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Existence theorems for two-fluid magnetohydrodynamics
Manuel Núñeza�

Departamento de Análisis Matemático, Universidad de Valladolid, 47005 Valladolid, Spain

�Received 5 April 2005; accepted 1 June 2005; published online 27 July 2005�

The description of a plasma as composed by two types of fluids, formed by ions
and electrons, is more complete than the classical one-fluid magnetohydrodynamics
�MHD� model and it has proved necessary to explain the phenomena of fast mag-
netic reconnection. We prove a finite-time theorem of existence and uniqueness of
solutions for this system for either Dirichlet or periodic boundary conditions in
dimension three. It turns out that the regularity estimates for the magnetic field are
finer than the MHD ones. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1985009�

I. INTRODUCTION AND MATHEMATICAL SETTING

The evolution of a collection of charged particles can often be modeled as the motion of
several fluid species linked by electromagnetic forces. The most important instance is probably the
two-fluid case, where positive ions and electrons form a quasineutral plasma. The equations of
motion of both species, under reasonable approximations1–3 may be combined to yield

�� �v

�t
+ v · � v� = ��v + J Ã B − � p + f

�1�

E + v � B = �J +
1

en
J Ã B −

1

en
� pe +

m

e2n

�J

�t
,

where the variables are explained as follows:

�1� v is the mass velocity

v =
Mvi + mve

M + m
,

where vi is the ions velocity, M is its mass, ve is the electrons velocity, and m is its mass.
Since M �m , v�vi.

�2� e is the electron charge.
�3� n is the electrons number density, approximately equal to the ions one, �=n�M +m� the mass

density. We will assume the fluid incompressible and will scale � to 1.
�4� � is the kinematic viscosity and � is the resistivity. Both are taken as constant �positive�

scalars, meaning that these plasma properties are homogeneous and isotropic.
�5� p= pi+ pe is the total pressure, sum of the ion and electron ones.
�6� E is the electric field, B is the magnetic one, and J= � ÃB is the current density. This is also

equal to �vi−ve�en.
�7� f is an arbitrary forcing on the momentum equation, given, e.g., by gravitational forces.
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It is apparent that the coefficient m / �e2n� is very small. Neglecting it we are left with the Hall
magnetohydrodynamics �MHD� system. By neglecting also the current displacement in Maxwell’s
equations, an admissible procedure in low-frequency phenomena, and using Faraday’s law

�B

�t
= − � Ã E ,

we are left with the Hall induction equation

�B

�t
= − � � ��J� + � Ã �v Ã B� −

1

en
� Ã �J Ã B� . �2�

The Hall current term �1/en�� Ã �JÃB� is small in dense plasmas, and in general at large scales
its effect is less important than the one of the velocity. Omitting it and using certain vector analysis
identities, we obtain the classical incompressible MHD equations

�v

�t
= ��v − v · � v + B · � B − � �p +

1

2
B2� + f ,

�B

�t
= ��B + � Ã �v Ã B� , �3�

� · v = � · B = 0.

Its study is well known and similar in many aspects to the one of the Navier–Stokes equation.4

However, it has become apparent that in certain important physical phenomena, in particular those
involving magnetic reconnection, the one-fluid description given by �3� is not appropriate. The
extremely rapid conversion rate from magnetic to kinetic energy present in such spectacular
phenomena as solar flares could not be adequately explained by any MHD model, and there was
no lack of effort in this sense. There exists an enormous literature on this problem: see, e.g., Refs.
5–7, and references therein. It is generally accepted now that near the current sheets where
reconnection occurs, electrons and ions cease to move together: it is the high electron velocity
which prevents the throttling of MHD reconnection schemes and allows fast energy conversion. It
is clear that a two-fluid description is necessary and therefore it seems natural to ask for some
existence theorem for the relevant equation. Although admittedly the electron inertia term m / �e2n�
is small, its presence is necessary to obtain a mathematically consistent model. By taking the curl
of �1� and using Faraday’s law, we obtain the two-fluid MHD system

�v

�t
= ��v − v · � v + B · � B − � �p +

1

2
B2� + f , �4�

m

e2n

� � Ã J

�t
+

�B

�t
= ��B + � Ã �v Ã B� −

1

en
� Ã �J Ã B� , �5�

which will be our object of study. We will abbreviate the electron inertia term m / �e2n� to �, the
Hall coefficient 1 / �en� to h. In addition to these equations, both v and B must be solenoidal. This
follows automatically for B for all time if it happens for the initial condition at time zero, because
the divergence of the induction equation yields
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��� · B�
�t

= 0.

As for the momentum one, the task of keeping v solenoidal is given to the pressure: p satisfies an
elliptic equation to this end. Indeed, physically the pressure compensates for the tensions created
by the fluid incompressibility.

Finally, boundary conditions must be added. Although other possibilities exist, we will con-
centrate for simplicity on two cases:

�1� The domain � is smooth, and both v and B satisfy homogeneous Dirichlet conditions at its
boundary ��.

�2� � is a box �0,L1�� �0,L2�� �0,L3�, and both v and B are periodic at opposite faces. More-
over, in this case the mean of both in � is zero.

Incidently, notice that, in contrast to the MHD and Navier–Stokes cases, there is no possibility
here of studying two-dimensional problems, because even when both velocity and magnetic field
are horizontal, the current density and the Hall term are not.

We first recall the definitions of the classical Lebesgue and Sobolev spaces: Lp��� is the space
of measurable functions f defined in � whose Lp-norm

�f�p = �	
�


f 
pdV�1/p

is bounded. L	��� is the space of measurable functions defined in � such that they are bounded
outside a set of zero measure E, and �f�	 is the maximum of 
f�x�
 when x�E. Hp��� is the space
of functions whose differentials up to the order p are square integrable �i.e., they belong to L2����.
The norm �f�Hp��� is the sum of the L2-norms of all the partial derivatives of f up to the order p.
We will only use H1��� and H2���. H0

1��� is the subspace of H1��� formed �roughly� by the
functions vanishing in the boundary ��. �The correct definition is somewhat more involved, but
essentially amounts to this�. We will use a number of standard notations:4,8

In the Dirichlet case,

H = �B � L2���3: � · B = 0,B · n
�� = 0� . �6�

Although this divergence and trace term must be understood in the sense of distributions, it is
known that H is a closed subspace of L2���3.

V = H0
1���3 � H ,

D�A� = H2���3 � V , �7�

A:D�A� → H, A = PH� ,

where PH is the orthogonal projection on H. In the periodic case,

H = u � L2���3:	
�

u dV = 0, � · u = 0, u · n antiperiodic at opposite sides of �� .

�8�

Again H is a closed subspace of L2���3

V = H1���3 � H ,

D�A� = H2���3 � V , �9�

083101-3 Two-fluid MHD J. Math. Phys. 46, 083101 �2005�



A:D�A� → H, A = � .

In connection with these spaces, we will use the following inequality �see Ref. 8�: For all f
�V ,g�D�A� ,h�H,

�	
�

f · � g · h dV� 
 c�f�H1�g�H1
1/2�Ag�2

1/2�h�2. �10�

c is a constant depending only on �. To avoid an unmanageable proliferation of constants, we will
always denote such parameters by c: thus, e.g., 3c+c1/2=c. Constants not depending on �, such as
the diffusivity terms or bounds depending on specific functions will be given different names.

We intend to prove local existence and uniqueness of the solution to the problem �4� and �5�
with initial condition v�0��V ,B�0��D�A�. We will consider first the induction equation, which
in the MHD case models the so-called kinematic dynamo, where the velocity is taken as a datum.
The momentum equation in a classical Navier–Stokes one with a forcing given by the Lorentz
force, for which well-known estimates are available. Combining the bounds for both equations we
will obtain a contractive operator whose fixed point is the unique solution. Finally we will obtain
some energy inequalities emphasizing the difference with the single-fluid MHD model. All these
results will hold even in infinitely conducting plasmas ��=0�, in contrast with classical MHD.

II. INDUCTION EQUATION

Definition 2.1: For B�D�A� we will denote by w the function

w = − ��B + B . �11�

Notice that the properties of elliptic systems guarantee that w�H and �B�H2 
c�w�2.
Lemma 2.2: Consider the term ��B+ � Ã �vÃB�−h� Ã �JÃB� as a (nonlocal) function

F�w ,v�. Then, for every v�V ,F is a continuous function from H into H. Moreover, for any v
�V ,w�H,

�F�w,v��2 
 c�� + �v�H1 + �w�2��w�2, �12�

and for any v1 ,v2�V ,w1 ,w2�H,

�F�w1,v1� − F�w2,v2��2


 c�� + �v1�H1 + �v2�H1 + �w1�2 + �w2�2��w1 − w2�2 + c��w1�2 + �w2���v1 − v2�H1. �13�

Proof: Recall that

� Ã �v Ã B� = − v · � B + B · � v ,

� Ã �J Ã B� = − J · � B + B · � J .

By standard Sobolev inequalities:

���B1 − �B2�2 
 c��B1 − B2�H2 
 c��w1 − w2�2,

and

� � Ã �v1 Ã B1� − � Ã �v2 Ã B2��2

= �− v1 · � �B1 − B2� − �v1 − v2� · � B2 + B1 · � �v1 − v2� + �B1 − B2� · � v2�2


 �v1�4� � �B1 − B2��4 + �v1 − v2�4� � B2�4 + �B1�	� � �v1 − v2��2 + �B1 − B2�	� � v2�2.

Since for dimension 3, V�L4��� , D�A��L	���, this amount may be bounded by
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c��v1�H1�B1 − B2�H2 + �B2�H2�v1 − v2�H1 + �B1�H2�v1 − v2�H1 + �v2�H1�B1 − B2�H2


 c��v1�H1 + �v2�H1��w1 − w2�2 + c��w1�2 + �w�2��v1 − v2�H1.

Finally, by changing in the previous inequalities vi to Ji we find

� � Ã �J1 Ã B1� − � Ã �J2 Ã B2��2


 �J1�4� � �B1 − B2��4 + �J1 − J2�4� � B2�4 + �B1�	� � �J1 − J2��2 + �B1 − B2�	� � J2�2


 c��J1�H1 + �B2�H2 + �B1�H2 + �J2�H1��B1 − B2�H2 
 c��w1�2 + �w2�2��w1 − w2�2.

The inequality �12� is a simplified version of the previous calculation, with only a single v and w.
This concludes the proof. �

Theorem 2.3: For fixed v�L2��0,S� ,V�, Eq. (5), which may be written in the form

dw

dt
= F�w,v� ,

�14�
w�0� � H ,

admits a unique a.e. differentiable solution w : �0,T�→H, for some T
S , T�0. We may take T so
that this solution satisfies �w�t��2
 �w�0��2+1 for all t� �0,T�. Moreover, the interval �0,T�
depends only on �w�0��2 and �v�L2��0,T�,V�.

Proof: Let us prove that the integral operator, defined in the closed ball of C��0,T� ,H� of
center 0 and radius �w�0��2+1 given by

w → w�0� + 	
0

t

F�w�s�,v�s��ds ,

takes the ball to itself and is contractive for T small enough. Using �12�, for any w bounded by
�w�0��2+1,

	
0

t

�F�w,v��2ds 
 c	
0

t

�� + �v�H1 + �w�2��w�2ds


 c��T�	
0

T

�v�H1
2 ds�1/2

+ T�� + �w�0��2 + 1����w�0��2 + 1� .

Clearly we can take T so that this amount is less than 1 for all t� �0,T�. Taking now �13�,

	
0

t

�F�w1,v� − F�w2,v��2ds 
 c	
0

t

�� + 2�v�H1 + �w1�2 + �w2�2��w1 − w2�2ds ,

so that

�w1 − w2�C�0,T�,H 
 c�	
0

T

2�v�H1 + �w1�2 + �w2�2ds��w1 − w2�C�0,T�,H


 c�2�T�	
0

T

�v�H1
2 ds�1/2

+ 2T��w�0��2 + 1���w1 − w2�C�0,T�,H.

Obviously by taking T small enough we can make this functional to take the ball of radius
�w�0��2+1 in itself in a contractive manner. The classical proof follows. �

Let us study now the dependence of the solutions upon the velocity:
Theorem 2.4: Let w1 , w2 be the respective solutions of
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dwi

dt
= F�wi,vi�

�15�
wi�0� = w�0� ,

for vi�L2��0,S� ,V�, and let �0,T� be a common interval of existence of w1 , w2. Then there exists
T1
T, depending only on �w�0��2 , �vi�L2��0,T�,V�, such that

�w1 − w2�C��0,T1�,H� 

1
2 �v1 − v2�L2��0,T1�,V�. �16�

Proof: Using inequality �13�, and taking an interval short enough for Therom 2.3 to hold for
both wi,

�w1�t� − w2�t��2 = �	
0

t

F�w1,v1� − F�w2,v2�ds�
2


 c	
0

t

�� + �v1�H1 + �v2�H1 + �w1�2 + �w2�2��w1

− w2�2 + ��w1�2 + �w2�2��v1 − v2�H1ds 
 c��T��v1�L2��0,T�,V� + �v2�L2��0,T�,V�� + T�

+ 2T��w�0��2 + 1���w1 − w2�C��0,T�,H� + 2�T��w�0��2 + 1��v1 − v2�L2��0,T�,V�.

Hence it is enough to take T1 small enough for

c��T1��v1�L2��0,T1�,V� + �v2�L2��0,T1�,V�� + T1� + 2T1��w�0��2 + 1�� �
1
2 ,2�T1��w�0��2 + 1� �

1
4 .

III. MOMENTUM EQUATION

This is the Navier–Stokes one with two forcings: the independent one f and the Lorentz force
JÃB. We will denote the last one by G�w�. Notice that

�J Ã B�2 
 �J�4�B�4 
 c�w�2
2. �17�

We may apply the classical results �see, e.g., Ref. 8� and conclude the following.

�a� For every initial condition v�0��V, there exists a unique solution for an interval �0,T�
satisfying

�v�t��H1 
 2��v�0��H1 + 1� , �18�

where T depends only on �v�0��H1 , �G�w��C��0,T�,H� , sup�0,T��f�2.
�b� v�L2��0,T� ,D�A��, and the norm of v in this space is bounded by a constant depending

only on the same quantities given in �a�. We will first estimate the norm of v in the space
L2��0,T� ,V�. To emphasize its value, it is convenient to single out �only in this instance� the
Poincaré constant in V , �v�H1

2

kp��v�2

2.

Proposition 3.1.: If v is the solution of �4� in the interval �0,T�,

�v�L2��0,T�,V�
2



kp

�
�v�0��2

2 + c
T

�2 �w�C��0,T�,H�
4 + c

T

�2 sup
�0,T�

�f�2
2. �19�

Proof: By making the scalar product of �4� with v, and using standard inequalities �Cauchy–
Schwarz, Poincaré, and Young’s�,
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1

2

d�v�2
2

dt

 − �� � v�2

2 + �G�w��2�v�2 + �f�2�v�2 
 − �� � v�2
2 + c�G�w��2� � v�2 + c�f�2� � v�2


 − �� � v�2
2 +

c2

�
�G�w��2

2 +
�

4
� � v�2

2 +
c2

�
�f�2

2 +
�

4
� � v�2

2.

Integrating in �0,T� and omitting the term in �v�t��2,

�

2
	

0

T

� � v�2
2ds 


1

2
�v�0��2

2 +
c2

�
	

0

T

�G�w��2
2ds +

c2

�
	

0

T

�f�2
2ds ,

from which, in view of �17�, the result follows. �

Corollary 3.2.: There exists a time T1
T, depending only on �w�C��0,T1�,H�, such that

�v�L2��0,T1�,V� 

kp

��
�v�0��2 + 1 


kp

��
�v�0��H1 + 1. �20�

We will consider now the difference between two solutions corresponding to different wi and the
same initial condition:

Theorem 3.2: Let v1 ,v2 be the respective solutions of Eq. (4) in �0,T� corresponding to
Lorentz forces w1 ,w2�C��0,T� ,H� and the same initial condition. Then there exists T2
T, de-
pending only on �wi�C��0,T�,H�, such that

�v1 − v2�L2��0,T2�,V� 

1

2
�w1 − w2�C��0,T2�,H�. �21�

Proof: The scalar product of ���v1−v2�� / ��t� with v1−v2 yields

1

2

�

�t
�v1 − v2�2

2 + �� � �v1 − v2��2
2 = �− v1 · � v1 + v2 · � v2,v1 − v2� + �G�w1� − G�w2�,v1 − v2�

− ���p1 − p2�,v1 − v2� .

The last term is zero. We have

�− v1 · � v1 + v2 · � v2,v1 − v2� = �− v1 · � �v1 − v2� + �− v1 + v2� · � v2,v1 − v2� ,

and �−v1 · � �v1−v2� ,v1−v2�=0. By using inequality �10�, we find


�− v1 · � v1 + v2 · � v2,v1 − v2�
 
 �v1 − v2�H1�v1 − v2�2�v2�H1
1/2�Av2�2

1/2.

Finally


�G�w1� − G�w2�,v1 − v2�
 
 �G�w1� − G�w2��2�v1 − v2�2.

In order to abbreviate the notation, let us denote by �g�2,	 the supremum of �g�2 when t� �0,T�.
Property �a� of the solutions of the Navier–Stokes equations guarantees that �v2�H1 is bounded in
�0,T� by an amount depending only on �v2�0��H1, �G�w2��2,	, and �f�2,	. Let M be an upper bound
of �v2�H1

1/2 in �0,T�. Integrating the resulting inequality in time,
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1

2
��v1 − v2��t��2

2 + �	
0

t

� � �v1 − v2��2
2ds


 cM	
0

t

�v1 − v2�2�v1 − v2�H1�v2�H2
1/2ds + c	

0

t

�G�w1� − G�w2��2�v1 − v2�2ds


 cM�v1 − v2�2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ cT�G�w1� − G�w2��2,	�v1 − v2�2,	. �22�

Since this is valid for any t� �0,T�, by considering only the first term in the left-hand side of �22�
and using Young’s inequality,

1

2
�v1 − v2�2,	

2 

c2M2

2 �	
0

T

�v2�H2ds��v1 − v2�2,	
2 +

1

2
	

0

T

�v1 − v2�H1
2 ds +

T

2
�G�w1� − G�w2��2,	

2

+
c2

2
T�v1 − v2�2,	

2 .

Since by property �b�

	
0

T

�v2�H2ds 
 �T�	
0

T

�v2�H2
2 ds�1/2


 N�T ,

where N is a constant depending on the same functions stated before for �v2�H1, we find

�1 − c2M2N�T − c2T��v1 − v2�2,	
2 
 	

0

T

�v1 − v2�H1
2 ds + T�G�w1� − G�w2��2,	

2 .

Taking T small enough for the constant before �v1−v2�2,	
2 to be at least 1 /2, we find

�v1 − v2�2,	
2 
 2	

0

T

�v1 − v2�H1
2 ds + 2T�G�w1� − G�w2��2,	

2 ,

which implies

�v1 − v2�2,	 
 �2�	
0

T

�v1 − v2�H1
2 ds�1/2

+ �2T�G�w1� − G�w2��2,	. �23�

Let us now return to �22� omitting now the term ��v1−v2��t��2,	
2 , and bounding the last term in a

slightly different form:

	
0

T

�G�w1� − G�w2��2�v1 − v2�ds 
 �G�w1� − G�w2��2,		
0

T

�v1 − v2�2ds


 �G�w1� − G�w2��2,		
0

T

�v1 − v2�H1ds .

By using again Poincaré’s inequality on v1−v2, we get
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�	
0

T

�v1 − v2�H1
2 ds


 cM�v1 − v2�2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ c�G�w1� − G�w2��2,		
0

T

�v1 − v2�H1ds . �24�

This, jointly with �23�, yields

�	
0

T

�v1 − v2�H1
2 ds 
 cM�	

0

T

�v1 − v2�H1
2 ds��	

0

T

�v2�H2ds�1/2

+ cM�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ c�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2

.

Our previous bound on the H2 norm of v2 and Young’s inequality yield

�	
0

T

�v1 − v2�H1
2 ds 
 cMN1/2T1/4	

0

T

�v1 − v2�H1
2 ds

+ cMN1/2T3/4�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2

+ c�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2


 �cMN1/2T1/4 +
c2M2N

2
T3/4 +

c2

2
T1/2�	

0

T

�v1 − v2�H1
2 ds

+
1

2
�T3/4 + T1/2��G�w1� − G�w2��2,	

2 .

It is therefore to take T2
T small enough for

cMN1/2T2
1/4 + c2M2NT2

3/4 + c2T2
1/2 


�

2
, T2

3/4 + T2
1/2 


�

2
,

for the theorem to hold. Notice that if we know an a priori bound on

�wi�2,	 = �wi�C��0,T�,H�

�say �w�0��2+1�, then M and N may also be bounded a priori and T2 does not depend on any
unknown quantity. �

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTIONS

We now state the main theorem of the paper. For the benefit of readers unwilling to spend time
mastering all the previous mathematical notations, perhaps it is appropriate to state the result, at
least approximately, in words: When the velocity at time t=0 is differentiable, and the magnetic
field is twice differentiable, there exists a solution of the two-fluid magnetohydrodynamics equa-
tions up to some time T. This solution is such that the velocity and its differential (with respect to
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the space variables) are continuous in time, and the magnetic field, plus its first and second
differentials, are also continous in time. The rigorous form is as follows.

Theorem 4.1: Take initial conditions v�0�=v0�V , B�0�=B0�D�A�. Then there exists an
interval �0,T� such that the two-fluid MHD Eqs. (4) and (5) have a unique solution. Moreover

v � C��0,T�,V� � L2��0,T�,D�A�� ,

�25�
B � C��0,T�,D�A�� .

Proof: Take T�0 small enough for:

�a� For v*�L2��0,T� ,V�, with

�v*�L2��0,T�,V� 

kp

��
�v0�H1 + 1, �26�

the solution of

dw

dt
= F�w,v*� , �27�

w�0� = w0 = − ��B0 + B0, �28�

satisfies

�w�C��0,T�,H� 
 �w�0��2 + 1, �29�

and, for two functions v1
* ,v2

* satisfying �26�, the solutions of

dwi

dt
= F�wi,vi

*� , �30�

wi�0� = − ��B0 + B0, �31�

satisfy

�w1 − w2�C��0,T�,H� 

1
2 �v1

* − v2
*�L2��0,T�,V�. �32�

�b� For w*�C��0,T� ,H�, with

�w*�C��0,T�,H� 
 �w�0��2 + 1, �33�

the solution of

�v

�t
= ��v − v · � v + G�w*� − � p + f ,

�34�
v�0� = v0,

satisfies

�v�L2��0,T�,V� 

kp

��
�v0�H1 + 1, �35�

and, for two functions w1
* ,w2

* satisfying �33�, the solutions of �34� with parameters w1
* and w2

*

satisfy
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�v1 − v2�L2��0,T�,V� 

1
2 �w1

* − w2
*�C��0,T�,H�. �36�

That T may be found satisfying �a� follows from Theorems 2.3 and 2.4, whereas proposition 3.1
and Theorem 3.2 guarantee that for T small enough, it also satisfies �b�. Then the mapping defined
in the product

B̄L2��0,T�,V�� kp

��
�v0�H1 + 1� � B̄C��0,T�,H���w0�2 + 1� �37�

and given by �v* ,w*�→ �v ,w�, takes this product of balls into itself in a contractive manner.
Therefore it has a unique fixed point. This is a solution of the equation, and conversely every
solution is a fixed point, which guarantees uniqueness. Although in principle we only know that
v�L2��0,T� ,V�, since w and therefore G�w� are uniformly bounded in H for all t� �0,T�, implies
that v, as the solution to a Navier–Stokes equation with a bounded forcing, belongs to
C��0,T� ,V��L2��0,T� ,D�A��. On the other hand, since �B�H2 
c�w�2, we find B
�C��0,T� ,D�A��.

V. FINAL CONSIDERATIONS

The key difference with classical MHD is that the induction equation is actually simpler in our
case, since the advective and diffusive terms are actually continuous functions of the new variable
w=�� ÃJ+B. However, this will not help us to prove global existence. For one thing, the
induction equation remains nonlinear in w; and second, no matter how regular the magnetic field
is, the momentum equation is a Navier–Stokes one, where global existence of solutions is a
celebrated unsolved question. Still, it is apparent from our proofs that the difussive term ��B does
not play any role and can be dispensed with. This is in sharp contrast with one-fluid MHD, and it
is a welcome feature, since most of the reconnection models where two-fluid MHD becomes
necessary are actually infinitely conducting, i.e., the resistivity is taken as zero. That the two-fluid
MHD equations yield more regularity than the classical MHD ones is apparent from the following
energy inequality: it does not involve the L2-norm of w, whose evolution is complex, but rather the
current density norm.

Theorem 5.1: Let kp be the Poincaré constant �v�2
2
kp��v�2

2. The solutions to systems (4)
and (5) satisfy, for as long as they are defined,

��J�t��2
2 + �B�t��2

2 + �v�t��2
2 + 2�	

0

t

� � B�2
2 + �	

0

t

� � v�2
2ds


 ��J�0��2
2 + �B�0��2

2 + �v�0��2
2 +

kp

�
	

0

t

�f�2
2ds . �38�

Proof: With our boundary conditions

	
�

J2dV = 	
�

J · �� Ã B�dV = 	
�

�� Ã J� · B dV = − 	
�

�B · B dV = 	
�


 � B
2dV .

Therefore

�

�t
	

�

J2dV = 2	
�

� � B

�t
· � B dV = − 2	

�

��B

�t
· B dV = 2	

�

��� Ã J�
�t

· B dV .

Let us multiply the momentum equation by v, the induction one by B, and add both. As in
classical MHD, the advective terms add to zero, as well as
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�

� �1

2
B2 + p� · v dV = 	

��

�1

2
B2 + p�v · n d = 0.

As for the Hall term,

	
�

�� Ã �J Ã B�� · B dV = 	
�

�J Ã B� · J dV = 0.

Writing as usual

�	
�

f · v dV� 
 �kp�f�2� � v�2 

�

2
� � v�2

2 +
kp

2�
�f�2

2,

we obtain the stated inequality. �

Thus, although the main existence theorem proved a finite-time bound for the maximum of
�v�H1 and �B�H2, the present one remains valid for as long as the integrals make sense and is
therefore more robust than the previous one. It plays the role of the energy inequality for MHD,
but supplies more information about the smoothness of the field. Whereas in one-fluid MHD it was
the total �kinetic plus magnetic� energy �v�2

2+ �B�2
2 which remained bounded, here also the current

density energy �J�2
2 does: hence the H1-norm of the magnetic field is kept by the flow, which

precludes any sharp gradients.
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