
  

  

Abstract— Pediatric sleep apnea-hypopnea syndrome (SAHS) 

is a highly prevalent breathing disorder that is related to many 

negative consequences for the children’s health and quality of 

life when it remains untreated. The gold standard for pediatric 

SAHS diagnosis (overnight polysomnography) has several 

limitations, which has led to the search for alternative tests. In 

this sense, automated analysis of overnight oximetry has 

emerged as a simplified technique. Previous studies have focused 

on the extraction of ad-hoc features from the blood oxygen 

saturation (SpO2) signal, which may miss useful information 

related to apnea and hypopnea (AH) events. In order to 

overcome this limitation of traditional approaches, we propose 

the use of convolutional neural networks (CNN), a deep learning 

technique, to automatically detect AH events from the SpO2 raw 

data. CHAT-baseline dataset, composed of 453 SpO2 recordings, 

was used for this purpose. A CNN model was trained using 60-s 

segments from the SpO2 signal using a training set (50% of 

subjects). Optimum hyperparameters of the CNN architecture 

were obtained using a validation set (25% of subjects). This 

model was applied to a third test set (25% of subjects), reaching 

93.6% accuracy to detect AH events. These results suggest that 

the application of CNN may be useful to detect changes 

produced in the oximetry signal by AH events in pediatric SAHS 

patients. 

I. INTRODUCTION 

Pediatric sleep apnea-hypopnea syndrome (SAHS) is 
defined as a breathing disorder characterized by the repetitive 
occurrence of episodes of complete cessation (apneas) and 
decreases (hypopneas) of breathing during sleep that lead to 
the disruption of normal oxygenation and normal sleep 
patterns [1]. SAHS is a highly prevalent condition in children 
(in the range of 1 to 5%). It is related to many adverse 
consequences on the overall children’s health and quality of 
life when it remains untreated, including pulmonary 
hypertension, daytime sleepiness, neurocognitive deficits, and 
cardiac derangements [1]. 

Overnight polysomnography (PSG) is the gold standard for 
pediatric SAHS diagnosis [1]. It requires the presence of the 
children during the whole night in a specialized sleep 
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laboratory while a wide range of biomedical signals are 
recorded [1], [2]. These signals are used to score apneas and 
hypopneas (AH) in order to calculate the apnea-hypopnea 
index (AHI), which is used to reach a diagnosis [1]. However, 
PSG is complex, costly, highly intrusive for children, and 
shows limited availability, thus delaying the treatment [3]. In 
addition, AH events must be manually scored by expert 
physicians, which is time-consuming and may lead to 
subjective diagnoses [2].  

In order to overcome these drawbacks, simplified 
diagnostic techniques are needed [3]. In this regard, overnight 
oximetry has emerged as a simplified, reliable, and suitable 
technique for pediatric SAHS diagnosis [3], [4]. Overnight 
oximetry records the blood oxygen saturation signal (SpO2), 
which measures the oxygen content in the hemoglobin [2]. 
SpO2 value usually presents drops associated to AH events [2], 
thus being useful to detect these episodes. In this sense, 
previous works have employed a methodology based on the 
automated analysis of the SpO2 signal in order to assist in the 
diagnosis of childhood SAHS [5]–[10]. 

These studies have applied conventional oximetric indices, 
as well as time, frequency, and nonlinear methods to obtain 
features that may characterize the properties of the SpO2 signal 
[5]–[10]. In addition, feature selection algorithms were used to 
reduce the dimensionality and improve performance, whereas 
classification and regression algorithms were employed to 
detect pediatric SAHS [5]–[10]. However, these machine-
learning based frameworks require to determine which 
features to extract from the physiological signal, as well as to 
decide how many features are needed, being a difficult task 
[11]. This could lead to miss useful information from these 
signals that may help to detect AH events.  

In contrast to conventional machine-learning approaches, 
deep learning techniques provide the ability to automatically 
learn and extract relevant information from the raw 
physiological data needed for detection or classification tasks 
[11]. In this regard, convolutional neural networks (CNN) is 
the most popular deep learning technique. CNN are well suited 
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to process multidimensional arrays, such as 1D signals or 2D 
images, due to its multi-layer architecture with shared weights 
and pooling operations [11]. Previous studies have suggested 
the ability of CNNs to detect AH events  in adult patients with 
SAHS using cardiorespiratory signals [12]–[16]. To the best 
of our knowledge, however, there is no study applying deep 
learning in the context of pediatric SAHS.  

 Based on the above-mentioned considerations, we 
hypothesized that CNNs could help to detect the changes in 
the SpO2 signal elicited by AH events among pediatric SAHS 
patients. Thus, the objective of this study is to assess the utility 
of CNNs to detect AH events in children suffering from SAHS 
using the oximetry signal. 

II. MATERIAL AND METHODS 

A. Subjects and signals 

The multicenter Childhood Adenotonsillectomy Trial 
(CHAT)-baseline dataset was employed in this study [17], 
[18]. Approval for the use of the CHAT database in this study 
was obtained from the National Sleep Research Resource in 
the website: www.sleepdata.org. This dataset is comprised of 
453 pediatric patients ranging from 5 and 10 years of age. 
These patients met the criteria defined by Redline et al. [18] 
for being considered for adenotonsillectomy treatment. PSG 
was performed and AH events were scored according to the 
American Academy of Sleep Medicine 2007 guidelines [19]. 
The AHI was defined as the number of all apneas (central, 
obstructive, and mixed) and hypopneas associated with an 
arousal or a 3% desaturation. SpO2 signals were acquired at 
sampling rates of 1, 2, 10, 12, 16, 200, 256, and 512 Hz.  

The dataset was divided into three sets: a training set 
(50%), employed to train the CNNs, a validation set (25%), 
used to obtain the optimum values for the hyperparameters of 
the CNN, and a test set (25%), employed to assess the 
performance of our proposal. Table I shows clinical and 
demographic data of the population under study. 

B. Signal preprocessing and segmentation 

Firstly, SpO2 recordings were resampled to a common 
sample rate of 1 Hz and were also rounded to the second 
decimal place in order to homogenize the frequency and 
resolution in all recordings [5]. The resampled signals were 
segmented into epochs of 60 non-overlapping seconds prior to 
train the CNN model. A segment was scored as apnea or 
hypopnea if at least 50% of an AH event was present in this 
segment. According to this rule, the distribution of total 
segments was 246655 normal segments and 30317 AH 
segments. However, an equal number of normal and AH 
segments was chosen from the training set, since CNN are 
sensitive to an imbalanced proportion between classes. Thus, 
the training set was composed of 20461 normal and 20461 AH 
segments. The validation set was composed of 64669 normal 
and 4570 AH segments, while the test set had 63271 normal 
and 5286 AH segments. 

C. CNN-based deep learning architecture 

CNN were originally inspired for image analysis. 
However, CNN have also proven to be useful to capture local 
connections in 1D time series [11]. Fig 1 shows the CNN-
based deep learning architecture employed in this study. The 
whole CNN-based deep learning architecture has three main 

blocks: input layer, CNN layers, and classification layers. 
Each component of the architecture is described as follows:  

• Input layer. This layer receives the SpO2 signals 
preprocessed and segmented. Each segment has 60 
samples (60-s). 

• CNN layers. Each CNN layer is composed of batch 
normalization, convolutional layers, rectified linear units 
(ReLU) activation layers, pooling layers, and dropout. 

 
Figure 1.  Schematic diagram of the proposed CNN-based deep 

learning architecture: (a) input layer contains the input SpO2 segments 
(b) CNN layers with batch normalization, convolutional layers, ReLU 

layer, pooling layer, and dropout, and (c) classification layers, with the 

fully-connected layers, dropout, and the softmax layer. The ouput of this 

block is the label of a normal or AH segment.  

 

 

 

 

 

 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS 

UNDER STUDY 

 All 
Training 

group 

Validation 

group 
Test group 

Subjects (n) 453 227 113 113 

Age (years) 6 [3] 6 [3] 6 [3] 6 [2] 

Males (n) 219 (48.3%) 120 (52.9%) 45 (39.8%) 54 (47.8%) 

BMI 

(kg/m2) 
17.1 [6.6] 17.2 [6.3] 17.4 [6.2] 16.5 [7.3] 

AHI (e/h) 5.7 [6.1] 5.9 [6.1] 4.6 [6.6] 6.3 [5.7] 

AHI ≥ 5 

(e/h) 
256 (56.5%) 137 (60.3%) 52 (46.0%) 67 (59.3%) 

AHI ≥ 10 

(e/h) 
106 (23.4%) 57 (25.1%) 24 (21.2%) 25 (22.1%) 

Data are presented as median [interquartile range], n or %. BMI: Body Mass Index; AHI: Apnea-

Hypopnea Index 
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First, batch normalization was employed to normalize the 
input data [20]. Then, in the convolutional layer, a 
convolutional filter (kernel) is applied to detect local 
patterns from the input data [20]: 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑤𝑘
𝑙−1 ∗  𝑦𝑗

𝑙−1𝑁
𝑗=1 ,          (1) 

where 𝑥𝑘
𝑙  is the kth feature map in the layer l, 𝑏𝑘

𝑙  is the bias 

of the kth feature map in the layer l, 𝑤𝑘
𝑙−1 is the kth 

convolutional kernel in the layer l-1, 𝑦𝑗
𝑙−1 is the output of 

the jth feature map in the layer l-1, N is the total number 
of features in the layer l-1, and * is the convolution 
operator. 

The ReLU layer is the activation layer that follows the 
convolutional layer. It has shown to produce a robust 
training performance [20]. This activation function 
performs a thresholding operation [20]: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑤𝑥 + 𝑏),           (2) 

where x is the feature map, w denotes the weight factor, 
and b is the bias. A pooling layer follows the 
convolutional and ReLU layers. It reduces the 
dimensionality by merging similar patterns into one. In 
this study, a max pooling layer was used [20]. 

Finally, dropout was used in order to keep the 
generalizability of the network [20]. Dropout randomly 
removes node connections with a probability pdrop, thus 
preventing overfitting [20]. 

• Classification layers: The classification block is 
composed of fully connected (FC) layers and a softmax 
layer. In these layers, all the units are connected to the 
units from the preceding layer, like in traditional neural 
networks [11]. A ReLU activation function was used in 
the FC layers, whereas a softmax activation function is 
used in the output layer to determine whether the input 
segment is a normal or AH segment. 

D. Implementation and performance analysis 

Keras library was used with a Tensorflow backend to 
implement and train the CNN model. A workstation with a 
GeForce GTX 1080 Ti GPU was used for this purpose. 
Diagnostic ability of the CNN model was assessed by means 
of sensitivity (Se, percentage of AH segments correctly 
classified), specificity (Sp, percentage of normal segments 
correctly classified), accuracy (Acc, percentage of segments 
correctly classified), and Cohen’s kappa index (kappa). 

III. RESULTS 

A. Optimization of the CNN model 

Several experiments were conducted to obtain the 
optimum values of the hyperparameters of the CNN model. 
The following hyperparameters were varied: number of CNN 
layers (nCNNlayers), number of filters in each convolutional layer 
(nfilters), kernel size (kernsize), pooling size (poolsize), stride in 
the convolutional and pooling layers (convstride and poolstride), 
number of FC layers (nFClayers), number of units in the FC 
layers (nunitsFClayers), dropout probability (pdrop) and batch size 
(batchsize). CNN models were trained using the training set to 
search for the optimal combination of hyperparameters. He-
normal initializer was used for the convolutional filters in the 

convolutional layers and for the units in the FC layers, whereas 
the adam algorithm with the default parameters was used to 
train the CNN models in 50 epochs [20]. Finally, the following 
values of the hyperparameters were obtained as those for 
which the kappa value was the highest in the validation set: 
nCNNlayers=6, nfilters=16, kernsize=5, convstride=1, poolsize=5, 
poolstride=1, nFClayers=1 nunitsFClayers=1000, pdrop=0.1, and 
batchsize =256.  

B. Performance of the CNN model 

The obtained CNN model was further assessed in an 
independent test set. Table 2 shows the confusion matrix of the 
CNN model for the detection of AH events in pediatric SAHS 
patients, as well as the diagnostic performance parameters (Se, 
Sp, Acc, and kappa) in the test set. Notice that the proposed 
CNN model reached high accuracy (93.6%), as well as high 
specificity (96.7%). 

IV. DISCUSSION AND CONCLUSIONS 

This study assessed the usefulness of CNN to detect AH 
events in pediatric SAHS events when only using the 
oximetry signal. To our knowledge, the application of deep 
learning techniques to detect AH events is novel in the context 
of pediatric SAHS. A CNN model trained with 60-s segments 
from the SpO2 signal reached high performance to detect AH 
events (93.6% Acc). A high specificity (96.7%) was also 
achieved. In this sense, only a low proportion of normal 
segments (3.3%) are considered as AH events. These 
misclassified segments might be due to desaturations in the 
SpO2 signal that are not related to apneas or hypopneas. On 
the other hand, a low sensitivity (56.5%) was obtained. The 
misclassified AH events could occur in some AH events that 
may not produce any perturbation in the SpO2 signal.  

Previous studies applied CNN to detect AH events in adult 
patients with SAHS [12]–[16]. Dey et al. [12] applied CNN 
to detect apneic events using 35 electrocardiogram (ECG) 
recordings from the Apnea-ECG database divided in 1-minute 
segments. The CNN model achieved 98.2% Acc (97.8% Se 
and 99.2% Sp). Wang et al. [13] analyzed the same database. 
In their study, they applied CNN to the RR intervals extracted 
from ECG, reaching 97.8% Acc (93% Se and 100% Sp). 
However, the database used in these studies does not contain 
annotations for hypopnea events [12], [13]. Urtnasan et al. 
[14], [15] also applied CNN models to ECG recordings in 
order to detect AH events. A CNN model was applied by 
Urtansan et al. [14] to 10-s ECG segments from a database of 
82 adult SAHS patients. An accuracy of 96% (96% Se) was 
reached to detect apneic events. A multiclass CNN 
architecture was also designed by Urtnasan et al. [15] to detect 
apnea and hypopnea events in 10-s ECG segments from 86 
adult SAHS patients. They reached 90.8% Acc (87.0% Se) to 

TABLE II.  DIAGNOSTIC PERFORMANCE OF THE CNN MODEL IN THE 

TEST SET 

 

Reference 

 Se Sp Acc kappa 

N AH 

Estimated 
N 61157 2298 

56.5 96.7 93.6 0.54 

AH 2114 2988 

 

 



  

differentiate between normal segments, apneas, and 
hypopneas. Nonetheless, patients with central and mixed 
apneas were not included in these studies [14], [15]. Choi et 
al. [16] used a CNN-based approach to detect AH events from 
the nasal-pressure (NP) signal. They analyzed 10-s NP 
segments, reaching 96.6% Acc (81.1% Se, and 98.5% Sp). 
Despite these studies reported high accuracies, they applied 
CNN to detect AH events in adult patients, while our study 
uses CNN in the context of pediatric SAHS. In this regard, 
scoring rules for AH events are more restrictive in children 
than in adults [19]. In addition, these studies used the ECG 
and NP signals [12]–[16], whereas our study uses only the 
SpO2 signal. The use of the oximetry signal to assist in the 
diagnosis of pediatric SAHS has been frequently advocated, 
being especially suitable for children [3]. The development of 
portable monitoring devices has allowed to record the SpO2 
signals with a pulse oximeter at the patient’s home in children 
suffering from SAHS [10].  

Recent works have focused on the application of signal 
processing techniques to the SpO2 signal in order to assist in 
the diagnosis of pediatric SAHS [5]–[10]. These studies used 
conventional machine-learning approaches: feature 
extraction, feature selection, and classification and regression 
algorithms. These studies reported accuracies in the range 75-
85%, 81-84%, and 85-91% for the detection of mild (AHI≥1), 
moderate (AHI≥5), and severe SAHS (AHI≥10), respectively 
[5]–[10]. However, these studies focused on detecting the 
presence and severity of pediatric SAHS [5]–[10], whereas 
our study aims at detecting AH events. In this regard, an 
accurate detection of AH events could be useful to estimate 
AHI with a higher accuracy than these studies. In addition, 
our methodology avoids the need to determine which features 
to extract from the SpO2 recordings. 

This study presents some limitations that should be 
considered. First, the database used in this study does not 
contain no-SAHS subjects (AHI<1 e/h). The inclusion of 
these subjects could help to better characterize normal 
segments. Another limitation concerns the size of 60-s SpO2 
segments to detect AH events. In this sense, there may be 
more than one AH event in a 60-s segment. However, it is 
necessary to have a long time window, since desaturations 
may occur more than 30 seconds after the onset of an AH 
event [21]. The only use of the SpO2 signal also limits our 
results, since the oximetry signal may not contain information 
of some AH events [19]. In this regard, the use of SpO2 
together with other physiological signals may enhance the 
detection of AH events. Finally, the use of recurrent neural 
networks (RNN) might help to improve the performance of 
our proposal, since RNN are well suited to model time-
dependences in 1D data [20].  

In summary, we applied CNN, a deep learning technique, 
to detect the changes produced in the oximetry signal by AH 
events among pediatric SAHS patients. A CNN model trained 
with 60-s SpO2 segments showed promising results, reaching 
93.6% Acc to differentiate between normal segments and AH 
events in the test set. These results suggest that deep learning 
approaches could be useful to detect AH events in pediatric 
SAHS patients.  
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