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Abstract—Hyperspectral image registration is a relevant task
for real-time applications like environmental disasters manage-
ment or search and rescue scenarios. Traditional algorithms for
this problem were not really devoted to real-time performance.
The HYFMGPU algorithm arose as a high-performance GPU-
based solution to solve such a lack. Nevertheless, a single-
GPU solution is not enough, as sensors are evolving and then
generating images with finer resolutions and wider wavelength
ranges. An MPI+CUDA distributed multi-GPU implementation
of HYFMGPU was previously presented. However, this solution
shows the programming complexity of combining MPI with an
accelerator programming model. In this paper we present a new
and more abstract programming approach for this type of ap-
plications, which provides a high efficiency while simplifying the
programming of the distributed code. The solution uses Hitmap,
a library to ease the programming of parallel applications
based on distributed arrays. It uses a more algorithm-oriented
approach than MPI, including abstractions for the automatic
partition and mapping of arrays at runtime with arbitrary
granularity, as well as techniques to build flexible communication
patterns that transparently adapt to the data partitions. We
show how these abstractions apply to this application class. We
present a comparison of development effort metrics between the
original MPI implementation and the one based on Hitmap,
with reductions of up to 95% for the Halstead score in specific
work redistribution steps. We finally present experimental results
showing that these abstractions are internally implemented in a
high efficient way that can reduce the overall performance time
in up to 37% comparing with the original MPI implementation.

Index Terms—General-Purpose computation on Graphics Pro-
cessing Units (GPGPU); HPC in Digital Signal and Image Pro-
cessing and Vision; Libraries and Programming Environments;
Partitioning, Mapping, and Scheduling

I. INTRODUCTION

Image registration is the task of estimating the translation,
rotation and scaling parameters of a given image with respect
to a second take of the same scene, obtained at different
times, viewpoints, and/or lighting conditions. During the last
years, different hyperspectral image registration techniques
have been proposed, but most of them ignore time perfor-
mance. However, many real-time applications such as the
management of natural disasters or surveillance operations
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depend on hyperspectral images being processed in real-time.
GPUs were used to boost tasks like classification, target
detection or segmentation of this kind of images, but few
efforts were made to achieve a real-time implementation of a
hyperspectral registration algorithm. Ordóñez et al. introduced
in [2] a sequential CPU implementation of HYFM [3], a
Fourier-Mellin algorithm for hyperspectral images registra-
tion. That work was followed by HYFMGPU, a single-GPU
CUDA-based version whose performance makes it suitable
to be used in real-time environments [1]. As hyperspectral
sensors technology improves, images have finer resolutions
in both spatial and spectral domains. Because of that, more
computational power and more memory space, this latter one
being a limited resource in GPUs, is needed. We presented
in [4] a coarse-grained distributed multi-GPU implementation
of HYFM that follows a hybrid MPI+CUDA programming
approach and is able to satisfy such present and future needs.

Nevertheless, this approach shows the programming com-
plexities of MPI when it is combined with an accelerator pro-
gramming model such as CUDA, mixing work redistributions
with data movements between host and devices, and calls to
external scientific libraries. In this work we present a new
and more abstract programming approach for this class of
applications. This approach highly simplifies the programming
while obtaining a high performance efficiency. The solution is
based on Hitmap [5], a library designed to ease the task of
programming parallel applications by using distributed arrays.
It includes abstractions for the automatic partitioning and map-
ping of arrays with arbitrary granularity, as well as the auto-
matic construction of flexible communication patterns that are
transparently adapted to the partition. In particular, we show
how the techniques of automatic partitioning, collective oper-
ations and pattern-based communications that Hitmap offers,
can be applied to the distributed multi-GPU version of the
HYFM image registration algorithm. We present a comparison
of the original MPI+CUDA code with the new Hitmap-based
approach in terms of development effort metrics, which shows
a high reduction of the overall programming complexity of the
coordination code of up to 95% for the Halstead development
effort score in specific work redistribution steps. The usage of
such techniques alleviates the development effort with respect
to their MPI counterparts, whose application was proven to
be quite tedious and error-prone in some specific steps of the
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Fig. 1. HYFM scheme for registration of two hyperspectral images. Adapted from [1].

algorithm. When trying to measure the potential overhead that
the Hitmap usage may introduce in the performance of our
HYFM multi-GPU implementation, we discover that despite
introducing an additional code abstraction layer the algorithm
decreased its wall time in up to a 37%, namely thanks to the
internal use in Hitmap of efficient MPI coding techniques, that
can be complex to be expressed manually, including the use
of hierarchical derived data types, and highly asynchronous
communication patterns.

The rest of this paper is organized as follows: we start
discussing some related research in Sect. II. Sect. III recalls the
multi-GPU distributed HYFM algorithm, introducing then in
Sect. IV the Hitmap distributed programming library. We show
in Sect. V how Hitmap techniques are applied to implement the
algorithm. The results obtained by this approach are introduced
in Sect. VI, and finally Sect. VII presents the conclusions and
some feasible research lines for the future.

II. RELATED WORK

GPU offloading is a quite common approach followed
in remote sensing in order to boost the implementation of
such algorithms. For example, GPU-accelerated methods for
geospatial object detection for both civilian [6] and military [7]
fields have been recently presented, as well as for undersea
image reconstruction [8] or synthetic aperture radar imaging
in marine surfaces [9]. Many of these works also remark
the sustained improvement of sensor technology and how it
increases both computing and memory needs of any algorithm
that manipulates data coming in real-time from sensors embed-
ded in unmanned vehicles or satellites. There are interesting
research lines focused on exploiting heterogeneous devices
in order to accelerate relevant stages of such tasks. For in-
stance, Martel et al. introduce in [10] some strategies to reach
latency-efficient implementations of dimensionality reduction
algorithms in a GPU and an FPGA. Other works, in turn, opt to
exploit highly-optimized GPU-based deep learning techniques
to implement remote sensing tasks like image-based crop
health monitoring [11] or cloud segmentation for weather
prediction [12].

The mixed MPI+CUDA programming approach is a com-
mon solution to scatter among several GPUs data that would
require an unreasonably long compute time on a single device
or that are too large to fit into its memory. Depending on
the properties of the algorithm being distributed, this ap-
proach may require to implement complex domain decom-

positions [13]. Hitmap offers an intermediate abstraction layer
to tackle this issue, halfway between the manual programming
of distributed data structures on message-passing models, and
PGAS languages (Partitioned Global Address Space), like
Chapel [14] or UPC [15]. It provides a simple way to create
distributed arrays that map to local address spaces, with
explicit mechanisms for the construction of reusable communi-
cation patterns at runtime. These patterns adapt to the data par-
tition, creating a low number of aggregated communications
when moving data across the global space. This leads, for ex-
ample, to a performance efficiency comparable to UPC, with a
reduced programming complexity and development effort [5].
Hitmap extends and generalizes the hierarchy creation and data
partition functionalities of other libraries or distributed arrays
models, such as HTAs [16] or Parray [17]. It allows the usage
of transparent partition policies, either regular or irregular,
defined as interchangeable modules with a common interface.
This hides to the programmer the decisions about granularity
and synchronization across hierarchical levels. Hitmap has also
been extended to support data structures such as sparse matri-
ces, or graphs, using the same methodology and interface [18].
Hitmap is also the portable library used to provide a common
interface for transparent data management in the Controller
model [19], an abstract entity that allows programmers to
easily manage the communications, and kernel launching de-
tails, on multiple heterogeneous devices, including GPUs and
multi-core CPUs [20]. Regarding its application in specific use
cases, Hitmap has been presented in [21] as a programming
interface to transparently map agents to processes in a multi-
agent pedestrian simulator.

III. DISTRIBUTED HYFMGPU
The HYFM algorithm expects a pair of hyperspectral im-

ages (reference and target) as inputs. The goal is to register the
target image, this is, to compute how it is rotated, shifted and
scaled with respect to the reference image. This procedure,
which is depicted in Fig. 1, was first implemented in CUDA
by Ordóñez el al. to be run in single NVIDIA GPUs [1] and
then distributed among several devices as we presented in [4].
In this section we present an overview of the coarse-grain
parallelization process followed to reach the MPI+CUDA
distributed multi-GPU version of the algorithm. This will
help the reader to better understand the computation and
communication steps and how the new Hitmap approach is
introduced.



1 int PCAS = 8 // bands extracted via PCA
2 int PCAS_BY_GPU = PCAS / world_size;
3 int g = real_mpi_rank; // from MPI_Comm_rank
4 float *h_pca1_geosliced = (float*) malloc(sizeof(float)*COLUMNS*im1_gpurows_array[g]*PCAS);
5 float *h_pca1_bandsliced = (float*) malloc(sizeof(float)*COLUMNS*ROWS*PCAS_BY_GPU);
6
7 cudaMemcpy(h_pca1_geosliced,d_pca1_geosliced,sizeof(float)*COLUMNS*im1_gpurows_array[real_mpi_rank]*PCAS,

cudaMemcpyDeviceToHost);
8
9 MPI_Request req_pca_isend[4];

10 for(g=0;g<world_size;g++) {
11 if(g!=real_mpi_rank) {
12 int send_tag = 10000 + (real_mpi_rank * 100 + g);
13 float* send_ptr = h_pca1_geosliced + (im1_gpurows_array[real_mpi_rank]*COLUMNS*PCAS_BY_GPU*g);
14 MPI_Isend(send_ptr, im1_gpurows_array[real_mpi_rank]*COLUMNS*PCAS_BY_GPU, MPI_FLOAT, g, send_tag,

MPI_COMM_WORLD, &(req_pca_isend[g]));
15 }
16 }
17 MPI_Datatype pca1_strided_bands_typearray[4];
18 int gg;
19 int recv_rows_offset = 0;
20 for(gg=0;gg<world_size;gg++) {
21 g = gg;
22 if(g!=real_mpi_rank) {
23 int recv_tag = 10000 + (g * 100 + real_mpi_rank);
24 float* recv_ptr = h_pca1_bandsliced + (recv_rows_offset*COLUMNS);
25 MPI_Type_vector(PCAS_BY_GPU,im1_gpurows_array[g]*COLUMNS,ROWS*COLUMNS,MPI_FLOAT,&(pca1_strided_bands_typearray

[g]));
26 MPI_Type_commit(&(pca1_strided_bands_typearray[g]));
27 MPI_Recv(recv_ptr,PCAS_BY_GPU,pca1_strided_bands_typearray[g],g,recv_tag,MPI_COMM_WORLD,MPI_STATUS_IGNORE);
28 }
29 else {
30 int b;
31 for(b=0;b<PCAS_BY_GPU;b++) {
32 float* d_single_band_ptr = h_pca1_bandsliced + (recv_rows_offset*COLUMNS) + (ROWS*COLUMNS*b);
33 float* single_band_ptr = h_pca1_geosliced + COLUMNS*im1_gpurows_array[g]*PCAS_BY_GPU*g + COLUMNS*

im1_gpurows_array[g]*b;
34 memcpy(d_single_band_ptr,single_band_ptr,im1_gpurows_array[g]*COLUMNS*sizeof(float));
35 }
36 }
37 recv_rows_offset += im1_gpurows_array[g];
38 }

Fig. 2. Implementation of the rows-to-bands redistribution of one of the two images in the MPI original program.
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Fig. 3. Workflow of rows-to-bands group redistribution

1) Initialization: Both the reference and the target images
are scattered among the GPUs in equally distributed groups
of rows. When this distribution is not exact, the uneven rows
are cyclically assigned to each GPU in order to keep the load
balanced.

2) Preprocessing: This step is composed of three different
parts, on which both reference and target images are first
filtered using a Blackman window, then normalized, and finally
shrunk to a reduced number of bands by means of a principal

component analysis (PCA). In this distributed approach, the
GPU commanded by each process takes the reference and
target images slices loaded in Step 1 and filters them. Once
filtered, they must be normalized by centering the value of
each pixel with relation to the mean value of all the pixels of
its band. Since each GPU only keeps its corresponding group
of rows, an MPI_Allreduce operation is needed so that
all processes could have the full summation of each band of
the input images, and then compute the mean values used to
center their image slices.

The principal component analysis of a filtered and centered
input image is composed of several stages. First, a correlation
matrix of the input is calculated. In [4] we show how this full
correlation matrix can be obtained in parallel from the slice
available in each GPU. Summarising, each GPU computes
a partial correlation matrix, all of them being gathered and
summed up into a full correlation matrix and then broadcast
to all processes with an MPI_Allreduce operation. Second,
each GPU uses cuSOLVER [22] to compute the singular
value decomposition (SVD) of the full correlation matrix.
This decomposition is used to transform the row-sliced input
into a band-reduced and principal-component ordered version.
The last part of the PCA calculation consists on a MPI-



based reconstruction of the band-reduced input images, which
is sketched in Fig. 3. Each GPU k expects ebk full bands
as inputs for the Step 3, each band with r × c elements.
The code in Fig. 2 shows how one of the two input images
is reconstructed in the original MPI+CUDA version of the
program. First, each process k gets from its GPU the c×rk×eb
slice and scatters it among the rest of processes by means
of asynchronous MPI_Isend messages (lines 7–16), and
represented as individual arrows in the left part of Fig. 3.
The data received by each process are not retrieved from
MPI buffers using as many individual MPI_Recv messages as
data packages are sent to it. In turn, thanks to a user-defined
MPI_Type_vector (line 25) the expected slice with ebk
bands of r × c elements is directly reconstructed using the
parts coming from the other processes by means of a single
MPI_Recv message (lines 22–28). Moreover, there are parts
of data that are already available for each process. These
parts can be rearranged with no message exchanging, just with
proper local memcpy operations (lines 29–36).

3) Band processing and composition: In this step, for
both input images, each GPU takes the corresponding slice
of c columns, r rows and ebk reduced bands, performs on
them a high-pass filter and a multilayer fractional Fourier
transform (MLFFT) [23], extracts log-polar coordinate maps
and computes a phase correlation (Stages II to IV in Fig. 1).
Some of these operations are computed by cuFFT [24] routines
that expect cufftComplex data as inputs, so a previous
data type conversion is needed. Regarding the reduction of the
partial log-polar maps computed by each GPU into the final
one (Stage V), these maps are first gathered in the root MPI
process and then sent to its GPU in order to accumulate them
using a specific kernel. These maps are in cufftComplex
format, so that a suitable MPI_Type_contiguous type is
defined to simplify these transfers.

4) Peak processing: In the first part of this step, the root
MPI process uses Thrust [25] to generate a host-side ordered
indexes vector from the GPU-stored final average map. Both
arrays are broadcast to the rest of processes along with the
first PCA component from both reference and target images,
since all these data structures are needed to process the peaks
pointed by a number of the top elements of the ordered
indexes vector. Then, every process traverses cyclically the
top subset of the ordered indexes array in order to obtain a
partial maximum peak. The information of these partial peaks
is on structs that are packed as MPI_Type_contiguous
messages and then gathered in the root process. Finally, this
process inspects the partial peaks received and computes the
expected outputs of rotation angle, scale factor and cartesian
shift shown in Fig. 1.

IV. OVERVIEW OF THE HITMAP LIBRARY

Hitmap [5] is a library for the partition, mapping, and
management of hierarchically distributed data structures at
runtime. It was originally designed for dense arrays, and has
been also extended to support sparse data structures, such
as sparse matrices or graphs, using the same methodology

and interface [18]. It is based on an SPMD (Single Program
Multiple Data) model and the message-passing paradigm.
Hitmap defines several abstractions to write parallel programs
using distributed data structures. The functions in the library
are grouped in three main modules.

Tiling functions. They allow the definition and management
of hierarchically tiled data structures. These functionalities can
be used independently of the rest of the library to improve
locality on sequential code. They define classes to represent
domains of indexes in a compact form. A class named
HitTile represents the association between the elements
of the indexes-domain space and the actual data, allowing
the accesses to data with the same efficiency as manually
developed codes that do not use the tile abstraction. A process
can declare and allocate a subspace of the original domain, in
order to create a distributed data structure.

Mapping functions. They include interchangeable modules
that implement policies to automatically part and map domains
in terms of the processes of a virtual topology. The virtual
topologies are also generated by another class of policy
modules at runtime. Neighbor relations across processes are
established by these policies. The partitions are represented
by objects named HitLayout that can be queried to obtain
the indexes subdomain mapped to the local, a neighbor,
or any other remote virtual process. New distributed arrays
constructors have been added to the latest Hitmap version to
directly map and allocate distributed arrays in terms of the
selected topology and layout function names.

Communication functions. They are an abstraction of the
message-passing model for tiles or tiles parts across virtual
processes. They allow the creation of HitCom objects that
store the information needed to marshall/unmarshall and ex-
change selected tile data across processes. Several interfaces
for different types of point-to-point and collective commu-
nications are available. More complex patterns composed of
multiple communication operations involving one or more tiles
(several HitCom objects), are implemented as HitPattern
objects. The constructor functions use the HitLayout ob-
jects associated to the distributed arrays to automatically
determine who communicates and what. Thus, these objects
are transparently adapted on construction time to the target
platform details and the actual data distribution selected. These
communication objects have a method that can be called at any
time, and as many times as needed, to execute the communica-
tions. Internally, these objects exploit efficient MPI techniques
such as derived data types, asynchronous communications, etc.

V. APPLYING HITMAP TO DISTRIBUTED HYFMGPU

In this section we describe the main changes we apply to the
original MPI+CUDA distributed HYFMGPU implementation
in order to hide the MPI layer, by exploiting the more abstract
Hitmap funcionalities described in Sect. IV.

A. Environment initialization

First of all, the whole Hitmap environment must be initial-
ized by invoking hit_comInit() (line 1 of Fig. 4). This



1 hit_comInit( &argc, &argv );
2
3 hitNewType( float );
4 HitTile_float im1_tileRows = hitDistribTile( float,

hitShape( (BANDS), (ROWS), (COLUMNS) ),
ArrayDimProjection(HIT_ROWSDIM), Blocks );

5 HitTile_float im2_tileRows = hitDistribTile( float,
hitShape( (BANDS2), (ROWS2), (COLUMNS2) ),
ArrayDimProjection(HIT_ROWSDIM), Blocks );

Fig. 4. Hitmap initialization and distributed tile creation code

1 HitTile_float ht_corr = hitDistribTile( float, hitShape
( (numBands*numBands) ), Plain, Copy );

2 cudaMemcpy(ht_corr.data,d_correlacion,sizeof(float)*
numBands*numBands,cudaMemcpyDeviceToHost);

3 HitTile_float ht_corr_sum = hitDistribTile( float,
hitShape( (numBands*numBands) ), Plain, Copy );

4 hit_comDoReduce(ht_corr, ht_corr_sum, HIT_RANKS_NULL,
HIT_FLOAT, HIT_OP_SUM_FLOAT);

5 hit_tileFree(ht_corr);
6 cudaMemcpy(d_correlacion,ht_corr_sum.data,sizeof(float)

*numBands*numBands,cudaMemcpyHostToDevice);
7 hit_tileFree(ht_corr_sum);

Fig. 5. All-reduce sum example in Hitmap

function internally calls MPI_Init() and should be paired at
the end of the program with a call to hit_comFinalize(),
which internally invokes MPI_Finalize().

B. Distributed memory allocation for images

Hitmap provides a hitDistribTile() constructor to
create tiles which are automatically distributed among the
processors. This function receives the input native data type,
the shape of the global buffer to distribute, the name of a
topology function that groups the processors to create neighbor
relations, and the name of a layout defining the desired type
of distribution. Lines 4-5 in Fig. 4 show how both reference
and target input images of the algorithm are distributed by
rows following a Blocks layout on top of a topology that
projects the processors along the rows dimension of the
image (ArrayDimProjection(HIT_ROWSDIM)).

C. All-reduce operations

There are three points along the distributed HYFMGPU al-
gorithm on which an all-reduce collective operation is needed:
the first two ones are the centering of filtered images and
the summation of the full correlation matrix, both in Step 1;
the last one is the composition of the final correlation map
at the end of Step 3. The code in Fig. 5 shows how the
full correlation matrix from Step 1 is all-reduced in Hitmap.
First, each process allocates two local copies of a matrix.
The first one (line 1) is used to store a partial correlation
matrix retrieved from the GPU using cudaMemcpy() (line
2). The second one is used to save the resulting all-reduced
full matrix (line 3). A Copy layout function and a Plain
non-projected topology are used to replicate both tiles across
all the processes. The reduction operation is invoked using
hit_comDoReduce() (line 4). This function receives the
input and output tiles, the root process of the operation (or

HIT_RANKS_NULL if it is an all-reduce operation), the data
type, and the reduction operator (in this case, a single-precision
float summation). Finally, each process copies the result to its
GPU and deallocates the tiles (lines 5–7). Code excerpts for
the other two aforementioned reductions are not shown, since
they follow the same scheme.

D. Data redistributions

One of the most powerful abstractions offered by Hitmap
is the hit_patternDoRedistribute() operation. It
provides a quick and transparent mechanism to rearrange the
data of a distributed HitTile into another tile with a different
mapping. It is general enough to support both typical MPI
collective operations, such as broadcast or gather, and more
complex algorithm-dependent data redistributions.

Custom data redistributions. The rows-to-bands data rear-
rangement introduced in Step 2 of the distributed HYFMGPU
algorithm (see Sect. III-2) is a representative example of
the kind of custom data redistributions that can be smoothly
implemented by means of this feature. The code presented
in Fig. 6 shows how this redistribution is implemented with
Hitmap for one image. Each process declares and allocates
space for a global image tile distributed by blocks of rows
(see line 1). However, the algorithm only works with the
first bands of the image, more specifically the number of
them indicated by the PCAS variable. This shrinking in the
bands dimension is obtained adding an optional HitShpView
parameter when creating the distributed tile. The data of the
PCAS number of bands is retrieved from the associated GPU in
line 3. Then, a second distributed tile is declared and allocated
to store the same data but distributed by blocks of bands
(see line 5). The rearrangement of the data from the first
distributed tile to the second one is issued with a call to the
hit_patternDoRedistribute() function. It receives
as parameters the input and output tiles, which contain all
the mapping information needed to issue the communications
needed (see line 6). Finally, once the data reach the destination
tile, the origin tile can be freed (see line 7).

A visual comparison of this code with the equivalent code
in the original MPI version presented in Fig. 2, shows that the
programmer needs about five times less lines of code to imple-
ment the same image rearrangement with Hitmap, and using a
much clearer programming interface. Now the redistribution
can be written focusing on algorithmic terms (from image
rows to image bands) rather than on the MPI low-level and
error-prone details such as custom vector types definitions or
offset calculations needed to unpack data following the proper
layout. A more comprehensive evaluation of these advantages
is presented in Sect. VI.

Alternative to MPI collectives. Programmers can also ex-
ploit the pattern-based redistribution functionalities of Hitmap
to abstract from MPI collective primitives like MPI_bcast
or MPI_gather. For example, after the peak processing
performed in Step 4, the partial peaks obtained should be
gathered and examined by a single process. The code in Fig. 7
shows how this specific stage is implemented in Hitmap. Peaks



1 HitTile_float ht_im1_pca_geosliced = hitDistribTile( float, hitShape( (BANDS), (ROWS), (COLUMNS) ), ArrayDimProjection
(HIT_ROWSDIM), Blocks, hitShpView( (HIT_BANDDIM, HIT_SHAPE_FIRST, PCAS) ) );

2
3 cudaMemcpy(ht_im1_pca_geosliced.data,d_pca1_geosliced,sizeof(float)*COLUMNS*im1_tileRows_rows*PCAS,

cudaMemcpyDeviceToHost);
4
5 HitTile_float im1_tileBands = hitDistribTile( float, hitShape( (PCAS), (ROWS), (COLUMNS) ), ArrayDimProjection(

HIT_BANDDIM), Blocks );
6 hit_patternDoRedistribute(ht_im1_pca_geosliced, im1_tileBands, HIT_FLOAT);
7 hit_tileFree(ht_im1_pca_geosliced);

Fig. 6. Implementation of the rows-to-bands redistribution of one of the two images using Hitmap.

1 HitType Hit_Peak;
2 hit_comTypeStruct(&Hit_Peak, CPeak, 6, peak_id, 1,

HIT_INT, max2, 1, HIT_DOUBLE, scal, 1, HIT_DOUBLE,
rot, 1, HIT_DOUBLE, indx, 1, HIT_INT, indy, 1,
HIT_INT);

3 HitTile_CPeak allPeaksTile_Gather = hitDistribTile(
CPeak, hitShape( (world_size) ), Plain, Blocks );

4 hit(allPeaksTile_Gather, 0) = local_peak;
5 HitTile_CPeak allPeaksTile_InLeader = hitDistribTile(

CPeak, hitShape( (world_size) ), Plain, InLeader );
6 hit_patternDoRedistribute(allPeaksTile_Gather,

allPeaksTile_InLeader, Hit_Peak);
7 if(hit_layImActive(hit_tileLayout(allPeaksTile_InLeader

))) {
8 CPeak* local_peaks = allPeaksTile_InLeader.data;
9 /*

10 * Host-side peak selection code, omitted
11 */
12 }
13 hit_tileFree(allPeaksTile_Gather);
14 hit_tileFree(allPeaksTile_InLeader);

Fig. 7. Partial peaks gather in Hitmap

have their own structured type, so first we must create its
equivalent in Hitmap (lines 1–2). Since every process returns
one partial peak, a distributed tile with as many elements as
processes is needed. This tile is declared and allocated in line
3, using a Plain topology and a Blocks layout with a
shape containing one index per process. Then, each process
saves its peak value in the single tile position it physically
owns (line 4). Another tile is needed to gather all the partial
peaks in the leader process. Hitmap uses the term leader to
identify a special process that can be used as the equivalent of
an MPI’s root process. This tile is created in line 5 using
the same Plain topology but an InLeader layout. Let
us note that although every process is calling this instruc-
tion, the InLeader layout makes the tile to be physically
allocated only in the leader of the topology. The gather is
effectively performed in line 6, by means of the corresponding
hit_patternDoRedistribute() call. Once the leader
have all the partial peaks, it can process them to select the final
candidate (see lines 7–12). The condition in line 7 restricts this
operation to the leader process. As usual, tiles are freed when
they are not needed anymore (lines 13–14).

E. Integration with specific GPU libraries

Both the original MPI+CUDA program, and this new
Hitmap+CUDA implementation, make an intensive use
of GPU libraries such as cuBLAS [26], cuFFT [24],
cuSOLVER [22], the NVIDIA Performance Primitives (NPP)

TABLE I
MEASUREMENTS OF DEVELOPMENT EFFORT METRICS

FOR THE DISTRIBUTED HYFMGPU ALGORITHM

Operation Version LOC TOC CCN HAL

All-reduces
Hitmap 22 354 0 14694

MPI 24 362 0 13393

Collective-based Hitmap 45 501 4 42546

redistributions MPI 48 397 6 36818

Rows-to-bands Hitmap 14 239 0 12282

rearrangement MPI 79 768 10 239745

Full tool code
Hitmap 1451 14930 267 71948436

MPI 1595 15990 305 75663635

[27], and Thrust [25]. Programming interfaces of such libraries
generally expect device-side buffers as input/output arguments,
so explicit cudaMemcpy() calls are still needed. Hitmap
smoothly provides host-side pointers to be passed as arguments
to such calls via the data attribute of HitTile objects, as
it is shown in multiple source lines in Figs. 5 to 7.

VI. EXPERIMENTAL STUDY

This section describes an experimental study to assess the
advantages of using Hitmap on the distributed multi-device
version of HYFMGPU described in Sect. V. The study is
focused on two aspects: the code complexity or development
effort, and the performance effects that Hitmap may introduce
due to its additional abstraction layer.

A. Development effort measures

First we analyze the differences in development effort
between the Hitmap version and the baseline implementation
using pure MPI primitives. We measure four classical devel-
opment effort metrics:

• Lines of code (LOC) and number of tokens (TOC), which
offer plain figures about the volume of code that the
programmer should develop.

• McCabe’s cyclomatic complexity (CCN), which intends
to assess the rational effort needed in terms of code
divergences and potential issues that should be considered
to develop, test, and debug the program [28].

• Halstead development effort (HAL), which uses both
code complexity and volume indicators to obtain a com-
prehensive measure of the development effort [29].

Table I shows the values measured for the aforementioned
metrics in both Hitmap and MPI versions of the program. The



TABLE II
DIMENSIONS AND SIZE IN GB OF

SYNTHETIC HYPERSPECTRAL IMAGES USED AS TEST CASES

Input Width Height Bands Image size

C1 614 2678 220 1.45 GB
C2 512 4096 224 1.88 GB
C3 1228 2678 220 2.89 GB
C4 1024 4096 224 3.76 GB

table present measurements for the whole program (bottom),
and for code snippets of the coordination code that respectively
comprise: (1) The all-reduce operations; (2) The collective-
based redistributions; and (3) The rows-to-bands rearrange-
ment. For both the all-reduce operations and the collective-
based redistributions the numbers of lines and tokens are sim-
ilar among MPI and Hitmap versions. However, the Halstead
metrics indicates that the Hitmap interface is slightly more
complex. This is due to the creation and use of auxiliary
tiles, shapes, layouts or topologies that are not directly related
with the creation of the distributed tiles. The power of Hitmap
abstractions gets revealed when implementing more complex
data movements. For the rows-to-bands rearrangement, the
Hitmap version can express the same operation in less than a
fifth of the number of source lines than MPI. The cyclomatic
complexity disappears and the Halstead value drops in one
order of magnitude. These are the effects of all the message
exchange logic being delegated to Hitmap. Moreover, in this
case not only is the development effort reduced in quantitative
terms, but also an important amount of time in debugging
tasks is saved. Finally, the metrics for the full tool code
show the overall development effort reduction obtained when
using Hitmap, which affects only the part of code devoted to
coordination and data management in the distributed multi-
GPU version of the HYFM algorithm.

B. Performance impact of Hitmap

In this section we study the performance impact of adding
the additional abstraction layer provided by Hitmap. These
tests have been run using four pairs of randomly generated
matrices as synthetic hyperspectral images. Table II shows
the main properties of a single image of each pair. The
HYFM algorithm properties allow the usage of such inputs
for performance evaluation purposes, as its performance is
insensitive to translation, rotation, scale, and noise in the input
images [3].

The testbed was a node equipped with a dual-socket host
CPU composed of 2 Intel Xeon E5-2609v3 (1.9 GHz, 6 cores
each) with 64 GB of RAM, and 4 GPUs NVIDIA GeForce
GTX TITAN Black (GK110B architecture, compute capability
3.5, 15 SMs with 192 CUDA cores each up to 2880, 6 GB
RAM) controlled by the 410.48 driver. The code has been
compiled under Linux using nvcc and other CUDA libraries
provided with CUDA Toolkit 10.0. The MPI support was
provided by mpich-3.2.1.

TABLE III
PERFORMANCE RESULTS FOR

HITMAP VERSION OF DISTRIBUTED HYFMGPU

Test case
N = 10 runs each version

x̄ (wall time) σ Overhead

C1
2 GPU

Hitmap 8.07 s 0.012 −36.48 %
MPI 12.71 s 0.028

4 GPU
Hitmap 5.60 s 0.174 −35.52 %
MPI 8.69 s 0.705

C2
2 GPU

Hitmap 8.24 s 0.017 −37.24 %
MPI 13.13 s 0.016

4 GPU
Hitmap 6.27 s 0.041 −31.51 %
MPI 9.15 s 1.011

C3
2 GPU

Hitmap 11.43 s 0.014 −23.09 %
MPI 14.86 s 0.110

4 GPU
Hitmap 7.43 s 0.124 −29.59 %
MPI 10.56 s 1.411

C4
2 GPU

Hitmap 13.08 s 0.015 −17.89 %
MPI 15.93 s 0.283

4 GPU
Hitmap 8.31 s 0.146 −21.55 %
MPI 10.59 s 1.538

Table III contains, for each test case, the average (x̄) and the
standard deviation (σ) of the wall time after 10 runs of both
versions of the code, distributing the work among 2 or 4 GPUs.
Moreover, the performance overhead introduced by Hitmap
when comparing it with the pure MPI implementation is shown
in a separated column. Overhead figures are negative for all the
test cases, ranging from −17.89% to −37.48%. In other words,
the Hitmap abstraction layer put on top of the MPI version of
distributed multi-device HYFMGPU did not introduce perfor-
mance overhead at all, but it yielded a systematic performance
gain for all the test cases run. In addition, the application
performance is in general more stable when using Hitmap, as
it is shown in the deviation column. Squeezing all the potential
of MPI when implementing distributed versions of complex
algorithms is an arduous task, and it usually needs a thorough
knowledge of asynchronous and non-blocking functionalities.
If they are not used properly, faulty scenarios that are quite
difficult to debug tend to appear. To avoid such situations
programmers commonly write their codes having in mind a
trade-off among performance and complexity. For instance, in
the MPI version of the rows-to-bands rearrangement shown
in Fig. 2 each process sends data asynchronously, but re-
ceives them with a blocking version of the receive operation.
The internal logic of hit_patternDoRedistribute()
is based on fully asynchronous and skewed communication
patterns, deriving in a performance improvement when porting
this part of the algorithm to Hitmap.

VII. CONCLUSIONS

In this paper we present a Hitmap version of the distributed
multi-GPU MPI+CUDA implementation of HYFM, a hyper-
spectral image registration algorithm. We review the main
functionalities offered by Hitmap to manage distributed arrays,
and recall how the multi-device version of HYFMGPU divides



up the work among several GPUs. Then, we present a detailed
explanation about how Hitmap can simplify the programming
tasks of such a distributed multi-device code, focusing on some
interesting parts of the algorithm. Four different development
effort metrics have been measured for both Hitmap and MPI
versions. In general terms, thanks to Hitmap, less development
effort is needed. The development of the rows-to-bands rear-
rangement specially takes advantage of Hitmap usage, with a
Halstead score one order of magnitude lower than the previous
MPI implementation. To assess the impact of Hitmap in the
performance of the overall application, tests with both 2 and 4
GPUs have been run using four pairs of synthetic images with
sizes up to 3.8 GB. Hitmap did not introduced performance
overhead but it yielded gains for all the test cases run, with
wall times reductions between 17.89% and 37.48%. These
gains are attributed to the efficient exploitation that Hitmap
internally does of global communication information and MPI
asynchronous and non-blocking communications, which can
improve suboptimal user algorithm implementations.

Finally, some future research lines are proposed. In order to
decrease even more the effort needed to implement all-reduces
and other collective operations, improvements of the Hitmap
interface can be introduced. The performance of the Hitmap
implementation of the distributed multi-device HYFMGPU
algorithm has been only assessed inside a single node equipped
with a number of identical GPUs. Scenarios with GPUs in
distributed nodes, and mixing GPUs with different capabilities
should be tested to wholly assess the performance of the
approach. The integration of Hitmap with the Controllers
model [20] for generic accelerators programming could also
simplify the programming and portability of the GPU code.
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[8] M. Rossi, P. Trslić, S. Sivčev, J. Riordan, D. Toal, and G. Dooly, “Real-
time underwater stereofusion,” Sensors, vol. 18, no. 11, 2018, paper
3936.

[9] L. Linghu, J. Wu, Z. Wu, and X. Wang, “Parallel computation of EM
backscattering from large three-dimensional sea surface with CUDA,”
Sensors, vol. 18, no. 11, 2018, paper 3656.
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