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Transport of energy in dissipative advection phenomena
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A study of the distribution of energy among the different scales is performed for
several systems in fluid mechanics, including the Navier—Stokes, magnetohydro-
dynamics and active scalars equations. It is found that all these systems possess a
common structure which enables us to deduce how the energy introduced by the
forcing is transferred to the scales present in the flow. It is also shown that in
special cases an energy cascade will occur. The limits of this method are also
considered. ©2003 American Institute of Physic§DOI: 10.1063/1.1540237

[. INTRODUCTION

It is well known that the energy injected into a fluid by some forcing will be distributed among

all the scales of the flow. In a general sense this is true for all phenomena governed by nonlinear
equations: for every decomposition of the solution in different modes representing the scales, the
nonlinearity will make interact different modes so that they do not evolve independently. The
details of how this interaction occurs depend essentially on the particular equation modeling the
phenomenon. However, for certain equations, prevalent in several processes in fluid mechanics,
the transfer of energy may be studied with some generality. These equations could be called
dissipative advection phenomena by the two terms of their expression:

ow

3 =Aw+Tw+f, (1

wherew is the magnitude under study. It is assumed that the solution of our initial value problem
exists for all time, and that(t) belongs to a certain Hilbert spatk A is a linear self-adjoint
dissipative operator; it is defined in a dense domain

A:D(A)—H,
and it satisfies, for some constamt-0 and allwe D(A),
—(Aw,w)= allw|?. 2

Thus the whole spectrum @f is contained in -, — «]. For simplicity purposes we will assume
that H is separable and the spectrum Afdiscrete, although it is not really necessaryis a
generally nonlinear and time-dependent operator densely defindd satisfying the orthogonal-

ity property:
(Tw,w)=0, 3

for everyw in the domain ofT. A represents the dissipation afidthe advective effect in the
evolution ofw. As we will see, conditior{3) means that the energy injected by the forcfngill

be distributed without loss by this advective term among all scales, while dissipation acts in a
different way on each of them.
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The present article represents a simplification of the arguments advanced in Ref. 1 for the
study of hydrodynamics turbulence. The Navier—Stokes case is analyzed there in more generality
and depth, without making use of some of our hypotheses concerning uniqueness of the solution,
which in fact are not proved in general. While it is probably overoptimistic to think that Ref. 1
answers all the questions on the origin and behavior of cascades in turbulence, it represents a
valuable attempt to rigorize a classical and difficult problem. The method developed there is not
difficult and we have been able to extend its range beyond the original hydrodynamic problem: in
addition to the Navier—Stokes equations, the magnetohydrodyndMid®) system possesses
also the required form, along with several equations describing passive and active scalars. Among
the latter we may mention the vorticity in plane flows, the magnetic potential in two-dimensional
plasmas, the temperature in @ed convection, the salinity in oceanic waters and other magni-
tudes relevant in geophysical phenomena.

In a limit case we can prove something similar to energy cascades in the sense of Kolmog-
orov: energy is transferred without loss to smalleirect cascadeor larger scaleginverse cas-
cadé in a form independent oA, i.e., of viscosity> However, the assumptions needed to prove
this are probably excessive and the fact that there is no discernible influence of the space dimen-
sion, unlike what is experimentally known, seems to indicate that physical cascades have their
own phenomenology not covered by this case.

II. THE MAIN RESULTS

Let (e,) be a basis oH formed by eigenfunctions oA, —Ae,=\,e,, With A{=a, N\
<\,=<--- . We will consider that the scales of the problem are given by the orthogonal decom-
positionw=X(w,e,)e,, so that a large-scale function is one limited to the lower eigenfunctions.
When, as usualA is essentially the Laplacian, certainly the higher eigenfunctions are more
irregular than the lower ones. In particular,Hf is formed by periodic functions, the basis is
formed by the trigonometric functions—exp(k-x) and the spectral decomposition is the Fourier
one, so that the concept coincides with the classical one.

The energy estimates are classical: by making the scalar prod(t}t with w,

19
7 71 (W) = (Aw,w) = (Tw,w) + (f,w) = (f,w). (4)
Thus
1d 1 o
= 2 wlir— — < < [If12+ Zilwll?
5 Olt||W|| (Aw,w) = (f,w)<|f]| ||W||<2aHfH + 2||W|| : (5
Since — (Aw,w) = a|jw||?,
d 1
. 2 2 2
dt”W” +afwl*=—[f% (6)
so that
1 1t
Iw<lw(o)le et - [ et 9)t(s) 2as, @
0

which is bounded in particular ff| is bounded for all time: e.g., if it does not depend on time.
In the absence of forcing the solution tends exponentially to zero. We will only need to assume

li 1 2_
'm?HW(T)H =0, (8)

t—oo
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which certainly happens iiv remains bounded. Our remaining hypotheses are as follows: let us
denote by ) the time mean of a magnitude:

1 (T
<®ﬁm?LMQm 9)

T—oo

provided it exists. We will assume that the time mean of all the magnitudes occurring in Egs.
(11)—(16) exists. This is not an unreasonable hypothesis, since turbulent phenomena are usually
considered decaying or statistically stationary.

Let H; be the finite-dimensional subspace kbfwhose basis igey,e1, - .. .&}. We will
consider thatH; is the space of some intermediate range of scales, called the injection range
because we will assume thiaties within this range for all time; if is large-scale, thek=1. Let
H, be the subspace orthogonaHg, a Hilbert basis of whom is formed by the remainigg Let
w=w,;+Ww, be the orthogonal decomposition of an elementoin the subspacell; andH,.

The condition Tw,w)=0 means therefore

(Tw,wy)=—(Tw,w,). (10

By taking the scalar product d@fl) with w; andw, we obtain, analogously t64),

d
2 a”Wl”Z_(AW1:W1):(TWyW1)+(f,W1),
(11
1d
> a”Wz” —(Aw,,Wy) = (Tw,Wy)=—(Tw,wy),
since ,w,)=0. We also have
2 jw2) = tim = (Jw (D2 [w(0)]) =0 12
gt/ T T ' !
and therefore
((—=Awg,wyp))=((Tw,wy))+{(f,wy)),
(13

<( _AWZ 1W2)> = <(TW1W2)>: - <(TW7W1)>

Now (—Aw; ,w;)=0 may be regarded as the dissipation of the compowentvhereas Tw,w;)

is the energy transferred by the advection to that component. Therefore the mean energy trans-
ferred to the noninjective scales is positive and identical to the mean dissipation of them, and also
equal to the energy lost by the injective scales. Notice that this does not yield any information
about if the energy goes to larger or smaller scales than the injective range, or more likely to both.
If we decompose agaw, in w, +w, , formed respectively by smaller scalgsojection in the
e;:j>1) and larger(projection ine; :i <k), what we can deduce is

((Tw,wz ) +((Tw,wy ) =((— AW, Wo)) =((—Awz W) +{(—Aw; ,w;)). (14

Cascades are not merely energy transfer. In the Kolmogaheory of homogeneous turbulence,

it is admitted that there exists a range of scatedled inertial where energy is transferred without
viscous loss. To prove something similar we need to make an additional hypothesis, also made in
Ref. 3: we assume that there is a range outside the injection one such that the projectite &

is zero, or very small. Take the injection range generated,by. . ,;, and assume that from

to e, there is no projection ofv. Let E,, be the energy transferred to modes larger thani.e.,

the product ofTw with the projectiorw;=2j>h(w,ej)ej . Then
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(=Aw; \Ww3))=E/} 1 =E o= =E; =((Tw,wy)). (19

Thus the energy passes without loss through this inertial range. Since it goes to smaller scales, it
is called a direct cascade. The same could be done for larger scales if we assume that the
projection ofw in some range;, €1, ...,6_1 IS zero: then, with an obvious notation,

(=AW, W, ))=E1=Ep==E =((Tw,w;)). (16)

This should be an inverse cascade. For the direct one, however, there is a more manageable
criterion to ascertain that the projectionwfin small ranges is itself small: if the energy satisfies
the inequality

Iw[2=2] [(w,en)[2<) Nol(w,en)|?=(—Aw,w), (17)

it is because larga,, must play the main role, i.ew is localized at the higher frequencies. Thus

a much larger “enstrophy” £ Aw,w) than energy means that a direct cascade is more likely, as
stated in Ref. 3. This, however, does not seem to be a prerequisite for the actual cascades observed
in turbulent phenomena.

Ill. EXAMPLES

A. The Navier—Stokes equations

The original example, developed as stated in much more depth and detail in Ref. 1, is the
Navier—Stokes system for incompressible Newtonian fluids. It is worth to study how the abstract
framework applies to this classical case. The Navier—Stokes equations are

Ju
i vAu—u-Vu—Vp+f,

(18)

whereu represents the fluid velocity; the viscosity,p the kinetic pressure anflthe forcing.
Boundary conditions determine the spate By taking the divergence of the first equation, one
finds thatp is in fact a(nonloca) function of the velocity gradient, the solution of an elliptic
problem(see, e.g., Ref.)1We may either define

Tu=—u-Vu+Vp(u),
19
A=71A,
or, as usual, projecfl8) into the space of functions with null divergence. Denoting Pyhis
projection, one gets the Stokes system:

Ju
EszAu—Pu-VunLPf. (20

Then we may definfu=—Pu-Vu, A=vPA. The spaceH is defined by the boundary condi-
tions. For periodic ones in a bd?, one sets

H={ueL?(Q)N:V.u=0, f udvV=0,u-n
Q

antiperiodi% . (21
dQ)
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N is the space dimension. The conditiBnu=0 is to be understood in the sense of distributions.
For these functions the trace ofn at the boundary makes sense. The domaiA @& defined as
D(A)=H?(Q)NNH.

For no-slip boundary conditions, the velocity at the boundary of the smooth bounded domain
Q) is taken as zero: we therefore set

H={ueL?(Q)":V-u=0u-n|,u=0},
(22)
D(A)=H2(Q)NNH§(Q)NNH.

ThatT and A satisfy the previous conditions is classi¢ste, e.g., Ref. 1 or)4
B. Magnetohydrodynamics

The MHD system for an incompressible plasma with velocitgnd magnetic field are

2

o A Vu+B-VB—-V B f
il u—u-Vu+B- p+7+1,
JB
EznAB—u-VBJrB-VqufZ,
(23
V-u=0,
V-B=0.

7>0 is the plasma resistivity. Again a projectiéhto the space of fields with null divergence is
applied to the equations, obtaining

Ju
—=vPAu—Pu-Vu+PB-VB+Pf,,

at
(24)
B
—r = "PAB=Pu-VB+PB-Vu+Pf,.
Now we definew= (u;B),
Tw=(—Pu-Vu+PB-VB; —Pu-VB+PB-Vu),
(25

Aw=(vPAu; nPAB).

The spaceH again depends on the boundary conditions. It is defined essentialllagor
periodic problems, with the exception that now both componergedB of w must be periodic.
D(A) is defined asH?(Q)?NNH. For Dirichlet homogeneous problems, the analog2%) is
used; in this cas®(A)=H?(Q)>NNHE(Q)>NNH. For the case where the boundary @fis
supposed to be a perfect conductor, itg;,=0, B:n|;,=0, (VXB)Xn|,,=0, one sets

H={(u; B)eL?Q)>N:V.u=V.B=0,u-n|,,=B-n|,,=0},
(26)
D(A)={(u; B) e H2(Q)>NNH:ue H3(Q)N, (VX B)Xn|,q=0}.

(See, e.g., Refs. 4,)pAgain A andT satisfy the main conditions and therefore one should expect
an analogous transfer of energy for MHD problems. However, it is known that cascades in MHD
are very different from the hydrodynamic onesee, e.g., Ref.)6which is a warning not to expect

fine details from our calculations on energy transfer.
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C. Passive scalars

These are magnitudes that are transported and diffused by an incompressible flow with a
given velocityu. They evolve according to

d
—r =AUVt (27)

The velocity is a datum of the problem. It satisfi€&su=0, u-n|,,=0. x>0 is a diffusion
coefficient; as we seé has no influence on. Boundary conditions depend on the meaningpf
and these define the domain &=xA. Set H=L?(Q); for Dirichlet problems, D(A)
=H2(Q)ﬂH(1)(Q); for periodic onesD(A)={¢ e H?*(Q): ¢|,, periodid; for Neumann ones,
D(A)={¢eH?(Q):d¢/neH}(Q)}. The condition of symmetry foA,

dp
39¢(9—nd0'— 0,

is satisfied for allp e D(A). Tracers in a fluid are assumed to behave as passive scalars, provided
they are not dense enough to modify the density or other properties of the fluid. For instance, salt
in ocean water is not taken as a passive, but as an active scalar.

D. Active scalars

The equation is formally similar t27), but nowu depends onp through some other equa-
tion, makingu a (usually nonlocal function of ¢. These equations are rather common in fluid
mechanics(see, e.g., Ref.)7 We will consider two examples: the magnetic potential in two-
dimensional MHD and the temperature inred convection.

E. Magnetic potential

Two-dimensional magnetic field8=(B;,B,) in a simply connected domaifd are of the
form B, =0Aldx,, B,=— dAldx, for some scalar field, called the magnetic potential. With this
variable the MHD equationgvithout forcing on the magnetic fieldecome

IA
—- = TAA-U-VA+C(1),

Ju

Eszu—u-VquAAVAJrf, (28)

V-u=0.

C(t) is some time-dependent constant depending on the choosigwaiiich is indifferent to the
addition of any gradient. Boundary conditions and the gauge con€taate linked. We may
chooseC=0, but at the expense of not being able to precise the valuds aff any point. If
B:n|,o=0, A is constant along every connected componenthfBy allowing C#0 and choos-

ing A=0 at a given point ofdQ), we haveA|,,=0. Thus we may takéd=L2(Q), A=7yA,
D(A)=H2(Q)ﬂHé(Q). The second equation @28) is ignored; we may study the transfer of
energy without knowing the full evolution of the system. The magnetic potential is reputed to
possess an inverse cascddrich as the velocity in two-dimensional turbulence.
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F. Temperature in Be nard convection

In a simple model, this satisfies

o AT—u VT
E—K —u- +1,
Ju
E=vAu—u‘Vu—Vp+e2(T—T1), (29

V.-u=0.

T is the temperature in a bd®,1] X[0,1], « is a thermal diffusion constarg,=(1,0), T, is the
temperature at the upper lig=1, andT;+ 1 is the temperature at the lower oxg=0.p, u, T,
duldx, anddT/dx, are assumed one-periodic in thedirection,u=0 atx,=0 andx,=148f is
a possible injection of temperature.

These conditions make it possible to findas a nonlocal function of (sinceu satisfies a
parabolic equation on a cylindeso that we may define for the temperature the spaces

H=L?0,1]xL?0,1],
(30
D(A)=D(kA)

, aT aT
= TeH( Q) T D) =Ty, TX,0) =T+ LT(0y) =T(Ly), 2~(0y) = -~ (1y) .
1 1

Neumann conditions on the lateral walls are also admissible. Conditions are easily seen to be
satisfied(the integral at the boundary 3% T/dn always vanishesso that we may ignora to see
that the temperature is transferred to the different scales according to our model.

IV. CONCLUSIONS

It is found that the transfer of energy among the different scales acts in a similar way in
several processes of fluid mechanics, including the Navier—Stokes equations, the magnetohydro-
dynamics system, and passive and active scalar equations. The essence of this fact is that these
magnitudes follow an evolution equation formed by the addition of a linear dissipative term which
determines the scales of the flow and an advective one which distributes the energy injected by the
forcing among the different scales. In some extreme cases the presence of a direct or inverse
cascade, where energy is transferred without dissipative loss through some inertial range, may also
be proved. However, it is pointed that these results do not yield precise information on the transfer
of energy in some specific direction, which is known to differ according to the magnitude and the
space dimension.
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