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Abstract

This paper studies fully discrete approximations to the evolutionary Navier–
Stokes equations by means of inf-sup stable H1-conforming mixed finite elements
with a grad-div type stabilization and the Euler incremental projection method in
time. We get error bounds where the constants do not depend on negative powers
of the viscosity. We get the optimal rate of convergence in time of the projection
method. For the spatial error we get a bound O(hk) for the L2 error of the velocity,
k being the degree of the polynomials in the velocity approximation. We prove
numerically that this bound is sharp for this method.

Keywords Incompressible Navier–Stokes equations; inf-sup stable finite element
methods; grad-div stabilization; error constants independent of the viscosity; pro-
jection methods

1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral and Lipschitz
boundary ∂Ω. The incompressible Navier–Stokes equations model the conservation
of linear momentum and the conservation of mass (continuity equation) by

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω, (1)

u(0, ·) = u0(·) in Ω,
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where u is the velocity field, p the kinematic pressure, ν > 0 the kinematic viscosity
coefficient, u0 a given initial velocity, and f represents the accelerations due to
body forces acting on the fluid. The Navier–Stokes equations (1) are equipped with
homogeneous Dirichlet boundary conditions u = 0 on ∂Ω.

We are interested in the case of small viscosity or, equivalently, high Reynolds
number. For the spatial discretization a Galerkin finite element method with grad-
div stabilization is considered for pairs of finite element spaces that satisfy a discrete
inf-sup condition. Grad-div stabilization was originally proposed in [23] to improve
the conservation of mass in finite element methods. It has been observed in the sim-
ulation of turbulent flows (see for example [36] and [45]) that using only grad-div
stabilization led to reasonable results, in comparison with some other more compli-
cated approaches, and produced stable (non-oscillating) simulations. The authors
of [36] stated (see Summary Section) that the numerical studies showed that the
grad-div term possesses a high importance. In the numerical experiments of [36] a
constant stabilization parameter with value 1/2 was chosen for the grad-div term
when using inf-sup stable elements. It must be noticed however that there is no
clear-cut choice of the value of the grad-div stabilization parameter and the value
depends on the physical units. Moreover, it is shown in [9], [39] that grad-div stabi-
lization removes significant oscillations that appear in time dependent Navier-Stokes
channel flow simulations over a step and in [20], [40] around a cylinder, although
in [4] an example with a Taylor-Green vortex is presented where grad-div alone do
not produce enough dissipation in the smallest scales. In [25] the authors proved
error bounds for the evolutionary Oseen equations discretized with the Galerkin
method and grad-div stabilization. An analysis of inf-sup stable elements with
divergence-free approximations of the Navier–Stokes equations has been presented
in [47]. There, error bounds independent of negative powers of ν were proved for the
Galerkin method without any stabilization. Adding a grad-div stabilization term
allows the use of more general, not necessarily divergence-free, finite elements. In
[26], the analysis of [25] was extended to Navier-Stokes equations, obtaining again
error bounds with constants that do not depend explicitly on inverse powers of the
viscosity parameter. In [26] both the case in which the solution is assumed to be
smooth enough and the case in which the solution is not assumed to satisfy nonlocal
compatibility conditions are considered. The analysis covers the continuous in time
case and the fully discrete case with the backward Euler method as time integrator.

We briefly comment on some other related works where stabilized finite element
approximations to the Navier–Stokes equations are analyzed. The continuous in-
terior penalty method was studied in [12], and local projection stabilization (LPS)
method in [3, 21]. We want to remark that to our knowledge reference [12] is the
first one where error bounds with constants independent on inverse powers of ν are
obtained for the Navier-Stokes equations. In [10], error bounds for stabilized finite
element approximations to the Navier–Stokes equations were obtained depending
on exponentials of the L∞(Ω) norm of the gradient of the large eddies instead of
the gradient of the full velocity u, but limited to problems with periodic boundary
conditions in rectangular domains. An analysis of a fully discrete method based
on LPS in space and the Euler method in time was carried out in [2]. The error
bounds in [2] are not independent of negative powers of ν. In [27] the method of [2]
has been revisited and analyzed considering adding the fewest possible stabilization
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terms. Different schemes are obtained depending on which stabilization terms are
added. For all of them, error bounds with constants independent on inverse powers
of ν are obtained in the analysis in [27].

All error bounds in the above mentioned papers may depend implicitly on the
viscosity through norms of the solution of the continuous problem on higher order
Sobolev spaces. This will be also the case for the present paper and the rest of the
related papers which we comment on further below.

In the present paper, we consider as time integrator the Euler incremental projec-
tion method. As stated in [38] “For high Reynolds number flows, splitting methods
are more efficient computationally and competitive in accuracy compared to the
mores expensive coupled methods”. In [31] a subgrid stabilized projection method
is applied for the simulation of 2D unsteady flows at high Reynolds numbers. In [8] a
pressure-correction scheme for the incompressible Navier Stokes equations combin-
ing a discontinuous Galerkin approximation for the velocity and a standard continu-
ous Galerkin approximation for the pressure is considered. The method is validated
against a large set of classical two- and three-dimensional test cases covering a wide
range of Reynolds numbers. In [22] the authors present numerical simulations for
incompressible Navier-Stokes equations based on high-order discontinuous Galerkin
discretizations and projection methods. The authors state that operator splitting
techniques are well established solution approaches for incompressible Navier-Stokes
equations that are particularly efficient for high Reynolds number flows. In [9] both
sparse and standard grad-div stabilized projection methods are considered. It is
shown that grad-div stabilization can increase the accuracy of projection methods
for Navier-Stokes equations. As stated in [9] “An important future direction is to
study grad-div stabilization, standard and sparse, for turbulent and higher Reynolds
number flows, as there appears to be little in the literature on this topic both for
projection and coupled time stepping schemes”. Based on all these facts, we con-
sider an interesting subject to get error bounds for projection methods applied to
the Navier-Stokes equations with constants independent on inverse powers of the
viscosity parameter.

An analysis of the semi-discretization in time with the Euler incremental scheme
can be found in [42]. On the other hand, the Euler incremental scheme with a spa-
tial discretization based on inf-sup stable mixed finite elements and a semi-implicit
treatment of the nonlinear term has been analyzed in [33], where the authors get
optimal error bounds. In the present paper, we follow the ideas in [33] with the
main difference that our aim is to get bounds with constants independent on in-
verse powers of the viscosity, which was not intended in [33]. For this purpose,
as mentioned above, we add a grad-div stabilization term to the spatial Galerkin
discretization. We notice that error constants independent of the viscosity may also
imply other practical consequences (besides the obvious one of smaller errors) as
the following words from [11] aptly point out: “The importance of stabilization in
the high Reynolds number regime from fractional-step methods was illustrated nu-
merically in [31] for Navier-Stokes flows, showing that pressure-projection methods
can fail to converge in the high Reynolds number regime unless some stabilization
is applied”.

In the present paper, for the Navier-Stokes equations, we get the optimal rate
of convergence in time of order ∆t, ∆t being the size of the time step, for the errors
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in the L2 norm of the velocity, the L2 norm of the divergence of the velocity and a
discrete in time L2 norm of the pressure. Due to the requirement of error constants
independent on the Reynolds number, the error in the pressure is obtained under
the assumption ∆t ≤ Chd/2+1, k ≥ d/2 + 1, d being the spatial dimension, and
k being the degree of the polynomials in the velocity space, as opposed to [33],
where the dependence of error constants on the Reynolds number allow for the
weaker assumption ∆t ≤ Ch1/2. Numerical experiments in Section 4 suggest that
the restriction ∆t ≤ Chd/2+1 is not sharp in practice and that it is only needed in
the proofs due to the technicalities of the analysis. For the spatial error we get a
bound O(hk) for the L2 error of the velocity, k being the degree of the polynomials
in the velocity approximation. This error bound is suboptimal in space compared
to other methods in the literature although we prove numerically that the bound is
sharp for this method. Assuming enough regularity for the solution, error bounds
of size O(hk+1/2) have been proved in [12], [27] using continuous interior penalty
stabilization and local projection stabilization, respectively. Although one might
expect order k + 1 for the L2 error of the velocity this is one of the open problems
that can be found in reference [37].

Error bounds for projection methods with constants independent of the Reynolds
number were also obtained in [11] (which, to our knowledge, it is the first paper
analyzing projection methods obtaining such bounds). In [11] the authors proved
error bounds for the Euler incremental projection method and the continuous inte-
rior penalty finite element method in space with equal order elements for velocity
and pressure (analyzed in [13] for stationary Oseen equations). However as opposed
to the present paper, error bounds in [11] are obtained for the transient Oseen equa-
tions. Also, following [14], in [11] the authors proved a bound for a discrete in time
primitive of the pressure instead of the stronger discrete in time L2 norm of the
pressure as in the present paper. The idea of getting a bound for the time-average
of the pressure error considerably simplifies the pressure error analysis with respect
to the standard L2(0, T ;L2(Ω)) norm (or its discrete counterpart) in which the pres-
sure is usually bounded. Let us observe that in [11], for methods where the pressure
is treated explicitly, a condition of type Ch ≤ ∆t is required in the error analysis.

Related to the present paper also is [4], where a method with LPS streamline-
upwind stabilization plus grad-div stabilization in space and a BDF2 projection
method in time was analyzed. In the first part of [4] error bounds with constants
independent on inverse powers of ν are obtained. However, the bounds depend on
‖uh‖L∞(L∞), uh being the approximation to the velocity, and no a priori bounds
for this norm are proved. Moreover, the error bounds for the velocity are only
O(∆t) instead of O((∆t)2) and no error bounds for the pressure are proved. In the
second part of [4] the authors get optimal bounds of order O((∆t)2) for the velocity
(although only O(∆t) for the pressure) although this is done at the price of error
constants depending on ν−1.

We now comment on other related works dealing with projection methods.
In [43], [44], [48], [49] the analysis of the semidiscretization in time by Euler non
incremental method is carried out. In [18] the stability of the Euler non incremental
method with non inf-sup stable mixed finite elements was considered. Some a pri-
ori bounds for the velocity and pressure approximations are obtained but no error
bounds were proved. In [6] the Euler non incremental scheme together with both
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non inf-sup stable and inf-sup stable elements was analyzed and in the non inf-sup
stable case a local projection type stabilization is required. As opposed to this,
no stabilization is added in [28], [29], where we obtained error bounds for a modi-
fied Euler non-incremental method for non inf-sup stable elements for evolutionary
Stokes and Navier-Stokes equations. In [41] a stabilized version of the Euler incre-
mental method for non inf-sup stable elements is proposed although no bounds are
proved. In [24] the applicability of weighted essentially non-oscillatory (WENO)
finite difference schemes for the simulation of incompressible flows is explored in
conjunction with several non-incremental and incremental projection methods. A
pressure stabilization PetrovGalerkin (PSPG) type of stabilization is introduced in
[24] for the incremental schemes to account for the violation of the discrete inf-sup
condition. We also want to refer to [32] for an overview on projection methods.

Altogether, in all the mentioned works, apart from [11] and [4], only stability
aspects of the methods are studied or error bounds are proved but with constants
in the error bounds depending on inverse powers of the viscosity parameter. Then,
our aim in this paper is, as in [4], to fill in some sense the existing gap in the
numerical analysis of getting bounds for the time-dependent incompressible Navier-
Stokes equations with projection methods in time for high Reynolds numbers.

The outline of the paper is as follows. In Section 2 we introduce some notation.
In Section 3 we prove the error bounds of the method. The main results are Theorem
1 that gathers the velocity bounds and which statement can be found at the end
of Subsection 3.1, and Theorem 2, with the error bound for the pressure, which
is located at the end of subsection 3.2. Some numerical results are presented in
Section 4.

2 Preliminaries and notation

Throughout the paper, W s,p(D) will denote the Sobolev space of real-valued func-
tions defined on a domain D ⊂ Rd, d = 2, 3 with distributional derivatives of order
up to s in Lp(D). These spaces are endowed with the usual norm denoted by
‖ · ‖W s,p(D). If s is not a positive integer, W s,p(D) is defined by interpolation [1]. In

the case s = 0, it is W 0,p(D) = Lp(D). As it is standard, W s,p(D)d will be endowed
with the product norm and, since no confusion can arise, it will be denoted again
by ‖ · ‖W s,p(D). The case p = 2 will be distinguished by using Hs(D) to denote the
space W s,2(D). The space H1

0 (D) is the closure in H1(D) of the set of infinitely
differentiable functions with compact support in D. For simplicity, ‖ ·‖s (resp. | · |s)
is used to denote the norm (resp. seminorm) both in Hs(Ω) or Hs(Ω)d. The exact
meaning will be clear by the context. The inner product of L2(Ω) or L2(Ω)d will
be denoted by (·, ·) and the corresponding norm by ‖ · ‖0. The norm of the space of
essentially bounded functions L∞(Ω) will be denoted by ‖ · ‖∞. For vector-valued
functions, the same conventions will be used as before. The norm of the dual space
H−1(Ω) of H1

0 (Ω) is denoted by ‖ · ‖−1. As usual, L2(Ω) is always identified with
its dual, so one has H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact injection. For a given
Banach space W , Lp(0, T,W ) denotes the corresponding Bochner space of functions
defined on the time interval (0,T) with values in W . The norm in Lp(0, T,W ) will
be denoted by ‖ · ‖Lp(W ). When no confusion can arise we will frequently drop the
dependence of the norms of the domain Ω.
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Using the function spaces V = H1
0 (Ω)d and

Q = L2
0(Ω) =

{
q ∈ L2(Ω) : (q, 1) = 0

}
,

and assuming that f ∈ L2(0, T,H−1(Ω)d), the weak formulation of problem (1) is
as follows: Find (u, p) ∈

[
L2(0, T, V ) ∩ L∞(0, T, L2(Ω)d)

]
× L2(0, T,Q) such that

for all (v, q) ∈ V ×Q,

〈∂tu,v〉+ ν(∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) + (∇ · u, q) = < f ,v >,

with u(0, ·) = u0(·) in Ω. Here, 〈·, ·〉 stands for the duality paring between H1
0

and H−1. Notice that the above relation has sense with ∂tu ∈ L1(0, T,H−1(Ω)d)
(see e.g.,[19, § 8]). Later, however, (u, p) will be required to be more regular, so
that f will also be more regular. Consequently, 〈·, ·〉 will be replaced by (·, ·).

The Hilbert space

Hdiv = {u ∈ L2(Ω)d | ∇ · u = 0, u · n|∂Ω = 0}

will be endowed with the inner product of L2(Ω)d and the space

V div = {u ∈ V | ∇ · u = 0}

with the inner product of V .
Let Π : L2(Ω)d → Hdiv be the Leray projector that maps each function in

L2(Ω)d onto its divergence-free part (see e.g. [19, Chapter IV]. The Stokes operator
in Ω is given by

A : D(A) ⊂ Hdiv → Hdiv, A = −Π∆, D(A) = H2(Ω)d ∩ V div.

The following Sobolev’s embedding [1] will be used in the analysis: For 1 ≤ p < d/s
let q be such that 1

q = 1
p −

s
d . There exists a positive constant C such that

‖v‖Lq′ (Ω) ≤ C‖v‖W s,p(Ω),
1

q′
≥ 1

q
, v ∈W s,p(Ω). (2)

If p > d/s the above relation is valid for q′ = ∞. A similar embedding inequality
holds for vector-valued functions.

Let Vh ⊂ V and Qh ⊂ Q be two families of finite element spaces composed of
piecewise polynomials of degrees at most k and l, respectively, that correspond to a
family of partitions Th of Ω into mesh cells with maximal diameter h. For simplic-
ity, we restrict ourselves to meshes consisting of triangles/tetrahedra although the
bounds of the paper equally hold for quadrilaterals/hexahedra. In this paper, we will
only consider pairs of finite element spaces satisfying a discrete inf-sup condition,

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
≥ β0, (3)

with β0 > 0, a constant independent of the mesh size h. Since the error bounds for
the pressure depend both on the mixed finite element used and on the regularity of
the solution, and in general it will be assumed that p ∈ Q∩Hk(Ω) with l ≥ k−1, in
the sequel the error bounds will be written depending only on k. For example, for
the MINI element it is k = l = 1 and for the Hood–Taylor element one has l = k−1.
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It will be assumed that the family of meshes is quasi-uniform and that the
following inverse inequality holds for each vh ∈ Vh, see e.g., [17, Theorem 3.2.6],

‖vh‖Wm,p(K) ≤ Cinvh
n−m−d

(
1
q
− 1

p

)
K ‖vh‖Wn,q(K), (4)

where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size (diameter) of the mesh
cell K ∈ Th.

The space of discrete divergence-free functions is denoted by

V div
h = {vh ∈ Vh | (∇ · vh, qh) = 0 ∀qh ∈ Qh} ,

and by Adiv
h : V div

h → V div
h we denote the following linear operator

(Adiv
h vh,wh) = (∇vh,∇wh) ∀vh,wh ∈ V div

h .

Note that from this definition, it follows that for vh ∈ V div
h ,

‖(Adiv
h )1/2vh‖0 = ‖∇vh‖0, ‖∇(Adiv

h )−1/2vh‖0 = ‖vh‖0.

We also denote by Ah : Vh → V div
h the linear operator

(Ahvh,wh) = (∇vh,∇wh) ∀vh ∈ Vh,wh ∈ V div
h .

Additionally, two linear operators Ch : Vh → V div
h and Dh : L2(Ω) → V div

h are
defined by

(Chvh,wh) = (∇ · vh,∇ ·wh) ∀vh ∈ Vh,wh ∈ V div
h ,

(Dhp,vh) = −(p,∇ · vh) ∀vh ∈ V div
h .

Denoting by πh the H1(Ω) projection onto Qh, one has that for m = 0, 1:

‖q − πhq‖m ≤ Chj+1−m‖q‖j+1 ∀q ∈ Hj+1(Ω), j = 0, . . . , l. (5)

In the error analysis, the Poincaré–Friedrichs inequality

‖v‖0 ≤ C‖∇v‖0 ∀v ∈ H1
0 (Ω)d,

will be used.
In the sequel, Ihu ∈ Vh will denote the Lagrange interpolant of a continuous

function u. The following bound can be found in [7, Theorem 4.4.4]

|u− Ihu|Wm,p(K) ≤ cinth
n−m|u|Wn,p(K), 0 ≤ m ≤ n ≤ k + 1, (6)

where n > d/p when 1 < p ≤ ∞ and n ≥ d when p = 1.
In the analysis, the Stokes problem

−ν∆u+∇p = g in Ω,

u = 0 on ∂Ω, (7)

∇ · u = 0 in Ω,
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will be considered. If we denote by (uh, ph) ∈ Vh × Qh the mixed finite element
approximation to (7) following [30], one has the estimates

‖u− uh‖1 ≤ C
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
, (8)

‖p− ph‖0 ≤ C
(
ν inf
vh∈Vh

‖u− vh‖1 + inf
qh∈Qh

‖p− qh‖0
)
, (9)

‖u− uh‖0 ≤ Ch
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
. (10)

It can be observed that the error bounds for the velocity depend on negative powers
of ν.

For the analysis, we will use a projection of (u, p) into Vh × Qh with optimal
bounds which do not depend on ν. In [25], [26] a projection with this property
was introduced. Let (u, p) be the solution of the Navier–Stokes equations (1) with
u ∈ V ∩Hk+1(Ω)d, p ∈ Q ∩Hk(Ω), k ≥ 1, for t ≥ 0 the pair (u, 0) is the solution
of the Stokes problem (7) with right-hand side

g = f − ∂tu− (u · ∇)u−∇p.

Denoting the corresponding Galerkin approximation in Vh ×Qh by (sh, lh), that is

ν(∇sh,∇vh)− (lh,∇ · vh, ) + (∇ · sh, qh) = (g,vh),

for all (vh, qh) ∈ Vh ×Qh, one obtains from (8)–(10)

‖u− sh‖0 + h‖u− sh‖1 ≤ Chj+1‖u‖j+1, 0 ≤ j ≤ k, (11)

‖lh‖0 ≤ Cνhj‖u‖j+1, 0 ≤ j ≤ k, (12)

where the constant C does not depend on ν.
Remark 1 Assuming that ∂tu ∈ Hk(Ω)d ∩ V and considering (7) with

g = ∂t (f − ∂tu− (u · ∇)u−∇p) = −ν∇ut,

one can derive an error bound of the form (11) also for ∂t(u− sh).
Following [16], one can also obtain the following bound for sh

‖∇(u− sh)‖∞ ≤ C‖∇u‖∞, (13)

where C does not depend on ν. Let us observe that the assumption

u ∈ L∞(0, T ;W 1,∞(Ω)d)

is also required in other related references as [12], [3], [26] and [4].
Since ‖Ih(u)‖∞ ≤ C‖u‖∞ for some C > 0, one can write

‖sh‖∞ ≤ ‖sh − Ih(u)‖∞ + ‖Ih(u)‖∞ ≤ Cinvh
−d/2‖sh − Ih(u)‖0 + C‖u‖∞,

where in the last inequality inverse inequality (4) has been applied. Applying (6),
(11), (2) and (13) one gets

‖sh‖∞ ≤ C∞‖u‖2, ‖∇sh‖∞ ≤ C∞‖∇u‖∞, (14)
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Alson what follows, Πdiv
h : L2(Ω)d → V div

h will denote the so-called discrete Leray
projection, which is the orthogonal projection of L2(Ω)d onto V div

h(
Πdiv
h v,wh

)
= (v,wh) ∀wh ∈ V div

h .

By definition, it is clear that the projection is stable in the L2(Ω)d norm: ‖Πdiv
h v‖0 ≤

‖v‖0 for all v ∈ L2(Ω)d. The following well-known bound will be used

‖(I −Πdiv
h )v‖0 + h‖(I −Πdiv

h )v‖1 ≤ Chj+1‖v‖j+1 ∀v ∈ V div ∩Hj+1(Ω)d,

for j = 0, . . . , k. This bound follows from the inverse inequality (4), (11) and
from the fact ‖(I − Πdiv

h )v‖0 ≤ ‖v − wh‖0 for any wh ∈ V div
h and, in particular

‖(I − Πdiv
h )v‖0 ≤ ‖v − vh‖0, where vh ∈ V div

h solves the problem (∇vh,∇wh) =
−(∆v,wh), for all wh ∈ V div

h (i.e., for some qh ∈ Qh, the pair (vh, qh) is the mixed
finite-element approximation to problem (7) with ν = 1 and g = −∆v).

The method that will be studied for the approximation of the solution of the
Navier–Stokes equations (1) is obtained by adding to the Galerkin equations a con-
trol of the divergence constraint (grad-div stabilization). More precisely, the fol-
lowing grad-div method will be considered: Find (uh, ph) : (0, T ] → Vh × Qh such
that

(∂tuh,vh) + ν(∇uh,∇vh) + b(uh,uh,vh)− (ph,∇ · vh, )
+ (∇ · uh, qh) + µ(∇ · uh,∇ · vh) = (f ,vh),

(15)

for all (vh, qh) ∈ Vh ×Qh, with uh(0) = Ihu0. Here, and in the rest of the paper,

b(u,v,w) = (B(u,v),w) ∀u,v,w ∈ H1
0 (Ω)d,

where,

B(u,v) = (u · ∇)v +
1

2
(∇ · u)v ∀u,v ∈ H1

0 (Ω)d.

Notice the well-known property

b(u,v,w) = −b(u,w,v) ∀u,v,w ∈ V, (16)

such that, in particular, b(u,w,w) = 0 for all u,w ∈ V . Property (16) in combi-
nation with the grad-div term plays a crucial role in our error analysis in order to
obtain error constants that do not depend on inverse powers of ν. Whether this is
possible with other forms of the nonlinear term (see e. g., [15]) do not seem to have
a straightforward answer and will be subject of further studies.

3 Euler incremental projection method

In this section we get error bounds for the grad-div approximations to the Navier-
Stokes equations and the Euler incremental projection method. For the Euler in-
cremental scheme the analysis of the semidiscretization in time can be found in [42].
The Euler incremental scheme with a spatial discretization based on inf-sup sta-
ble mixed finite elements is analyzed in [33]. Our aim is to get error bounds with
constants independent on inverse powers of the viscosity parameter (apart from
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the dependence through norms of the theoretical solution). For this reason we add
grad-div stabilization to the plain Galerkin approximations. For the error analysis
we follow both the bounds in [33] for the analysis of the projection scheme and the
techniques in [26] for getting bounds independent on the inverse of the viscosity.
We will consider a uniform partition of the time interval [0, T ] with step-size ∆t.

Let ũnh ∈ Vh, unh ∈ Vh +∇Qh, pnh ∈ Qh be defined by(
ũn+1
h − unh

∆t
,vh

)
+ ν(∇ũn+1

h ,∇vh) + (B(ũnh, ũ
n+1
h ),vh)− (pnh,∇ · vh)

+µ(∇ · ũn+1
h ,∇ · vh) = (fn+1,vh), ∀vh ∈ Vh, (17)

(∇ · ũn+1
h , qh) = −∆t(∇(pn+1

h − pnh),∇qh), ∀qh ∈ Qh, (18)

un+1
h = ũn+1

h −∆t∇(pn+1
h − pnh). (19)

Let us observe that from (19)

(un+1
h ,∇qh) = (ũn+1

h ,∇qh)−∆t(∇(pn+1
h − pnh),∇qh), ∀qh ∈ Qh,

and then applying (18) we get

(un+1
h ,∇qh) = 0, ∀qh ∈ Qh. (20)

As pointed out in the introduction, the value of the stabilization parameter µ de-
pends on the physical units and there is no clear-cut choice for it.

Let us also observe that since Vh ⊂ V then ũnh ∈ Vh satisfies the homogeneous
Dirichlet boundary conditions of the problem. Also, we notice that using (19) in (17)
we can express the method in terms of ũnh as(

ũn+1
h − ũnh

∆t
,vh

)
+ ν(∇ũn+1

h ,∇vh) + (B(ũnh, ũ
n+1
h ),vh)− (2pnh − pn−1

h ,∇ · vh)

+ µ(∇ · ũn+1
h ,∇ · vh) = (fn+1,vh), ∀vh ∈ Vh,

Let us observe that, following [33], we have an implicit-explicit scheme where the
linear viscosity term is implicit and a semi-implicit treatment of the non-linear
term is considered. Clearly, the semi-implicit treatment of the non-linear term
can be easily implemented compared with the fully-implicit treatment of the non-
linear term while, as it will be proved in the analysis, the method does not lose
the optimal rate of convergence in time. Although other choices are possible, for
example, B(2ũnh− ũ

n−1
h , ũn+1

h ) in (17), for the analysis and for simplicity we choose
the simplest form in (17) for which we do not lose the optimal rate of convergence
in time. In any case, the reader will find no difficulty in adapting the proofs of
the present paper to other kind of extrapolations from previous time steps used
frequently in the literature.

In what follows we will denote by

ẽnh = ũnh − snh, enh = unh − snh, ψnh = πhp
n+1 − pnh, εnh = pnh − πhpn.
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Arguing as in [33] it is easy to get the error equations(
ẽn+1
h − ẽnh

∆t
,vh

)
+ ν(∇ẽn+1

h ,∇vh) + (B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h ),vh)

+µ(∇ · ẽn+1
h ,∇ · vh)− (2εnh − εn−1

h ,∇ · vh)

= (τn+1
1,h ,vh) + (τn+1

2,h ,vh) + (τn+1
3,h ,∇ · vh) + (τn+1

4,h ,∇ · vh), ∀vh ∈ Vh, (21)

(∇ · ẽn+1
h , qh) + ∆t(∇(εn+1

h − εnh),∇qh) = ∆t(∇τn+1
5,h ,∇qh), ∀qh ∈ Qh. (22)

where

τn+1
1,h = un+1

t −
sn+1
h − snh

∆t
, τn+1

2,h = B(un+1,un+1)−B(snh, s
n+1
h ),

τn+1
3,h = −ln+1

h + πh(2pn − pn−1)− pn+1, τn+1
4,h = µ∇ · (un+1 − sn+1

h ),

τn+1
5,h = −πh(pn+1 − pn).

Let us also observe that from (19) it follows that

enh = ẽnh −∆t∇(εnh − εn−1
h ) + ∆t∇τn5,h. (23)

3.1 Error bounds for the velocity

The error estimates that we obtain in this section depend on the following constants

L1 = C∞ max
0≤t≤T

‖∇u(t)‖∞, L2 = C∞ max
0≤t≤T

‖u(t)‖2, (24)

where C∞ is the constant in (14),

C0 = CB max
0≤t≤0

(
‖u(t)‖2∞ + ‖u(t)‖22

)
, (25)

where CB is the constant in (40) below,

C1 = CT
((
C0Cs + µ+

1

µ

)
max

0≤t≤T
‖u(t)‖2k+1 +

1

µ
max

0≤t≤T
‖p(t)‖2k

)
+ C

∫ T

0
‖ut(t)‖2k dt, (26)

C2 = C

∫ T

0

(
‖utt(t)‖20 dt+ C0‖∇ut(t)‖20 + ‖∇pt(t)‖20

)
dt (27)

C3 = C
1

µ

∫ T

0
‖ptt(t)‖20, (28)

C0 being the constant in (25) and C a generic constant depending on Ω and the
generic constants in Section 2.

We now state the key result in obtaining the error bounds. Its proof will be
given at the end of the section as a consequence of some previous lemmas.
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Proposition 1 Let L̂ denote L̂ = 1 + 4(L1 +L2
2/µ). The following bound holds for

h ≤ 1, ∆t ≤ 1/L̂ and 0 ≤ tn ≤ T :

‖ẽnh‖20 + (∆t)2‖∇εnh‖20 + ∆t

n∑
j=1

(
2ν‖∇ẽjh‖

2
0 + µ‖∇ · ẽjh‖

2
0

)
(29)

≤ enL̂∆t

(
‖ẽ0

h‖20 + ∆t
µ

2
‖∇ · ẽ0

h‖20 + (∆t)2‖∇ε0h‖20 + C1h
2k + C2(∆t)2 + C3(∆t)4

)
.

Remark 2 Let us also observe that adding ±sn+1
h to (19) we have

en+1
h = ẽn+1

h −∆t∇(pn+1
h − pnh), (30)

so that taking the inner product with en+1
h and recalling the orthogonality condi-

tion (20) we get

‖en+1
h ‖20 − ‖ẽn+1

h ‖20 + ‖ẽn+1
h − en+1

h ‖20 = 0.

Then, ‖en+1
h ‖0 ≤ ‖ẽn+1

h ‖0 and any estimate of ‖ẽn+1
h ‖0 also holds for ‖en+1

h ‖0.
To obtain the above error bounds, we will use the following discrete Gronwall

lemma that can be found in [34].

Lemma 1 Let k, B, and an, bn, cn, γn be nonnegative numbers such that

an + k
n∑
j=0

bj ≤ k
n∑
j=0

γnaj + k
n∑
j=0

cj +B, n ≥ 1.

Suppose that kγn < 1, for all n, and set σn = (1 − kγn)−1. Then, the following
bound holds

an + k
n∑
j=0

bj ≤ exp

(
k

n∑
j=0

σjγj

)(
k

n∑
j=0

cj +B

)
, n ≥ 1.

The convergence result in Theorem 1 will be obtained using stability plus con-
sistency arguments. The following Lemma shows stability. It has two statements.
The second one (35) will follow easily after proving the first one (33), which is the
stability for linear problems.

Lemma 2 Let (wn
h)∞n=0 and (bnh)∞n=1 sequences in Vh and (ynh)∞n=0 a sequence in Qh

and (rn)∞n=1 and (dn)∞n=1 sequences in H1(Ω) and L2(Ω), respectively, satisfying for
all χh ∈ Vh and φh ∈ Qh(

wn+1
h −wn

h

∆t
,χh

)
+ ν(∇wn+1

h ,∇χh) + µ(∇ ·wn+1
h ,∇ · χh)

− (2ynh − yn−1
h ,∇ · χh) = (bn+1

h ,χh) + (dn+1,∇ · χh), (31)

(∇ ·wn+1
h , φh) + ∆t(∇(yn+1

h − ynh),∇φh) = ∆t(∇rn+1,∇φh), (32)
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where y−1
h = y0

h. Assume that 0 < ∆t ≤ 1 Then, for n ≥ 1 the following bound
holds,

‖wn
h‖20+(∆t)2‖∇ynh‖20 + ∆t

n∑
j=1

(
2ν‖∇wj

h‖
2
0 + µ‖∇ ·wj

h‖
2
0

)
≤ enL∆t

(
‖w0

h‖20 + (∆t)2‖∇y0
h‖20 (33)

+ ∆t
n∑
j=1

(
4‖bjh‖

2
0 +

1

µ
‖dj‖20 + 52‖∇rj‖20 + 33‖∇rj−1‖20

))
,

where L = 1. Furthermore, if, on the right-hand side of (21), bn+1
h is replaced by

bn+1
h +gn(wn

h,w
n+1
h ), where gn : Vh×Vh → L2(Ω)d satisfies that for some L1, L2 > 0

|(gn(yh,vh),vh)| ≤ L1‖yh‖0‖vh‖0 + L2‖∇ · yh‖0‖vh‖0, n ≥ 0, (34)

holds for all yh,vh ∈ Vh, then, the following bound holds

‖wn
h‖20+(∆t)2‖∇ynh‖20 + ∆t

n∑
j=1

(
2ν‖∇wj

h‖
2
0 + µ‖∇ ·wj

h‖
2
0

)
≤ enL̂∆t

(
‖w0

h‖20 +
µ

2
∆t‖∇ ·w0

h‖20 + (∆t)2‖∇y0
h‖20 (35)

+ ∆t
n∑
j=1

(
4‖bjh‖

2
0 +

2

µ
‖dj‖20 + 52‖∇rj‖20 + 33‖∇rj−1‖20

))
,

where L̂ = 1 + 4(L1 + L2
2/µ).

The proof of the Lemma can be found in the Appendix.
The estimation of the truncation errors (except that of τ2,h) is given in the

following result

Lemma 3 The truncation errors satisfy the following bounds:

‖τn1,h‖20 ≤C
h2k

∆t

∫ tn

tn−1

‖ut(t)‖2k dt+ C∆t

∫ tn

tn−1

‖utt‖20 dt, (36)

‖τn3,h‖20 ≤Ch2k
(

max
0≤t≤T

‖u‖2k+1 + max
0≤t≤T

‖p(t)‖2k
)

+ (∆t)3

∫ tn+1

tn−1

‖ptt‖20 dt, (37)

‖τn4,h‖20 ≤Cµ2h2k‖un‖2k+1, (38)

‖∇τnh,5‖20 ≤C∆t

∫ tn

tn−1

‖∇pt‖20 dt. (39)

Proof For the first one we have

τn1,h =
(un − snh)− (un−1 − sn−1

h )

∆t
+
(
unt −

un − un−1

∆t

)
=

1

∆t

∫ tn

tn−1

(u− sh)t(t) dt+
1

∆t

∫ tn

tn−1

(t− tn−1)utt(t) dt.
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Applying (11) and Cauchy-Schwarz the first estimate (36) follows.
To estimate τ3,h we write

πh(2pn − pn−1)− pn+1 = (πh − I)(2pn − pn−1) + 2pn − pn−1 − pn+1.

By writing

2pn − pn−1 − pn+1 = −
(
(pn+1 − pn)− (pn − pn−1)

)
= −

∫ tn+1

tn

pt dt+

∫ tn

tn−1

pt dt

= −
∫ tn+∆t/2

tn−∆t/2

(∫ t+∆t/2

t−∆t/2
pss ds

)
dt.

and applying (12), (5) and Hölder’s inequality one obtains the estimate (37).
The bound τ4,h is a direct consequence of (11). Finally, for τh,5 we may write,

using the H1 stability of the projection πh,

‖∇τnh,5‖2 = ‖∇πh(pn − pn−1)‖20 ≤ C‖∇(pn − pn−1)‖20 = C

∥∥∥∥∫ tn

tn−1

∇pt dt
∥∥∥∥2

0

,

so that applying Hölder’s inequality the estimate (39) follows �

To bound the truncation error τ2,h we will apply the following lemma.

Lemma 4 There exists a positive constant CB such that the following bound holds

‖B(un+1,un+1)−B(snh, s
n+1
h )‖0

≤ CB
(
‖u‖L∞(L∞(Ω)d) + ‖u‖L∞(H2(Ω)d)

)(
‖un − snh‖1 + ‖un+1 − sn+1

h ‖1

+(∆t)1/2
(∫ tn+1

tn

‖∇ut‖20 dt
)1/2)

(40)

Proof We decompose

‖B(un+1,un+1)−B(snh, s
n+1
h )‖0 ≤‖B(un+1 − un,un+1)‖0 + ‖B(un − snh, sn+1

h )‖0
+ ‖B(un,un+1 − sn+1

h )‖0.

For the first term on the right-hand side above applying (2) we write

‖B(un+1 − un,un+1)‖0 = ‖(un+1 − un) · ∇u‖0 ≤ ‖un+1 − un‖L2d‖∇un+1‖L2d/(d−1)

≤ C‖u‖L∞(H2(Ω)d)‖∇(un+1 − un)‖0

≤ C‖u‖L∞(H2(Ω)d)(∆t)
1/2

(∫ tn+1

tn

‖∇ut‖20 dt
)1/2

.

For the other two terms arguing similarly we get

‖B(un − snh, sn+1
h )‖0 + ‖B(un,un+1 − sn+1

h )‖0 ≤ ‖un − snh‖L2d‖∇sn+1
h ‖L2d/(d−1)

+
1

2
‖∇ · (un − snh)‖0‖sn+1

h ‖∞ + ‖un‖∞‖un+1 − sn+1
h ‖1

≤ C
(
‖∇sn+1

h ‖L2d/(d−1) + ‖sn+1
h ‖∞ + ‖un‖∞

) (
‖un − snh‖1 + ‖un+1 − sn+1

h ‖1
)
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Recall that ‖sn+1
h ‖∞ has ben estimated in (14). To estimate ‖∇sn+1

h ‖L2d/(d−1) we
write

∇sn+1
h = ∇(sn+1

h − Ih(un+1)) +∇(Ih(un+1)− un+1) +∇un+1,

so that applying (4), (11), and (6) we have

‖∇(sn+1
h − Ih(un+1))‖L2d/(d−1) ≤ Ch−1/2‖∇(sn+1

h − un+1)‖0 ≤ Ch1/2‖un+1‖2
‖∇(Ih(un+1)− un+1)‖L2d/(d−1) ≤ Ch1/2‖un+1‖2,

and then, applying also Sobolev’s inequality (2) if follows that

‖∇sn+1
h ‖L2d/(d−1) ≤ Ch1/2‖un+1‖2 +‖∇un+1‖L2d/(d−1) ≤ C(h1/2 + 1)‖un+1‖2. (41)

and the conclusion is reached. �

Applying Lemma 4 and (11) we get

‖τn2,h‖20 ≤ CB
(
‖u‖2L∞(L∞(Ω)d) + ‖u‖2L∞(H2(Ω)d)

)(
‖un − snh‖21 + ‖un−1 − sn−1

h ‖21

+∆t

∫ tn

tn−1

‖∇ut‖20 dt
)

≤ C0

(
Csh

2k(‖un‖2k+1 + ‖un−1‖2k+1) + ∆t

∫ tn

tn−1

‖∇ut‖20 dt
)
. (42)

where Cs and C0 are the constants in (11) and (25), respectively.

Proof of Proposition 1. We will apply Lemma 2 to the error equations (21–22),
that is, in Lemma 2 we take wn

h = ẽnh, ynh = εnh, bnh = τn1,h + τn2,h, dnh = τn3,h + τn4,h,
rnh = τnh,5 and

gn(yh,vh) = B(yh, s
n+1
h ) +B(ũnh,vh),

since, an easy calculation shows

B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h ) = B(ẽnh, s

n+1
h ) +B(ũnh, ẽ

n+1
h )

= gn(ẽnh, ẽ
n+1
h ).

Prior to applying Lemma 2 we must check that condition (34) holds. For that
purpose, using the skew-symmetric property of the nonlinear term (16), we can
write

(gn(yh,vh),vh) = (B(yh, s
n+1
h ),vh)

≤ ‖∇sn+1
h ‖∞‖yh‖0‖vh‖0 +

1

2
‖∇ · yh‖0‖sn+1

h ‖∞‖vh‖0.

so that applying the estimates (14) it follows that

(gn(yh,vh),vh) = L1‖yh‖0‖vh‖0 + L2‖∇ · yh‖0‖vh‖0,

where L1 and L2 are the constants in (24). Thus, we can apply (35) to the error
equations (21–22). Let us observe that the assumption y−1

h = y0
h is in our case

ε−1
h = ε0h. This means we take ũ0

h = u0
h so that equation (22) holds for n + 1 = 0

with ε−1
h = ε0h and r0

h = τ0
5,h = 0.

Thus, applying (35) to (21–22) and taking into account the estimates (36)–(39)
and (42) we conclude the bound (29). �
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We now state the main result of this section, whose proof is a direct consequence
of the estimate (11), Remark 2 and Proposition 1. For simplicity we set u0 = ũ0 =
sh(0) and p0

h = πhp(0), but, in view of Proposition 1, the reader will find no difficulty
in proving error bounds corresponding to different initial conditions.

Theorem 1 Let L̂ denote L̂ = 1 + 4(L1 + L2
2/µ) and set u0 = ũ0 = sh(0) and

p0
h = πhp(0). Then, the following bound holds for h ≤ 1, ∆t ≤ 1/L̂ and 0 ≤ tn ≤ T :

‖unh − u(tn)‖20 + ‖ũnh − u(tn)‖20 + ∆t
n∑
j=1

µ‖∇ · ũnh‖20

≤ 2
(
C2
s(2 + µT ) + eL̂T

)
C1h

2k + 2eL̂T
(
C2(∆t)2 + C3(∆t)4

)
.

3.2 Error bounds for the pressure

Observe that from (23) we get

en+1
h − enh

∆t
−
ẽn+1
h − ẽnh

∆t
= −∇(εn+1

h − 2εnh + εn−1
h ) +∇(τn+1

5,h − τ
n
5,h)

so that adding this equality to (21) we have(
en+1
h − enh

∆t
,vh

)
+ ν(∇ẽn+1

h ,∇vh) + (B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h ),vh)

+µ(∇ · ẽn+1
h ,∇ · vh)− (εn+1

h ,∇ · vh) =

(τn+1
1,h ,vh) + (τn+1

2,h ,vh) + (τ̂n+1
3,h ,∇ · vh) + (τn+1

4,h ,∇ · vh), ∀vh ∈ Vh, (43)

where τ̂n+1
3,h = −ln+1

h + (πh − I)pn+1, which, applying (5) and (12) can be bounded
as

‖τ̂n3,h‖20 ≤ C max
0≤t≤T

h2k‖u‖2k+1 + Ch2k max
0≤t≤T

‖p(t)‖2k. (44)

The error εn+1
h will be estimated by applying the inf-sup condition to (43). This,

in turn will require the estimation of a negative norm of (en+1
h − enh)/∆t, for which

the following result will be needed.

Lemma 5 Let f ∈ L2 satisfying

(f ,∇qh) = 0, ∀qh ∈ Qh,

then the following bound holds

‖f‖−1 ≤ C‖(Adiv
h )−1/2Πdiv

h f‖0 + Ch‖f‖0. (45)

Proof We argue as in [5, Lemma 3.11]. For ϕ ∈ H1
0 we decompose ϕ = Πϕ+∇ξ,

for some ξ ∈ H2. Then it holds, (see e.g. [19])

‖Πϕ‖1 ≤ C‖ϕ‖1, ‖∇ξ‖1 ≤ C‖ϕ‖1.

Then (f , ϕ) = (f ,Πϕ) + (f ,∇ξ). On the one hand

(f ,Πϕ) = (Πf ,Πϕ) = (A−1/2Πf , A1/2Πϕ) ≤ C‖A−1/2Πf‖0‖ϕ‖1.
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And, on the other

(f ,∇ξ) = (f ,∇(ξ − IQh
ξ)) ≤ Ch‖f‖0‖ϕ‖1,

where IQh
is the standard interpolant in Qh. Then

‖f‖−1 ≤ Ch‖f‖0 + C‖A−1/2Πf‖0. (46)

Finally, to reach (45) we apply [5, (2.15)]

‖A−1/2Πf‖0 ≤ Ch‖f‖0 + ‖(Adiv
h )−1/2Πdiv

h f‖0, f ∈ L2. (47)

Inserting (47) into (46) the conclusion is reached. �

Lemma 6 There exist a positive constant C such that the following bound holds:

β0‖εn+1
h ‖0 ≤ Ch

∥∥∥∥∥ ẽn+1
h − ẽnh

∆t

∥∥∥∥∥
0

+ Cν‖∇ẽn+1
h ‖0 + Cµ‖∇ · ẽn+1

h ‖0

+C‖B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )‖−1 (48)

+C‖τn+1
1,h ‖−1 + C‖τn+1

2,h ‖−1 + C‖τ̂n+1
3,h ‖0 + C‖τn+1

4,h ‖0.

The proof of the Lemma can be found in the Appendix.
Now, the only term on the right-hand side of (48) whose bound is not standard

is the first one. To estimate its value, we will draw ideas from [33]. Let us denote
by

dtv
n+1 = vn+1 − vn.

We notice that the first term on the right-hand side of (48) can be written as
‖dtẽnh‖0/∆t. We will estimate its value by applying Lemma 2 to the following set
of equations, which can be obtained by subtracting the expressions corresponding
to n and n− 1 (21) and (22):(

dtẽ
n+1
h − dtẽnh

∆t
,vh

)
+ ν(∇dtẽn+1

h ,∇vh) + (B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h ),vh)

− (B(ũn−1
h , ũnh)−B(sn−1

h , snh),vh) (49)

+ µ(∇ · dtẽn+1
h ,∇ · vh) + (2dt(ε

n
h − εn−1

h ),∇ · vh)

= (dtτ
n+1
1,h ,vh) + (dtτ

n+1
2,h ,vh) + (dtτ

n+1
3,h ,∇ · vh) + (dtτ

n+1
4,h ,∇ · vh), ∀vh ∈ Vh,

(∇ · dtẽn+1
h , qh) = −∆t(∇(dtε

n+1
h − dtεnh) ,∇qh) + ∆t(∇dtτn+1

5,h ,∇qh), (50)

∀qh ∈ Qh.

As in Section 3.1, we first estimate the truncation errors.
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Lemma 7 There exists a positive constant C such that the following bound holds

‖dtτn1,h‖20 ≤C(∆t)

(
h2k

∫ tn

tn−2

‖utt‖2k dt+ (∆t)2

∫ tn

tn−2

‖uttt‖20 dt
)
, (51)

‖dtτn3,h‖20 ≤C(∆t)h2k

(∫ tn

tn−1

‖ut‖2k+1 dt+

∫ tn

tn−2

‖pt‖2k dt
)

+ C(∆t)3

∫ tn

tn−3

‖ptt‖20 dt, (52)

‖dtτn4,h‖20 ≤C(∆t)h2kµ2

∫ tn

tn−1

‖ut‖2k+1, dt (53)

‖dt∇τnh,5‖2 ≤C(∆t)3

∫ tn

tn−2

‖ptt‖21 dt. (54)

Proof Similarly to the estimation of τn3,h in Lemma 3, we may write

dtτ
n
3,h =

∫ tn

tn−1

∂t

(
lh(t) + (πh − I)(2p(t)− p(t−∆t))

)
dt+

(
2pn−1 − pn−2 − pn

)
−
(
2pn−2 − pn−3 − pn−1

)
.

The last two terms have already been estimated in (37). For the first one, applying
Hölder’s inequality, (12) and (5), its L2 norm can be bounded by

(∆t)1/2hk
(
Cs

(∫ tn

tn−1

‖ut‖2k+1 dt

)1/2

+ C

(∫ tn

tn−2

‖pt‖2k dt
)1/2)

,

so that (52) follows easily. With similar arguments the estimate (53) can be otained.
For dtτ5,h we write

‖dt∇τn+1
h,5 ‖

2 = ‖dt∇πh(pn+1 − pn)‖20 ≤ C‖∇dt(pn+1 − pn)‖20
= C‖∇(pn+1 − 2pn + pn−1)‖20,

and the bound is obtained with arguments similar as those used with τ3,h. Finally,
for dtτ1,h we write

dtτ
n
1,h =

∫ tn

tn−1

(
(u− sh)t(t)− (u− sh)t(t−∆t)

∆t
+
(
utt(t)−

ut(t)− ut(t−∆t)

∆t

))
dt

and the bound (51) is obtained by arguing as in the proof of (36). �

The following result is a direct consequence of the previous lemma.

Lemma 8 The following bound holds for n ≥ 2:

∆t
n∑
k=2

(‖dtτk1,h‖20 + ‖dt∇τkh,5‖20 + ‖dt∇τk−1
h,5 ‖

2
0

)
+

1

µ
∆t

n∑
k=2

(‖dtτk3,h‖20 + ‖dtτk4,h‖20
)

≤ C(∆t)2(Ĉ1h
2k + Ĉ2(∆t)2),
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where

Ĉ1 =

∫ T

0

(
‖utt‖2k +

(
µ+

1

µ

)
‖ut‖2k+1 +

1

µ
‖pt‖2k

)
dt, (55)

Ĉ2 =

∫ T

0

(
‖uttt‖20 + ‖ptt‖21 +

1

µ
‖ptt‖20

)
dt. (56)

For the truncation error dtτ2,h we have the following result

Lemma 9 The following bound holds for n ≥ 2:

∆t
n∑
k=2

(‖dtτk2,h‖20 ≤ C(∆t)2(Ĉ3h
2k + Ĉ4(∆t)2),

where

Ĉ3 = ‖u‖2L∞(H2)

∫ T

0
‖ut‖2k+1 dt+ ‖u‖2L∞(Hk+1)

∫ T

0
‖ut‖22 dt, (57)

Ĉ4 = ‖ut‖2L∞(H1)

∫ T

0
‖ut‖22 dt+ ‖u‖2L∞(W 1,∞)

∫ T

0
‖utt‖22 dt. (58)

The proof of the Lemma can be found in the Appendix.
In order to apply Lemma 2 to equations (49–50) we need to rewrite the nonlinear

terms in (49), B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )− (B(ũn−1

h , ũnh)−B(sn−1
h , snh)). For that

purpose, by adding ±B(ũnh, s
n+1
h ) and ±B(ũn−1

h , snh) we write

B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )− (B(ũn−1

h , ũnh)−B(sn−1
h , snh)) =

B(ẽnh, s
n+1
h ) +B(ũnh, ẽ

n+1
h )− (B(ẽn−1

h , snh) +B(ũn−1
h , ẽnh) =(

B(ẽnh, s
n+1
h )−B(ẽn−1

h , snh)
)

+
(
B(ũnh, ẽ

n+1
h )−B(ũn−1

h , ẽnh)
)
. (59)

For the first term on the right-hand side of (59), by adding ±B(ẽnh, s
n
h) we write

B(ẽnh, s
n+1
h )−B(ẽn−1

h , snh) = B(dtẽ
n
h, s

n
h) +B(ẽnh, dts

n+1
h ),

and, for the second term on the right-hand side of (59), by adding ±B(ũnh, ẽ
n
h), and

then, ±B(dts
n
h, ẽ

n
h)

B(ũnh, ẽ
n+1
h )−B(ũn−1

h , ẽnh) = B(dtũ
n
h, ẽ

n
h) +B(ũnh, dtẽ

n+1
h )

= B(dtẽ
n
h, ẽ

n
h) +B(ũnh, dtẽ

n+1
h ) +B(dts

n
h, ẽ

n
h).

Let us denote

gn(vh,wh) = B(vh, s
n
h) +B(vh, ẽ

n
h) +B(ũnh,wh) = B(vh, ũ

n
h) +B(ũnh,wh) (60)

τn+1
h,6 = B(ẽnh, dts

n+1
h ) +B(dts

n
h, ẽ

n
h),

so that the nonlinear terms in (49) can be expressed as

B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )− (B(ũn−1

h , ũnh)−B(sn−1
h , snh)) =gn(dtẽ

n
h, dtẽ

n+1
h )

+ τn+1
h,6 .
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Our next step is to show that gn satisfies the hypothesis of Lemma 2. This will
be accomplished with Lemma 10 below. We need to fix some notation first. Let us
denote by C4, L′1 and L′2 the following quantities:

C4 = eL̂T/2(C1 + C2 + C3)1/2. (61)

L′1 = C(C4 + ‖u‖L∞(W 1,∞(Ω)d)), L′2 = C(C4 + ‖u‖L∞(H2(Ω)d). (62)

where L̂ is that constant in Proposition 1, and C1, C2 and C3 are those defined at
the beginning of Section 3.1.

Lemma 10 Assume that h ≤ 1, ∆t ≤ 1 and that the following condition holds,

∆t ≤ Chd/2+1, k ≥ d/2 + 1. (63)

Then, the functions gn defined in (60) satisfy the following bound for n = 2, . . . , N =
T/∆t:

(gn(vh,wh),wh) ≤ L′1‖vnh‖0‖wh‖0 + L′2‖∇ · vh‖0‖wh‖0,
where L′1 and L′2 are the constants defined in (62).

Proof Using the skew-symmetry property of the nonlinear terms we have

(gn(vh,wh),wh) =(B(vh, ũ
n
h),wh)

≤‖∇ũnh‖∞‖vnh‖0‖wh‖0 +
1

2
‖∇ · vh‖0‖ũnh‖∞‖wh‖0. (64)

We now observe that applying (4) and (14), one finds for j = 1, . . . , N

‖ũjh‖∞ ≤ ‖ẽ
j
h‖∞ + ‖sjh‖∞ ≤ Ch

−d/2‖ẽjh‖0 + ‖sjh‖∞ ≤ C
(
h−d/2‖ẽjh‖0 + ‖u(tj)‖2

)
≤ C

(
h−d/2eL̂tj/2(C1h

k + ∆t(C2 + (∆t)2C3))1/2 + ‖u(tj)‖2
)
,

where in the last inequality we have applied (29). Assuming h−d/2hk ≤ C and
h−d/2∆t ≤ C we can write

‖ũjh‖∞ ≤ C(C4 + ‖u(tj)‖2), (65)

where C4 is the constant defined in (61). Arguing similarly, applying again (4)
and (14), we also get

‖∇ũjh‖∞ ≤ ‖∇ẽ
j
h‖∞ + ‖∇sjh‖∞ ≤ C

(
h−d/2−1‖ẽjh‖0 + ‖∇u(tj)‖∞

)
.

Assuming h−d/2−1+k ≤ C and h−d/2−1∆t ≤ C we get

‖∇ũjh‖∞ ≤ C(C4 + ‖∇u(tj)‖∞). (66)

Now, the statement of the Lemma follows from (64), (65) and (66). �

Remark 3 Observe that condition (63) means that for d = 2 we need ∆t = O(h2)
and k ≥ 2 to get the error bounds for the pressure and even stronger conditions
for d = 3 (bounds valid from cubics and with ∆t = O(h5/2)). Thus, assuming (63)
from (64) it follows that

We are now in position to obtain a first bound of dtẽ
n
h. It is given by the following

result.
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Lemma 11 Let L̂′ denote L̂′ = 1 + 4(L′1 + (L′2)2/µ), where L′1 and L′2 are the
constants defined in (62). Then, in the conditions of Lemma 10, the following
bound holds

‖dtẽnh‖20 + (∆t)2‖∇dtεnh‖20 ≤CeL̂
′tn

(
‖dtẽ1

h‖20 +
µ

2
∆t‖∇ · dtẽ1

h‖20 + (∆t)2‖∇dtε1h‖20

+ (∆t)2
((
Ĉ1 + Ĉ3

)
h2k +

(
Ĉ2 + Ĉ4)(∆t)2

))
(67)

+ (∆t)2h−2eL̂T
(
C1h

2k + (C2 + C3)(∆t)2
))
C5

)
,

where

C5 =

∫ T

0
‖ut‖22 dt. (68)

Proof We apply Lemma 2 to (49–50) with wn
h = dtẽ

n+1
h , ynh = dtε

n+1
h , gn defined

in (60),

bnh = dtτ
n+1
h,1 + dtτ

n+1
h,2 + τn+1

h,6 , dnh = dtτ
n+1
h,3 + dtτ

n+1
h,4 , and rnh = dtτ

n+1
h,5 .

In view of the Lemmas 8, 9 and 10, we only need to bound

τk+1
6,h = B(ẽkh, dts

k+1
h ) +B(dts

k
h, ẽ

k
h).

For that purpose we write

‖τk+1
6,h ‖0 ≤ C‖ẽkh‖L2d‖∇dtsk+1

h ‖L2d/(d−1) +
1

2
‖∇ · ẽkh‖0‖dtsk+1

h ‖∞

+‖∇ẽkh‖0‖dtskh‖∞ + ‖ẽkh‖L2d‖∇ · dtskh‖L2d/(d−1) .

Using inverse inequality (4), the estimate of ‖ẽkh‖0 in (29), Hölder’s inequality and
Sobolev’s inequality (2), we get

‖τk+1
6,h ‖

2
0 ≤ C(h−(d−1) + h−2)‖ẽkh‖20∆t

∫ tk+1

tk

‖ut‖22 dt

≤ Ch−2eL̂tk
(
C1h

2k + (∆t)2(C2 + (∆t)2C3)
)

∆t

∫ tk+1

tk

‖ut‖22 dt.

Multiplying by ∆t and summing from k = 1 onwards we have

∆t
n∑
k=2

‖dtτk6,h‖20 ≤ Ch−2(∆t)2eL̂T
(
C1h

2k + (C2 + C3)(∆t)2
)∫ T

0
‖ut‖22 dt,

and the proof is finished. �

Now, we need to bound the initial errors in the first line in (67). We can assume
ẽ0
h = e0

h = 0 since this means we take as initial condition s0
h. Then, dtẽ

1
h = ẽ1

h and
dte

1
h = e1

h. We will also assume ε−1
h = ε0h = 0 which means p0

h = πhp
0.
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Lemma 12 Assume ũ0
h = ũ0

h = s0
h and p0

h = πhp
0, so that dtẽ

1
h = ẽ1 and dtε

1
h = ε1h.

Then

‖dtẽ1
h‖20 + ∆tµ‖∇ · dtẽ1

h‖20 + (∆t)2‖∇dtε1h‖20 (69)

≤C(∆t)2
((

(1 + µ)(1 + h−2)C1 + C0‖ut‖L∞(Hk)

)
)h2k

+
(
‖ut‖L∞(H1) + ‖utt‖L∞(L2) + C2 + h−2∆tC3

)
(∆t)2

)
.

Proof From (21) with n = 0 and taking vh = ẽ1
h and applying inverse inequality

(4) we get

‖ẽ1
h‖20 + ∆tν‖∇ẽ1

h‖20 + ∆tµ‖∇ · ẽ1
h‖20 ≤ ∆t|(B(ũ0

h, ũ
1
h)−B(s0

h, s
1
h), ẽ1

h)|
+ ∆t‖ẽ1

h‖0(‖τ1
1,h‖0 + ‖τ1

2,h‖0 + Cinvh
−1(‖τ1

3,h‖0 + ‖τ1
4,h‖0)).

Now, let us observe that

(B(ũ0
h, ũ

1
h)−B(s0

h, s
1
h), ẽ1

h) = (B(ẽ0
h, s

1
h), ẽ1

h) + (B(ũ0
h, ẽ

1
h), ẽ1

h) = 0,

since we have assumed e0
h = 0 and used the skew-symmetric property of the non-

linear term (16). Then, we can easily get

1

2
‖ẽ1

h‖20 + ∆tν‖∇ẽ1
h‖20 + ∆tµ‖∇ · ẽ1

h‖20 ≤C(∆t)2(‖τ1
1,h‖20 + ‖τ1

2,h‖20)

+ C(∆t)2h−2(‖τ1
3,h‖20 + ‖τ1

4,h‖20). (70)

For τ1
1,h and τn2,h from (36) and (42) we deduce

‖τ1,h‖0 ≤ Chk‖ut‖L∞(Hk) + ∆t‖utt‖L∞(L2),

‖τ2,h‖0 ≤ C1h
k + C0∆t‖ut‖L∞(H1)

and, thus, using the bounds (37) and (38) for τn3,h and τn4,h, from (70) it fol-

lows that ‖ẽ1
h‖20 + ∆tν‖∇ẽ1

h‖20 is bounded by the right-hand side of (69). To
bound (∆t)2‖∇dtε1h‖0 we recall that since we are assuming ε0h = 0 we have dtε

1
h = ε1h,

and then we take qh = ∆tε1h in (22) for n = 0. After integration by parts we get

(∆t)2‖∇ε1h‖20 ≤ −∆t(ẽ1
h,∇ε1h)− (∆t)2(∇τ1

5,h,∇ε1h),

from where it follows that

(∆t)2‖∇ε1h‖20 ≤ C
(
‖ẽ1

h‖20 + (∆t)2‖∇τ1
5,h‖20

)
.

Now, with the estimate of τ5,h in (39) the proof is finished. �

Let us gather the constants depending on u and p featuring in the previous bounds
in the following two,

C ′1 =
(

(1 + e2L̂TC5)C1 + Ĉ1 + Ĉ3 + C0‖ut‖L∞(Hk)

)1/2
, (71)

C ′2 =
(

(1 + e2L̂TC5)(C2 + C3) + Ĉ2 + Ĉ4 + ‖ut‖L∞(H1) + ‖utt‖L∞(L2)

)1/2
(72)
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where, let us recall, C0, C1, C2, and C3 are defined in (25–28), L̂ in Proposition 1,
C4 in (61), Ĉ1, Ĉ2 and Ĉ3 in (55–58), and C5 in (68). We notice then that from
(90), and Lemmas 11 and 12, and as long as ũ0

h = u0
h = s0

h and p0
h = πhp

0 and
condition (63) holds, it follows that

h

∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
0

≤ eL̂′tn+1(C ′1h
k + C ′2∆t), (73)

where L̂′ is defined in Lemma 11.

Theorem 2 Assume that ũ0
h = u0

h = s0
h and p0

h = πhp
0 and condition (63) holds.

Then, the following bound holds

β2
0(∆t)

N∑
j=1

‖pnh − πhpn‖20 ≤ C(1 + µ−1)eL̂
′tn+1(C ′1h

k + C ′2∆t),

where L̂′ is defined in Lemma 11 and C ′1 and C ′2 in (71–72).

Proof From the different terms on the right-hand side of (89) we have already
estimated the first one in (73). We observe that the truncation errors in (89) can
be bounded as ‖τn+1

j,h ‖−1 ≤ ‖τn+1
j,h ‖0, j = 1, 2 and then apply (36) and (42). We

have already estimated τ̂h,3 in (44) and τh,4 in (38). Then, it only remains to get a
bound for the nonlinear term in (89). Arguing as in [26, (48)] we get

‖B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )‖−1 ≤‖B(ũnh, ẽ

n+1
h )‖−1 + ‖B(ẽnh, s

n+1
h )‖−1

≤C(‖ũnh‖∞ + ‖∇ · ũnh‖L2d/(d−1))‖ẽn+1
h ‖0,

+ C(‖sn+1
h ‖∞‖ẽnh‖0 + ‖sn+1

h ‖L2d/(d−1)‖∇ · ẽnh‖0).

Now observe that ‖ũnh‖∞ is bounded in (65), and in view of how ‖∇sh‖L2d/(d−1) is
bounded in (41), we can estimate ‖∇ · ũnh‖L2d/(d−1) arguing as in the proof of (66).
Recalling (14), the proof is finished. �

4 Numerical Experiments

We present some numerical experiments that corroborate the results in previous
section, both with respect to the orders of convergence and the independence of ν
of the error constants. As it is customary for these purposes, we will use an example
with a known solution. We also present some results on a well-known benchmark
problem. In all cases, computations were done in Matlab and the codes were writ-
ten by ourselves. Linear systems were solved by direct linear algebra as provided
by Matlab.

4.1 Problem with known solution

We consider the Navier-Stokes equations in Ω = [0, 1]2 and T = 5, with f chosen
so that the solution u and p are given by

u(x, y, t) =
6 + 4 cos(4t)

10

[
8 sin2(πx)(2y(1− y)(1− 2y)
−8π sin(2 ∗ πx)(y(1− y))2

]
(74)

p(x, y, t) =
6 + 4 cos(4t)

10
sin(πx) cos(πy). (75)
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Figure 1: Velocity errors (76) for T = 5 and µ = 0.05. Left, large to moderate viscosity.
Right moderate to small viscosity.

We used P2/P1 pair of mixed finite-elements on a regular triangulation with
SW-NE diagonals. We used meshes with N = 6, 12, 24 and 48 subdivisions in
each coordinate directions. The value of ∆t was set to ∆t = 0.05 for the coarser
mesh, and divided by 8 every time N was doubled. Repeating the experiments with
values of ∆t twice as large showed hardly any difference in the errors. Furthermore,
for ν ≤ 10−6 there was no difference between the results shown here and those
obtained by dividing ∆t by four every time N was doubled. All this suggests that
in the errors shown in the figures below the dominant part comes from the spatial
discretization. In the first three figures we show errors

max
0≤n≤N

‖unh − Ih(un)‖0, for N = T/∆t, (76)

where Ih is the standard Lagrange interpolant. The grad-div parameter µ was set
to µ = 0.05, since this was the optimal value (marginally, though) among the few
we tried from µ = 0.01 to µ = 10. For the nonlinear term, we used ((2un − un−1) ·
∇)un+1 instead of B(un,un+1), so that the O(∆t) expected decay of the errors is
due to the discretization of the time derivative ∂tu. We remark that for µ = 0.05
we did not notice any significant difference between the results presented here and
those with B(2un − un−1,un+1). For the case µ = 0 in Fig. 2, though we used
B(2un − un−1,un+1), since the skew symmetry of B was crucial to keep L2 errors
bounded for small values of ν. In Fig. 1 we present velocity errors (76) for T = 5,
for different values of the viscosity ν. We also show the slopes of a least-squares
fit to the results on the last three meshes. We observe that whereas for ν = 10−2

and 10−4 the errors are O(h3) (although with an apparent O(ν−1/2) dependence),
for ν = 10−6 or smaller the results show no significant dependence on ν, and errors
almost show the second order convergence predicted in the theory. The contrast
with the absence of grad-div stabilization, µ = 0, is sharp, as it can be seen by
comparing the results in Fig. 2 with those in Fig. 1. Although there may be some
similarities for the case ν = 10−2, these soon disappear as ν is reduced, and errors
do not show any significant decay for the values of h considered for ν ≤ 10−4.
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Figure 2: Velocity errors (76) for T = 5 and µ = 0. Left, large to moderate viscosity.
Right moderate to small viscosity.

In Fig. 3 for ν = 10−6 and µ = 0.05, we show velocity errors (76) and pressure
errors (

∆t

T/∆t∑
j=1

‖pnh − Ih(pn)‖20
)1/2

(77)

where Ih is the standard Lagrange interpolant, for mixed pairs quadratic velocity
and linear pressure and cubic velocity and cuadratic pressure. As our analysis
predicts, orders of convergence are one unit higher for the second pair of elements.

Although our analysis suggests that due to factors µ and 1/µ on the right-hand
side of the error bounds it is advisable to keep µ independent of h, some researchers
find it odd that µ should not depend on h. Results on the left plot in Fig. 4 seem
to reinforce that point of view, since taking µ = 0.05h do not significantly alter the
velocity errors of µ = 0.05. However, in view of error constant C1 in (26) this may
be due to the fact that the second spatial derivatives of the pressure are of moderate
size. If we alter the right-hand side f in the Navier-Stokes equations so that the
velocity is as in (74) but the pressure is

p(x, y, t) = 10(6 + 4 cos(4t)) sin(2πx) cos(3πy), (78)

the term µ−1 max0≤t≤T ‖p(t)‖2k makes a significant contribution to the constant C1,
as in can be seen in the right plot on Fig. 4, where the errors when µ = 10h
have a lower rate of decay with h as compared to those of µ = 10 (the value that
produced marginally better results from those tried between µ = 1 and µ = 100).
Thus, although making µ depend on h may not damage results with respect those
of fixed µ in some cases, it may considerably worsen them in some other cases, so
that, in accordance with the analysis, it seems to be advisable to take µ independent
of h.

Finally, we check if the time step restriction (63) is sharp in practice or if it is a
consequence of the limited techniques of analysis. In Fig. 5 we show the errors (77)
when ∆t is taken proportional to h2 to h and to h1/2. Notice that only ∆t = Ch2

satisfies restriction (63). The slopes shown correspond to the line joining results of

25



10-2 10-1

h

10-4

10-3

10-2

10-1
Velocity errors in L2 for =10-6 ( =0.05)

quadratics

cubics
slope=1.78

slope=3.06

10-2 10-1

h

10-4

10-3

10-2

10-1
Pressure errors in l2(L2) for =10-6 ( =0.05)

linear pressure

quadratic pressure
slope=2.04

slope=3.06

Figure 3: Velocity errors (76) (left) and pressure errors (77) (right) for quadratic and
cubic velocity approximation (linear and quadratic pressure approximation, respectively).
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Figure 5: Pressure errors for ν = 10−6.

the two finest meshes. It can be seen that errors decay like ∆t in all three cases,
suggesting that (63) is not sharp in practice, but rather a limitation imposed by the
techniques of analysis.

4.2 Flow past a cylinder

We consider the well-known benchmark problem defined in [46]. The domain is

Ω = (0, 2.2)× (0, 0.41)/
{

(x, y) | (x− 0.2)2 + (y − 0.2)2 ≤ 0.0025
}

and the time interval [0, 8]. In both vertical sides the velocity is given by

u(0, y) = y(2.2, y) =
6

0.412
sin
(πt

8

)( y(0.41− y)
0

)
,

while in the rest of the boundary it is set u = 0. Also, at t = 0, the initial velocity
is u = 0. The kinematic viscosity is set to ν = 10−3 and the forcing term is f = 0.

It is well-known that around t = 4 a vortex sheet develops behind the cylinder,
as it can be seen in Fig. 6 when we show the speed and velocity field for t = 5
to t = 8. The four plots of the velocity fields are plotted in the same scale, and we
obtain virtually the same plots as in [35, Fig. 2]

We present errors in maximum values of the drag and lift coefficients cd and cl
respectively, and the difference of the pressure

∆p(t) = p(0.15, 0.2, t)− p(0.25, 0.2, t)

between the front and the back of the cylinder at t = 8
We also computed errors in the times td and tl where the lift and drag coefficients,

respectively, attained their maximum values. To compute all these errors, reference
values are taken from [35]. Also, following suggestions in [35], we compute cd and cl
as

cd(t) = −20
(
ν(∇u(t),∇vd) + b(u(t),u(t),vd)− (p(t),∇ · vd)

)
,

cl(t) = −20
(
ν(∇u(t),∇vl) + b(u(t),u(t),vl)− (p(t),∇ · vl)

)
,
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Figure 6: Speed contours (left) and velocity field for times t = 5, 6, 7, 8 (from top to
bottom).
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Figure 7: Coarsest and finest meshes used in Fig. 9.

where vd and vl are piecewise linear functions vanishing on triangles without vertices
on the circumference c ≡ (x− 0.2)2 + (y − 0.2)2 = 0.0025. and taking values vd =
[1, 0]T and vl = [0, 1]T on those nodes on circumference c.

We computed approximations on a sequence of five meshes the coarsest and
finest ones being shown in Fig. 7. The total number of degrees of freedom (dgf)
of the approximations to the velocity and pressure on these grids are 2057, 4208,
7709, 16961, 46265, so that they are coarser than those used in [35]. We used
quadratic isoparametric elements for the velocity and linear elements for pressure.
We present results corresponding to µ = 0 and µ = 0.01. This last value was chosen
for producing the best results among those with which we tried on one of the grids,
the fourth one from coarser to finer, as it can be seen in Table 1 in Appendix B.
For each mesh, decreasing values of ∆t were tried until the first two digits in the
computed error no longer changed. The computed quantities on each grid and for
every value of ∆t are shown in in Tables 2 and 3 in Appendix B. In the present
section, we present some plots corresponding to the smallest values of ∆t for each
grid in those tables.

In Fig. 8 we show the evolution of the drag and lift coefficients and of ∆p(t) for
µ = 0.01 in blue and for µ = 0 in magenta. This plots should be compared with [35,
Fig. 4]. The reference values (taken from [35]) of the maximum values cd,max of
the drag coefficient and cl,max of the lift coefficient are marked with a red asterisk
at time td,max and tl,max, respectively, where they are achieved, according to [35].
We also mark with a red asterisks the reference value for ∆p(8). It can be seen
that already for the medium sized grid (dgf=7709) the evolution of cd here (top left
plot in Fig. 8) is very much alike to that in [35, Fig. 4], that the reference value
of cd,max is matched, at least visually, and that the results corresponding to µ = 0
are superimposed to those of µ = 0.01.

For the lift coefficient, however, we see that while the results with µ = 0.01
resemble those in [35, Fig. 4] (specially for the two finest grids, for which the cor-
responding results are presented in the second row) this is clearly not the case
when µ = 0. Only for the finest grid (second row, right plot) have the results with
µ = 0 a resemblance to those in [35, Fig. 4]. We conclude then that, for the case of
the lift coefficient, adding grad-div stabilization does indeed improve accuracy.

For ∆p, although the results with µ = 0 and µ = 0.01 seem to coincide on
the mid-sized grid with dgf=7709 (bottom left plot in Fig. 8) at closer inspection
(bottom right plot in Fig. 8), the results with µ = 0.01 are much closer to the
reference value at t = 8. This is also the case for the next finer grid, that with
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Figure 8: Flow around a cylinder: Evolution of cd, cl and ∆p.
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Figure 9: Flow around a cylinder: relative errors. Bottom right plot shows the geometric
mean of relative errors in cd,max, td,max, cl,maxl, tl,max and ∆p(8).

16961 dgf, for which the corresponding results are also shown.
The plots in the bottom row in Fig. 8 suggest that checking the errors with

respect reference values may add further information. In Fig. 9 we present the
relative errors in the computation of cd,max, cl,max and ∆p(8). It can be seen adding
grad-div stabilization worsens the accuracy of the drag coefficient cd,max (the easiest
coefficient to compute accurately, according to [35]), but improves that of the lift
coefficient cl,max (the most difficult one to compute accurately, according to [35])
and ∆p(8). To have an idea of the overall improvement of adding the grad-div term,
we show in the last plot in Fig. 9 the geometric mean of the relative errors in five
computed quantities, cd,max, cl,max, ∆p(8), td,,max and tl,max. We can see that, on
average, adding the grad-div term improves the overall accuracy in the computation
of the five quantities. We notice, however, that as the meshes are refined, the values
of the quantities computed with and without the grad-div term seem to get more
similar, at least in the case of cd,max and cl,max. This is in agreement with results
in Figs. 1 and 2, where the method with the grad-div term presents better errors
only when the viscosity is sufficiently small with respect to the mesh size.
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5 Conclusions

In this paper we carry out the error analysis of a fully discrete method for the
numerical approximation of the Navier-Stokes equations based on the Euler incre-
mental projection method in time and a Galerkin method plus grad-div stabilization
with H1-conforming inf-sup stable elements in space. Although numerical experi-
mentation in the literature (e.g., [38]) suggests the practical advantages of splitting
methods for flows at high Reynolds numbers, the numerical analysis of projection
methods where error constants are independent of the Reynolds number is much
more scarce. As mentioned in the Introduction, such bounds are obtained only
in [11] for the Oseen equations (with O(hk+1/2) error decay if equal order elements
for velocity and pressure are used) and in [4] for the Navier-Stokes equations, al-
though some needed a priori bounds are yet to be obtained. In the present paper,
for the above-mentioned method, we get the optimal rate of convergence in time of
order ∆t, ∆t being the size of the time step. Due to the requirement of error con-
stants independent on the Reynolds number, the error in the pressure is obtained
under the assumption ∆t ≤ Chd/2+1, k ≥ d/2 + 1, d being the spatial dimension
and k the degree of the polynomials in the velocity approximation. This restriction,
however, seems to be not needed in practice, as it can be observed in the numer-
ical experiments. We want to remark that, concerning the analysis of projection
methods, to our knowledge this is the first time a bound for the L2 norm of the
pressure with constants independent on inverse powers of the viscosity is proved for
the Navier-Stokes equations. In [11] a bound for a discrete in time primitive of the
pressure is proved, which considerably simplifies the pressure error analysis with
respect to the standard L2(0, T ;L2(Ω)) norm (or its discrete counterpart) in which
the pressure is usually bounded. In [11] for the explicit treatment of the pressure a
condition of type Ch ≤ ∆t is required in the error analysis.

We remark that for the spacial discretization we have chosen the simplest (in
our opinion) method we know to get bounds with constants independent on inverse
powers of the diffusion parameter: a standard method plus grad-div stabilization
We prove error bounds of size O(hk) in space for the L2 norm of the velocity,
the L2 norm of the divergence of the velocity and a discrete in time L2 norm of the
pressure. Rates of size O(hk+1/2) for the L2 error of the velocity can be found in [12],
[27] for methods with continuous interior penalty stabilization and local projection
stabilization, respectively, while the question of getting rate k+ 1 is one of the open
problems stated in [37]. However, in the present paper, we wanted to concentrate
on the analysis of the Euler incremental projection method which is much more
complicated to analyze than other standard time integrators, and for this reason we
have chosen a simpler stabilization in space and inf-sup stable elements. We want to
remark that, on the one hand, the rate O(hk) we prove for the Galerkin method plus
grad-div stabilization is the rate observed in practice in the numerical experiments
for small values of the viscosity. On the other hand, we want to remark that for
the plain Galerkin method, as it can also be observed in the numerical experiments,
error bounds independent on inverse powers of the viscosity cannot be achieved
even when approximating very smooth solutions. Finally, results on a well-known
benchmark problem, flow around a cylinder, also show that adding the grad-div
term noticeably improves the overall accuracy of the numerical approximation.
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A Proof of Lemmas 2, 6 and 9

A.1 Proof of Lemma 2

Proof Taking χh = ∆twn+1
h in (31) and φh = ∆t(2ynh−y

n−1
h ) in (32) and summing

both equations we have

1

2

(
‖wn+1

h ‖20 − ‖wn
h‖20 + ‖wn+1

h −wn
h‖20
)

+ ∆t
(
ν‖∇wn+1

h ‖20 + µ‖∇·wn+1
h ‖20

)
+ (∆t)2(∇(yn+1

h − ynh),∇(2ynh − yn−1
h ))

≤ ∆t
(
(bn+1
h ,wn+1

h ) + (dn+1,∇ ·wn+1
h )

)
+ (∆t)2(∇(2ynh − yn−1

h )),∇rn+1). (79)

By writing 2ynh − y
n−1
h = yn+1

h −
(
(yn+1
h − ynh) − (ynh − y

n−1
h )

)
, for the last term on

the left-hand side of (79)) we have(
∇(yn+1

h − ynh),∇(2ynh − yn−1
h )

)
=(∇(yn+1

h − ynh),∇yn+1
h

)
−
(
∇(yn+1

h − ynh),∇(yn+1
h − ynh)−∇(ynh − yn−1

h )
)

(80)

We express the first term on the right-hand side of (80) as follows,

(∇(yn+1
h − ynh),∇yn+1

h

)
=

1

2

(
‖∇yn+1

h ‖20 − ‖∇ynh‖20 + ‖∇(yn+1
h − ynh)‖20

)
, (81)

and for the second one, using (32) and integration by parts we have

−
(
∇(yn+1

h − ynh),∇(yn+1
h − ynh)−∇(ynh − yn−1

h )
)

=− 1

∆t

(
wn+1
h −wn

h,∇(yn+1
h − ynh)

)
−
(
∇(rn+1 − rn),∇(yn+1

h − ynh)
)

≥− 1

2(∆t)2
‖wn+1

h −wn
h‖20 −

1

2
‖∇(yn+1

h − ynh)‖20

− 1

2ε1∆t
‖∇(rn+1 − rn)‖20 −

ε1∆t

2
‖∇(yn+1

h − ynh)‖20, (82)

for some ε1 > 0. Observe that the last two terms on the righ-hand side above can
be bounded below by

− 1

ε1∆t

(
‖∇rn+1‖20 + ‖∇rn‖20

)
− ε1∆t

(
‖yn+1
h ‖20 + ‖∇ynh‖20

)
.
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Thus, from (80), (81) and (82) we may bound the last term on the left-hand side
of (79) as

(∆t)2
(
∇(yn+1

h − ynh),∇(2ynh − yn−1
h )

)
≥ (∆t)2

2

(
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)
− 1

2
‖wn+1

h −wn
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∆t

ε1

(
‖∇rn+1‖20 + ‖∇rn‖20

)
− ε1(∆t)3

(
‖yn+1
h ‖20 + ‖∇ynh‖20

)
.

Arguing similary with the last term on the right-hand side of (79) we have
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∣∣(wn+1
h −wn

h,∇rn+1)
∣∣

(∆t)2

2

(
‖∇rn‖20 − ‖∇(rn+1 − rn)‖20 − ‖∇rn+1‖20

)
≤ ε2

(∆t)3

2
‖∇(yn+1

h )‖20 + ε3∆t
(
‖wn+1

h ‖20 + ‖wn
h‖20
)

+ ∆t
( 1

2ε2
+

1

2ε3

)
‖∇rn+1‖20 +

(∆t)2

2
‖∇rn‖20

for some ε2, ε3 > 0. Then, it follows that (79) can be arranged to

1

2

(
‖wn+1

h ‖20 − ‖wn
h‖20
)

+ ∆t
(
ν‖∇wn+1

h ‖20 + µ‖∇ ·wn+1
h ‖20

)
(83)

+
(∆t)2

2

(
‖∇yn+1

h ‖20 − ‖∇ynh‖20
)
≤

∆t
(
(bn+1
h ,wn+1

h ) + (dn+1,∇ ·wn+1
h )

)
+ ∆t

(( 1

ε1
+

1

2ε2
+

1

2ε3

)
‖∇rn+1‖20 +

( 1

ε1
+

∆t

2

)
‖∇rn‖20

)
+ (∆t)3 1

2

(
(2ε1 + ε2)‖∇yn+1

h ‖20 + 2ε1‖∇ynh‖20
)

+ ε3∆t
(
‖wn+1

h ‖20 + ‖wn
h‖20
)
.

We now choose ε1 = 1/16 and ε2 = 1/4 and ε3 = 1/16, so that 2ε1 + ε2 = 3/8 and
ε−1
1 + (ε−1

2 + ε−1
3 )/2 = 26. We also have

∆t(bn+1
h ,wn+1

h ) ≤ 2∆t‖bn+1
h ‖20 +

∆t

8
‖wn+1

h ‖20,

and

∆t(dn+1,∇ ·wn+1
h ) ≤ ∆t

2µε4
‖dn+1‖20 + ε4∆t

µ

2
‖∇ ·wn+1

h ‖20,

for some ε4 > 0. Then, from (83) it follows that

1

2

(
‖wn+1

h ‖20−‖wn
h‖20
)

+ ∆t
(
ν‖∇wn+1

h ‖20 +
(

1− ε4
2

)
µ‖∇ ·wn+1

h ‖20
)

+
(∆t)2

2

(
‖∇yn+1

h ‖20 − ‖∇ynh‖20
)

≤∆t

(
26‖∇rn+1‖20 +

(
16 +

∆t

2

)
‖∇rn‖20 + 2‖bn+1

h ‖20 +
1

2µε4
‖dn+1‖20

)
+

∆t

16

(
3‖wn+1

h ‖20 + ‖wn
h‖20
)

+
(∆t)2

16

(
3‖∇yn+1

h ‖20 + ‖∇ynh‖20
)
. (84)
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Taking ε4 = 1, multiplying by 2 and summing from n = 0 onwards and noticing
that

∆t

8

n∑
j=0

(
3‖wn+1

h ‖20 + ‖wn
h‖20
)

=
∆t

8
‖w0

h‖20 +
∆t

2

n∑
j=1

‖wj
h‖

2
0 +

3

8
∆t‖wn+1

h ‖20

≤ ∆t

2

n+1∑
j=0

‖wj
h‖

2
0,

and a similar bound for sum of (∆t)2‖∇yjh‖
2
0, we get

‖wn+1
h ‖20 + ∆t

n+1∑
j=1

(
2ν‖∇wj

h‖
2
0 + µ‖∇ ·wn+1

h ‖20
)

+ (∆t)2‖∇yn+1
h ‖20

≤ ‖w0
h‖20 + (∆t)2‖∇y0

h‖20 +
∆t

2

n+1∑
j=0

(
‖wj

h‖
2
0 + (∆t)2‖∇yjh‖

2
0

)
+ ∆t

n+1∑
j=1

(
52‖∇rj‖20 +

(
32 + ∆t

)
‖∇rj−1‖20 + 4‖bjh‖

2
0 +

1

µ
‖dj‖20

)
.

Recall that we are assuming ∆t ≤ 1 so that we can bound 32 + ∆t ≤ 33. Then,
applying Lemma 1, the bound (33) easily follows. To prove (35) we write∣∣(gn(wn

h,w
n+1
h ),wn+1

h )
∣∣ ≤ L1‖wn

h‖0‖wn+1
h ‖0 + L2‖∇ ·wn

h‖0‖wn+1
h ‖0

≤ L1

2

(
‖wn

h‖20 + ‖wn+1
h ‖20

)
+
µ

4
‖∇ ·wn

h‖20 +
L2

2

µ
‖wn+1

h ‖20.

Then, observe that (84) holds if we add −µ
4‖∇ ·w

n
h‖20 to the left hand side and if,

on the right hand side, we replace ∆t
16

(
3‖wn+1

h ‖20 + ‖wn
h‖20
)

by

∆t

(( 3

16
+
L1

2
+
L2

2

µ

)
‖wn+1

h ‖20 +
( 1

16
+
L1

2

)
‖wn

h‖20
)
.

Thus, taking ε4 = 1/2, multiplying by 2, summing from n = 0 onwards and noticing
that

∆t

n+1∑
j=1

µ
(3

2
‖∇ ·wj

h‖
2
0 −

1

2
‖∇ ·wj−1

h ‖20
)

= −µ
2

∆t‖∇ ·w0
h‖20 + ∆t

n∑
j=1

‖∇ ·wj
h‖

2
0

+
3

2
∆t‖∇ ·wn+1

h ‖20

≥ −µ
2

∆t‖∇ ·w0
h‖20 + ∆t

n+1∑
j=1

‖∇ ·wj
h‖

2
0,

it follows that arguing as before and applying Lemma 1 (35) is proved. �
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A.2 Proof of Lemma 6

Proof Using the inf-sup condition (3) and (43) we get

β0‖εn+1
h ‖0 ≤

∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
−1

+ ν‖∇ẽn+1
h ‖0 + ‖B(ũnh, ũ

n+1
h )−B(snh, s

n+1
h )‖−1

+ µ‖∇ · ẽn+1
h ‖0 + ‖τn+1

1,h ‖−1 + ‖τn+1
2,h ‖−1 + ‖τ̂n+1

3,h ‖0 + ‖τn+1
4,h ‖0. (85)

Let us bound the first term on the right-hand side of (85). Applying (45) we get∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
−1

≤ C

∥∥∥∥∥(Adiv
h )−1/2Πdiv

h

(en+1
h − enh

∆t

)∥∥∥∥∥
0

+ Ch

∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
0

. (86)

From (43) and taking into account that ‖A−1/2
h Πdiv

h g‖0 ≤ ‖g‖−1, for all g ∈ L2(Ω)d,
see [5, (2.16)], for the first term on the right hand side of (86). we get∥∥∥∥∥(Adiv

h )−1/2Πdiv
h

(en+1
h − enh

∆t

)∥∥∥∥∥
0

≤ν‖(Adiv
h )−1/2Ahẽ

n+1
h ‖0 + µ‖(Adiv

h )−1/2Chẽ
n+1
h ‖0

+ ‖B(ũh, ũ
n+1
h )−B(snh, s

n+1
h )‖−1 (87)

+ ‖τn+1
1,h ‖−1 + ‖(Adiv

h )−1/2Dhτ̂
n+1
3,h ‖0

+ ‖τn+1
2,h ‖−1 + ‖(Adiv

h )−1/2Dhτ
n+1
4,h ‖0.

For the first term on the right-hand side of (87) arguing as in [25] we get

‖(Adiv
h )−1/2Ahẽ

n+1
h ‖0 = sup

vh∈V div
h ,vh 6=0

|(Ahẽn+1
h , (Adiv

h )−1/2vh)|
‖vh‖0

= sup
vh∈V div

h ,vh 6=0

|(∇ẽn+1
h ,∇(Adiv

h )−1/2vh)|
‖vh‖0

≤ sup
vh∈V div

h ,vh 6=0

‖∇ẽn+1
h ‖0‖∇(Adiv

h )−1/2vh‖0
‖vh‖0

= sup
vh∈V div

h ,vh 6=0

‖∇ẽn+1
h ‖0‖vh‖0
‖vh‖0

= ‖∇ẽn+1
h ‖0.

Arguing similarly with the other terms in (87) we get∥∥∥∥∥(Adiv
h )−1/2Πdiv

h

(en+1
h − enh

∆t

)∥∥∥∥∥
0

≤ ν‖∇ẽn+1
h ‖0 + µ‖∇ · ẽn+1

h ‖0

+‖B(ũh, ũ
n+1
h )−B(snh, s

n+1
h )‖−1 (88)

+‖τn+1
1,h ‖−1 + ‖τ̂n+1

3,h ‖0
+‖τn+1

2,h ‖−1 + ‖τn+1
4,h ‖0.

From (86) and (88) and going back to (85) we get

β0‖εn+1
h ‖0 ≤ Ch

∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
0

+ Cν‖∇ẽn+1
h ‖0 + Cµ‖∇ · ẽn+1

h ‖0

+C‖B(ũnh, ũ
n+1
h )−B(snh, s

n+1
h )‖−1 (89)

+C‖τn+1
1,h ‖−1 + C‖τn+1

2,h ‖−1 + C‖τ̂n+1
3,h ‖0 + C‖τn+1

4,h ‖0.
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Finally by subtracting the expression corresponding to n+ 1 and n in (30) we get

en+1
h − enh = (ẽn+1

h − ẽnh)−∆t∇(pn+1
h − 2pnh + pn−1

h ),

so that arguing as in Remark 2 we have∥∥∥∥∥en+1
h − enh

∆t

∥∥∥∥∥
0

≤

∥∥∥∥∥ ẽn+1
h − ẽnh

∆t

∥∥∥∥∥
0

, (90)

and (48) follows from (89). �

A.3 Proof of Lemma 9

Proof To bound dtτ
k
2,h we observe that

dtτ
k
2,h = B(uk − uk−1,uk − uk−1) +B(uk − 2uk−1 + uk−2,uk−1)

+B(dt(u
k−1 − sk−1

h ), sk−1
h ) +B(uk−1 − sk−1

h , skh − sk−1
h ) (91)

+B(uk−1 − uk−2,uk−1 − sk−1) +B(uk−1, dt(u
k − skh)).

In what follows, we will use the following bound

‖B(v,w)‖0 ≤ C‖v‖1‖∇w‖L2d/(d−1) + C‖∇ · v‖0‖w‖∞

and using Sobolev’s bound (2),

‖B(v,w)‖0 ≤ C‖v‖1‖w‖2 + C‖∇ · v‖0‖w‖2.

Notice also that only in the third and forth terms on the right-hand side of (91)
the divergence term will be nonzero. For the first two terms on the right-hand side
of (91) we have

‖B(uk − uk−1,uk − uk−1)‖20 ≤ C(∆t)3‖ut‖2L∞(H1)

∫ tk

tk−1

‖ut‖22 dt,

and

‖B(uk − 2uk−1 + uk−2,uk−1)‖20 ≤ C(∆t)3‖u‖2L∞(W 1,∞)

∫ tk

tk−2

‖utt‖22 dt.

For the third and fourth term on the right-hand side of (91)), recalling the bounds
(14) and (41), and using Sobolev’s bound (2) we may write

‖B(dt(u
k−1 − sk−1

h ), sk−1
h )‖20 ≤ C(∆t)h2k‖u‖2L∞(H2)

∫ tk−1

tk−2

‖ut‖2k+1 dt

and

‖B(uk−1 − sk−1
h , skh − sk−1

h )‖20 ≤ C(∆t)h2k‖u‖2L∞(Hk+1)

∫ tk

tk−1

‖ut‖22 dt.

For the fifth one, by writing

‖B(uk−1 − uk−2,uk−1 − sk−1)‖20 ≤ C‖dtuk−1‖2∞‖∇(uk−1 − sk−1)‖20,
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we have

‖B(uk−1 − uk−2,uk−1 − sk−1)‖20 ≤ C(∆t)h2k‖u‖2L∞(Hk+1)

∫ tk−1

tk−2

‖ut‖22 dt

and arguing similarly with the sixth one,

‖B(uk−1, dt(u
k − skh)‖20 ≤ C(∆t)h2k‖u‖2L∞(H2)

∫ tk

tk−1

‖ut‖2k+1 dt.

Now, multiplying by ∆t the above expressions and summing from k = 2 onwards
the proof is finished. �

B Tables for Section 4.2

We present detailed tables corresponding to the numerical experiment in Section 4.2.
For the convenience of the reader, reference values are shown at the bottom line in
every table. In all tables, the value of ∆t0 is

∆t0 =
1

640
.

Reference values are taken from [35].
In Table 1, for the second finest mesh that we used, we compare results for

different values of µ. It can be seen that for µ = 0.01 there is a better coincidence of
computed values and reference ones, especially for the lift coefficient cl. The most
accurate computation of the drag coefficient corresponds to µ = 0.
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µ ∆t td,max cd,max tl,max cl,max ∆p(8)

0 ∆t0/4 3.9320 2.9507 6.7602 0.0476 -0.1179
0 ∆t0/8 3.9320 2.9507 6.7602 0.0531 -0.1164
0 ∆t0/16 3.9320 2.9507 6.7601 0.0561 -0.1156
0 ∆t0/32 3.9320 2.9507 6.7600 0.0577 -0.1152

0.001 ∆t0/4 3.9324 2.9507 6.8141 0.1503 -0.1024
0.001 ∆t0/8 3.9324 2.9507 6.8057 0.1638 -0.1041
0.001 ∆t0/16 3.9323 2.9507 6.8009 0.1709 -0.1050
0.001 ∆t0/32 3.9324 2.9507 6.7984 0.1745 -0.1055

0.01 ∆t0/8 3.9334 2.9528 5.9061 0.4618 -0.1104
0.01 ∆t0/16 3.9334 2.9528 5.9026 0.4698 -0.1100
0.01 ∆t0/32 3.9335 2.9528 5.9009 0.4739 -0.1097
0.01 ∆t0/64 3.9335 2.9528 5.9001 0.4759 -0.1096

0.1 ∆t0/4 3.9375 2.9582 5.4102 0.5519 -0.0987
0.1 ∆t0/8 3.9383 2.9584 5.4053 0.5668 -0.0987
0.1 ∆t0/16 3.9387 2.9585 5.4028 0.5744 -0.0988
0.1 ∆t0/32 3.9389 2.9585 5.4016 0.5782 -0.0988

1 ∆t0/4 3.9457 2.9832 5.4367 0.5512 -0.1129
1 ∆t0/8 3.9453 2.9841 5.4311 0.5643 -0.0932
1 ∆t0/16 3.9456 2.9843 5.4284 0.5724 -0.0898
1 ∆t0/32 3.9458 2.9843 5.4270 0.5761 -0.0890

ref. values 3.9362 2.9509 5.6931 0.4780 -0.1116

Table 1: Results for mesh with 16961 degrees freedom and different values of µ.
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dgf ∆t td,max cd,max tl,max cl,max ∆p(8)

2057 ∆t0 3.9234 2.9348 0.9172 0.0010 -0.1310
2057 ∆t0/2 3.9234 2.9347 0.9180 0.0010 -0.1310
2057 ∆t0/4 3.9234 2.9347 0.9184 0.0010 -0.1310
2057 ∆t0/8 3.9234 2.9347 0.9186 0.0010 -0.1310

4208 ∆t0 3.9297 2.9597 0.9313 0.0012 -0.1290
4208 ∆t0/2 3.9297 2.9597 0.9328 0.0012 -0.1290
4208 ∆t0/4 3.9293 2.9597 0.9336 0.0012 -0.1290
4208 ∆t0/8 3.9295 2.9597 0.9340 0.0012 -0.1290

7709 ∆t0 3.9297 2.9514 0.9438 0.0012 -0.1281
7709 ∆t0/2 3.9305 2.9514 0.9453 0.0012 -0.1281
7709 ∆t0/4 3.9301 2.9514 0.9457 0.0012 -0.1281
7709 ∆t0/8 3.9303 2.9514 0.9457 0.0012 -0.1281

16961 ∆t0/4 3.9320 2.9507 6.7602 0.0476 -0.1179
16961 ∆t0/8 3.9320 2.9507 6.7602 0.0531 -0.1164
16961 ∆t0/16 3.9320 2.9507 6.7601 0.0561 -0.1156
16961 ∆t0/32 3.9320 2.9507 6.7600 0.0577 -0.1152

46265 ∆t0/4 3.9320 2.9504 5.8359 0.3594 -0.1008
46265 ∆t0/8 3.9322 2.9504 5.8309 0.3778 -0.1002
46265 ∆t0/16 3.9323 2.9504 5.8281 0.3871 -0.1000
46265 ∆t0/32 3.9323 2.9504 5.8268 0.3918 -0.0999

ref. values 3.9362 2.9509 5.6931 0.4780 -0.1116

Table 2: Results for µ = 0 on meshes with increasing number of degrees of freedom.
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dgf ∆t td,max cd,max tl,max cl,max ∆p(8)

2057 ∆t0 3.9250 2.9313 6.8344 0.0151 -0.1291
2057 ∆t0/2 3.9242 2.9312 6.8328 0.0218 -0.1280
2057 ∆t0/4 3.9246 2.9312 6.8328 0.0263 -0.1269
2057 ∆t0/8 3.9244 2.9312 6.8330 0.0289 -0.1262

4208 ∆t0 3.9250 2.9595 7.6953 0.0751 -0.1056
4208 ∆t0/2 3.9258 2.9595 6.4602 0.1082 -0.0967
4208 ∆t0/4 3.9254 2.9595 6.4563 0.1318 -0.0973
4208 ∆t0/8 3.9256 2.9596 6.4535 0.1460 -0.0988

7709 ∆t0 3.9297 2.9524 6.8531 0.2189 -0.1034
7709 ∆t0/2 3.9297 2.9524 6.1617 0.2800 -0.1096
7709 ∆t0/4 3.9301 2.9524 6.1461 0.3235 -0.1108
7709 ∆t0/8 3.9303 2.9524 6.1379 0.3465 -0.1106

16961 ∆t0/8 3.9334 2.9528 5.9061 0.4618 -0.1104
16961 ∆t0/16 3.9334 2.9528 5.9026 0.4698 -0.1100
16961 ∆t0/32 3.9335 2.9528 5.9009 0.4739 -0.1097
16961 ∆t0/64 3.9335 2.9528 5.9001 0.4759 -0.1096

46265 ∆t0/4 3.9340 2.9517 5.7559 0.4753 -0.1062
46265 ∆t0/8 3.9344 2.9518 5.7516 0.4899 -0.1072
46265 ∆t0/16 3.9346 2.9518 5.7492 0.4973 -0.1076
46265 ∆t0/32 3.9346 2.9518 5.7480 0.5010 -0.1079

ref. values 3.9362 2.9509 5.6931 0.4780 -0.1116

Table 3: Results for µ = 0.01 on meshes with increasing number of degrees of freedom.

44


	Introduction
	Preliminaries and notation
	Euler incremental projection method
	Error bounds for the velocity
	Error bounds for the pressure

	Numerical Experiments
	Problem with known solution
	Flow past a cylinder

	Conclusions
	Proof of Lemmas 2, 6 and 9
	Proof of Lemma 2
	Proof of Lemma 6
	Proof of Lemma 9

	Tables for Section 4.2

