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Abstract 

There is in the literature a great variety of functions utilized in the aggregation 
processes. For this reason, numerous indicators have been suggested to understand 
the behavior of such functions. One of the measures proposed for this purpose is 
the orness, which allows to know the degree of closeness to the maximum. The 
aim of this paper is to provide the orness of some specific cases of SUOWA 
operators, a family of aggregation functions that simultaneously generalize 
weighted means and OWA operators. 

Keywords: SUOWA operators, orness, weighted means, OWA operators, Choquet 
integral. 

1. Introduction 

Aggregation information is a usual activity in many research fields. Weighted 
means and ordered weighted averaging (OWA) operators (Yager, 1988) are well-
known functions widely used for this task. Both classes of functions are defined 
by means of weighting vectors, but their behavior is quite different: Weighted 
means allow to weight each information source in relation to their reliability while 
OWA operators allow to weight the values according to their ordering. Neverthe-
less, there are situations where both weightings are necessary (see, for instance, 
Torra, 1997, 2001; Llamazares, 2015a,b,c; and the references therein). 

Different aggregation functions have appeared in the literature to deal with this 
kind of problems. A usual approach is to consider families of functions para-
metrized by two weighting vectors, one for the weighted mean and the other one 
for the OWA type aggregation, that generalize weighted means and OWA opera-
tors in the following sense: A weighted mean (or a OWA operator) is obtained 
when the other weighting vector has a “neutral” behavior; that is, it is 
(1 𝑛⁄ , … , 1 𝑛⁄ ) (see Llamazares, 2013, for an analysis of some functions that gen-
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eralize the weighted means and the OWA operators in this sense). Two of the so-
lutions having better properties are the weighted OWA (WOWA) operator (Torra, 
1997) and the semi-uninorm based ordered weighted averaging (SUOWA) opera-
tor (Llamazares, 2015a). 

An important issue in the field of aggregation functions is the behavior of com-
pensative operators regarding the minimum and the maximum. For dealing with 
this task, the notion of orness was introduced for the case of the root-mean-powers 
(Dujmović, 1974) and, in an independent way, for OWA operators (Yager, 1988). 
Later, it has been generalized by using the notion of average value (Marichal, 
1998). In this paper we analyze some specific cases of SUOWA operators with re-
spect to this indicator and show how to get a SUOWA operator with a previously 
fixed degree of orness. 

The paper is organized as follows. In Section 2 we recall some basic properties 
of aggregation functions and the concepts of semi-uninorms and uninorms. Sec-
tion 3 is devoted to Choquet integral, including some of the most interesting par-
ticular cases: weighted means, OWA operators and SUOWA operators. In Sec-
tion 4 we give some properties of SUOWA operators related to their orness, and 
illustrate how to obtain a SUOWA operator having a particular degree of orness. 
Finally, some concluding remarks are provided in Section 5. 

2. Preliminaries 

Throughout the paper we will use the following notation: 𝑁 = {1, … ,𝑛}; given 
𝐴 ⊆ 𝑁, |𝐴| denotes the cardinality of 𝐴; vectors are denoted in bold and 𝜼 denotes 
the tuple (1 𝑛⁄ , … , 1 𝑛⁄ ) ∈ ℝ𝑛. We write 𝒙 ≥ 𝒚 if 𝑥𝑖 ≥  𝑦𝑖  for all 𝑖 ∈ 𝑁. For a vec-
tor 𝒙 ∈ ℝ𝑛, [∙] and (∙) denote permutations such that 𝑥[1] ≥ ⋯ ≥ 𝑥[𝑛] and 
𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛). 

Some well known properties of aggregation functions are the following. 

Definition 1. Let 𝐹:ℝ𝑛 → ℝ be a function. 
1. 𝐹 is symmetric if 𝐹�𝑥𝜎(1), … , 𝑥𝜎(𝑛)� = 𝐹(𝑥1, … , 𝑥𝑛) for all 𝒙 ∈ ℝ𝑛 and for 

all permutation 𝜎 of 𝑁. 
2. 𝐹 is monotonic if 𝒙 ≥ 𝒚 implies 𝐹(𝒙) ≥ 𝐹(𝒚) for all 𝒙,𝒚 ∈ ℝ𝑛. 
3. 𝐹 is idempotent if 𝐹(𝑥, … , 𝑥) = 𝑥 for all 𝑥 ∈ ℝ. 
4. 𝐹 is compensative (or internal) if min (𝒙) ≤ 𝐹(𝒙) ≤ max (𝒙) for all 

𝒙 ∈ ℝ𝑛. 
5. 𝐹 is homogeneous of degree 1 (or ratio scale invariant) if 𝐹(𝑟𝒙) = 𝑟𝐹(𝒙) 

for all 𝒙 ∈ ℝ𝑛 and for all 𝑟 > 0. 
A class of necessary functions in the definition of SUOWA operators are semi-

uninorms (Liu, 2012). These functions are monotonic and have a neutral element 
in the interval [0,1]. They were introduced as a generalization of uninorms, which, 
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in turn, were proposed as a generalization of t-norms and t-conorms (Yager and 
Rybalov, 1996). 

Definition 2. Let 𝑈: [0,1]2 → [0,1]. 

1. 𝑈 is is a semi-uninorm if it is monotonic and possesses a neutral element 
𝑒 ∈ [0,1] (for all 𝑥 ∈ [0,1], 𝑈(𝑒, 𝑥) = 𝑈(𝑥, 𝑒) = 𝑥). 

2. 𝑈 is a uninorm if it is a symmetric and associative (for all 𝑥,𝑦, 𝑧 ∈ [0,1], 
𝑈(𝑥,𝑈(𝑦, 𝑧)) = 𝑈(𝑈(𝑥,𝑦), 𝑧)) semi-uninorm. 

We denote by 𝒰𝑒 (respectively, 𝒰i
𝑒) the set of semi-uninorms (respectively, 

idempotent semi-uninorms) with neutral element 𝑒 ∈ [0,1]. 
SUOWA operators are defined by using semi-uninorms with neutral element 

1 𝑛⁄ . Moreover, they have to belong to the following subset (Llamazares, 2015a): 

𝒰�1 𝑛⁄ = �𝑈 ∈ 𝒰1 𝑛⁄  � 𝑈(1 𝑘⁄ , 1 𝑘⁄ ) ≤ 1 𝑘⁄   for all 𝑘 ∈ 𝑁�. 

Obviously 𝒰i
1/𝑛 ⊆ 𝒰�1 𝑛⁄ . Notice that the smallest and the largest elements of 

𝒰i
1/𝑛 are, respectively, the following uninorms (Yager and Rybalov, 1996): 

  𝑈min(𝑥,𝑦) = �max(𝑥,𝑦), if (𝑥,𝑦) ∈ [1 𝑛⁄ , 1]2,
min(𝑥,𝑦), otherwise,  

𝑈max(𝑥,𝑦) = �min(𝑥,𝑦), if (𝑥,𝑦) ∈ [0,1 𝑛⁄ ]2,
max(𝑥,𝑦), otherwise.  

3. Choquet integral 

The notion of Choquet integral is based on that of capacity (Choquet, 1953; 
Murofushi and Sugeno, 1991). The concept of capacity resembles that of probabil-
ity measure but in the definition of the former additivity is replaced by monotonic-
ity (see also fuzzy measures in Sugeno, 1974). A game is then a generalization of 
a capacity where the monotonicity is no longer required. 

Definition 3.  

1. A game 𝜐 on N is a set function 𝜐: 2𝑁 → ℝ satisfying 𝜐(∅) = 0. 
2. A capacity (or fuzzy measure) 𝜇 on N is a game on N satisfying 𝜇(𝐴) ≤

𝜇(𝐵) whenever 𝐴 ⊆ 𝐵. In particular, it follows that 𝜇: 2𝑁 → [0,∞). A ca-
pacity 𝜇 is said to be normalized if 𝜇(𝑁) = 1. 

A straightforward way to get a capacity from a game is to consider the mono-
tonic cover of the game (Maschler and Peleg, 1967; Maschler et al., 1971). 

Definition 4. Let 𝜐 be a game on N. The monotonic cover of 𝜐 is the set function 𝜐� 
given by 

𝜐�(𝐴) = max
𝐵⊆𝐴

𝜐(𝐵). 
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Some basic properties of 𝜐� are given in the sequel. 

Remark 1. Let 𝜐 be a game on N. Then: 
1. 𝜐� is a capacity on N. 
2. If 𝜐 is a capacity on N, then 𝜐� = 𝜐. 
3. If 𝜐(𝐴) ≤ 1 for all 𝐴 ⊆ 𝑁 and 𝜐(𝑁) = 1, then 𝜐� is a normalized capacity 

on N. 
Although the Choquet integral is usually defined as a functional (see, for in-

stance, Choquet, 1953; Murofushi and Sugeno, 1991), in this paper we consider 
the Choquet integral as an aggregation function over ℝ𝑛 (see, for instance, 
Grabisch et al., 2009, p. 181). 

Definition 5. Let 𝜇 be a capacity on N. The Choquet integral with respect to 𝜇 is 
the function 𝒞𝜇:ℝ𝑛 → ℝ given by 

𝒞𝜇(𝒙) = �𝜇�𝐵(𝑖)� �𝑥(𝑖) − 𝑥(𝑖−1)�,
𝑛

𝑖=1

 

where 𝐵(𝑖) = {(𝑖), … , (𝑛)}, and we use the convention 𝑥(0) = 0. 

It is worth noting that Choquet integral-based operators possess several proper-
ties which are useful in certain information aggregation contexts (Grabisch et al., 
2009, p. 193 and p. 196). 

Remark 2. Let 𝜇 be a capacity on N. Then 𝒞𝜇 is continuous, monotonic and ho-
mogeneous of degree 1. Moreover, it is idempotent and compensative when 𝜇 is a 
normalized capacity. 

Choquet integral can also be represented by using a decreasing sequences of 
values (see, for instance, Torra, 1998; Llamazares, 2015a): 

𝒞𝜇(𝒙) = �𝜇�𝐴[𝑖]� �𝑥[𝑖] − 𝑥[𝑖+1]�,                                   (1)
𝑛

𝑖=1

 

where 𝐴[𝑖] = {[1], … , [𝑖]}, and we use the convention 𝑥[𝑛+1] = 0. 
From the previous expression, it is straightforward to show explicitly the 

weights of the values 𝑥[𝑖] by representing the Choquet integral as follows: 

𝒞𝜇(𝒙) = �  �𝜇�𝐴[𝑖]� − 𝜇�𝐴[𝑖−1]�� 𝑥[𝑖],
𝑛

𝑖=1

 

where we use the convention 𝐴[0] = ∅. 
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3.1. Weighted means and OWA operators 

Weighted means and OWA operators (Yager, 1988) are well-known functions in 
the theory of aggregation operators. Both classes of functions are defined in terms 
of weight distributions that add up to 1. 

Definition 6. A vector 𝒒 ∈ ℝ𝑛 is a weighting vector if 𝒒 ∈ [0,1]𝑛 and ∑ 𝑞𝑖𝑛
𝑖=1 =

1. 

Definition 7. Let 𝒑 be a weighting vector. The weighted mean associated with 𝒑 
is the function 𝑀𝒑:ℝ𝑛 → ℝ given by 

𝑀𝒑(𝒙) = �𝑝𝑖𝑥𝑖 .
𝑛

𝑖=1

 

Definition 8. Let 𝒘 be a weighting vector. The OWA operator associated with 𝒘 
is the function 𝑂𝒘:ℝ𝑛 → ℝ given by 

𝑂𝒘(𝒙) = �𝑤𝑖𝑥[𝑖].
𝑛

𝑖=1

 

It is well known that weighted means and OWA operators are specific cases of 
Choquet integral (Fodor et al., 1995; Grabisch, 1995a,b; Llamazares, 2015a). 

Remark 3.  
1. If 𝒑 is a weighting vector, then 𝑀𝒑 is the Choquet integral with respect to 

the normalized capacity 𝜇𝒑(𝐴) = ∑ 𝑝𝑖𝑖∈𝐴 . 
2. If 𝒘 is a weighting vector, then 𝑂𝒘 is the Choquet integral with respect to 

the normalized capacity 𝜇|𝒘|(𝐴) = ∑ 𝑤𝑖
|𝐴|
𝑖=1 . 

So, according to Remark 2, weighted means and OWA operators are continu-
ous, monotonic, idempotent, compensative and homogeneous of degree 1. Moreo-
ver, in the case of OWA operators, given that the values of the variables are previ-
ously ordered in a decreasing way, they are also symmetric. 

3.2. SUOWA operators 

SUOWA operators (Llamazares, 2015a) were introduced in order to consider situ-
ations where both the importance of information sources and the importance of 
values had to be taken into account. These functions are Choquet integral-based 
operators where their capacities are the monotonic cover of specific games. These 
games are defined by using semi-uninorms with neutral element 1 𝑛⁄  and the val-
ues of the capacities associated with the weighted means and the OWA operators. 
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To be specific, the games from which SUOWA operators are built are defined as 
follows. 

Definition 9. Let 𝒑 and 𝒘 be two weighting vectors and let 𝑈 ∈ 𝒰�1 𝑛⁄ . 

1. The game associated with 𝒑, 𝒘 and 𝑈 is the set function 𝜐𝒑,𝒘
𝑈 : 2𝑁 → ℝ de-

fined by 

𝜐𝒑,𝒘
𝑈 (𝐴) = |𝐴|𝑈 �

𝜇𝒑(𝐴)
|𝐴|

,
𝜇|𝒘|(𝐴)

|𝐴|
� 

if 𝐴 ≠ ∅, and 𝜐𝒑,𝒘
𝑈 (∅) = 0. 

2. 𝜐�𝒑,𝒘
𝑈 , the monotonic cover of the game 𝜐𝒑,𝒘

𝑈 , will be called the capacity as-
sociated with 𝒑, 𝒘 and 𝑈. 

Definition 10. Let 𝒑 and 𝒘 be two weighting vectors and let 𝑈 ∈ 𝒰�1 𝑛⁄ . The 
SUOWA operator associated with 𝒑, 𝒘 and 𝑈 is the function 𝑆𝒑,𝒘

𝑈 :ℝ𝑛 → ℝ given 
by 

𝑆𝒑,𝒘
𝑈 (𝒙) = �𝑠𝑖𝑥[𝑖],

𝑛

𝑖=1

 

where 𝑠𝑖 = 𝜐�𝒑,𝒘
𝑈 �𝐴[𝑖]� − 𝜐�𝒑,𝒘

𝑈 �𝐴[𝑖−1]� for all 𝑖 ∈ 𝑁, 𝜐�𝒑,𝒘
𝑈  is the capacity associated 

with 𝒑, 𝒘 and 𝑈, and 𝐴[𝑖] = {[1], … , [𝑖]} (with the convention that 𝐴[0] = ∅). 

According to expression (1), the SUOWA operator associated with 𝒑, 𝒘 and 𝑈 
can also be written as 

𝑆𝒑,𝒘
𝑈 (𝒙) = �𝜐�𝒑,𝒘

𝑈 �𝐴[𝑖]� �𝑥[𝑖] − 𝑥[𝑖+1]�.
𝑛

𝑖=1

 

By the choice of 𝜐�𝒑,𝒘
𝑈  we have 𝑆𝒑,𝜼

𝑈 = 𝑀𝒑 and 𝑆𝜼,𝒘
𝑈 = 𝑂𝒘 for any 𝑈 ∈ 𝒰�1 𝑛⁄ . 

Moreover, by Remark 2 and given that 𝜐�𝒑,𝒘
𝑈  is a normalized capacity, SUOWA 

operators are continuous, monotonic, idempotent, compensative and homogeneous 
of degree 1. 

4. Orness measures 

An important concept to measure the degree to which the aggregation is disjunc-
tive (i.e. it is like an or operation) is the notion of orness. This concept was initial-
ly introduced for the case of the root-mean-powers (Dujmović, 1974) and, in an 
independent way, for OWA operators (Yager, 1988). Afterwards, Marichal (1998) 
derived an orness measure for the Choquet integral by using the notion of average 
value. 
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Definition 11. Let 𝜇 be a capacity on N. 

1. The average value of 𝒞𝜇 is defined by 

𝐸�𝒞𝜇� = � 𝒞𝜇
[0,1]𝑛

(𝒙) 𝑑𝒙. 

2. The orness value of 𝒞𝜇 is defined by 

orness�𝒞𝜇� =
𝐸�𝒞𝜇� − 𝐸(min)
𝐸(max) − 𝐸(min). 

The orness of 𝒞𝜇 can be written in terms of the capacity 𝜇 (Marichal, 2004): 

orness�𝒞𝜇� =
1

𝑛 − 1
�

1
�𝑛𝑡�

� 𝜇(𝑇).
𝑇⊆𝑁
|𝑇|=𝑡

𝑛−1

𝑡=1

                                (2) 

The degree of orness is known for some Choquet integral-based operators 
(Marichal, 2004). In fact, in the particular cases of weighted means and OWA op-
erators we get the following values: 

orness�𝑀𝒑� =
1
2

,                orness(𝑂𝒘) =
1

𝑛 − 1
�(𝑛 − 𝑖)
𝑛

𝑖=1

𝑤𝑖  .             (3) 

However, in the vast majority of cases, the calculation of this value through a 
closed expression does not seem an easy task (Torra, 2001). In the case of 
SUOWA operators, we can get a very interesting result when we consider a semi-
uninorm obtained as a convex combination of two semi-uninorms satisfying that 
the games associated with them are capacities. In this case, the orness of the 
SUOWA operator associated with this new semi-uninorm can be gotten through 
the same convex combination of the orness of the SUOWA operators associated 
with the former semi-uninorms. This result, together with others concerning the 
game and the SUOWA operator associated with this new semi-uninorm, are col-
lected in the following theorem. 

Theorem 1. Let 𝒑 and 𝒘 be two weighting vectors, let 𝑈1,𝑈2 ∈ 𝒰�1 𝑛⁄  such that 
𝜐𝒑,𝒘
𝑈1  and 𝜐𝒑,𝒘

𝑈2  be capacities, let 𝜆 ∈ [0,1], and let 𝑈 = 𝜆𝑈1 + (1 − 𝜆)𝑈2. Then: 

1. 𝑈 ∈ 𝒰�1 𝑛⁄   and if 𝑈1,𝑈2 ∈ 𝒰i
1/𝑛 then 𝑈 ∈ 𝒰i

1/𝑛. 
2. 𝜐𝒑,𝒘

𝑈 (𝐴) = 𝜆 𝜐𝒑,𝒘
𝑈1 (𝐴) + (1 − 𝜆) 𝜐𝒑,𝒘

𝑈2 (𝐴) for any subset A of N. 
3. 𝜐𝒑,𝒘

𝑈  is a normalized capacity on N. 
4. 𝑆𝒑,𝒘

𝑈 (𝒙) = 𝜆 𝑆𝒑,𝒘
𝑈1 (𝒙) + (1 − 𝜆) 𝑆𝒑,𝒘

𝑈2 (𝒙) for all 𝒙 ∈ ℝ𝑛. 
5. orness�𝑆𝒑,𝒘

𝑈 � = 𝜆 orness�𝑆𝒑,𝒘
𝑈1 � + (1 − 𝜆) orness�𝑆𝒑,𝒘

𝑈2 �. 

Among the great variety of semi-uninorms belonging to 𝒰�1 𝑛⁄  that could be 
chosen to generate a SUOWA operator, idempotent semi-uninorms are of specific 
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interest owing to their notable properties (Llamazares, 2015a). Notice that, since 
any idempotent semi-uninorm is located between 𝑈min and 𝑈max, we straightfor-
wardly obtain the following results. 

Remark 4. Let 𝒑 and 𝒘 be two weighting vectors, and 𝑈 ∈ 𝒰i
1/𝑛. Then: 

1. 𝑆𝒑,𝒘
𝑈min(𝒙) ≤ 𝑆𝒑,𝒘

𝑈 (𝒙) ≤ 𝑆𝒑,𝒘
𝑈max(𝒙) for all 𝒙 ∈ ℝ𝑛. 

2. orness�𝑆𝒑,𝒘
𝑈min� ≤ orness�𝑆𝒑,𝒘

𝑈 � ≤ orness�𝑆𝒑,𝒘
𝑈max�. 

Given that SUOWA operators generated from idempotent semi-uninorms are 
located between those obtained from the uninorms 𝑈min and 𝑈max, next we estab-
lish some results on the games and the SUOWA operators associated with these 
uninorms when the weighting vector 𝒘 is an increasing (in the case of considering 
𝑈min) or decreasing (in the case of considering 𝑈max) sequence of weights. 

Theorem 2. Let 𝒘 be a weighting vector such that 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑛 and 
𝒘 ≠ 𝜼. Then, for all weighting vector 𝒑, we have 

1. 𝜐𝒑,𝒘
𝑈min is a normalized capacity on N. 

2. 𝜐𝒑,𝒘
𝑈min(𝐴) = min �𝜇𝒑(𝐴), 𝜇|𝒘|(𝐴)� for all 𝐴 ⊆ 𝑁. 

3. 𝑆𝒑,𝒘
𝑈min(𝒙) ≤ min �𝑀𝒑(𝒙),𝑂𝒘(𝒙)� for all 𝒙 ∈ ℝ𝑛. 

4. orness�𝑆𝒑,𝒘
𝑈min� ≤ orness(𝑂𝒘) ≤ 0.5. 

Similar results can be established for the uninorm 𝑈max. 

Theorem 3. Let 𝒘 be a weighting vector such that 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛 and 
𝒘 ≠ 𝜼. Then, for all weighting vector 𝒑, we get 

1. 𝜐𝒑,𝒘
𝑈max is a normalized capacity on N. 

2. 𝜐𝒑,𝒘
𝑈max(𝐴) = max �𝜇𝒑(𝐴), 𝜇|𝒘|(𝐴)� for all 𝐴 ⊆ 𝑁. 

3. 𝑆𝒑,𝒘
𝑈max(𝒙) ≥ max �𝑀𝒑(𝒙),𝑂𝒘(𝒙)� for all 𝒙 ∈ ℝ𝑛. 

4. orness�𝑆𝒑,𝒘
𝑈max� ≥ orness(𝑂𝒘) ≥ 0.5. 

In the sequel, and using some of the previous results, we illustrate how we can 
get a SUOWA operator having a particular degree of orness. 

Example 1. Let us to consider the weighting vectors 𝒑 = (0.1,0.4,0.4,0.1) and 
𝒘 = (0.3,0.3,0.2,0.2), and the idempotent uninorms 𝑈min and 𝑈max. In the case of 
𝑈max, the first item of Theorem 3 guarantees that 𝜐𝒑,𝒘

𝑈max is a capacity. As we can 
see in Table 1, this is also the case when we consider the uninorm 𝑈min. 

According to expressions (2) and (3), we have 

orness(𝑂𝒘) = 1.7 3⁄ ,   orness�𝑆𝒑,𝒘
𝑈min� = 4.7 9⁄ ,   orness�𝑆𝒑,𝒘

𝑈max� = 5.5 9⁄ . 

And by the second item of Remark 4, for any idempotent semi-uninorm 𝑈 we get 

4.7 9⁄ ≤ orness�𝑆𝒑,𝒘
𝑈 � ≤ 5.5 9⁄ . 
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Table 1 Capacities associated with 𝑈min and 𝑈max. 

Set 𝜐𝒑,𝒘
𝑈min  𝜐𝒑,𝒘

𝑈max 
{1} 0.1 0.3 
{2} 0.4 0.4 
{3} 0.4 0.4 
{4} 0.1 0.3 

{1,2} 0.6 0.6 
{1,3} 0.6 0.6 
{1,4} 0.2 0.6 
{2,3} 0.8 0.8 
{2,4} 0.6 0.6 
{3,4} 0.6 0.6 

{1,2,3} 0.9 0.9 
{1,2,4} 0.6 0.8 
{1,3,4} 0.6 0.8 
{2,3,4} 0.9 0.9 

N 1 1 

Now, by the fifth item of Theorem 1, we can easily obtain an idempotent semi-
uninorm that allows us to get a SUOWA operator having a particular degree of or-
ness in the range 4.7 9⁄  to 5.5 9⁄ . For instance, if we look for an idempotent semi-
uninorm 𝑈 such that orness�𝑆𝒑,𝒘

𝑈 � = orness(𝑂𝒘) = 1.7 3⁄ , then, since 1.7 3⁄ =
0.5 ⋅ 4.7 9⁄ + 0.5 ⋅ 5.5 9⁄ , it is sufficient to consider 𝑈am = 0.5𝑈min + 0.5𝑈max, 
that is, the idempotent semi-uninorm obtained through the arithmetic mean: 

𝑈am(𝑥,𝑦) = �
min(𝑥,𝑦), if (𝑥,𝑦) ∈ [0, 0.25]2,
max(𝑥,𝑦), if (𝑥,𝑦) ∈ [0.25,1]2 ∖ {(0.25,0.25)}

(𝑥 + 𝑦) 2⁄ , otherwise.
, 

Conclusion 

SUOWA operators have been introduced recently for dealing with situations 
where combining values by using both a weighted mean and a OWA type aggre-
gation is necessary. Given that they are Choquet integral-based operators with re-
spect to normalized capacities, they have some natural properties such as continui-
ty, monotonicity, idempotency, compensativeness and homogeneity of degree 1. 
For this reason, it seems interesting to analyze their behavior through indicators 
proposed in the literature. In this paper we have investigated the orness of some 
specific cases of SUOWA operators and illustrated how to obtain a SUOWA op-
erator with a given degree of orness. 
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