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Abstract

The computational effort to calculate the magnetostatic dipolar energy, MDE, of a periodic cell of N magnetic mo-

ments is an O(N2) task. Compared with the calculation of the Exchange and Zeeman energy terms, this is the most

computationally expensive part of the atomistic simulations of the magnetic properties of large periodic magnetic

systems. Two strategies to reduce the computational effort have been studied: An analysis of the traditional Ewald

method to calculate the MDE of periodic systems and parallel calculations. The detailed analysis reveals that, for cer-

tain types of periodic systems, there are many matrix elements of the Ewald method identical to another elements, due

to some symmetry properties of the periodic systems. Computation timing experiments of the MDE of large periodic

Ni fcc nanowires, slabs and spheres, up to 32000 magnetic moments in the periodic cell, have been carried out and

they show that the number of matrix elements that should be calculated is approximately equal to N, instead of N2/2,

if these symmetries are used, and that the computation time decreases in an important amount. The time complexity

of the analysis of the symmetries is O(N3), increasing the time complexity of the traditional Ewald method. MDE is

a very small energy and therefore, the usual required precision of the calculation of the MDE is so high, about 10−6

eV/cell, that the calculations of large periodic magnetic systems are very expensive and the use of the symmetries

reduces, in practical terms, the computation time of the MDE in a significant amount, in spite of the increase of the

time complexity. The second strategy consists on parallel calculations of the MDE without using the symmetries of

the periodic systems. The parallel calculations have been compared with serial calculations that use the symmetries.
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1. Introduction and Motivation

Magnetic anisotropy is one of the most important prop-

erties of magnetic materials, from a scientific and also



from a technological point of view. Some of the appli-

cations of the magnetic anisotropy are permanent mag-

nets, magnetic memories, electric motors and magnetic

field sensors. The magnetic anisotropy energy, MAE,

is the energy change due to a change of the magnetiza-

tion direction. There are two contributions to the mag-

netic anisotropy energy: The electronic band structure

(or simply, electronic) anisotropy energy and the shape

anisotropy. The electronic contribution is due to the si-

multaneous occurrence of the electron relativistic inter-

action (spin-orbit coupling) and spin-polarization in the

electronic structure of the magnetic systems. The magne-

tostatic anisotropy energy results from the classical mag-

netic dipolar interactions and therefore, is also called

magnetostatic dipolar anisotropy energy, MDAE. Due to

the long range character of the magnetic dipolar inter-

actions, the magnetostatic dipolar anisotropy energy de-

pends, in general, on the shape of the magnetic system

and hence, the shape anisotropy is usually adscribed to

this anisotropy.

The magnetostatic dipolar anisotropy energy is zero for

cubic systems and negligibly small for weak anisotropic

systems such as cobalt. However, for systems with

a large anisotropy, such as layered materials and

nanowires of ferromagnetic atoms, the magnetostatic

dipolar anisotropy energy can not be neglected and is

comparable with the electronic band anisotropy energy or

even larger [1–6]. In the case of nanowires, the elongated

shape enhances the magnetostatic dipolar anisotropy of

these materials. A flip of the orientation of the mag-

netic moments from out-of-plane to in-plane as the num-

ber of layers or the thickness of magnetic layered mate-

rials increases, is observed in the theoretical calculations

[1–10] and in the experiments [11–17]. The electronic or

band contribution causes an out-of-plane or perpendicu-

lar orientation of the magnetic moments of layered sys-

tems, while the magnetic dipolar anisotropy causes and

in-plane or parallel orientation. The explanation of the flip

of the orientation is that the dipolar interactions increase

as the thickness of the layered materials increases and are

larger than the spin-orbit interactions, which are surface

terms, if the thickness is large enough. For thick layered

materials, the preferred orientation will be in-plane and

the MDAE will depend linearly on the number of layers.

Hence, in the simulations of large thick layered magnetic

systems, the approach of considering the MAE composed

only by the magnetostatic dipolar anisotropy energy is

usually adopted.

The calculation of the MAE as the electronic part plus

the dipolar-dipolar part is a hybrid, relativistic-classical,

approach. A consistent treatment of the MAE should con-

sist on a fully relativistic calculation of the system. Jansen

[18, 19] proved that the shape anisotropy is caused by

the Breit interaction [20, 21], a relativistic correction of

the Coulomb interaction between electrons. Bornemann

et al. [22] did fully relativistic band structure calcula-

tions of magnetic layered systems, accounting simulta-

neously for spin-orbit coupling and the Breit interaction.

2



They compared numerical results of the Breit interaction

and the magnetostatic dipolar contributions to the MAE

and they found that they were very close. The relativis-

tic calculations are computationally much more expensive

than the classical dipole-dipole calculations. Therefore, it

makes sense, from a practical point of view, to calculate

the shape anisotropy as the classical magnetostatic dipo-

lar anisotropy, instead of carrying out relativistic calcula-

tions.

The most expensive part of the atomistic simulations

of the magnetic properties of periodic magnetic systems

of certain thickness, such as nanowires and films of fer-

romagnetic atoms, is the calculation of the magnetostatic

dipolar energy, MDE [9, 23–28]. To simulate these ma-

terials with realistic models, it is necessary to consider a

large number of atoms and the details of the geometric

structure. According to experiments, magnetic nanowires

have diameters of the order of 10-100 nm [29–33]. The

smallest cells to simulate nanowires of 10 and 35 nm con-

tain about 2500 and 31000 atoms, respectively. In the case

of arrays of magnetic nanowires, it is important to con-

sider the structure in the edges or surface of the nanowires

and the distances between the walls of the nanowires in

the array. However, calculations of the MDE of systems

with a large number of atoms are very expensive. The

present paper is devoted to reduce the computation time

of the calculation of the MDE and MDAE with high pre-

cision by using the symmetries of the periodic magnetic

systems, and in doing so, to reduce the computation time

of the simulations of the magnetic properties of large pe-

riodic layered magnetic materials.

An analysis of the Ewald method in its traditional form

[34–36], to calculate the MDE of periodic magnetic sys-

tems, whose time complexity is O(N2), has been car-

ried out in the present research, finding that many ma-

trix elements of the Ewald summation method are iden-

tical to others, depending on the type of Bravais lattice

cell and if the basis atoms of the cell of the periodic

magnetic system satisfy certain conditions or symmetries.

When these symmetries are applied, the number of ma-

trix elements that should be calculated is approximately

or even equal to the number N of magnetic moments of

the periodic cell. Periodic layered magnetic systems such

as nanowires, slabs and multilayers satisfy the symme-

tries. The usual required precision of the MDEs is high,

about 10−6 eV/cell, and the computation of the matrices

to obtain MDEs with that precision is very expensive and

hence, the application of these symmetries reduces drasti-

cally the computing time of the calculation of the MDEs

of large magnetic periodic systems.

The novelty of the analysis and application of the sym-

metries of periodic magnetic systems is that this analysis

was not performed in former forms of the Ewald summa-

tion method: The method developed by Perram et al. [37],

which is an O(N3/2) method and is based on the linked-

cell spatial decomposition technique [38, 39], the Particle

Mesh Ewald, PME, method [40, 41], based on using fast

Fourier transform, FFT, techniques to evaluate the recip-
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rocal space part of the Ewald method and has a complex-

ity O(NlogN), and the fast multipole method, FMM [42],

which is an O(N) method. The method devised by Perram

et al. [37] reduces the time complexity of the traditional

Ewald summation without approximations.

This paper is organized as follows. Section 2 is devoted

to the theory of the magnetostatic dipolar interaction en-

ergy of a lattice of magnetic moments or dipoles. Sec-

tion 3 explains the analysis of the symmetries of periodic

magnetic systems to reduce the computation time of the

MDE. Section 4 is a brief description of the three Ni fcc

periodic magnetic systems studied: Nanowires, slabs and

spheres. The next section is the discussion of the com-

putation timing results of the calculations of the MDE of

Ni fcc nanowires, slabs and spheres up to 32000 mag-

netic moments in the periodic cell, using and not using

the symmetries. The last section is a comparison of the

two strategies to reduce the computation time: Parallel

calculations not using the symmetries, serial calculations

using the symmetries, and the combination of paralleliza-

tion and use of the symmetries.

2. Theory of theMagnetostatic dipolar energy of a lat-

tice of magnetic moments

2.1. Magnetic dipolar interaction energy between two

magnetic dipoles

In classical electromagnetism, the magnetic vector po-

tential ~A at point #”r , due to a magnetic moment ~m located

at the origin of coordinates, is given by

~A( #”r ) =
µ0

4π
~m × #”r

r3
. (1)

The magnetic field ~B at point #”r produced by the mag-

netic moment ~m, located at the origin, is calculated from

the above magnetic vector potential, Eq. 1 and is given by

~B( #”r ) =
#”∇ × ~A( #”r ) = −

µ0

4π

(
~m∇2

1
r
− #”∇(~m · #”∇)

1
r

)

=
µ0

4π

(
~m
8π
3
δ( #”r ) +

3 #”r (~m · #”r )
r5

−
~m

r3

)
. (2)

The contact term is proportional to the Dirac delta func-

tion in three dimensions, δ( #”r ). This term cancels out if

#”r , 0. Therefore, this term is not usually considered in

the magnetic field due to a magnetic moment.

If the magnetic moment ~m is located at the point #”r ,

then the magnetic field produced at the point #”r ′ due to

the magnetic moment ~m located at #”r is given by

~B( #”r ′) =
µ0

4π

(3( #”r ′ − #”r )(~m( #”r ) · ( #”r ′ − #”r ))
| #”r ′ − #”r |5

−
~m( #”r )
| #”r ′ − #”r |3

)
. (3)

The magnetic dipolar interaction energy between the

magnetic moment ~m located at #”r and the magnetic mo-

ment ~m′ located at #”r ′ is given by:

Em,m′ = −~m′( #”r ′) · ~B( #”r ′) =
µ0

4π

( ~m′( #”r ′) · ~m( #”r )
| #”r ′ − #”r |3

−
3(~m′( #”r ′) · ( #”r ′ − #”r ))(~m( #”r ) · ( #”r ′ − #”r ))

| #”r ′ − #”r |5
)
, (4)

where the expression of the magnetic field at the point #”r ′,

Eq. 3, has been used.
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2.2. Magnetostatic dipolar energy of a lattice of magnetic

moments

The magnetostatic dipolar energy of a lattice of mag-

netic moments consists on the summation of the magnetic

dipolar interaction energies, Eq. 4, between the magnetic

moments of the lattice. This summation is given by:

Ed =
1
2
µ0

4π

∑

i

∑

j

∑

n

( ~mi · ~m j

|~Rn + ~ri − ~r j|3

−
3(~mi · (~Rn + ~ri − ~r j))(~m j · (~Rn + ~ri − ~r j))

|~Rn + ~ri − ~r j|5
)
, (5)

where i and j denote the atoms in the cell, ~ri is the posi-

tion of atom i in the cell, ~mi is the magnetic moment of

atom i and the vector ~Rn + ~ri − ~r j connects the magnetic

moments ~mi and ~m j, located at ~Rn+~ri and ~r j, respectively.

~Rn is a lattice site: ~Rn = na~a + nb~b + nc~c and n stands

for n = (na, nb, nc). The sum runs over all the lattice sites

~Rn except over that for which the denominator in Eq. 5 is

zero.

If all the magnetic moments ~mi and ~m j of the cell are

parallel to the direction n̂, i.e., it is a ferromagnetic sys-

tem, then ~mi = mîn, with i = 1−N, and the magnetostatic

dipolar energy is given by:

Ed (̂n) =
1
2
µ0

4π

∑

i

∑

j

mim jMi j (̂n) , (6)

where the quantities Mi j (̂n) = Mi j are called the ferro-

magnetic dipolar Madelung constants and are given by

Mi j (̂n) =
∑

n

( 1

|~Rn + ~ri − ~r j|3
−
3(̂n · (~Rn + ~ri − ~r j))2

|~Rn + ~ri − ~r j|5
)
. (7)

These constants can be further developed, taking into

account the angle θ′ni j between the magnetic moments and

the vector ~Rn + ~ri − ~r j:

Mi j =
∑

n

1 − 3(cosθ′
ni j
)2

|~Rn + ~ri − ~r j|3
, (8)

where the cosine of the angle θ′ni j is given by:

cosθ′ni j =
n̂ · (~Rn + ~ri − ~r j)
|~Rn + ~ri − ~r j|

. (9)

The magnetic moment, the vector ~Rn + ~ri − ~r j and the

angle θ′ni j are depicted in Fig. 1).

x

y

z

Rn+i-j

θnij

ϕnij

m
θ
|
nij

Figure 1: Vector ~Rn + ~ri − ~r j, the spherical angles θni j and φni j of this

vector with respect to the Cartesian reference system, the magnetic mo-

ment ~m and the spherical angle θ′ni j between the vectors ~Rn +~ri −~r j and

~m. The magnetic moment ~m = mn̂.

Using the complex spherical harmonic for l = 2 and

m = 0 [43–45], given by:

Y
complex

2,0 =

√
5

16π
(3cos2θ − 1) , (10)
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the Madelung constants are written as:

Mi j = −
√

16π
5

∑

n

Y
complex

2,0 (θ′
ni j
, φ′

ni j
)

|~Rn + ~ri − ~r j|3
. (11)

The complex spherical harmonic Ycomplex

2,0 (θ′ni j, φ
′
ni j) can

be written as:

Y
complex

2,0 (θ′ni j, φ
′
ni j) =

2∑

m=−2
D2,m,0(α, β, γ)Y

complex

2,m (θni j, φni j) , (12)

where α,β and γ are the Euler angles that define the direc-

tion of the magnetic moments with respect to a Cartesian

reference system, D2,m,0 are the Wigner rotation matrix

elements [46–48], and θni j and φni j are the spherical an-

gles of the vector ~Rn +~ri −~r j with respect to the Cartesian

reference system (See Fig. 1).

Inserting Eq. 12 into Eq. 11, the Madelung constants

turn into:

Mi j = −
√

16π
5

2∑

m=−2
D2,m,0(α, β, γ)

∑

n

Y
complex

2,m (θni j, φni j)

|~Rn + ~ri − ~r j|3
. (13)

If the magnetic moments are in units of the Bohr mag-

neton µB, then:

Ed (̂n) =
µ2
B

2
µ0

4π

∑

i

∑

j

mim jMi j . (14)

The quantity µ2Bµ0/8π is equal to 1/c2 in atomic Ryd-

berg units. Therefore, the MDE in atomic Rydberg units

is given by:

Ed (̂n) =
1
c2

∑

i

∑

j

mim jMi j . (15)

The Madelung constants Mi j can be written as a combi-

nation of real spherical harmonics, using the relationship

between the real and complex spherical harmonics (See

Eq. 35 in the Appendix A) [43, 45]:

Mi j = k
[
D2,0,0

∑

n

Yreal
2,0 (θni j, φni j)

|~Rn + ~ri − ~r j|3
+

2∑

m=1

D2,m,0

∑

n

Yreal
2,m (θni j, φni j) + iYreal

2,−m(θni j, φni j)√
2(−1)m|~Rn + ~ri − ~r j|3

+

2∑

m=1

D2,−m,0
∑

n

Yreal
2,m (θni j, φni j) − iYreal

2,−m(θni j, φni j)√
2|~Rn + ~ri − ~r j|3

]
, (16)

where k = −
√

16π
5

. Let’s define the matrix elements

Sm(i, j):

Sm(i, j) =
∑

n

Yreal
2,m (θni j, φni j)

|~Rn + ~ri − ~r j|3
, (17)

with m = −2,−1, 0, 1, 2. Using Eq. 16 and the quantities

Sm(i, j) defined in Eq. 17 and with some algebra calcula-

tions, the Madelung constants can be written as:

Mi j = k
[
S 0(i, j)D2,0,0 +

S 1(i, j)√
2

(−D2,1,0 + D2,−1,0)+

iS −1(i, j)√
2

(−D2,1,0 − D2,−1,0) +
S 2(i, j)√

2
(D2,2,0 + D2,−2,0)+

iS −2(i, j)√
2

(D2,2,0 − D2,−2,0)
]
. (18)

The Wigner rotation matrix elements have some prop-

erties [46–48] that can be used to simplify the Madelung

constants Mi j (See Appendix B): D2,−1,0 = −D∗2,1,0 and

D2,−2,0 = D∗2,2,0. Taking into account these properties and

6



Eq. 18, and with some additional algebra, the Madelung

constants Mi j can be finally written as:

Mi j = k
[
S 0(i, j)D2,0,0 − S 1(i, j)

√
2 Real(D2,1,0)

+ S −1(i, j)
√
2 Imag(D2,1,0) + S 2(i, j)

√
2 Real(D2,2,0)

− S −2(i, j)
√
2 Imag(D2,2,0)

]
. (19)

The MDE is calculated using Eqs. 15, 17 and 19. The

matrix elements Sm(i, j) in Eq. 17 are computed by means

of the Ewald summation method [34, 35].

2.3. Magnetostatic dipolar anisotropy energy

The magnetostatic dipolar anisotropy energy, MDAE,

is the difference between the magnetostatic dipolar ener-

gies for two different magnetization directions. For in-

stance, in the case of magnetizations ~M parallel and per-

pendicular to the c-axis ĉ of a layered system (this axis

is perpendicular to the plane of the layers), the magneto-

static dipolar anisotropy energy is given by:

MDAE(‖,⊥) = Ed (̂n ‖ ĉ) − Ed (̂n ⊥ ĉ) , (20)

where n̂ = ~M/M is a unitary vector along the magnetiza-

tion, ĉ is a unitary vector along the c-axis and the mag-

netostatic dipolar energies Ed’s are given by Eq. 15, with

the corresponding orientations of the magnetizations.

In the study of the MDAE of layered magnetic systems,

the directions of interest are the axis perpendicular and

parallel to the plane of the layers. The parallel axis is

not well defined, because there are many axes lying in

the plane of the layers. Usually the perpendicular axis is

denoted as the z axis and the parallel axis could be any

axis lying in the xy plane. This is the convention that has

been followed in this paper, unless otherwise noted.

3. Analysis of the Symmetries of the S matrices

The magnetostatic dipolar energy, MDE, is a long-

range interaction and hence, in a periodic system of N

magnetic moments, the interaction of each magnetic mo-

ment i with every other magnetic moment j must be cal-

culated. The MDE of periodic magnetic systems is calcu-

lated by means of the Ewald’s lattice summation method

[34–36]. This method is used to calculate the five ma-

trix elements Sm(i, j) (m=-2,-1,0,1,2), Eq. 17, related to

the magnetostatic dipolar interaction between the mag-

netic moments i and j in all the cells (the real cell and

the replicated cells). These five matrix elements are then,

used to calculate the matrix element Mi j through Eq. 19.

The Madelung constants or matrix elements Mkk, with

k = 1 − N, are all identical and hence, only one of these

matrix elements should be calculated. On other hand,

Mi j = M ji. Therefore, there are only N(N − 1)/2 + 1 dif-

ferent Madelung constants Mi j in the summation of Eq. 6.

This means that the time complexity of the calculation

of the MDE, Eq. 6, of periodic magnetic systems using

the traditional Ewald method is O(N2), because there are

N(N−1)/2+1 different matrix elements Mi j in that equa-

tion, or five times N(N−1)/2+1 different matrix elements

Sm(i, j), if Eq. 19 is considered. A detailed analysis of
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the time complexity of the traditional Ewald method was

published by Petersen [41] and Wang and Holm [36].

Each Madelung constant Mi j (or equivalently each of

the five Sm(i, j) matrix elements) is a summation over the

infinite number of lattice sites ~Rn of the magnetic periodic

system (See Eq. 7). The summation to calculate Mi j in

Eq. 7 is obtained by applying cutoff distances in real and

reciprocal spaces and it converges rapidly. The MDEs and

MDAEs are very small energies. The Madelung constants

Mi j must be calculated with enough precision to ensure

MDEs, and especially MDAEs, with a precision of at least

10−6 eV/cell. The MDAE is the difference between two

MDEs and both must be enough accurate, to obtain the

MDAE as an accurate difference, without effects due to

the compensation of errors.

A strategy to reduce the computation time of the calcu-

lation of the MDE with high precision, without changing

the cutoff distances, consists on using the symmetries of

the periodic magnetic system. To use those symmetries,

one should consider and analyze the S matrices in more

detail. The S matrices of the Ewald method applied to the

calculation of the magnetostatic dipolar energy are given

by Eq. 17, where Yreal
2,m is a real spherical harmonic of l = 2

and m = −2,−1, 0, 1, 2, ~ri and ~r j are the positions of the

i and j atoms in the cell, respectively, and ~Rn is a Bravais

lattice vector or lattice site, i.e., ~Rn = na~a+nb~b+nc~c, with

~a, ~b and ~c equal to the lattice vectors of the cell, and na, nb

and nc are integer numbers. The position vector of atom i

is given by ~ri =(xi, yi,zi).

The real spherical harmonics in the definition of

Sm(i, j), Eq. 17, depend on the spherical angles θni j and

φni j and are obtained from the Eqs. 37 in Appendix A, by

making the following replacements in those equations: x

replaced by Xn + xi − x j, y replaced by Yn + yi − z j and z

replaced by Zn + zi − z j and r = |~Rn +~ri −~r j|. For instance,

the real spherical harmonic Yreal
2,1 is given by:

Yreal
2,1 (θni j, φni j) =

√
15
4π

(Xn + xi − x j)(Zn + zi − z j)
|~Rn + ~ri − ~r j|2

.

(21)

The S matrices are symmetric, i.e., Sm(i, j) = Sm( j, i).

This is taken into account in all the calculations and this

does not depend on the type of Bravais lattice cell, nor in

the values of the vectors ~ri − ~r j of the basis atoms of the

cell.

If the vectors ~ri − ~r j and ~rk − ~rl of the basis atoms of

the cell and the Bravais lattice cell satisfy certain con-

ditions, then the matrix elements Sm(i, j) are equal to ±

Sm(k, l), with m = −2,−1, 0, 1, 2. These symmetries or

conditions allow us to reduce the number of matrix ele-

ments that should be calculated.

The general symmetry or condition that must be satis-

fied is as follows: If any vector ~Rn +~ri −~r j is equal to the

vector ~T + ~rk − ~rl, such as

Yreal
2,m (θni j, φni j)

|~Rn + ~ri − ~r j|3
= ±

Yreal
2,m (θtkl, φtkl)

|~T + ~rk − ~rl|3
, (22)

and the vector ~T is a Bravais lattice vector, i.e., ~T = ~Rp =

pa~a+ pb~b+ pc~c, with pa, pb and pc being integer numbers,

then Sm(i, j) ± Sm(k, l).
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If ~T = ~Rp, then Eq. 22 implies a reordering of the

sums in the summation that defines Sm(i, j), Eq. 17, but

the value of the summation does not change, except for a

sign in some cases, depending on the value of m. If ~T is

not a Bravais lattice vector, then Eq. 22 is not satisfied and

the absolute value of the summation in Eq. 17 changes.

Eq. 22 will be satisfied depending on the values of~ri−~r j

and ~rk − ~rl, and on the type of Bravais lattice cell. There

are at least eight symmetries or conditions of ~ri − ~r j and

~rk − ~rl that could lead to the fulfillment of Eq. 22. The

first and second conditions satisfy Eq. 22 for any of the

14 Bravais lattice cells:

1) If ~ri −~r j is equal to ~rk −~rl then Sm(k, l) = Sm(i, j) for

any value of m:

If~ri−~r j = ~rk−~rl, then ~T+~rk−~rl = ~Rn+~rk−~rl = ~Rn+~ri−~r j,

θtkl = θnkl = θni j and φtkl = φnkl = φni j, which implies that

Sm(i, j) = Sm(k, l).

An obvious and particular case of this symmetry is

~r1 − ~r1=~r2 − ~r2=. . .=~rN − ~rN . This means that all the el-

ements of the diagonal of the corresponding Sm matrices

are identical: Sm(i, i) = Sm(1, 1) for any value of i, with

m = −2,−1, 0, 1, 2. Hence, to calculate the elements of

the diagonal of Sm, only one element, Sm(1, 1), has to be

calculated. Notice that S 0(1, 1) is different from S 2(1, 1)

and so on for m = −2,−1, 0, 1, 2. Only five matrix ele-

ments are necessary to calculate the corresponding diago-

nals of the five Sm matrices.

From physical arguments, without math calculations, it

can be also derived that Sm(i, i) = Sm(1, 1) for any value

of i: The interaction of atom i of the cell with all the atoms

i of the replicated cells, is the same that the interaction of

atom j with all the atoms j of the replicated cells.

The fact that Sm(i, i) = Sm(1, 1) for any value of i, is

applied in all the calculations, not only on the calculations

that use the symmetries of the periodic magnetic system.

2) If ~ri − ~r j is equal to -(~rk − ~rl) then Sm(k, l) = Sm(i, j)

for any value of m:

This symmetry comes from the fact that the S matrices

are symmetric: If ~ri −~r j = −~rk −~rl → ~Rn +~ri −~r j = ~Rn +

~rl −~rk, which means that Sm(i, j) = Sm(l, k). The matrices

Sm are symmetric matrices, therefore Sm(l, k) = Sm(k, l),

and Sm(i, j) = Sm(k, l).

The following six symmetries or conditions, 3-8, do not

fulfill Eq. 22 for all the Bravais lattice cells.

3) If xi − x j=-(xk − xl), yi − y j=yk − yl and zi − z j=zk − zl,

then, taking into account the dependence on xi − x j and

xk − xl of Y2,m:

S −2(k, l) = −S −2(i, j)

S −1(k, l) = S −1(i, j)

S 0(k, l) = S 0(i, j) (23)

S 1(k, l) = −S 1(i, j)

S 2(k, l) = S 2(i, j) .

The Eqs. 23 can be proved as follows. If xi − x j=-(xk −

9



xl), yi − y j=yk − yl and zi − z j=zk − zl, then:

Xni j = Xn + xi − x j = Xn − (xk − xl) =

Xn + xl − xk

Yni j = Yn + yi − z j = Yn + (yk − yl) =

−(−Yn + xl − xk) (24)

Zni j = Zn + zi − z j = Zn + (xk − zl) =

−(−Zn + zl − zk) .

These three equations, Eqs. 24, mean that |~Rn + ~ri −

~r j| = |~T + ~rl − ~rk |, Y2m(θni j, φni j) = ±Y2m(θtlk, φtlk). If ~T =

(Xn,−Yn,−Zn) is a Bravais lattice vector, let’s say, ~T = ~Rp,

then Sm(i, j) = ±Sm(l, k) = Sm(k, l) and |~Rn + ~ri − ~r j| =

|~T + ~rl − ~rk | = |~Rp + ~rl − ~rk |. The sign in front of Y2m is

also the sign in front of Sm(k, l). The sign depends on the

value of m.

If the vector ~T is the Bravais lattice vector ~Rp, then the

coordinates above are equal to:

Xni j = Xn + xi − x j = Xn − (xk − xl) =

Xn + xl − xk = Xp + xl − xk = Xplk

Yni j = Yn + yi − z j = Yn + (yk − yl) =

−(−Yn + xl − xk) = −(Yp + yl − yk) = −Yplk (25)

Zni j = Zn + zi − z j = Zn + (xk − zl) =

−(−Zn + zl − zk) = −(Zp + zl − zk) = −Zplk .

The real spherical harmonics can be calculated using

the above equations:

Yreal
2,−2(θni j, φni j) = C2Xni jYni j/R

2
ni j =

−C2XplkYplk/R
2
plk = −Y

real
2,−2(θplk, φplk)

Yreal
2,−1(θni j, φni j) = C1Yni jZni j/R

2
ni j =

C1YplkZplk/R
2
plk = Yreal

2,−1(θplk, φplk)

Yreal
2,0 (θni j, φni j) = C0(3Z2

ni j − R
2
ni j)/R

2
ni j =

C0(3Z2
plk − R

2
plk)/R

2
plk = Yreal

2,0 (θplk, φplk) (26)

Yreal
2,1 (θni j, φni j) = C1Xni jZni j/R

2
ni j =

−C1XplkZplk/R
2
plk = −Y

real
2,1 (θplk, φplk)

Yreal
2,2 (θni j, φni j) = C2(X2

ni j − Y
2
ni j)/R

2
ni j =

C2(X2
plk − Y

2
plk)/R

2
plk = Yreal

2,2 (θplk, φplk) ,

where Rni j = |~Rn + ~ri − ~r j|, Rplk = |~Rp + ~rl − ~rk |, and the

constants are given by C0 =

√
5

16π
, C1 =

√
15
4π

and

C2 =

√
15
16π

.

Inserting Eq. 26 and |~Rn + ~ri − ~r j| = |~Rp + ~rl − ~rk | into

Eq. 17, and taking into account that Sm(l, k) = Sm(k, l)

for any value of m, the matrix elements in Eqs. 23 are

obtained. The conditions 4-8 can be proved on a similar

way.

4) If xi − x j=xk − xl, yi − y j=-(yk − yl) and zi − z j=zk − zl,

then, taking into account the dependence on yi − y j and

10



yk − yl of Y2,m:

S −2(k, l) = −S −2(i, j)

S −1(k, l) = −S −1(i, j)

S 0(k, l) = S 0(i, j) (27)

S 1(k, l) = S 1(i, j)

S 2(k, l) = S 2(i, j) .

5) If xi − x j=xk − xl, yi − y j=yk − yl and zi− z j=-(zk − zl),

then, taking into account the dependence on zi − z j and

zk − zl of Y2,m:

S −2(k, l) = S −2(i, j)

S −1(k, l) = −S −1(i, j)

S 0(k, l) = S 0(i, j) (28)

S 1(k, l) = −S 1(i, j)

S 2(k, l) = S 2(i, j) .

6) If xi−x j=-(xk−xl), yi−y j=-(yk−yl) and zi−z j=zk−zl,

then, taking into account the dependence on xi−x j, yi−y j,

xk − xl and yk − yl of Y2,m:

S −2(k, l) = S −2(i, j)

S −1(k, l) = −S −1(i, j)

S 0(k, l) = S 0(i, j) (29)

S 1(k, l) = −S 1(i, j)

S 2(k, l) = S 2(i, j) .

7) If xi−x j=-(xk−xl), yi−y j=yk−yl and zi−z j=-(zk−zl),

then, taking into account the dependence on xi− x j, zi−z j,

xk − xl and zk − zl of Y2,m:

S −2(k, l) = −S −2(i, j)

S −1(k, l) = −S −1(i, j)

S 0(k, l) = S 0(i, j) (30)

S 1(k, l) = S 1(i, j)

S 2(k, l) = S 2(i, j) .

8) If xi−x j=xk−xl, yi−y j=-(yk−yl) and zi−z j=-(zk−zl),

then, taking into account the dependence on yi−y j, zi−z j,

yk − yl and zk − zl of Y2,m:

S −2(k, l) = −S −2(i, j)

S −1(k, l) = S −1(i, j)

S 0(k, l) = S 0(i, j) (31)

S 1(k, l) = −S 1(i, j)

S 2(k, l) = S 2(i, j) .

The quantities Xn, Yn and Zn in Eqs. 23,27-31 are inside

a summation over an infinite number of lattice vectors ~Rn.

If the vector ~T is also a Bravais lattice vector, i.e., ~T =

(Xn,−Yn,−Zn) = ~Rp = (Xp,Yp,Zp) = pa~a+pb~b+pc~c, then

the order of the sums in the summation is changed. The

result of the sums, however, does not change by changing

the order of the sums. If ~T is not a Bravais lattice vector

or lattice site, i.e., ~T , ~Rp, for the studied cell, then the

summation changes and Sm(i, j) , Sm(k, l).

If the cell belongs to the following group of Bravais

lattice cells: simple cubic, fcc, bcc, simple tetragonal and

simple orthorhombic, then ~T will be a Bravais lattice vec-

11



tor ~Rp of the cell and the conditions 3-8 will satisfy Eq. 22.

Another Bravais lattices satisfy some of the conditions 3-

8, and the triclinic lattice does not satisfy any of the con-

ditions 3-8.

If the basis atoms of the cell do not satisfy the con-

ditions 1-8, then the number of S matrix elements that

should be calculated will not be reduced, even if the cell

is one of the lattices that satisfy all the conditions 1-8. If

some atoms of the cell satisfy the conditions 1-8, then the

number of S matrix elements will be reduced according to

Eqs. 23,27-31. The more basis atoms that satisfy condi-

tions 1-8, the lesser the number of S matrix elements that

should be calculated.

If the periodic system satisfy the conditions 1-8, then

many matrix elements are identical to other elements due

to symmetry reasons, or differ only in the sign of the

matrix elements. It is not necessary to calculate all of

them. Only one of the identical elements, a representa-

tive, should be calculated. Hence, using the symmetries or

conditions 1-8 of the periodic magnetic system, the num-

ber of S matrix elements that should be calculated is re-

duced drastically, and hence also the computation time is

reduced.

The algorithm to analyze the above symmetries and to

determine which elements of the S matrix should be cal-

culated and which should not be calculated, consists on

a conditioned comparison of the pairs of vectors ~ri − ~r j

and ~rk − ~rl of the basis atoms of the cell. The pairs

that satisfy some of the symmetries or conditions are not

compared anymore. This type of conditioned compari-

son is an O(N3) task. This comparison is valid for any

type of lattice. The present analysis of the symmetries

has been applied and tested in the 14 Bravais lattices

and in the following periodic magnetic systems: crys-

tals, nanowires, disordered nanowires, multisegmented

nanowires, ribbons, slabs, nanotubes and spheres of mag-

netic moments, obtaining a significant decrease of the

computation time. In the next section, the computation

timing results obtained for three particular cases of large

periodic magnetic systems are analyzed and explained: Ni

fcc nanowires, slabs and spheres.

4. Description of the Ni fcc PeriodicMagnetic Systems

Three types of Ni fcc periodic magnetic systems have

been studied, in order to find the effect of the geometry of

the systems in the results: Nanowires, Slabs and Spheres.

The three systems are based on bulk Ni fcc. Each Ni

atoms has a magnetic moment of 0.6 µB.

A Ni fcc nanowire is a nanowire of finite radius, com-

posed by Ni atoms with the structure of bulk Ni fcc (See

Fig. 2). The magnetic moments of the Ni atoms are par-

allel to the main axis of the nanowire. The periodic cell

that contains a Ni fcc nanowire of radius r consists on a

tetragonal cell with lattice parameters s, s and h, where

s = 2r + i, h is the height of the nanowire in the cell and i

is the distance between the external walls of the nanowires

of adjacent cells. The height h and the distance i are kept

fixed in all the calculations to h = a and i = 10a, where

12



the quantity a is the experimental value of the lattice pa-

rameter of bulk Ni fcc, 3.52 Å. The tetragonal cell and the

basis atoms are such that the nanowires are infinite along

the main axis. Nanowires with a radius between r = a

and r = 50a were studied. The cells of these nanowires

have between 13 (r = a) and 31417 (r = 50a) Ni atoms or

magnetic moments.

Figure 2: (Color online) Depiction of a Ni fcc nanowire of radius 3a,

a = 3.52 Å. Ni atoms are represented by blue balls.

In Fig. 3 two Ni fcc slabs, each one made of four atomic

layers, have been depicted. The fcc slabs are infinite along

the main plane and finite along the axis perpendicular to

the plane. The empty distance i between the periodic slabs

along the axis perpendicular to the plane of the slabs was

set to 10a, a=3.52 Å, for all the slabs simulated. The pe-

riodic cell that contains a Ni fcc slab of n atomic layers

consists on a tetragonal cell with lattice parameters a, a

and (n−1)a/2+i. The MDE of Ni fcc slabs with a number

n of atomic layers between 100 and 16000 atomic layers,

which means between 200 and 32000 magnetic moments

in the periodic cell, has been calculated. The magnetic

moments of the Ni atoms are perpendicular to the surface

of the slabs.

Figure 3: (Color online) Depiction of two Ni fcc slabs made of four

atomic layers, with lattice parameter a = 3.52 Å. Ni atoms are repre-

sented by blue balls.

ANi fcc sphere of radius 3a has been depicted in Fig. 4.

The periodic cell that contains a Ni fcc sphere of radius r

consists on a cubic cell with lattice parameters s, s and s,

where s = 2r+ i and i is the distance between the external

walls of the spheres. The distance i is kept fixed to 10a,

a=3.52 Å, in all the spheres studied. The MDE of Ni fcc

spheres of radius between a and 10a has been calculated.

The number of magnetic moments or atoms of the spheres

is between 19 (r = a) and 32085 (r = 12.4a). The mag-

netic moments of the Ni atoms are parallel to the z axis of

the periodic cell.
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Figure 4: (Color online) Depiction of a Ni fcc sphere of radius 3a, a =

3.52 Å. Ni atoms are represented by blue balls.

5. Reduction of the Computation Time of the Calcu-

lation of the MDE of Large Ni fcc Systems

The computation timing experiments of the MDE of

large Ni fcc systems (nanowires, slabs and spheres) have

been carried out in a cluster of computers with 2.50

GHz Intel(R) Xeon(R) E5-2640 processors, using an In-

tel FORTRAN compiler. The parallel calculations were

carried out with 96 processors.

5.1. Dependence on gc of the MDE and MDAE

Fig. 5 shows the MDE(z), the magnetostatic dipo-

lar energy when all the magnetic moments are aligned

along z axis, which is equal to Ed (̂z), and the magneto-

static dipolar anisotropy energy between the z and x axes,

MDAE(z,x), of a Ni fcc nanowire of radius 30a, as a func-

tion of the reciprocal space cutoff distance, gc. The main

axis of the nanowire is the z axis. MDAE(z,x) is defined

by:

MDAE(z, x) = MDE(z) − MDE(x) =

Ed (̂z) − Ed(x̂) . (32)

The periodic cell of this nanowire has 5025 atoms.

The real space cutoff distance, rc, was kept fixed to 30a.

MDE(z) andMDAE(z,x) in Fig. 5 decrease as gc increases

and converge towards some values. To obtain values

of MDE and MDAE with the desired precision of 10−6

eV/cell, the reciprocal space cutoff distance should be at

least 9/a radians/Å for this nanowire. This dependence of

the MDE and MDAE on gc (See Fig. 5) and the minimum

value of gc, 9/a radians/Å, to obtain MDEs and MDAEs

with 10−6 eV/cell of precision, have been also observed

on Ni fcc nanowires with another radii. Only the results

for a nanowire with r = 30a are shown.
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Figure 5: MDE(z) and MDAE(z,x)=MDE(z)-MDE(x) vs reciprocal

space cutoff distance of the calculations of a Ni fcc nanowire with ra-

dius of 30a, a=3.52 Å, and 5025 atoms. Real space cutoff distance=30a.

The computing times of the calculation of the MDE of

a Ni fcc nanowire with a radius of 30a and a real cutoff

distance rc = 30a, as a function of gc, with and with-

out applying the symmetries, are plotted in Fig. 6. The

computing time of the calculations done without using the
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symmetries grows quadratically with gc, while the com-

puting time of those calculations done using the symme-

tries grows linearly and very slowly with gc, being almost

constant with respect to gc. The two curves cross at ap-

proximately gc = 0.75/a and below the crossing point,

the computation time of the calculations without using

the symmetries is lower than the computation time us-

ing the symmetries. However, below the crossing point,

the MDEs and MDAE of the nanowire have a low preci-

sion, of about 10−3-10−4 eV/cell (See Fig. 5). As it was

explained before, it is necessary to use higher values, at

least gc = 9/a radians/Å, to obtain the MDEs and MDAE

with the required high precision of 10−6 eV/cell. Hence,

the appropriate comparisons of computation times should

be made between the computation times of calculations

carried out with gc = 9/a radians/Å. Those comparisons

are made and analyzed in the following subsections.
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Figure 6: Computation time of the calculations of the MDE of a Ni fcc

nanowire of radius 30a, a=3.52 Å, and 5025 atoms vs reciprocal space

cutoff distance. Real space cutoff distance=30a.

After running several tests, values of rc = 38a and

gc = 9/a were chosen and used in all the calculations

of the present work, to obtain MDEs and MDAEs with

a precision of 10−6 eV/cell, the usual required precision

for MDEs and MDAEs. It has been suggested in former

papers to use cutoff distances as a function of the size of

the system, i.e., the number N of atoms or magnetic mo-

ments, to calculate MDEs with a predefined precision. In

the present computational timing experiments, the cutoff

distances has been kept fixed in order to make a fair com-

parison of the timing results with and without using the

symmetries of the periodic magnetic system, in exactly

the same conditions for all the range of N values studied,

avoiding bias effects due to different values of the cutoff

distances for different values of N.

5.2. Computation Time of the Calculations of the MDE

using and not using the Symmetries

The computation timing results using and not using the

symmetries have been plotted in Fig. 7 versus the number

of atoms of the Ni fcc nanowires, slabs and spheres. These

are calculations of the MDE of periodic Ni fcc nanowires

of increasing radius, Ni fcc slabs of increasing number of

atomic layers and Ni fcc spheres of increasing radius, and

hence, these are calculations of increasing number N of

atoms. It can be noticed in Fig. 7 that the reduction of

the computation time is very important: The computation

time using the symmetries is much smaller than the com-

putation time of the calculations done not using the sym-
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metries of these periodic systems. For instance, the cal-

culation of a Ni fcc nanowire of 5025 atoms takes about

27000 seconds not using the symmetries, and about 130

seconds using the symmetries, in the mentioned cluster

and with the same cutoff distances. The reduction factor

is about 200 for nanowires, 370 for slabs and about 390

for spheres, for large values of the number N of atoms (or

magnetic moments).

Another way to realize the reduction of the computa-

tion time is to fix the amount of the computation time

of the calculations and to find out the number of atoms

of the nanowires calculated in that same fixed amount of

time. For instance, a calculation of a nanowire of 19000

atoms using the symmetries and another calculation of a

nanowire of 2900 atoms not using the symmetry, will take

approximately the same amount of time, about 6000 sec-

onds.

The computation time of the calculations not using the

symmetries grows faster than the computation time of the

calculations using the symmetries. This can be noticed in

Fig. 7. Another interesting fact is that the use of the sym-

metries has a much larger impact on the calculations of

large systems than on the calculations of small systems:

For the smallest nanowire studied without using the sym-

metries, the reduction factor of the computation time is

about six and for the largest nanowire studied without us-

ing the symmetries, which has 5025 atoms, the reduction

factor is about 200. A similar behaviour has been found

in slabs and spheres.
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Figure 7: (Color online) Computation time vs number N of atoms of

the calculations of Ni fcc nanowires, slabs and spheres (top, central and

bottom panel, respectively), not using and using the symmetries of the S

matrix.
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It can be also noticed in Fig. 7 that the computation

time of the calculations using the symmetries has approx-

imately the same dependence on the number N of atoms

in the three types of geometries studied, which implies

that the number of atoms is much more relevant than the

type of geometry.

5.3. Analysis of the Computation Time of the Calcula-

tions done Using the Symmetries of Ni fcc Systems

To analyze the dependence on N of the computation

time of the calculations done using the symmetries, the

two main contributions to the computation time have been

considered: The time to find and analyze the symmetries

of the periodic magnetic system and to determine which

matrix elements should be calculated, ta, and the time to

calculate the matrix elements that should be calculated,

tm. These two times are plotted in Fig. 8. The computation

time ta is larger than tm, and ta increases faster than tm as

the number N of atoms increases.

The computation time to find and analyze the sym-

metries and to calculate the matrix elements of Ni fcc

nanowires, slabs and spheres are plotted in Fig. 8, respec-

tively. The time to find and analyze the symmetries, ta

(See Fig. 8), has the same dependence on N as the total

computation time of the calculations done not using the

symmetries (See Fig. 7).

If the symmetries of the periodic magnetic system are

not used, then tm is proportional to N2 for large values of

N. If the symmetries are used, then tm is proportional to
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Figure 8: (Color online) Computation time to analyze the symmetries,

ta, and to calculate the matrix elements, tm, vs number of atoms of the

calculations of Ni fcc nanowires, slabs and spheres (top, central and bot-

tom panel, respectively), when the symmetries of the periodic magnetic

system are used.
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N. To understand why tm is proportional to N if the sym-

metry is used and to N2 if the symmetries are not used,

tm has to be further analyzed. The time to calculate the S

matrix elements is proportional to the number M of ma-

trix elements: tm = aM. If the symmetries are not used,

then the number M of matrix elements of S is not reduced

and M is equal to N(N − 1)/2 + 1, which means that M

is proportional to N2 for large values of the number N of

atoms of the cell.

If the symmetries are used, then M is approximately

equal to N. This fact can be noticed in Fig. 9. The num-

ber M of matrix elements that should be calculated vs

the number of atoms of the nanowires, slabs and spheres,

when the symmetries are used, is plotted in Fig. 9. It can

be noticed in that Figure that the number of matrix ele-

ments that should be calculated is practically equal to the

number N of atoms. For instance, the rightmost point in

Fig. 9 corresponds to a Ni fcc nanowire with 28917 atoms

and 29066 matrix elements. In the case of nanowires, M

is very close to N, but not exactly equal to N. M is exactly

equal to the number N of atoms of the slabs, for any value

of N. M is slightly higher than the number N of atoms of

the spheres, for any value of N. The fact that M=N for

slabs is probably due to the higher symmetry of the slabs,

compared to nanowires and spheres.

This dependence of the number M of matrix elements

that should be calculated on the number N of magnetic

moments explains the dependence on N of the computa-

tion time to calculate the matrix elements, tm. That com-
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Figure 9: (Color online) Number M of matrix elements that should be

calculated vs number N of atoms of the Ni fcc nanowires, slabs and

spheres (top, central and bottom panels, respectively), when the symme-

tries of the periodic magnetic systems are used.
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putation time is proportional to M: tm = bM. If the sym-

metries of the periodic magnetic system are used, then

tm = bM ≈ bN, and if the symmetries are not used or

the periodic magnetic system has not symmetries, then

tm = bM = [N(N − 1)/2 + 1] ≈ cN2.

6. Parallelization of the calculations

The second strategy to decrease, in practical terms, the

computation time of the MDE of large magnetic periodic

systems is to implement and run parallel calculations. The

calculation of the elements of the S matrix has been par-

allelized in a simple way in the present research: If the

parallel calculation is carried out by p processors, then

every processor calculates M/p matrix elements, where

M is the number of matrix elements that should be calcu-

lated. Parallel calculations of the MDE of the following

Ni fcc periodic systems have been carried out, using up

to 96 processors and not using the symmetries: A Ni fcc

nanowire of radius 19a (4513 magnetic moments), a Ni

fcc slab of 2600 atomic layers (5200 magnetic moments)

and a Ni fcc sphere of radius 5.2a (5000 magnetic mo-

ments), with a=3.52 Å. The computation times of these

parallel calculations as a function of the number p of pro-

cessors are plotted in Fig. 10.

A serial calculation, i.e., using only one processor, and

not using the symmetries takes about 20000 seconds in

the case of the nanowire and slab and 21600 seconds

in the case of the sphere. Using the 96 processors, the

larger number available in our computer resources, and
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Figure 10: Computation time, in logarithmic scale, vs number of pro-

cessors of the calculations of the following periodic magnetic systems,

not using the symmetries: A Ni fcc nanowire of radius 19a, a Ni fcc slab

of 2600 atomic layers and a Ni fcc sphere of radius 5.2a, a=3.52 Å (top,

central and bottom panels, respectively).
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not using the symmetries, the computation times of the

nanowire, the slab and the sphere are about 820, 900

and 710 seconds, respectively (See Fig. 10 and Table 1).

Hence, the reduction factors due to the parallelization are

between 22 and 30.

6.1. Comparison of Parallelism and Use of the Symme-

tries

Parallelization of the calculations reduces, obviously,

the computation time, but much less than the use of the

symmetries. As it has just been indicated above, par-

allel calculations using 96 processors and not using the

symmetries of a nanowire, a slab and a sphere take about

820, 900 and 710 seconds, respectively. Those computa-

tion times are longer than the corresponding computation

times of serial calculations using the symmetries: 100,

140 and 55 seconds, respectively (See Table 1). The re-

duction factors due to the use of the symmetries are be-

tween 143 and 390, about 6-13 times larger than the re-

duction factors due to the parallelization, which are be-

tween 22 and 30 (See Table 1). Therefore, it is much

more efficient (less computation time and also less com-

puter resources) to run serial calculations using the sym-

metries than to run parallel calculations without using the

symmetries.

The combination of parallelism and the analysis of the

symmetries is also possible. This type of parallel calcula-

tions are based on the parallelization of the algorithm to

calculate the matrix elements and the algorithm to analyze

Table 1: Computation times and reduction factors of the calculations of

a nanowire of radius 19a (up), a slab of 2600 atomic layers (center) and

a sphere of radius 5.2a (down), a=3.52 Å, as a function of the number

of processors and the use of the symmetries.

Number of Use of the Time Reduction

processors symmetries (seconds) factor

1 no 20000 –

96 no 820 24

1 yes 100 200

4-6 yes 40 500

1 no 20000 –

96 no 900 22

1 yes 140 143

4-6 yes 60 333

1 no 21600 –

96 no 710 30

1 yes 55 390

4-6 yes 30 720

the symmetries. The parallel version of the calculation of

the matrix elements distributes evenly these calculations

among the processors. The parallel version of the analysis

of the symmetries also distributes evenly the calculations,

but it is more complex.

As it was explained before, the serial algorithm to an-

alyze the symmetries of the magnetic system consists on

a conditioned comparison of the pairs of vectors ~ri − ~r j

and ~rk − ~rl of the basis atoms of the cell. The pairs that
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satisfy some of the symmetries or conditions are not com-

pared anymore. The parallel version of that algorithm dis-

tributes the comparisons of the vectors as follows. Each

processor compares a = nv/p vectors, where nv is the to-

tal number of vectors~ri−~r j that will be compared and p is

the number of processors. Processor k compares the vec-

tors from 1+ak to a(k+1)−1. The index k runs from 0 to

p−1. The last processor, k = p−1, runs from 1+ (p−1)a

to nv. Finally, the master node gathers the results.

The parallel algorithm to analyze the symmetries is an

O(N3/p) algorithm. It reduces in an important amount

the computation time of the analysis, but with a price:

The result of the parallel version of the algorithm to an-

alyze the symmetries is that the total number of matrices

Mp that should calculated using p processors is approxi-

mately equal to pN, where N is the number of atoms, if

the magnetic system satisfies the conditions and symme-

tries. In a serial calculation, the number of matrices that

should be calculated is approximately N. The number of

matrices that should be calculated, Mp, is therefore, larger

than in a serial calculation, although of the same order of

magnitude.

This increase of the number of matrices that should be

calculated has not an important impact on the computa-

tion time to calculate the matrix elements, because the

calculation of the matrix elements is an O(Mp/p)=O(N)

task in a parallel calculation, the same as in a serial cal-

culation. Hence, the result of the parallelization of both

algorithms is an important reduction of the total computa-

tion time, compared with the other types of calculations,

as can be noticed in Table 1.

Parallel calculations of the nanowire, slab and sphere

take about 40, 60 and 30 seconds, respectively, using be-

tween four and six processors and the symmetries, and

about 100, 140 and 55 seconds, respectively, using one

processor (a serial calculation) and the symmetries (See

Table 1). The parallel calculations with 4-6 processors are

the optimal ones: Calculations with a larger or a smaller

number of processors take longer. These calculations with

4-6 processors are about two times faster than the serial

calculations using the symmetries.

6.2. Comparison with the Amdahl law

The dependence of the computation time of the calcu-

lation of the MDE, not using the analysis of the symme-

tries, on the number p of processors has been compared

with the Amdahl law [49]. This law states that the time of

a calculation using p processors is given by:

Tp =
Ts(1 + (p − 1)s)

p
, (33)

where s is between 0 and 1 and is the proportion of the

code that remains serial, because is not parallelized or can

not be parallelized, and Ts is the time of a calculation with

one processor (serial run). The results of the parallel cal-

culations of the nanowire, the slab and the sphere have

been fitted to the Amdahl law, Eq. 33, obtaining a value

of s equal to 0.005, 0.007 and 0.008 for the nanowire, slab

and sphere, respectively. The fitting functions are plotted
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as solid lines in Fig. 10. These values of s means that a

0.5-0.8 % of the code is serial and a 99.5-99.2 % is paral-

lelized.

According to the Amdahl law, Tp should be about 300

seconds for the nanowire, slab and sphere, using 96 pro-

cessors. However, the computation time using 96 proces-

sors is 820, 900 and 710 seconds, respectively (See Ta-

ble 1). This is an expected behaviour: The predictions of

the Amdahl law are not at all correct for large values of

p. This can be better noticed in the plots of the speedup,

Ts/Tp, of the parallel calculations of the nanowire, slab

and sphere in Fig. 11.

The real speedup matches very well the speedup pre-

dicted by the Amdahl law for p <= 20, but it deviates

largely from the predictions for p > 20. The speedup

is approximately constant above p > 20. This is the

expected behaviour of the speedup when the size of the

problem is relatively small. In the present case, the size

of the problem is the number N of magnetic moments,

which is about 5000 for the studied nanowire, slab and

sphere. Larger values of N will improve the real speedup.

Finally, it should be considered that the basis atoms or

magnetic moments of a periodic cell could be such that

their position coordinates do not satisfy the conditions

or symmetries explained in section 3 of this paper. In

that case, the whole periodic system (lattice cell + ba-

sis atoms) would be a low symmetry system. If the peri-

odic magnetic system has a low symmetry, then the use of

the symmetries does not reduce the number of matrix ele-
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Figure 11: Speedup vs number of processors of the calculations of the

following periodic magnetic systems, not using the symmetries: A Ni

fcc nanowire of radius 19a, a Ni fcc slab of 2600 atomic layers and a

Ni fcc sphere of radius 5.2a, a=3.52 Å (top, central and bottom panels,

respectively).
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ments or the reduction is very small and hence, the reduc-

tion of the computation time is very small. Therefore, for

periodic magnetic systems with a low symmetry, the par-

allel calculations without using the symmetries are faster

than the serial calculations using or not using the symme-

tries.

7. Conclusions

Two strategies to reduce the computational effort of the

calculation of the MDE of large magnetic periodic sys-

tems have been studied. The first strategy consists on an

analysis of the symmetry properties of periodic magnetic

systems of N magnetic moments, in order to reduce the

number of matrix elements that should be calculated in

the traditional Ewald method used to calculate the MDE.

The number of matrix elements of this method is N2/2 and

hence, its time complexity is O(N2). It has been shown

that if the periodic magnetic system has certain symme-

tries, then there are many matrix elements are identical to

other elements, except the sign of some matrix elements.

This reduces the numberM of matrix elements that should

be calculated to approximately N, instead of N2/2, accord-

ing to computation timing experiments carried out in large

periodic magnetic systems, such as large Ni fcc nanowires

up to 32000 magnetic moments. This decreases consider-

ably the computation time of the MDE. This reduction is

in contrast with the fact that the analysis of the symmetries

is an O(N3) task, which increases the time complexity of

the traditional Ewald method. The origin of this contrast

is that the MDE and MDAE are very small energies and

therefore, the usual required precision to calculate these

energies is so high, 10−6 eV/cell, that the calculation of

the matrix elements is very expensive and, in practice, the

computations carried out using the analysis of the symme-

tries are much faster, in spite of the larger time complexity

of the analysis of the symmetries.

The second strategy to reduce the computation time of

the calculations of the MDE is the parallelization of the

calculations, without using the symmetries of the system.

For periodic magnetic systems with high symmetry, the

parallelization of the calculations of the MDE reduces the

computation time, but much less than the use of the sym-

metries in a serial calculation and using more computa-

tional resources. However, for periodic magnetic systems

with low symmetry, the use of the symmetries reduces

very little the computation time of a serial calculation and

running parallel calculations without using the symme-

tries is faster. Finally, the use of both, the parallelization

and the symmetries of the periodic magnetic system, is

the fastest procedure.

There are several future lines of improvement of the

present research. The most important one consists on

finding and studying more symmetries or conditions of

the periodic magnetic system that reduce the number of

matrix elements of the Ewald summation method that

should be calculated. The reduction of the time complex-

ity of the analysis of the symmetries of periodic magnetic

systems and the application of the proposed analysis of
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the symmetries to the non-traditional forms of the Ewald

summation method are also important research lines. Fi-

nally, the derivation of the mathematics involved in the

calculation of the MDE and MDAE of periodic cells of

non-collinear magnetic dipoles is underway.
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Appendix A. Complex and Real Spherical Harmonics

The complex spherical harmonics are defined by [43–

45]:

Y
complex

l,|m| = Θl,|m|(θ)ei|m|φ

Y
complex

l,−|m| = (−1)|m|Θl,|m|(θ)e−i|m|φ = (−1)|m|Ycomplex∗
l,|m| (34)

The complex spherical harmonics can be also written

as a combination of real spherical harmonics [43–45]:

Y
complex

l,0 = Yreal
l,0

Y
complex

l,|m| =
(−1)|m|
√
2

(
Yreal
l,|m| + iY

real
l,−|m|

)
(35)

Y
complex

l,−|m| =
1
√
2

(
Yreal
l,|m| − iY

real
l,−|m|

)

The real spherical harmonics as a combination of com-

plex spherical harmonics are obtained from Eqs. 35:

Yreal
l,0 = Y

complex

l,0

Yreal
l,|m| =

1
√
2

(
Y
complex

l,−|m| + (−1)
|m|Y

complex

l,|m|

)
(36)

Yreal
l,−|m| =

i
√
2

(
Y
complex

l,−|m| − (−1)
|m|Y

complex

l,|m|

)

The real spherical harmonics of l = 2 are given by [43–

45]:

Yreal
2,0 =

√
5

16π
(3cos2θ − 1) =

√
5

16π
3z2 − x2 − y2 − z2

r2

Yreal
2,1 =

√
15
4π

sinθcosθcosϕ =

√
15
4π

xz

r2

Yreal
2,−1 =

√
15
4π

sinθcosθsinϕ =

√
15
4π

yz

r2
(37)

Yreal
2,2 =

√
15
16π

sin2θcos2ϕ =

√
15
16π

x2 − y2

r2

Yreal
2,−2 =

√
15
16π

sin2θsin2ϕ =

√
15
4π

xy

r2
.

Appendix B. Some Properties of the Rotation Matrix

Elements

The Wigner rotation matrix elements are given by [46–

48]:

Dl,m′,m(α, β, γ)∗ = (−1)m′−mDl,−m′,−m(α, β, γ)

Dl,m′,m(α, β, γ) = e−im
′αdl,m′,m(β)e−imγ (38)

dl,m′,m(β) = (−1)m′−mdl,−m,−m′ (β)

If the above definition is applied to the specific cases l =

2, m′=±1, ±2 and m = 0, the following matrix elements
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are obtained:

D2,1,0 = e−iαd2,1,0(β)

D2,−1,0 = −eiαd2,1,0(β) = −D∗2,1,0 (39)

D2,−2,0 = D∗2,2,0 .
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M. Hernández-Vélez, Magnetic behaviour of

densely packed hexagonal arrays of Ni nanowires:

Influence of geometric characteristics, J. Magn.

Magn. Materials 294 (2005) 174–81.

[32] J. Sánchez-Barriga, M. Lucas, F. Radu, E. Martin,

M. Multigner, P. Marin, A. Hernando, G. Rivero,

Interplay between the magnetic anisotropy contribu-

tions of cobalt nanowires, Phys. Rev. B 80 (2009)

184424–1.

[33] L. G. Vivas, M. Vázquez, J. Escrig, S. Allende,

D. Altbir, D. C. Leitao, J. P. Araujo, Magnetic

anisotropy in CoNi nanowire arrays: Analytical cal-

culations and experiments, Phys. Rev. B 85 (2012)

035439.

[34] P. P. Ewald, Die Berechnung optischer und elektro-

statischer Gitterpotentiale, Ann. Physik 64 (1921)

253–87.

[35] S. W. de Leeuw, J. W. Perram, E. R. Smith, Simu-

lation of electrostatic systems in periodic boundary

conditions. I. Lattice sums and dielectric constants,

Proc. R. Soc. A 373 (1980) 27–56.

[36] Z. Wang, C. Holm, Estimate of the cutoff errors in

the Ewald summation for dipolar systems, J. Chem.

Phys. 115 (2001) 6351–9.

[37] J. Perram, H. Petersen, S. W. de Leeuw, An algo-

rithm for the simulation of condensed matter which

grows as the 3/2 power of the number of particles,

Mol. Phys. 65 (1988) 875–93.

[38] B. Quentrec, C. Brot, New method for searching for

neighbors in molecular dynamics computations, J.

Comput. Phys. 13 (1973) 430–2.

[39] R. W. Hockney, J. W. Eastwood, Computer Sim-

ulation Using Particles, McGraw-Hill, New York,

1981.

[40] T. Darden, D. York, L. Pedersen, Particle mesh

Ewald: An N log(N) method for Ewald sums in large

systems, J. Chem. Phys. 98 (1993) 10089–92.

27



[41] H. G. Petersen, Accuracy and efficiency of the parti-

cle mesh Ewald method, J. Chem. Phys. 103 (1995)

3668–79.

[42] L. Greengard, V. Rokhlin, A fast algorithm for parti-

cle simulations, J. Comput. Phys. 73 (1987) 325–48.

[43] R. Courant, D. Hilbert, Methods of Mathematical

Physics. Volume I, Wiley-Interscience, New York,

1962.

[44] C. D. H. Chisholm, Group Theoretical Techniques

in Quantum Chemistry, Academic Press, New York,

1976.

[45] D. A. Varshalovich, A. N. Moskalev, V. K. Kherson-

skii, Quantum Theory of Angular Momentum: Irre-

ducible Tensors, Spherical Harmonics, Vector Cou-

pling Coefficients, 3nj Symbols, World Scientific

Pub., Singapore, 1988.

[46] M. E. Rose, Elementary Theory of Angular Momen-

tum, Wiley, New York, 1957.

[47] M. E. Rose, Relativistic Electron Theory, Wiley,

New York, 1961.

[48] M. A. Morrison, G. A. Parker, A guide to rotations

in quantum mechanics, Austral. J. Phys. 40 (1987)

465–97.

[49] G. M. Amdahl, Validity of the single processor ap-

proach to achieving large-scale computing capabili-

ties, in: AFIPS Conference Proceedings, volume 30,

AFIPS Press, Reston, VA, 1967, pp. 483–5.

28


