norm (t-norm) if it satisfies
the following conditions:

(1) T (1, x) = x for all x ∈ [0, 1].
(2) T (x, y) = T (y, x) for all x, y ∈ [0, 1].
(3) T (x, y) ≤ T (u, v) for all x, y, u, v ∈ [0, 1] such that x ≤ u, y ≤ v.
(4) T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1].

A function S : [0, 1]2 −→ [0, 1] is a triangular conorm (t-conorm) if it satisfies
the following conditions:

(1) S(0, x) = x for all x ∈ [0, 1].
(2) S(x, y) = S(y, x) for all x, y ∈ [0, 1].
(3) S(x, y) ≤ S(u, v) for all x, y, u, v ∈ [0, 1] such that x ≤ u, y ≤ v.
(4) S(x,S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1].

It is easy to check that T (x, 0) = 0 and S(x, 1) = 1 for all x ∈ [0, 1].

Given a t-norm T and a t-conorm S, the intersection and the union of two
fuzzy subsets B and C of A are defined as follows:

(1) (B ∩ C)(a) = T (B(a), C(a)) for all a ∈ A.
(2) (B ∪ C)(a) = S(B(a), C(a)) for all a ∈ A.

A t-norm T is Archimedean if T (x, x) < x for all x ∈ (0, 1). A t-norm T
has zero divisors if there exist x, y ∈ (0, 1) such that T (x, y) = 0.

Given a t-norm T and a strict negation N , the function T N : [0, 1]2 −→
[0, 1] defined by T N (x, y) = N−1(T (N (x),N (y))) is a t-conorm. If N is
the standard negation, then T N is denoted by T ∗ and it is called the dual
t-conorm of T . Therefore, T ∗(x, y) = 1−T (1− x, 1− y) for all x, y ∈ [0, 1].

We next show the  Lukasiewicz t-norm and its dual t-conorm, which will play
a key role in this paper:

W (x, y) = max(x+ y − 1, 0),

W ∗(x, y) = min(x+ y, 1).
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Given a t-norm T and an order automorphism φ, the φ-transform of T is
the t-norm Tφ defined by Tφ(x, y) = φ−1(T (φ(x), φ(y))) for all x, y ∈ [0, 1].
Analogously, if S is a t-conorm, the φ-transform of S is the t-conorm Sφ
defined by Sφ(x, y) = φ−1(S(φ(x), φ(y))) for all x, y ∈ [0, 1]. For instance,
the φ-transforms of  Lukasiewicz t-norm and t-conorm are given by

Wφ(x, y) = φ−1(max(φ(x) + φ(y)− 1, 0)),

(W ∗)φ(x, y) = φ−1(min(φ(x) + φ(y), 1)).

If T is a t-norm and N is a strict negation then (T , T N ,N ) is a De Morgan
triplet . A De Morgan triplet (T , T N ,N ) is continuous if the t-norm T is
continuous. If φ is an order automorphism and N (x) = φ−1(1 − φ(x)) then
(Wφ, (Wφ)N ,N ) is called the φ- Lukasiewicz triplet . In this case, it is easy to
check that (Wφ)N = (W ∗)φ.

A fuzzy binary relation Q on A is a fuzzy subset of A2. The value µQ(a, b)
will be denoted by Q(a, b). If Q(a, b) ∈ {0, 1} for all a, b ∈ A then Q is a
crisp binary relation. In this case, aQb denotes Q(a, b) = 1.

If N is a strict negation and Q is a fuzzy binary relation on A, the fuzzy
relations Q−1, Qc and Qd are defined by Q−1(a, b) = Q(b, a), Qc(a, b) =
N (Q(a, b)) and Qd(a, b) = N (Q(b, a)), for all a, b ∈ A.

Given a t-norm T and a t-conorm S, a fuzzy binary relation Q on A is:

(1) reflexive if Q(a, a) = 1 for all a ∈ A.
(2) irreflexive if Q(a, a) = 0 for all a ∈ A.
(3) symmetric if Q(a, b) = Q(b, a) for all a, b ∈ A.
(4) asymmetric if T (Q(a, b), Q(b, a)) = 0 for all a, b ∈ A.
(5) complete if S(Q(a, b), Q(b, a)) = 1 for all a, b ∈ A.

3 Preference structures

In this section we present crisp and fuzzy preference structures. Preference
structures are formed by three binary relations: a strict preference relation, P ,
an indifference relation, I, and an incomparability relation, J . The definition
of crisp preference structure on A was introduced by Roubens and Vincke
[17].

Definition 1. A crisp preference structure on A is a triplet (P, I, J) of crisp
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binary relations on A that satisfy the following properties:

(1) P is asymmetric.
(2) I is reflexive and symmetric.
(3) J is symmetric.
(4) P ∩ I = ∅, P ∩ J = ∅, I ∩ J = ∅.
(5) P ∪ P−1 ∪ I ∪ J = A2.

In the crisp framework, asymmetry implies irreflexivity. Therefore, P is ir-
reflexive. Moreover, J is irreflexive since I ∩ J = ∅ and I is reflexive. It is
important to emphasize that a crisp preference structure on A is a partition
of A2 that satisfies some conditions. This fact is pointed out in the following
remark.

Remark 2. A triplet (P, I, J) of crisp binary relations on A is a crisp pref-
erence structure on A if and only if the following statements hold:

(1) I is reflexive and symmetric.
(2) {P, P−1, I, J} is a partition of A.

From a strict preference relation P and an indifference relation I it is possible
to obtain a reflexive crisp binary relation R on A by means of R = P ∪ I.
This relation shows whether an alternative is at least as good as another or
vice versa.

Definition 3. Let R be a reflexive crisp binary relation on A. A crisp pref-
erence structure on A associated to R is a triplet (P, I, J) of crisp binary
relations that satisfy the following properties:

(1) (P, I, J) is a crisp preference structure on A.
(2) R = P ∪ I.

It is well-known that, in the crisp framework, the preference structures on A
associated to R are uniquely determined. Thus, P = R ∩ Rd, I = R ∩ R−1
and J = Rc ∩Rd.

In the fuzzy framework, the definition of fuzzy preference structure on A was
first introduced by De Baets, Van de Walle and Kerre [7]. Here, we give a
similar definition.

Definition 4. Let T be a t-norm and S a t-conorm. A fuzzy preference
structure on A (FPS) is a triplet (P, I, J) of fuzzy binary relations that satisfy
the following properties:

(1) P is irreflexive and asymmetric.
(2) I is reflexive and symmetric.
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(3) J is irreflexive and symmetric.
(4) P ∩ I = ∅, P ∩ J = ∅, I ∩ J = ∅.
(5) P ∪ P−1 ∪ I ∪ J = A2.

4 The results

This section is devoted to characterizing FPS’s. Van de Walle, De Baets and
Kerre [21] have studied FPS’s defined from De Morgan triplets with strong
negations. Their outcomes are also satisfied for any t-conorm.

Theorem 5. Let T be a t-norm without zero divisors and S a t-conorm. If
(P, I, J) is a FPS on A then P , I and J are crisp binary relations on A.

PROOF. It is similar to the provided by Van de Walle, De Baets and Kerre
[21]. 2

The following result, given by Van de Walle, De Baets and Kerre [21], char-
acterize the values for which a continuous non-Archimedean t-norm with zero
divisors is null.

Proposition 6. Let T be a continuous non-Archimedean t-norm with zero
divisors. Then there exist θ ∈ (0, 1) and an order automorphism φ such that
for all (x, y) ∈ [0, 1]2

T (x, y) = 0 ⇔


x = 0, or

y = 0, or

(x, y) ∈ (0, θ)2 and φ(x
θ
) + φ(y

θ
) ≤ 1.

This result allows us to prove that FPS’s based on continuous non-Archimede-
an t-norms with zero divisors cannot take all the values in [0, 1].

Theorem 7. Let T be a continuous non-Archimedean t-norm with zero di-
visors and S a t-conorm. There exists θ ∈ (0, 1) such that if (P, I, J) is a
FPS on A then the fuzzy binary relations P , I and J cannot take values in
[θ, 1).

PROOF. Analogously to Van de Walle, De Baets and Kerre [21], we only give
the proof for P , since the proofs for I and J are similar. Let θ ∈ (0, 1) be the
value obtained in Proposition 6 and (a, b) ∈ A2 such that P (a, b) ≥ θ. Since
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T (P (a, b), P (b, a)) = 0, T (P (a, b), I(a, b)) = 0 and T (P (a, b), J(a, b)) = 0,
by Proposition 6 we have P (b, a) = 0, I(a, b) = 0 and J(a, b) = 0. Lastly,
from P ∪ P−1 ∪ I ∪ J = A2 we obtain P (a, b) = 1. 2

It is important to emphasize that these results do not depend on the t-conorm
that we use for representing the union of fuzzy sets. So, if the t-norm has not
zero divisors, then P , I and J are crisp binary relations. On the other hand,
if the t-norm is continuous, non-Archimedean and it has zero divisors, then
there exists a threshold, θ, such that P , I and J take the value 1 or they
are bounded from above by θ. Therefore, if we consider continuous t-norms,
it seems natural the use of Archimedean t-norms with zero divisors. These
t-norms have been characterized by Ovchinnikov and Roubens [14] by means
of φ-transforms of  Lukasiewicz t-norm.

Theorem 8. T is a continuous Archimedean t-norm with zero divisors if and
only if there exists an order automorphism φ such that T = Wφ.

However, the preceding results impose no conditions about the t-conorm. Next
we give a reason for the use of  Lukasiewicz triplets. Previously, we point up
the result given by Fodor and Roubens [12] (see also Alsina [1]).

Theorem 9. There exists no De Morgan triplet (T , T N ,N ) such that

T N (T (x, y), T (x,N (y))) = x

for all x, y ∈ [0, 1].

This theorem shows us that there is no De Morgan triplet such that the
equality B = (B ∩ C) ∪ (B ∩ Cc) holds for any two fuzzy subsets B and C
of A. Consequently, there is no De Morgan triplet such that R = P ∪ I holds
with P = R∩ (R−1)c and I = R∩R−1, for any reflexive fuzzy binary relation
R.

However, it is possible to reconstruct any fuzzy subset B from a fuzzy subset
C if C ⊆ B, i.e. there exist continuous De Morgan triplets such that B =
C ∪ (B \C) or, equivalently, B = C ∪ (B ∩Cc) for any two fuzzy subsets B
and C of A such that C ⊆ B. In the following remark we give a necessary
and sufficient condition that the t-norm, the t-conorm and the strict negation
have to fulfill in order that the previous equality may be satisfied.

Remark 10. Let T be a t-norm, S a t-conorm and N a strict negation.The
equality B = C ∪ (B ∩ Cc) holds for any two fuzzy subsets B and C of A
such that C ⊆ B if and only if S(y, T (x,N (y))) = x for all x, y ∈ [0, 1]
such that y ≤ x.
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In the characterization of continuous t-norms, continuous t-conorms and strict
negations that satisfy this condition we will use the following result, given by
Fodor and Roubens [12].

Proposition 11. Let S be a continuous t-conorm and N a strict negation.
Then the following conditions are equivalent:

(1) S(x,N (x)) = 1 for all x ∈ [0, 1].
(2) There exists an order automorphism φ such that S = (W ∗)φ and N (x) ≥

φ−1(1− φ(x)) for all x ∈ [0, 1].

Theorem 12. Let T be a continuous t-norm, S a continuous t-conorm and
N a strict negation. Then the following conditions are equivalent:

(1) S(y, T (x,N (y))) = x for all x, y ∈ [0, 1] such that y ≤ x.
(2) There exists an order automorphism φ such that N (x) = φ−1(1−φ(x)),
T = Wφ and S = (Wφ)N , i.e. (T ,S,N ) is the φ- Lukasiewicz triplet.

PROOF.

(1)⇒ (2): If x = 1 then for all y ∈ [0, 1] we have

S(y,N (y)) = S(y, T (1,N (y))) = 1.

By Proposition 11 there exists an order automorphism φ such that S =
(W ∗)φ and N (x) ≥ φ−1(1− φ(x)) for all x ∈ [0, 1]. Therefore,

φ−1(min(φ(y) + φ(T (x,N (y))), 1)) = x

for all x, y ∈ [0, 1] such that y ≤ x. Hence, T (x,N (y)) = φ−1(φ(x) − φ(y))
for all x, y ∈ [0, 1] such that y ≤ x < 1. By the continuity of T and φ we
have

N (y) = T (1,N (y)) = lim
x→1
T (x,N (y)) = lim

x→1
φ−1(φ(x)− φ(y))

=φ−1(1− φ(y)),

for all y ∈ [0, 1). It is obvious that this relationship is also satisfied for y = 1.
Lastly, we are going to prove that T = Wφ. Given x, y ∈ [0, 1), we consider
z = N−1(y), i.e. y = N (z) = φ−1(1 − φ(z)). Then, φ(x) + φ(y) − 1 =
φ(x)− φ(z). We distinguish two cases:

(i) If z ≤ x, then φ(x) + φ(y)− 1 ≥ 0 and

T (x, y) = T (x,N (z)) = φ−1(φ(x)− φ(z)) = φ−1(φ(x) + φ(y)− 1)

=Wφ(x, y).
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(ii) If x < z, then N (z) < N (x), φ(x) + φ(y)− 1 < 0 and

T (x, y) = T (x,N (z)) ≤ T (x,N (x)) = φ−1(φ(x)− φ(x)) = 0

=Wφ(x, y).

If x = 1 or y = 1, then the equality is obvious.

(2)⇒ (1): If y ≤ x then φ(y) ≤ φ(x). Therefore,

Wφ(x,N (y)) = φ−1(max(φ(x) + φ(N (y))− 1, 0)) = φ−1(φ(x)− φ(y)).

Hence, for all x, y ∈ [0, 1] such that y ≤ x the following holds

(Wφ)N (y, T (x,N (y))) = φ−1(min(φ(y) + φ(x)− φ(y), 1)) = x. 2

Given a reflexive fuzzy binary relation R, since I = R∩R−1 ⊆ R, the previous
theorem suggests us to consider P = R ∩ Ic = R ∩ (R ∩ R−1)c. Is is easy to
see that this definition of P is also satisfied in the crisp framework.

Corollary 13. Let T be a continuous t-norm, S a continuous t-conorm and
N a strict negation. For any reflexive fuzzy binary relation on A, R, the
relations P = R ∩ (R ∩ R−1)c and I = R ∩ R−1 satisfy R = P ∪ I if
and only if there exists an order automorphism φ such that (T ,S,N ) is the
φ- Lukasiewicz triplet.

PROOF. It is sufficient to take into account that R = I ∪ (R ∩ Ic) and
Theorem 12. 2

Notice that if we consider the standard negation, then the φ- Lukasiewicz
triplet is given by a reciprocal order automorphism.

Corollary 14. Let T be a continuous t-norm and S a continuous t-conorm.
Then the following conditions are equivalent:

(1) S(y, T (x, 1− y)) = x for all x, y ∈ [0, 1] such that y ≤ x.
(2) There exists a reciprocal order automorphism φ such that T = Wφ and
S = (W ∗)φ.

PROOF. It is sufficient to consider N (x) = 1− x in Theorem 12. 2
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As we have mentioned in the introduction, some authors use the same order
automorphism for φ-transforms of  Lukasiewicz t-norm and strong negations,
i.e. they use φ- Lukasiewicz triplets, because the following statements holds:

(Wφ)N (x, y) = φ−1(min(φ(x) + φ(y), 1)) = (W ∗)φ(x, y).

However, when we utilize the standard negation we can obtain the same rela-
tionship if we suppose that the order automorphism is reciprocal. In fact, this
condition allows us to characterize reciprocal order automorphisms.

Theorem 15. Let φ be an order automorphism. Then the following state-
ments are equivalent:

(1) φ is reciprocal.
(2) (Wφ)∗ = (W ∗)φ.

PROOF.

(1)⇒ (2): If φ is reciprocal, then for all x, y ∈ [0, 1] we have

(Wφ)∗(x, y) = 1−Wφ(1− x, 1− y) = 1− φ−1(W (φ(1− x), φ(1− y)))

=φ−1(1−W (1− φ(x), 1− φ(y))) = φ−1(W ∗(φ(x), φ(y)))

= (W ∗)φ(x, y).

(2)⇒ (1): This is proven by contradiction. Suppose, it were otherwise. Then
there exists x ∈ (0, 1) such that φ(1 − x) + φ(x) 6= 1. We distinguish two
cases:

(i) If φ(1− x) + φ(x) < 1, then

(Wφ)∗(x, 1− x) = 1− φ−1(W (φ(1− x), φ(x))) = 1− φ−1(0) = 1.

On the other hand,

(W ∗)φ(x, 1− x) =φ−1(1−W (1− φ(x), 1− φ(1− x)))

=φ−1(φ(x) + φ(1− x)) < 1,

which contradicts the hypothesis.
(ii) If φ(1− x) + φ(x) > 1, then

(Wφ)∗(x, 1− x) = 1− φ−1(W (φ(1− x), φ(x)))

= 1− φ−1(φ(1− x) + φ(x)− 1) < 1.

On the other hand,

(W ∗)φ(x, 1− x) = φ−1(1−W (1− φ(x), 1− φ(1− x))) = φ−1(1) = 1,
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which contradicts the hypothesis. 2

In the sequel we only consider φ- Lukasiewicz triplets. However, if (P, I, J) is
a FPS on A, it can happen that (P ∪ I) ∩ J 6= ∅ although P ∩ J = ∅ and
I ∩J = ∅. In order to avoid this situation, we introduce the definition of fuzzy
partition of A.

Definition 16. Let φ be an order automorphism and (Wφ, (Wφ)N ,N ) the
φ- Lukasiewicz triplet. A φ-fuzzy partition of A is a family of fuzzy subsets
{A1, . . . , An} on A such that

(1) Ai
⋂( n⋃

j=1
j 6=i

Aj

)
= ∅ for all i ∈ {1, . . . , n}.

(2)
n⋃
i=1

Ai = A.

In the following proposition we give a characterization of a φ-fuzzy partition
of A.

Proposition 17. Let φ be an order automorphism and (Wφ, (Wφ)N ,N ) the
φ- Lukasiewicz triplet. Then the following statements are equivalent:

(1) {A1, . . . , An} is a φ-fuzzy partition of A.
(2) φ(A1(a)) + · · ·+ φ(An(a)) = 1 for all a ∈ A.

PROOF.

(1)⇒ (2): Given a ∈ A, if xi = Ai(a) for all i ∈ {1, . . . , n}, then we have

1 =
(

n⋃
i=1

Ai

)
(a) = φ−1

(
min

( n∑
i=1

φ(xi), 1
))
.

Therefore,
n∑
i=1

φ(xi) ≥ 1.

Consequently, there exists i ∈ {1, . . . , n} such that φ(xi) > 0. Hence,

0 =
(
Ai
⋂( n⋃

j=1
j 6=i

Aj

))
(a) =φ−1

(
max

(
φ(xi) + min

( n∑
j=1
j 6=i

φ(xj), 1
)
− 1, 0

))

=φ−1
(

max
(

min
( n∑
j=1

φ(xj)− 1, φ(xi)
)
, 0
))
.

13



Therefore, min
( n∑
j=1

φ(xj) − 1, φ(xi)
)
≤ 0. Since φ(xi) > 0, then we have

n∑
j=1

φ(xj) ≤ 1.

(2)⇒ (1): It is a simple checking. 2

Remark 18. A similar condition of orthogonality was introduced by Ruspini
[18] for defining fuzzy partitions.

In Remark 2 we have emphasized the relationship between crisp preference
structures and partitions of A. According to this result, we now give the
following definition.

Definition 19. Let φ be an order automorphism. A φ-fuzzy preference struc-
ture on A (φ-FPS) is a triplet (P, I, J) of fuzzy binary relations that satisfy
the following properties:

(1) I is reflexive and symmetric.
(2) {P, P−1, I, J} is a φ-fuzzy partition of A.

Note that if (P, I, J) is a φ-FPS on A then P is irreflexive and asymmetric
and J is irreflexive and symmetric.

Remark 20. Notice that Definition 19 coincides with the definition of φ-fuzzy
preference structure given by De Baets and Van de Walle [6] and Bufardi [4].

As in the crisp framework, we now consider φ-FPS’s on A associated to
reflexive fuzzy binary relations.

Definition 21. Let φ be an order automorphism and R a reflexive fuzzy
binary relation on A. A φ-FPS on A associated to R is a triplet (P, I, J)
of fuzzy binary relations that satisfy the following properties:

(1) (P, I, J) is a φ-FPS on A.
(2) R = P ∪ I.

In the following theorem we obtain a representation of all fuzzy preference
structures and we establish the lower and upper bounds for I when (P, I, J)
is a φ-FPS on A associated to R. Moreover, the relations P and J are
uniquely determined from R and I. Similar relationships have been given by
Bufardi [4] in the axiomatic model.

Theorem 22. Let R be a reflexive fuzzy binary relation on A and φ an
order automorphism. If (P, I, J) is a φ-FPS on A associated to R, then for

14



all a, b ∈ A

P (a, b) = φ−1(φ(R(a, b))− φ(I(a, b))),

J(a, b) = φ−1(1− φ(R(a, b))− φ(R(b, a)) + φ(I(a, b))),

φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)) ≤ I(a, b) ≤ min(R(a, b), R(b, a)).

PROOF. Given a, b ∈ A, we have

R(a, b) = φ−1(min(φ(P (a, b)) + φ(I(a, b)), 1)).

Since φ(P (a, b)) + φ(I(a, b)) ≤ 1, then R(a, b) = φ−1(φ(P (a, b)) + φ(I(a, b))),
and, consequently,

P (a, b) = φ−1(φ(R(a, b))− φ(I(a, b))).

Moreover, by Proposition 17, we have

φ(P (a, b)) + φ(I(a, b)) + φ(P (b, a)) + φ(J(a, b)) = 1.

Therefore, J(a, b) = φ−1(1− φ(R(a, b))− φ(R(b, a)) + φ(I(a, b))).

On the other hand, since φ(R(a, b)) = φ(P (a, b))+φ(I(a, b)), then φ(I(a, b)) ≤
φ(R(a, b)), or equivalently I(a, b) ≤ R(a, b). Analogously, from

φ(R(b, a)) = φ(P (b, a)) + φ(I(b, a)),

we have I(a, b) = I(b, a) ≤ R(b, a). Therefore, I(a, b) ≤ min(R(a, b), R(b, a)).
Lastly, as J(a, b) ≥ 0, we have

φ(I(a, b)) ≥ φ(R(a, b)) + φ(R(b, a))− 1,

or, equivalently, I(a, b) ≥ φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)). 2

Remark 23. In Theorem 22, if φ is the identity automorphism, then we
obtain the fuzzy binary relations given by Barrett and Pattanaik [2].

In the axiomatic model it is usual to suppose the condition Rd = P ∪ J
together with R = P∪I. However, Bufardi [3] has proven that both conditions
are equivalent when we consider φ-FPS’s.

Remark 24. It is easy to check that if (P, I, J) is a φ-FPS on A associated
to R, then the condition Rd = P ∪ J is also satisfied.
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The fuzzy binary relations P , I and J obtained in Theorem 22 are not
uniquely determined, so that we can impose additional conditions. Thus, in
the following theorems we also consider P = R ∩ Rd, P = R ∩ (R ∩ R−1)c,
I = R ∩ R−1 and J = Rc ∩ Rd, which are satisfied in the crisp framework.
The conditions P = R∩Rd and I = R∩R−1 have also been used by Bufardi
[3]. Moreover, under other hypothesis, similar FPS’s can be found in Fodor
and Roubens [10] and [12] and in Van de Walle, De Baets and Kerre [22]. The
following result has been given by Bufardi [3].

Theorem 25. Let R be a reflexive fuzzy binary relation on A and φ an
order automorphism. Then the following statements are equivalent:

(1) (P, I, J) is a φ-FPS on A associated to R and P = R ∩Rd.
(2) For all a, b ∈ A

P (a, b) = φ−1(max(φ(R(a, b))− φ(R(b, a)), 0)),

I(a, b) = min(R(a, b), R(b, a)),

J(a, b) = φ−1(min(1− φ(R(a, b)), 1− φ(R(b, a)))).

Remark 26. In the φ-FPS on A obtained in Theorem 25, the fuzzy relation
I takes the maximum possible value. Consequently, J also takes its maximum
value while P takes the minimum. Moreover, min(P (a, b), P (b, a)) = 0 for
all a, b ∈ A.

Remark 27. Bufardi [3] has proven that if we consider the fuzzy preference
structure given in Theorem 25 then R is symmetrical if and only if P = ∅.
From Theorem 22, it is easy to check that if R is symmetrical then the only
fuzzy preference structure that satisfies P = ∅ is given by Theorem 25.

Theorem 28. Let R be a reflexive fuzzy binary relation on A and φ an
order automorphism. Then the following statements are equivalent:

(1) (P, I, J) is a φ-FPS on A associated to R and it is satisfied one of the
following relationships: P = R∩(R∩R−1)c, I = R∩R−1 or J = Rc∩Rd.

(2) P = R ∩ (R ∩R−1)c, I = R ∩R−1 and J = Rc ∩Rd, i.e.

P (a, b) = min(R(a, b), φ−1(1− φ(R(b, a)))),

I(a, b) = φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)),

J(a, b) = φ−1(max(1− φ(R(a, b))− φ(R(b, a)), 0)),

for all a, b ∈ A.

PROOF.
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(1)⇒ (2): Firstly, we suppose that I = R ∩R−1 is satisfied. In this case, for
all a, b ∈ A the following holds

I(a, b) = φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)).

By Theorem 22 we have

P (a, b) =φ−1(φ(R(a, b))− φ(I(a, b)))

=φ−1(φ(R(a, b))−max(φ(R(a, b)) + φ(R(b, a))− 1, 0))

=φ−1(φ(R(a, b)) + min(1− φ(R(a, b))− φ(R(b, a)), 0))

=φ−1(min(1− φ(R(b, a)), φ(R(a, b))))

= min(φ−1(1− φ(R(b, a))), R(a, b)),

and

J(a, b) =φ−1(1− φ(R(a, b))− φ(R(b, a)) + φ(I(a, b)))

=φ−1(max(0, 1− φ(R(a, b))− φ(R(b, a)))).

We now suppose that P = R ∩ (R ∩R−1)c is satisfied. Then, for all a, b ∈ A

P (a, b) = φ−1(max(φ(R(a, b)) + φ((R ∩R−1)c(a, b))− 1, 0))

Since (R∩R−1)c(a, b) = φ−1(1−max(φ(R(a, b)) +φ(R(b, a))− 1, 0)), we have

P (a, b) =φ−1(max(φ(R(a, b))−max(φ(R(a, b)) + φ(R(b, a))− 1, 0), 0))

=φ−1(max(min(1− φ(R(b, a)), φ(R(a, b))), 0))

=φ−1(min(1− φ(R(b, a)), φ(R(a, b))))

= min(φ−1(1− φ(R(b, a))), R(a, b)),

By Theorem 22 the following holds

I(a, b) =φ−1(φ(R(a, b))− φ(P (a, b)))

=φ−1(φ(R(a, b))−min(1− φ(R(b, a)), φ(R(a, b))))

=φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)).

Therefore, I = R ∩R−1, and, consequently

J(a, b) = φ−1(max(1− φ(R(a, b))− φ(R(b, a)), 0)).
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Finally, if J = Rc ∩Rd, then for all a, b ∈ A the following holds

J(a, b) = φ−1(max(1− φ(R(a, b))− φ(R(b, a)), 0)).

By Theorem 22 we have

I(a, b) =φ−1(φ(R(a, b)) + φ(R(b, a))− 1 + φ(J(a, b)))

=φ−1(max(0, φ(R(a, b)) + φ(R(b, a))− 1)).

Therefore, I = R ∩R−1, and, consequently

P (a, b) = min(R(a, b), φ−1(1− φ(R(b, a)))).

(2)⇒ (1): It is obvious that I is reflexive and symmetric. On the other hand,
for all a, b ∈ A we have

φ(P (a, b)) + φ(I(a, b)) + φ(J(a, b)) = max(φ(R(a, b)), 1− φ(R(b, a))).

Since φ(P (b, a)) = min(φ(R(b, a)), 1− φ(R(a, b))), we have

φ(P (a, b)) + φ(P (b, a)) + φ(I(a, b)) + φ(J(a, b)) = 1,

for all a, b ∈ A, and, consequently, {P, P−1, I, J} is a φ-fuzzy partition of A.
Moreover,

φ(P (a, b)) + φ(I(a, b)) = min(φ(R(a, b)), 1− φ(R(b, a)))

+ max(φ(R(a, b)) + φ(R(b, a))− 1, 0)

=φ(R(a, b)).

Therefore, (P ∪ I)(a, b) = φ−1(φ(P (a, b)) + φ(I(a, b))) = R(a, b) for all a, b ∈
A. 2

Remark 29. Under this φ-FPS on A associated to R, the fuzzy relation I
takes the minimum possible value. Consequently, J also takes its minimum
value while P takes the maximum. Moreover, min(I(a, b), J(a, b)) = 0 for all
a, b ∈ A.

It is important to emphasize that the fuzzy preference structures obtained in
Theorem 25 and Theorem 28 correspond to the two extreme solutions of the
system of functional equations obtained in the axiomatic model. Remarks 26
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and 29 show that these fuzzy preference structures are also extreme solutions
in this model.

Remark 30. Bufardi [3] has proven that if we consider the fuzzy preference
structure given in Theorem 28 then R is complete if and only if J = ∅. From
Theorem 22, it is easy to check that if R is complete then the only fuzzy
preference structure that satisfies J = ∅ is given by Theorem 28.

Remark 31. From Theorem 22 we can obtain a geometrical relationship be-
tween the relations R and P . Given a and b two different elements of A,
since φ(P (a, b)) = φ(R(a, b)) − φ(I(a, b)), when φ(I(a, b)) ranges between
max(φ(R(a, b)) +φ(R(b, a))− 1, 0) and min(φ(R(a, b)), φ(R(b, a))) we obtain
the possible values for φ(P (a, b)) and φ(P (b, a)). We distinguish two cases:

(1) If φ(R(a, b)) + φ(R(b, a)) > 1 then the points (φ(P (a, b)), φ(P (b, a)))
are in the parallel segment to the bisecting line of the first quadrant with
endpoints X1 and X2, where

X1 = (1−φ(R(b, a)), 1−φ(R(a, b))),

X2 = (max(φ(R(a, b))−φ(R(b, a)), 0),max(φ(R(b, a))−φ(R(a, b)), 0)).

The points X1 and X2 correspond to the fuzzy preference structures
given in Theorem 28 and 25, respectively. Moreover, X1 is simetric to
Y = (φ(R(a, b)), φ(R(b, a))) with respect to the straight line φ(P (a, b)) +
φ(P (b, a)) = 1 (see Figure 1). [Insert Fig-

ure 1 about
here](2) If φ(R(a, b)) + φ(R(b, a)) ≤ 1 then the points (φ(P (a, b)), φ(P (b, a)))

are in the parallel segment to the bisecting line of the first quadrant with
endpoints X1 and X2, where

X1 = (φ(R(a, b)), φ(R(b, a))),

X2 = (max(φ(R(a, b))−φ(R(b, a)), 0),max(φ(R(b, a))−φ(R(a, b)), 0)).

The points X1 and X2 correspond to the fuzzy preference structures
given in Theorem 28 and 25, respectively. Moreover, X1 coincides with
Y = (φ(R(a, b)), φ(R(b, a))) (see Figure 2). [Insert Fig-

ure 2 about
here]Since (φ(R(a, b)), φ(R(b, a))) and (1−φ(R(b, a)), 1−φ(R(a, b))) are simetric

with respect to the straight line φ(P (a, b)) + φ(P (b, a)) = 1, Figures 1 and 2
show that the possible values of P are the same for the relations R and Rd∪
4, where 4 is the minimal reflexive relation (notice that Rd is irreflexive).

The φ-FPS on A associated to R given in Theorem 28 can also be obtained
under the assumption P ∪ I ∪ P−1 = R ∪ R−1. This condition has also been
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used by Fodor and Roubens [12] in the axiomatic model for characterizing the
same φ-FPS.

Theorem 32. Let R be a reflexive fuzzy binary relation on A and φ an
order automorphism. Then the following statements are equivalent:

(1) (P, I, J) is a φ-FPS on A associated to R and P ∪ I ∪P−1 = R∪R−1.
(2) P = R ∩ (R ∩R−1)c, I = R ∩R−1 and J = Rc ∩Rd.

PROOF.

(1)⇒ (2): Given a, b ∈ A, since (P, I, J) is a φ-FPS on A we have

φ(P (a, b)) + φ(I(a, b)) + φ(P (b, a)) ≤ 1.

Then, by Theorem 22

(P ∪ I ∪ P−1)(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− φ(I(a, b))).

On the other hand, (R ∪ R−1)(a, b) = φ−1(min(φ(R(a, b)) + φ(R(b, a)), 1)).
Since P ∪ I ∪ P−1 = R ∪R−1, we distinguish two cases:

(i) If φ(R(a, b)) + φ(R(b, a)) < 1, then I(a, b) = 0.
(ii) If φ(R(a, b)) + φ(R(b, a)) ≥ 1, then

I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1).

Therefore, I(a, b) = φ−1(max(φ(R(a, b))+φ(R(b, a))−1, 0)), i.e. I = R∩R−1.
By Theorem 28 we obtain the result.

(2) ⇒ (1): In the proof of Theorem 28 we have proven that (P, I, J) is a
φ-FPS on A associated to R. Since R = P ∪ I, then for all a, b ∈ A we have

(P ∪ I ∪ P−1)(a, b) =φ−1(φ(R(a, b)) + φ(P (b, a)))

=φ−1(φ(R(a, b)) + min(φ(R(b, a)), 1− φ(R(a, b))))

=φ−1(min(φ(R(a, b)) + φ(R(b, a)), 1))

= (R ∪R−1)(a, b). 2

5 Conclusion

The reconstruction of a fuzzy set from its subsets by means of  Lukasiewicz
triplets gives a positive response to a problem which is similar to the formu-
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lated by Alsina [1]. Moreover, this result allows to justify the use of  Lukasiewicz
triplets and it also enables to consider a new definition of the strict preference
relation.

On the other hand, in this paper the construction of fuzzy preference struc-
tures is accomplished by means of fuzzy partitions. This procedure allows
to obtain the minimal formulation for fuzzy preference structures and it is
more straightforward than the use of completeness conditions. Furthermore,
we show a representation of all fuzzy preference structures. From this result we
obtain a interesting geometrical relationship between the relations R and P .
Finally, we characterize a well-known fuzzy preference structure by means of
some properties which are also satisfied in the crisp theory and, consequently,
it seems that this fuzzy preference structure is the best-suited.
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Figure 2


