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Abstract. The Yakubovich Frequency Theorem, in its periodic version and in
its general nonautonomous extension, establishes conditions which are equiva-

lent to the global solvability of a minimization problem of infinite horizon type,

given by the integral in the positive half-line of a quadratic functional subject
to a control system. It also provides the unique minimizing pair “solution,

control” and the value of the minimum. In this paper we establish less restric-

tive conditions under which the problem is partially solvable, characterize the
set of initial data for which the minimum exists, and obtain its value as well a

minimizing pair. The occurrence of exponential dichotomy and the null char-

acter of the rotation number for a nonautonomous linear Hamiltonian system
defined from the minimization problem are fundamental in the analysis.

1. Introduction and main result

Let us consider the control problem

x′ = A0(t) x +B0(t) u (1.1)

for x ∈ Rn and u ∈ Rm, the quadratic form (or supply rate)

Q(t,x,u) :=
1

2
(〈x, G0(t) x 〉+ 2 〈x, g0(t) u 〉+ 〈u, R0(t) u 〉) , (1.2)

and a point x0 ∈ Rn. We represent by Px0
the set of pairs (x,u) : [0,∞)→ Rn×Rm

of measurable functions satisfying (1.1) with x(0) = x0, and consider the problem
of minimizing the quadratic functional

Ix0 : Px0 → R ∪ {±∞} , (x,u) 7→
∫ ∞

0

Q(t,x(t),u(t)) dt . (1.3)

The functions A0, B0, G0, g0, and R0 are assumed to be bounded and uniformly
continuous on R, with values in the sets of real matrices of the appropriate di-
mensions; G0 and R0 are symmetric, with R0(t) ≥ ρIm for a common ρ > 0
and all t ∈ R; and 〈 ·, · 〉 represents the Euclidean inner product in Rn or Rm. A
pair (x,u) ∈ Px0

is admissible for Ix0
if (x,u) ∈ L2([0,∞),Rn) × L2([0,∞,Rm).

That is, u : [0,∞) → Rm belongs to L2([0,∞),Rm), x : [0,∞) → Rn solves (1.1)
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for this control with x(0) = x0, and x belongs to L2([0,∞),Rn). In particular,
Ix0(x,u) ∈ R if the pair (x,u) is admissible.

The questions we will consider are classical in control theory: the existence of
admissible pairs and, if so, the possibility of minimizing the functional Ix0

(x,u)
evaluated on the set of these pairs. The existence of a finite minimum is not a
trivial question even if admissible pairs exist: since no assumption is made on the
sign of Q, the infimum can be −∞.

This infinite horizon problem was considered for T -periodic coefficients A0, B0,
G0, g0 and R0 by Yakubovich in [26, 27], where he explains the origin of the prob-
lem and summarizes the results previously known, providing numerous references.
Under the hypothesis of existence of at least an admissible pair for any x0 ∈ Rn,
it is proved in [26, 27] the equivalence between the solvability of the minimization
problem for any x0 ∈ Rn and other seven conditions which are formulated in terms
of the properties of a 2n-dimensional periodic linear Hamiltonian system which is
provided by the coefficients of the minimization problem:[

x
y

]′
= H0(t)

[
x
y

]
(1.4)

with

H0 :=

[
A0 −B0R

−1
0 gT0 B0R

−1
0 BT0

G0 − g0R
−1
0 gT0 −AT0 + g0R

−1
0 BT0

]
.

Among all these equivalences, one of the most meaningful reads as follows: there
exists a unique admissible pair providing the minimum value for Ix0

for any x0 ∈ Rn
if and only, in Yakubovich’s words, the frequency condition and the nonoscillation
condition are satisfied. That is, if (1.4) admits exponential dichotomy on R and,
in addition, the Lagrange plane l+ composed by those initial data [ x0

y0 ] giving rise
to a solution bounded at +∞ admits a basis whose vectors are the columns of a

matrix
[
In
M+

]
. Here, In is the identity n × n matrix, and M+ turns out to be a

symmetric matrix (since l+ is a Lagrange plane). In addition, the minimizing pair

(x̃, ũ) can be obtained from the solution
[
x̃(t)
ỹ(t)

]
of (1.4) with initial data

[ x0

M+x0

]
via the feedback rule

ũ(t) = R−1
0 (t)BT0 (t) ỹ(t)−R−1

0 (t) gT0 (t) x̃(t) , (1.5)

and the value of the minimum is Ix0(x̃, ũ) = −(1/2) xT0 M
+x0.

In this paper we go deeper in the analysis of these problems: we will establish
conditions including the existence of exponential dichotomy under which it is pos-
sible to characterize the set of those x0 ∈ Rn for which there exist admissible pairs,
in terms of a relation between x0 and l+; we will check that for x0 in this set, the
minimum is finite; and we will determine the value of the minimum as well as an
admissible pair on which it is attained.

But we will not limit ourselves to the periodic case. Yakubovich Frequency
Theorem was later extended to the general nonautonomous case of bounded and
uniformly continuous coefficients: in Fabbri et al. [4] six equivalences where proved
in the case of recurrent coefficients; in Johnson and Núñez [12] the theorem was
proved in the general (non necessarily recurrent) case; and in Chapter 7 of Johnson
et al. [14] the list of eight equivalences was completed, adding two more ones
related to the rotation number. When dealing with this general case, the problem
is analyzed by including it in a family of problems of the same type, by means of
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the so called hull or Bebutov construction, which we will recall in Section 2.1. This
procedure provides the following families of control systems and functionals:

x′ =A(ω·t) x +B(ω·t) u , (1.6)

Qω(t,x,u) :=
1

2
(〈x, G(ω·t) x 〉+ 2〈x, g(ω·t) u 〉+ 〈u, R(ω·t) u 〉) , (1.7)

Ix0,ω : Px0,ω → R ∪ {±∞} , (x,u) 7→
∫ ∞

0

Qω(t,x(t),u(t)) dt (1.8)

for ω ∈ Ω and x0 ∈ Rn. Here, Ω is a compact metric space admitting a continuous
flow σ : R × Ω → Ω, (t, ω) 7→ σ(t, ω) =: ω·t; A, B, G, g, and R are bounded and
uniformly continuous matrix-valued functions on Ω; G and R are symmetric with
R > 0 (which ensures that R is positively bounded from below, since Ω is compact);
and Px0,ω is the set of measurable pairs (x,u) : [0,∞)→ Rn×Rm solving (1.6) for
ω with x(0) = x0. The admissible pairs are defined for each ω ∈ Ω and x0 ∈ Rn
as for the single problem (1.1), and their existence is guaranteed by the following
hypothesis (see e.g. Proposition 7.4 of [14]):

H There exists a continuous m×n matrix-valued function K0 : Ω→Mm×n(R)
such that the family of linear systems

x′ = (A(ω·t) +B(ω·t)K0(ω·t)) x , ω ∈ Ω ,

is of Hurwitz type at +∞.

The definition of the Hurwitz character of the family, related to the concept of
exponential dichotomy, is given in Section 2. Under this condition, the equivalences
are formulated in [4] in terms of the properties of the family of linear Hamiltonian
systems [

x
y

]′
= H(ω·t)

[
x
y

]
, ω ∈ Ω (1.9)

given by

H :=

[
A−BR−1gT BR−1BT

G− g R−1gT −AT + g R−1BT

]
. (1.10)

We will use the notation (1.9)ω to refer to the system of the family corresponding
to the element ω of Ω, and we will make the same with the remaining equations
defined along the orbits of Ω. The results of [4] and [12] show, in particular, the
equivalence of the following situations if H holds:

(1) The family of linear Hamiltonian systems (1.9) admits an exponential di-
chotomy over Ω and the (symmetric) Weyl matrix-valued function M+

globally exists; that is, each one of the systems of the family admits an
exponential dichotomy on R and for any ω ∈ Ω the Lagrange plane l+(ω)
of the solutions bounded at +∞ admits as basis the column vectors of a

matrix
[

In
M+(ω)

]
(see Section 2).

(2) The minimization problem is solvable for each ω ∈ Ω and x0 ∈ Rn.

In addition, in this case the minimizing pair (x̃ω, ũω) comes from the solution[
x̃ω(t)
ỹω(t)

]
of (1.9)ω with initial data

[
x0

M+(ω)x0

]
via the feedback rule

ũω(t) = R−1(ω·t)BT (ω·t) ỹω(t)−R−1(ω·t) gT (ω·t) x̃ω(t) , (1.11)

and the value of the minimum is Ix0,ω(x̃ω, ũω) = −(1/2) xT0 M
+(ω) x0. And, in fact,

H holds when there is exponential dichotomy and M+ globally exists. (We point
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out that the rule (1.11)ω provides a pair “state, control” solving (1.6)ω whenever
we have a solution of (1.9)ω.)

Among the remaining equivalences, we want to call attention to another one,
formulated in terms of the rotation number of the family (1.9), and which holds
when Ω admits an ergodic measure m with total support. If so, and always under
hypothesis H, the previous situation is equivalent to

(3) the rotation number of the family (1.9) for m is zero.

Now we will formulate our main result. It is fundamental to note that hypothesis
H is not in force: otherwise the assumptions of the theorem would imply the global
solvability of the family of minimization problems. Recall that we have represented
by l+(ω) the Lagrange plane of the solutions bounded at +∞ in the case of expo-
nential dichotomy over Ω of the family (1.9). And recall also that the conditions
assumed on A,B,G, g and R (described after (1.8)) are in force.

Theorem 1.1. Let us assume that Ω is minimal, that there exists ω0 ∈ Ω such
that the n×m matrix B(ω0) has full rank, that the family of systems (1.9) admits
exponential dichotomy over Ω, and that there exists a σ-ergodic measure on Ω for
which the corresponding rotation number is zero. Let l+(ω) be the Lagrange plane
of the solutions of (1.6)ω bounded at +∞. And let us fix ω ∈ Ω and x0 ∈ Rn.
Then,

(i) there exist admissible pairs (x,u) for the functional Ix0,ω given by (1.8)ω
if and only if there exists y0 ∈ Rn such that [ x0

y0 ] ∈ l+(ω).
(ii) In this case, the infimum of Ix0,ω is finite. In addition, if the columns of

the 2n × n matrix
[
Lω,1
Lω,2

]
are a basis of l+(ω) and [ x0

y0 ] =
[
Lω,1 c
Lω,2 c

]
for a

vector c ∈ Rn, then the infimum is given by −(1/2) cTLTω,2 Lω,1 c, and a

minimizing pair (x̃ω, ũω) ∈ Px0,ω is obtained from the solution
[
x̃ω(t)
ỹω(t)

]
of

(1.9)ω with initial data [ x0
y0 ] via the feedback rule (1.11)ω.

(iii) If the situation in (i) does not hold, then Ix0(x,u) =∞ for any pair (x,u) ∈
Px0,ω.

Section 2 contains the notions and basic properties required to fully understand
the hypotheses and statements of Theorem 1.1, whose proof is given in Section 3.
In that section we will also analyze the hypotheses; we will explain how these
hypotheses can be formulated for the initial problem, for which we give a less general
version of the main theorem; and we will show autonomous and nonautonomous
scenarios in which admissible pairs do not always exist.

2. Preliminaries

All the contents of this preliminary section can be found in Johnson et al. [14],
together with a quite exhaustive list of references for the origin of the results here
summarized.

Let us fix some notation. The set of d×mmatrices with entries in the real line R is
represented by Md×m(R). As usual, Rd := Md×1(R), and AT is the transpose of the
matrix A. The subset Sd(R) ⊂ Md×d(R) is composed by the symmetric matrices.
The expressions M > 0, M ≥ 0, M < 0, and M ≤ 0 for M ∈ Sd(R) mean that M is
positive definite, positive semidefinite, negative definite, and negative semidefinite,
respectively. If M : Ω → Sd(R) is a map, M > 0 means that M(ω) > 0 for all the
elements ω ∈ Ω, and M < 0, M ≥ 0, and M ≤ 0 have the analogous meaning. It
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is also obvious what M1 > M2, M1 ≥ M2, M1 < M2, and M1 ≤ M2 mean. We
represent by Id and 0d the identity and zero d× d matrices, by 0 the null vector of
Rd for all d, and by ‖·‖ the Euclidean norm in Rd.

A real Lagrange plane is an n-dimensional linear subspace of R2n such that
[xT1 yT1 ] J [ x2

y2 ] = 0 for any pair of its elements [ x1
y1 ] and [ x2

y2 ], where J :=
[

0n −In
In 0n

]
.

A Lagrange plane l is represented by
[
L1

L2

]
(which we represent as l ≡

[
L1

L2

]
) if the

column vectors of the matrix form a basis of the n-dimensional linear space l. In
this case LT2 L1 = LT1 L2. Note that it can be also represented by

[
In
M

]
if and only

if detL1 6= 0, in which case the matrix M = L2L
−1
1 is symmetric.

The next concepts and properties are basic in topological dynamics and measure
theory. A (real and continuous) global flow on a complete metric space Ω is a
continuous map σ : R×Ω→ Ω, (t, ω) 7→ σ(t, ω) such that σ0 = Id and σs+t = σt◦σs
for each s, t ∈ R, where σt(ω) = σ(t, ω). The σ-orbit of a point ω ∈ Ω is the set
{σt(ω) | t ∈ R}. A subset Ω1 ⊂ Ω is σ-invariant if σt(Ω1) = Ω1 for every t ∈ R. A
σ-invariant subset Ω1 ⊂ Ω is minimal if it is compact and does not contain properly
any other compact σ-invariant set. And the continuous flow (Ω, σ) is minimal if Ω
itself is minimal.

Let m be a normalized Borel measure on Ω; i.e. a finite regular measure defined
on the Borel subsets of Ω and with m(Ω) = 1. The measure m is σ-invariant if
m(σt(Ω1)) = m(Ω1) for every Borel subset Ω1 ⊂ Ω and every t ∈ R. A σ-invariant
measure m is σ-ergodic if m(Ω1) = 0 or m(Ω1) = 1 for every σ-invariant subset
Ω1 ⊂ Ω. A real continuous flow (Ω, σ) admits at least an ergodic measure whenever
Ω is compact. And the topological support of m, Suppm, is the complement of the
largest open set O ⊂ Ω for which m(O) = 0. We say that m has total support if
its topological support is Ω. If Ω is minimal, then any σ-ergodic measure has total
support.

In the rest of the paper, (Ω, σ) will be a minimal continuous global flow on
a compact metric space, and we will denote ω·t := σ(t, ω). We will work with
families of linear systems of the type (1.9) depending on continuous matrix-valued
functions A,B,G, g and R with the properties defined in the Introduction. Since
H : Ω→ sp(n,R), where

sp(n,R) := {H ∈M2n×2n(R) | HTJ + JH = 02n}

for J =
[

0n −In
In 0n

]
, the systems of the family are said to be Hamiltonian. Let UH(t, ω)

denote the fundamental matrix solution of the system (1.9)ω with U(0, ω) = I2n.
The family (1.9) induces a real continuous global flow on the linear bundle Ω×R2n,

τH : R× Ω× R2n → Ω× R2n ,
(
t, ω, [ xy ]

)
7→
(
ω·t, UH(t, ω) [ xy ]

)
. (2.1)

An equivalent assertion can be done for any family of linear systems

w′ = S(ω·t) w , ω ∈ Ω (2.2)

for w ∈ Rd if S : Ω → Md×d(R) is continuous. We represent the corresponding
fundamental matrix solution as US : R×Ω→Md×d(R), and the flow that it provides
as τS : R× Ω× Rd → Ω× Rd.

In the rest of this section we recall some basic concepts and some associated
properties related to families of the forms (2.2) and (1.9). Some of them are directly
related to the statements of our main result (as in the case of the exponential
dichotomy and the rotation number), while other ones are used as tools in its proof,
as it happens with the uniform weak disconjugacy property).
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We begin with the exponential dichotomy of a family of linear systems over Ω,
which is one of the main hypotheses of our main theorem.

Definition 2.1. The family (2.2) has exponential dichotomy over Ω if there exist
constants η ≥ 1 and β > 0 and a splitting Ω × Rd = L+ ⊕ L− of the bundle into
the Whitney sum of two closed subbundles such that

- L+ and L− are invariant under the flow τS induced by (2.2) on Ω × Rd;
that is, if (ω,w) belongs to L+ (or to L−), so does (ω·t, US(t, ω) w) for all
t ∈ R and ω ∈ Ω.

- ‖US(t, ω) w‖ ≤ η e−βt ‖w‖ for every t ≥ 0 and (ω,w) ∈ L+.
- ‖US(t, ω) w‖ ≤ η eβt ‖w‖ for every t ≤ 0 and (ω,w) ∈ L−.

In the case that L+ = Rd, the family (2.2) is of Hurwitz type at +∞.

In general, we will omit the words “over Ω” when the family (2.2) has exponential
dichotomy, since no confusion arises. Let us summarize in the next list of remarks
some well-known fundamental properties satisfied by a family of linear systems
which has exponential dichotomy.

Remarks 2.2. 1. If Ω is minimal (as we assume in Theorem 1.1), the exponential
dichotomy of the family (2.2) over Ω is equivalent to the exponential dichotomy
on R of anyone of its systems (see e.g. [2] for the definition of this classical con-
cept). This property is proved in [18] (Theorem 2 and Section 3). In addition,
the exponential dichotomy of the family is equivalent to the unboundedness of any
nontrivial solution of anyone of the systems, as proved in Theorem 10.2 of [20].

2. Suppose that the family (2.2) has exponential dichotomy. There exists δ > 0
such that if T : Ω→Md×d(R) is a continuous map and maxω∈Ω ‖S(ω)− T (ω)‖ < δ
(where ‖·‖ is representing the Euclidean operator norm), then the family w′ =
T (ω·t) w, ω ∈ Ω has exponential dichotomy. This well-known property of robust-
ness is a consequence of the Sacker and Sell Spectral Theorem (Theorem 6 of [19]).

3. Assume that the family of linear systems is of Hamiltonian type, as in the
case of (1.9), and that it has exponential dichotomy. Then the sections

l±(ω) :=
{

[ xy ] ∈ R2n
∣∣ (ω, [ xy ]

)
∈ L±

}
(2.3)

are real Lagrange planes. In addition,

l±(ω) = {z ∈ R2n | lim
t→±∞

‖UH(t, ω) [ xy ]‖ = 0}

= {z ∈ R2n | sup
±t∈[0,∞)

‖UH(t, ω) [ xy ]‖ <∞} .

These properties are proved, for example, in Section 1.4 of [14].
4. Also in the Hamiltonian case, assume that for all ω ∈ Ω the Lagrange plane

l+(ω) can be represented by the matrix
[

In
M+(ω)

]
. Or, equivalently, that for all

ω ∈ Ω the Lagrange plane l+(ω) can be represented by a matrix

[
L+
ω,1

L+
ω,2

]
with

detL+
ω,1 6= 0 (so that M+(ω) = Lω,2 L

−1
ω,1). In this case M+ : Ω → Sn(R) is a

continuous matrix-valued function, and it is known as one of the Weyl functions
for (1.9). In this situation, we say that the Weyl function M+ globally exists. (The
other Weyl function is M−, associated to the subbundle L−, and it satisfies the
same properties if it exists.)
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The other fundamental hypotheses of our main theorem refers to the value of
the rotation number for the family (1.9), whose definition we recall now. This
object depends on a given σ-ergodic measure on Ω. Among the many equivalent
definitions for this quantity, we give one which extends that which is possibly the

best known in dimension 2 (see [9] and [7]). We write as UH(t, ω) =
[
U1(t,ω) U3(t,ω)
U2(t,ω) U4(t,ω)

]
the matrix-valued solution of (1.9) with UH(0, ω) = I2n. And arg : C → R is the
continuous branch of the argument of a complex number for which arg 1 = 0.

Definition 2.3. Let m be a σ-ergodic measure on Ω. The rotation number α(m)
of the family of linear Hamiltonian systems (1.9) with respect to m is the value of

lim
t→∞

1

t
arg det(U1(t, ω)− iU2(t, ω))

for m-a.a. ω ∈ Ω.

It is proved in [17] that the limits exist and take the same finite value for m-
a.a. ω ∈ Ω. The analysis of α(m) made in [17] is completed in [3] and in Chapter 2
of [14], where the interested reader may find many other equivalent definitions and
a exhaustive description of the properties of the rotation number.

Now we introduce the concept of uniform weak disconjugacy.

Definition 2.4. The family of linear Hamiltonian systems (1.9) is uniformly weakly
disconjugate on [0,∞) if there exists t0 ≥ 0 independent of ω such that for ev-

ery nonzero solution z(t, ω) =
[
z1(t,ω)
z2(t,ω)

]
of the systems corresponding to ω with

z1(0, ω) = 0, there holds z1(t, ω) 6= 0 for all t > t0.

In the next remarks some results proved in [11], [5] and in Chapter 5 of [14] are
summarized. Note that the fact that the submatrix BR−1BT of H (see (1.10)) is
positive semidefinite is fundamental in what follows.

Remarks 2.5. 1. If the family (1.9) is uniformly weakly disconjugate, then there

exist uniform principal solutions at ±∞,
[
L±

1 (t,ω)

L±
2 (t,ω)

]
(see Theorem 5.2 of [11] or

Theorem 5.26 of [14]). They are real 2n× n matrix-valued solutions of (1.9) satis-
fying the following properties: for all t ∈ R and ω ∈ Ω, the matrices L±1 (t, ω) are

nonsingular and
[
L±

1 (t,ω)

L±
2 (t,ω)

]
represent Lagrange planes; and for all ω ∈ Ω,

lim
±t→∞

(∫ t

0

(L±1 )−1(s, ω)H3(ω·s) ((L±1 )T )−1(s, ω) ds

)−1

= 0n .

In addition, if the matrix-valued functions
[
L±

1 (t,ω)

L±
2 (t,ω)

]
are uniform principal solutions

at ±∞, then the real matrix-valued functions N± : Ω → Sn(R) , ω 7→ N±(ω) :=
L±2 (0, ω) (L±1 (0, ω))−1 are unique. The functions N± are called principal functions
of (1.9).

The interested reader can find in Chapter 5 of [14] a careful description of the
uniform principal solutions and the principal functions for families of linear Hamil-
tonian systems of the type (1.9). A more general theory concerning principal solu-
tions for less restrictive assumptions is developed in [23, 24] and references therein.
And a recent in-deep analysis of the corresponding Riccati equations (which the
principal functions solve) can be found in [22].
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2. According to Theorem 5.2 of [11] or to Theorem 5.17 of [14], the uniform weak
disconjugacy of the family (1.9) ensures the validity of the condition

D2 For all ω ∈ Ω and for any nonzero solution
[
x(t,ω)
y(t,ω)

]
of the system (1.9)ω

with x(0, ω) = 0, the vector x(t, ω) does not vanish identically on [0,∞).

It also ensures that the rotation number α(m) with respect to any ergodic measure
m on Ω vanishes: see Theorem 2 of [5] or Theorem 5.67 of [14]. Conversely, if there
exists a σ-ergodic measure on Ω with total support (which is always the case if Ω
is minimal) for which the rotation number is zero and D2 holds, then the family
(1.9) is uniformly weakly disconjugate. This assertion follows from Theorems 5.67
and 5.17 of [14].

2.1. The hull construction. Let us complete Section 2 by explaining briefly how
we obtain the family of problems given by (1.6), (1.7) and (1.8) from the initial
one, given by (1.1), (1.2) and (1.3).

Let us denote C0 := (A0, B0, G0, g0, R0), so that

C0 : R→Mn×n(R)×Mn×m(R)×Mn×n(R)×Mn×m(R)×Mm×m(R) , (2.4)

and define Ω as its hull : that is, the closure with respect to the compact-open
topology of R of the set {Cs | s ∈ R}, where Cs(t) := C0(t + s). It turns out that
Ω is a compact metric space and that the time translation map

σ : R× Ω→ Ω , (t, ω) 7→ ω·t ,

where (ω·t)(s) = ω(t + s) defines a continuous flow on Ω. The proofs of these
assertions can be found in Sell [21].

Note that any element ω ∈ Ω can be written as ω = (ω1, ω2, ω3, ω4, ω5), and
that ω·t = (ω1·t, ω2·t, ω3·t, ω4·t, ω5·t) with (ωi·t)(s) = ωi(t+ s) for i = 1, . . . , 5. We
define

A : Ω→Mn×n(R) , (ω1, ω2, ω3, ω4, ω5) 7→ ω1(0) ,

and proceed in a similar way to define B : Ω → Mn×m(R), G : Ω → Mn×n(R),
g : Ω→ Mn×m(R), and R : Ω→ Mn×n(R). It is obvious that A,B,G, g and R are
continuous maps on Ω. In addition, if ω̃ = C0 ∈ Ω, then A(ω̃·t) = (ω̃1·t)(0) =
ω̃1(t) = A0(t), and analogous equalities hold for B,G, g and R. This means that
the family of problems given by (1.1), (1.2) and (1.3) for ω ∈ Ω includes the initial
one, which corresponds to the element C0 of Ω. Note that G and R are symmetric,
and that R > 0.

Additional recurrence properties on C0 ensure that the flow on Ω is minimal,
which is one of the hypotheses of Theorem 1.1. This is for instance the case when
C0 is almost periodic or almost automorphic (see e.g. [6] and [25] for the definitions).
Note that in the minimal case, Ω is the hull of any of its elements.

3. Proof of Theorem 1.1

Let (Ω, σ) be a real continuous global flow on a compact metric space, and let us
denote ω·t := σ(t, ω). We consider the family of control systems (1.6) and function-
als (1.8) under the conditions on the coefficients A,B,G, g and R described in the
Introduction (which are guaranteed under the initial conditions on A0, B0, G0, g0

and R0, as explained in Section 2.1), and consider the minimization problem there
explained. We also consider the family of linear Hamiltonian systems defined by
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(1.9) and (1.10). During this whole section, we will be working under the hypotheses
of Theorem 1.1, namely

Hypotheses 3.1. Ω is minimal, there exists ω0 ∈ Ω such that the n ×m matrix
B(ω0) has full rank, the family of linear Hamiltonian systems (1.9) has exponential
dichotomy over Ω, and there exists a σ-ergodic measure m on Ω for which the
rotation number α(m) is zero.

We will analyze later on the scope of these hypotheses. Let us begin with a
result which includes the assertions of Theorem 1.1 in the simplest situation, that
of m ≥ n. This result will play a fundamental role in the general proof.

Theorem 3.2. Assume that Hypotheses 3.1 hold and that m ≥ n. Then,

(i) the family (1.9) is uniformly weakly disconjugate.
(ii) The Weyl functions M± : Ω → Sn(R) associated to the exponential di-

chotomy of the family (1.9) globally exist, and they agree with the principal
functions N±.

(iii) There exist admissible pairs for the functional Ix0,ω given by (1.8)ω for all
(x0, ω) ∈ Rn× Ω, and the corresponding minimization problem is solvable.
In addition, the (unique) minimizing pair (x̃ω(t), ũω(t)) ∈ Px0,ω comes

from the solution
[
x̃ω(t)
ỹω(t)

]
of (1.9)ω with initial data

[
x0

M+(ω)x0

]
via the

feedback rule (1.11)ω, and the value of the minimum is Ix0,ω(x̃ω, ũω) =
−(1/2) xT0 M

+(ω) x0.

Proof. Let UA(t, ω0) be the fundamental matrix solution of x′ = A(ω0·t) x with
UA(0, ω0) = In. Since the rank of the n × m matrix B(ω0) is n (as one of the
Hypotheses 3.1 guarantees), the n×n matrix B(ω0)BT (ω0) is not singular. Hence∫ ∞

0

U−1
A (t, ω0)B(ω0·t)BT (ω0·t) (U−1

A )T (t, ω0) dt > 0 ,

which ensures that the system (1.6)ω0 is null controllable (see [1], Theorem 7.2.2).
That is, for any x0 ∈ Rn there exists a time t0 = t0(x0, ω) and an integrable control
u : [0, t0]→ Rn such that the solution of the corresponding system with x(0) = x0

satisfies x(t0) = 0, which means that any x0 can be steered to 0 in finite time by
an integrable control u.

According to the results of [10] (see also Theorem 6.4 of [14]), the minimality of Ω
and the previous property ensure the uniform null controllability of the family (1.6);
that is, all the systems are null controllable and there is a common time t0(x0, ω)
for all (x0, ω) ∈ Rn × Ω. As explained in Remark 6.8.1 of [14], this uniform null
controllability holds if and only if the family (1.9) satisfies condition D2. On the
other hand, Hypotheses 3.1 ensure the existence of an ergodic measure m for which
the rotation number vanishes; and, as said in Section 2, the minimality of the set Ω
ensures that m has total support. In this situation, according to Remark 2.5.2, the
family (1.9) is uniformly weakly disconjugate, which proves (i). The simultaneous
occurrence of uniform weak disconjugacy and exponential dichotomy ensures (ii):
Theorem 5.58 of [14] proves the global existence of the Weyl functions M±, which
agree with the principal functions (see Remark 2.5.1). Finally, as recalled in the
Introduction, and according to Theorem 4.3 of [4] (see also Remark 7.7 and Theorem
7.10 of [14]), the presence of exponential dichotomy and the global existence of M+

ensure the assertions in (iii). �
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Remark 3.3. Note that in the situation of the previous theorem, the global exis-

tence of M+ ensures that if l+(ω) ≡
[
Lω,1
Lω,2

]
, then M+(ω) = Lω,2 (Lω,1)−1 and that,

for every x0 ∈ Rn there exists a unique c ∈ Rn such that x0 = Lω,1 c and hence
a unique y0 such that [ x0

y0 ] ∈ l+(ω), being y0 = Lω,2 c = M+(ω) x0, Note also
that xT0 M

+(ω) x0 = cTLTω,1Lω,2 (Lω,1)−1Lω,1 c = cTLTω,1Lω,2 c = cTLTω,2Lω,1 c.
These are the reasons for which we asserted that Theorem 3.2 proves Theorem 1.1
if m ≥ n: under its hypotheses, every functional Ix0,ω can be minimized.

The next technical lemma will also be used in the proof of Theorem 1.1. Note
that Hypotheses 3.1 are not required.

Lemma 3.4. Let us fix ω ∈ Ω, and let
[
L1(t)
L2(t)

]
be a 2n × n solution of the linear

Hamiltonian system (1.9)ω. Let us also fix c ∈ Rn and define

x(t) := L1(t) c , y(t) := L2(t) c ,

u(t) := R−1(ω·t)BT (ω·t) y(t)−R−1(ω·t) gT (ω·t) x(t) ,

V (t) := yT (t) x(t) ,

and Q by (1.7). Then,

d

dt
V (t) = 2Qω(t,x(t),u(t)) .

Proof. It follows from the definitions in the statement that

u(t) =
(
R−1(ω·t)BT (ω·t)L2(t)−R−1(ω·t) gT (ω·t)L1(t)

)
c ,

V (t) = cTLT2 (t)L1(t) c .

A straightforward and simple computation shows that

d

dt
V (t) = cT

(
LT1 (t)G(ω·t)L1(t)− LT1 (t) g(ω·t)R−1(ω·t) gT (ω·t)L1(t)

+ L2(t)B(ω·t)R−1(ω·t)BT (ω·t)LT2 (t)
)

c .

And a longer computation shows that Qω evaluated at (t,x(t),u(t)), namely

2Qω
(
t, L1(t) c,

(
R−1(ω·t)BT (ω·t)L2(t)−R−1(ω·t) gT (ω·t)L1(t)

)
c
)
,

takes the same value. �

Proof of Theorem 1.1. Note that we can assume that m < n, since otherwise
Theorem 3.2 proves all the assertions (see also Remark 3.3). We first prove the
result in a particular case, from where the general one will follow easily.

Particular case. Let us first assume that B(ω0) =
[
B1(ω0)
B2(ω0)

]
, where B1(ω0) is

an m×m nonsingular matrix. We define the n× n matrix valued functions

Bε :=

[
B1 0
B2 ε In−m

]
, Rε :=

[
R 0
0 ε In−m

]
, and gε :=

[
g 0

]
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for ε > 0, where 0 stands for the null matrix of the suitable dimension whenever it
appears. Let us consider the families of control problems and functionals given by

x′ =A(ω·t) x +Bε(ω·t) v , (3.1)

Qεω(t,x,v) :=
1

2
(〈x, G(ω·t) x 〉+ 2〈x, gε(ω·t) u 〉+ 〈v, Rε(ω·t) v 〉) , (3.2)

Iεx0,ω : Pεx0,ω → R ∪ {±∞} , (x,v) 7→
∫ ∞

0

Qεω(t,x(t),v(t)) dt , (3.3)

where Pεx0,ω is the set of measurable pairs (x,v) : [0,∞)→ Rn× Rn solving (3.1)ω
with x(0) = x0. Note that both the state x and the control v are now n-dimensional.
The associated family of linear Hamiltonian systems,[

x
y

]′
= Hε(ω·t)

[
x
y

]
, ω ∈ Ω , (3.4)

is given by

Hε :=

[
A−BεR−1

ε gTε BεR
−1
ε BTε

G− gεR−1
ε gTε −AT0 + gεR

−1
ε BTε

]

=

[
A−BR−1gT BεR

−1
ε BTε

G− g R−1gT −AT0 + g R−1BT

]
.

The unique submatrix depending on ε is

BεR
−1
ε BTε = BR−1BT + ε

[
0m 0
0 In−m

]
. (3.5)

Therefore (3.4) agrees with (1.9) for ε = 0, and hence according to Hypotheses
(3.1) it has exponential dichotomy over Ω. The robustness of this property (see
Remark 2.2.2) ensures the exponential dichotomy for the family (3.4) if ε ∈ [0, ε0]
for ε0 > 0 small enough.

Let m be the σ-ergodic measure in Ω appearing in Hypotheses 3.1, and represent
by αε(m) the corresponding rotation number of the family (3.4), so that α0(m) = 0.
According to Theorem 5.2 of [3] (see also Theorem 2.28 of [14]), the exponential
dichotomy forces αε(m) to take values in a discrete group if ε ∈ [0, ε0]. On the
other hand, Theorem 4.3 of [3] (or Theorem 2.25 of [14]) ensures that αε(m) varies
continuously with respect to ε. Since α0(m) = 0, we conclude that αε(m) = 0 for
ε ∈ [0, ε0].

Since Bε(ω0) is nonsingular for any ε > 0, the problems for ε ∈ (0, ε0] ful-
fill the corresponding Hypotheses 3.1. Hence, Theorem 3.2 ensures the uniform
weak disconjugacy of the families (3.4), the global existence of the Weyl function
M+
ε : Ω→ Sn(R) associated to (3.4), and the solvability of the minimization prob-

lems for Iεx0,ω subject to (3.1). In addition, given ω ∈ Ω and x0 ∈ Rn, the pair

(x̃εω(t), ṽεω(t)) minimizing Iεx0,ω comes from the solution
[
x̃εω(t)

ỹεω(t)

]
of (1.9)εω with ini-

tial data
[

x0

M+
ε (ω)x0

]
via the analogous of the feedback rule (1.11)ω, and the value

of the minimum is

Iεx0,ω(x̃εω, ṽ
ε
ω) = −1

2
xT0 M

+
ε (ω) x0 . (3.6)
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For further purposes we point out that if v : R → Rn is written as v(t) =
[

u(t)
v2(t)

]
with u : R→ Rm, then

2Qεω(t,x(t),v(t)) = 2Qω(t,x(t),u(t)) + ε |v2(t)|2 , (3.7)

as easily deduced from the respective definitions (1.7)ω and (3.2)ω of Qω and Qεω.
It follows from (3.5) that Hε satisfies the condition of monotonicity required

by Proposition 5.51 of [14]. This result combined with Theorem 3.2(ii) ensures a
monotone behaviour of the Weyl functions. In particular, M+

ε2 ≤M+
ε1 if ε0 > ε1 >

ε2 > 0. Therefore, we can apply Theorem 1 of Kratz [16], which establishes two
alternatives for the limiting behaviour of xT0 M

+
ε (ω) x0 as ε→ 0+, which depend of

the pair (x0, ω) ∈ Rn × Ω :

(a) limε→0+ xT0 M
+
ε (ω) x0 belongs to R if and only if there exists y0 ∈ Rn such

that [ x0
y0 ] ∈ l+(ω). In this case, if l+(ω) ≡

[
Lω,1
Lω,2

]
and [ x0

y0 ] =
[
Lω,1 c
Lω,2 c

]
for a

vector c ∈ Rn, then limε→0+ xT0 M
+
ε (ω) x0 = cTLTω,2 Lω,1 c.

(b) limε→0+ xT0 M
+
ε (ω) x0 = −∞ otherwise.

We will prove that

1. if the pair (x0, ω) is in case (a), then there exist admissible pairs for Ix0,ω,
and all the assertions in Theorem 1.1(ii) are true.

2. If the pair (x0, ω) is in case (b), then Ix0,ω(x,u) =∞ for all (x,u) ∈ Px0,ω,
so that there are no admissible pairs.

These two facts will complete the proof in the particular case we have started with.
Let us assume that (x0, ω) is in the situation (a), and take c ∈ Rn as there. We

define
[
L1(t)
L2(t)

]
as the 2n×n matrix valued solution of (1.9) with

[
L1(0)
L2(0)

]
=
[
Lω,1
Lω,2

]
.

We also define

x̃ω(t) := L1(t) c , ỹω(t) := L2(t) c ,

ũω(t) := R−1(ω·t)BT (ω·t) ỹω(t)−R−1(ω·t) gT (ω·t) x̃ω(t) ,

V (t) := ỹTω (t) x̃ω(t) .

Note that the pair (x̃ω, ũω) belongs to Px0,ω and is the one of Theorem 1.1(ii). It

follows from Definition 2.1, from the fact that
[
x̃ω(0)
ỹω(0)

]
= [ x0

y0 ] ∈ l+(ω), and from

the definition of ũω that (x̃ω, ũω) ∈ L2(R+,Rn)×L2(R+,Rm); thus, (x̃ω, ũω) is an
admissible pair for Ix0,ω. Lemma 3.4 yields

Ix0,ω(x̃ω, ũω) =
1

2

(
lim
t→∞

ỹTω (t) x̃ω(t)− ỹTω (0) x̃ω(0)
)

= −1

2
cTLTω,2 Lω,1 c .

Here we use that limt→∞

[
x̃ω(t)
ỹω(t)

]
= [ 00 ], which also follows from [ x0

y0 ] ∈ l+(ω).

Our next step is proving that Ix0,ω(x̄, ū) ≥ −(1/2) cTLTω,2 Lω,1 c for any other

admissible pair (x̄, ū). Given such a pair, we define v̄ : R → Rn by v̄(t) =
[
ū(t)
0

]
.

Since B(ω·t) ū(t) = Bε(ω·t) v̄(t), the pair (x̄, v̄) is admissible for Iεx0,ω for all ε > 0.
It follows from (3.7) and (3.6) that

Ix0,ω(x̄, ū) = Iεx0,ω(x̄, v̄) ≥ Iεx0,ω(x̃ω, ṽω) = −1

2
xT0 M

+
ε (ω) x0 , (3.8)

so that the assertion follows from the information provided by (a) by taking limit
as ε→ 0+. This completes the proof of 1.
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In order to check 2, we assume that the pair (x0, ω) is in case (b) and assume
for contradiction that there exists an admissible pair (x̄, ū) for Ix0,ω. Repeating
the previous procedure we obtain (3.8). Taking limit as ε → 0+ and using the
information provided by (b) we conclude that Ix0,ω(x̄, ū) = ∞, which precludes
the admissibility of the pair. This completes the proofs of point 2 and of the initial
case.

General case. Basic results on linear algebra provide an orthogonal n × n
matrix valued function P such that P B(ω0) =

[
B1(ω0)
B2(ω2)

]
for an m×m nonsingular

matrix B1(ω0). Let us define

Ã(ω) := P A(ω)PT ,

B̃(ω) := P B(ω) ,

G̃(ω) := P G(ω)PT ,

g̃(ω) := P g(ω) ,

and consider the families of control systems and functionals

z′ = Ã(ω·t) z + B̃(ω·t) u , (3.9)

Q̃ω(t, z,u) :=
1

2

(
〈 z, G̃(ω·t) z 〉+ 2〈 z, g̃(ω·t) u 〉+ 〈u, R(ω·t) u 〉

)
, (3.10)

Ĩz0,ω(z,u) :=

∫ ∞
0

Q̃ω(t, z(t),u(t)) dt , (3.11)

obtained from the initial ones by means of the change of variables z(t) = P x(t).
The corresponding family of linear hamiltonian systems is[

z
w

]′
= H̃(ω·t)

[
z
w

]
, ω ∈ Ω (3.12)

with

H̃ :=

[
Ã− B̃ R−1g̃T B̃ R−1B̃T

G̃− g̃ R−1g̃T −ÃT + g̃ R−1B̃T

]
.

A straightforward computation shows that (3.12) comes from (1.9) by means of the
change of variables [

z
w

]
=

[
P 0n
0n P

] [
x
y

]
.

It is clear that the family (3.12) has exponential dichotomy over Ω, since the change

of variables is given by a constant matrix, and that
[
P 0n
0n P

] [ Lω,1
Lω,2

]
represents the

Lagrange plane l̃+(ω) of the solutions of (3.12) bounded at +∞ if and only if[
Lω,1
Lω,2

]
represents l+(ω). In addition, since the matrix

[
P 0n
0n P

]
is symplectic, it

follows from the results of Section 2 of [17] (see also Section 2.1.1 of [14]) that the
rotation number is also preserved: it is 0 for any σ-ergodic measure. Therefore the
transformed families are in the situation analyzed in the particular case. It is clear
that:

– the pair (x̄, ū) is admissible for Ix0,ω if and only if the pair (z̄, ū) given by

z(t) = P x(t) is admissible for ĨPx0,ω.
– There exists y0 such that [ x0

y0 ] ∈ l+(ω) if and only if there exists w0 such

that
[
P x0
w0

]
∈ l̃+(ω): just write w0 = Py0.
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– cTLTω,2Lω,1 c = cT
(
PLω,2

)T (
P Lω,1

)
c .

– The equality u(t) = R−1(ω·t)BT (ω·t) y(t)−R−1(ω·t) gT (ω·t) x(t) holds if

and only if u(t) = R−1(ω·t) B̃T (ω·t) w(t)−R−1(ω·t) g̃T (ω·t) z(t) for z(t) =
P x(t) and w(t) = P y(t).

It is easy to deduce the statements of Theorem 1.1 from all these properties. The
proof is hence complete. �

Remark 3.5. Let us represent l+(ω) ≡
[
Lω,1
Lω,2

]
and assume that Lω,1c = Lω,1d

for d 6= c. Then, since l+(ω) is a Lagrange plane, cTLTω,2Lω,1c = dTLTω,2Lω,1d =

dTLTω,2Lω,1c. We point out this property to clarify that there is not ambiguity in
the assertion of Theorem 1.1 concerning the value of the minimum of Ix0,ω, which
of course is unique.

3.1. Coming back to a single problem. Recall that our starting point was the
single problem given by (1.1), (1.2) and (1.3), which we included in the family
given by (1.6), (1.7) and (1.8) by means of the hull procedure explained in Section
2.1. The initial problem is one of those of the family: it corresponds to the point
ω̃ = C0 = (A0, B0, G0, g0, R0) of Ω.

The conclusions of Theorem 1.1 apply to every ω ∈ Ω, so that they also apply
to our initial problem. What about the hypotheses?

– The hull Ω is minimal in the cases of recurrence of the initial coefficients,
which includes (at least) the autonomous, periodic, quasi-periodic, almost
periodic and almost automorphic cases.

– The hypothesis on B holds if there exists t0 ∈ R such that B0(t0) has full
rank.

– In the case of minimality of Ω, the exponential dichotomy of the family (1.9)
holds if and only if the initial Hamiltonian system (1.4) has exponential
dichotomy on R: see Remark 2.2.1.

– And if the base is minimal and uniquely ergodic (which is the case at least
if C0 is almost periodic: see [6]), then the value of the rotation number can
be obtained for any one of the systems of the family; for instance, for the
initial one (see Theorem 2.6 of [14]).

Therefore, a less general formulation of our main theorem reads as follows:

Theorem 3.6. Assume that the map C0 given by (2.4) is almost periodic with
R0(t) ≥ ρ Im for a common ρ > 0 and any t ∈ R, that there exists t0 ∈ R such
that the n×m matrix B0(t0) has full rank, that the Hamiltonian system (1.4) has
exponential dichotomy on R, and that

lim
t→∞

1

t
arg det(U1(t)− iU2(t)) = 0 ,

where UH =
[
U1 U3

U2 U4

]
is the matrix solution of (1.4) with UH(0) = I2n. Let l+ be

the Lagrange plane of the solutions of (1.4) bounded at +∞, and let us fix x0 ∈ Rn.
Then,

(i) there exist admissible pairs (x,u) for the functional Ix0 given by (1.3) if
and only if there exists y0 ∈ Rn such that [ x0

y0 ] ∈ l+.
(ii) In this case, the infimum of Ix0

is finite. In addition, if the columns of

the 2n × n matrix
[
L1

L2

]
are a basis of l+ and [ x0

y0 ] =
[
L1 c
L2 c

]
for a vector

c ∈ Rn, then the infimum is given by −(1/2) cTLT2 L1 c, and a minimizing
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pair (x̃, ũ) is obtained from the solution
[
x̃(t)
ỹ(t)

]
of (1.4) with initial data

[ x0
y0 ] via the feedback rule (1.5).

Note also that the condition of almost periodicity of C0 can be replaced by the
less restrictive one of minimality and ergodic uniqueness of the flow on its hull.

3.2. Examples of non global solvability. We complete the paper with three
examples. With the first one, of autonomous type, we intend to show a simple
scenario, in which every required computation can be done by hand, and for which
the existence of admissible pairs depends on the choice of the initial data. The
second one is a generalization of almost periodic type.

The third example, more complex, shows a situation of non global solvability
for which the associated linear Hamiltonian system does not have exponential di-
chotomy, so that one of the hypotheses of our results is not fulfilled. In fact, the
Hamiltonian system of this example is of nonuniform hyperbolic type. Its aim
is showing that the same ideas involved in the description we have made can be
extremely useful in the analysis of other situations.

Example 3.7. We consider the autonomous control problem and quadratic func-
tional [

x1

x2

]′
=

[
1 1
0 1

] [
x1

x2

]
+

[
1
0

]
u ,

Q
(
t, [ x1

x2
] , u
)

:=
1

2

(
[x1 x2 ]

[
2 1
1 1

] [
x1

x2

]
+ 2 [x1 x2 ]

[
1
1

]
u+ u2

)
,

and we pose the problem of minimizing the corresponding functional

Ix0
: Px0

→ R ∪ {±∞} ,
(

[ x1
x2

] , u
)
7→
∫ ∞

0

Q
(
t,
[
x1(t)
x2(t)

]
, u(t)

)
dt (3.13)

defined on the set Px0
of the measurable pairs (x, u) satisfying the control system

with x(0) = x0.
Let us check that all the hypotheses of Theorem 3.6 are satisfied. It is obvious

that the map C0 given by the expression (2.4) corresponding to this problem is
constant (and hence almost periodic), and that the rank of B0(t) ≡ [ 1

0 ] is 1 for all
t ∈ R. It is also easy to check that the linear Hamiltonian system (1.4) takes the
form 

x1

x2

y1

y2


′

= H


x1

x2

y1

y2

 for H :=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1

 .
Note that this system can be uncoupled to[

x1

y1

]′
=

[
0 1
1 0

] [
x1

y1

]
and

[
x2

y2

]′
=

[
1 0
0 −1

] [
x2

y2

]
.

It is very simple to check that this two-dimensional systems (of Hamiltonian type)
have exponential dichotomy in R. In addition, the initial data of the solutions
bounded at +∞ and −∞ are given for the first one by

[
1
−1

]
and [ 1

1 ] (up to
constant multiples) and for the second one by [ 0

1 ] and [ 1
0 ]. It follows that our
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four-dimensional Hamiltonian system has exponential dichotomy in R (see e.g. Re-
mark 2.2.1), and that the Lagrange planes

l+ ≡


1 0
0 0
−1 0

0 1

 and l− ≡


1 0
0 1
1 0
0 0


are composed of the initial data of the solutions of the Hamiltonian system which
are bounded as t → +∞ and t → −∞, respectively. It is also easy to compute
fundamental matrix solutions of the two-dimensional systems, and from them

UH(t) =
1

2


et + e−t 0 et − e−t 0

0 2 et 0 0
et − e−t 0 et + e−t 0

0 0 0 2 e−t

 ,
which is the matrix solution the Hamiltonian system with UH(0) = I4. It follows
from here that the last hypothesis of Theorem 3.6 holds, since

lim
t→∞

1

t
arg det

1

2

([
et + e−t 0

0 2 et

]
− i
[
et − e−t 0

0 0

])
= lim
t→∞

1

t
arctan

1− e2t

1 + e2t
= 0 .

Theorem 3.6 ensures that there exist admissible pairs if and only if x0 = [ x1
x2

] =
[ 1 0
0 0 ] [ c1c2 ] for some x = [ c1c2 ] ∈ R2. That is, if and only if x2 = 0, in which

case we can take c = [ x1
c2 ] for any c2 ∈ R. This provides y0 =

[−1 0
0 1

]
[ x1
c2 ] =[−x1

c2

]
. In addition, also according to Theorem 3.6, the minimum is given by

−(1/2)[x1 c2 ]
[−1 0

0 1

]
[ 1 0
0 0 ] [ x1

c2 ] = x2
1/2. Now we compute

x1(t)
x2(t)
y1(t)
y2(t)

 = UH(t)


x1

0
−x1

c2

 =


x1 e

−t

0
−x1 e

−t

c2 e
−t

 ,
apply the feedback rule (1.5) in order to obtain the control

ũ(t) = [ 1 0 ]

[
−x1 e

−t

c2 e
−t

]
− [ 1 1 ]

[
x1 e

−t

0

]
= −2x1 e

−t ,

and conclude that there is a unique minimizing pair (x̃, ũ) with the shape described
in Theorem 3.6, given by

x̃(t) =

[
x1 e

−t

0

]
, ũ(t) = −2x1 e

−t .

Example 3.8. Let f : R→ R be an almost periodic function such that[
x1

y1

]′
=

[
0 1
f(t) 0

] [
x1

y1

]
(3.14)

satisfies two conditions. The first one is the existence of exponential dichotomy on
R for (3.14) combined with the fact that the initial data of the solutions bounded at
+∞ and −∞ are multiples of

[
1
m+

]
and

[
1
m−

]
. The second one is that the rotation

number (with respect to the unique ergodic measure which exists in the hull in the
almost periodic case) is zero. As explained in the comments before Theorem 3.6,
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this fact is is equivalent to say that, if V (t) =
[
V1(t) V3(t)
V2(t) V4(t)

]
is the matrix solution of

(3.14) with V (0) = I2, then

lim
t→∞

1

t
arg(V1(t)− iV2(t)) = 0 . (3.15)

The function f can be very simple. For instance, f ≡ 1, as in the previous example.
But it can also be extremely complex. For instance, f := f0 + λ for any λ > 0
where f0 is the almost periodic function described by Johnson in [8], giving rise to a
non uniformly hyperbolic family of Schrödinger equations: as explained in Example
7.37 of [14], the corresponding system (3.14) has exponential dichotomy (if λ > 0),
the initial data of the solutions bounded at +∞ and −∞ are

[
1
m+

]
and

[
1
m−

]
(up

to a multiple), and the solution
[
x1(t)
x2(t)

]
= V (t)

[
1
m+

]
satisfies x1(t) 6= 0 for all

t ∈ R, from where we deduce that the rotation number is zero (use for instance
Propositions 5.8 and 5.65 of [14]). We will refer again to the function f0 in Example
3.9.

Let h : R→ R be any other almost periodic function. Given the control problem
and the quadratic functional[

x1

x2

]′
=

[
1 h(t)
0 1

] [
x1

x2

]
+

[
1
0

]
u ,

Q(t, [ x1
x2

] , u) := [x1 x2 ]

[
f(t) + 1 h(t)
h(t) h(t)2

] [
x1

x2

]
+ [x1 x2 ]

[
1
h(t)

]
u+ u2

we pose the problem of minimizing the corresponding functional (3.13). As in the
previous example, we will begin by checking that all the hypotheses of Theorem 3.6
are satisfied. It is obvious that the map C0 given by (2.4) is almost periodic, and
the rank of B0(t) ≡ [ 1

0 ] is 1 for all t ∈ R. Now, the Hamiltonian system (1.4) takes
the form 

x1

x2

y1

y2


′

=


0 0 1 0
0 1 0 0
f(t) 0 0 0

0 0 0 −1



x1

x2

y1

y2

 ,
which can be uncoupled to[

x1

y1

]′
=

[
0 1
f(t) 0

] [
x1

y1

]
and

[
x2

y2

]′
=

[
1 0
0 −1

] [
x2

y2

]
.

As seen in Example 3.7, the second system has also exponential dichotomy, and
[ 0
1 ] and [ 1

0 ] are the initial data of the solutions bounded at +∞ and −∞. Hence,
our four-dimensional Hamiltonian system has exponential dichotomy in R, and the
Lagrange planes

l+ ≡


1 0
0 0
m+ 0
0 1

 and l− ≡


1 0
0 1
m− 0
0 0


are composed of the initial data of the solutions of the four-dimensional system
which are bounded as t→ +∞ and t→ −∞, respectively. In addition, the matrix
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solution UH(t) with UH(0) = I4 is given by

UH(t) =


V1(t) 0 V3(t) 0

0 et 0 0
V2(t) 0 V4(t) 0

0 0 0 e−t

 ,
and, using (3.15), we see that

lim
t→∞

1

t
arg det

([
V1(t) 0

0 et

]
− i
[
V2(t) 0

0 0

])
= lim
t→∞

1

t
arg
(
et(V1(t)− iV2(t))

)
= 0 .

Therefore, all the hypotheses of Theorem 3.6 are satisfied, as asserted. As in Ex-
ample 3.7, we conclude that there exist admissible pairs if and only if x0 = [ x1

0 ] =

[ 1 0
0 0 ] [ x1

c2 ] for any c2 ∈ R, which provides y0 =
[
m+ 0
0 1

]
[ x1
c2 ] =

[
m+x1
c2

]
. In this case

the minimum of the functional is −x2
1m

+/2 . And, since
V1(t) 0 V3(t) 0

0 et 0 0
V2(t) 0 V4(t) 0

0 0 0 e−t




x1

0
m+x1

c2

 =


(V1(t) + V3(t)m+)x1

0
(V2(t) + V4(t)m+)x1

c2 e
−t

 ,
then the feedback rule (1.5) provides the minimizing pair (x̃, ũ), with

x̃(t) =

[
(V1(t) + V3(t)m+)x1

0

]
, ũ(t) =

(
V2(t)− V1(t) + (V4(t)− V3(t))m+

)
x1 .

Example 3.9. Let f0 be the almost periodic function described by Johnson in [8],
already mentioned in Example 3.8, and let h0 be any almost periodic function with
frequency modulus contained in that of f0. Our aim is to analyze the minimization
problem for the functional

Ix0
: Px0

→ R ∪ {±∞} ,
(

[ x1
x2

] , u
)
7→
∫ ∞

0

Q
(
t,
[
x1(t)
x2(t)

]
, u(t)

)
dt,

which is evaluated on the set Px0
of measurable pairs (x, u) solving[

x1

x2

]′
=

[
1 h0(t)
0 1

] [
x1

x2

]
+

[
1
0

]
u

with x(0) = x0, and which is given by

Q(t, [ x1
x2

] , u) := [x1 x2 ]

[
f0(t) + 1 h0(t)
h0(t) h0(t)2

] [
x1

x2

]
+ [x1 x2 ]

[
1

h0(t)

]
u+ u2.

For reasons which will became clear later, we must consider in this case the (com-
mon) hull Ω of f0 and h0, whose construction we explained in Section 2.1. This
provides the families[

x1

x2

]′
=

[
1 h(ω·t)
0 1

] [
x1

x2

]
+

[
1
0

]
u ,

Qω(t, [ x1
x2

] , u) := [x1 x2 ]

[
f(ω·t) + 1 h(ω·t)
h(ω·t) h(ω·t)2

] [
x1

x2

]
+ [x1 x2 ]

[
1

h(ω·t)

]
u+ u2,

Ix0,ω : Px0,ω → R ∪ {±∞} ,
(

[ x1
x2

] , u
)
7→
∫ ∞

0

Qω
(
t,
[
x1(t)
x2(t)

]
, u(t)

)
dt
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for ω ∈ Ω, where Px0,ω is the set of the measurable pairs solving the control problem
corresponding to ω with initial state x0.

The corresponding family (3.12) takes the form
x1

x2

y1

y2


′

=


0 0 1 0
0 1 0 0

f(ω·t) 0 0 0
0 0 0 −1



x1

x2

y1

y2

 , (3.16)

which can be uncoupled to[
x1

y1

]′
=

[
0 1

f(ω·t) 0

] [
x1

y1

]
and

[
x2

y2

]′
=

[
1 0
0 −1

] [
x2

y2

]
. (3.17)

As said in Example 3.8, it is proved in [8] that the left family of systems in (3.17)
does not have exponential dichotomy over Ω. According to Remark 2.2.1, this as-
sertion is equivalent to the the existence of at least a nontrivial bounded solution for
at least one ω ∈ Ω. Clearly this bounded solution provides a bounded solution for
(3.16)ω, so that the four-dimensional family does not have exponential dichotomy
over Ω. Hence, we cannot apply Theorem 1.1.

Let us now take λ > 0 and consider the new families[
x1

x2

]′
=

[
1 h(ω·t)
0 1

] [
x1

x2

]
+

[
1 0
0 λ

] [
v1

v2

]
,

Qλω(t, [ x1
x2

] , [ v1v2 ]) := [x1 x2 ]

[
f(ω·t) + λ+ 1 h(ω·t)

h(ω·t) h(ω·t)2

] [
x1

x2

]
+ [x1 x2 ]

[
1 0
h(t) 0

] [
v1

v2

]
+ [ v1 v2 ]

[
1 0
0 λ

] [
v1

v2

]
,

Iλx0,ω : Pλx0,ω → R ∪ {±∞} ,
(

[ x1
x2

] , [ v1v2 ]
)
7→
∫ ∞

0

Qλω
(
t,
[
x1(t)
x2(t)

]
,
[
v1(t)
v2(t)

] )
dt ,

with associated family of linear Hamiltonian systems given by
x1

x2

y1

y2


′

=


0 0 1 0
0 1 0 λ

f(ω·t) + λ 0 0 0
0 0 0 −1



x1

x2

y1

y2

 . (3.18)

Let us fix λ > 0. Then the family of systems [ x1
y1 ]
′

=
[

0 1
f(ω·t)+λ 0

]
[ x1
y1 ] has exponen-

tial dichotomy over Ω, and the Lagrange planes of the solutions which are bounded

at ±∞ are represented by
[

1
m±
λ (ω)

]
: see again Example 7.37 of [14]. It is easy

to check that also the family [ x2
y2 ]
′

=
[

1 λ
0 −1

]
[ x2
y2 ] has exponential dichotomy, with

Lagrange planes of the solutions bounded at +∞ and −∞ given by
[

1
−2/λ

]
and [ 1

0 ]

respectively. Therefore the family (3.18) has exponential dichotomy, with

l+λ (ω) ≡


1 0
0 1

m+
λ (ω) 0
0 −2/λ

 ≡


1 0
0 −λ/2

m+
λ (ω) 0
0 1

 , l−λ (ω) ≡


1 0
0 1

m−λ (ω) 0
0 0

 .
As in Example 3.8 we can check by direct computation that the rotation number
of (3.18) is zero. In these conditions, Theorem 3.2 ensures the solvability of the
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problem for Iλx0,ω for all (x0, ω), being the value of the minimum (if x0 = [ x1
x2

])

− 1

2
[x1 x2 ]

[
m+
λ (ω) 0
0 −2/λ

] [
x1

x2

]
= −1

2
x2

1m
+
λ (ω) +

1

λ
x2

2 . (3.19)

On the other hand, it follows from Theorem 5.58 and Proposition 5.51 of [14]
that, if 0 < λ1 ≤ λ2, then m+

λ2
(ω) ≤ m+

λ1
(ω) ≤ m−λ1

(ω) ≤ m−λ2
(ω). Therefore,

there exist the limits n±(ω) := limλ→0+ m±λ (ω) for all ω ∈ Ω. (As a matter of
fact, n± are the principal functions of the system corresponding to λ = 0, which is
uniformly weakly disconjugate: see for instance Theorem 5.61 of [14]). Moreover,
there exists an invariant subset Ω0 ( Ω with full measure (for the unique ergodic
measure on the hull) such that, if ω ∈ Ω0, then: n+(ω) < n−(ω), and the solution of

(3.16)ω with initial data
[

x0

n±(ω) x0

]
, which can be written as

[
x1(t)

n±(ω·t) x1(t)

]
, belongs

to L2([0,∞),R2) and satisfies

lim
t→±∞

[
x1(t)

n±(ω·t)x1(t)

]
=

[
0
0

]
. (3.20)

The proofs of the last assertions follow from the properties of this family of two-
dimensional systems described in [8], and are based in the fact that the functions n+

and n− provide the Oseledets subbundles associated to the negative and positive
Lyapunov exponents of the family. The interested reader can find in Theorem
6.3(iii) of [15] a detailed proof (formulated for the quasiperiodic case, but applicable
without changes to the almost periodic case), and in Section 8.7 of [14] an exhaustive
description of the construction of an example with similar behavior.

Let us now observe that the limits as λ→ 0+ of l±λ (ω) are the Lagrange planes

l+(ω) ≡


1 0
0 0

n+(ω) 0
0 1

 and l−(ω) ≡


1 0
0 1

n−(ω) 0
0 0

 .
In addition, if ω ∈ Ω0, then the solutions of (3.16)ω with initial data in l±(ω) tend
to 0 as t → ±∞, as deduced from (3.20) and from the behavior of the solutions
of the right-hand system of (3.17). We will see that, if ω ∈ Ω0, then the initial
states x0 for which the minimization problem is solvable, as well as the value of the
minimum and a minimizing pair, can be obtained from l+(ω). The analogy with
the situation described in Theorem 1.1 will be obvious.

Let us fix ω ∈ Ω0 and x0 = [ x1
x2

] ∈ R2, and let
( [

x̄1
x̄2

]
, ū
)

be an admissible pair

for Ix0,ω. It is easy to check that Ix0,ω

( [
x̄1
x̄2

]
, ū
)

= Iλx0,ω

( [
x̄1
x̄2

]
, [ ū0 ]

)
for any λ > 0,

which combined with (3.19) ensures that

Ix0,ω

( [
x̄1
x̄2

]
, ū
)
≥ −1

2
x2

1m
+
λ (ω) +

1

λ
x2

2 (3.21)

for any λ > 0. By taking limit as λ → 0+ we conclude from the admissibility and
from the existence of the real limit n+(ω) := limλ→0+ m+

λ (ω) that x2 must be 0.

And this is equivalent to ensure that there exists [ y1y2 ] ∈ R2 such that

[ x1
x2
y1
y2

]
∈ l+(ω):

we can take [ y1y2 ] =
[
n+x1
c2

]
for any c2 ∈ R.
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We work from now on with x0 = [ x1
0 ]. As just said, taking limit as λ → 0+ in

(3.21) yields

Ix0,ω

( [
x̄1
x̄2

]
, ū
)
≥ −1

2
x2

1 n
+(ω)

for any admissible pair. In fact, the right value is the infimum, since it is reached

at the admissible pair
( [

x̃1
0

]
, ũ
)

defined from the solution

[
x̃1(t)

0
n+(ω·t) x̃1(t)

0

]
of (3.16)ω

with initial data

[ x1
0

n+(ω) x1

0

]
via the feedback rule (analogous to (1.11)ω)

ũ(t) = [ 1 0 ]

[
n+(ω·t) x̃1(t)

0

]
− [ 1 1 ]

[
x̃1(t)

0

]
= (n+(ω·t)− 1) x̃1(t) .

This assertion follows from Lemma 3.4 (which does not require Hypotheses 3.1)
combined with (3.20).

We finally observe that there is no way to know if the initial problem of this
example corresponds to a point ω ∈ Ω0 (although the probability is 1, as the
measure of the set Ω0). In other words, this procedure does not allow us to provide
conditions under which the initial minimization problem is solvable. This is one
more sample of the extreme complexity which may arise in the nonautonomous
dynamics.

Acknowledgement. We thank an anonymous referee, whose careful reading and
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