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Abstract. Linear skew-product semidynamical systems generated by random

systems of delay differential equations are considered, both on a space of con-
tinuous functions as well as on a space of p-summable functions. The main

result states that in both cases, the Lyapunov exponents are identical, and

that the Oseledets decompositions are related by natural embeddings.

1. Introduction

The theory of linear random skew-product semidynamical systems has become a
powerful tool in the investigation of random linear parabolic PDEs of second order
driven by a measurable dynamical system on a probability space. In particular,
when the solution operator is compact (and that holds if the domain is bounded)
then, assuming the summability of the coefficients of the PDE, we have an Oseledets
decomposition: the separable Banach space decomposes into a countable direct sum
of invariant measurable families of finite-dimensional vector subspaces which can
be characterized as corresponding to solutions defined on the whole real line having
given logarithmic growth rates (Lyapunov exponents) both in the future and in
the past (plus, possibly, an invariant measurable family corresponding to solutions
having logarithmic growth rates −∞). See Lian and Lu’s monograph [12].

When we consider systems of linear random delay differential equations

z′(t) = A(θtω) z(t) +B(θtω) z(t− 1),

any “natural” space on which we define a linear skew-product semidynamical system
must contain (or, at least, be equal to) a space consisting of functions defined on
[−1, 0] and taking values on RN . In general, there is no hope that the solution
operator is compact. But it is compact after some time, so this is not a big obstacle.
A more important thing is that, generally, the solution operator is not injective.
This makes it impossible to directly apply the results contained in [12].

It is natural to work in the framework of semi-invertible Oseledets theorems: the
metric dynamical system on the base space is invertible, but the operators between
fibers are not necessarily injective.
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For such systems, Doan proved in his dissertation [7] the existence of an Os-
eledets filtration: an invariant measurable filtration by finite-codimensional vector
subspaces such that the solutions corresponding to the set difference of two sub-
sequent subspaces have logarithmic rates of growth equal to a given Lyapunov
exponent. Starting from Doan’s results, González-Tokman and Quas [9] proved
that there exists an Oseledets splitting, provided only that the fibers are separable
Banach spaces and that the base space is a Lebesgue space. Indeed, in an earlier
paper by Froyland et al. [8] an Oseledets splitting was obtained, but under an ad-
ditional assumption that the base space is a Borel subset of a separable complete
metric space with the σ-algebra of Borel sets and with a Borel probability measure.

The above result should be considered sufficient for our purposes: C([−1, 0],RN )
appears to be the natural, at first sight, Banach space for which the solution opera-
tor satisfies all the axioms of a skew-product random semidynamical system. Such
a Banach space is separable, and there are no difficulties.

However, one should remember that we sometimes need to calculate (at least,
to estimate) the Lyapunov exponents. As shown in Calzada et al. [3], one needs
a Hilbert space, more precisely, the space L2([−1, 0],RN , µ0), with µ0 = δ0 + l,
where l is the Lebesgue measure on [−1, 0], is a natural choice here. In such
a case, one can use results from González-Tokman and Quas [10]: an Oseledets
decomposition is proved there for reflexive separable Banach spaces. In general,
good geometric properties for the Banach spaces provide a more constructive version
of the theory. Mierczyński and Shen [13] and Mierczyński et al. [15] prove, under
adequate dynamical assumptions, the existence of a principal Floquet subspace and
a generalized exponential separation decomposition when the fiber is a separable
Banach space with separable dual.

This has to do with the dual skew-product semidynamical systems. In the case of
ordinary differential equations, or parabolic partial differential equations of second
order, such dual skew-product systems are generated by adjoint equations. Then,
the adjoint equation has the same properties as the original equation, and in many
cases one needs only to prove “one half” of a theorem (for example, the existence
of an Oseledets filtration, whereas the other half can be given by applying the
theorem to the skew-product system generated by the adjoint equation; for a similar
approach see Section 3 in Mierczyński and Shen [14]).

However, this is not the case for delay differential equations. To be sure, there ex-
ists a well-defined “abstract” dual skew-product semidynamical system, but, at least
in the case of C([−1, 0],RN ), it is not generated by anything resembling an adjoint
equation. For generation of the dual system by an adjoint equation (sort of), see
Delfour and Mitter [5].

The paper is organized as follows. Section 2 contains preliminaries and explains
notions used throughout the rest of the sections. In Section 3 a definition of an Os-
eledets decomposition for a measurable linear skew-product semidynamical system
is given, and, under appropriate assumptions for our purposes, some theorems of
existence are explained

Section 4 is devoted to showing that linear systems of delay differential equations
generate measurable linear skew-product semidynamical systems when we take as
our fiber both C([−1, 0],Rn) and RN × Lp([−1, 0],RN ), and some measurability
and summability assumptions on the coefficients are considered.



LYAPUNOV EXPONENTS AND OSELEDETS DECOMPOSITION 3

The main results of the paper are contained in Section 5. It is shown that for both
spaces, the Lyapunov exponents are the same, and that the Oseledets decomposition
are related by natural embeddings. The importance of these results is that the
geometrical methods of construction for the Oseledets subspaces, obtained in [10] for
reflexive separable Banach spaces, as well as the estimates of Lyapunov exponents,
can be applied on RN × Lp([−1, 0],RN ) and then translated to C([−1, 0],RN ) by
embedding.

2. Preliminaries

Let (Y, d) be a metric space, B(y; ε) denotes the closed ball in Y centered at
y ∈ Y with radius ε > 0, and B(Y ) stands for the σ-algebra of all Borel subsets
of Y . For a compact metric space Z and a Banach space X, C(Z,X) denotes the
Banach space of continuous functions from Z into X, with the supremum norm.
For Banach spaces X1, X2, L(X1, X2) stands for the Banach space of bounded
linear mappings from X1 into X2, endowed with the standard norm. Instead of
L(X,X) we write L(X).

A probability space is a triple (Ω,F,P), where Ω is a nonempty set, F is a σ-algebra
of subsets of Ω, and P is a probability measure defined for all F ∈ F. We always
assume that the measure P is complete.

A measurable dynamical system on the probability space (Ω,F,P) is a (B(R)⊗
F,F)-measurable mapping θ : R× Ω→ Ω such that

• θ(0, ω) = ω for any ω ∈ Ω,
• θ(t1 + t2, w) = θ(t2, θ(t1, ω)) for any t1, t2 ∈ R and any ω ∈ Ω.

We write θ(t, ω) as θtω. Also, we usually denote measurable dynamical systems by
((Ω,F,P), (θt)t∈R) or simply by (θt)t∈R.

A metric dynamical system is a measurable dynamical system ((Ω,F,P), (θt)t∈R)
such that for each t ∈ R the mapping θt : Ω→ Ω is P-preserving (i.e., P(θ−1

t (F )) =
P(F ) for any F ∈ F and t ∈ R). It is said to be ergodic if for any invariant F ∈ F,
either P(F ) = 1 or P(F ) = 0.

We write R+ for [0,∞). By a measurable linear skew-product semidynamical sys-
tem or semiflow, Φ = ((Uω(t))ω∈Ω,t∈R+ , (θt)t∈R) on a Banach space X covering a
metric dynamical system (θt)t∈R we understand a (B(R+)⊗F⊗B(X),B(X))-mea-
surable mapping

[R+ × Ω×X 3 (t, ω, u) 7→ Uω(t)u ∈ X ]

satisfying

Uω(0) = IdX for each ω ∈ Ω, (2.1)

Uθsω(t) ◦ Uω(s) = Uω(t+ s) for each ω ∈ Ω and t, s ∈ R+, (2.2)

[X 3 u 7→ Uω(t)u ∈ X ] ∈ L(X) for each ω ∈ Ω and t ∈ R+.

Sometimes we write simply Φ = ((Uω(t)), (θt)). Eq. (2.2) is called the cocycle
property .

We use also the semiprocess notation: for ω ∈ Ω and 0 ≤ s ≤ t, Uω(t, s) stands
for Uθsω(t− s). Then Uω(t) = Uω(t, 0), and (2.2) takes the form

Uω(t, τ) = Uω(t, s) ◦ Uω(s, τ) for each ω ∈ Ω, 0 ≤ τ ≤ s ≤ t.
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Given ω ∈ Ω and u ∈ X, the positive semiorbit passing through (ω, u) is the
(B([0,∞),B(X))-measurable mapping[

[0,∞) 3 t 7→ Uω(t)u ∈ X
]
.

Given ω ∈ Ω and u ∈ X, a negative semiorbit passing through (ω, u) is a
(B((−∞, 0],B(X))-measurable mapping ũ : (−∞, 0]→ X such that:

• ũ(0) = u;
• ũ(t+ s) = Uθsω(t) ũ(s) for any s ≤ 0, t ≥ 0 such that s+ t ≤ 0.

For (ω, u) a negative semiorbit need not exist, and, if it exists, it need not be unique.
A full or entire orbit passing through (ω, u) ∈ Ω×X is a (B(R,B(X))-measurable
mapping ũ : R→ X such that:

• ũ(0) = u;
• ũ(t+ s) = Uθsω(t) ũ(s) for any s ∈ R, t ≥ 0.

Let Ω0 ∈ F. A family {E(ω)}ω∈Ω0
of l-dimensional vector subspaces of X is mea-

surable if there are (F,B(X))-measurable functions v1, . . . , vl : Ω0 → X such that
{v1(ω), . . . , vl(ω)} forms a basis of E(ω) for each ω ∈ Ω0.

Let {E(ω)}ω∈Ω0
be a family of l-dimensional vector subspaces of X, and let

{F (ω)}ω∈Ω0 be a family of l-codimensional closed vector subspaces of X, such that
E(ω) ⊕ F (ω) = X for all ω ∈ Ω0. We define the family of projections associated
with the decomposition E(ω)⊕F (ω) = X as {P (ω)}ω∈Ω0

, where P (ω) is the linear
projection of X onto F (ω) along E(ω), for each ω ∈ Ω0.

The family of projections associated with the decomposition E(ω)⊕F (ω) = X is
called strongly measurable if for each u ∈ X the mapping [ Ω0 3 ω 7→ P (ω)u ∈ X ]
is (F,B(X))-measurable.

We say that the decomposition E(ω) ⊕ F (ω) = X, with {E(ω)}ω∈Ω0 finite-di-
mensional, is invariant if Ω0 is invariant, Uω(t)E(ω) = E(θtω) and Uω(t)F (ω) ⊂
F (θtω), for each t ∈ T+.

A strongly measurable family of projections associated with the invariant de-
composition E(ω)⊕ F (ω) = X is referred to as tempered if

lim
t→±∞

ln ‖P (θtω)‖
t

= 0 P-a.e. on Ω0.

3. Oseledets decomposition

Let Φ = ((Uω(t)), (θt)) be a measurable linear skew-product semidynamical sys-
tem covering an ergodic metric dynamical system ((Ω,F,P), (θt)t∈R) with P com-
plete. We assume throughout the present section that

(O1) the functions[
ω 7→ sup

0≤s≤1
ln+ ‖Uω(s)‖)

]
and

[
ω 7→ sup

0≤s≤1
ln+ ‖Uθsω(1− s)‖

]
belong to L1(Ω,F,P).

Then it follows from the Kingman subadditive ergodic theorem that there exists
λtop ∈ [−∞,∞) such that

lim
t→∞

ln ‖Uω(t)‖
t

= λtop

for P-a.e. ω ∈ Ω, which is referred to as the top Lyapunov exponent of Φ.
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We will also assume that

(O2) λtop > −∞.

Definition 3.1. Φ admits an Oseledets decomposition if there exists an invariant
subset Ω0 ⊂ Ω, P(Ω0) = 1, with the property that one of the following mutually
exclusive cases, (I) or (II), holds:

(I) There are k real numbers λ1 = λtop > · · · > λk, called the Lyapunov exponents
for Φ, k measurable families {E1(ω)}ω∈Ω0 , . . . , {Ek(ω)}ω∈Ω0 of finite dimen-
sional vector subspaces, and a family {F∞(ω)}ω∈Ω0

of closed vector subspaces
of finite codimension such that

(a) for i = 1, . . . , k, any ω ∈ Ω0 and t ≥ 0

Uω(t)Ei(ω) = Ei(θtω) and Uω(t)F∞(ω) ⊂ F∞(θtω) ;

(b) E1(ω)⊕ . . .⊕ Ek(ω)⊕ F∞(ω) = X for any ω ∈ Ω0; we write

Fi(ω) :=

k⊕
j=i+1

Ej(ω)⊕ F∞(ω) for i = 1, . . . , k − 1, and F0(ω) := X .

In particular, Fi(ω) = Ei+1(ω)⊕ Fi+1(ω) for i = 0, 1, . . . , k − 2 ;

(c) for i = 1, . . . , k − 1, the families of projections associated with the de-

compositions
( i⊕
j=1

Ej(ω)
)
⊕ Fi(ω) = X and

( k⊕
j=1

Ej(ω)
)
⊕ F∞(ω) = X

are strongly measurable and tempered;

(d) for i = 1, . . . , k , any ω ∈ Ω0 and any nonzero u ∈ Ei(ω)

lim
t→∞

ln ‖Uω(t)|Ei(ω)‖
t

= lim
t→∞

ln ‖Uω(t)u‖
t

= λi ;

(e) for i = 1, . . . , k , any ω ∈ Ω0 and any u ∈ Fi−1(ω) \ Fi(ω)

lim
t→∞

ln ‖Uω(t)u‖
t

= λi ;

(f) for any ω ∈ Ω0 and any u ∈ Fk−1(ω) \ F∞(ω)

lim
t→∞

ln ‖Uω(t)u‖
t

= λk ;

(g) for i = 1, . . . , k and any ω ∈ Ω0, a nonzero u ∈ Fi−1(ω) belongs to Ei(ω)
if and only if there exists a negative semiorbit ũ : (−∞, 0] → X passing
through (ω, u) such that

lim
s→−∞

ln ‖ũ(s)‖
s

= λi;

(h) for any ω ∈ Ω0

lim
t→∞

ln ‖Uω(t)|F∞(ω)‖
t

= −∞ .

In this case, {F1(ω)}ω∈Ω0
, . . . , {Fk−1(ω)}ω∈Ω0

, {F∞(ω)}ω∈Ω0
is called the

Oseledets filtration for Φ.
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(II) There are a decreasing sequence of real numbers λ1 = λtop > · · · > λi >
λi+1 > · · · with limit −∞, called the Lyapunov exponents for Φ, countably
many measurable families {Ei(ω)}ω∈Ω0 , i ∈ N, of finite dimensional vector
subspaces, and countably many families {Fi(ω)}ω∈Ω0

, i ∈ N, of closed vector
subspaces of finite codimensions, called the Oseledets filtration for Φ, such that

(a) for i ∈ N, any ω ∈ Ω0 and t ≥ 0

Uω(t)Ei(ω) = Ei(θtω) and Uω(t)Fi(ω) ⊂ Fi(θtω) ;

(b) for i ∈ N and any ω ∈ Ω0

E1(ω)⊕ . . .⊕ Ei(ω)⊕ Fi(ω) = X and Fi(ω) = Ei+1(ω)⊕ Fi+1(ω) ;

(c) for i ∈ N, the families of projections associated with the decompositions( i⊕
j=1

Ej(ω)
)
⊕ Fi(ω) = X are strongly measurable and tempered;

(d) for i ∈ N, any ω ∈ Ω0 and any nonzero u ∈ Ei(ω)

lim
t→∞

ln ‖Uω(t)|Ei(ω)‖
t

= lim
t→∞

ln ‖Uω(t)u‖
t

= λi ;

(e) for i ∈ N, any ω ∈ Ω0 and any u ∈ Fi−1(ω) \ Fi(ω)

lim
t→∞

ln ‖Uω(t)u‖
t

= λi

where F0(ω) := X;

(f) for i ∈ N and any ω ∈ Ω0, a nonzero u ∈ Fi−1(ω) belongs to Ei(ω) if and
only if there exists a negative semiorbit ũ : (−∞, 0]→ X passing through
(ω, u) such that

lim
s→−∞

ln ‖ũ(s)‖
s

= λi;

(g) for i ∈ N and any ω ∈ Ω0

lim
t→∞

ln ‖Uω(t)|Fi(ω)‖
t

= λi+1 ;

(h) for any ω ∈ Ω0 and a nonzero u ∈
∞⋂
j=1

Fj(ω) =: F∞(ω)

lim
t→∞

ln ‖Uω(t)u‖
t

= −∞ .

As a consequence of the existence of an Oseledets decomposition, we easily de-
duce the following properties.

Proposition 3.2. Assume that Φ admits an Oseledets decomposition. Then for
each ω ∈ Ω0 and each nonzero u ∈ X the limit

lim
t→∞

ln ‖Uω(t)u‖
t

(3.1)

exists and equals some Lyapunov exponent λi or −∞.

Proof. Assume case (I) and fix ω ∈ Ω0 and a nonzero u ∈ X. If u belongs to
F∞(ω) then (3.1) equals −∞. If u does not belong to F∞(ω) then there is a
j ∈ {1, . . . , k} such that in the decomposition E1(ω) ⊕ . . . ⊕ Ek(ω) ⊕ F∞(ω) = X
the Ej(ω)-coordinate of u is nonzero. Now, take i to be the smallest such a j. If
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i ∈ {1, . . . , k − 1} one has u ∈ Fi−1(ω) \ Fi(ω), consequently (3.1) equals λi. If
i = k then u ∈ Fk−1(ω) \ F∞(ω) and (3.1) is λk.

Assume case (II) and fix ω ∈ Ω0 and a nonzero u ∈ X. If in each decomposition
E1(ω) ⊕ . . . ⊕ Ei(ω) ⊕ Fi(ω) = X the Ej(ω)-coordinates, j ∈ {1, . . . , i}, of u are
zero, then u ∈ F∞(ω), so (3.1) is −∞. Otherwise there is an i ∈ N such that
in the decomposition E1(ω) ⊕ . . . ⊕ Ei(ω) ⊕ Fi(ω) = X the Ej(ω)-coordinates,
j ∈ {1, . . . , i − 1}, of u are zero and the Ei(ω)-coordinate is nonzero, then u ∈
Fi−1(ω) \ Fi(ω) and (3.1) equals λi. �

Proposition 3.3. Assume that Φ admits an Oseledets decomposition. Then for
each ω ∈ Ω0 and each i = 1, . . . , k in case (I), or each i ∈ N in case (II), a nonzero
u ∈ X belongs to Ei(ω) if and only if there exists a full orbit ũ : R → X passing
through (ω, u) such that

lim
t→±∞

ln ‖ũ(t)‖
t

= λi .

Proof. The necessity is a consequence of (e) or (f), and (g) for the case (I), and (e)
and (f) for the case (II). Assume now that for some nonzero u ∈ X there exists
a full orbit with the above properties. It follows from (e) or (f) in the first case,
or (e) in the second one, that u belongs to Fi−1(ω) for some i = 1, . . . , k, or some
i ∈ N respectively. Now we need to apply (I)(g) or (II)(f) to finish the proof. �

It follows from the results in [12] that if if X is separable and Uω(1) is an injective
and compact operator for all ω ∈ Ω then there exists an Oseledets decomposition.

The papers [8] and [9] give a proof of the Oseledets decomposition for semi-
invertible discrete ergodic transformations. We want to state a version of these
results valid for continuous linear skew-product semidynamical systems. We omit
the details of the proof that follow standard arguments from the theory mentioned
above. The conclusions of this theorem will be relevant in the applications to the
theory of delay differential equations.

Theorem 3.4. Assume Φ is a measurable linear skew-product semidynamical sys-
tem satisfying the following:

(a) Ω is a Lebesgue space,
(b) X is a separable Banach space, and
(c) Uω(1) is a compact operator for all ω ∈ Ω.

Then Φ admits an Oseledets decomposition.

Indication of proof. The existence of a discrete-time Oseledets decomposition for
systems satisfying (a), (b) and (c) was proved in [9, Theorem. A]. To pass to
the continuous-time decomposition we proceed along the lines of the proof of [12,
Theorem. 3.3]. �

Remark 3.5. Analogously, from a discrete-time result in [10, Corollary 17], the
existence of an Oseledets decomposition for Φ is obtained when X is a separable and
reflexive Banach space and (a) is not assumed. The importance of this approach
is its constructive nature. More precisely, a way of approximating the Oseledets
splitting is provided, which is important in applications.
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4. Semiflows generated by linear random delay differential
equations

This section is devoted to show the applications of the previous theory to ran-
dom dynamical systems generated by systems of linear random delay differential
equations of the form

z′(t) = A(θtω) z(t) +B(θtω) z(t− 1), (4.1)

where z(t) ∈ RN , N ≥ 2, A(ω), B(ω) are N ×N real matrices:

A(ω) =

 a11(ω) a12(ω) ··· a1N (ω)
a21(ω) a22(ω) ··· a2N (ω)

...
...

. . .
...

aN1(ω) aN2(ω) ··· aNN (ω)

 , B(ω) =

 b11(ω) b12(ω) ··· b1N (ω)
b21(ω) b22(ω) ··· b2N (ω)

...
...

. . .
...

bN1(ω) bN2(ω) ··· bNN (ω)

 ,

and ((Ω,F,P), (θt)t∈R) is an ergodic metric dynamical system, with P complete.

From now on, the Euclidean norm on RN will be denote by ‖·‖, RN×N will stand
for the algebra of N ×N real matrices with the operator or matricial norm induced
by the Euclidean norm, i.e., ‖A‖ := sup{‖Au‖ | ‖u‖ ≤ 1}, for any A ∈ RN×N .

We denote by C the Banach space C([−1, 0],RN ) of continuous RN -valued func-
tions defined on [−1, 0], with the supremum norm (denoted by ‖·‖C).

For 1 < p < ∞, let L = RN × Lp([−1, 0],RN ) be the separable Banach space
with the norm

‖u‖L = ‖u1‖+ ‖u2‖p = ‖u1‖+

(∫ 0

−1

‖u2(s)‖p ds
)1/p

(4.2)

for any u = (u1, u2) with u1 ∈ RN and u2 ∈ Lp([−1, 0],R).

We denote by J the linear mapping from C to L

J : C −→ L
u 7→ (u(0), u) ,

(4.3)

which belongs to L(C,L) and ‖J‖ = 2. In the following, p will be fixed and
q ∈ (0,∞) is such that 1/p+ 1/q = 1.

Now we introduce the assumptions on the coefficients of the family (4.1):

(S1) (Measurability) A,B : Ω→ RN×N are (F,B(RN×N ))-measurable.

(S2) (Summability) The (F,B(R))-measurable functions a, b : Ω → R defined as
a(ω) := ‖A(ω)‖ and b(ω) := ‖B(ω)‖ have the properties:[

Ω 3 ω 7→ a(ω) ∈ R
]
∈ L1(Ω,F,P), and[

Ω 3 ω 7→ ln+

∫ 1

0

|b(θrω)|q dr ∈ R
]
∈ L1(Ω,F,P).

Remark 4.1. The following is sufficient for the fulfillment of the second condition
in (S2): [

Ω 3 ω 7→ b(ω) ∈ R
]
∈ Lq(Ω,F,P).

Indeed, since |b|q ∈ L1(Ω,F,P) and the measure P is invariant, for any t ∈ R∫
Ω

|b(θtω′)|q dP(ω′) =

∫
Ω

|b(ω′)|q dP(ω′)
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and an application of Fubini’s theorem gives that the map[
Ω 3 ω 7→

∫ 1

0

|b(θrω)|q dr ∈ R
]

belongs to L1(Ω,F,P), from which the required statement follows immediately.

4.1. Linear skew-product semiflows on C and L. Before proceeding to the
existence of solutions, notice that the coefficients A and B are defined only P-a.e.
on Ω, whereas the theory of Lyapunov exponents requires us to have the solution
operator defined on the whole of Ω. In particular, we need to have[

R 3 t 7→ a(θtω) ∈ R
]
∈ L1,loc(R) , (4.4)[

R 3 t 7→ b(θtω) ∈ R
]
∈ Lq,loc(R) ⊂ L1,loc(R) , (4.5)

for each ω ∈ Ω. Since a ∈ L1(Ω,F,P) and the measure P is invariant, for any t ∈ R∫
Ω

a(θtω
′) dP(ω′) =

∫
Ω

a(ω′) dP(ω′)

and an application of Fubini’s theorem gives (4.4) for ω ∈ Ω1 ⊂ Ω, invariant set of
full measure. Analogously, from the second condition in (S2), there is an invariant
set Ω2 ⊂ Ω of full measure such that

[
R 3 t 7→ b(θtω) ∈ R

]
∈ Lq,loc(R) ⊂ L1,loc(R) .

Then we can put the value of A(ω) and B(ω) for ω ∈ Ω \ (Ω1 ∩ Ω2) to be equal to
zero to obtain (4.4) and (4.5) for all ω ∈ Ω, as needed.

As a consequence, for a fixed ω ∈ Ω we will denote by U0
ω(·) the fundamental

matrix solution of the system of Carathéodory linear ordinary differential equations
z′ = A(θtω) z and define

c(ω) := sup
0≤t1<t2≤1

‖U0
θt1ω

(t2 − t1)‖ , d(ω) :=

(∫ 0

−1

bq(θs+1ω) ds

)1/q
. (4.6)

Notice that c(ω) ≥ 1. The following two lemmas will be used later.

Lemma 4.2. Assume (S1) and (S2). Then for any ω ∈ Ω,

c(ω) ≤ exp

(∫ 1

0

a(θτω) dτ

)
.

Proof. Fix ω ∈ Ω, u0 ∈ RN , t1 ≥ 0 and denote z(t) := U0
θt1ω

(t)u0. Since for t ≥ 0

‖z(t)‖ ≤ ‖u0‖+

∫ t

0

‖A(θt1+τω)‖ ‖z(τ)‖ dτ = ‖u0‖+

∫ t

0

a(θt1+τω) ‖z(τ)‖ dτ ,

Gronwall inequality provides

‖z(t)‖ ≤ ‖u0‖ exp

(∫ t

0

a(θt1+τω) dτ

)
= ‖u0‖ exp

(∫ t+t1

t1

a(θτω) dτ

)
for t ≥ 0. Hence, for 0 ≤ t1 < t2 ≤ 1

‖U0
θt1ω

(t2 − t1)‖ ≤ exp

(∫ t2

t1

a(θτω) dτ

)
≤ exp

(∫ 1

0

a(θτω) dτ

)
,

which finishes the proof. �
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Lemma 4.3. Under assumptions (S1) and (S2), for any ω ∈ Ω, 0 ≤ t ≤ 1, and
u = (u1, u2) ∈ L = RN × Lp([−1, 0],RN ) there holds∥∥∥∥U0

ω(t)u1 +

∫ t

0

U0
θτω(t− τ)B(θτω)u2(τ − 1) dτ

∥∥∥∥ ≤ c(ω) (1 + d(ω)) ‖u‖L.

Proof. For simplicity, let us denote the left-hand side by ‖z(t)‖. Then, from (4.5),
(4.6), u2 ∈ Lp([−1, 0],RN ) (i.e. ‖u2‖ ∈ Lp([−1, 0],R)) and Hölder inequality, we
deduce that

‖z(t)‖ ≤ ‖U0
ω(t)u1‖+

∥∥∥∥ ∫ t

0

U0
θτω(t− τ)B(θτω)u2(τ − 1) dτ

∥∥∥∥
≤ c(ω)

[
‖u1‖+

∫ 1

0

b(θτω) ‖u2(τ − 1)‖ dτ
]

= c(ω)

[
‖u1‖+

∫ t−1

−1

b(θτ+1ω) ‖u2(τ)‖ dτ
]

≤ c(ω)

[
‖u1‖+

∫ 0

−1

b(θτ+1ω) ‖u2(τ)‖ dτ
]
≤ c(ω) [ ‖u1‖+ d(ω) ‖u2‖p ] ,

which together with (4.2) finishes the proof. �

4.1.1. Semiflows on C([−1, 0],RN ). We start with the problem of the existence of
solution to the initial value problem{

z′(t) = A(θtω) z(t) +B(θtω) z(t− 1), t ∈ [0,∞)

z(t) = u(t), t ∈ [−1, 0],
(4.7)

where the initial datum u is assumed to belong to C = C([−1, 0],RN ) and assump-
tions (S1) and (S2) hold.

To emphasize the dependence of the equation (resp. the initial value problem)
on ω ∈ Ω we will write (4.1)ω (resp. (4.7)ω).

From (4.4) and (4.5), for a fixed ω ∈ Ω and 0 ≤ t ≤ 1, as shown by Coddington
and Levinson [4, Theorem 2.1], the system (4.7)ω of Carathéodory type has a unique
solution, which can be written as

z(t, ω, u) = U0
ω(t)u(0) +

∫ t

0

U0
θτω(t− τ)B(θτω)u(τ − 1) dτ , (4.8)

and, for 1 ≤ t ≤ 2 as

z(t, ω, u) = U0
ω(t− 1) z(1, ω, u) +

∫ t

1

U0
θτω(t− τ)B(θτω) z(τ − 1, ω, u) dτ , (4.9)

where, as before, U0
ω(·) denotes the fundamental matrix solution of z′ = A(θtω) z. In

a recursive way we obtain the formula for z(t, ω, u) for any t ∈ [−1,∞). Moreover,
it can be checked that for each t and r ≥ 0

z(t+ r, ω, u) = z(t, θrω, zr(ω, u)) , (4.10)

where zr(ω, u) : [−1, 0] → R, s 7→ z(r + s, ω, u), and zt(ω, u) ∈ C for each t ≥ 0,
ω ∈ Ω and u ∈ C. Therefore, we can define the linear operator

U
(C)
ω (t) : C −→ C

u 7→ zt(ω, u) .
(4.11)
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Proposition 4.4. Under assumptions (S1) and (S2), U
(C)
ω (t) satisfies (2.1), (2.2)

and U
(C)
ω (t) ∈ L(C) for each t ≥ 0 and ω ∈ Ω.

Proof. Relation (2.1) is immediate and (2.2) follows from (4.10). Once that this

cocycle property is shown, to prove that U
(C)
ω (t) ∈ L(C) for t ≥ 0, it is enough

to check that U
(C)
ω (t) is a bounded operator for t ∈ [0, 1] and ω ∈ Ω, which is a

consequence of equation (4.8) and Lemma 4.3 applied to u1 = u(0) and u2 = u
because

‖U (C)
ω (t)u‖C = sup

s∈[−1,0]

‖z(t+ s, ω, u)‖ ≤ sup
s∈[−t,0]

{‖u‖C , ‖z(t+ s, ω, u)‖}

≤ max { ‖u‖C , c(ω) (1 + d(ω)) [ ‖u(0)‖+ ‖u‖p ] }
≤ 3 c(ω) (1 + d(ω)) ‖u‖C ,

that is, ‖U (C)
ω (t)‖ ≤ 3 c(ω) (1 + d(ω)) for t ∈ [0, 1], which finishes the proof. �

4.1.2. Semiflows on L. Consider the initial value problem
z′(t) = A(θtω) z(t) +B(θtω) z(t− 1), t ∈ [0,∞)

z(t) = u2(t), t ∈ [−1, 0),

z(0) = u1,

(4.12)

with initial datum u = (u1, u2) belonging to L = RN ×Lp([−1, 0],RN ), and assume
that (S1) and (S2) hold.

As in Subsection 4.1.1, from (4.4) and (4.5), for a fixed ω ∈ Ω and 0 ≤ t ≤ 1, as
shown in [4, Theorem 2.1], the system (4.12)ω of Carathéodory type has a unique
solution, which can be written as

z(t, ω, u) = U0
ω(t)u1 +

∫ t

0

U0
θτω(t− τ)B(θτω)u2(τ − 1) dτ , (4.13)

and, as before, in a recursive way the solution of (4.12)ω can be written as

z(t, ω, u) = U0
ω(t)u1 +

∫ t

0

U0
θτω(t− τ)B(θτω)z(τ − 1, ω, u) dτ, t > 0. (4.14)

Remark 4.5. For u ∈ C the solution z(·, ω, u) of (4.7)ω coincides with the solution
z(·, ω, Ju) of (4.12)ω where J is defined in (4.3).

Moreover, it can be checked that for each t and r ≥ 0

z(t+ r, ω, u) = z(t, θrω, (z(r, ω, u), zr(ω, u))) , (4.15)

where, as before, zt(ω, u) : [−1, 0] → R, s 7→ z(t + s, ω, u), which together with
Lemma 4.3 show that zt(ω, u) ∈ Lp([−1, 0],R) for each t ≥ 0 and we can define the
linear operator

U
(L)
ω (t) : L −→ L

u 7→ (z(t, ω, u), zt(ω, u)) .
(4.16)

Proposition 4.6. Under assumptions (S1) and (S2), U
(L)
ω (t) satisfies (2.1), (2.2)

and U
(L)
ω (t) ∈ L(L) for each t ≥ 0 and ω ∈ Ω.
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Proof. Relation (2.1) is immediate and (2.2) follows from (4.15). Again, once that

this cocycle property is shown, to prove that U
(L)
ω (t) ∈ L(L) for t ≥ 0, it is enough

to check that U
(L)
ω (t) is a bounded operator for t ∈ [0, 1] and ω ∈ Ω, which is a

consequence of equation (4.13) and Lemma 4.3 because

‖U (L)
ω (t)u‖L = ‖z(t, ω, u)‖+

(∫ 0

−1

‖z(t+ s, ω, u)‖p ds
)1/p

≤ c(ω) (1 + d(ω)) ‖u‖L

+

(∫ −t
−1

‖u2(t+ s)‖p ds
)1/p

+

(∫ 0

−t
‖z(t+ s, ω, u)‖p ds

)1/p
≤ 3 c(ω) (1 + d(ω)) ‖u‖L ,

that is, ‖U (L)
ω (t)‖ ≤ 3 c(ω) (1 + d(ω)) for t ∈ [0, 1], which finishes the proof. �

4.1.3. Connections between semidynamical systems on C and on L. First of all,
observe that for any t ≥ 0 and any ω ∈ Ω one has

U (L)
ω (t) ◦ J = J ◦ U (C)

ω (t) , (4.17)

where J is defined in (4.3). We can also define for t ≥ 1 the linear operator

U
(L,C)
ω (t) : L −→ C

u 7→ zt(ω, u) .
(4.18)

Proposition 4.7. Under assumptions (S1) and (S2), for each t ≥ 1 and ω ∈ Ω,

U
(L,C)
ω (t) ∈ L(L,C) and is a compact operator.

Proof. First we check the result for t = 1 and each ω ∈ Ω. Take u ∈ L; from
Lemma 4.3 we deduce that

‖U (L,C)
ω (1)u‖C = sup

s∈[−1,0]

‖z(1 + s, ω, u)‖ ≤ c(ω)(1 + d(ω)) ‖u‖L , (4.19)

which proves that U
(L,C)
ω (1) ∈ L(L,C), as claimed. For the compactness, fix ω ∈ Ω,

0 ≤ s1 ≤ s2 ≤ 0, u = (u1, u2) ∈ L and note that

(U (L,C)
ω (1)u)(s2)− (U (L,C)

ω (1)u)(s1) = z(1 + s2, ω, u)− z(1 + s1, ω, u) .

Then denoting t1 = 1 + s1 and t2 = 1 + s2, we deduce that

‖z(t2, ω, u)− z(t1, ω, u)‖ ≤
∫ t2

t1

a(θsω) ‖z(s, ω, u)‖ ds+

∫ t2

t1

b(θsω) ‖u2(s− 1)‖ ds

=

∫ t2

t1

a(θsω) ‖z(s, ω, u)‖ ds+

∫ s2

s1

b(θs+1ω) ‖u2(s)‖ ds .

Moreover, again Lemma 4.3, (4.5) and Hölder inequality provide

‖z(t2, ω, u)− z(t1, ω, u)‖ ≤ c(ω) (1 + d(ω)) ‖u‖L
∫ t2

t1

a(θsω) ds

+ ‖u2‖p
(∫ s2

s1

bq(θs+1ω) ds

)1/q
ds ,

which together with (4.4), (4.5) and ‖u2‖p ≤ ‖u‖L imply the equicontinuity of the

set
{
U

(L,C)
ω (1)u | ‖u‖L ≤ k

}
, and by Ascoli–Arzelà theorem, the precompactness,

as needed.
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Finally, for t ≥ 1, from zt(ω, u) = zt−1(θ1ω, z1(ω, u)) we deduce that

U (L,C)
ω (t) = U

(C)
θ1ω

(t− 1) ◦ U (L,C)
ω (1) , (4.20)

which shows, from Proposition 4.4, that for t ≥ 1, U
(L,C)
ω (t) is the composition of

a compact operator and a linear operator. Hence, U
(L,C)
ω (t) ∈ L(L,C) and it is a

compact operator for t ≥ 1 and each ω ∈ Ω, as stated. �

Corollary 4.8. Under assumptions (S1) and (S2), for any ω ∈ Ω and t ≥ 1,

U
(L)
ω (t) and U

(C)
ω (t) are compact operators.

Proof. Since J is a bounded operator from C to L, the result is a consequence of
the previous proposition and the relations

U (L)
ω (t) = J ◦ U (L,C)

ω (t), U (C)
ω (t) = U (L,C)

ω (t) ◦ J (4.21)

for any t ≥ 1 and any ω ∈ Ω. �

Lemma 4.9. Assume (S1) and (S2). Then

(i) for any ω ∈ Ω, any u ∈ L and any t ≥ 0 there holds

‖U (L,C)
ω (t+ 1)u‖C ≤ c(θtω) (1 + d(θtω)) ‖U (L)

ω (t)u‖L ,

(ii) for any ω ∈ Ω, any u ∈ L and any t ≥ 0 there holds

‖U (L)
ω (t+ 1)u‖L ≤ 2 c(θtω) (1 + d(θtω)) ‖U (L)

ω (t)u‖L .

Proof. First, from (4.15) we deduce that U
(L,C)
ω (t + 1) = U

(L,C)
θtω

(1) ◦ U (L)
ω (t) for

each t ≥ 0, which together with (4.19) proves (i). (ii) is a consequence of (i), (4.21)
and ‖J‖ = 2. �

4.1.4. Measurability. In order to show that Φ =
(
(U

(L)
ω (t))ω∈Ω,t∈R+ , (θt)t∈R

)
and

Φ =
(
(U

(C)
ω (t))ω∈Ω,t∈R+ , (θt)t∈R

)
are measurable linear skew-product semidynami-

cal systems we start with the following auxiliary lemma.

Lemma 4.10. Under (S1) and (S2), for u = (u1, u2) ∈ L = RN ×Lp([−1, 0],RN )
and t ∈ (0, 1] the mapping[

Ω 3 ω 7→ z(t, ω, u) ∈ RN
]

is (F,B(RN ))-measurable ,

where z(t, ω, u) denotes the solution of (4.12)ω, given by the formula (4.13).

Proof. It is well known (see, e.g., [2, Example 2.2.8]) that the mapping[
Ω× [0, t] 3 (ω, τ) 7→ U0

ω(τ) ∈ RN×N
]

is (F⊗B([0, t]),B(RN×N ))-measurable .

As a consequence, for each t ∈ (0, 1] the mapping[
Ω 3 ω 7→ U0

ω(t)u1 ∈ RN
]

is (F,B(RN ))-measurable. (4.22)

Another consequence is that the map
[

Ω× [0, t] 3 (ω, τ) 7→ U0
θτω

(t− τ) ∈ RN×N
]

is (F ⊗B([0, t]),B(RN×N ))-measurable, and hence, from (S1) and taking a Borel
representation of the function u2 ∈ Lp([−1, 0],RN ), we deduce that[

Ω× [0, t] 3 (ω, τ) 7→ U0
θτω(t− τ)B(θτω)u2(τ − 1) ∈ RN

]
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is (F⊗B([0, t]),B(RN ))-measurable. Therefore, an application of Fubini’s theorem
show that for each t ≥ 1[

Ω 3 ω 7→
∫ t

0

U0
θτω(t− τ)B(θτω)u2(τ − 1) dτ ∈ RN

]
is (F,B(RN ))-measurable ,

which together with (4.22) and formula (4.13) finishes the proof. �

Lemma 4.11. Assume (S1) and (S2). For u ∈ C and t > 0 fixed, the mapping[
Ω 3 ω 7→ U

(C)
ω (t)u ∈ C

]
is (F,B(C))-measurable.

Proof. Since U
(C)
ω satisfies the cocycle property (2.2), it suffices to prove the re-

sult for t ∈ (0, 1]. By a variant of Pettis’ Measurability Theorem (see, e.g., [6,
Corollary 4 on pp. 42–43] with an appropriate norming set for the dual space of
C = C([−1, 0],RN )), the mapping[

Ω 3 ω 7→ U (C)
ω (t)u ∈ C

]
is (F,B(C))-measurable

if and only if[
Ω 3 ω 7→ (U (C)

ω (t)u)(τ) ∈ RN
]

is (F,B(RN ))-measurable

for any τ ∈ [−1, 0], a consequence of Lemma 4.10 applied to Ju = (u(0), u) ∈ L
because (U

(C)
ω (t)u)(τ) = z(t+ τ, ω, u) = z(t+ τ, ω, Ju) (see Remark 4.5). �

Proposition 4.12. Under (S1) and (S2),
(
(U

(C)
ω (t))ω∈Ω,t∈[0,∞), (θt)t∈R

)
is a mea-

surable linear skew-product semiflow on C covering θ.

Proof. Since for ω ∈ Ω and u ∈ C fixed the mapping
[
R+ 3 t 7→ U

(C)
ω (t)u ∈ C

]
is

easily seen to be continuous, the fact that the mapping[
R+ × Ω× L 3 (t, ω, u) 7→ Uω(t)u ∈ C

]
is (B(R+)⊗F⊗B(C),B(C))-measurable follows from Proposition 4.4, Lemma 4.11
and [1, Lemma 4.51 on pp. 153]. The rest of the properties have been already
checked, so that Φ is a measurable linear skew-product semidynamical system, as
claimed. �

Lemma 4.13. Assume (S1) and (S2). For u ∈ L and t > 0 fixed, the mapping[
Ω 3 ω 7→ U

(L)
ω (t)u ∈ L

]
is (F,B(L))-measurable.

Proof. It follows from (2.2) that it suffices to prove the result for t ∈ (0, 1] only.
Since L is separable, from Pettis’ Theorem (see Hille and Phillips [11, Theorem
3.5.3 and Corollary 2 on pp. 72–73]) the weak and strong measurability notions are
equivalent and therefore, it is enough to check that for each u∗ ∈ L∗ the mapping[

Ω 3 ω 7→ 〈u∗, U (L)
ω (t)u〉 ∈ R

]
is (F,B(R))-measurable . (4.23)

Fixing u∗ = (u∗1, u
∗
2) ∈ RN × Lq([−1, 0],RN ), u = (u1, u2) ∈ RN × Lp([−1, 0],RN )

and t ∈ (0, 1], we have

〈u∗, U (L)
ω (t)u〉 = (u∗1)tz(t, ω, u) +

∫ 0

−1

(u∗2(τ))tz(t+ τ, ω, u) dτ ,∫ 0

−1

(u∗2(τ))tz(t+ τ, ω, u) dτ =

∫ −t
−1

(u∗2(τ))tu2(t+ τ) ds+

∫ t

0

(u∗2(τ − 1))tz(τ, ω, u) dτ .

Hence, Lemma 4.10 and similar arguments prove that (4.23) holds, as stated. �
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Proposition 4.14. Under (S1) and (S2),
(
(U

(L)
ω (t))ω∈Ω,t∈[0,∞), (θt)t∈R

)
is a mea-

surable linear skew-product semiflow on L covering θ.

Proof. Since for ω ∈ Ω and u ∈ L the mapping
[
R+ 3 t 7→ U

(L)
ω (t)u ∈ L

]
is con-

tinuous, as in Proposition 4.12 the result follows from Proposition 4.6, Lemma 4.13
and [1, Lemma 4.51 on pp. 153]. �

Remark 4.15. It can also be proved that for u ∈ L and t ≥ 1 fixed, the mapping[
Ω 3 ω 7→ U

(L,C)
ω (t)u ∈ C

]
is (F,B(C))-measurable.

5. Lyapunov exponents

In this section it is shown that the Lyapunov exponents for the two cases con-
sidered in the previous section are the same, and that the Oseledets decomposition
are related by natural embeddings.

Throughout the whole section we assume that (S1) and (S2) holds.

Lemma 5.1. Consider the functions c and d defined on (4.6). There exists an
invariant subset Ω1 ⊂ Ω with P(Ω1) = 1 such that for any ω ∈ Ω1

lim sup
t→∞

ln c(θtω)

t
≤ 0 , lim sup

t→∞

ln d(θtω)

t
≤ 0,

lim inf
t→−∞

ln c(θtω)

t
≥ 0 , lim inf

t→−∞

ln d(θtω)

t
≥ 0 .

Proof. From (S2) and Lemma 4.2, ln+ c ∈ L1(Ω,F,P). Hence, there exists a set

Ω̃ ⊂ Ω, P(Ω̃) = 1, such that for any ω ∈ Ω̃

lim
n→∞

ln+ c(θnω)

n
= 0, and therefore lim sup

n→∞

ln c(θnω)

n
≤ 0 .

In addition, for t > 0 it can be checked from the definition of c and the cocycle
property (2.2) satisfied by U0

ω that c(θtω) ≤ c(θbtc+1ω) c(θbtcω), where btc denotes
the integer part of the real number t. From this which we conclude that

lim sup
t→∞

ln c(θtω)

t
≤ 0

for any ω ∈ Ω̃. In order to proof the second inequality it is enough to notice
that, again from (S2), we deduce that ln+ d ∈ L1(Ω,F,P) and in this case d(θtω) ≤
d(θbtcω)+d(θbtc+1ω), which is an easy consequence of the definition of d. The other
two inequalities follow from the application of the previous ones to the reversed flow

θ̂tω = θ−tω. �

The next result shows that we have the same Lyapunov exponents, independent
of the choice of the Banach space, C or L.

Proposition 5.2. Let Ω1 be as in Lemma 5.1.

(1) Assume that for some ω ∈ Ω1, u ∈ C and λ ∈ [−∞,∞) there holds

λ = lim
t→∞

ln ‖U (C)
ω (t)u‖C
t

. Then λ = lim
t→∞

ln ‖U (L)
ω (t) (Ju)‖L

t
.

(2) Assume that for some ω ∈ Ω1, u ∈ L and λ ∈ [−∞,∞) there holds

λ = lim
t→∞

ln ‖U (L)
ω (t)u‖L
t

. Then λ = lim
t→∞

ln ‖U (L,C)
ω (t)u‖C

t
.
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Proof. Recall that for any real sequences (am)∞m=1, (bm)∞m=1 with lim sup
m→∞

am <∞
and lim sup

m→∞
bm <∞ there holds

lim inf
m→∞

(am + bm) ≤ lim sup
m→∞

am + lim inf
m→∞

bm, (5.1)

lim sup
m→∞

(am + bm) ≤ lim sup
m→∞

am + lim sup
m→∞

bm . (5.2)

(1) From (4.21), Lemma 4.9(i), (5.1), Lemma 5.1 and (4.17) we deduce the
following chain of inequalities

λ = lim
t→∞

ln ‖U (C)
ω (t+ 1)u‖C
t+ 1

= lim
t→∞

ln ‖U (L,C)
ω (t+ 1) (Ju)‖C

t

≤ lim sup
t→∞

ln [c(θtω) (1 + d(θtω))]

t
+ lim inf

t→∞

ln ‖U (L)
ω (t) (Ju)‖L

t

≤ lim inf
t→∞

ln ‖U (L)
ω (t) (Ju)‖L

t
≤ lim sup

t→∞

ln ‖U (L)
ω (t) (Ju)‖L

t

= lim sup
t→∞

ln ‖(J ◦ U (C)
ω (t))u‖L
t

≤ lim
t→∞

ln ‖U (C)
ω (t)u‖C
t

= λ ,

which finishes the proof of (1).

(2) Similarly, from (4.21), Lemma 4.9(i), (5.2) and Lemma 5.1 we obtain

λ = lim
t→∞

ln ‖U (L)
ω (t)u‖L
t

= lim
t→∞

ln ‖(J ◦ U (L,C)
ω (t+ 1))u‖L
t+ 1

≤ lim inf
t→∞

ln ‖U (L,C)
ω (t+ 1)u‖C

t+ 1
≤ lim sup

t→∞

ln ‖U (L,C)
ω (t+ 1)u‖C

t+ 1

≤ lim sup
t→∞

ln [c(θtω) (1 + d(θtω))]

t
+ lim
t→∞

ln ‖U (L)
ω (t)u‖L
t+ 1

≤ lim
t→∞

ln ‖U (L)
ω (t)u‖L
t+ 1

= lim
t→∞

ln ‖U (L)
ω (t)u‖L
t

= λ ,

and (2) holds, as stated. �

As a consequence, the top Lyapunov exponents for U
(C)
ω and U

(L)
ω coincide.

Proposition 5.3. Let λ
(C)
top ∈ [−∞,∞) and λ

(L)
top ∈ [−∞,∞) denote the top Lya-

punov exponents for U
(C)
ω and U

(L)
ω respectively, i.e.

lim
t→∞

ln ‖U (C)
ω (t)‖
t

= λ
(C)
top , lim

t→∞

ln ‖U (L)
ω (t)‖
t

= λ
(L)
top, (5.3)

for P-a.e. ω ∈ Ω. Then λ
(C)
top = λ

(L)
top.

Proof. Let ω ∈ Ω1 satisfying (5.3). From (4.21), U
(L,C)
ω (t+1) = U

(L,C)
θtω

(1)◦U (L)
ω (t),

(4.19) and ‖J‖ = 2 we deduce that

‖U (C)
ω (t+ 1)‖ ≤ 2 ‖U (L,C)

ω (t+ 1)‖ ≤ 2 c(θtω) (1 + d(θtω)) ‖U (L)
ω (t)‖ ,

which together with Lemma (5.1) provides λ
(C)
top ≤ λ

(L)
top.
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On the other hand, from (4.21), (4.20), (4.19) and ‖J‖ = 2 we obtain

‖U (L)
ω (t+ 1)‖ ≤ 2 ‖U (C)

θ1ω
(t)‖ ‖U (L,C)

ω (1)‖ ≤ 2 c(ω) (1 + d(ω)) ‖U (C)
θ1ω

(t)‖ ,

which together with the invariance of the set satisfying (5.3) implies that λ
(L)
top ≤

λ
(C)
top , and finishes the proof. �

Remark 5.4. In view of the above we will denote the common value of λ
(C)
top = λ

(L)
top

by λtop.

From now on, we assume that both Φ(C) and Φ(L) admit an Oseledets decom-
position. From Proposition 3.2 we can find a common invariant set Ω0 ⊂ Ω1 with
P(Ω0) = 1, such that for any ω ∈ Ω0 and each nonzero u ∈ C the limit

lim
t→∞

‖U (C)
ω (t)u‖C

t

exist and equals either −∞ or some Lyapunov exponent λ
(C)
i , and for each nonzero

u ∈ L the limit

lim
t→∞

‖U (L)
ω (t)u‖L

t

exist and equals either −∞ or some Lyapunov exponent λ
(L)
i .

Theorem 5.5. Assume that both Φ(C) and Φ(L) admit an Oseledets decomposition.
For any i ∈ {1, . . . , k} in case (I), or any i ∈ N in case (II) there holds:

(a) λ
(C)
i = λ

(L)
i .

(b) F
(C)
i (ω) = J−1(F

(L)
i (ω)), P-a.e. on Ω.

(c) U
(L,C)
ω (t)F

(L)
i (ω) ⊂ F (C)

i (θtω)) for t ≥ 1, P-a.e. on Ω.

(d) F
(C)
∞ (ω) = J−1(F

(L)
∞ (ω)), P-a.e. on Ω.

(e) U
(L,C)
ω (t)F

(L)
∞ (ω) ⊂ F (C)

∞ (θtω)) for t ≥ 1, P-a.e. on Ω.

Proof. We prove first (a), (b) and (c) by induction. From Proposition 5.3 we

have λ
(C)
1 = λ

(L)
1 = λtop so that (a) holds for i = 1. From the definition of

F
(C)
1 (ω), if u ∈ F (C)

1 (ω) we deduce that lim
t→∞

(1/t) ln ‖U (C)
ω (t)u‖C < λ

(C)
1 = λ

(L)
1

and hence, Proposition 5.2(1) provides lim
t→∞

(1/t) ln ‖U (L)
ω (t) (Ju)‖L < λ

(L)
1 , that

is, Ju ∈ F
(L)
1 (ω). If Ju ∈ F

(L)
1 (ω), then the definition of F

(L)
1 (ω) gives that

lim
t→∞

(1/t) ln ‖U (L)
ω (t) (Ju)‖L < λ

(L)
1 = λ

(C)
1 , and hence, Proposition 5.2(2) together

with (4.21) imply lim
t→∞

(1/t) ln ‖U (L)
ω (t)u‖C < λ

(C)
1 , that is, u ∈ F (L)

1 (ω). There-

fore, statement (b) holds for i = 1. Analogously, for any û ∈ F
(L)
1 (ω) we have

that lim
t→∞

(1/(s+ t)) ln ‖U (L)
ω (s+ t) û‖L < λ

(L)
1 = λ

(C)
1 and from Proposition 5.2(2)

we deduce that lim
t→∞

(1/(s + t)) ln ‖U (L,C)
ω (s+ t) û‖C < λ

(C)
1 , which together with

U
(L,C)
ω (s+ t) = U

(C)
θtω

(s) ◦ U (L,C)
ω (t) show that

lim
s→∞

ln ‖U (C)
θtω

(s) ◦ U (L,C)
ω (t) û‖C

s
< λ

(C)
1 ,

that is, U
(L,C)
ω (t)u ∈ F (C)

1 (θtω) and (c) holds for i = 1.
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Next, let i > 2 be such that λ
(C)
j = λ

(L)
j and F

(C)
j (ω) = J−1(F

(L)
j (ω)) for

all ω ∈ Ω0 and j = 1, 2, . . . , i − 1. For any ω ∈ Ω0 and u ∈ F
(C)
i−1 (ω) \ F (C)

i (ω)

there holds lim
t→∞

(1/t) ln ‖U (C)
ω (t)u‖C = λ

(C)
i and from Proposition 5.2(1) we deduce

that lim
t→∞

(1/t) ln ‖U (L)
ω (t)(Ju)‖L = lim

t→∞
(1/t) ln ‖U (C)

ω (t)u‖C = λ
(C)
i . Moreover, by

induction hypothesis on (b), Ju ∈ F
(L)
i−1(ω), hence lim

t→∞
(1/t) ln ‖U (L)

ω (t)(Ju)‖L =

λ
(L)
m for some m ≥ i. Therefore

λ
(C)
i = λ(L)

m for some m ≥ i. (5.4)

For any û ∈ F
(L)
i−1(ω) \ F (L)

i (ω) there holds lim
t→∞

(1/t) ln ‖U (L)
ω (t) û‖L = λ

(L)
i . By

Proposition 5.2(2), lim
t→∞

(1/t) ln ‖U (L,C)
ω (t) û‖C = lim

t→∞
(1/t) ln ‖U (L)

ω (t) û‖L = λ
(L)
i .

On the other hand, by induction hypothesis on (c), U
(L,C)
ω (t) û ∈ F

(C)
i−1 (θtω) for

t ≥ 1, consequently lim
t→∞

(1/t) ln ‖U (L,C)
ω (t) û‖C = λ

(C)
m′ for some m′ ≥ i. Therefore

λ
(L)
i = λ

(C)
m′ for some m′ ≥ i ,

which together with (5.4) give that λ
(L)
i = λ

(C)
i , as claimed.

Once the coincidence of the Lyapunov exponents λ
(C)
i = λ

(L)
i is shown, the

proof of (b) and (c) for the index i is completely analogous to the above proof
for i = 1 and it is omitted. Similarly, parts (d) and (e) are due to the fact

that for any ω ∈ Ω0, F
(C)
∞ (ω) (resp. F

(L)
∞ (ω)) is characterized as the set of those

u ∈ C for which lim
t→∞

(1/t) ln ‖U (C)
ω (t)u‖C = −∞ (resp. of those û ∈ L for which

lim
t→∞

(1/t) ln ‖U (L)
ω (t) û‖L = −∞), and again an application of Proposition 5.2. �

Theorem 5.6. Assume that both Φ(C) and Φ(L) admit an Oseledets decomposition.
For any i ∈ {1, . . . , k} in case (I), or any i ∈ N in case (II) there holds:

J(E
(C)
i (ω)) = E

(L)
i (ω), P-a.e. on Ω.

Proof. Take ω ∈ Ω0 ⊂ Ω1 and u ∈ E
(C)
i (ω) \ {0}. From Proposition 3.3 let

ũ : (−∞, 0]→ C be a negative semiorbit for Φ(C) with ũ(0) = u such that

lim
s→−∞

ln ‖ũ(s)‖C
s

= λi .

It is straightforward that û : (−∞, 0]→ L, s 7→ J(ũ(s)) is a negative semiorbit for
Φ(L) with û(0) = Ju. Moreover, from ‖û(s)‖L ≤ 2 ‖ũ(s)‖C we have

lim inf
s→−∞

ln ‖û(s))‖L
s

≥ λi. (5.5)

In addition, from ũ(s)(t) = z(t+ 1, θs−1ω, ũ(s− 1)) for t ∈ [−1, 0] and Lemma 4.3
we deduce that

‖ũ(s)‖C ≤ c(θs−1ω)(1 + d(θs−1ω))‖û(s− 1)‖L , (5.6)

which together with Lemma 5.1 provides

λi ≥ lim sup
s→−∞

ln ‖û(s− 1)‖L
s

= lim sup
s→−∞

ln ‖û(s)‖L
s

.
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This inequality combined with (5.5) shows the existence of the limit

lim
s→−∞

ln ‖û(s))‖L
s

= λi ,

and since from Proposition 5.2(1) we have lim
t→∞

(1/t) ln ‖U (L)
ω (t) (Ju)‖L = λi, we

deduce that Ju ∈ E(L)
i (ω), that is, J(E

(C)
i (ω)) ⊂ E(L)

i (ω) is shown.

Next, take a nonzero vector û = (û1, û2) ∈ E
(L)
i (ω). Again, Proposition 3.3

provides û : (−∞, 0] → L a negative semiorbit for Φ(L) with û(0) = û such that

lim
s→−∞

(1/s) ln ‖û(s)‖L = λi. Since û(s) = U
(L)
θ−1ω

(1) û(s − 1) = (û1(s), û2(s)), we

deduce that û2(s) ∈ C, Jû2(s) = û(s) for each s ≤ 0, and ũ : (−∞, 0] → C,
s 7→ û2(s) is a negative semiorbit for Φ(C) with ũ(0) = û2. As before, from

û ∈ E(L)
i (ω), ‖û(s)‖L ≤ 2 ‖ũ(s)‖C , the corresponding equality (5.6) and Lemma 5.1

we deduce that

λi ≥ lim sup
s→−∞

ln ‖ũ(s)‖C
s

≥ lim inf
s→−∞

ln ‖ũ(s)‖C
s

≥ λi , i.e. λi = lim
s→−∞

ln ‖ũ(s)‖C
s

,

which together with λi = lim
t→∞

(1/t) ln ‖U (L,C)
ω (t) û‖C = lim

t→∞
(1/t) ln ‖U (C)

ω (t) û2‖C ,

show that û2 ∈ E(C)
i (ω), that is, û = Jû2 ∈ J(E

(C)
i (ω)), which finishes the proof.

�
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