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Transport of energy in dissipative advection phenomena
Manuel Núñeza)

Departamento de Ana´lisis Matema´tico, Universidad de Valladolid, 47005 Valladolid, Spain

~Received 4 November 2002; accepted 26 November 2002!

A study of the distribution of energy among the different scales is performed for
several systems in fluid mechanics, including the Navier–Stokes, magnetohydro-
dynamics and active scalars equations. It is found that all these systems possess a
common structure which enables us to deduce how the energy introduced by the
forcing is transferred to the scales present in the flow. It is also shown that in
special cases an energy cascade will occur. The limits of this method are also
considered. ©2003 American Institute of Physics.@DOI: 10.1063/1.1540237#

I. INTRODUCTION

It is well known that the energy injected into a fluid by some forcing will be distributed among
all the scales of the flow. In a general sense this is true for all phenomena governed by nonlinear
equations: for every decomposition of the solution in different modes representing the scales, the
nonlinearity will make interact different modes so that they do not evolve independently. The
details of how this interaction occurs depend essentially on the particular equation modeling the
phenomenon. However, for certain equations, prevalent in several processes in fluid mechanics,
the transfer of energy may be studied with some generality. These equations could be called
dissipative advection phenomena by the two terms of their expression:

]w

]t
5Aw1Tw1 f , ~1!

wherew is the magnitude under study. It is assumed that the solution of our initial value problem
exists for all time, and thatw(t) belongs to a certain Hilbert spaceH. A is a linear self-adjoint
dissipative operator; it is defined in a dense domain

A:D~A!→H,

and it satisfies, for some constanta.0 and allwPD(A),

2~Aw,w!>aiwi2. ~2!

Thus the whole spectrum ofA is contained in (2`,2a#. For simplicity purposes we will assume
that H is separable and the spectrum ofA discrete, although it is not really necessary.T is a
generally nonlinear and time-dependent operator densely defined inH, satisfying the orthogonal-
ity property:

~Tw,w!50, ~3!

for every w in the domain ofT. A represents the dissipation andT the advective effect in the
evolution ofw. As we will see, condition~3! means that the energy injected by the forcingf will
be distributed without loss by this advective term among all scales, while dissipation acts in a
different way on each of them.
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The present article represents a simplification of the arguments advanced in Ref. 1 for the
study of hydrodynamics turbulence. The Navier–Stokes case is analyzed there in more generality
and depth, without making use of some of our hypotheses concerning uniqueness of the solution,
which in fact are not proved in general. While it is probably overoptimistic to think that Ref. 1
answers all the questions on the origin and behavior of cascades in turbulence, it represents a
valuable attempt to rigorize a classical and difficult problem. The method developed there is not
difficult and we have been able to extend its range beyond the original hydrodynamic problem: in
addition to the Navier–Stokes equations, the magnetohydrodynamics~MHD! system possesses
also the required form, along with several equations describing passive and active scalars. Among
the latter we may mention the vorticity in plane flows, the magnetic potential in two-dimensional
plasmas, the temperature in Be´nard convection, the salinity in oceanic waters and other magni-
tudes relevant in geophysical phenomena.

In a limit case we can prove something similar to energy cascades in the sense of Kolmog-
orov: energy is transferred without loss to smaller~direct cascade! or larger scales~inverse cas-
cade! in a form independent ofA, i.e., of viscosity.2 However, the assumptions needed to prove
this are probably excessive and the fact that there is no discernible influence of the space dimen-
sion, unlike what is experimentally known, seems to indicate that physical cascades have their
own phenomenology not covered by this case.

II. THE MAIN RESULTS

Let (en) be a basis ofH formed by eigenfunctions ofA, 2Aen5lnen , with l15a, l1

<l2<¯ . We will consider that the scales of the problem are given by the orthogonal decom-
positionw5((w,en)en , so that a large-scale function is one limited to the lower eigenfunctions.
When, as usual,A is essentially the Laplacian, certainly the higher eigenfunctions are more
irregular than the lower ones. In particular, ifH is formed by periodic functions, the basis is
formed by the trigonometric functionsx→exp(ik"x) and the spectral decomposition is the Fourier
one, so that the concept coincides with the classical one.

The energy estimates are classical: by making the scalar product of~1! with w,

1

2

]

]t
~w,w!2~Aw,w!5~Tw,w!1~ f ,w!5~ f ,w!. ~4!

Thus

1

2

d

dt
iwi22~Aw,w!5~ f ,w!<i f i iwi<

1

2a
i f i21

a

2
iwi2. ~5!

Since2(Aw,w)>aiwi2,

d

dt
iwi21aiwi2<

1

a
i f i2, ~6!

so that

iw~ t !i2<iw~0!i2e2at1
1

a E
0

t

e2a(t2s)i f ~s!i2 ds, ~7!

which is bounded in particular ifi f i is bounded for all time: e.g., if it does not depend on time.
In the absence of forcing the solution tends exponentially to zero. We will only need to assume

lim
t→`

1

T
iw~T!i250, ~8!
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which certainly happens ifw remains bounded. Our remaining hypotheses are as follows: let us
denote bŷ & the time mean of a magnitude:

^g&5 lim
T→`

1

T E
0

T

g~s! ds, ~9!

provided it exists. We will assume that the time mean of all the magnitudes occurring in Eqs.
~11!–~16! exists. This is not an unreasonable hypothesis, since turbulent phenomena are usually
considered decaying or statistically stationary.

Let H1 be the finite-dimensional subspace ofH whose basis is$ek ,ek11 , . . . ,el%. We will
consider thatH1 is the space of some intermediate range of scales, called the injection range
because we will assume thatf lies within this range for all time; iff is large-scale, thenk51. Let
H2 be the subspace orthogonal toH1 , a Hilbert basis of whom is formed by the remainingej . Let
w5w11w2 be the orthogonal decomposition of an element ofH in the subspacesH1 and H2 .
The condition (Tw,w)50 means therefore

~Tw,w2!52~Tw,w1!. ~10!

By taking the scalar product of~1! with w1 andw2 we obtain, analogously to~4!,

1

2

d

dt
iw1i22~Aw1 ,w1!5~Tw,w1!1~ f ,w1!,

~11!
1

2

d

dt
iw2i22~Aw2 ,w2!5~Tw,w2!52~Tw,w1!,

since (f ,w2)50. We also have

K d

dt
iwi i2L 5 lim

T→`

1

T
~ iwi~T!i22iwi~0!i2!50, ~12!

and therefore

^~2Aw1 ,w1!&5^~Tw,w1!&1^~ f ,w1!&,
~13!

^~2Aw2 ,w2!&5^~Tw,w2!&52^~Tw,w1!&.

Now (2Awi ,wi)>0 may be regarded as the dissipation of the componentwi , whereas (Tw,wi)
is the energy transferred by the advection to that component. Therefore the mean energy trans-
ferred to the noninjective scales is positive and identical to the mean dissipation of them, and also
equal to the energy lost by the injective scales. Notice that this does not yield any information
about if the energy goes to larger or smaller scales than the injective range, or more likely to both.
If we decompose againw2 in w2

11w2
2 , formed respectively by smaller scales~projection in the

ej : j . l ) and larger~projection inei : i ,k), what we can deduce is

^~Tw,w2
1!&1^~Tw,w2

2!&5^~2Aw2 ,w2!&5^~2Aw2
1 ,w2

1!&1^~2Aw2
2 ,w2

2!&. ~14!

Cascades are not merely energy transfer. In the Kolmogorov2 theory of homogeneous turbulence,
it is admitted that there exists a range of scales~called inertial! where energy is transferred without
viscous loss. To prove something similar we need to make an additional hypothesis, also made in
Ref. 3: we assume that there is a range outside the injection one such that the projection ofw there
is zero, or very small. Take the injection range generated byek , . . . ,el , and assume that fromel

to en there is no projection ofw. Let Eh
1 be the energy transferred to modes larger thaneh , i.e.,

the product ofTw with the projectionwh
15( j .h(w,ej )ej . Then
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^~2Aw2
1 ,w2

1!&5El 11
1 5El 12

1 5¯5En
15^~Tw,w2

1!&. ~15!

Thus the energy passes without loss through this inertial range. Since it goes to smaller scales, it
is called a direct cascade. The same could be done for larger scales if we assume that the
projection ofw in some rangeei , ei 11 , . . . ,ek21 is zero: then, with an obvious notation,

^~2Aw2
2 ,w2

2!&5Ek21
2 5Ek22

2 5¯5Ei
25^~Tw,w2

2!&. ~16!

This should be an inverse cascade. For the direct one, however, there is a more manageable
criterion to ascertain that the projection ofw in small ranges is itself small: if the energy satisfies
the inequality

iwi25( u~w,en!u2!( lnu~w,en!u25~2Aw,w!, ~17!

it is because largeln must play the main role, i.e.,w is localized at the higher frequencies. Thus
a much larger ‘‘enstrophy’’ (2Aw,w) than energy means that a direct cascade is more likely, as
stated in Ref. 3. This, however, does not seem to be a prerequisite for the actual cascades observed
in turbulent phenomena.

III. EXAMPLES

A. The Navier–Stokes equations

The original example, developed as stated in much more depth and detail in Ref. 1, is the
Navier–Stokes system for incompressible Newtonian fluids. It is worth to study how the abstract
framework applies to this classical case. The Navier–Stokes equations are

]u

]t
5nDu2u•¹u2¹p1f,

~18!
¹•u50,

whereu represents the fluid velocity,n the viscosity,p the kinetic pressure andf the forcing.
Boundary conditions determine the spaceH. By taking the divergence of the first equation, one
finds thatp is in fact a ~nonlocal! function of the velocity gradient, the solution of an elliptic
problem~see, e.g., Ref. 1!. We may either define

Tu52u•¹u1¹p~u!,
~19!

A5nD,

or, as usual, project~18! into the space of functions with null divergence. Denoting byP this
projection, one gets the Stokes system:

]u

]t
5nPDu2Pu•¹u1Pf. ~20!

Then we may defineTu52Pu•¹u, A5nPD. The spaceH is defined by the boundary condi-
tions. For periodic ones in a boxV, one sets

H5H uPL2~V!N:¹•u50, E
V

u dV50,u"nU
]V

antiperiodicJ . ~21!
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N is the space dimension. The condition¹•u50 is to be understood in the sense of distributions.
For these functions the trace ofu"n at the boundary makes sense. The domain ofA is defined as
D(A)5H2(V)NùH.

For no-slip boundary conditions, the velocity at the boundary of the smooth bounded domain
V is taken as zero: we therefore set

H5$uPL2~V!N:¹•u50,u"nu]V50%,
~22!

D~A!5H2~V!NùH0
1~V!NùH.

That T andA satisfy the previous conditions is classical~see, e.g., Ref. 1 or 4!.

B. Magnetohydrodynamics

The MHD system for an incompressible plasma with velocityu and magnetic fieldB are

]u

]t
5nDu2u•¹u1B•¹B2¹S p1

B2

2 D1f1 ,

]B

]t
5hDB2u•¹B1B•¹u1f2 ,

~23!
¹•u50,

¹•B50.

h.0 is the plasma resistivity. Again a projectionP to the space of fields with null divergence is
applied to the equations, obtaining

]u

]t
5nPDu2Pu•¹u1PB•¹B1Pf1 ,

~24!
]B

]t
5hPDB2Pu•¹B1PB•¹u1Pf2 .

Now we definew5(u;B),

Tw5~2Pu•¹u1PB•¹B; 2Pu•¹B1PB•¹u!,
~25!

Aw5~nPDu; hPDB!.

The spaceH again depends on the boundary conditions. It is defined essentially as~21! for
periodic problems, with the exception that now both componentsu andB of w must be periodic.
D(A) is defined asH2(V)2NùH. For Dirichlet homogeneous problems, the analog of~22! is
used; in this caseD(A)5H2(V)2NùH0

1(V)2NùH. For the case where the boundary ofV is
supposed to be a perfect conductor, i.e.,uu]V50, B"nu]V50, (¹3B)3nu]V50, one sets

H5$~u; B!PL2~V!2N:¹•u5¹•B50,u"nu]V5B"nu]V50%,
~26!

D~A!5$~u; B!PH2~V!2NùH:uPH0
1~V!N, ~¹3B!3nu]V50%.

~See, e.g., Refs. 4, 5.! Again A andT satisfy the main conditions and therefore one should expect
an analogous transfer of energy for MHD problems. However, it is known that cascades in MHD
are very different from the hydrodynamic ones~see, e.g., Ref. 6!, which is a warning not to expect
fine details from our calculations on energy transfer.
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C. Passive scalars

These are magnitudesf that are transported and diffused by an incompressible flow with a
given velocityu. They evolve according to

]f

]t
5kDf2u•¹f1 f . ~27!

The velocity is a datum of the problem. It satisfies¹•u50, u"nu]V50. k.0 is a diffusion
coefficient; as we seef has no influence onu. Boundary conditions depend on the meaning off,
and these define the domain ofA5kD. Set H5L2(V); for Dirichlet problems, D(A)
5H2(V)ùH0

1(V); for periodic ones,D(A)5$fPH2(V):fu]V periodic%; for Neumann ones,
D(A)5$fPH2(V):]f/]nPH0

1(V)%. The condition of symmetry forA,

E
]V

f
]f

]n
ds50,

is satisfied for allfPD(A). Tracers in a fluid are assumed to behave as passive scalars, provided
they are not dense enough to modify the density or other properties of the fluid. For instance, salt
in ocean water is not taken as a passive, but as an active scalar.

D. Active scalars

The equation is formally similar to~27!, but nowu depends onf through some other equa-
tion, makingu a ~usually nonlocal! function of f. These equations are rather common in fluid
mechanics~see, e.g., Ref. 7!. We will consider two examples: the magnetic potential in two-
dimensional MHD and the temperature in Be´nard convection.

E. Magnetic potential

Two-dimensional magnetic fieldsB5(B1 ,B2) in a simply connected domainV are of the
form B15]A/]x2 , B252]A/]x1 for some scalar fieldA, called the magnetic potential. With this
variable the MHD equations~without forcing on the magnetic field! become

]A

]t
5hDA2u•¹A1C~ t !,

]u

]t
5nDu2u•¹u1DA¹A1 f , ~28!

¹•u50.

C(t) is some time-dependent constant depending on the choosing ofA, which is indifferent to the
addition of any gradient. Boundary conditions and the gauge constantC are linked. We may
chooseC50, but at the expense of not being able to precise the values ofA at any point. If
B"nu]V50, A is constant along every connected component of]V. By allowing CÞ0 and choos-
ing A50 at a given point of]V, we haveAu]V50. Thus we may takeH5L2(V), A5hD,
D(A)5H2(V)ùH0

1(V). The second equation of~28! is ignored; we may study the transfer of
energy without knowing the full evolution of the system. The magnetic potential is reputed to
possess an inverse cascade,6 such as the velocity in two-dimensional turbulence.

1223J. Math. Phys., Vol. 44, No. 3, March 2003 Transport of energy in advection phenomena



F. Temperature in Be´nard convection

In a simple model, this satisfies

]T

]t
5kDT2u•¹T1 f ,

]u

]t
5nDu2u•¹u2¹p1e2~T2T1!, ~29!

¹•u50.

T is the temperature in a box@0,1#3@0,1#, k is a thermal diffusion constant,e25(1,0), T1 is the
temperature at the upper lidx251, andT111 is the temperature at the lower onex250. p, u, T,
]u/]x1 and]T/]x1 are assumed one-periodic in thex1-direction,u50 at x250 andx251.4,8 f is
a possible injection of temperature.

These conditions make it possible to findu as a nonlocal function ofT ~sinceu satisfies a
parabolic equation on a cylinder! so that we may define for the temperature the spaces

H5L2@0,1#3L2@0,1#,
~30!

D~A!5D~kD!

5H TPH2~V!: T~x,1!5T1 , T~x,0!5T111,T~0,y!5T~1,y!,
]T

]x1
~0,y!5

]T

]x1
~1,y!J .

Neumann conditions on the lateral walls are also admissible. Conditions are easily seen to be
satisfied~the integral at the boundary ofT]T/]n always vanishes! so that we may ignoreu to see
that the temperature is transferred to the different scales according to our model.

IV. CONCLUSIONS

It is found that the transfer of energy among the different scales acts in a similar way in
several processes of fluid mechanics, including the Navier–Stokes equations, the magnetohydro-
dynamics system, and passive and active scalar equations. The essence of this fact is that these
magnitudes follow an evolution equation formed by the addition of a linear dissipative term which
determines the scales of the flow and an advective one which distributes the energy injected by the
forcing among the different scales. In some extreme cases the presence of a direct or inverse
cascade, where energy is transferred without dissipative loss through some inertial range, may also
be proved. However, it is pointed that these results do not yield precise information on the transfer
of energy in some specific direction, which is known to differ according to the magnitude and the
space dimension.
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