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Abstract 

Agriculture is an essential human activity, highly dependent on 

meteorological conditions and focus of research and innovation to afront several 

challenges. Climate change, global warming, and the degradation of agricultural 

ecosystems are just a few of the problems that humans are facing for continuing the 

essential food production. Seeking the innovation in the agricultural sector, three 

main research topics were considered for this thesis; such as microalgae production, 

soil color and fertility, and meteorological data acquisition. 

These subjects have increasing roles in agriculture, specifically under the 

uncertainty in the future of food production. Microalgae are a healthy alternative 

for crops fertilization and soil sustainability; while the soil fertility parameters need 

to be more studied to aim lower cost and faster analysis methods to help the 

management. Agriculture, as a highly weather-dependent activity, needs 

meteorological data to anticipate events, planning, and management crops in an 

efficient mode. These topics were selected with the purpose to improve the current 

state of the art, propose new alternatives based, mainly, in the application of 

artificial neural networks (ANNs) as a novel manner to solve the problems and 

generate knowledge of direct application in crop systems. ANNs are a useful tool to 

modeling and solve complex nonlinear problems; they are a mathematical model of 

the animal brain and their ability to deal with complicated issues drive the scientific 

community to used them to find solutions hardly found with other techniques. 

The main objective of this thesis was to generate ANN models capable of 

addressing agricultural related problems as an alternative to traditional and more 

expensive methods for management, analysis, and data acquisition in the crop 

systems. For the microalgae culture experiments, monoalgal and mixed algal culture 

spectral signatures from light absorption measurements were analyzed. 

Additionally, an ANN was used alongside the spectral signature in order to create a 

model capable of classifying the microalgae cultures and determine the species 

present in suspension. The results show that the ANN was capable of distinguishing 

between monoalgal and mixed algal cultures, identifying the microalgae species in 

the monoalgal cultures and providing the approximate composition of mixed algal 

cultures.  

Regarding the soil study, soil samples were classified according to the 

Munsell color notation, and the obtained hues were used to group soils and perform 

statistical analysis over their fertility attributes. In addition, RGB and L*a*b* colors 
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were used as input in ANNs to create models to describe the soil fertility parameters. 

The RGB and the L*a*b* colors were obtained from digital color photographs and 

computer software programmed to perform quick and accurate measurements. The 

results showed that the soil aggrupation based on the Munsell color hue resulted 

not efficient to separate samples according to fertility levels and to regard the ANNs 

approach to describe soils, the obtained models were not capable of providing 

accurate results. 

Finally, for the meteorological data acquisition study, daily data from a 

weather station network were used to perform interpolations with several methods, 

including traditional techniques and ANNs, and the results were evaluated to 

compare the accuracy of the methods. With these interpolations algorithms, the 

development of virtual weather stations (VWS) was proposed. A script code to 

automatically acquire, process and interpolate meteorological data was made to 

perform the estimations in different locations where weather stations are not 

available. The results showed that the interpolation methods have high accuracies 

― decreasing slightly during summer and winter. From a practical perspective, the 

methods here described could be useful to produce meteorological time series data 

with the VWS. 

In conclusion, ANNs have proved to be a powerful tool to solve 

classifications, estimations and predictions problems. The use of ANN in agricultural 

related issues is a critical step to find solutions for problems and help the workers 

to make faster and better decisions in the productive chain. For instance, in 

microalgae commercial production, the development method would provide a fast 

and reliable tool for managing. In soil fertility, ANNs still have a road to follow to find 

accurate models; this research gave light for new directions to take in this matter. 

Moreover, regarding the meteorological data acquisition, the VWS can help farmers 

to obtain data of importance for cultures and to plan more efficient irrigations. 
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Resumen 

La agricultura es una actividad esencial para los humanos, es altamente 

dependiente de las condiciones meteorológicas y foco de investigación e innovación 

con el objetivo de enfrentar diversos desafíos. El cambio climático, calentamiento 

global y la degradación de los ecosistemas agrícolas son sólo algunos de los 

problemas que los humanos enfrentamos para continuar con la esencial producción 

de alimentos. Buscando la innovación en el sector agrícola, se consideraron tres 

tópicos principales de investigación para esta tesis; la producción de microalgas, el 

color del suelo y la fertilidad, y la adquisición de datos meteorológicos. 

Estos temas tienen roles cada vez más importantes en la agricultura, 

especialmente bajo la incertidumbre del futuro de la producción de alimentos. Las 

microalgas son una interesante alternativa para la fertilización de cultivos y la 

sostenibilidad del suelo; mientras que los parámetros de fertilidad del suelo 

necesitan ser más estudiados para desarrollar métodos de análisis de menor costo 

y más rápidos para ayudar al manejo. La agricultura, como actividad altamente 

dependiente del clima, necesita de datos meteorológicos para anticipar eventos, 

planificar y manejar los cultivos eficientemente. Estos temas se seleccionaron con el 

propósito de mejorar el estado actual de la técnica, proponer nuevas alternativas 

basadas, principalmente, en la aplicación de redes neuronales artificiales (ANN) 

como una manera novedosa de resolver los problemas y generar conocimiento de 

aplicación directa en sistemas de cultivos. Las ANNs son una herramienta útil para 

modelar y resolver problemas complejos no lineales; son un modelo matemático del 

cerebro de los animales y su capacidad para tratar problemas complicados lleva a la 

comunidad científica a usarlas para encontrar soluciones que difícilmente otras 

técnicas pueden resolver. 

El objetivo principal de esta tesis fue generar modelos de ANNs capaces de 

abordar problemas relacionados con la agricultura, como una alternativa a los 

métodos tradicionales y más costosos empleados en el manejo, análisis y 

adquisición de datos en los sistemas agrarios. Para los experimentos con cultivos de 

microalgas, se analizaron las huellas espectrales provenientes mediciones de la 

absorción de luz de suspensiones monoalgales y cultivos mixtos. Además, se utilizó 

una ANN junto con las huellas espectrales para crear un modelo capaz de clasificar 

los cultivos de microalgas y determinar las especies presentes en suspensión. Los 

resultados muestran que la ANN fue capaz de distinguir entre cultivos monoalgales 
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y mixtos, identificando las especies de microalgas en los cultivos de monoalgales y 

proporcionando una composición aproximada en los cultivos mixtos. 

Con respecto al estudio del suelo, muestras de suelo se clasificaron según 

la notación de color Munsell y los tonos obtenidos se utilizaron para agrupar los 

suelos y realizar análisis estadísticos sobre sus atributos de fertilidad. Además, los 

colores RGB y L*a*b* se utilizaron como entrada en ANNs para crear modelos que 

describan los parámetros de fertilidad del suelo. Los colores RGB y L*a*b* se 

obtuvieron a partir de fotografías digitales a color y una aplicación informática 

programada para realizar mediciones rápidas y precisas. Los resultados mostraron 

que la agrupación de suelos basada en el tono del color de Munsell no resultó 

eficiente para separar las muestras según niveles de fertilidad y respecto al enfoque 

de las ANNs para describir los suelos, los modelos obtenidos no fueron capaces de 

proporcionar resultados precisos. 

Finalmente, para el estudio de adquisición de datos meteorológicos, los 

datos diarios de una red de estaciones meteorológicas se utilizaron para realizar 

interpolaciones con varios métodos, incluidas las técnicas tradicionales y ANNs, y los 

resultados fueron evaluaron para comparar la precisión de los métodos. Con estos 

algoritmos de interpolación, se propuso el desarrollo de estaciones meteorológicas 

virtuales (VWS). Se programó un código para adquirir, procesar e interpolar 

automáticamente datos meteorológicos para realizar estimaciones en diferentes 

lugares sin disponibilidad de estaciones meteorológicas. Los resultados mostraron 

que los métodos de interpolación tienen altas precisiones ― estas disminuyen 

ligeramente durante el verano y el invierno. Desde una perspectiva práctica, los 

métodos aquí descritos podrían ser útiles para producir series de datos 

meteorológicos con las VWS. 

En conclusión, las ANNs han demostrado ser una herramienta poderosa 

para resolver problemas de clasificación, estimación y predicción. El uso de ANNs en 

temas relacionados con la agricultura es un paso crítico para encontrar soluciones a 

los problemas y ayudar a los productores a tomar decisiones más rápidas y mejores 

durante los procesos productivos. Por ejemplo, en la producción comercial de 

microalgas, el método desarrollado proporcionaría una herramienta rápida y 

confiable para la gestión. En la fertilidad del suelo, las ANNs aún tienen un camino 

que seguir para encontrar modelos precisos; esta investigación dio luz a nuevas 

direcciones a tomar en este asunto. Y con respecto a la adquisición de datos 

meteorológicos, las VWS pueden ayudar a los agricultores a obtener datos de 

importancia para los cultivos y para planificar un riego más eficiente. 
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1. Introduction 

Artificial neural networks (ANNs) have emerged in the last decades as a 

wide area of new opportunities for academic research and applications in many 

fields such as remote sensing, image classification, speech recognition, economics, 

robotics, automotive engineering, web-informatics, bio-informatics, intelligent 

medical diagnosing and treatment and so on. All these applications aim to solve 

plenty of real-world problems employing the ANNs high capacity to find solutions to 

non-linear and complex problems (Cheng et al., 2018; Kakuda et al., 2019; Li et al., 

2018). ANNs create new chances for traditional issues and new technologies related 

matters by giving new approaches to improve techniques and model accuracies 

through the capacity of ANNs of mapping input variables with a given target value, 

this ability has been used in several studies to make predictions, classifications and 

estimations with higher precisions in comparison with traditional techniques 

(Abrishami et al., 2018; Alanis, 2018; Amrouche and Le Pivert, 2014; Tealab et al., 

2017; Tkáč and Verner, 2016). 

The present work is a compendium of research in agricultural related 

issues applying ANNs to solve problems. Therefore, three main research topics were 

considered, such as microalgae production, soil color and fertility, and 

meteorological data. These represent essential roles in crops system, specifically in 

the future of food production, global warming, and sustainability. Microalgae are a 

healthy alternative for crops fertilization and soil fertility sustainability, while the 

soil fertility parameters need to be more studied to aim lower cost and faster 

analysis methods to help the management. Last but not least, agriculture is a highly 

weather-dependent activity and needs meteorological data to anticipate events, 

planning and management crops in an efficient mode. 

These topics were selected with the purpose to improve the current state 

of the art, propose new alternatives based, mainly, in the application of ANNs as a 

novel manner to solve the problems and generate knowledge of direct application 

in crop systems. In the following sections, the research problems and the hypothesis 

(section 1.1), objectives (section 1.2) and a summary of the methodology used 

(section 1.3) on this thesis will be detailed. Furthermore, the motivation (section 

1.4) and innovative aspect (section 1.5) of this research, and an overview of the 

thesis structure (section 1.6) are also presented in this chapter. 
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1.1 Research problems and hypothesis 

The research topics, as mentioned earlier, microalgae production, soil 

color and fertility, and meteorological data are a niche for innovation, as other fields 

in the agricultural sector. This innovation is a crucial concern due to the fact of the 

challenges for the agricultural sector in the present and future scenarios. 

Considering this, ANNs were applied in this research to solve issues in the 

territory of these topics; in the microalgae assessment, the issue was to develop a 

fast and reliable method to analyze microalgae cultures; in the soil color and fertility 

study, the issue was to relate color and fertility in order to find relationships 

between both. Lastly, in the meteorological data assessment, the matter was to 

generate a method for data acquisition in locations with no availability of weather 

stations. 

In this thesis, the hypothesis formulated for the research topics were: 

- Microalgae light absorbance analysis through ANNs can elucidate the 

biological culture composition and be used as an alternative for the 

assessment of microalgae cultures. 

- Soil color analysis can provide information about fertility parameters, and 

ANNs can be applied to map this relationship and conceive a model for 

rapid soil evaluation. 

- Meteorological data acquisition can be performed by using interpolation 

techniques and ANNs, alongside real data from weather stations to 

interpolate values with high accuracy. 

 

1.2 Objectives 

1.2.1 General objective 

The general objective of the research is to generate ANN models capable 

of addressing agricultural related problems as an alternative to traditional and more 

expensive methods for management, analysis, and data acquisition in the crop 

systems. 
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1.2.2 Specific objectives  

The specific objectives were separated for each of the main research topics 

of the thesis. The established objectives are presented below. 

 

In the microalgae culture study:  

- Study light absorption spectra of the different microalgae species. 

- Evaluate the ability of ANN to differentiate between monoalgal and 

mixed algal cultures. 

- Determine the feasibility of using ANN to estimate the biological 

composition of mixed microalgae cultures. 

 

Regarding the soil color and fertility study:  

- Analyze soil color in order to determinate its capability to group soils 

according to fertility levels. 

- Develop a computer tool for soil color measurement and classification. 

- Describe soils fertility parameters using color analysis through ANNs. 

 

Concerning the meteorological data acquisition study:  

- Evaluate and compare the accuracy of several interpolation algorithms 

― including the traditionally used and ANNs. 

- Study the seasons and the extreme phenomena effects in the 

performance of interpolation methods. 

- Devise a set of algorithms to acquire real meteorological data, process 

them, and generate accurate estimations in distinct locations, 

economically and straightforwardly. 
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1.3 Methodology overview 

To conduct the experimental phase of the thesis, three experiments were 

carried out. For the microalgae experience, monoalgal and mixed algal culture 

spectral signatures from light absorption measurements were analyzed. 

Additionally, an ANN was used alongside the spectral signature in order to create a 

model capable of classifying the microalgae cultures and determine the species 

present in suspension. 

For the soil study, soil samples were classified according to the Munsell 

color notation, and the obtained hues were used to group soils and perform 

statistical analysis over the fertility parameters. In addition, RGB and L*a*b* colors 

were used as input in ANNs to create models to describe the soil fertility parameters. 

The RGB and the L*a*b* colors were obtained from digital color photographs and 

computer software programmed to perform quick and accurate measurements. 

Finally, for the meteorological data acquisition study, daily data from a 

weather station network were used to perform interpolations with several methods, 

including ANNs and traditional techniques. With these interpolations algorithms, 

the development of virtual weather stations (VWS) was proposed, scripts 

automatically acquire, and process meteorological data were coded, and afterward, 

perform estimations in different locations without weather stations availability. 

 

1.4 Motivation for the research 

ANNs studies are nowadays a multidisciplinary science, a crucial factor for 

that is their application to solving problems in different areas, pursuing the 

modernization of techniques, better prediction of phenomena, classification, and 

estimation of everyday and important matters. The room for applications of ANN 

are infinitely potential, and the scope of this tool is changing the manner scientific 

process data and conduct experiments. 

The agriculture is a niche for infinite research since with new days, new 

problems and challenges appear and need solutions, and at the same time, better 

solutions for older problems are also needed. With the aim of solving agricultural 

related subjects, this research was motivated and focused on microalgae culture 

analysis, soil color and fertility studies and meteorological data acquisition through 

interpolation methods. 
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Microalgae are an interesting group of microorganisms, and their 

cultivation is a promising tool for carbon sequestration and biomass utilization, for 

example, as an organic soil amendment ― therefore their agricultural and 

environmental importance will arise in the next few years. Regarding soil fertility, 

this parameter is one of the most important in the production ecosystem, and its 

knowledge is vital for the correct and sustainable management of soils. Concerning 

the meteorological data, agriculture as an activity that is highly dependent on the 

weather requires the availability of these type of data can be useful for improving, 

for instance, the irrigation calculus and planning, crop phenology, pest studies and 

modeling, among other aspects. 

 

1.5 Innovative aspects of the research 

This thesis was designed with the practical application of technologies and 

techniques in mind, to solve specific problems in agricultural disciplines. The 

innovative aspects and contributions of this research are methodologies and tools 

that can be used directly in culture systems, been microalgae or conventional crops. 

The main contributions are cited below: 

- An ANN to elucidate microalgae species in suspensions was made. The 

model provides a fast and powerful tool for microalgae culture 

management at the commercial scale, provides information regarding 

the biological composition of cultures, and approximates the relative 

proportions of species in the suspensions. The developed method means 

a cheaper and faster analysis method in comparison with the typically 

used. 

- A scientific paper with the title “Monoalgal and mixed algal cultures 

discrimination by using an artificial neural network” (Appendix A) was 

published in the “Algal Research” journal. A Q1 journal in Biotechnology 

and applied microbiology journal with an impact factor of 3.75. 

- The development of computer software, the DigiCIELAB, which is a 

powerful tool to perform the color measurement in a faster and more 

affordable manner in comparison with traditional colorimeters. The 

software was selected by the University of Valladolid in the “Prometeo” 

2017 program and intellectually protected as a result of this selection 

(Appendix B). 
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- The development of the VWS algorithms to acquire and process 

meteorological data from weather station networks with the ultimate 

purpose of estimate data where no weather station is available. The 

VWS is a feasible alternative for the acquisition of meteorological data 

of importance for agricultural activities. 

 

1.6 Thesis structure 

After this overview of the thesis research problems, hypothesis, 

objectives, and other introductory aspects treated in this chapter. The remaining of 

the manuscript is organized as follows: a theoretical background with the literature 

of the current estate of the art in agriculture challenges, ANNs, brief microalgae 

production concepts, soil fertility and color theory and meteorological data 

importance ― with the descriptions of techniques used in each one of these topics 

― is presented in Chapter 2. 

The materials used and the methodology applied in the experimental 

phase for the microalgae, soil color, and meteorological data studies are detailed in 

Chapter 3. The results of these experiments alongside with discussion with the most 

relevant literature to contrast the obtained results are presented, separately by 

research topic, in Chapter 4. The conclusion, the general from the overall research 

experience and the specifics regarding each topic, are illustrated in Chapter 5. 

Finally, the cited bibliography is referenced (Chapter 7), and the additional 

information is shown in the Appendix section. 

 



 

THEORETICAL BACKGROUND 
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2. Theoretical Background 

In this chapter, the theoretical background that supports the thesis 

development will be presented, including the basic concepts for the methodology 

applied to seek the research objectives. This section will describe a brief agriculture 

panorama, future challenges and possible manners to address the issues with 

technologies and alternative agricultural practices (section 2.1); the microalgae 

production and its agriculture importance (section 2.2), soil fertility and color 

analysis (section 2.3) and meteorological data for agriculture (section 2.4) are 

treated as well. Finally, an overview of ANNs, concepts, modeling and training 

process, and applications of this technique (section 2.5). 

 

2.1 Challenges in agriculture and new technologies 

Achieving maximum crop yield at minimum cost is one of the goals of 

agricultural production from an economic point of view. However, since 1950, a 

climatological transformation is taking place as a consequence of several 

phenomena like deforestation, the emissions of greenhouse gases (GHG) increment, 

ozone loss, the increment of global temperature, change in precipitations regimes 

and other climate change effects, with a higher acceleration from the 90s (Smith et 

al., 2014; Steffen et al., 2015). These transformations, specifically regarding the 

anthropogenic climate change, are considered as one of the most significant 

environmental, social and economic threats to the future world (Ghosh et al., 2019) 

and agriculture is one of the most exposed to climatic impacts (Martins et al., 2019; 

Tran et al., 2019). 

Global food demand is expected to increase considerably in the near 

future as a result of the growing population. Agricultural research needs to step up 

to meet a more sustainable development for food production, human nutrition, 

climate change and environmental protection in a world with 9.7 billion people by 

2050 (Thornton et al., 2018). Considering that, with the modernization of 

agriculture, high inputs of fertilizers, pesticides, and mechanical energy are 

demanded for labors (Erb et al., 2008; Wu et al., 2017), GHG emissions such as 

carbon dioxide (CO2) (Li et al., 2019), nitrous oxide (NO2) which is one of the most 

harmful GHG (Liu et al., 2019; Rowlings et al., 2013; Wolff et al., 2017) and others 
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such as methane (CH4), nitrate (NO3
-), ammonia (NH3) will increase (Sanz-Cobena et 

al., 2017a). 

It is estimated that agriculture contributes 11% to the anthropogenic GHG 

emissions, approximately 5.3 Gt CO2 equivalents in 2010 (Figure 1), the trend 

indicates that it will increase 9% in 2030 and 18% in 2050 with respect to 2010, or 

up to 37% more considering the 90s as base reference (Tubiello et al., 2014). 

 

Figure 1. CO2 emissions estimations for the 1990s, 2000s and 2010 and projections 
for 2030 and 2050 for agricultural related activities (elaborate from data of Tubiello 
et al., 2014). 

 

Climate change is a danger for crops and food production (Fitzgerald et al., 

2019; Manners and van Etten, 2018) and risk for smallholder farmers and livestock 

sector, particularly in dryland regions  (Hansen et al., 2019; Herrero et al., 2015). 

Globally, annual climate variability accounts for roughly a third (32–39%) of the 

observed crop yield variability (Ray et al., 2015); increasing the yield losses in 

warmer years; it is estimated that for each degree Celsius (⁰C) of mean global 

temperature, there is a reduction in global wheat grain production of about 6% 

(Asseng et al., 2015). 

Minimizing and preventing environmental degradation is a critical 

sustainability challenge of the present and coming decades (Bais-Moleman et al., 
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2019). Climate-smart agriculture (CSA) is widely promoted as an approach for 

reorienting agricultural development under the realities of climate change (Figure 

2), seeks to meet three challenges: improve the adaptation capacity of farming 

systems to climate change, reduce the greenhouse gas emissions of these systems, 

and enhance agricultural productivity (Acosta-Alba et al., 2019; Jagustović et al., 

2019; Thornton et al., 2018). 

 

Figure 2. Climate-smart agriculture foundations for the development of sustainable 
agriculture. 

 

A key reason for the emergence of the CSA concept is the recognition that 

agriculture, and related food security issues, require a synthesized approach which 

may not be achieved by tackling climate mitigation and adaptation objectives 

separately (Long et al., 2016). CSA is the combined strategies to respond to the 

challenges of making food security, providing public goods and ecosystem services 

to society (Bais-Moleman et al., 2019). 
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Some strategies to achieve the CSA objectives regarding enhance 

agricultural productivity (A); promote adaptation (B); and, reduce GHG emissions (C) 

are described below: 

 

A. Enhance agricultural productivity 

The agricultural force labor has globally declined from the 19th century 

from 75% of the total population to levels underneath the 5% in the current 

Century (Tomich et al., 2019). Less agriculturist produced food for more people; 

this was possible using the technological improvements in the sector. However, 

the unsustainability of agricultural ecosystems under the current techniques 

have created the need for actions to not only to increase the production but 

rather to maintain or recovery degraded fields (Ahmad et al., 2017). 

On the one hand, the progressive substitution of mineral fertilizers for 

organic fertilizers can improve soil fertility and recover poor soils (Sanz-Cobena 

et al., 2017b; Zhang et al., 2019). On the other hand, practices such as no-till of 

lands significantly increased yields and improved soil quality, also shifting the 

microbial community and activity associated with an increase in organic matter, 

carbon, nitrogen and phosphorus cycling (Mbuthia et al., 2015). Understanding 

of trade-offs over temporal and spatial scales between the instantaneous short-

term gain, such as incomes, and the long-term negative impact, such as reduction 

of crop yields, is a crucial factor to incentivize agriculturist to adopt new 

techniques (Jagustović et al., 2019). 

In terms of alternatives for chemical fertilizers, microalgae have been 

considered potential producers of organic fertilizers for many decades and their 

potential is still under scope and development today (Benemann, 1979; Morales-

Amaral et al., 2015). Microalgae are photosynthetic microorganism adapted into 

several aquatic and terrestrial ecosystems (Dashkova et al., 2016; Feng et al., 

2016) and with a strong presence in agricultural fields (Morowvat and Ghasemi, 

2016). 

Recent research activities have demonstrated that microalgae extracts 

have a stimulation effect when used as a foliar product on wheat (Shah et al., 

2013) and maize (Zermeño-González et al., 2015). In the same way, the 

application of microalgae on wheat seeds at the time of sowing provides benefits 

for the plant and crop development. The causes can be related to the generation 

of phytohormones such as indoleacetic acid (Hussain and Hasnain, 2011; Jäger et 
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al., 2005; Swarnalakshmi et al., 2013) or the activity of nitrogenase, which 

increases the binding of atmospheric N2 (Abd-Alla et al., 1994). In the current 

market, microalgae extracts are available in compounds for organic farming 

labeled as bio-stimulators. 

Microalgae biomass application in soils is beneficial for crops and yields 

(Shaaban, 2001), the organic matter, carbon content and biological activity in 

soils increase with these microorganisms (Castro et al., 2017; Miralles et al., 

2012; Xie et al., 2007). Microalgae, specifically when they are obtained from 

wastewater treatments (De-Bashan and Bashan, 2004), contains several 

nutrients removed from the treated sewage. The recycling of nutrients by 

microalgae is a matter that has been more studied recently and tested in 

agricultural applications (Egle et al., 2016; Mukherjee et al., 2015). 

 

B. Promote adaptation 

Augmenting climate resiliency of agricultural systems with improved 

varieties of cultivars is one of the most suitable action to adapt agriculture for 

future scenarios (Dey et al., 2019). Adaptation to climate change is necessary to 

ensure food security and protect the livelihoods of farmers (Sapkota et al., 2019). 

However, assigning a label of “climate adaptation” to any promising innovation 

in agriculture is a common flaw. Many of these crop varieties do not always arise 

in minimaxing the climate change impacts, other than maximizing the profits for 

a given technology (Lobell, 2014). 

The major global studies are focused in different adaptation strategies 

such as changes in planting dates, dynamic irrigation, nutrient management or 

their combination and also included carbon fertilization effects (Aggarwal et al., 

2019). Other adaptation strategies include the calendar days of a crop and the 

growing degree days, cultivars with more extended growth periods and higher 

thermal requirements could partially mitigate the adverse effects of global 

warming (Martins et al., 2019; Wei et al., 2014). 

Adopting other productive practices and technologies, such as more 

organic farming, can be a powerful mechanism for reducing farm vulnerability 

(Bouttes et al., 2019). The adoption of alternative techniques requires 

interdisciplinary efforts to identify real options (Bommarco et al., 2012). For 

instance, more information is required for better irrigation management and 

crop calendar planning. This information includes meteorological data for the 
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estimation of water requirements (Allen et al., 1998) or taking actions to prevent 

extreme temperatures damage, stress, yield loses, germination problems, pest 

and disease affections (Johkan et al., 2011; Pearce, 2001). 

 

C. GHG emission reductions 

Reducing GHG emissions is a cross effort in distinct areas. New 

technologies are consigned to study GHG causes, increasing the efficiency of 

machinery and proposing alternative practices are conventional approaches 

nowadays (Echevarria and Xiu, 2014; Nejat et al., 2015). 

Carbon sequestration in agricultural soils is an exciting alternative against 

GHG (Poeplau and Don, 2015). Increasing soil organic carbon (SOC) to store CO2 

amounts into grounds that otherwise will reach the atmosphere (Meyer et al., 

2018), also reduces external inputs in terms of fertilizers and makes a better 

scenario for crops under variable and extreme climate conditions (Pittelkow et 

al., 2015). The changes in SOC stocks are a result of the carbon inputs, mainly in 

the form of dead plant material or manure and outputs, mainly caused by 

decomposition, leaching, and erosion (Poeplau and Don, 2015). 

Tillage is a significant contributor to energy consumption and carbon 

emissary in the sector. Different management practices such as non-tillage, 

rotations and cover crops can mitigate GHG emissions, especially the ones 

related to CO2 and NO2 from savings in fuel and nitrogen volatility (Bais-Moleman 

et al., 2019; Pratibha et al., 2019; Sanz-Cobena et al., 2017b). Non-tillage 

contributes to organic matter (OM) accumulation, increasing the soil water 

retention capacity, biological activity, increase the efficiency of fertilization and 

reduces its use (Rusco et al., 2001; Sanz-Cobena et al., 2017b). At the same time, 

no-till produced the highest revenues, despite having higher initial and 

production costs than conventional systems, but the overall balance is positive 

in favor of non-tillage systems (Hansen et al., 2019; TerAvest et al., 2019). 

There is an increasing concern about the negative impacts associated with 

the release of reactive nitrogen from fertilizers (Recio et al., 2018). N-source 

chemical fertilizers are the main source of NO2 GHG in agriculture (Wolff et al., 

2017). Replacing a part of chemical N fertilizer is an excellent strategy to mitigate 

the negative impacts (Jat et al., 2019). However, there are still several limitations 

in the economic and source of alternative fertilizers (Zhang et al., 2019). 

Evidently, chemical fertilization cannot and should not be totally removed from 
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crop management tasks, instead, better fertilization programs have been 

carefully elaborated since the efficiency of fertilization is a critical issue to reduce 

environmental impacts of agricultural activities and ensure food production 

(Recio et al., 2018; Zhang et al., 2015). Variable application rates of nitrogen 

achieve lower expenses on supplies, higher profits and reduce nitrate leaching 

(Basso et al., 2016); better timing for applications (Rowlings et al., 2013) or 

fertigation with nitrate-based fertilizers (Abalos et al., 2014) are others 

alternatives for a more efficient use of nitrogen fertilizers and address the 

challenges of environmental degradation and climate change. 

 

CSA priorities encompass the adaptation of agricultural activities to the 

climate change for the 1.5 future while reducing the impact on the environment. 

The 1.5 scenario is the estimation where the mean global temperature will increase 

by 1.5 ⁰C (Martinez-Baron et al., 2018). As a summary, farmers adopt practices and 

technologies such as improved varieties, planting at optimal times, and enhanced 

water and fertilizer management (Aggarwal et al., 2019) and researchers have to 

develop, test and validate those techniques to drive present and future situations. 

There are a bunch of promising technology innovations; for instance, 

nanotechnology has proven to improve seed plant germination, growth, yields, and 

quality of the harvest. In post-harvest, nanotechnology increases the storage period 

for vegetables and fruits (Huang et al., 2015; Prasad et al., 2017). Information and 

communication technologies, as agro-advisory services, could be highly useful for 

decision making. However, to achieve this objective, more rigorous information is 

needed, and this warrants further work for researchers (Westermann et al., 2018). 

The implementation of these tools at various scales and cases and the amount and 

quality of the information needed for making decisions and extract conclusions 

propose a big challenge for this approach (Thornton et al., 2018). 

Regarding technologies that contribute to achieving CSA challenges, novel 

techniques to analyze data, solving problems, create models, and predict high-

quality datasets can be useful to face CSA objectives. In these terms, artificial neural 

networks (ANNs) are a promising tool for analyzing data and solve complex and 

nonlinear problems, with several potential application in the agricultural sector. 

ANNs are mathematical models that were developed from studying how the animal 

brain works. They consist of interconnected units called artificial neurons, which 

have adaptive parameters that can be used for learning, classifications, and 

predictions (Olatunji and Arif, 2016). 
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ANNs adoption to solve diverse kinds of problems have been taken 

enormous attention in the last two decades (Tkáč and Verner, 2016). ANNs can be 

used for classifications problems, approximation functions, image analysis, patterns 

analysis, and others (Zurada, 1992). To mention some examples, ANNs are capable 

of estimating the status of rotary elements of agricultural machinery by processing 

the signal from accelerometers without other variable analysis (Martínez-Martínez 

et al., 2015). 

Crop yields predictions based on soil fertility parameters and metrological 

data was possible by using ANNs, thanks to its abstraction capability (Dahikar and 

Rode, 2014). In plant diseases, an ANN was able to estimate the severity of angular 

leaf spot in bean cultures, using leaf and canopy hyperspectral reflectance spectra 

(Martínez-Martínez et al., 2018). The use of ANNs have a widespread future in the 

development of new techniques, and there is more room for future research and 

applications of ANNs (Darji et al., 2015; Ghanbarzadeh et al., 2009; Laaboudi et al., 

2012). 
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2.2 Microalgae culture 

Microalgae include prokaryotic and eukaryotic microscopic unicellular and 

multicellular photosynthetic organisms (Soni et al., 2017). These organisms are a 

promising tool to fight climate change by capturing CO2 (Bai et al., 2017) and also in 

agriculture as fertilizers (Abdel-Raouf N, 2012). Microalgae contain several 

nutrients, especially those removed from the treated sewage for their recycling (De-

Bashan and Bashan, 2004) and generating biomass in a fast and efficient way 

compared to other photosynthetic organisms, being up to 10 times more 

photosynthetic efficient than plants (Singh and Ahluwalia, 2013). 

Considering that CSA is oriented to reduce GHG emissions and enhance 

the productivity of agricultural ecosystems, microalgae culture and production can 

be a decisive factor for future scenarios. Several experiments were conducted to 

study the benefits of microalgae in agriculture, from the fertility perspective (Mulbry 

et al., 2005; Raposo and Morais, 2011; Renuka et al., 2016; Shaaban, 2001) to the 

environmental approach (Castro et al., 2017; Egle et al., 2016; Renuka et al., 2016). 

Microalgae technology for production is under continuous development, 

and there is a place for improvements. This section of the text is focused on 

describing the microalgae and its production, emphasizing the management and the 

need for controlling the production systems in terms of biological composition. 

 

2.2.1 Microalgae overview 

Microalgae are diverse, unicellular microorganisms that grow in multiple 

environments. The three most important classes of microalgae in terms of 

abundance are the diatoms (Bacillariophyceae), the green algae (Chlorophyceae), 

and the golden algae (Chrysophyceae). All these microalgae are eukaryotes 

distinguished by the presence of a nucleus and separate organelles for 

photosynthesis, the chloroplasts, and for respiration, mitochondria. Likewise, some 

prokaryote organisms are also considered as microalgae for their photosynthesis 

capacity, the cyanobacteria, or as commonly known, blue-green algae 

(Cyanophyceae). The cyanobacteria are part of the eubacteria, and as a prokaryote, 

is lacking a membrane-bounded nucleus. There are thousands of different species 

of microalgae considering this classification (Enzing et al., 2014). 
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From all these thousands of species, only a few are being produced 

commercially today, primarily for high-value products (Rickman et al., 2013). 

Microalgae have been proposed for a wide range of applications, from the 

production of foods and animal feed, cosmetics, biofuels and wastewater treatment 

processes (Borowitzka, 2013; Chisti, 2007; Enzing et al., 2014; Olguín, 2012). 

Microalgae are cultivated at an industrial scale in two widespread systems, 

the open-culture systems and the closed-culture systems (Figure 3). Open-culture 

systems, for example, open ponds and raceways, are the simplest and less expensive 

in comparison to closed-culture systems. Open-culture systems are almost always 

located outdoors and rely on natural light for illumination. Unfortunately, the 

microalgae culture can be easily contaminated, and little control of the operating 

conditions can be made on such systems (De Andrade et al., 2016). Closed-culture 

systems, such as tubular photobioreactors, allow a certain control level of operating 

conditions and to avoid contamination, being possible to obtain high-value algal 

products. Closed photobioreactors may be located indoors or outdoors, but the 

outdoor location is more common because it can make use of free sunlight (Molina 

Grima et al., 2003). 

 

Figure 3. Microalgae production system in an open-culture system (a) and a closed-
culture system (b). 

 

Despite the large variety of applications proposed, only a few are presently 

performed at the commercial scale using a limited number of algal strains. Examples 

of this are the production of carotenoids, beta-carotene and astaxanthin from 

Dunaliella salina and Haematococcus pluvialis (Forján et al., 2014), biomass for 

foods from Chlorella vulgaris and Spirulina platensis (Fradique et al., 2010), and 

a b 
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biomass for aquaculture from Nannochloropsis gaditana, Tetraselmis suecica and 

Isochrysis galbana T-ISO (Shields and Lupatsch, 2012). 

Microalgae have other applications such as carbon sequestration by 

transferring the environmental CO2 into the microalgae mass (Acién et al., 2012; 

Sobczuk et al., 2002), wastewater treatment (Acién et al., 2016; Ledda et al., 2015), 

and microalgae biomass fertilizers (Mulbry et al., 2005; Raposo and Morais, 2011; 

Shaaban, 2001). For fertilization, microalgae are a source of one of the scarcest 

nutrient, the phosphorus, which is abundant in the algal mass (Egle et al., 2016; 

Melia et al., 2017; Mukherjee et al., 2015). Despite being effective, these alternative 

uses are not implemented at commercial scale yet. 

However, recent advances allow the scientific community to be optimistic 

in the development of production technologies which are more economically viable, 

and within the next 10 to 15 years these technologies will allow applications that 

are not viable at present (Acién et al., 2014). New technologies are in development 

to decrease the cost of microalgae production such as species selection, supplies 

optimization, and better condition controls (Collet et al., 2011; Madkour et al., 

2012). These advances make the microalgae biomass one of the most attractive 

alternatives for fertilizers in agriculture and CO2 sequestration to achieve the CSA 

objectives of mitigating and reduce the GHG emissions and improve agricultural 

sustainability. 

 

2.2.2 Specificity in microalgae production systems 

For microalgae cultures and the harvested product, it is often required the 

maintenance of monoalgal cultures when a specific compound is desired. Whereas 

when focusing on biofuel production or wastewater treatment, the utilization of 

mixed cultures is usually acceptable. In the case of mixed algal cultures, the relative 

composition is gradually modified according to changes in environmental or 

operational conditions (Godos et al., 2009). 

Monitoring the biological composition of microalgae cultures is a 

necessary task, generally performed through routine microscopic examination. By 

means of light microscopy, an expert can distinguish the presence of a 

“contaminating” microorganism and whether the current algal strain is close to the 

expected value. However, only highly skilled taxonomists are capable of correctly 

recognizing algal strains (their species and genera) using light microscopy 
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observation solely based on morphology – this is because most of the strains are 

small round cells with similar features, only a few have easily recognizable 

morphology. Some microalgae can be classified by a computer using high-resolution 

images for the morphological characterization (Walker and Kumagai, 2000). This 

classification is performed automatically only with simple forms such as circle, 

ellipse or cell sizes; complex forms or similar species require the intervention of an 

operator, but the process is under human error that can lead to confusion (Mirto et 

al., 2015). 

Alternative methods, based on omics allow to accurately identify the 

microalgae strains in cultures (Godhe et al., 2002), but these are expensive and 

require much time (reducing time can be useful for making operation process 

decisions). As a standard method, biochemical analyses, such as the chlorophyll to 

carotenoid ratio and the fatty-acid profile have also been used as tools for verifying 

the biological composition of microalgae cultures; however, their precision is 

limited. These methods are unable to identify the presence of low-level 

contamination; likewise, they take time, although their cost is much lower than that 

for the omics methods (Serive et al., 2017; Sydney et al., 2011). 

Microalgae species identification up to the phylum or class levels has been 

achieved based on the fluorescence properties of photosynthetic pigments using 

flow cytometry (Cellamare et al., 2010). Employing light-emitting diode induced 

fluorescence analysis is possible to differentiate between Anabaena sp. and 

Cylindrospermum sp. cells by comparing the fluorescence spectra (Ng et al., 2017). 

Microalgae have photosynthetic pigments providing different spectral signatures for 

different species; thus, it is possible to build classes based on the presence of 

pigments. As a result, the relative content of chlorophyll, carotenoids and other 

pigments can be used to differentiate between diatoms, red/green/brown 

microalgae, and cyanobacteria groups through their light absorption spectra (Serive 

et al., 2017). 

Microalgae species can be distinguished by their spectral signature. As an 

example, Rivularia M-216 exhibits a different absorbance signature to that of 

Anabaena variabilis ― the heterocyst absorbance from Rivularia is more than 

double than that from A. variabilis at wavelengths between 540 and 620 nm; this 

variation is a result of the different phycocyanin and chlorophyll contents (Nozue et 

al., 2017). The spectral signatures of Botryococcus braunii, Chlorella sp. and 

Chlorococcum littorale allow identifying them by comparing their absorption 

indexes (Lee et al., 2013). Moreover, the absorption spectrum in the 400 to 700 nm 
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range is used to determine the extinction coefficient of the biomass, a specific 

microalgae strain and culture conditions indicator (Rubio Camacho et al., 2003). 

Based on this, absorption properties could be a possible approach to distinguish 

between microalgae species (Coltelli et al., 2017). 

ANNs are a powerful tool for finding relationships between experimental 

data and the phenomena behind these data. ANNs have been used to predict 

harmful algal blooms in lakes (Recknagel, 1997; Tian et al., 2017), as well as 

microalgae growth and biomass concentration under laboratory conditions and 

outdoor environments (García-Camacho et al., 2016; Sharon Mano Pappu et al., 

2013). In microalgae identification using ANN, extracted features such as the 

perimeter, shape, area and Fourier Transform of microalgae micrographics were 

used to train a model capable of identifying the genera Navicula, Scenedesmus, 

Microcystis, Oscillatoria and Chroococcus (Mosleh et al., 2012). Microalgae 

micrographic image processing and color analysis were used with ANN to achieve 

taxonomic accuracy of up to 99% by first detecting a cell in the image and 

subsequently extracting the detected cell color (Coltelli et al., 2017). 

Considering the capacity of ANNs and the light spectral signature 

properties of microalgae, it is possible to consider a fast and economical method 

derived from these two elements for the biological monitoring of cultures, especially 

those that need a specific species composition, pure or in proportions. 
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2.3 Agricultural soil fertility 

Fertility is the soil ability to supply essential plant nutrients in adequate 

amounts, proportions, and moments for the growth and reproduction of plants 

(Bünemann et al., 2018). In the last few decades, intensive agricultural management 

practices in European agriculture have resulted in soil degradation (Freibauer et al., 

2004; Virto et al., 2015). OM and N content in soils are now 30% to 60% lower than 

their undisturbed (virgin) equivalents, about 44% of southern Europe lands exhibits 

low OM content as a result of intensive cultivation (Rusco et al., 2001). 

In the framework of sustainable agriculture, better soil management must 

be addressed to preserve and increase soil fertility in agricultural lands. Among the 

environmentally friendly labors such as non-tillage, pesticides reduction and 

administration of fertilizers, these can be used more effectively to minimize supplies 

spending and contamination. A fast method for estimating soil nutritional content 

can help in the process of decision-making. 

Soil color contents some information about fertility (Barrios and Trejo, 

2003; Fleming et al., 2004; Gray and Morant, 2003). The analysis of this property 

through machine vision can help to characterize soils. In consideration, the 

description of machine vision, color theory, and soil color properties will be 

reviewed in the section below. 

 

2.3.1 Machine vision and color theory 

Computer vision (CV) is the science of the design and operation of the 

software for the analysis and processing of image, whereas Machine Vision (MV), 

means a more global concept: the study of the hardware environment, the image 

acquisition techniques and the software, CV, needed for the development of 

applications (Davies, 2018). Following its origin in the 1960s, MV has experienced 

significant growth, and its applications started to expand until the present in diverse 

fields like medical diagnostic imaging, factory automation, remote sensing, 

forensics, autonomous vehicle and robot guidance (Brosnan and Sun, 2004). 

Regarding the hardware for MV, the acquisition system is usually 

composed of three main components: a color digital camera, an illumination source, 

and an image processing software. The lighting source must provide uniform and 

consistent illumination across the sample to photograph, color temperature is also 



Theoretical Background  25 
   

considered and usually fixed around 5,000 K to 5,500 K. To ensure uniform 

illumination conditions, multiple light sources can be employed as long as they are 

homogeneous (Tarlak et al., 2016; Valous et al., 2009). The camera is usually located 

at a certain distance so that the measurement does not interfere with the 

illumination since the resulting images are highly affected by the light (ten Bosch 

and Coops, 1995). 

Besides a digital color camera in a single setup, the most used for 

computer vision, dual cameras setups for stereoscopic image analysis can be used 

in controlled conditions as was previously described, the stereoscopic setups are 

used for objects dimension calculation inside the images (Zion, 2012). Multiple color 

cameras mounted in drones are usually used in outdoors studies (Rumpler et al., 

2017), or infrared cameras both indoors and outdoors (Celenk, 1990) are some 

acquisition systems employed in MV. 

In the software aspect, the CV is composed of several algorithms and a vast 

number of variations of them that help the processing of a digital image. Between 

the most common algorithms are segmentation, thresholding, shape and edge 

detections, morphological operations, color extraction, among others (Chen, 2015). 

 

2.3.1.1 Computer vision algorithms 

In CV processing, several algorithms intervene; the main ones are 

segmentation, thresholding, shape and edge detections. A brief description of these 

algorithms is presented in the paragraphs below: 

 

A. Segmentation 

Segmentation consists of separate uniform and homogeneous regions of 

a digital image, generally objects, with respect to some background or other 

heterogeneous segments of the image (He et al., 1985). Segmentation, for 

instance, is used to differentiate landscape sections in remote sensing or 

different tissues in biomedical images and to extract these objects/parts from 

the background, identifying blood cells in biomedical pictures, detecting 

machinery parts, among others (Prats-Montalbán et al., 2011). 

 

 



26 

   

B. Thresholding 

Thresholding is a type of segmentation. A given threshold value is applied 

to the pixels in a gray-scaled image, and pixels are classified according to this 

threshold in a binary image that results from this operation (Sudarsan et al., 

2016). A binary image indicates that the pixel value of  “1” is where the pixel past 

the threshold and the pixels with value “0” indicate the segment did not pass the 

threshold (Promdaen et al., 2014). The binary image is a mask that can be used, 

which contains less information and is easier to process by the machine (Zhang 

et al., 2017). For instance, after the thresholding, a morphological operation can 

be performed in order to fill the possible holes presented in the binary image 

(Mery and Pedreschi, 2005). 

 

C. Shape detections 

Shape detections can be performed through several algorithms that 

compare matrices corresponding to shapes, such as circles, squares, triangles, 

and other more complex figures, with a sample image in which these matrices 

are compared. When the matrix patterns are found in the image, it means that a 

given shape is present in the image  (Allili and Corriveau, 2007). Object detection 

is an essential and challenging task; this becomes particularly tricky in images 

with a strongly cluttered background, and with objects subjected to scale 

changes, rotation changes, and substantial intra-class variations (Wei et al., 

2017). 

 

D. Edge detection 

Edge detection methods are commonly applied to the image to assess any 

change in the intensity profile of neighboring pixels; therefore, a substantial 

intensity change between an object and the background corresponds to accurate 

edge information and yields excellent results (Williams et al., 2014). The main 

challenges for edge detection are due to pixels noise in the background or 

another object interfering with the edge of the object of interest (Lu et al., 2010). 

In addition, there is the concept of regions of interest (ROI). The ROI is assigned 

on the image in specific coordinates and has a given size, for instance, 60 × 60 

pixels at the position x = 200 and y = 200 in a digital image (Sumriddetchkajorn 

et al., 2014). From this ROI, multiple operations and analysis can be performed 

inside this region, including edge detection, among others (Losson et al., 2013). 
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2.3.1.2 Color theory and systems  

The color is the result of the interaction of certain light wavelengths with 

an object; this is an attempt to relegate color to the purely physical domain. Instead, 

it is proper to state that those stimuli are perceived to be of a particular color when 

viewed under specified conditions (Fairchild, 2013). In terms of computer vision, 

color is given by the R (red), G (green), and B (blue) tristimulus values. A color image 

is usually provided by the three values, RGB, at each pixel. In a typical 8-bit image, 

each component can take values from 0 to 255 (Celenk, 1990). Values of RGB show 

the total amounts of the three primaries that are required to make a color inside the 

RGB color system space (Gershon, 2005). In this system, the pure red color is given 

by (255, 0, 0), white by (255, 255, 255), black by (0, 0, 0) and so on combining the 

components. A scheme of the RGB system is shown in  Figure 4. 

 

Figure 4. RGB color system diagram. Purple, amber and light blue color RGB values 
are described. 
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In CV, RGB color features are important as a mechanism to a rapid and 

non-destructive inspection of objects (Xia et al., 2016). The color can be used to 

estimate the quality and maturity of tomatoes, citrus, cranberries, mangos and 

estimate chemical components associated with indices of quality, such as Brix 

degrees (Francis, 1995; Jha et al., 2007). Others studies with color images were 

conducted for meat color and quality (Trinderup et al., 2015), water purity analysis 

(Andrade et al., 2013), and Earth surface color and texture assessments (Zhao et al., 

2016). 

In these types of studies, a colorimeter is typically the first option for color 

measurements. However, the colorimeter shows some limitations because of the 

non-homogeneous color in the surface of the object to analyze, especially in food 

engineering and research ― colorimeters analyzes points, not the whole surface 

(Barbin et al., 2016; Girolami et al., 2013; Yam and Papadakis, 2004). In this aspect, 

the color analysis of the digital images through CV is an advantage. 

In research, color is frequently represented using the L*a*b* coordinates 

of the CIELAB color space. This color model is considered of uniform proximity, i.e., 

the distance between two colors in a linear color space corresponds to the perceived 

differences between them (Mendoza et al., 2006). The CIELAB system was proposed 

by the International Commission on Illumination (CIE - by its initials in French, the 

Commission Internationale de l'Eclairage). 

In this color space, the positive a* axis points in the direction of red color, 

the negative axis in the direction of green stimuli; positive b* points in the direction 

of yellow stimuli; negative b* in the direction of blue stimuli. L* is the luminance; 

thus a value “0” of lightness indicates the black or non-lightness and “100” represent 

the white in saturated light conditions (Schanda, 2007), a scheme is presented in 

Figure 5. 

The L*a*b* color is device independent, providing consistent color 

regardless of the input or output device such as digital camera, scanner, monitor, 

and printer (Yam and Papadakis, 2004). This is the crucial difference between RGB 

and L*a*b*, RGB is device dependent and the color of a given picture, under equal 

illumination conditions, leads different cameras to obtain different colors, in fact, 

vastly different in colors are usually obtained among cameras (Ilie and Welch, 2005; 

Kim et al., 2012). There are other device dependent color systems such as HSL (for 

hue, saturation and luminance), HSI (for hue, saturation and intensity) and HSV (for 

hue, saturation and value), which are mathematically similar and can be calculated 
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from the RGB; these color systems are commonly used in image processing 

(Saravanan et al., 2016). 

 

Figure 5. CIELAB color space representation. Purple, amber and light blue L*a*b* 
colors are described. 

 

To address the non-uniformity results of digital cameras, a colorchecker is 

often used. A colorchecker is a color calibrated array of cards that help to tune 

cameras and counteract the variability among them. Colorchecker have different 

natural colors (red, blue, green, yellow, and others), grey tones, black and white; 

and with computer software the image color is modified according to the color cards 

to balance the image (Girolami et al., 2013; Kirillova et al., 2017; Potočnik et al., 

2015). Additionally, colorchecker can also be used to convert the RGB values of the 

image into CIELAB standards if the manufacturer provides the L*a*b*  data of the 

cards. 

The RGB to L*a*b* color transformation can be performed through several 

methods such as equation systems (Barbin et al., 2016), quadratic models, (Tarlak 

et al., 2016), linear models and ANN (Afshari-Jouybari and Farahnaky, 2011). 

Between these methods, ANN present remarkable results for this conversion 

(Afshari-Jouybari and Farahnaky, 2011; León et al., 2006; Pedreschi et al., 2006; 
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Pothula et al., 2015). This fact makes the CV color analysis possible using L*a*b* 

color in non-homogeneous surfaces such agricultural soils, and as in the fruit 

examples; examine possible relations between color and chemical properties, 

principally for nutrients and other fertility parameters. 

 

2.3.2 Soil color and fertility properties 

The soil is described as a complex and heterogeneous system with 

interactions with physical, chemical, and biological components (Awiti et al., 2008). 

Soil management techniques are crucial for minimizing the impact in the use of this 

limited resource and have a strong influence in sustainable food production, 

biofuels, nutrient depletion issues and environmental concerns related to soils 

(Brevik and Hartemink, 2010). In agricultural soil management, soil fertility 

properties are one of the main concerns; usually, laboratory analyses are used to 

determinate soil properties to plan the management. Nevertheless, under the 

current situations ― in which a large number of samples are required to develop a 

variable fertilization plan, conventional methods of soil analyses take a long time, in 

addition to their expensive costs (Mohamed et al., 2016). 

The complexity and cost of conventional soil analyses methods and field 

surveys lead to the development of indirect estimation methods based on proximal 

and remote sensing (Curcio et al., 2013) such as visible–near infrared (vis-NIR) 

spectroscopy (Conforti et al., 2015; Stenberg, 2010; Viscarra Rossel et al., 2009) and 

soil color sensing (Baumann et al., 2016; Castañeda and Moret-Fernández, 2013; 

Hausmann et al., 2016), through these studies it has been possible to establish the 

relationship of these properties with soil OM content, organic carbon, clay, silt, and 

sand and other minerals such as content, kaolinite, haematite and goethite. 

Color is an easily measurable physical attribute of soil through 

colorimeters, color sensors, computer scanners and smartphone cameras (Han et 

al., 2016; Kirillova et al., 2017; Stiglitz et al., 2016; Zhang et al., 2016). The difference 

in soil color has often been used in the soil classification (Maejima et al., 2000), 

different studies indicate that the OM influences the soil color, darker soils have 

more OM (Kweon and Maxton, 2013). Iron oxides show both redness and 

yellowness (Vodyanitskii and Kirillova, 2016), other properties such as clay and 

humus contents also is related with the redness of the soil (Hu et al., 2014). 
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The Munsell color system is one of the most widespread among soil 

scientists (Vodyanitskii and Savichev, 2017). In the Munsell System, the color is 

described by three factors such as hue, value and chroma. Hue is the color name 

such as Red (R), Yellow-Red (YR), Blue-Green (BG), among others. Value is a number; 

usually, from 8 to 2, that represents the lightness or darkness, a higher number 

stands for a lighter color and vice-versa. The chroma represents how weak or strong 

is a color; the minimum of 2 is a grayish color and maximum of 14 is a pure saturated 

color. Every color is alpha-numerically labeled with a letter for the hue and numbers 

for the value and chroma, for instance, 5Y 5/6 ― the number before the hue letter 

indicates a subdivision of hue (Cochrane, 2014; Tokumaru et al., 2002). An example 

of the Munsell color system is shown in Figure 6. 

Figure 6. Schematic diagram of the Munsell color system for a given value (5). The 
hues are placed circumferentially and the chroma scale extends outward 
perpendicular to the center. 

 

5Y 5/6 
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However, the Munsell color system has a severe drawback – the cylindrical 

coordinates complicate its use in statistical calculations (Vodyanitskii and Kirillova, 

2016). The CIELAB system is more convenient and suitable for soil scientists, since it 

represents a universal color space in cartesian coordinates, for instance, Fe content 

contribution in soil color is more significant in the L*a*b* coordinate system than in 

the Munsell system, because this latter is divided into discrete and rough intervals 

(Kirillova et al., 2015). 

A suitable method to analyze and correlate color with fertility parameters 

of soil is the utilization of ANNs. ANNs can learn and generalize based on previous 

observations, and they can often correctly predict with high accuracies when the 

data interaction is complex for other techniques (Khashei and Bijari, 2010). ANNs for 

digital soil mapping could reduce costs and time in semi-detailed soil surveys with 

limited input data thought data interpolation and extrapolation (Bagheri 

Bodaghabadi et al., 2016). An ANN approach was used to determine relationships 

between soil color and a range of physical and chemical characteristics, using the 

database of National Soil Inventory of Scotland in an extensive scale survey 

(Aitkenhead et al., 2013). 
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2.4 Agricultural meteorology data 

The meteorology is the part of the atmospheric science responsible for 

providing weather forecast and communicates to the users who will use this data. 

Other than that, another important task of meteorology is to increase the 

knowledge of the atmosphere, with constant endeavor through research and 

development to improve the accuracy of the weather forecast (Rao, 2008). 

Regarding the agricultural meteorology, the data generated in the last 20 

years were useful to study plants growth, pests and pathogens appearance and 

propagation, water cycle, and protection of the crops from extreme conditions 

(Waggoner, 2016). The meteorological conditions vary in microscales and are 

subjected to several local elements and phenomena (Robitu et al., 2006), for that, 

research is needed to provide additional information to farmers and the 

microclimate in regions where no source of meteorological data is emplaced. In this 

section, the importance of meteorological data for agricultural development will be 

reviewed and possible manners to generate an accurate estimation of these data 

will be presented as an alternative to acquiring information for better crop 

management. 

 

2.4.1 Meteorological information and agricultural importance 

Agriculture is one of the most sensitive activities to weather conditions, 

and the climate change has several impacts in this sector, from food production to 

economic problems in agriculture and related industries, making food security a 

tangible problem in the next few decades (Decker, 1994; Mason d’Croz et al., 2013; 

Springmann et al., 2016). Meteorological conditions are essential for cultures, and 

certain conditions must be met for their development (Griffiths, 1994). 

Nonetheless, some changes have occurred, climatic anomalies and the 

modification of precipitations regimens are striking the agriculture (Luo et al., 2019). 

In recent years, weather and climate have become an issue of interest for scientists, 

media and population because of the harmful effects associated with global 

warming (Ahrens, 2012; Webster, 2013), and humans activities have been reported 

as one of the leading causes (Barry and Chorley, 2009). 

The knowledge of weather conditions helps to make better decisions in 

crops management, elaborate sowing calendars, pest population models (Naylor et 
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al., 2018), and precision irrigation dosage (Teshome et al., 2018). For instance, 

irrigated agriculture is the primary water user, accounting for nearly 70% of total 

water consumption in the world (Conforti, 2011) and that consumption can be 

reduced using evapotranspiration models such as the proposed by the FAO (Allen et 

al., 1998), which require prior knowledge of meteorological variables. 

Meteorological observations are obtained through automatic weather 

stations, which are increasing throughout the world in the form of station networks 

(Estévez et al., 2011). Nonetheless, the cost of an automatic weather station is still 

expensive and are not an attractive investment for most farmers. Considering the 

complex nature of the atmosphere and the massive computational power required 

to solve all of the equations that describe the atmosphere, the forecasts is also an 

expensive technique and new manners to obtain meteorological information more 

efficiently and less costly is becoming an interesting matter (Akram and El, 2016). 

 

2.4.2 Meteorological data estimation  

With new techniques for data processing and analysis, such as ANNs, novel 

methods have been developed for forecasting; precipitations (Hung et al., 2009; 

Partal et al., 2015) wind speed (Cao et al., 2012), forecasting sea level in coastal 

areas (de Oliviera et al., 2009; Filippo et al., 2012) and air quality forecasting (Feng 

et al., 2015; Hrust et al., 2009). ANNs were also used for daily estimation of solar 

radiation (Amrouche and Le Pivert, 2014; Hasni et al., 2012; Şenkal and Kuleli, 2009), 

power generation in wind energy systems (Fan et al., 2009; Olaofe, 2014; Sideratos 

and Hatziargyriou, 2007) and the estimation of evapotranspiration (Abrishami et al., 

2018; Ballesteros et al., 2016; Chowdhury et al., 2017; Cooper, 2010). However, all 

these studies worked based on measured data, i.e., were driven by previous known 

meteorological data to use them as the input to create models, there is a lack of 

studies focused on generating the first data and validating its quality using ANN. 

Interpolation is a way to generate data in geographical locations where no 

data is acquired. Although deterministic and parametric statistical models have 

been the traditional approaches for data interpolation, such as inverse distance 

weighting, inverse squared distance weighting (Li and Heap, 2011; Lu and Wong, 

2008) and multilinear regression (Jin et al., 2016; Nalder and Wein, 1998); there are 

studies with new approaches such as random forest regression (RFR) machine 

learning method and ANN (Li et al., 2011; Li and Heap, 2014; Wang et al., 2009). 
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Regarding interpolation studies of meteorological variables, methods such 

as Thiessen polygons, kriging, regressions, nearest neighbor and inverse to distance 

weighted were employed to mainly interpolate precipitations and temperatures 

with different levels of accuracy (Berndt and Haberlandt, 2018; Jeffrey et al., 2001; 

Mendez and Calvo-Valverde, 2016; Wagner et al., 2012; Wu and Li, 2013). 

Considering these facts, an ANN approach for data interpolation can be an 

exciting alternative given its capability in modeling and solving complex nonlinear 

problems (Voyant et al., 2017). Generating more data and time series in various 

locations can be the basis for other studies, for instance, pathogen infestation in 

farms (Tripathy et al., 2011), planning water management (Chowdhury et al., 2017; 

Valipour, 2016) or checking the performance of solar energy based equipment and 

building in terms of energy consumption, especially for heating and cooling (Kumar 

et al., 2015; Shu Fan et al., 2009), using good quality interpolated data. 

Meteorological data is an essential class of temporal record that can be 

useful for agricultural, energy, scientific, financial, and other applications. Since it is 

not possible to emplace a weather station in every location where data is needed, 

more research and information are needed to estimate meteorological data 

economically and accurately — especially considering the importance of this type of 

information in agriculture for crop management (Dahikar and Rode, 2014; Iizumi 

and Ramankutty, 2015; Kang et al., 2009; O. Rauff and Bello, 2015). 
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2.5 Artificial neural networks  

An ANN is a mathematical/computational model that is inspired by the 

structure and functional aspects of biological neural networks. It is a highly accepted 

technology to alternatively solve complex problems (Bouselham et al., 2017). 

Comparative surveys show that accuracy of ANN methods is superior to that of 

traditional statistical methods in dealing with problems, especially regarding 

nonlinear patterns (Bahrammirzaee, 2010). 

ANN belongs to machine learning (ML) set of techniques. ML can be 

described as such algorithms capable of producing learning by the mathematics in 

the models, and the fine-tuning of several parameters responsible for fitting the 

input data to the target. The optimization of such parameters could be understood 

as an unknown black-box function that invokes algorithms developed for such 

problems (Snoek et al., 2012). Besides ANN, other remarkable ML algorithms are 

decision trees, random forest, support vector machine, k-nearest neighbors, among 

others (Maglogiannis, 2007). 

In the following sections, an overview of ANN is presented. The ANN 

fundamentals, components, structures, and mathematics behind this technique are 

described. The review includes the basic units of ANNs, the artificial neuron or 

perceptron, how the learning is achieved through this technique, to the validation 

of the models for posterior inferences, classifications, and predictions. 

 

2.5.1 The artificial neuron 

Animals have complex brains composed of hundreds or thousands of 

millions of elements called neurons; the number varies according to species. In 

humans, the brain consists of approximately 1011 neurons – in this text animal, and 

consequently, human neurons will be referred to as biological neurons. These units 

are highly interconnected (approximately 104 synapses or connections per neuron), 

and an electromagnetic signal is passed through them, this signal is information that 

roves the brain, being processed by the neurons and derives into the diverse forms 

of actions or reactions (Zurada, 1992). 

The biological neuron is a highly specialized cell type. Morphologically 

three major regions can be defined (Figure 7): a cell body (or soma), which contains 

the nucleus; a variable number of dendrites, which emanate from the soma and 
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ramify; and a single axon, which extends far from the soma and has numerous 

terminals to interconnect to other neurons dendrites (Squire et al., 2008). 

 

Figure 7. Biological neuron cell scheme. The signal travels from left to right, from 
the dendrites (input), passing through the body or soma and going out through the 
axon and its terminals. 

 

An artificial neuron is a simple mathematical model inspired in its 

biological counterpart. Artificial neurons produce an output value in two steps. First, 

the neuron computes a weighted sum of its signals, input variables for the case, and, 

in a second stage, applies an activation function to this sum to derive the product as 

the output (Russell and Norvig, 2016). 

In 1943, McCulloch and Pitts proposed the first artificial neuron model – 

today is known as the perceptron, composed of binary threshold activation function 

(Figure 8). This mathematical neuron computes a weighted sum of its input signals 

and generates an output of “1” if this sum is above a certain threshold, “0” or 

another positive number, otherwise, the function returns “0” as a result, this logic 

is also known as hardlim function (Jain et al., 1996). 
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Figure 8. McCulloch and Pitts artificial neuron. Where xn = inputs and wn = weights. 
The sum of products of inputs and weights plus the bias is passed to the activation 
function (σ) to generate the neuron output (�̂�). 

 

The perceptron applies a linear combination of its inputs, obtaining the 

signal in which is applied an activation function to obtain the output signal. 

Nonlinear functions are the most used ones to give the perceptron nonlinear 

behavior (Martínez-Martínez et al., 2015). The mathematical model of the 

perceptron is presented in Eq. 1: 

Were �̂� is the neuron output; 𝜎 is the activation function; 𝑥 is the input 

vector of 𝑛 elements; 𝑤 is the weight vector and 𝑏𝑖𝑎𝑠 is a value that allows the sift 

of the activation function. The bias is somehow similar to the constant 𝑏 of a linear 

function 𝑦 = 𝑎𝑥 + 𝑏. 

 

The biological neuron and the artificial neuron, the perceptron, are 

comparable in certain manners, a parallelism from an operational point of view can 

be described as follows: the weight (𝑤) corresponds to the strength of a synapse, 

the neuron body is represented by the summation and the activation function, and 

the neuron output (�̂�) is represented by the signal on the axon (Mindiola et al., 

2015). In the perceptron, the analogous of the of electromagnetic signals in the 

processing of brain are, in deep, mathematical operations that take place in 

processor and random access memory (RAM) of a computer (Misra and Saha, 2010). 

�̂� =  𝜎 (∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖𝑎𝑠

𝑛

𝑖=1

)  
Eq. 1 
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2.5.2 The artificial neural network 

The perceptron by itself does not have a lot of processing power, especially 

when it is compared to an ANN, which is composed of several layers of perceptrons. 

ANN can be defined as a highly connected array of neurons, which are 

interconnected with each other; a widely used model called the multi-layered 

perceptron (MLP) is the most common type of ANN (Haykin, 1999; Park et al., 1991). 

The MLP consists of one input layer, one or more hidden layers, and one output 

layer. Each layer employs several neurons, and each neuron in a layer is connected 

to the neurons in the adjacent layer with different weights, which is used to 

determine how much one unit will affect the other (Chen et al., 2005). 

Neural networks are typically represented by a network diagram, which is 

composed of nodes connected by directed links. Nodes are arranged in layers, and 

the structure of the most used neural network consists of three layers: an input, a 

hidden and an output layer of nodes (Figure 9), signals flow into the input layer, pass 

through the hidden layers, and arrive at the output layer in a unidirectional path in 

the MLP (Hastie et al., 2009). 

ANN is a kind of array which can realize a nonlinear mapping from the 

inputs to the outputs (Rui and El-Keib, 1995). Thereby, the input neurons receive the 

data, and the inputs and weights products are computed; the signals enter the 

hidden layer where a sum is performed, a bias is added, and an activation function 

is applied in each neuron. Then, the signals leaving the neurons in the hidden layer, 

are multiplied again by weights and enter the neurons in the output layer, where a 

sum is performed plus the bias addition to generate the output of the ANN. 

Initially, the McCulloch and Pitts perceptron model presented limitations, 

and the nonlinear capability of ANN was not a reality until long after McCulloch and 

Pits pioneer work. It was not until 1962, 20 years after the first proposal, that 

Rosenblatt implemented hardware with enough computing power to process an 

array of artificial neurons and the term “perceptron” was coined. He proposed 

single-layer networks composed of a few processing units. These networks were 

applied to classification problems, in which the inputs were usually binary images of 

characters or simple shapes (Bishop, 1995). 
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Figure 9. ANN scheme. Where xn are the input variables that enter in the input layer 
and ŷn are the outputs from the output layer. The hidden layer contains the 
activation function. 

 

However, in a large number of interesting cases, the neurons were not 

capable of solving problems. A classic example is the “exclusive OR” (XOR) problem, 

which was reported by Minsky and Papert in 1969 (Özbay et al., 2007). The report 

resulted in a lack of enthusiasm and research in ANNs in the computer science 

community for almost 20 years (Basheer and Hajmeer, 2000). The recession was 

followed by regeneration of ANNs with the introduction of the ANN models of 

Hopfield during the 1980s, who popularized the MLP by employing the training 

algorithm of backpropagation proposed by Werbos in 1974 in his doctoral thesis at 

Harvard University, and the interest of the scientific community returned (Nastos et 

al., 2013). This interest reborn was coupled with the rapid growth of computing 
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capabilities. Nowadays, the MLP can solve different nonlinear problems, including 

the XOR case with a quite simple network structure (Singh, 2016). 

The task of an MLP is to get the desired output to the inputs of certain 

types. With this goal in mind, the learning of perceptron is performed. The inputs 

and the desired outputs are loaded to the scheme, and the error of the response is 

determined. The parameters of the system, the weights in the inter-connections, 

are changed during the learning phase of the ANN to diminish the difference 

between the desired and the real output (Negrov et al., 2017). 

The neural networks can be classified into two classes according to its 

architecture and interconnection between neurons: feed-forward networks and 

feed-back (recurrent) networks (Tealab et al., 2017). The most popular ANN in the 

studies is the multilayer feed-forward network, in which the neurons are organized 

into series of layers, and information signal flows through the network solely in one 

direction, from the input layer to the output layer (Tkáč and Verner, 2016). 

Meanwhile, in an ANN where the outputs of some neurons are feed back to the 

same neurons or neurons in preceding layers are called recurrent neural networks 

(RNN). This feed-back enables a flow of information in both forward and backward 

directions (Basheer and Hajmeer, 2000). This type of neural network is more focused 

in time series predictions thanks to using as the input data part of the output data 

from the previous element in the series, such as forecast financial time series 

(Cavalcante et al., 2016; Li et al., 2018). 

While MLP is more focused on solving nonlinearly separable problems, 

classification, and approximate continuous functions (Haykin, 1999), there is 

another architecture of neural networks based on the number of hidden layers; 

when the ANN consists of several of perceptrons layers, the term deep neural 

network (DNN) is employed (Li et al., 2018). These types of neural networks are 

employed by excellence for image analysis and classifications, including videos 

(Antipov et al., 2016; Cheng et al., 2018). However, for most of the classification and 

predictions problems, there is no need to use more than one hidden layer (Heaton, 

2008), in some cases augmenting the number of hidden layers can lead to the 

detriment of performance (de Villiers and Barnard, 1993). 

In an MLP, adding hidden layers and neurons are generally limited for a 

few hidden layers. Adding more layers not only increases the complexity of the 

model and the computational cost, but it also does not ensure more accuracy or 

better overall performance of the model. Experimental results indicate that ANNs 

with two hidden layers are prone to perform more inaccurately in comparison to 
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one hidden layer ANNs (de Villiers and Barnard, 1993). Increasing the number of 

hidden neurons, in forms of a neuron inside the hidden layer or increasing the raw 

number of hidden layers itself, can dismiss the learning process leading to less 

accurate models (Karlik, 2011). 

ANN, especially in complex models with several neurons and layers, have 

the cost of the training time (Moraes et al., 2013). Although new central processing 

units (CPUs) are faster than ever, have multicore structures (2 or 4 cores in general) 

and instructions for high-performance parallel processing (Bergstra et al., 2010; 

Vanhoucke et al., 2011). Moreover, graphics processing units (GPUs) can be used for 

faster ANN implementations, due to higher capacity of parallel computing by the 

multicore system with hundreds of cores (Oh and Jung, 2004; Yang et al., 2011). GPU 

implementation of ANN can go up to 50 or 60 times faster than standard CPU 

implementations (Cires et al., 2003; Ramachandran et al., 2015). 

Regarding ANN frameworks, there are free and open source libraries such 

as Caffe, Theano, Torch, and TensorFlow, among others, which are widely spread 

(Abadi et al., 2016; Rampasek and Goldenberg, 2016). The importance of being free 

and open source lies in the affordability for use in academics and research. 

TensorFlow, one of the frameworks that most interest has caught in developers in 

the last few years, is developed by the Google Brain Group, part of the Google 

Machine Intelligence Research Institute (Qin et al., 2019), and the use of the 

framework is increasing research since it was released in 2015 (Abadi et al., 2016; 

Cabañas et al., 2019; Hazan et al., 2018; Kulkarni et al., 2018; Vázquez-Canteli et al., 

2019; Zhang and Kagen, 2017). 

Several ANN studies have been conducted in distinct disciplines with 

overwhelming results; in the photovoltaic energy industry to forecast the power 

generation of system under diverse climatic scenarios (Bouselham et al., 2017; Ding 

et al., 2011; Veerachary and Yadaiah, 2000); in the industry sector to control and 

monitoring of production process, such as distillation (Singh et al., 2007), lifetime 

prediction of machinery (Tian, 2012), fault diagnosis in elements of a power 

installation (Bi et al., 2000) and controlling robotics machinery (Zhao et al., 2014). In 

medicine, ANNs are useful for the diagnosis of cardiovascular diseases, diabetes, 

cancer and tumors (Jiang et al., 2010; Singh et al., 2015). In the finance sector, to 

schedule the energy loads for a more economical consumption and better energy 

prices (Alanis, 2018; Chen et al., 2001), bankruptcy prediction (Li et al., 2018; Tkáč 

and Verner, 2016; Zhang et al., 1999) and prices and time series prediction (Abhishek 

et al., 2012; Göçken et al., 2016; Kaastra and Boyd, 1996; Moghaddam et al., 2016; 
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Patel et al., 2015); in the telecommunication sector, neural networks can treat and 

recover digital information in channels when a data loss occurs (Das et al., 2014; 

Panda et al., 2015), to cite some of the multiple examples of ANN applications. 

 

2.5.3 Activation functions 

Activations functions are an essential component of ANNs. In a 

perceptron, the weighted inputs are summed and passed through a limiting 

function, which scales the output to a fixed range of values. The output of the limiter 

is then broadcasted out of the neuron to the next layer (Ozturk and Karaboga, 2011). 

In general, S-shaped functions, such as sigmoid and hyperbolic tangent, are adopted 

for the activation. Once the activation function is performed, a neuron sends its 

activated value to the other neurons through the connections (Tsai and Wang, 2001; 

Zamanlooy and Mirhassani, 2014). 

The activation function is typically nonlinear, and it ensures that the entire 

network can estimate a nonlinear function which is learned from the input/output 

data pair (Moraes et al., 2013). Nonlinear activation function implementation 

achieve higher accuracy and improves the learning and generalization capabilities of 

ANNs in contrast to the linear primitive functions (Zamanlooy and Mirhassani, 

2014). 

Usually, neurons in the hidden layer are the ones that perform an 

activation function; output neurons, in general terms, return a weighted summation 

of the previous layer output without any transformation. It has been reported that 

a nonlinear activation function in the output layer failed to improve the 

performance and accuracy of an ANN (Yonaba et al., 2010). There are several 

activation functions, with a diverse range of bounded outputs; according to the 

problem to solve, one or other activation function performs better (Gautam and 

Ravi, 2015). Some of the main activation functions are described in the subsections 

below. 

 

2.5.3.1 Hardlim function 

The hardlim function, also known as a binary step function, was the first 

activation function presented by McCulloch and Pitts, fathers of the artificial 

neuron. The function gives binary output values, “0” or “1”, “0” when the signal 
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value is less than “0” and “1” when the signal value is equal or greater than “0”. The 

formula is presented in Eq. 2. 

𝑓(𝑥) = ℎ𝑎𝑟𝑑𝑙𝑖𝑚(𝑥) =  { 
0 for 𝑥 < 0
1 for 𝑥 ≥ 0

 Eq. 2 

The function plot is shown in Figure 10. The hardlim function presents two 

possible stages according to the input value into the activation function, thus the 

name of the binary step. Regardless of how negative or positive the input value is, 

the logic of this function will always return “0” or “1”. 

 

Figure 10. Hardlim activation function plot. 

 

Hardlim is rarely used nowadays since there is no linear relationship 

between inputs and output patterns in most modern problems of interest (Abhishek 

et al., 2012). Hardlim activation function was not very effective to solve several 

problems in comparison with the S-shaped functions in a comparative study using 

several datasets from the University of California Irvine machine learning repository 

(Zhang and Suganthan, 2016). 
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2.5.3.2 Sigmoid function 

The sigmoid activation function is one of the most used in ANNs, and it 

rapidly replaces the hardlim function. There are some variations of the sigmoid 

functions, but the one known as logistic sigmoid is often used in studies and 

applications (Menon et al., 1996).  The sigmoid activation function produces positive 

numbers only between “0” and “1”, and the formula is presented in Eq. 3. This 

function is also known as the S-shaped function, and its bounded output values 

make it one of the most useful in training ANNs (Sibi et al., 2013). 

𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1 + 𝑒−𝑥
 

Eq. 3 

ANN with sigmoid activation functions was used to solve several issues 

such as inference of rivers water quality (Palani et al., 2008); electricity power 

demand prediction (Manohar and Reddy, 2008); and solar air-heater modeling 

(Ghritlahre and Prasad, 2017), among others. The typical S-shaped graph of this 

function is shown in Figure 11. 

 

Figure 11. Sigmoid activation function plot. 
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2.5.3.3 Hyperbolic tangent function 

The hyperbolic tangent function (tanh) is similar to a sigmoid function, it is 

also an S-shaped function but with a subtle difference; its outputs bounds are 

between “-1” and “1” (Karlik, 2011). The tanh formula is presented in Eq. 4. 

𝑓(𝑥) = tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Eq. 4 

The function gives output values from “-1” to “1”, returns “0” when the 

input is “0” and as more positive or more negative the input is, the proportionality 

of the output decreases creating rough asymptotes. The function plot is shown in 

Figure 12. 

 

Figure 12. Hyperbolic tangent activation function plot. 

 

Some examples of ANN with tanh activation functions are the tracking of 

maximum power point for an automatic adjustable photovoltaic system (Punitha et 

al., 2013) and markets index predictions (Guresen et al., 2011). 
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2.5.3.4 Softsign function 

The softsign is similar to the tanh function but might behave differently in 

terms of saturation because of its smoother asymptotes, polynomial instead of 

exponential (Glorot and Bengio, 2010). The softsign formula is presented in Eq. 5. 

𝑓(𝑥) = softsign(𝑥) =  
𝑥

1 + |𝑥|
 Eq. 5 

The softsign function is similar to the tanh function, giving output values 

from “-1” to “1”. The function plot is shown in Figure 13. This function is relatively 

novel, first introduced by Bergstra et al. (2009), proposing this function for better 

learning of image features. The applications of this activation function are mainly 

for image classification problems (Ertam, 2017; Kakuda et al., 2019) but it can also 

be employed for inference problems such as indoor temperature forecasting 

(Romeu et al., 2013). 

 

Figure 13. Softsign activation function plot. 
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2.5.3.5 Softmax function 

The softmax function has been extensively used in ANN, especially in DNN 

architectures, is one of the few activation functions placed in the output layer due 

to its characteristics (Zheng et al., 2015). The softmax has a classifier character since 

the function returns a number that can be interpreted as the probability of a 

particular class (Dong et al., 2015). The softmax formula is shown in Eq. 6. 

𝑓(�⃗�) = softmax(�⃗�) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑖=1

 
 

𝑓𝑜𝑟 𝑖 = 1, … , 𝐽 

Eq. 6 

Softmax ensures a probability distribution, and it has the properties that 

every single output (�̂�𝑖) for a set of observations (�⃗�) fit the condition 0 ≤  �̂�𝑖  ≤ 1, 

and the sum of outputs (∑ �̂�𝑗
𝐽
𝑖=1 ) is equal to “1”, as it required for probabilities 

(Bishop, 1996). Softmax activation functions in the last layer of a text analysis ANN 

gives the probability of appearance of words in a text string (Mikolov et al., 2010; 

Tran et al., 2014). In the same way, it computes the probable labels in sentiment 

analysis of tweets (Severyn and Moschitti, 2015) and gives a class probability of 

given images (Nguyen et al., 2015). 

 

2.5.3.6 Rectified linear unit function 

Sigmoid neurons were for a long time the biologically more plausible 

model for neurons. However, the recent work in ANNs shows that rectified linear 

unit (relu) function is an even better model of biological neurons and yield equal or 

better performance than other activation functions despite the hard nonlinearity 

and non-differentiability at zero. Rectifier networks are not only beneficial to image 

classification tasks, in which it is the principal function but also might yield powerful 

tools in the future (Glorot et al., 2011; Maas et al., 2013). The relu activation 

function formula is presented in Eq. 7. 

𝑓(𝑥) = 𝑟𝑒𝑙𝑢(𝑥) =  {
0 for 𝑥 < 0

 𝑥 for 𝑥 ≥ 0
 Eq. 7 

Since it was first proposed by Nair and Hinton (2010), relu functions proved 

to be efficient compared with other alternatives in image analysis. This function was 

able to learn specific features that are better for object recognition. The relu 
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function is more accurate than tanh, sigmoid, and softsign activation functions for 

image classification (Ertam, 2017). Therefore, relu layers are preferred for image 

analysis (Zagoruyko and Komodakis, 2015), although, they can also be applied for 

video analysis (Ebrahimi Kahou et al., 2015) and automatic speech recognition 

(Zhang and Woodland, 2016). The relu function plot is shown in Figure 14. 

 

Figure 14. Rectified linear unit (relu) activation function plot. 
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Babri, 1998). The correct implementation of ANN is a meticulous process and can be 

accomplished by following the appropriate methodology, which ensures the 

maximum performance of the algorithms and the ability of the ANN to solve the 
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generally, the data is preprocessed before entering the ANN input layer. The second 
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phase is called the learning phase; here, the training and testing are performed. 

These two different processes are performed in parallel and should not be 

separated; the abstraction capability of the model is developed during this phase. 

Finally, in the third phase, the trained model is validated in terms of goodness and 

fit obtained in new inferences of ANN. In the following subsections, each of these 

phases will be detailed. 

 

2.5.4.1 Data preprocessing 

Before the learning phase of an ANN takes place, the dataset needs to be 

conditioned. A correctly partitioning of the available input-output data, predictors 

and response variables, into three different datasets such as the training, test and 

validation sets must be done. These sets have specific roles for the successful 

implementation of ANNs (Altinay et al., 1997). By now, this subsection will be 

focused on the preprocessing of the data, and the roles of each dataset will be 

detailed in the following subsections. 

Regarding the input variables, if they are measured in different scales or if 

the standard deviations for the variables are different among them, a variable might 

dominate the following calculations due to its dimensionality (Martinez et al., 2017). 

Hence, normalization or standardization procedures are the most viable alternative 

to deal with these types of bias. In the same manner, normalization of variables 

increases the computational efficiency of the ANN training process, which is also 

highly enhanced in terms of accurate results when it is coupled with preprocessing 

techniques (Nawi et al., 2013; Specht, 1991). 

Normalization of input data has the advantage of scaling the data in the 

same range of values for each input feature in order to minimize bias within the 

neural network for one feature to another, helping the system a better weight 

adjustment for each element (Jayalakshmi and Santhakumaran, 2011). 

In neural networks, there are fundamentally two types of preprocessing 

methods. The first is to standardize the data by subtracting the mean and dividing 

by the standard deviation to make the data have a mean of “0” and variance of “1”, 

referred as “Z-score normalization” as is shown in Eq. 8 (Priddy and Keller, 2005). 
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𝑧𝑖 =  
𝑥𝑖 − 𝜇

𝜎
 Eq. 8 

Where 𝑥𝑖 is a given input value from a specific feature; 𝜇 is the mean of 

the feature; 𝜎 is standard deviation; and 𝑧𝑖  is the normalized value for the given 

input. 

 

The second (Eq. 9), is to rescale the data to a small interval from “0” to “1” 

using the “Min-Max normalization” (Eberhart, 2014). 

𝑥𝑖
′ =  

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 Eq. 9 

Where 𝑥𝑖 is a given input value from a specific feature; 𝑥𝑚𝑖𝑛 is the 

minimum observed value for the feature; 𝑥𝑚𝑎𝑥 is the maximum observed value; and 

𝑥𝑖
′ is the normalized or re-scaled value for the given input. 

 

Input data normalization prior to a training process is crucial to speed up 

the subsequent computational calculations significantly and obtain better ANN 

output. Data normalization affects the performance error of parameter estimators 

trained to predict the value of several variables (Gnana Sheela and Deepa, 2013; 

Sola and Sevilla, 1997). The attempt to implement ANN without input normalization 

would cause the data dot product, between input data and weights, propagation to 

be driven by the larger input cases. Normalization provides the system with a 

realizable manner to assign the right weights to the input, based on the real merit 

of the input data and not just its absolute size or unit of measurement (Badiru and 

Sieger, 1998). 

 

2.5.4.2 Learning phase 

The learning process of ANNs is carried out by two processes running 

complementary one to each other, the training and testing phases. The learning 

process is a multivariable optimization problem which can involve hundreds or 

thousands of variables (Martínez-Martínez et al., 2015). During the learning phase, 

the train and test sets are used to tune the model until it reaches the wanted output 

precision. 
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The training set is the largest dataset, and it is used by the neural network 

to learn the patterns present in the data. The testing set, ranging in size from 10% 

to 30% of the training set, is used to evaluate the generalization ability of a 

supposedly trained network (Kaastra and Boyd, 1996). The data in the test set is 

used to supervise the training process and avoid memorization or “overfitting”, in 

other terms, giving good outcomes only for trained data (Dündar and Şahin, 2013). 

Hence, the training phase can be stopped at the point where the network has the 

smallest testing error; if the testing error starts to increase while the training error 

decreases, overfitting is taking place (Zhang and Morris, 1998). 

The “best” network on training and testing data is the network that best 

passes the learning phase. However, its performance is finally qualified in the 

validation data (Zhang et al., 2003). In other words, ANN must be trained, tested, 

and subsequently validated (Belgrano et al., 2002; Patanaik et al., 2018). Several 

studies use the test set as a validation set for the final performance assessment of 

the model, not in the testing phase rightly said (Khashman, 2010; Trejo-Perea et al., 

2009; Yang et al., 2009). Other studies do not use all datasets or the test or the 

validation dataset (Drucker et al., 1993; Kong et al., 2016; Leu et al., 2001). This 

confusion may be due that ANN is a particular technique that needs these three 

datasets, for train, test and validate the model, meanwhile, for other predictions 

methods, just two datasets are usually demanded, a train and a test set (James et 

al., 2013). 

In the training phase, the mathematics behind the abstraction capability 

of ANNs is called the learning algorithm. The most widely used learning algorithm is 

the backpropagation gradient descent, its popularity is presumably caused by 

simplicity, universality, and good availability in libraries (Phansalkar and Sastry, 

1994; Tkáč and Verner, 2016). There are other learning algorithms such as genetic 

algorithms and particle swarm algorithms, these algorithms are not as widely 

implemented by machine learning libraries as the gradient descent but still an 

alternative method to study (Rios and Sahinidis, 2013). 

The purpose of the backpropagation training is to iteratively change some 

parameters of the neurons in a direction that minimizes the error, or as it is defined, 

the error function ― which basically performs the difference between the desired 

output and the actual outcome of the ANN across all the training and testing 

patterns (Örkcü and Bal, 2011). The ANN has unknown parameters, weights, and 

bias, just as the perceptron does, and these parameters are one of the responsible 

for the abstraction capability of the model. The objective of the learning phase is to 
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seek values for the unknown parameters of the weights and bias to make the model 

fit the training data well. Usually, starting values for weights are chosen to be 

random values near zero, for instance from “-1” to “1”. Hence the model starts 

nearly linear and becomes nonlinear as the weights change (Cao et al., 2015; Hastie 

et al., 2009). 

The backpropagation procedure computes the gradient of an objective 

function, the error function, concerning the weights and bias of a multilayer stack 

of modules. The backpropagation is nothing more than a practical application of the 

chain rule for derivatives, and it can be defined by Eq. 10: 

𝜕𝐸

𝜕𝑤𝑖𝑗
=  

𝜕𝐸

𝜕�̂�𝑖𝑗
 ×

𝜕�̂�𝑖𝑗

𝜕𝑧𝑖𝑗
 ×  

𝜕𝑧𝑖𝑗

𝜕𝑤𝑖𝑗
 

Eq. 10 

 

Where: 

𝐸 is the error or cost function. 

𝑤𝑖𝑗 is a certain weight of a certain synapsis. 

𝑦𝑖𝑗  is a certain output of a neuron. 

𝑧𝑖𝑗  is the product of the weight and a input variable. 

 

The chain rule is applied in functional dependence relationship ― when a 

function depends on other function. For instance, the error function (𝐸) depends on 

the output of a neuron (�̂�), that at the same time depends on the product of the 

input variables (𝑧), making the link to the final parameter of this chain the weights 

and bias (𝑤). The above equation describes the error gradient respect a specific 

weight correction, but it is also valid for a particular bias value since they are 

adjusted in the training phase in the same way. For the backpropagation, all the 

individual weights, bias, and errors are computed and added to obtain the cost 

function gradient of the ANN and adjust the parameters according to the calculus 

(Rosenbaum and Johnson, 1984). 

The key insight is that the derivative or gradient of the error function of 

ANN can be computed by working backward from the gradient concerning the 

output layer to subsequent layers. The output of the initial network model and 

corresponding error is computed, then, at each iteration, new weights and biases 

are determined to add or to subtract a value to them, this value is called learning 

rate. Again, new outputs and errors are determined, and if the new error is above 

the previous one, the new weights and biases are rejected, and the fixed value is 

again added or subtracted according to the gradient (Rusk, 2015; Singh et al., 2015). 
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Training the network involves adjusting the connection weights to 

correctly map the training set to obtain a desirable output, at least to within some 

defined error limit, it is basically an optimization problem (Palani et al., 2008). In 

effect, the network learns from the training set; if the training set is satisfactory and 

the training algorithm is effective, the network should then be able to correctly 

estimate the output even for the inputs not belonging to the training set ― this 

phenomenon is termed as “generalization” (Bishop, 1995; Punitha et al., 2013; 

Wang et al., 2006). 

The training phase is a critical part of the use of neural networks. For a 

given problem, the network training is supervised, given the fact that the target for 

each input pattern is always known a priori. During the training process, the patterns 

or examples are presented to the input layer of a network (Zhang et al., 1999). With 

the gradient descent backpropagation algorithm, a gradient descent search is 

performed ― it measures the output error and calculates the gradient of the error 

by adjusting the weights in the descending gradient direction (Behrang et al., 2010; 

Sharma and K. Venugopalan, 2014). 

The randomly generated weights and the bias are adjusted by a magnitude 

called learning rate. The effectiveness and convergence of the training algorithm 

depend significantly on the value of the learning step, the optimum value of the 

learning step is system-dependent and varies according to the problem and other 

ANNs related features. For systems that possess broad minima, a large learning rate 

value will result in a more rapid convergence. Meanwhile, in a system with a narrow 

minimum, a small learning rate value is more suitable. There are no general rules to 

obtain an optimal learning step; typically used values are 0.9, 0.25, and 0.05 (Rui and 

El-Keib, 1995). 

Randomly initialized weights achieve much faster learning speeds; that is 

why the weights and bias are usually randomly generated by the computer (Cao et 

al., 2018). The backpropagation gradient descent is the rule by which the weights 

are modified, the reason why it is called the stochastic descent method is that the 

modifications are performed in an “a priori unknown” sets of weights and bias 

(Amari, 1993). The backpropagation algorithm is one of the most powerful 

supervised learning algorithms but if it is not well employed, the ANN will not 

converge to the minimum error point or will fall into a local minimum, not the global 

minimum (Figure 15) and the convergence speed can be reduced (Bi et al., 2005; 

Ding et al., 2011; Örkcü and Bal, 2011). 
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Other strategies to ensure better performance of the training algorithms 

are the stopping criteria and the dataset number. The stopping criteria can involve 

stopping after a certain amount of runs through all of the training data and also 

stopping when the total target error reaches some low level, for example, less than 

2% during the learning phase (Palani et al., 2008). Monitoring the error in the train 

and the test sets is also a good strategy for early stopping; if the testing error starts 

to increase in comparison to the training error, early stopping the training prevent 

the overfitting (Tetko et al., 1995; Zhang and Morris, 1998). 

 

Figure 15. Example of the error function with respect to the weight gradient during 
the backpropagation algorithm execution. 

 

Regarding the number of samples in the datasets, generally speaking, a 

large number of input samples is necessary to avoid overfitting (Ramachandran et 

al., 2015; Wang et al., 2006; Yosinski et al., 2014). There is not a recommended fixed 

number of training samples, there is a direct relation between large datasets and 

proper learning levels of ANNs (Kourou et al., 2015; Krizhevsky et al., 2012), a good 

indicator can be that the number of training samples should be larger than the 

number of hidden neurons or neurons in the hidden layers (Huang et al., 2004). 

Performing proper training is a key for the ANN; avoiding the overfitting of 

the network is crucial for that purpose. Overfitting affects the generalization 

capability of ANN, and thus affects the prediction accuracy (Tian, 2012), and in the 

other hand, early stopping is better in terms of performance-to-cost ratio than 

Error 

Weight gradient 

current (𝑤𝑖𝑗) 
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conventional stop mechanisms (Iyer and Rhinehart, 2000). The number of samples 

in the dataset, early stopping by reaching a certain number of iterations, error 

tolerance on the training set, and monitoring the testing error should be considered 

together to overcome the overfitting problem and not in isolation (Chen et al., 

2005). 

 

2.5.4.3 Validation phase 

After the training phase has been finalized, ANN performance is evaluated 

over the validation set (Ahmadi, 2011; Altinay et al., 1997; Jafar et al., 2010). The 

validation set must be composed by samples not included in the learning phase, i.e., 

into the train and test sets, for appropriate model evaluation (Basma and Kallas, 

2004; Tian, 2012). In terms of the proportion of data needed for each dataset, the 

division into three parts follows the following relation: 70% for the learning process, 

15% for test phase and 15% for validation phase (Bal and Buyle-Bodin, 2013), or 

50%, 25%, 25% respectively, can be also an alternative (El Tabach et al., 2007) as 

much as other proportions in similar ranges. 

The lack of fit between the observed phenomena, the real values, and 

estimated values by the ANN during the validation phase indicates that the model 

should be re-trained, with the proper learning procedure and probably with more 

massive datasets to ensure more accurate results (Palani et al., 2008; Yang et al., 

2009). The cost function, the error algorithm, is used to measure the model 

accuracy, and it is one crucial algorithm to the network development. 

In ANNs, the most used cost functions are mean square error (MSE), root 

mean square error (RMSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE), and cross-entropy (CE), among others. These functions can be used 

during the learning and the validation phases, meanwhile, functions such as 

correlation coefficient (R) and determination coefficient (R2) are most appropriate 

exclusively for the validation phase (Ali et al., 2017; Ay and Kişi, 2017; Cheng et al., 

2018; Moghaddam et al., 2016; Sarkar and Pandey, 2015). 

The MSE algorithm (Eq. 11) is generally selected because of its excellent 

performance, relative to the backpropagation algorithm (Zanetti et al., 2007) and it 

is one the most popular cost function in ANNs (Adya and Collopy, 1998). MSE 

function appeals to be adequate when dealing with a single variable in a study, since 
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using multiple variables and dimensions for each one make the error comparison 

more difficult (Köksoy, 2006). 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 
Eq. 11 

Where 𝑛 is the number of samples in the dataset; 𝑦𝑖  is the real data; and 

�̂�𝑖  is the estimation of the ANN. The same symbology will be applied to the 

remaining equations of this section. 

The RMSE is calculated easily, in the same manner than MSE, and then 

taking the square root of the same (Eq. 12). The RMSE hence summarizes the overall 

error of the model, i.e., the precision of the model (Aptula et al., 2005); the main 

difference between MSE and RMSE is that the RMSE is most useful when large errors 

are particularly undesirable (Saigal and Mehrotra, 2012) and the small errors tend 

to be less penalized. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 

Eq. 12 

The MAE, shown in Eq. 13, is an intuitively appealing measure. The MAE 

penalizes under and over-prediction respecting to the actual outcome and is the 

most natural measure of average error magnitude, is an unambiguous measure of 

average error magnitude and useful for inter-comparisons of model performance 

with different magnitudes and measure units (Willmott and Matsuura, 2005). 

While the MAE gives the same weight to all errors, the RMSE penalizes 

variance ― as it provides errors with larger absolute values more overall weight than 

errors with smaller absolute values. When both metrics are calculated, the RMSE is, 

by definition, never lower than the MAE (Chai and Draxler, 2014). 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 
Eq. 13 

A modification of the MAE algorithm is the MAPE. This algorithm (Eq. 14) 

is computed through a term-by-term comparison of the relative error in the 

prediction concerning the actual value of the variable. Consequently, the MAPE is 

an unbiased statistic to measure the predictive capability of models (Wang et al., 

2009). MAPE is often used because of its intuitive interpretation in terms of relative 
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error, but just viable when the quantity to predict is above zero (de Myttenaere et 

al., 2016); otherwise, a zero division is produced, and non-result can derive from this 

formula. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖
× 100

𝑛

𝑖=1

 
Eq. 14 

Regarding the CE function, this error method reflects the similarity 

between variables from the perspective of probability (Men et al., 2016). This cost 

function (Eq. 15) is frequently with ANN with softmax activation function in the 

output layer (Dahl et al., 2013; Liew et al., 2016; Maas et al., 2013). 

CE has significant advantages over other error functions for probabilities 

problems, performs better on large and small target values because they tend to 

result in similar relative errors for both cases. The CE function performs better at 

estimating low posterior probabilities than squared-error functions (Kline and 

Berardi, 2005). The output of the softmax layer returns a series of probabilities, zero 

or positive values, and the CE penalizes all the results which do not match the 

current probability of the target. 

𝐶𝐸 =  − ∑ 𝑦𝑖 × log �̂�𝑖

𝑛

𝑖=1

 
Eq. 15 

The cost functions reviewed so far are eligible for both the learning and 

the validation phases. Nonetheless, some algorithms are exclusively used for 

validation of the model, such as the R and R2. The R, as is shown in Eq. 16, 

investigates the degree of association between two variables, that is, it defines how 

much a given relationship is fitted by a straight line (Tripepi et al., 2008). 

𝑅 =  
𝑛(∑ 𝑦𝑖�̂�𝑖) − (∑ 𝑦𝑖)(∑ �̂�𝑖)

√[𝑛 ∑ 𝑦𝑖
2 − (∑ 𝑦𝑖)2][𝑛 ∑ �̂�𝑖

2 − (∑ �̂�𝑖)2]

 
Eq. 16 

The R2 is an algorithm (Eq. 17) that is widely used in ANNs to assess the 

performance of models (Gholami and Fakhari, 2017), including approaches in 

regression, classification and predictions problems (Ghritlahre and Prasad, 2017; 

Moghaddam et al., 2016; Palani et al., 2008; Tetko et al., 1995; Turan et al., 2011). 
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𝑅2 =  1 −  
∑ [𝑦𝑖 − �̂�𝑖]2𝑛

𝑖=1

∑ [𝑦𝑖 − �̂�𝑚𝑒𝑎𝑛]2𝑛
𝑖=1

 
Eq. 17 

The cost function and the model evaluation are crucial tasks in the ANN 

assays. There is not a universal solution for better performance, and most of the 

work in creating good quality models is to test not only different network 

architectures, but also cost functions, and the performance in the validation 

samples. Once that several models are evaluated, it can be settled that the selected 

ANN is the most pertinent for solving the problem. 
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3. Materials and Methods 

In this chapter, the materials used, and the methodology applied to the 

experimental phase of the thesis will be described. Following the established 

objectives, three main research topics were based on the application of ANNs to 

solve problems in the context of agriculture. 

The first topic, regarding the microalgae production and management by 

using an ANN and light absorbance spectral signature to a rapid inspection of 

microalgae suspensions, is described in section 3.1. Concerning the second topic, 

soil fertility characterization through color assays, the methodology for inquiry the 

relationship between both variables using ANNs are detailed in section 3.2. Finally, 

the third topic, the procedure to the developing of virtual weather stations (VWS), 

for meteorological variables acquisition system, through interpolations of real data 

acquired from weather stations is treated in section 3.3. 

 

3.1 Monoalgal and mixed algal cultures discrimination by using 

artificial neural network 

In this section, the ANN assay to differentiate between monoalgal and 

mixed algal cultures will be described. For this experiment, only the light absorption 

spectra of the different microalgae cultures were used, without any additional 

equipment or image analysis algorithms. A scheme of the experiment is shown in 

Figure 16. 

Figure 16. Microalgal and mixed algal cultures discrimination by ANN experiment 
scheme. 

Biological 
composition 

Neural network 
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Microalgae 
suspension 



64 
   

The objective of this work was to determine the feasibility of using such 

methodology to elucidate the presence of contaminants in monoalgal microalgae 

cultures and to approximate the microalgae species contaminating the cultures. The 

remaining subsections are organized as follows: microalgae species and growth 

conditions for the experiments (section 3.1.1), light absorption measure of 

monoalgal and mixed algal cultures (section 3.1.2), and the ANN used to elucidate 

the microalgae suspensions (section 3.1.3). 

 

3.1.1 Microalgae species and growth conditions 

The microalgae Nostoc sp., Scenedesmus almeriensis, Spirulina platensis 

and Chlorella vulgaris were obtained from the culture collection of “Las Palmerillas” 

Research Center (Almería, Spain) (Figure 17). These species were selected because 

they include two fast-growing green microalgae — Chlorella vulgaris and 

Scenedesmus almeriensis, and two distinct cyanobacteria — Nostoc sp. and Spirulina 

platensis; therefore, they cover a wide range of possible microalgae species. 

 

Figure 17. Microalgae cultures collection of “Las Palmerillas” Research Center. 

 

Continuous cultures of the different microalgae were cultivated under 

laboratory conditions in 2 L bubble-column photobioreactors at an irradiance of 750 

μE·m-2·s−1, adapting the described methodology (Gómez et al., 2013). Arnon 

medium was used for the four microalgae, although in the case of S. platensis, it was 

enriched with 16 g·L-1 of sodium bicarbonate. The temperature of the cultures was 
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maintained at 25 ⁰C, while the pH was controlled at 8.0 by the on-demand injection 

of CO2. To perform the absorption measurements, samples from the reactors were 

collected and placed in batch mode inside 0.2 L flasks for ten days, with no CO2 

injection and at an irradiance of 250 μE·m-2·s−1 to simulate variations in pigments 

and composition that can be found in batch cultures of each of the selected 

microalgae. 

 

3.1.2 Light absorption measurements 

Samples of Nostoc sp., S. almeriensis, S. platensis and C. vulgaris were 

taken from the reactors over five consecutive days. Light absorption measurements 

were performed on the monoalgal cultures. Additionally, light absorption 

measurements were carried out on paired cultures in proportions of 50%/50% and 

75%/25% (Figure 18a). In total, 22 suspensions were prepared daily; these included 

both monoalgal and mixed algal cultures. Each suspension was measured 25 times. 

Over the five days, a total of 550 samples were measured to obtain sufficient data 

to train the ANN; the more significant the amount of data, the lower the model error 

and the higher the accuracy of the developed ANN (Ying-Jin et al., 2004). 

 

Figure 18. Microalgae suspension for monoalgal and mixed algal cultures (a); and 
sample for light absorption measure in the colorimeter (b). 

 

In order to validate the ANN, additional measurements were taken over 

two further days for monoalgal and mixed algal suspensions. Mixed algal 

suspensions were of the same and different proportions to those used in the training 

phase; in addition, mixtures of 3 algal species were used. Measurements were 

a b 
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performed using a Minolta CM-3500d colorimeter - 31 light absorption data points 

were acquired per sample in the 400 nm to 700 nm range, in bandwidths of 10 nm. 

Each sample consisted of a 12 mL microalgae suspension, which was stirred and 

homogenized (Figure 18b). 

 

3.1.3 Artificial neural network and data analysis 

The absorbance values were converted to their relative frequencies using 

Eq. 18, where 𝑥𝑖 is the relative absorbance for a specific bandwidth, 𝑎𝑖  is the raw 

absorbance in a bandwidth, and ∑ 𝑎 is the total light absorption of a microalga 

suspension across the spectrum. Consequently, the relative absorbance represents 

the quantity of light absorption in each bandwidth without the cell concentration 

effect. 

For ANN development, data were normalized in order to improve network 

performance, increase output accuracy, and reduce computational cost (Gnana 

Sheela and Deepa, 2013; Sola and Sevilla, 1997). The statistical, or Z-score, 

normalization technique as is shown in Eq. 8 was applied to the relative absorbance 

data; where 𝑥𝑖 is the relative light absorption datum (for each absorbance band per 

sample), 𝜇 is the mean of the whole dataset, 𝜎 is the standard deviation and 𝑧𝑖  is 

the normalized datum. 

The ANN was a fully connected feed-forward neural network, 

programmed in Python 3.6.5 language using the TensorFlow 1.8.0 machine learning 

library. After various configuration tests, the most straightforward structure ― with 

less hidden layers and fewer neurons per hidden layers ― and the activation 

function with the least training and testing errors was selected. Hence, the neural 

network architecture was 31 neurons in the input layer, one neuron for each 

absorbance datum acquired per sample, 45 neurons in the hidden layer with the 

hyperbolic tangent activation function and 4 neurons in the output layer with the 

softmax activation function to weight each microalgae species in suspension; a 

schema is presented in Figure 19. 

The optimizer was the gradient descent algorithm with the CE cost 

function (Eq. 15); the CE was calculated for all samples in each dataset, and the error 

𝑥𝑖 =
𝑎𝑖

∑ 𝑎
 Eq. 18 
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was expressed as average cross-entropy (ACE), dividing the sum of CE by the number 

of cases in each set of data. In the training and testing phase, 10% of the input 

dataset was used for testing. The early stop, used to prevent overfitting, was applied 

before the testing error started to increase (Piotrowski and Napiorkowski, 2013). In 

order to validate the model, the ANN output was analyzed by performing regression 

using the expected microalgae concentration in suspension. 

 

Figure 19. ANN architecture schema, with 31 neurons in the input layer, 45 in the 
hidden layer and 4 in the output layer. 
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3.2 Artificial neural network for soil color analysis and 

characterization 

In this section, the soil characterization and color analysis by ANNs 

methodology will be detailed. For the experimental work, soil samples and digital 

color photographs were analyzed through ANNs to find possible relations between 

color and nutritional contents. The main objective was to develop a tool for soil color 

classification and analysis in order to develop a fast and inexpensive tool for soil 

management in agricultural lands. A scheme of the experiments is shown in Figure 

20. 

Figure 20. Soil color analysis and characterization by ANN experiment scheme. 

 

The remaining subsections are organized as follows: study area and soil 

sample methodology (section 3.2.1), image acquisition system for soil sample 

photographs description (section 3.2.2), the CV software for soil color processing 

and RGB to L*a*b* conversion (section 3.2.3), Munsell soil color classification and 

statistical analysis (section 3.2.4), and the ANNs for the soil color characterization 

(section 3.2.5). 
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3.2.1 Study area and soil sampling procedure 

The study area consisted in a 43.01 ha vineyard located between 

40⁰00'55.25'' and 40⁰01'24.99'' N to 2⁰56'55.05'' and 2⁰55'34.83'' W in Tarancón, 

province of Cuenca (Castilla La Mancha, Spain). Previous mapping of apparent 

electrical conductivity (ECa) was performed for a representative soil sampling. The 

ECa was measured with a Veris Q2800 at depths of 36 and 90 cm in consecutive 

parallel paths with 10 m of separation between lines throughout the parcel, the ECa 

tend to be useful to sort information and identify sets of attributes with similar 

trends (Officer et al., 2004). 

The obtained information, one raster file for each depth (Figure 21 a and 

b), were reclassified using the Jenks natural breaks classification method (Chen et 

al., 2013) ― 3 classes were defined in each raster. The intersection of the classes in 

both depths was used to create new segments, and each soil sample was extracted 

from these new segments (Figure 21c). Hence, 174 sampling points were defined, 

87 for each depth in order to get samples of each homogeneous segment of the 

parcel. The soil samples were analyzed in the laboratory for 13 parameters, such as 

the OM and total nitrogen (N), expressed in percentage, are measured using 

combustion autoanalyzer LECO TruSpec; phosphorous (P), potassium (K), calcium 

(Ca), magnesium (Mg), iron (Fe), copper (Cu), manganese (Mn), sodium (Na) and 

aluminum (Al), are measured by ICP-OES after acid digestion in nitric acid using 

microwave assisted digestion, and are expressed in mg/kg of soil; pH and electrical 

conductivity (EC) were measured in water (1:5 w/v) and are in dS/m. 
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Figure 21. ECa raster map from the Veris data acquisition system at 36 cm (a) and 
90 cm (b) depth; Segments for soil sampling generated through the processed raster 
data (c). 
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3.2.2 Image acquisition system 

Soil digital photos were taken with an image acquisition system consisted 

of a Panasonic DMC-TZ70EG-S compact digital camera, with 12.1 Mpx, CMOS sensor 

and Leica DC Vario Elmar 24 mm lens. The illumination set was arranged by a pair of 

6,500 K professional photoshoot light sources to provide uniform illumination to the 

sample (Mendoza et al., 2006) (Figure 22a). The image acquisition system in 

controlled conditions is the most appropriate manner to take digital photographs, 

under non-controlled conditions the color can result less accurate and less 

appropriate for this experiment (Lapins et al., 2013; Potočnik et al., 2015). 

The camera was mounted on a stand and remotely operated via the 

“Image App” smartphone application (Figure 22b). The camera aperture speed was 

set at 1/30s, ISO-80, luminosity f/3.3, and focal distance 4 mm. Soil samples were 

placed in Petri plates of 55 mm diameter, uniformly filled; 5 repetitions (plates) per 

soil sample were prepared, a total of 870 experimental units were photographed. 

Soil samples were dried at ambient temperature to avoid the interference of 

moisture content in the soil color expression (Sánchez-Marañón et al., 2007). 

 

Figure 22. Image acquisition system; light and camera setup (a) and shooter camera 
app for smartphone (b). 

 

a b 
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3.2.3 Computer vision software for color conversion 

In order to accelerate the process of color measurement of soil samples, a 

CV application has been programmed to analyze the color in digital photographs and 

perform the conversion from RGB system to the international standard CIELAB color 

system. The software and user interface were developed in NI LabVIEW 2018 using 

the Vision Module. This programming environment has the versatility to work with 

scripts from other programming languages, such as Python, and it is able to execute 

ANN’s scripts with the advantage that it allows designing a user interface which 

enables the user to use an ANN without writing a single line of code. 

The soil color conversion from RGB to L*a*b* was performed using an ANN 

following the methodology proposed (León et al., 2006). To generate the model, the 

“X-Rite ColorChecker Classic” (Figure 23) was used. This colorchecker includes 24 

color charts with natural, chromatic, and primaries colors in addition to a greyscale. 

The color charts are scientifically prepared and verified, see Appendix C for technical 

specs of the colorchecker. The RGB values from color chambers in digital color 

photographs were extracted and used as input in the ANN, and the L*a*b* values 

provided by the manufacturer were the output in the training and testing phases. 

 

Figure 23. X-Rite ColorChecker Classic, color calibration card. 

 

The ANN was composed of 3 neurons in the input layer, one for each RGB 

color element; 8 neurons in the hidden layer with the hyperbolic tangent activation 
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function; and 3 neurons in the output layer, one for each L*a*b* color element ― a 

schema is shown in Figure 24. The early stop was applied to prevent overfitting. The 

ANN was programmed in Python 3.6.5 using TensorFlow 1.8 machine-learning 

library. The obtained model was applied to convert the soil RGB dataset into L*a*b* 

color. 

 

Figure 24. ANN architecture schema, with 3 neurons in the input layer, 8 in the 
hidden layer and 3 in the output layer. 

 

 

𝐿 ∗ 

𝑎 ∗ 

𝑏 ∗ 

𝑅 

𝐺 

𝐵 

Input layer Hidden layer Output layer 

1 

2 

3 

4 

5 

7 

8 

6 



74 
   

3.2.4 Munsell soil color classification and description 

To perform the Munsell color soil classification, a Munsell soil color charts 

book was photographed in the same image acquisition system described in section 

3.2.2. A CV software was programmed in LabVIEW 2018 using the Vision Module to 

process the color Chart Book and extract RGB median values of each notation color 

in the book. 

The RGB mean values of the 5 repetitions of each soil sample were 

computed to compare them with the RGB obtained from each Munsell color 

notation. The minimum Euclidean distance match algorithm was performed to 

compare the colors, as is shown in Eq. 19; where 𝑅𝑠, 𝐺𝑠 and 𝐵𝑠 are the mean of the 

RGB color values of the soil samples and 𝑅𝑀, 𝐺𝑀 and 𝐵𝑀  are soil chart RGB color of 

each Munsell notation. Each mean of the RGB values from the soil samples was 

compared with the RGB values from the Munsell colors, and the notation with the 

absolute minimum difference was taken as the soil Munsell color of the sample 

(Stanco et al., 2011). 

𝑑 = √(𝑅𝑠 − 𝑅𝑀)2 + (𝐺𝑠 − 𝐺𝑀)2 + (𝐵𝑠 − 𝐵𝑀)2 Eq. 19 

Before using the dataset, outlier points were removed based on fertility 

parameters, the soil samples classified according to their Munsell color notation 

were analyzed statistically; the Kolmogorov–Smirnov and Levene tests were 

performed, data normality and equality of variances were discarded according to 

the tests. The means were compared with the Kruskal-Wallis H test to verify 

differences between groups and the Mann-Whitney U test were used to compare 

the groups based on their Munsell hue color classification; all statistical tests were 

performed in R programing language version 3.4.4. 

 

3.2.5 Soil properties characterization by artificial neural networks 

For the ANN analysis, two datasets were prepared with the soil color 

values, one for the RGB values and one for the L*a*b* values, and the laboratory 

analysis for soil fertility parameters. Each dataset was used to train, test and validate 

ANNs. The data were normalized to improve the network performance (Gnana 

Sheela and Deepa, 2013), the Z-score normalization was applied to the datasets as 
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is shown in Eq. 8; where 𝑥𝑖 is the datum of the variable, 𝜇 is the mean of the variable, 

𝜎 is its standard deviation and 𝑧𝑖  is the normalized datum. 

The ANNs were fully connected feed-forward neural networks, with the 

RMSE cost function, programmed in Python 3.6.5 language using the TensorFlow 

1.8.0 machine learning library. After various configuration attempts, the most 

straightforward structure ― with less hidden layers and fewer neurons per hidden 

layers ― and the activation function with the least training and testing errors was 

selected. The ANNs structures were set with 3 neurons in the input layer, one 

neuron for each color component; 1 hidden layer with 18 neurons, with hyperbolic 

tangent activation function; 13 neurons in the output layer, one neuron for each soil 

property to predict. For training and testing phases, 554 and 62 experimental units 

were used, respectively. The validation phase was carried out with 25 soil samples 

not previously shown to the ANN in training or testing phases, the mean color of the 

5 repetitions of each soil sample was used to make the 25 data to the validation 

dataset. 
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3.3 Virtual weather stations for meteorological data 

estimations 

In this section, the methodology to develop the VWS is described. This 

development was planned with the primary objective of evaluate and compare the 

accuracy of several interpolation algorithms, ANN approaches and the most used 

interpolation methods, to generate meteorological data and develop the VWS as an 

option to acquiring accurate data economically and straightforwardly. A scheme of 

the procedure is shown in Figure 25. 

 

Figure 25. VWS development methodology scheme. 

 

The remaining subsections of the VWS methodology are organized as 

follows: the meteorological data source (section 3.3.1), statistical analysis of the 

dataset (section 3.3.2), the development of the VWS and validation procedure 

(section 3.3.3), and the description of the interpolations algorithms employed 

(section 3.3.4). 
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3.3.1 Meteorological dataset 

The data was obtained from the InfoRiego metrological station network 

records of the Agrarian Technological Institute of Castilla y León (Spain), the 

locations are represented in Figure 26. The meteorological records were 

downloaded from the file transfer protocol (FTP) server available; a Python script 

automates the download of the data by dates. The registers consisted of daily data 

summaries of 53 meteorological stations distributed throughout the territory of the 

autonomous community of Castilla y León. The records date from July 1st, 2017 to 

June 30th, 2018 to compile information for a whole year. 

 

Figure 26. Meteorological station network of the InfoRiego program of the Agrarian 
Technology Institute of Castilla y León. 

 

The meteorological observation records were grouped into a set of daily 

precipitation (Precip) in mm of rainfall, reference evapotranspiration (ETo) in mm of 

water, daily mean air temperature (Mean Temp), maximum registered temperature 

(Max. Temp) and minimum registered temperature (Min. Temp) in ⁰C, daily mean 

air relative humidity (Mean RH), maximum registered air relative humidity (Max. RH) 
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and minimum registered air relative humidity (Min. RH) in percentage (%), mean 

wind speed (Mean WS) in m/s and total solar irradiation (TSI) in MJ/m2 from all the 

53 weather stations. Additionally, the UTM X and Y geographical coordinates, in 

ETRS89 geodetic system, and the Z coordinate of the meteorological stations were 

added to the dataset to perform the interpolations. 

 

3.3.2 Dataset statistical analysis 

An exploratory data analysis (EDA) was performed to the whole dataset, 

the weather stations with reading errors and the days with less than 90% of the 

wheater station in the records were removed to ensure a minimum of observations 

per day. The dataset resulted in 18,234 sets of observations from 355 days. A 

statistical summary was generated with the purpose of describing the behavior of 

the studied meteorological variables in the period from July 2017 to June 2018. In 

the same manner, data from the summer season months (July, August and 

September) and from the winter months (December, January and February) were 

filtrated to analyze the registers in periods with higher peaks phenomena such as 

high or low temperatures, rainy periods and other seasonal meteorological events. 

The means of the meteorological events during summer months, winter 

months, and the rest of the year were compared. The Kolmogorov-Smirnov and 

Levene tests were performed, data normality and equality of variances were 

discarded according to the tests. The means were compared with non-parametric 

tests; the Kruskal-Wallis H test to verify differences between groups and the Mann-

Whitney U test was used to compare the groups based on the season of occurrence; 

all statistical analyses were performed in R programing language version 3.4.4. 

 

3.3.3 Virtual weather station development 

The VWS is composed of algorithms capable of getting and processing data 

from weather station networks and predict the possible meteorological state in a 

given location. For that, records from the InfoRiego station network were massively 

downloaded from the FTP server of the ITACYL through a Python script and used to 

interpolate values of daily Precip (mm), ETo (mm), Mean Temp (⁰C), Max. Temp (⁰C), 

Min. Temp (⁰C), Mean RH (%), Max. RH (%), Min. RH (%), Mean WS (m/s) and TSI 

(MJ/m2). 
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To evaluate the quality of interpolated data, a randomly selected weather 

station was daily removed from the dataset, and the results of the interpolations 

were compared with the actual records from these stations. The interpolations 

method approaches were through ANNs, deterministic and statistical interpolations 

methods, and random forest regression. All the interpolation algorithms were 

evaluated with the same validation dataset, and the accuracy was measured with 

the R2 between meteorological observations and interpolated values, and the RMSE. 

All statistical tests were performed in R programing language version 3.4.4. 

 

3.3.4 Interpolation methods 

For the ANN approach in data interpolation, the performance of 5 ANNs 

with different activation functions such as hardlim, sigmoid, tanh, softsign and relu 

were programmed. The ANNs were multilayer perceptron, fully connected feed-

forward neural networks, with the RMSE cost function ― programmed in Python 

3.6.5 language using the TensorFlow 1.8.0 machine learning library. After several 

attempts, the most straightforward structure ― with less hidden layers and fewer 

neurons per hidden layers ― and with the least overall training and testing errors 

was selected. The ANNs structures were set with 2 neurons in the input layer, one 

neuron for each geographical position coordinate (X and Y); 1 hidden layer with 15 

neurons; and 10 neurons in the output layer, one neuron for each meteorological 

variable to interpolate; using this protocol for modeling, with the XY coordinates is 

possible to estimate the meteorological observations. The Z geographical 

coordinate was not used after verifying that its inclusion leads to less accurate 

results; selecting the appropriate input variables is a crucial step in ANN modeling 

(López et al., 2005). 

The dataset was filtered by day to create a daily re-trained model to each 

of the 355 days of the study. The daily subset of meteorological observations was 

divided into a train, test and validation sets; a randomly selected weather station, 

with its own set of measurements, was separated for validation and the remaining 

stations were used in the training and testing phases, with 10% of stations reserved 

for testing. The ANNs were re-trained and validated for interpolations every day 

with their datasets. The dataset with the XY geographical position and the 

meteorological observations were normalized to obtain better ANN performance 

(Gnana Sheela and Deepa, 2013), the Z-score normalization was applied to the 
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dataset following the Eq. 8; where 𝑥𝑖 is the datum of the variable, 𝜇 is the mean of 

the variable, 𝜎 is its standard deviation and 𝑧𝑖  is the normalized datum. 

For the alternative approaches, the following methods were applied; the 

deterministic methods inverse distance weighted (IDW) and the inverse square 

distance weighted (ISDW) were performed using the Eq. 20; the statistic method 

multiple linear regression (MRL); and another machine learning method, the 

random forest regression (RFR) to contrast the ANNs performance. For the RFR, the 

Scikit-Learn (version 0.20) machine learning for Python was used, the number of 

trees or estimators were 15, the same train, test and validation datasets used for 

the ANNs were used for the RFR. For the deterministic and statistic methods, the 

train and test sets were used to generate the models, and the validation set remains 

for the same aim. 

Eq. 20, were 𝑣𝑖 is the known value; 𝑑𝑝 is the distance to the point to be 

estimated to the power of 𝑝 = 1 for IDW and 𝑝 = 2 for the ISDW; and 𝑣 is the 

estimated value. 

 

Additionally, all interpolations methods were tested in summer and winter 

months by separate to check the capability of the models during periods with more 

extreme phenomena, and the results of the interpolation of the entire year were 

compared to the results in these two seasons. 

 

𝑣 =
∑ (

𝑣𝑖
𝑑𝑝)𝑛
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4. Results and Discussion 

In this chapter, the obtained results from the experiments are presented 

and discussed with relevance literature to contrast these outcomes. The results will 

be offered divided into three sections, one for each of the main topic described in 

the methodology. Regarding the first topic, the microalgae suspensions light 

absorbance spectral signature and the ANN to elucidate the biology composition of 

monoalgal and mixed algal cultures are presented in section 4.1. The next topic of 

research, the color analysis and fertility characterization of soils results are detailed 

in section 4.2. Finally, concerning the third topic, the results and validation of the 

VWS for meteorological data acquisition are exposed in section 4.3. 

 

4.1 Monoalgal and mixed algal cultures discrimination by using 

artificial neural network 

In this section, the results of the ANN assay to elucidate microalgae 

cultures are presented. The structure presented is the following: the microalgae 

light absorption spectral signature result (section 4.1.1), the ANN used and its 

capability to examine microalgae suspensions (section 4.1.2), and final remarks 

about the research topic (section 4.1.3). 

 

4.1.1 Microalgae light absorption 

The light absorption spectrum of a microalga is a function of the biomass 

concentration in the culture and the pigment content of the biomass. The light 

absorption spectrum measurement is presented in Figure 27 (left). The results 

showed that no substantial variations in the absorption spectrum occurred for any 

of the microalgae over the time course measurements, the slight variations 

observed being due to differences in the biomass content ― the higher the cell 

density, the greater the absorbance (Helena et al., 2011; Santos-Ballardo et al., 

2015). These variations were ruled out after the absorbance was converted to the 

relative absorbance for each measurement (Eq. 18). 

When normalizing to relative absorption, the spectral signature is a 

function of the pigment content; this varies depending on the algal species. One can 
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observe how the lines overlap each other, thus making the spectral signature of the 

different microalgae used more comparable (Figure 27 right). The results show that 

each microalga species had a unique spectral signature: S. almeriensis and C. vulgaris 

had similar spectral signatures while Nostoc sp. and S. platensis had particular 

shapes that allow distinguishing one from the other. In the case of Nostoc sp., slight 

variations in spectral signature were observed over time, especially on days 4 and 5. 

This variation, especially in the chlorophyll absorbance region, was not due to 

changes in environmental conditions because these were kept constant under 

laboratory conditions so that it might be related to changes in the cells’ biochemical 

composition. 

Nutrient supply and light conditions are two significant factors that modify 

the pigment content of a microalga species. Thus, the pigment content is related to 

the physiological status of the cells (Pancha et al., 2015). Furthermore, the growth-

cycle phase also modifies the pigment content (Lubián et al., 2000). Other pigment 

content variations are related to changes in environmental and operational 

conditions (Pancha et al., 2014; Solovchenko et al., 2013). Despite the difference in 

days between sample measurements, other factors remained constant, and the 

absorption spectrum remained uniform. Under different culture conditions, the 

spectral signature could present variations within the same microalgae species 

across the measurements. 

The variation in a microalga species’ spectral signature over time was 

minor compared to the inter-species signature variation. Similar light absorption 

spectra, with peaks at 450 nm and 680 nm, have been obtained for other 

microalgae, such as Chlamydomonas reinhardtii (Isono et al., 2015), Thalassiosira 

pseudonana (Hewes, 2016) and C. vulgaris (Myers et al., 2013). Absorbance peaks 

are caused by photosynthetic pigments. Thus, while chlorophylls present two 

distinct absorption maxima, one between 400 and 500 nm and the other between 

600 and 700 nm, the maximum absorption for carotenoids can increase above 500 

nm due to spectral shifts caused by different contributing pigments (Holzinger et al., 

2016). 
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Figure 27. Light absorption spectrum of monoalgal cultures as obtained from the 
colorimeter (left), and relative absorbance conversion (right). 
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4.1.2 Artificial neural network culture discrimination 

Data from 550 samples were measured to train and test the ANN. Once 

the training and testing phases were concluded, the obtained model was used to 

determine whether the validation samples were monoalgal or mixed algal cultures. 

The number of samples met the requirement of having more training samples than 

hidden neuron units (Huang et al., 2004). The final ACE during the training and 

testing phases were 0.520 and 0.487, respectively. For the validation phase, the ACE 

was 0.527. The comparison between the experimental data and the ANN output is 

shown in Table 1. 

Monoalgal cultures (S101 to S104) from the first validation experiment day 

were correctly identified by the ANN, providing results above 98% purity. Regarding 

the mixed algal samples, S105 and S106 correspond to not-previously-performed 

combinations; thus, they are “unknown combinations” for the model. Despite this, 

the model was capable of approximating the composition of these samples. 

Therefore, these samples were close to the monoalgal cultures and the model was 

able to identify the most abundant species and its relative proportion. The ANN 

considered that small amounts of other species were also present in these samples; 

nevertheless, it was always capable of identifying the most prevalent species and 

percentage composition. 

Regarding the samples with 50% of two different species (S107 and S108), 

the artificial neural network was, likewise, capable of approximating the 

composition of these mixed algal samples, identifying the two predominant species 

and their approximate percentage. In no case, these samples were identified as 

monoalgal cultures. The same validation protocol was repeated on the second day. 

In this case, when using monoalgal cultures (S201 to S204), the ANN provided results 

above 99% purity for these samples. 

For samples containing 90-95% of one species and 10-5% of another (S205 

to S209), these samples were “unknown combinations” for the model. Nonetheless, 

it was able to identify the predominant algal species present in each sample, with 

percentages similar to monoalgal cultures. The one exception was the 90% S. 

platensis and 10% C. vulgaris sample, for which an accurate estimate was given. 

Similar mixed algal samples to those used for the training process (S210 to S227) 

provided better results, with none of them being classified as monoalgal. The last 

sample (S228) also corresponded to an “unknown combination” for the model, and 

it was, likewise, not classified as monoalgal. 
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Table 1. Comparison of the results from the experimental and the artificial neural network output of the validation experiment. 

Day Sample 

Experimental Model 

Nostoc  
sp. 

S.  
almeriensis 

S.  
platensis 

C.  
vulgaris 

Nostoc  
sp. 

S.  
almeriensis 

S.  
platensis 

C.  
vulgaris 

1 S101 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 

 S102 0.00% 100.00% 0.00% 0.00% 0.00% 98.70% 0.00% 1.30% 

 S103 0.00% 0.00% 100.00% 0.00% 0.02% 0.00% 99.98% 0.00%  
S104 0.00% 0.00% 0.00% 100.00% 0.00% 0.14% 0.00% 99.86% 

 S105 95.00% 5.00% 0.00% 0.00% 99.93% 0.05% 0.00% 0.02%  
S106 90.00% 10.00% 0.00% 0.00% 98.71% 1.19% 0.00% 0.09% 

 S107 50.00% 0.00% 0.00% 50.00% 60.16% 0.91% 0.00% 38.93%  
S108 0.00% 50.00% 50.00% 0.00% 0.01% 30.01% 69.36% 0.62% 

 S109 33.33% 33.33% 33.33% 0.00% 47.63% 36.42% 15.29% 0.66%  
S110 12.50% 50.00% 37.50% 0.00% 5.76% 42.75% 16.39% 35.10% 

2 S201 100.00% 0.00% 0.00% 0.00% 99.83% 0.00% 0.17% 0.00% 

 S202 0.00% 100.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01% 

 S203 0.00% 0.00% 100.00% 0.00% 0.10% 0.00% 99.89% 0.01%  
S204 0.00% 0.00% 0.00% 100.00% 0.00% 0.26% 0.00% 99.74% 

 S205 90.00% 10.00% 0.00% 0.00% 99.68% 0.25% 0.01% 0.06% 

 S206 0.00% 90.00% 10.00% 0.00% 0.02% 99.70% 0.21% 0.06% 

 S207 0.00% 0.00% 90.00% 10.00% 0.01% 0.51% 89.19% 10.29% 

 S208 0.00% 5.00% 0.00% 95.00% 0.00% 0.02% 0.00% 99.98%  
S209 10.00% 0.00% 0.00% 90.00% 0.01% 0.12% 0.00% 99.87% 
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Table 1. Comparison of the results from the experimental and the artificial neural network output of the validation experiment 
(continuation). 

Day Sample 

Experimental Model 

Nostoc  
sp. 

S.  
almeriensis 

S.  
platensis 

C.  
vulgaris 

Nostoc  
sp. 

S.  
almeriensis 

S.  
platensis 

C.  
vulgaris 

2 S210 75.00% 25.00% 0.00% 0.00% 87.42% 12.42% 0.00% 0.16% 

 S211 75.00% 0.00% 25.00% 0.00% 73.57% 0.00% 26.43% 0.00% 

 S212 75.00% 0.00% 0.00% 25.00% 68.98% 0.87% 0.00% 30.15% 

 S213 0.00% 75.00% 25.00% 0.00% 0.09% 82.03% 17.85% 0.03% 

 S214 0.00% 75.00% 0.00% 25.00% 0.00% 79.11% 0.00% 20.88% 

 S215 25.00% 75.00% 0.00% 0.00% 32.55% 67.43% 0.02% 0.00% 

 S216 0.00% 0.00% 75.00% 25.00% 0.00% 0.28% 60.20% 39.52% 

 S217 25.00% 0.00% 75.00% 0.00% 19.39% 0.00% 80.59% 0.01% 

 S218 0.00% 25.00% 75.00% 0.00% 0.01% 19.11% 80.44% 0.44% 

 S219 25.00% 0.00% 0.00% 75.00% 7.92% 0.03% 0.01% 92.04% 

 S220 0.00% 25.00% 0.00% 75.00% 0.00% 17.98% 0.00% 82.02%  
S221 0.00% 0.00% 25.00% 75.00% 0.06% 0.02% 9.61% 90.31% 

 S222 50.00% 50.00% 0.00% 0.00% 62.62% 37.37% 0.01% 0.00% 

 S223 50.00% 0.00% 50.00% 0.00% 49.55% 0.00% 50.45% 0.00% 

 S224 50.00% 0.00% 0.00% 50.00% 48.69% 0.59% 0.02% 50.70% 

 S225 0.00% 50.00% 50.00% 0.00% 0.04% 38.49% 61.39% 0.09% 

 S226 0.00% 50.00% 0.00% 50.00% 0.01% 53.80% 0.00% 46.20%  
S227 0.00% 0.00% 50.00% 50.00% 0.00% 0.01% 56.01% 43.98% 

 S228 20.00% 0.00% 40.00% 40.00% 0.79% 0.56% 36.22% 62.44% 
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According to these results, mixed algal samples with 10% or less 

contamination were weighted as monoalgal suspensions. Mixed algal samples 

composition were less accurate predicted in relation to monoalgal suspensions. In a 

study using flow cytometry with the SYTO9 stain, it was possible to classify C. 

vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii, and Navicula 

pelliculosa, with errors ranging from 5-10%. However, the method misidentified 

microalgae cells in mixed algal samples (Peniuk et al., 2016). Given that 

contamination by non-target microalgae is a severe problem to microalgae 

cultivation (Wen et al., 2016), our method could be a powerful alternative for 

supervising algal cultures. Additionally, the method can provide information about 

the relative composition of a sample, an advantage over traditional methods in 

which more steps and time are needed to reach similar conclusions. 

The ANN gives the approximate composition of a sample based on data 

input processing; each absorbance bandwidth is weighted during the training phase. 

Monoalgal samples composition were slightly under 100%, probably due to the 

manner each absorbance bandwidth influences the ANN output. For instance, in 

S102, a S. almeriensis monoalgal sample, C. Vulgaris obtained a 1.30% prediction 

compared to 98.70% for S. almeriensis ― both microalgae species exhibited similar 

spectral signatures (Figure 27 right). Furthermore, C. vulgaris was overestimated in 

mixed algal samples, whereas S. platensis was underestimated (S110, S216 and 

S221). This confusion may be due to the manner that the resulting spectral signature 

bandwidths, in the mixed algal samples, are weighted by the ANN. 

To better show the accuracy of the developed ANN, a regression analysis 

of the experimental and modeled values was performed (Figure 28). The results 

show that, regardless of the microalga species, the ANN fitted the experimental 

values, with the R2 ranging from 0.951 to 0.970. 

Microalgae identification using ANN has been previously reported with 

taxonomic accuracy of up to 99%, using micrographic image analysis (Coltelli et al., 

2017), similar accuracy to that achieved in the present study for monoalgal cultures. 

The method reported here demonstrated its efficiency in discriminating mixed algal 

cultures, whereas it was less efficient when there were smaller percentages of 

another species in the samples. If the ANN output indicated 90% or less, there was 

a high probability that the examined sample was derived from a mixed algal culture; 

conversely, if it was more than 90%, the culture should be examined to confirm that 

it was monoalgal. Therefore, this decreases the number of chemical analyses 

required to monitor the biological composition of microalgae cultures. 
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Figure 28. Correlation between the experimental composition of the samples and 
that predicted by the artificial neural network developed for the samples contained 
in Table 1. 

 

Re-training the ANN with more samples of mixed algal cultures in a wider 

variety of relative composition or using a higher spectral resolution could improve 

the ANN precision. The re-training could also be applied to incorporate more 

microalgae species into the model and test the model capability to differentiate a 

more significant number of microalgae. Re-training is a relatively fast process and 

can take anywhere between 5 minutes to about 1 hour depending on the computer 

hardware, training the ANN in a GPU is significantly faster than in a CPU only system 

(Ramachandran et al., 2015). 

 



Results and Discussion  91 
   

 

4.1.3 Final Remarks 

A rapid methodology to elucidate microalgae species in suspensions has 

been developed and validated. To do this, microalgae spectral signatures from light 

absorption measurements of different microalgae species were analyzed through 

an ANN in order to describe and classify them. Four important species were used: 

Nostoc sp., Scenedesmus almeriensis, Spirulina platensis and Chlorella vulgaris. 

Absorbance from monoalgal and mixed algal cultures was the input data for training, 

testing and validating the ANN. The results show that the ANN was capable of 

distinguishing between monoalgal and mixed algal cultures, identifying the 

microalgae species in the monoalgal cultures and providing the approximate 

composition of mixed algal cultures. These results confirm that the application of 

spectral signatures with ANN is a suitable method for approximating the biological 

composition of microalgae cultures. 
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4.2 Artificial neural network for soil color analysis and 

characterization 

In this section, the soil characterization and color analysis by ANNs results 

will be detailed. The remaining subsections are organized as follows: the computer 

software developed for the color conversion from RGB color system to L*a*b* color 

system (section 4.2.1), soil samples Munsell color classification and description 

results (section 4.2.2), the characterization of soil fertility parameters through ANNs 

(section 4.2.3), and final remarks about the research topic (section 4.2.4). 

 

4.2.1 Computer vision software for color conversion 

The DigiCIELAB is the CV software developed to perform the soil color 

experiments. Although the software was initially used for the soil color analysis, it is 

able to analyze the color of distinct objects such as fruits, plastic, color paints, and 

other objects. The DigiCIELAB was selected by the University of Valladolid in the 

“Prometeo” program, 2017 edition, and protected intellectually by the university in 

consequence of the award (Appendix B). 

Colorimeters are the most commonly used instrument to perform color 

measurements in scientific researches; however, this instrument has limitations for 

assessing some materials, especially those with the irregular color surface (Barbin et 

al., 2016; Girolami et al., 2013; Yam and Papadakis, 2004). A more economical and 

versatile alternative was developed using CV and an ANN to assess distinct types of 

surfaces, including irregularly colored. This application allows accelerating the 

process of color measurement through digital photographs analysis and the RGB 

color system conversion to the L*a*b* system, to obtain the CIELAB international 

standard for color researches. The user interface is shown in Figure 29. 

In the main screen of the software, two options are displayed; “Color 

Calibration” and “Colorimeter” as shown in Figure 29a and Figure 29b respectively. 

The “Color Calibration” option is used to generate the model capable of converting 

RGB to L*a*b* with a specific camera in a particular light condition. The 

“Colorimeter” option is used to perform the color measurement of new 

photographed samples. 
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Figure 29. The user interface of DigiCIELAB CV software with the “Color Calibration” 
option (a) to generate the ANN model for the color analysis, and the “Colorimeter” 
option (b) for the color measurement of samples with the calibrated model. 

 

The application automatically detects the colorchecker in a digital color 
photograph, detects each color sub-frame from the card and extracts the RGB color 
components. These RGB values and the L*a*b* color values provided by the 
manufacturer are employed to generate an ANN model capable of converting color 
systems, from RGB to L*a*b*. To perform the color measurement of new objects, 
photographed samples must be taken in the same photographic set that the 
colorchecker used to calibrate the ANN, i.e., same illumination conditions and 
camera configuration. The workflow diagram of DigiCIELAB is shown below in Figure 
30. 

a 

b 
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Figure 30. DigiCIELAB software workflow scheme. The part "a" of the scheme 
corresponds to the “Color Calibration” option, and the part "b" is regarding the 
“Colorimeter” option. 

 

In part "a" of the scheme (Figure 30a), it is represented how the “Color 
Calibration” option of the software is executed. The software searches the 
colorchecker, separates all the 24 color sub-frames and extracts the RGB values for 
each one of them. Subsequently, the RGB data of the colorchecker photograph and 
the L*a*b* values provided by the manufacturer are used to generate an ANN 
model. Once the model is obtained, the color calibration phase is completed and 
can be used to measure the color in new photographed samples. 

In part "b" of the scheme (Figure 30b), the “Colorimeter” option execution 

is schematized. In this window, the user selects the photographs to analyze and 

obtain the L*a*b* color. The user chooses an ROI in the photo ― the area where 

the RGB color information will be extracted ― or let the CV algorithms determine 

automatically the ROI based on the shape of the photographed object. The ANN 

trained in the previous phase (“Color Calibration” option) is used here to estimate 
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the color in the CIELAB system for the new samples. Finally, the software prepares 

a report with the sample name, RGB color, and L*a*b* color values for each case. 

Each time the user wants to measure the color of images in different 

scenarios ― different lighting conditions and camera configuration, it is necessary 

to take a picture of the colorchecker in each different scenario. Otherwise, errors in 

the L*a*b* color conversion will take place due to the differences caused by light 

variations (Tarlak et al., 2016; ten Bosch and Coops, 1995; Valous et al., 2009) and 

cameras color acquisition (Ilie and Welch, 2005; Kim et al., 2012). The recommended 

colorchecker to use with the DigiCIELAB software is the “X-Rite ColorChecker 

Classic” (Figure 23, Appendix C). 

In the DigiCIELAB, the process to autodetect the colorchecker and the 

sample to assess the color is similar. For the case, the process to detect a soil sample 

in a Petri plate will be detailed below as an example and the step results of this 

process are shown in Figure 31.  

 

Figure 31. CV process to detect the object of study and ROI in the digital photograph: 
Original image (a), hue plane extraction (b), binary image (c), filled image (d), Petri 
plate detection (e), ROI for soil color extraction in the image center (f). 

 

In the first step, from the original image (Figure 31a), the CV software 

performs a hue plane extraction (Figure 31b), i.e., separate the hue plane from the 

saturation and value planes of the HSV system. Then, a binary image is obtained 

(Figure 31c) by thresholding the image and leaving just the pixels of the object with 

values “1”; all other pixels, which are mainly the background in the image, are set to 

f e d 

c b a 
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“0”. The object is filled to eliminate inner “0” value pixels and obtain the skull of the 

object of interest (Figure 31d). Subsequently, the borders are detected, and the 

Petri plate is located in the image (Figure 31e). Finally, an ROI in the center of the 

detected plate is set, and the RGB values are extracted (Figure 31f). 

ANNs present remarkable results for color conversion from RGB to L*a*b* 

color (Afshari-Jouybari and Farahnaky, 2011; León et al., 2006; Pedreschi et al., 

2006; Pothula et al., 2015). However, no previous work was conducted with the 

objective to make the color conversion through ANN more user-friendly. Instead, all 

the procedures from previous works were manually performed, from the color 

extraction from colorchecker, data pre-treatment, code and tunning the ANN, 

extract the color from objects to assess and run the model; this activity is highly 

time-consuming and not at the hands of all users since code ANN is not one of the 

most common skills between researches. With the DigiCIELAB, the user does not 

need to know about code or ANN architectures and algorithms to be able to use this 

tool, performing faster and reliable color assessments. 

 

4.2.2 Soil samples description and color classification 

The statistical summary of soil parameters is detailed in Table 2. The data 

range indicates that the parcel was not uniform in terms of soil characteristics, 

considering the relatively small area of study. The colors varied from light yellows to 

dark browns, going through different shades of red with an amplitude of lightness 

levels as the RGB and L*a*b* indicate. 

Variables such as the OM went from 0.34 to 3.45%, with a mean of 1.58% 

and a standard deviation of 0.71. The contents of N, pH and Al were more uniform 

variables in the dataset. Meanwhile, EC, Ca, Mg and Na presented wider ranges and 

standard deviations. 

The Munsell system classification resulted in 34 color notations from 6 

hues (Figure 32). The yellow-red hues (YR) represented 74.32% of the soil samples, 

being the 10YR (30.00%) the most abundant among them. In previous studies, 

similar results for soil Munsell color were obtained in other regions of Spain, where 

YR was the prevailing hue; red soils are typical in Mediterranean areas (Castañeda 

and Moret-Fernández, 2013; Torrent et al., 1980).  
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Table 2. Statistical summary of fertility parameters in soil dataset. 

Parameter Range Min. Max. Mean St. dev. 
      

R 92.00 42.00 134.00 74.47 22.05 

G 102.00 20.00 122.00 49.57 18.99 

B 87.00 8.00 95.00 27.83 14.65 
      
L* 39.99 36.79 76.77 46.45 8.42 

a* 25.93 2.46 28.40 13.07 7.21 

b* 17.30 11.80 29.10 18.85 3.81 
      

ECa 127.53 1.45 128.98 25.13 20.28 
      

OM (%) 3.10 0.34 3.45 1.58 0.71 

N (%) 0.14 0.00 0.14 0.07 0.03 

P (mg/kg) 24.31 0.04 24.35 6.07 4.35 

K (mg/kg) 228.00 21.60 249.60 58.02 45.06 

Ca (mg/kg) 2,577.40 1,735.60 4,313.00 3,045.97 698.20 

Mg (mg/kg) 467.20 47.20 514.40 147.68 96.03 

Fe (mg/kg) 4.31 0.25 4.57 1.80 0.99 

Cu (mg/kg) 1.44 0.13 1.56 0.66 0.29 

Mn (mg/kg) 6.37 0.25 6.63 2.58 1.39 

Na (mg/kg) 219.80 294.20 514.00 341.96 41.36 

Al (mg/kg) 0.35 0.06 0.41 0.17 0.07 

pH 1.33 7.82 9.15 8.36 0.35 

EC (dS/m) 2.81 0.23 3.04 1.41 1.04 
            

 

The statistical analysis found significant differences in 5 of the 13 soil 

fertility parameters, N, Ca, Mg, pH and EC (Table 3). Inside these variables’ analysis, 

not more than 3 different groups were detected among the 6 Munsell hues 

groupings. For OM, P, K, Fe, Cu, Mn, Na and Al, the Munsell hue parameter was not 

able to generate heterogeneous groups. In consequence, the hue parameter was 

not enough to produce a classification that leads to an estimation of the relative 

content of the studied fertility parameters; the analysis using the hue, value and 

chroma of the Munsell system was not feasible due to the limited availability of 

experimental units for each particular category. 
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Figure 32. Munsell color classification for soil samples dataset. 
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Table 3. Means comparison of fertility parameters by Munsell color hue. Means with the same letter are not significantly 
different from each other (Kruskal-Wallis H test followed by the Mann-Whitney U test). 

Hue OM (%) N (%) P (mg/kg) K (mg/kg) Ca (mg/kg) Mg (mg/kg) Fe (mg/kg) 
        

10R 1.39 a 0.08   b 4.82 a 46.32 a 3,270.28 ab 178.15 ab 2.09 a 

2.5YR 1.98 a 0.05 ab 8.35 a 44.00 a 2,928.85 ab 106.45 ab 1.94 a 

5YR 1.85 a 0.04 a 5.78 a 36.03 a 2,722.82 a   93.59 a 1.42 a 

7.5YR 1.52 a 0.07   b 7.52 a 65.48 a 2,949.19 ab 149.42 ab 1.91 a 

10YR 1.54 a 0.07   b 5.70 a 65.75 a 3,304.19   b 170.59   b 1.94 a 

2.5Y 1.52 a 0.08   b 5.05 a 62.54 a 2,950.94 ab 147.38 ab 1.60 a 
                

Hue Cu (mg/kg) Mn (mg/kg) Na (mg/kg) Al (mg/kg) pH EC (dS/m) 
       

10R 0.71 a 2.70 a 319.75 a 0.18 a 8.25 a 1.75 ab 

2.5YR 0.72 a 2.87 a 327.85 a 0.12 a 8.49 ab 0.87 ab 

5YR 0.50 a 2.18 a 350.23 a 0.18 a 8.62   b 0.83 a 

7.5YR 0.73 a 3.03 a 348.57 a 0.16 a 8.42 ab 1.24 ab 

10YR 0.67 a 2.44 a 342.60 a 0.16 a 8.21 a 1.86   b 

2.5Y 0.66 a 2.39 a 336.62 a 0.18 a 8.34 a 1.36 ab 
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4.2.3 Characterization of soil fertility parameters through artificial 

neural networks 

The characterization of soil fertility parameters using soil color and ANNs 

are shown in Table 4. For the RGB color system, there are significative p values for 

parameters such as N, P, Ca, Fe, Cu, Mn, pH, and EC. However, just N and EC had an 

R2 higher than 0.5, with 0.62 and 0.76 respectively. The L*a*b* color system 

presented similar results; significative p values were obtained for the same variables 

as in the RGB system; showing R2 higher than 0.5 the N, pH and EC with of 0.57, 0.54 

and 0.71 respectively. 

 

 

The color assessment has no response to OM content. Other studies 

showed higher correlations between color and SOC, R2 between 0.52 to 0.80 using 

multilinear regression models (Stiglitz et al., 2017; Viscarra Rossel et al., 2006). In 

contrast, a study of soil color relationship with N, SOC and clay with regression 

analysis techniques showed R2 values of less than 0.50 for soil samples in a 60 km2 

Table 4. Regression analysis between actual and predicted values of soil fertility 
parameters using RGB and L*a*b* for ANNs. 

Parameter 
RGB L*a*b* 

R2 p R2 p 
     

OM 0.03 0.40_   0.01 0.60_   

N 0.62 0.00* 0.57 0.00* 

P 0.24 0.01* 0.19 0.03* 

K 0.11 0.10_   0.10 0.13_   

Ca 0.39 0.00* 0.39 0.00* 

Mg 0.02 0.53_   0.03 0.40_   

Fe 0.36 0.00* 0.36 0.00* 

Cu 0.48 0.00* 0.41 0.00* 

Mn 0.31 0.00* 0.23 0.02* 

Na 0.14 0.07_   0.04 0.31_   

Al 0.13 0.08_   0.09 0.16_   

pH 0.48 0.00* 0.54 0.00* 

EC 0.76 0.00* 0.71 0.00* 
          

* significative for p < 0.05    
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area with homogenous climate characteristics, but great diversity in soil parent 

material, aspect, topography, vegetation and land management (Ibáñez-Asensio et 

al., 2013). 

Correlations between soil organic components can be affected due to 

nature of the OM; soils with a high content of more humified substances show lower 

lightness (L*) than soils in which fulvic acids predominates upon the same content 

of SOC (Vodyanitskii and Kirillova, 2016). In the same manner, there is a non-

proportionality relationship between the dark soil and the OM, for instance, when 

the humus content exceeds 6%, the soil color varies only slightly in comparison with 

soil color variation under this OM threshold (Valeeva et al., 2016). The organic 

substance present in Fe-coated particles also neutralizes its effect on the soil color 

(Vodyanitskii and Savichev, 2017). 

In Figure 33a, it is observed how soils with similar L* values had different 

OM content – twice as much in comparison; and a lighter soil with more OM than a 

darker soil as well. In such wise, the association of higher OM content in darker soils 

(Castañeda and Moret-Fernández, 2013) is not always in this line. Regarding the 

iron, another standard assumption is that red color is associated with this element 

in soils (Torrent et al., 2006; Vodyanitskii and Kirillova, 2016). However, the similar 

phenomena to those that took place with OM were observed for iron (Figure 33b). 

The color caused by iron concentrations can also be masked by hydrologic 

conditions and the weathering that can modify the iron color by changing the 

oxidation state (Maejima et al., 2000). 

In a study of ANN and soil color to predict 44 parameters, physical and 

chemical, in a national scale study (Aitkenhead et al., 2013), higher R2 were found 

(in average 0.40 for predictions to the RGB color system and 0.41 to the L*a*b* color 

system) compared to those obtained here (in average 0.31 to the RGB and 0.28 to 

the L*a*b*). In another study of ANN, using Landsat-8 satellite images, clay and OM 

for the prediction of soil cation exchange capacity, the obtained R2 was 0.80. 

However, both studies were not clear regarding the dataset used for the validation 

phase; training, testing and validating, all three phases, must be performed to 

generate a proper ANN model (de Oliviera et al., 2009), not using all phases can lead 

to an “apparently good” result product of overfitting or reduced generalization 

capacity (Piotrowski and Napiorkowski, 2013). 
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Figure 33. Soils samples with their respective lightness (L*) and OM (organic matter) contents (a); and samples with their respective 
red component (a* and R) and Fe (iron) contents (b). 
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Despite that ANN has been used in plenty of studies, validation data is 

frequently not used. In fact, test and validation data is often assumed to be the same 

such as it is reported (Bagheri Bodaghabadi et al., 2016). The same authors working 

with ANN for interpolation and extrapolation of soil classes obtained results with 

errors of 30% for interpolations and 80% or higher for extrapolations in the 

validation phases. 

 

4.2.4 Final remarks 

The color is a widely studied attribute in soils and it is routinely used as a 

parameter for soil description. In this research, the soil color was analyzed to 

determinate its capability to group soils according to levels of fertility parameters 

such as OM, N, P, K, Ca, Mg, Fe, Cu, Mn, Na, Al, pH and EC and perform soil properties 

characterization from color data. For that, soils samples were classified according to 

the Munsell color notation and the obtained hues were used for statistical analysis; 

in addition, with the RGB and L*a*b* color, two ANNs were trained, tested and 

validated to describe the soils. Soil aggrupation based on the Munsell color hue 

resulted not efficient to separate samples according to fertility levels of the studied 

variables, and regarding the ANNs approach to describe soils, the obtained models 

were not capable of providing accurate results. The experiments suggest that soil 

color does not contain enough information to predict soil fertility parameters. 

 

  



104 
   

4.3 Virtual weather stations for meteorological data 

estimations 

In this section, the VWS result and validation will be described. The 

interpolations algorithms were evaluated, and contrast to each other for assessing 

their performance in different seasons of the year. The following subsections are 

organized as: a statistical summary of the meteorological dataset, including a data 

breakdown by summer and winter seasons (section 4.3.1), the interpolation 

methods results comparison (section 4.3.2), seasons effects in the interpolated data 

quality (section 4.3.3), the VWS operation description (section 4.3.4), and final 

remarks about the research topic (section 4.3.5). 

 

4.3.1 Statistical summary of the dataset 

After EDA for removing lecture errors and outliers, the statistical summary 

of the whole dataset was obtained (Table 5). During the studied period (from July 

2017 to June 2018), 18,234 sets of observations were recorded for the 53 

meteorological stations. The maximum registered precipitation was 42.85 mm in a 

day; the mean was 1.24 mm per day during the period. The mean ETo was 2.82 mm, 

which mean that the overall water balance is negative. Temperatures were 11.01 ⁰C 

on average, 42.97 ⁰C and -19.75 ⁰C for maximum and minimum registered. RH was 

71.06 % on average, mean WS was 1.92 m/s2, and mean TSI was 15.99 MJ/m2. 

Table 5. Statistical summary of meteorological observations dataset (n = 18,234). 

Parameter Range Min. Max. Mean St. dev. 
 

     

Precip (mm) 42.85 0.00 42.85 1.24 3.52 

ETo (mm) 11.02 0.11 11.13 2.82 1.93 

Mean Temp (⁰C) 36.96 -8.95 28.01 11.01 7.19 

Max. Temp (⁰C) 42.97 -2.50 40.47 18.25 8.81 

Min. Temp (⁰C) 40.50 -19.75 20.75 4.31 6.04 

Mean RH (%) 78.74 21.26 100.00 71.06 15.50 

Max. RH (%) 63.05 36.95 100.00 92.68 8.55 

Min. RH (%) 99.01 0.99 100.00 43.87 20.73 

Mean WS (m/s) 17.72 0.01 17.73 1.92 1.22 

TSI (MJ/m2) 33.56 0.46 34.02 15.99 8.44 
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The mean temperature was similar to the previously described in the same 

region (del Río et al., 2005), 11.17 ⁰C for a 37 years dataset (from 1961 to 1997) in 

comparisons with the 11.01 ⁰C obtained here in the 2017-2018 period. Regarding 

the precipitations, the same authors postulated an average of 664 mm for the same 

period, the average rainfall registered in the present study was 441.12 mm, less than 

the minimum of 480 mm registered in 1996 by the authors in the driest year. In a 

study from 1981 to 2010 in Castilla y León, the mean temperature was 11 ⁰C likewise 

(Nafría et al., 2013). 

The statistical summary of the meteorological variables during the 

summer and winter months are presented below in Table 6. 

 

 Table 6. Statistical summary of meteorological observations during the summer 
months and the winter months. 

Parameter Range Min. Max. Mean St. dev. 
      

Summer (n = 4,744)      
Precip (mm) 42.85 0.00 42.85 0.50 2.69 

ETo (mm) 10.19 0.94 11.13 4.89 1.47 

Mean Temp (⁰C) 20.76 7.25 28.01 18.98 3.75 

Max. Temp (⁰C) 26.25 14.22 40.47 27.94 4.56 

Min. Temp (⁰C) 23.36 -2.61 20.75 10.12 3.63 

Mean RH (%) 73.13 22.27 95.40 56.63 12.50 

Max. RH (%) 60.96 39.04 100.00 87.58 10.59 

Min. RH (%) 86.03 1.17 87.20 26.45 11.61 

Mean WS (m/s) 17.34 0.39 17.73 1.79 0.95 

TSI (MJ/m2) 32.01 1.98 33.99 23.16 5.51 
      

Winter (n = 4,538)      
Precip (mm) 39.76 0.00 39.76 1.29 3.63 

ETo (mm) 3.11 0.11 3.22 0.86 0.43 

Mean Temp (⁰C) 23.36 -8.95 14.41 3.24 3.32 

Max. Temp (⁰C) 22.67 -2.50 20.17 8.62 3.66 

Min. Temp (⁰C) 32.63 -19.75 12.88 -1.46 4.17 

Mean RH (%) 67.79 32.21 100.00 83.61 10.37 

Max. RH (%) 37.44 62.56 100.00 95.99 4.36 

Min. RH (%) 98.93 1.07 100.00 62.31 19.48 

Mean WS (m/s) 11.18 0.01 11.19 2.09 1.37 

TSI (MJ/m2) 18.62 0.46 19.08 7.24 3.97 
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The average precipitation during the winter is more than twice that in 

summer, 1.29 mm and 0.50 mm respectively; in this location, the summer is the 

driest season and the rainiest season is autumn or winter, depending on the specific 

site. (Nafría et al., 2013). Other variables such as temperatures, ETo, TSI are higher 

in summer; meanwhile, the RH is generally higher in winter in concordance with 

precipitations. The extreme temperatures, the minimum, and maximum registered 

in the entire year occurred during these two seasons. The standard deviation in 

these two seasons are lower in comparison with those seen in the whole year 

summary (Table 5), the range measurements of the phenomena were also narrow 

because of the uniformity of conditions during specific seasons in contrast to ranges 

of an entire year. The general behavior of the variables during the summer, winter, 

and the rest of the year is presented in Figure 34. 

It is observable that for ETo, temperatures, RH and TSI, more extreme 

lectures were obtained during summer and winter. Meanwhile, the rest of the year 

presented more intermedium values. The letters above the boxplots show the 

differences between groups by the Mann-Whitney U test. The variations of the 

means for precipitation, mean WS and max. RH in the periods were not as notorious 

as the previously mentioned variables; nonetheless, the statistical test found 

significant differences in these variables as well. 

 

4.3.2 Interpolation methods comparison 

Different ANN models as well other interpolation methods were compared 

in terms results accuracy for meteorological variable estimations. Generally, good 

agreement between the estimated values and the actual records from the weather 

stations were observed for the interpolation methods. Results from ANNs approach 

are shown in Table 7, and results from alternative approaches are shown in Table 8. 

Between the 5 activation functions in the ANNs, the softsign had the 

higher R2, 0.84, following by the sigmoid and tanh with an R2 of 0.83, the relu with 

an R2 of 0.82 and the hardlim with the lowest R2 result, 0.79. The mean and 

maximum Temp were the most accurate variable to predict, with R2 in the range 

from 0.96 to 0.98; following by the ETo, TSI and minimum Temp with R2 higher than 

0.91. Lower R2 were obtained for mean WS, maximum RH and Prep., with ranges 

from 0.43 to 0.75. In general rule, the temperature is a more precise variable to 

interpolate in comparison to the precipitations (Jeffrey et al., 2001).  
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Figure 34. Boxplots and mean comparison of meteorological observations grouped 
by the season of the year. 
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 Table 7. Analysis of meteorological data interpolations results for the ANNs approach. 

Parameter 
Hardlim Sigmoid Tanh Softsign Relu 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
                

Prep. 0.62 0.00* 2.22 0.73 0.00* 1.88 0.71 0.00* 2.04 0.75 0.00* 1.82 0.73 0.00* 1.87 

ETo 0.92 0.00* 0.55 0.94 0.00* 0.48 0.94 0.00* 0.46 0.94 0.00* 0.48 0.93 0.00* 0.51 

Mean Temp 0.96 0.00* 1.45 0.98 0.00* 1.03 0.98 0.00* 1.10 0.98 0.00* 1.04 0.97 0.00* 1.15 

Max. Temp 0.96 0.00* 1.86 0.98 0.00* 1.23 0.98 0.00* 1.28 0.98 0.00* 1.28 0.97 0.00* 1.49 

Min. Temp 0.91 0.00* 1.83 0.93 0.00* 1.55 0.94 0.00* 1.52 0.93 0.00* 1.57 0.92 0.00* 1.71 

Mean RH 0.83 0.00* 6.64 0.87 0.00* 5.87 0.88 0.00* 5.63 0.87 0.00* 5.68 0.86 0.00* 6.05 

Max. RH 0.51 0.00* 6.24 0.57 0.00* 5.71 0.60 0.00* 5.50 0.58 0.00* 5.62 0.58 0.00* 5.66 

Min. RH 0.81 0.00* 9.18 0.84 0.00* 8.40 0.85 0.00* 8.08 0.85 0.00* 8.06 0.82 0.00* 8.86 

Mean WS 0.43 0.00* 1.06 0.47 0.00* 1.01 0.51 0.00* 0.96 0.51 0.00* 0.97 0.50 0.00* 0.98 

TSI 0.93 0.00* 2.25 0.96 0.00* 1.81 0.96 0.00* 1.75 0.96 0.00* 1.70 0.96 0.00* 1.79 
                

Mean 0.79  3.33 0.83  2.90 0.83  2.83 0.84  2.82 0.82  3.01 
                                

* significative for p < 0.05 
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 Table 8. Analysis of meteorological data interpolation results for alternative methods. 

Parameter 
IDW ISDW MLR RFR 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
             

Prep. 0.63 0.00* 2.16 0.71 0.00* 1.89 0.65 0.00* 2.11 0.72 0.00* 1.95 

ETo 0.94 0.00* 0.48 0.95 0.00* 0.44 0.93 0.00* 0.50 0.94 0.00* 0.47 

Mean Temp 0.97 0.00* 1.14 0.98 0.00* 0.92 0.98 0.00* 1.02 0.98 0.00* 0.92 

Max. Temp 0.97 0.00* 1.47 0.98 0.00* 1.16 0.98 0.00* 1.27 0.98 0.00* 1.12 

Min. Temp 0.93 0.00* 1.61 0.94 0.00* 1.43 0.93 0.00* 1.62 0.94 0.00* 1.50 

Mean RH 0.83 0.00* 6.52 0.88 0.00* 5.57 0.84 0.00* 6.41 0.86 0.00* 5.97 

Max. RH 0.58 0.00* 5.63 0.64 0.00* 5.24 0.52 0.00* 6.02 0.53 0.00* 5.98 

Min. RH 0.81 0.00* 9.09 0.85 0.00* 8.07 0.80 0.00* 9.42 0.84 0.00* 8.40 

Mean WS 0.50 0.00* 0.98 0.53 0.00* 0.94 0.48 0.00* 1.00 0.52 0.00* 0.96 

TSI 0.95 0.00* 1.90 0.97 0.00* 1.54 0.95 0.00* 1.89 0.97 0.00* 1.60 
             

Mean 0.81  3.10 0.84  2.72 0.81  3.13 0.83  2.89 
  

                        

* significative for p < 0.05 
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The alternative methods presented similar performance, the best 

performing was the ISDW with an R2 of 0.84, following by the RFR with an R2 of 0.83 

and IDW and MLR with an R2 of 0.81. The mean and maximum Temp were the most 

accurate variable to predict, as in the ANN approach, with R2 in the range from 0.97 

to 0.98; following by the ETo, TSI and minimum Temp with R2 higher than 0.93. 

Lower R2 were obtained for mean WS, maximum RH and Prep., range from 0.48 to 

0.72. Although the performances of the methods were similar, the ANN with 

softsign activation function and the ISDW were slightly better considering the R2. 

However, the deterministic method had the lowest RMSE, 2.72 in contrast to 2.82 

of the machine learning method. 

In a study of daily rainfall interpolation with different spatial methods such 

as several kriging variations, IDW and Thiessen polygons, the resulted RMSE were 

between 9.7 to 12.3; been 10.1 for the IDW method  (Wagner et al., 2012) ― which 

are higher than the registered in this assessment. Hourly interpolations of rainfall 

seem to perform better, with R2 up to 0.75 using IDW, nearest neighbor and kriging 

(Mendez and Calvo-Valverde, 2016). Another study with daily interpolations of 

precipitations and temperatures registered RMSE of 0.623 and 0.106 for rainfalls 

and temperatures respectively using IDW (Berndt and Haberlandt, 2018); these 

results are better than the obtained, backed by the use of a more significant number 

of weather stations up to 200 in 0.05 km2 in contrast with 53 for 94.226 km2, an 

overwhelming disproportion. 

In general, climate and rainfall are highly nonlinear and complicated 

phenomena, which require advanced computer modeling for an accurate prediction 

(Nayak et al., 2013). Others studies used meteorological variables as inputs in ANNs 

to estimate other meteorological variables. For instance, the ETo estimation with R 

of 0.89 and RMSE of 2.77 using temperatures (minimum and maximum) and WS as 

inputs in a period of 3 years (Falamarzi et al., 2014), the RMSE obtained for the ETo 

in the current assay are lower for any interpolation method in comparison to that 

work. Using only the temperatures (minimum and maximum) to estimate the ETo, 

the obtained RMSE were in the range from 0.54 to 0.66 (Diamantopoulou et al., 

2011), compared to 0.44 to 0.55 obtained here. Local estimation of crop water 

requirements with ANN can be as accurate as of the evapotranspiration models 

calculations (Abrishami et al., 2018). 

Global solar irradiation forecasting with ANN using temperature, RH, and 

dates parameters (month, day and hour) achieved an R2 of 0.99 and an RMSE of 0.17 

(Hasni et al., 2012), this prediction has more accuracy than the obtained here, using 
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more input data and historical data of site for the forecast. More precision in 

models, including interpolations, could be achieved with increasing amounts of 

observation data (Valipour, 2016), in this case, increasing the number of weather 

stations to have more input data for to generate the models. 

The ANN approach, except for the hardlim ANN, outperforms the MLR 

interpolation with higher R2 and lower RMSE. ANN outperforming MLR is a tendency 

and have been reported previously in meteorological studies with wind speed 

forecasting (Bilgili and Sahin, 2010), seasonal rain (Mekanik et al., 2013) and ETo 

estimations (Laaboudi et al., 2012). 

 

4.3.3 Season effect in data interpolation quality 

Results from summer season for the ANNs approach are shown in Table 9, 

and for the alternative approaches are shown in Table 10. Regarding the results 

from the winter season, for the ANNs approach are shown in Table 11, and for the 

alternative approaches are shown in Table 12. 

In comparison with the interpolations of an entire year, during summer 

and winter seasons the accuracy for all interpolations methods was lower, R2 

presented values in an average of 0.76 and 0.71 respectively in contrast to 0.82 of 

the overall year. The RMSE, on the contrary, exhibited a slightly higher average value 

throughout the year, 2.97, in comparison to 2.91 and 2.84 for summer and winter 

respectively. The higher RMSE could be due that this error measurement penalizes 

the peaks, which presented larger absolute values more weight than errors with 

smaller absolute values (Shao et al., 2014). 

In a study of temperature interpolations during the months of January and 

July, selected as representatives of winter and summer months respectively; the 

precision in terms of RMSE resulted in values between 1.35 to 2.62 in January and 

1.20 to 3.47 in July for MLR and kriging algorithms, been the lower RMSE to the MLR 

algorithm (Wu and Li, 2013). During the summer and the winter months, the 

intensities of meteorological phenomena had more peaks and when modeling these 

non-common events, are more difficult to abstract and create models able to predict 

these values in contrast to periods with less extreme values. Forecast the peaks of 

intensity still a tough task for models, including ANNs, since those peaks appear with 

low frequency (Nastos et al., 2013). 
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Table 9. Analysis of meteorological data interpolations results for the ANNs approach for summer months. 

Parameter 
Hardlim Sigmoid Tanh Softsign Relu 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
                

Prep. 0.91 0.00* 1.19 0.96 0.00* 0.82 0.95 0.00* 1.53 0.92 0.00* 1.47 0.90 0.00* 1.55 

ETo 0.72 0.00* 0.83 0.81 0.00* 0.68 0.81 0.00* 0.67 0.80 0.00* 0.70 0.79 0.00* 0.71 

Mean Temp 0.85 0.00* 1.56 0.93 0.00* 1.04 0.94 0.00* 0.99 0.92 0.00* 1.10 0.92 0.00* 1.12 

Max. Temp 0.81 0.00* 2.16 0.93 0.00* 1.28 0.91 0.00* 1.44 0.92 0.00* 1.31 0.90 0.00* 1.47 

Min. Temp 0.77 0.00* 1.86 0.78 0.00* 1.81 0.84 0.00* 1.55 0.79 0.00* 1.75 0.81 0.00* 1.66 

Mean RH 0.68 0.00* 7.82 0.78 0.00* 6.40 0.80 0.00* 6.01 0.81 0.00* 5.93 0.79 0.00* 6.17 

Max. RH 0.48 0.00* 7.93 0.50 0.00* 7.76 0.60 0.00* 6.95 0.55 0.00* 7.33 0.55 0.00* 7.38 

Min. RH 0.63 0.00* 8.01 0.76 0.00* 6.14 0.78 0.00* 5.77 0.82 0.00* 5.32 0.77 0.00* 6.05 

Mean WS 0.29 0.00* 0.77 0.27 0.00* 0.72 0.31 0.00* 0.70 0.34 0.00* 0.68 0.28 0.00* 0.72 

TSI 0.87 0.00* 2.06 0.91 0.00* 1.69 0.90 0.00* 1.78 0.91 0.00* 1.70 0.92 0.00* 1.63 
                

Mean 0.70  3.42 0.76  2.83 0.78  2.74 0.78  2.73 0.76  2.84 
  

                              

* significative for p < 0.05 
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Table 10. Analysis of meteorological data interpolation results for the alternative methods for summer months.  

Parameter 
IDW ISDW MLR RFR 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
             

Prep. 0.83 0.00* 2.10 0.96 0.00* 1.00 0.88 0.00* 2.09 0.95 0.00* 0.96 

ETo 0.80 0.00* 0.71 0.84 0.00* 0.63 0.80 0.00* 0.70 0.80 0.00* 0.69 

Mean Temp 0.91 0.00* 1.21 0.94 0.00* 0.98 0.93 0.00* 1.06 0.95 0.00* 0.92 

Max. Temp 0.90 0.00* 1.53 0.93 0.00* 1.23 0.91 0.00* 1.41 0.94 0.00* 1.11 

Min. Temp 0.83 0.00* 1.61 0.85 0.00* 1.51 0.83 0.00* 1.61 0.82 0.00* 1.61 

Mean RH 0.72 0.00* 7.36 0.81 0.00* 6.00 0.73 0.00* 7.03 0.78 0.00* 6.30 

Max. RH 0.57 0.00* 7.47 0.65 0.00* 6.64 0.47 0.00* 8.03 0.46 0.00* 8.20 

Min. RH 0.69 0.00* 6.82 0.75 0.00* 6.10 0.68 0.00* 6.99 0.79 0.00* 5.69 

Mean WS 0.38 0.00* 0.64 0.49 0.00* 0.59 0.28 0.00* 0.72 0.34 0.00* 0.68 

TSI 0.89 0.00* 1.89 0.94 0.00* 1.39 0.91 0.00* 1.74 0.94 0.00* 1.41 
             

Mean 0.75  3.13 0.82  2.61 0.74  3.14 0.78  2.76 
  

                        

* significative for p < 0.05 

 

  



114 
      

Table 11. Analysis of meteorological data interpolations results for the ANNs approach for winter months.  

Parameter 
Hardlim Sigmoid Tanh Softsign Relu 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
                

Prep. 0.72 0.00* 1.76 0.83 0.00* 1.43 0.78 0.00* 1.56 0.82 0.00* 1.41 0.71 0.00* 1.80 

ETo 0.46 0.00* 0.33 0.72 0.00* 0.20 0.51 0.00* 0.30 0.64 0.00* 0.23 0.71 0.00* 0.21 

Mean Temp 0.89 0.00* 1.22 0.92 0.00* 0.93 0.90 0.00* 1.03 0.92 0.00* 0.98 0.94 0.00* 0.85 

Max. Temp 0.82 0.00* 1.60 0.87 0.00* 1.30 0.89 0.00* 1.19 0.84 0.00* 1.48 0.88 0.00* 1.29 

Min. Temp 0.84 0.00* 1.78 0.87 0.00* 1.49 0.87 0.00* 1.53 0.89 0.00* 1.38 0.90 0.00* 1.35 

Mean RH 0.56 0.00* 6.49 0.65 0.00* 5.73 0.64 0.00* 5.85 0.67 0.00* 5.56 0.66 0.00* 5.62 

Max. RH 0.05 0.03* 4.21 0.08 0.01* 3.84 0.12 0.00* 3.73 0.14 0.00* 3.64 0.15 0.00* 3.63 

Min. RH 0.63 0.00* 11.82 0.73 0.00* 10.19 0.73 0.00* 9.99 0.69 0.00* 10.74 0.70 0.00* 10.62 

Mean WS 0.76 0.00* 0.68 0.70 0.00* 0.72 0.79 0.00* 0.60 0.76 0.00* 0.65 0.72 0.00* 0.71 

TSI 0.79 0.00* 1.85 0.83 0.00* 1.64 0.87 0.00* 1.43 0.87 0.00* 1.47 0.80 0.00* 1.81 
                

Mean 0.65  3.17 0.72  2.75 0.71  2.72 0.72  2.75 0.72  2.79 
                                

* significative for p < 0.05 
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Table 12. Analysis of meteorological data interpolation results for the alternative methods for winter months. 

Parameter 
IDW ISDW MLR RFR 

R2 p RMSE R2 p RMSE R2 p RMSE R2 p RMSE 
             

Prep. 0.49 0.00* 2.38 0.71 0.00* 1.80 0.76 0.00* 1.61 0.80 0.00* 1.50 

ETo 0.71 0.00* 0.21 0.80 0.00* 0.17 0.69 0.00* 0.22 0.80 0.00* 0.17 

Mean Temp 0.90 0.00* 1.06 0.94 0.00* 0.83 0.94 0.00* 0.84 0.94 0.00* 0.86 

Max. Temp 0.82 0.00* 1.55 0.89 0.00* 1.19 0.89 0.00* 1.23 0.89 0.00* 1.21 

Min. Temp 0.83 0.00* 1.75 0.88 0.00* 1.46 0.86 0.00* 1.60 0.88 0.00* 1.50 

Mean RH 0.59 0.00* 6.27 0.68 0.00* 5.48 0.62 0.00* 6.07 0.66 0.00* 5.66 

Max. RH 0.13 0.00* 3.60 0.16 0.00* 3.52 0.08 0.01* 4.01 0.08 0.01* 3.94 

Min. RH 0.65 0.00* 11.46 0.74 0.00* 9.93 0.66 0.00* 11.36 0.74 0.00* 9.92 

Mean WS 0.69 0.00* 0.72 0.75 0.00* 0.64 0.74 0.00* 0.66 0.80 0.00* 0.60 

TSI 0.76 0.00* 1.98 0.86 0.00* 1.55 0.84 0.00* 1.63 0.89 0.00* 1.32 
             

Mean 0.66  3.10 0.74  2.66 0.71  2.92 0.75  2.67 
  

                        

* significative for p < 0.05 
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Other intrinsic factors that can alter the quality of the interpolated data 

are episodes of high-intensity rains, densely cloudy days and frost in winters 

(Thorsen and Höglind, 2010), temperature inversions (Bailey et al., 2011), and heat 

waves in summers (Luber and McGeehin, 2008; Meehl and Tebaldi, 2004). In a study 

using ANN to forecast the TSI, the mean error was different according to the month 

and season of the year in which the predictions were made, with higher errors in 

autumn and winter and lower in spring and summer (Kemmoku et al., 1999). The 

estimation of TSI by ANN using Meteosat-9 images as input was better in clear-

periods than rainy or overcast ones; the RMSE was 21.20% against 5.13% for rainy 

and clear-sky days months respectively (Linares-Rodriguez et al., 2013). 

 

4.3.4 Virtual weather station 

The algorithms composing the VWS are capable of access the InfoRiego 

FTP server, other servers address can be configurable into the script in order to 

access different FTP servers or similar protocols. Once the access is done, the user 

performs a filtered selection of the files to download information of a specified 

period. Thereupon, once the data is available in the user’s computer, the 

interpolations algorithms can be carried out executing the preferred one by the 

user, introducing as input the XY UTM coordinates in the ETRS89 geodetic system of 

the weather stations and paring this data with the station lectures. 

According to the results, the most appropriate methods to perform the 

data estimation thought interpolations in a given location are the ISDW and the ANN 

with the softsign function. The interpolations can be made to any given coordinate 

inside Castilla y León or other areas with a weather station network and accessible 

data to generate models. The innovative aspect of the VWS lies in the possibility of 

the user to choose a specific location, and estimated temperatures, RH, ETo, 

precipitations, TSI, WS with just one method, other studies of interpolations are 

focused just in a couple of variables using non-automated data access and 

processing. 

 

4.3.5 Final Remarks 

Meteorological data is an important series of observations for agricultural 

activities. The data is generally obtained from automatic weather stations; however, 
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the data can also be acquired from VWS. A VWS is an integration of algorithms to 

estimated meteorological data from nearby weather stations observations to other 

locations with no available stations. To develop the VWS, the performance of 

different interpolation methods were evaluated to test their accuracy. Daily data 

from an automatic weather station network were used to perform the 

interpolations. ANNs with the hardlim, sigmoid, tanh, softsign and relu activations 

functions were employed, as well as IDW, ISDW, MLR, and RFR to interpolate the 

daily observations. 

Additionally, interpolations in the summer and winter months were 

performed to check the capability of the models during periods with more extreme 

phenomena registers. The results showed that the interpolation methods have an 

R2 up to 0.98 for variables such as temperatures for the period of one year. 

Meanwhile, during the summer and winter, the models presented lower accuracy. 

From a practical perspective, the methods here described can be an alternative to 

meteorological data acquisition. 

 





 

 

CONCLUSIONS 

 





121 
   

5. Conclusions 

In this thesis, the application of ANN to solve distinct problems associated 

with agricultural activities were tested, in the microalgae production, soil fertility 

analysis, and meteorological variables acquisition.  In the present section,  the 

general conclusion (section 5.1) and the specific conclusions for each of the three 

main topics of research (sections 5.2, 5.3, and 5.4) will be detailed. Finally, future 

research niches based on the obtained result will be proposed (section 6). 

 

5.1 General conclusions 

While this thesis explores three different topics ― microalgae, soil fertility, 

and meteorological data ― the ANN approach to solving problems associated with 

these subjects in the agricultural plane is the common ground in which the present 

work is substantiated. From the experiments performed, the following general 

conclusions are proposed: 

- Firstly, ANNs have proved to be a powerful tool to solve classifications, 

estimations and predictions problems. The use of ANNs in agricultural related 

issues is a critical step to find solutions for problems and help the users of this 

technology to make faster and better decisions in the productive chain, for 

instance, in the monitoring of microalgae cultures and crop management. By 

contrast, ANNs are not always capable of mapping the input variables with a 

target. In these cases, the network configuration must be rethought, dataset size 

increased and considered the fact that the input variables may not have a 

relation with the desired output. 

- Secondly, ANNs can perform and adapt to multiple problems. There is 

not strictly ANN architecture, activation function, error measure technique, and 

other parameters to ensure the best performance. Several models for each case 

were evaluated, and the selected model was the most accurate for the validation 

set; the dataset in which the model evaluation must be performed to conclude 

the inquiry. 
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5.2 Monoalgal and mixed algal cultures discrimination by using 

artificial neural network conclusions 

- It was demonstrated that microalgae light absorption spectra vary mainly 

as a function of the microalga species, although minor variations due to 

environmental and operational conditions can also take place. 

- When maintaining the cultures under similar conditions, the light 

absorption spectra can be used to develop an ANN that differentiates monoalgal 

from mixed algal cultures and identifies the predominant species. In addition, it 

is useful to be able to approximate the percentage of each species in mixed 

cultures. 

- A major advantage of this method is that it does not require much time 

or chemical analysis; a single light absorption spectrum is enough to quantify the 

biological composition of the cultures. It can provide a fast and powerful tool for 

microalgae culture management at the commercial scales. 

 

5.3 Artificial neural network for soil color analysis and 

characterization conclusions 

- Although the soil color classification is a frequently used technique in the 

current days and is it helpful for preliminary classification of soils; in the present 

assessment, the color did not contain enough information to classify soils 

according to levels of fertility parameters. 

- The Munsell color hues analysis was not able to separate heterogeneous 

soil groups for all the fertility variables studied. For N, Ca, Mg, pH and EC 

statistical difference were detected, but no differences between all hues for a 

given variable. For the other eight fertility parameters (OM, P, K, Fe, Cu, Mn, Na 

and Al), no significative difference was found between Munsell hues. 

- The ANN approach to predict the fertility parameters in soils based on 

the color did provide an inaccurate model. The neural network was not able to 

generate a consistent model from the soil samples due to the nature of the 

dataset; soils samples did not exhibit a consistent pattern regarding the color and 

fertility attributes, soils with similar color values drastically differed in the fertility 

parameter and soils with different colors exhibited identical fertility levels. 
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5.4 Virtual weather stations for meteorological data estimations 

conclusions 

- In the section, the concept of VWS was introduced. The current state of 

the weather station networks and the online availability of the records makes 

possible to get the data and process them to perform estimations of the 

meteorological observations from the measurements of weather stations to 

other locations with no stations. 

- The overall performances of the interpolation methods were accurate to 

estimate the meteorological variables; the ISDW and the ANN with the softsign 

activation functions were the most precise approach to perform the 

interpolations and to use in the VWS as preferred methods. 

- The occurrence of extreme meteorological events, such as peaks of high 

and low temperatures or intense rainfalls, had negative impacts on the accuracy 

of the interpolation models. Therefore, these events should be considered in the 

model generation process. 

- The success of the models suggests that they could be used in situations 

where no weather stations are present, but meteorological data series is needed 

for various purposes, for instance, the register of the ETo and calculus of crop 

water requirements.  
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6. Future work 

To conclude this thesis, there are several aspects to consider as future 

work that will be highlighted in this section. As is usually appreciated in research, 

the experience raises more questions than answer. Everything since the 

improvement of the ANN algorithms to the extension or modification of the 

research approaches or apply these techniques to other topics. In the paragraphs 

below, possible research niches for each of the thesis topics will be presented. 

In the microalgae culture subject, the elucidation through ANN can be 

tested with more species to expand the network capability to identify microalgae. 

In the same manner, more similar species in terms of spectral footprints, such as 

species of the same genera or different strains of the same species, can be analyzed 

to test the scope of the ML technique. 

Regarding the soil color and fertility analysis, different predictor variables 

should be studied since the color did not contain enough information to create an 

accurate model. Spectrometry and vis-NIR can be alternative approaches to try to 

predict fertility parameters with ANNs seeking better accuracies. 

For the VWS, more research is needed to amplify the possible geographical 

application of this technology. To determine the appropriate minimum number of 

nearby weather stations to use as a source of data, distance to the stations and the 

effects on the accuracy of the interpolation and the inclusion of more 

meteorological variables or interpolation methods are some exciting possibilities. In 

terms of the accuracy of interpolations during different seasons of the year, more 

statistics techniques are necessary to reduce the negative impact of these “outliers” 

phenomena registers in the modeling process. Finally, the user interface for VWS 

building is also a key factor to bring this technology to more users, who do not 

necessarily want to interact with source code but can be interested in assays with 

this technology. 

ANN applications are continually innovating in distinct disciplines of 

science and agriculture should not be alien to all this revolution. The possibilities are 

countless; phenology of crops, varieties and cultivars, yield estimation, pest models 

and pesticides application advisors, and machinery supervision to cite some 

examples. The improvements in this sector are crucial to maintaining food 

production, convert agriculture to more sustainable, improve competitiveness, and 

to minimize the effects of global warming. 
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Appendix C 

X-Rite ColorChecker Classic technical specifications 

In this appendix, the technical specifications of the color calibration chart 

used in the experimental phase of the thesis are described. The “X-Rite ColorChecker 

Classic” is a twenty-four color chart card, as is shown in Figure 35. 

Figure 35. X-Rite ColorChecker Classic color charts enumerated. 

 

The data below presented (Table 13) is the CIELAB measurement of all 

colorchecker charts provided by the manufacturer. The L*a*b* values are an 

average of each color chart. 

 

Table 13. X-Rite ColorChecker Classic L*a*b* color information following the 
enumeration presented in Figure 35. 

Number Color 
CIELAB 

L* a* b* 
      

1 Dark skin  ███ 37.9860 13.5550 14.0590 

2 Light skin  ███ 65.7110 18.1300 17.8100 

3 Blue sky  ███ 49.9270 -4.8800 -21.9250 

4 Foliage  ███ 43.1390 -13.0950 21.9050 

5 Blue flower  ███ 55.1120 8.8440 -25.3990 

6 Bluish green  ███ 70.7190 -33.3970 -0.1990 

7 Orange  ███ 62.6610 36.0670 57.0960 
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Table 13. X-Rite ColorChecker Classic L*a*b* color information following the 
enumeration presented in Figure 35 (continuation). 

Number Color 
CIELAB 

L* a* b* 
 

     

8 Purplish blue  ███ 40.0200 10.4100 -45.9640 

9 Moderate red  ███ 51.1240 48.2390 16.2480 

10 Purple  ███ 30.3250 22.9760 -21.5870 

11 Yellow green  ███ 72.5320 -23.7090 57.2550 

12 Orange yellow  ███ 71.9410 19.3630 67.8570 

13 Blue  ███ 28.7780 14.1790 -50.2970 

14 Green  ███ 55.2610 -38.3420 31.3700 

15 Red  ███ 42.1010 53.3780 28.1900 

16 Yellow  ███ 81.7330 4.0390 79.8190 

17 Magenta  ███ 51.9350 49.9860 -14.5740 

18 Cyan  ███ 51.0380 -28.6310 -28.6380 

19 White ███ 96.5390 -0.4250 1.1860 

20 Neutral 8 ███ 81.2570 -0.6380 -0.3350 

21 Neutral 6.5 ███ 66.7660 -0.7340 -0.5040 

22 Neutral 5 ███ 50.8670 -0.1530 -0.2700 

23 Neutral 3.5 ███ 35.6560 -0.4210 -1.2310 

24 Black ███ 20.4610 -0.0790 -0.9730 
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