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Abstract: Combining empirical relationships with a backbone of first-principle laws allow the modeler to 
transfer the available process knowledge into a model. In order to get such so-called grey-box models, 
data-reconciliation methods and constrained regression algorithms are key to obtain reliable process 
models that will be used later for optimization. However, the existent approaches require solving a semi-
infinite constrained regression nonlinear problem, which is usually done numerically by an iterative pro-
cedure alternating between a relaxed problem and an a posteriori check for constraint violation. This pa-
per proposes an alternative one-stage efficient approach for polynomial regression models based in sum-
of-squares (convex) programming. Moreover, it is shown how several desirable features on the regression 
model can be naturally enforced in this optimization framework. The effectiveness of the proposed ap-
proach is illustrated through an academic example provided in the related literature. 
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

1. INTRODUCTION 

The increasing levels of digitalization motivated by the con-
cepts stated in the so-called Industry 4.0 (Davies, 2015) force 
the companies to search for methods to transform raw data in 
useful information. This information is expected to signifi-
cantly impact in the decision-making processes at all levels in 
the companies.  

The process industries are not alien to this digital transfor-
mation, although the challenges to face are slightly different 
from the ones in other sectors. On the one hand, they base 
their operation (and, therefore, economic margins) in com-
plex plants formed by very heterogeneous (usually expen-
sive) equipment performing complex processes such as 
(bio)chemical reactions, phase transformations, etc. On the 
other hand, their markets are not very variable in terms of 
raw materials or product demands, whereas environmental 
restrictions are tighter every year. This causes fierce competi-
tion. In this context, what Industry 4.0 can bring in terms of 
improved efficiency can be summarized in three main as-
pects: 1) transform data in information via the definition of 
suitable indicators in real time (Kujanpää, et al., 2017), 2) use 
the information to optimize the plant operation (Krämer and 
Engell, 2017) and 3) improve coordination between plants 
operation and its link with the production planning and 
scheduling (Palacín, et al., 2018).  

Suitable models, possible of different nature, are required 

through these steps to achieve the expected goals. Current 
trends in Industry 4.0 push to the excessive use of pure data-
driven approaches coming from the world of artificial intelli-
gence and big data (e.g., artificial neural networks (Afram 
and Janabi-Sharifi, 2015) and machine learning (Witten et al., 
2016)). These approaches have been demonstrated useful to 
extract information from systems whose behaviour is practi-
cally unknown and/or have a large variability, e.g. in compa-
nies devoted to IT services (Golovin, et al., 2017). However, 
the process industry is characterized neither by these levels of 
uncertainty nor by a scarce knowledge in the involved physi-
cochemical processes. Indeed, quite detailed models for some 
equipment/plants already exist since around 10-20 years (e.g. 
distillation columns (Olsen, Endrestøl and Sira, 1997)). How-
ever, because of their complexity and difficulties to match the 
actual plants, usually these models have been used in offline 
simulation for taking decision about process design, or for 
very specific control purposes. Therefore, there is still lack of 
suitable models, able for prediction, almost at all levels of the 
automation pyramid: from real-time plants optimization to 
production planning and scheduling. 

In consequence, several researchers in the process control 
community have been devoting efforts during the last decade 
to develop efficient and reliable models to support operators 
and managers in their decisions (Kar, 2015), (Kalliski et al., 
2019). There is a quite defined consensus around the option 
of developing models which combine as much physical in-
formation as possible/suitable with relationships obtained 
from real data collected from the plant (Zorzetto et al., 2000). 
In this way, these so-called grey-box models get a high level 
of matching with the actual plant in terms of current opera-
tion regimes and, importantly, are quite confident for ex-
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trapolation (i.e. prediction capabilities), as their outputs will 
never violate basic first-principle laws. 

Several approaches have been proposed (or reused from the 
literature) to identify such “black” part of the grey-box mod-
els from input-output data. Among them, least-squares (LS) 
regression based (linear or nonlinear) is the most employed, 
but statistical methods like principal-component analysis 
based (Wang, Sun and Jia, 2016) are also very popular. 
Nonetheless, in the author’s opinion, one of the best ap-
proaches is combining robust data reconciliation (Llanos, 
Sanchéz and Maronna, 2015) with constrained regression 
(Cozad, Sahinidis and Miller, 2015). In this way, one firstly 
gets estimations of unmeasured variables that are coherent 
with basic physical principles, so that, in combination with 
subsequent LS constrained regression for instance, more 
reliable experimental relationships are obtained among varia-
bles that are not necessarily measured inputs and outputs (de 
Prada et al., 2018).  

In this framework, (Wilson and Sahinidis, 2017) proposed a 
novel and very useful concept (based on a software tool for 
black-box modeling: ALAMO) which, given a dataset, auto-
matically selects the right model complexity among a set of 
basis functions by balancing the Akaike information criteria 
with the regression performance (model fitness to experi-
mental data). ALAMO was already used in (Cozad, Sahinidis 
and Miller, 2015) to cope somehow with the problem of grey-
box model building via constrained regression. The idea is to 
include the a priori modeler knowledge (bounds on the model 
response, valid input domain, model slope and curvature, 
etc.) as constraints in the LS regression. However, as this 
type of constraints on the model need to be enforced on infi-
nitely many points belonging to the input-output variables 
domain, the above LS regression becomes a semi-infinite 
programming problem (Reemtsen and Rückmann, 1998) 
where we have a set of finite decision variables (the model 
parameters) but an infinite set of constraints. 

To tackle this problem numerically, the authors in (Cozad, 
Sahinidis and Miller, 2015) propose a two-step iterative pro-
cedure where, in the first phase, a relaxation of the original 
problem over a finite subset of the input variables 𝑥 ∈ 𝑋௟ ⊂
𝒳 is solved. Once a solution (i.e. values of the model pa-
rameters 𝛽௟) for this problem is gathered, a second phase of 
validation is performed. This step consists of solving a maxi-
mum violation problem that is basically a maximization of 
the constraint violation over 𝑥 ∈ 𝒳 with the model fixed 
from the previous step. In the general case both steps involve 
solving nonlinear optimization problems (except perhaps the 
first one with SISO models or simple linear constraints) and, 
what is worse, the second one is generally nonconvex. Thus, 
if one prioritizes speed versus chance of reaching global 
optimality1, gradient-based interior point algorithms can be 
used. Otherwise, a global optimizer is required. See the above 
cited reference for more details. 

                                                 
1 Note that the probability of falling stuck in a local optimum increases with 
the number of experimental samples to fit. 

Since 25 years ago approximately, semidefinite (convex) 
programming (SDP) has become the main tool to solve con-
trol synthesis problems that were intractable in the past (Boyd 
et al., 1994). More recently, the sum-of-squares (SOS) pro-
gramming emerged as a generalization of the semidefinite 
one to perform polynomial optimization over semi-algebraic 
sets (Parrilo 2003). Although it has been quite used within 
the automatic control community in stability and disturbance 
analysis, control and observation of nonlinear systems 
(Henrion and Garulli, 2005), (Pitarch and Sala, 2014), 
(Pitarch et al., 2018), it has not penetrated too much in other 
fields of application. In particular for SOS programming 
applied to constrained regression, the authors only know the 
work by Nauta et al. (2007), where explicit equilibrium ap-
proximations of fast-reacting species are sought. This work is 
particularly interesting because the authors share the same 
outlined ideas about grey-box modeling: they searched for 
reduced-order representations of kinetic networks which were 
physically consistent. To ensure so, the polynomial approxi-
mations were constrained to be positive within a local range 
of validity in the regression problem. 

The goal of this paper is to highlight how SOS optimization 
can be used to solve the above presented semi-infinite con-
strained regression problems in one step, drastically reducing 
the computational load with respect to the existing two-phase 
procedures (at least for problems with a reasonable number of 
regression variables involved). Moreover, we aim to go be-
yond the work of Nauta et al. (2007), by extending the type 
of constraints that can be imposed on the regression model in 
order to get desirable features such as (local) convexity, mo-
notony, smoothness, etc.  

The rest of the article is organized as follows: Next, some 
necessary definitions and lemmas are recalled to support the 
proposal, presented later in Section 3. Then, the effectiveness 
of the approach is illustrated in Section 4 with a toy example 
adapted from the literature. Finally, some remarks as well as 
an overview of possible further extensions are outlined in the 
last section. 

2. SOS PROGRAMMING 

On the following, we recall some important definitions and 
preliminary results on sum-of-squares polynomials. 

Definition 1: SOS polynomials. An even-degree polynomial 
𝑝(𝑥) ∈ ℛ௫ in variables 𝑥 is SOS iff ∃𝑄 ≽ 0 such that 𝑝(𝑥) =
𝑧் (𝑥)𝑄𝑧(𝑥), with 𝑧(𝑥) being a vector of suitable monomials 
in 𝑥. 𝑄 is called the “Gram Matrix” and checking if any 𝑄 ≽
0 exist for a given 𝑝 is a linear matrix inequality (LMI) prob-
lem (Parrilo,  2000). 

In this way, if the polynomial 𝑝 is affine in decision variables 
(typically its coefficients), it can be checked for SOS via 
efficient SDP solvers (Papachristodoulou, et al., 2013). Evi-
dently, all SOS polynomials are nonnegative, but the inverse 
is not true. From now on, the set of SOS polynomials is de-
noted by the symbol Σ௫ . 

Definition 2: SOS polynomial matrix. Let 𝐹(𝑥) ∈ ℛ௫
௡ be an 

𝑛 × 𝑛 symmetric polynomial matrix of degree 2𝑑 in 𝑥. Then, 



 
 

     

 

𝐹(𝑥) is an SOS polynomial matrix if 𝐹(𝑥) = 𝐻்(𝑥)𝐻(𝑥), or 
equivalently if 𝑦்𝐹(𝑥)𝑦 ∈ Σ௫,௬ (Scherer, 2005). Analogously 
to the previous case, if 𝐹 is an SOS polynomial matrix, 
𝐹(𝑥) ≽ 0 ∀𝑥. The set of 𝑛 × 𝑛 symmetric SOS polynomial 
matrices is denoted by the symbol Σ௫

௡. 

SOS programming. In the same way as certifying that a 
polynomial 𝐹(𝑥) is SOS, minimization of a linear cost index 
in decision variables 𝛽 subject to SOS constraints 𝐹(𝑥, 𝛽) ∈
Σ௫ or SOS positive-definiteness constraints 𝐹(𝑥, 𝛽) ∈ Σ௫

௡ 
with 𝐹 affine in 𝛽 can also be cast as an convex SDP prob-
lem. Scalar linear constraints on 𝛽 can, too, be easily incor-
porated (they can be considered as zero-degree polynomials). 

Local positivity of polynomials on semialgebraic sets can be 
checked via the well-known Putinar’s Positivstellensatz theo-
rem (Putinar, 1993). The following lemmas are a reduced 
version of such result (Pitarch, 2013). 

Lemma 1. Consider a region defined by polynomial bounda-
ries 𝒳 ≔ {𝑥|𝑔ଵ(𝑥) ≥ 0, … , 𝑔௟(𝑥), 𝑘ଵ(𝑥) = 0, … , 𝑘௥(𝑥) = 0} 
. If polynomial multipliers 𝑠௜(𝑥) ∈ Σ௫ and 𝑣௝(𝑥) ∈ ℛ௫ can be 
found fulfilling: 

𝑝(𝑥) − ෍ 𝑠௜(𝑥)𝑔௜(𝑥)
௟

௜ୀଵ
+ ෍ 𝑣௝(𝑥)𝑘௝(𝑥)

௥

௝ୀଵ
∈ Σ௫ (1) 

Then 𝑝(𝑥) is locally greater or equal than zero in 𝒳.           ■ 

Remark. Note that, thanks to Lemma 1, we can also check 
local positivity of odd-degree polynomials via SOS pro-
gramming, by just appropriately choosing the degree of mul-
tipliers 𝑠, 𝑣 such that 𝑑𝑒𝑔(𝑠(𝑥)𝑔(𝑥)) and 𝑑𝑒𝑔(𝑣(𝑥)𝑘(𝑥)) is 
even and greater than 𝑑𝑒𝑔൫𝑝(𝑥)൯. 

Lemma 2. The polynomial matrix 𝐹(𝑥) is locally positive 
semidefinite in the region 𝒳 if there exist polynomial matri-
ces 𝑆௜(𝑥) ∈ Σ௫

௡, 𝑉௝(𝑥) ∈ ℛ௫
௡ verifying the following condi-

tion: 

𝐹(𝑥) − ෍ 𝑆௜(𝑥)𝑔௜(𝑥)
௟

௜ୀଵ
+ ෍ 𝑉௝(𝑥)𝑘௝(𝑥)

௥

௝ୀଵ
∈ Σ௫

௡ (2) 

 ■ 
By the previous discussion, the computational check of con-
ditions (2) can be done via SDP algorithms and SOS tools 
(Papachristodoulou, et al., 2013). This is the key to solve the 
constrained regression problem stated in the next section. 

Lemma 3. The set of nonlinear matrix inequalities 

𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)்𝑅(𝑥)ିଵ𝑆(𝑥) > 0, (3) 

where 𝑄(𝑥) = 𝑄(𝑥)், 𝑅(𝑥) = 𝑅(𝑥)் and 𝑆(𝑥) are polyno-
mial matrices in 𝑥, is equivalent to the following polynomial 
matrix expression: 

𝑀(𝑥) = ൤
𝑄(𝑥) 𝑆(𝑥)்

𝑆(𝑥) 𝑅(𝑥)
൨ > 0 (4) 

■ 
This is the direct extension of the well-known Schur Com-
plement result in the LMI framework (Boyd et al. 1994) to 

the polynomial case. Condition (4) can be checked (conserva-
tively) via SOS programming, as previously discussed. 

3. SOS CONSTRAINED REGRESSION 

Now, back to the main topic of this paper, we first formally 
state the problem we attempt to solve. 

3.1  Problem statement 

Given a dataset of 𝑁 sampled points of an output2 𝑦 and 
some 𝑚 input channels 𝑥ଵ, … , 𝑥௠, we aim to build an 𝑛-
degree polynomial model  

𝑦ො = 𝑓(𝛽; 𝑥ଵ, … , 𝑥௠), 𝛽 ∈ ℝେ೘శ೙,೘ (5) 

with C௠ା௡,௠ parameters 𝛽 that minimize a measure of the 
regression error 𝐽 (e.g. ℒଵ-regularized error or squared error) 
with the data over a set of constraints on the parameter space 
𝛽 ∈ ℘, on the inputs 𝑥 ∈ 𝒳 and on the model response 𝑦ො: 

minimize
ఉ∈℘

     ෍   𝐽൫𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜)൯
ே

௜ୀଵ
    (6) 

s. t. :    Ω(𝒳) ≔ {𝛽 ∈ ℝେ೘శ೙,೘|𝑐(𝑥, 𝑦ො) ≥ 0, 𝑥 ∈ 𝒳} (7)

Where the function 𝑐(⋅) represents a general set of polynomi-
al constraints to specify bounds for local search and/or de-
sired robust model features. Hence, (7) can represent con-
straints that may range from standard polynomial bounds on 
the output/inputs (ensuring non-negativity of a model in a 
region for example) to the more complex n-order ones, such 
as guaranteeing that model derivatives obey thermodynamic 
principles (see next section). Thus, (7) makes the regression 
become a semi-infinite constrained optimization problem.  

3.2  SOS-programming reformulation 

The above optimization (6)-(7) can be cast as convex SOS 
problem if polynomials 𝑓, 𝑐 are affine in decision variables 
𝛽, 𝐽 is linear in 𝛽, and the region 𝒳 is defined by polynomial 
bounds on 𝑥. 

Objective function. The more usual regression measures 
based on the ℒଵ and ℒଶ

ଶ norms (absolute error and least 
squares approach respectively) can be reformulated for SDP 
optimization as follows. 

I. The ℒଵ norm |𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜)| is enforced by: 

minimize
ఉ∈℘,   ఛ∈ℝశ

     ෍   𝜏௜

ே

௜ୀଵ
    (8)

s. t. :       𝜏௜ − 𝑦௜ + 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜) ≥ 0  𝑖: 1, … , 𝑁 (9)

               𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜) + 𝜏௜ ≥ 0  𝑖: 1, … , 𝑁 (10)

II. The ℒଶ
ଶ norm ൫𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜)൯

ଶ
 is enforced by: 

minimize
ఉ∈℘,   ఛ∈ℝశ

     ෍   𝜏௜

ே

௜ୀଵ
    (11)

                                                 
2 A single output variable is considered for simplicity, but the results apply 
for MIMO system identification as well. 
 



 
 

     

 

s. t. :  𝜏௜ − ൫𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜)൯
ଶ

≥ 0  𝑖: 1, … , 𝑁 (12)

Which, using Lemma 3, (12) is equivalently expressed as: 

ቂ
𝜏௜ 𝑒௜

𝑒௜ 1ቃ ≥ 0   𝑖: 1, … , 𝑁;  𝑒௜ ≔ 𝑦௜ − 𝑓(𝛽; 𝑥ଵ௜ , … , 𝑥௠௜) (13)

Constraints on the input/output domain. Constraints on the 
model output are represented in (7) by 𝑐 of the form: 

𝑐(𝑥, 𝑦ො) = 𝛼 ⋅ 𝑓(𝛽, 𝑥) + ℎ(𝑥) ≥ 0 (14) 

Where 𝛼 ∈ ℝ scales the model response3 and ℎ(𝑥) is a poly-
nomial user-defined function in 𝑥. Thus, depending on the 
degree of ℎ we can state upper and lower limits on 𝑦ො (zero-
order constraints), or more complex (higher order) constraints 
on the feasible region. Then, by Lemma 1, (7) with (14) is 
ensured by the sufficient SOS condition: 

𝛼 ⋅ 𝑓(𝛽, 𝑥) + ℎ(𝑥) − ෍ 𝑠௜(𝑥)𝑔௜(𝑥)
௟

௜ୀଵ
 

+ ෍ 𝑣௝(𝑥)𝑘௝(𝑥)
௥

௝ୀଵ
∈ Σ௫ 

(15) 

With polynomial multipliers 𝑠௜(𝑥) ∈ Σ௫ , 𝑣௝(𝑥) ∈ ℛ௫ of ap-
propriate degree in 𝑥, and its coefficients being additional 
decision variables. 

Constraints on the response derivatives. Model slopes and 
curvatures w.r.t. 𝑥 get the following functional form for 𝑐: 

𝑐(𝑥, 𝑦ො) = 𝛼்∇௫𝑓(𝛽, 𝑥) + ℎ(𝑥) ≥ 0 (16) 

𝑐(𝑥, 𝑦ො) = Α୘ ⋅ ∇௫
ଶ𝑓(𝛽, 𝑥) ⋅ Α + 𝐵(𝑥) ≥ 0 (17) 

Where ∇௫ stands for the gradient operator w.r.t. 𝑥, ∇௫
ଶ denotes 

the Hessian matrix, and 𝛼, ℎ(⋅), Α, 𝐵(⋅) are user-defined 
elements with appropriate dimensions. As derivatives of 
polynomials are also polynomials, (16) and (17) can be 
checked for SOS locally in 𝑥 ∈ 𝒳 using the results in Section 
2. 

For example, suppose that we desire to ensure the convexity 
of a regression candidate model 𝑓(𝑥ଵ, 𝑥ଶ) = 𝛽଴ + 𝛽ଵ𝑥ଵ +
𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଵ𝑥ଶ

ଶ + 𝛽ସ𝑥ଵ
ଶ𝑥ଶ. The Hessian for this model is: 

𝐻(𝛽, 𝑥ଵ, 𝑥ଶ) = ൤
2𝛽ସ𝑥ଶ 2𝛽ଷ𝑥ଶ + 2𝛽ସ𝑥ଵ

2𝛽ଷ𝑥ଶ + 2𝛽ସ𝑥ଵ 2𝛽ଷ𝑥ଵ
൨ (18) 

The classical approach to ensure this is setting a constraint on 
the model curvature via the determinant of 𝐻 being nonnega-
tive. Unfortunately this constraint is nonconvex in the 𝛽 
space: 

Ω ≔ {𝛽 ∈ ℝହ|−𝛽ଷ𝛽ସ𝑥ଵ𝑥ଶ − 𝛽ସ
ଶ𝑥ଵ

ଶ − 𝛽ଷ
ଶ𝑥ଶ

ଶ ≥ 0, 𝑥 ∈ 𝒳} (19) 

Assuming, for instance, least squares in (6), the inclusion of 
(19) will transform a quadratic problem into a quadratically 
constrained quadratic problem. Nonetheless, global model 
                                                 
3 Constraints on multiple outputs 𝑦ො could also be enforced in (15) as long as 
their relationship 𝑑൫𝑦ො(𝛽; 𝑥)൯ is expressed as a polynomial affine in 𝛽. Typi-
cally, linear relations, or quadratic ones reformulated via Schur Complement. 

convexity can be easily enforced using SOS programming by 
just setting the constraint: 

൤
2𝛽ସ𝑥ଶ 2𝛽ଷ𝑥ଶ + 2𝛽ସ𝑥ଵ

2𝛽ଷ𝑥ଶ + 2𝛽ସ𝑥ଵ 2𝛽ଷ𝑥ଵ
൨ ∈ Σ௫భ௫మ

ଶ  (20) 

Boundary constraints. Standard boundary conditions re-
quire equality constraints 𝑐(𝑥, 𝑦ො) = 0 in (7), enforced over 
some 𝑥௜ = 𝑥௜

∗. In this case, the general representation for 𝑐 is: 

𝑐(𝑥, 𝑦ො) = ൫𝑓(𝛽, 𝑥) + 𝛼்∇௫𝑓(𝛽, 𝑥) +

                                            𝑏்∇௫
ଶ𝑓(𝛽, 𝑥) + ℎ(𝑥)൯|௫೔ୀ௫೔

∗  
(21) 

And their local enforcement in 𝑥 ∈ 𝒳 is: 

𝑐(𝑥, 𝑦ො)|௫೔ୀ௫೔
∗ − ෍ 𝑠௜(𝑥)𝑔௜(𝑥)

௟

௜ୀଵ
                       

+ ෍ 𝑣௝(𝑥)𝑘௝(𝑥)
௥

௝ୀଵ
= 0 

(22) 

Which can be directly introduced in SOS programming 
tools4. 

4. ILLUSTRATIVE EXAMPLE 

In this toy example, adapted from (Cozad, Sahinidis and 
Miller, 2015), we model data sampled from 𝑦 = 𝑥ଶ − 0.4𝑥 +
0.04 + 𝜖 over 𝑥 ∈ [−1, 1], where 𝜖 is sampled from a uni-
form random distribution 𝜖 ∈ [−0.25,0.25] , using a regres-
sion model of the form:  

  𝑦ො = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ + 𝛽ସ𝑥ସ + 𝛽ହ𝑥ହ + 𝛽଺𝑥଺ (23) 

Because we want to get a model with some reliable extrapo-
lation capabilities, we enforced a bound (15) on the model 
output over an extended domain 𝑥 ∈ [−2, 2],  with the fol-
lowing features: 

𝛼 = 1, ℎ(𝑥) = −0.5𝑥ଶ + 0.3,   

𝑔ଵ(𝑥) = 𝑥 + 2, 𝑔ଶ(𝑥) = 2 − 𝑥 
(24) 

Moreover, since we know that the underlying distribution is 
convex, we would also like to enforce the generation of a 
globally convex surrogate model. So (17) with 𝛼 = 1, 
ℎ(𝑥) = 0 is set up in SOS programming form. 

The training dataset consists of 25 points randomly sampled 
over the original domain 𝑥 ∈ [−1, 1]. For the shake of com-
parison, we begin by solving unconstrained fitting problems 
using the ℒଵ-norm and LS regression measures respectively. 
Next, we compare this solution to the constrained cases, with 
convexity enforcement not only in the extended domain 𝑥 ∈
[−2, 2], but in the whole input space 𝑥 ∈ ℝ. 

Figure 1 depicts the regression data as well as the obtained 
surrogate models which minimize the above norms in the 
domain 𝑥 ∈ [−2, 2]. The more remarkable aspect is both 
unconstrained surrogate models become negative when they 
barely have left the sampled domain, though they get a slight-
                                                 
4 Note that 𝑐(𝑥) = 0 is equivalent to 𝑐(𝑥) ∈ Σ௫ jointly with −𝑐(𝑥) ∈ Σ௫. 
Moreover, 𝑐(𝑥) ∈ Σ௫ is equivalent to 𝑐(𝑥) − 𝑠(𝑥) = 0 and 𝑠(𝑥) ∈ Σ௫. 



 
 

     

 

ly better fitting (see Table 1 below). As expected, the con-
strained surrogate models respect the constraint imposed with 
(24). 

Next, Figure 2 depicts the models curvature (second-order 
derivative) within the domain 𝑥 ∈ [−2, 2]. As expected from 
the analysis of Figure 1, the unconstrained regression models 
get a very negative second derivative, even before leaving the 
sampling region 𝑥 ∈ [−1, 1]. However, the constrained cases 
never get a nonnegative curvature in the whole input space. 

 

Fig. 1. Resulting surrogate models with LS and ℒଵ-norm 
regression approaches. 

 

Fig. 2. Curvature corresponding to the identified models. 

The obtained surrogate models are: 

  𝑦ො௅ଵ
௎ = 0.1409 − 0.6197𝑥 − 0.2272𝑥ଶ + 

1.181𝑥ଷ + 2.484𝑥ସ − 0.8203𝑥ହ − 1.452𝑥଺ 
(25) 

  𝑦ො௅ଵ
஼ = −0.0721 − 0.5529𝑥 + 1.367𝑥ଶ + 

0.925𝑥ଷ − 0.8096𝑥ସ − 0.6359𝑥ହ + 0.4786𝑥଺ 
(26) 

  𝑦ො௅ௌ
௎ = 0.0465 − 0.596𝑥 + 0.304𝑥ଶ + (27) 

0.9854𝑥ଷ + 2.157𝑥ସ − 0.7367𝑥ହ − 1.625𝑥଺ 

  𝑦ො௅ௌ
஼ = 0.0093 − 0.5465𝑥 + 1.175𝑥ଶ + 

0.6592𝑥ଷ − 0.4762𝑥ସ − 0.4256𝑥ହ + 0.2648𝑥଺ 
(28) 

Where superscript letters U and C mean “unconstrained” and 
“constrained” respectively.  

Table 1.  Regression error 

 ℒଵ norm Least Squares 

Unconstrained 2.703 0.431 

Constrained 2.836 0.4765 

 

Regarding the computational effort, no one of the above 
regressions elapses more than one second (indeed the LS 
ones are solved in less than half a second) in a common lap-
top (Intel® i7-4510U CPU). 

5. REMARKS AND FURTHER EXTENSIONS 

This paper shows how sum-of-squares decompositions of 
polynomials can be used to cast many semi-infinite con-
strained regression problems in convex ones, and highlights 
the powerfulness of the semidefinite programming to effi-
ciently tackle problems of grey-box model building.  

The resulting models can be bounded in value, as well as its 
gradient (slope constraints) and Hessian (model convexity) 
while maintaining convexity on the underlying optimization 
problem. These constraints can, thus, be used to ensure desir-
able features of the final regression model (similar to other 
regularization options in literature). As in any nonlinear mod-
el-fitting application, standard training/test set validation or 
leave-one-out techniques must be carried out if few data are 
present in realistic setups. 

The main drawback is that candidate models are limited to be 
polynomials, though polynomial basis functions are flexible 
and used in practice. Nevertheless, we will study the possible 
extension of the approach to cope with other nonpolynomial 
basis functions via multimodel polynomial bounding. In 
addition, although SOS programming is convex optimization, 
its scalability is limited by the number of independent varia-
bles 𝑥 and the degree of polynomials. This fact may represent 
an issue in applying the proposed ideas to complex chemical-
reaction problems with half a dozen or more components 
involved (overall complexity is problem dependent of 
course). Nonetheless, it is worth noting that we do not aim to 
get complete-plant surrogate models with the ideas in this 
paper, but just few-to-few local relationships among process 
variables to complete a grey-box model based on physics. 

The great feature of automatic modeling tools like ALAMO, 
able to select the suitable model complexity by deactivating 
unnecessary basis functions, is of interest for future work too. 
In this context, the extension of the SOS programming to 
deal with mixed integer SOS problems would be desirable. 
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