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Abstract: Many decision problems manage linguistic information assessed through several ordered
qualitative scales. In these contexts, the main problem arising is how to aggregate this qualitative
information. In this paper, we present a multi-criteria decision-making procedure that ranks a
set of alternatives assessed by means of a specific ordered qualitative scale for each criterion.
These ordered qualitative scales can be non-uniform and be formed by a different number of linguistic
terms. The proposed procedure follows an ordinal approach by means of the notion of ordinal
proximity measure that assigns an ordinal degree of proximity to each pair of linguistic terms of
the qualitative scales. To manage the ordinal degree of proximity from different ordered qualitative
scales, we provide a homogenization process. We also introduce a stochastic approach to assess the
robustness of the conclusions.

Keywords: multiple criteria analysis; qualitative scales; ordinal proximity measures; stochastic analysis

1. Introduction

Many disciplines such as Marketing, Tourism, Engineering, Health Economics or Medical Care
address the problem of choosing the optimal choice from a set of alternatives which can be assessed
regarding multiple criteria through several ordered qualitative scales (OQSs). Likewise, in the framework
of decision-making problems, some situations require that experts express their assessments taking
into account their knowledge or experience by means of specific OQSs formed by linguistic terms
(see Delgado et al. [1], Herrera and Herrera-Viedma [2], Herrera et al. [3] and de Andrés et al. [4],
among others).

The concept of linguistic term was introduced by Zadeh [5–7] when he defined the concept
of linguistic variable as those variables whose values are words or terms from natural or artificial
languages. For example, “ugly”, “fair” and “beautiful” could be linguistic terms for a linguistic
variable Aesthetics, as these are not numerical values.

The use of linguistic assessments coming from of different OQSs is not infrequent. For instance,
the Statistical office of the European Union (Eurostat) uses different OQSs in the EU Statistics on
Income and Living Conditions (EU-SILC). In its questionnaires we can easily find OQSs formed by
different linguistic terms. For instance, in the question Q19 (HS140), Eurostat uses the following 3-term
OQS: {“a heavy burden”, “somewhat a burden”, “not burden at all”} for asking households about
the financial burden of total housing cost and in the question Q26 (HS120), a 5-term OQS: {“with
great difficulty”, “with difficulty”, “with some difficulty”, “fairly easily”, “easily”, “’very easily”} for
analyzing the households’ difficulties to make ends meet. On the other hand, in clinical diagnosis is also
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needed to aggregate ordinal information from different OQSs. The Hospital Anxiety and Depression
Scale (HADS) developed by Zigmond and Snaith [8] also uses different scales for measuring depression
severity in primary care. Some of these scales are: {“very seldom”, “not often”, “sometimes”, “often”},
{“not at all”, “not often”, “usually", “definitely”}, or {“only occasionally”, “from time to time, but not
too often”, “a lot of the time”, “a great deal of the time”}.

OQSs formed by linguistic terms are appropriate tools for collecting the agents’ opinions and
judgments in situation of vagueness and imprecision. People are more comfortable using words rather
than numbers to describe probabilities. In this sense, authors such as Zimmer [9,10] and Windschitl and
Wells [11] point out that words are more natural than numbers, since verbal expressions of uncertainty
are easily understood and, besides, they emerged long before the development of probability. On the
other hand, agents’ opinions and judgments are generally imprecise, and therefore it would be
misleading to represent them by precise numerical values (see Beyth-Marom [12], Wallsten et al. [13]
and Teigen [14], among others).

A common practice when dealing with OQSs is to start by converting the qualitative information
into numbers by assigning numerical values to each linguistic term of the scale. However, if done
prematurely and arbitrarily, numerical codifications can produce negative effects. The first is concerned
with the validity of translating an OQS into a numerical form. That practice introduces properties
that were not present in the original linguistic scale and imposes more informative content on the
qualitative scale. For example, when the numerical codifications are equidistant, it is possible to
assume that there are the same differences between terms of scales. On the other hand, ordinal scales
establish an ordered relationship between the objects being measured. In these scales, numerical
codifications do not provide information on the magnitude of the differences between the terms; they
only indicate different levels of the attribute or characteristics. Thus, in the ordinal scales, the numerical
values obtained from measures of location and dispersion, such as arithmetic mean or variance are
not meaningful, and they can lead to misinterpretation of results (see Merbitz et al. [15], Blair and
Lacy [16], Franceschini [17], Bashkansky and Gadrich [18] and Gadrich et al. [19], among others).

In Franceschini et al. [20], it is shown that the arithmetic mean can distort the result obtained
from ordinal data. To illustrate this issue, the authors consider the results of the visual control for a
sample of 30 corks. The corks are assessed by the following 5-term OQS: {“reject”, “poor quality”,
“medium quality”, “good quality”, “excellent quality”}. Initially, they assume that the scale is equally
spaced and assign the numerical codification 1, 2, 3, 4, 5 to the corresponding linguistic terms.
Considering this numerical codification, the arithmetic mean of the sample (3.7) indicates that the
mean of the sample would be between “medium quality” and “good quality”. Afterwards, they
consider different proximities between the terms of the scale and suggest a new numerical codification
1, 3, 9, 27, 81. In this case, the new arithmetic mean (32.9) provides a different result: the mean of the
sample would be between “good quality” and “excellent quality”. Likewise, Stevens [21] pointed out
that means and standard deviations ought not to be used with ordinal scales, since these statistics
imply a knowing more than the relative rank-order data. In particular, the use of means and standard
deviations computed on an ordinal scale is not reasonable when the consecutive intervals on the scale
are unequal in size.

To overcome these issues, several methods have been proposed in the literature for managing
linguistic information. For instance, those based on fuzzy techniques (see Herrera and Martínez [22],
Herrera et al. [23], Wang [24], Liu and Jin [25] and Xiao et al. [26], among others), computing with
words (see Zadeh [5–7,27], Li et al. [28], and Herrera et al. [29], among others) or dominance criteria
and cumulative distribution functions (see Franceschini et al. [20,30] and Bashkansky-Gadrich [18]).
However, the above procedures present some limitations. They do not consider how agents perceive
the proximities between the linguistic terms of OQSs and, besides, some of them imply a direct
conversion into cardinal values.

In general, OQSs are devised as balanced (they are formed by a fixed neutral central linguistic
term and the rest of the terms are symmetrically distributed) and uniform (all the proximities between
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consecutive linguistic terms are considered identical). Nevertheless, in some cases the nature and
the semantics of linguistic terms can be such that agents appreciate different proximities between the
terms of the scale, i.e., they perceive the OQS as non-uniform. For instance, the OQS used in the HADS
can be understood as non-uniform if agents perceive that “usually” is closer to “definitely” than to
“not often”.

In the context of OQSs that are not uniformly and symmetrically distributed, Herrera et al. [23]
developed a methodology to deal with unbalanced linguistic information. Their methodology is based
on the concept of linguistic hierarchy and on the 2-tuple fuzzy linguistic representation model. This
succeeds in allowing non-uniform scales in the 2-tuple fuzzy linguistic representation model, which
is still equivalent to work with numerical values, as pointed out by García-Lapresta [31], requiring a
qualitative to cardinal transformation at the outset.

In this paper, to deal with non-uniform OQSs in a way that postpones as much as possible
the need to use numbers, we use ordinal proximity measures, introduced by García-Lapresta
and Pérez-Román [32]. The concept of ordinal proximity measure takes into account psychological
proximities between linguistic terms in a purely ordinal way by means of ordinal degrees. It is important
to mention that these ordinal degrees are only abstract objects that represent different degrees of
proximity. Likewise, we use the notion of metrizable ordinal proximity measure, which behaves
as if the ordinal comparisons between the terms of the OQS were managed through a linear metric
(see García-Lapresta et al. [33]). These concepts were recently implemented in some decision-making
procedures where alternatives are always assessed through the same OQS. García-Lapresta and
Pérez-Román [34] introduce a voting system that ranks the alternatives taking into account the
medians of the ordinal degrees of proximity between the obtained individual assessments and the
highest linguistic term of the scale. Later, García-Lapresta and González del Pozo [35] presented an
ordinal multi-criteria decision-making (MCDM) procedure under uncertainty, extending the previous
procedure to a multi-criteria setting, in which agents are allowed to assign two consecutive terms of
the OQS to each alternative when they hesitate.

The aim of this paper is to propose a new MCDM procedure for managing ordinal information
coming from several OQSs. This new procedure allows that each criterion uses a different OQS to
evaluate the alternatives, thus making it more widely applicable. These OQSs can be considered
to be non-uniform and can even be formed with a different number of linguistic terms for different
criteria. The MCDM procedure yields a ranking of the alternatives based on an intuitive principle
of compensation between advantages and disadvantages of each alternative in comparison with its
opponents. To respect the ordinal information coming from the OQSs, the MCDM procedure follows
an ordinal approach by means of the concept of ordinal proximity measure that avoid assigning
arbitrary numerical codifications to the linguistic terms of the scales. In the proposed procedure, we
also provide and analyze a homogenization process for managing the ordinal degrees of proximity
from different OQSs.

The rest of this paper is organized as follows. Section 2 briefly introduces ordinal proximity
measures. Section 3 presents a new MCDM procedure for ranking a set of alternatives assessed
through a specific OQS for each criterion. Section 4 includes an example that illustrates how the
proposed procedure works and we introduce a stochastic analysis to assess the robustness of the
conclusions obtained. Likewise, we also include a comparison of our procedure with the methods
SMAA-O (see Lahdelma [36]) and ZAPROS III (see Larichev [37]) that belongs to the family of verbal
decision-making analysis. Finally, Section 5 presents some concluding remarks.

2. Preliminaries

Let us consider an OQS L = {l1, . . . , lg}, with g ≥ 3, arranged in ascending order, l1 ≺ · · · ≺ lg.
We now recall the concept of ordinal proximity measure, introduced by García-Lapresta and

Pérez-Román [32]. An ordinal proximity measure is a mapping that assigns an ordinal degree of
proximity to each pair of linguistic terms of an OQS L. These ordinal degrees of proximity belong to
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a linear order ∆ = {δ1, . . . , δh}, with δ1 � · · · � δh, being δ1 and δh the maximum and the minimum
degrees of proximity, respectively. The elements of ∆ are not numbers and they only represent different
degrees of proximity.

Definition 1 ([32]). An ordinal proximity measure (OPM) on L with values in ∆ is a mapping
π : L× L −→ ∆, where π(lr, ls) = πrs represents the degree of proximity between lr and ls, satisfying the
following conditions:

1. Exhaustiveness: For every δ ∈ ∆, there exist lr, ls ∈ L such that δ = πrs.
2. Symmetry: πsr = πrs, for all r, s ∈ {1, . . . , g}.
3. Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity: πrs � πrt and πst � πrt, for all r, s, t ∈ {1, . . . , g} such that r < s < t.

Every OPM can be represented by a g× g symmetric matrix with coefficients in ∆, where the
elements in the main diagonal are πrr = δ1, r = 1, . . . , g:

π11 · · · π1s · · · π1g
· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg

· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

 .

This matrix is called proximity matrix associated with π.
A prominent class of OPMs, introduced by García-Lapresta et al. [33], is the one of metrizable

OPMs which is based on linear metrics on OQSs.

Definition 2 ([33]). A linear metric on L is a mapping d : L×L −→ R satisfying the following conditions
for all r, s, t ∈ {1, . . . , g}:

1. Positiveness: d(lr, ls) ≥ 0.
2. Identity of indiscernibles: d(lr, ls) = 0 ⇔ lr = ls.
3. Symmetry: d(ls, lr) = d(lr, ls).
4. Linearity: d(lr, lt) = d(lr, ls) + d(ls, lt) whenever r < s < t.

Definition 3 ([33]). An OPM π : L×L −→ ∆ is metrizable if there exists a linear metric d : L×L −→ R
such that πrs � πtu ⇔ d(lr, ls) < d(lt, lu), for all r, s, t, u ∈ {1, . . . , g}.

Consequently, an OPM is metrizable if the ordinal comparisons between linguistic terms were
made as if the agent had in mind a linear metric.

For g = 3 there are three OPMs and all of them are metrizable. However, when g > 3 the
complexity of constructing OPMs increases. In these cases, we can apply an algorithm that generates
metrizable OPMs (see García-Lapresta et al. [33]). To do that, the algorithm is based on appropriate
sequences of questions whose answers lead to metrizable OPMs. For g = 4 there are 51 OPMs, but only
25 of them are metrizable.

3. The MCDM Procedure

In this section, we present an MCDM procedure for ranking a set of alternatives X = {x1, . . . , xn},
with n ≥ 2 that are assessed by a group of agents A = {a1, . . . , am}, with m ≥ 2, regarding
a set of different criteria C = {c1, . . . , cq} . MCDM authors have proposed many methods for
determining criteria weights (see, for instance, Solymosi and Dombi [38], Borcherding et al. [39],
Diakoulaki et al. [40], Marichal and Roubens [41], Figueira and Roy [42], and Kao [43], among others).
To focus on the main ideas in this contribution, we assume that the weights are exogenously given
and they are collected in a weighting vector (w1, . . . , wq) ∈ [0, 1]q, with w1 + · · ·+ wq = 1. This is a
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common situation for evaluation panels and competition juries in which the weights are given in the
regulations. Nevertheless, the procedure can easily be adapted to the case in which each agent uses
different weights.

Agents assess the alternatives through a specific OQS for each criterion ck ∈ C, Lk = {lk
1, . . . , lk

gk
},

equipped with a metrizable OPM πk : Lk ×Lk −→ ∆k, where ∆k = {δk
1, . . . , δk

hk
}. To focus on the main

ideas in this contribution, we assume that all agents use the same scale and the same OPMs (one for
each criterion). Again, this assumption can easily be dropped. Assuming the agents have the same
OPMs means that they need to agree on the ordinal proximity levels before making their assessments
of the alternatives, which is an essential step to ensure they attach the same meaning to the possible
grades in the scale.

The proposed procedure is related to the Copeland rule (see Copeland [44]) and to the net flow
method used in PROMETHEE II (see Brans [45], Brans and Vincke [46], Bouyssou [47] and Brans
and De Smet [48]). The Copeland rule is a voting system that ranks order the alternatives taking
into account the number of pairwise victories minus the number of pairwise defeats. The method
PROMETHEE II generates a ranking considering positive and negative flows for each alternative
according to the given criteria weights. The positive flow shows how much an alternative dominates
over the others (the higher the positive flow, the better the alternative). The negative flow shows
the dominance of all the other alternatives over the considered one (the smaller the negative flow,
the better the alternative).

The assessments provided by the agents to the alternatives with respect to the criterion ck are
collected in a profile Vk, a matrix of m rows and n columns of linguistic terms, where va,k

i ∈ Lk is the
assessment given by the agent a to the alternative xi regarding the criterion ck:

Vk =


v1,k

1 · · · v1,k
i · · · v1,k

n
· · · · · · · · · · · · · · ·
va,k

1 · · · va,k
i · · · va,k

n
· · · · · · · · · · · · · · ·
vm,k

1 · · · vm,k
i · · · vm,k

n

 .

3.1. The Procedure

To rank the alternatives, the procedure is divided into the following steps:

1. Gather the agents’ assessments in the corresponding profiles V1, . . . , Vq.
2. Calculate, for every pair of alternatives xi, xj ∈ X, the ordinal degrees of proximity between the

assessments given by the agents, πk(va,k
i , va,k

j
)
, for all a ∈ A and ck ∈ C.

3. Homogenize the ordinal degrees of proximity coming from the metrizable OPMs considered in
the different criteria by means of a mapping ρ :

⋃q
k=1 ∆k −→ [0, 1]. Such mapping ρ must satisfy

the following conditions for every k ∈ {1, . . . , q}:

1. Min-normalization: ρ
(

δk
1

)
= 0.

2. Max-normalization: ρ
(

δk
hk

)
= 1.

3. Strict monotonicity: ρ
(

δk
r+1

)
> ρ

(
δk

r

)
, ∀ r ∈ {1, . . . , hk − 1}.
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4. Assign a score to the alternatives, through the mapping S : X −→ R defined as

S(xi) =
m

∑
a=1

q

∑
k=1

va,k
i �va,k

j

wk · ρ
(

πk(va,k
i , va,k

j
))
−

m

∑
a=1

q

∑
k=1

va,k
i ≺va,k

j

wk · ρ
(

πk(va,k
i , va,k

j
))

. (1)

Following the approaches of the Copeland rule and the PROMETHEE II, S(xi) is divided into two
parts. The first part of Equation (1) considers, for the criterion k and for the agent a, the victories
of the linguistic assessment va,k

i over the rest of assessments va,k
j (the higher, the better), and the

second part the defeats of the linguistic assessment va,k
i over the rest of assessments va,k

j (the lower,
the better).

In Equation (1), πk(va,k
i , va,k

j
)

measures for the criterion k and for the agent a, the proximity

between the assessments va,k
i and va,k

j . By means of these ordinal degrees of proximity, S(xi)

considers the scope of victories and defeats. The mapping ρ converts the ordinal degrees of
proximity to the interval [0,1]. Then, the final score is calculated multiplying the obtained results
by the corresponding weights.

5. Order the alternatives through the weak order � on X:

xi � xj ⇔ S(xi) ≥ S(xj).

We now enumerate some properties that the proposed procedure satisfies:

1. Anonymity: All agents are treated equally by the procedure.
2. Neutrality: All alternatives are treated equally by the procedure.
3. Monotonicity: If an agent improves the evaluation of an alternative on some criterion, all else

remaining equal, then its score increases.
4. Cancelation: In the uniform case, when two agents a and b increase and decrease at the same time

their assessments, in such a way that agent a increases the assessment va,k
i = lr to lr+1 and agent

b decreases the assessment vb,k
i = lr to lr−1, for some alternative xi and criterion ck, then S(xi)

does not change.

Definition 4. Given a metrizable OPM π : L×L −→ ∆, ρ preserves OPM linearity if ρ(πrt) = ρ(πrs) +

ρ(πst), for all r, s, t ∈ {1, . . . , g} such that r < s < t.

Remark 1. If ρ preserves OPM linearity, then one can interpret the proximities between levels as the difference
of proximities between such levels and the worst performance as follows:

ρ
(

πk(va,k
i , va,k

j )
)
=


ρ
(

πk(lk
1, va,k

i )
)
− ρ
(

πk(lk
1, va,k

j )
)

, if va,k
i � va,k

j ,

ρ
(

πk(lk
1, va,k

j )
)
− ρ
(

πk(lk
1, va,k

i )
)

, if va,k
i ≺ va,k

j .
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Moreover, this allows rewriting Equation (1) as:

S(xi) =
m

∑
a=1

q

∑
k=1

va,k
i �va,k

j

wk ·
(

ρ
(

πk(lk
1, va,k

i )
)
− ρ
(

πk(lk
1, va,k

j )
))
−

m

∑
a=1

q

∑
k=1

va,k
i ≺va,k

j

wk ·
(

ρ
(

πk(lk
1, va,k

j )
)
− ρ
(

πk(lk
1, va,k

i )
))

=

m

∑
a=1

(
n ·

q

∑
k=1

wk · ρ
(

πk(lk
1, va,k

i )
)
−

q

∑
k=1

n

∑
j=1

wk · ρ
(

πk(lk
1, va,k

j )
))

. (2)

Since the rightmost summation is a constant that does not depend on xi, if ρ preserves OPM linearity then
its overall evaluation depends only on

m

∑
a=1

q

∑
k=1

wk · ρ
(

πk(lk
1, va,k

i )
)

. (3)

Remark 2. The simplest mapping considers that consecutive qualitative levels on a given criterion always
represent the same difference, as follows:

ρ(δk
r ) =

r− 1
hk − 1

. (4)

This mapping preserves OPM linearity if the OPM is uniform, but not in the general case.

3.2. Linear Programming Formulation

A linear program can be solved to obtain a ρ mapping that preserves OPM linearity. The following
formulation does so by maximizing the minimum difference between consecutive levels, i.e.,

max min
r=2,...,hk

(
ρ(δk

r )− ρ(δk
r−1)

)
.

This can be formulated as a linear program by introducing an auxiliary variable σ.
To simplify notation, let ρk

r,s denote ρ(πk
rs). The main decision variables are the ρ variables

corresponding to the consecutive levels, ρk
1,2, ρk

2,3, . . . , ρk
gk−1,gk

, plus the auxiliary variable σ.
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Linear Program:

max σ

subject to:
c

∑
r=c−1

ρk
r−1,r = ρk

c−2,c, for c = 3, . . . , gk [C1]

c

∑
r=c−2

ρk
r−1,r = ρk

c−3,c, for c = 4, . . . , gk [C2]

. . .
gk

∑
r=2

ρk
r−1,r = ρk

1,gk
= 1 [C3]

ρk
r,s = ρk

t,u, ∀r, s, t, u : r > s ∧ t > u ∧ πk
rs = πk

tu [C4]

ρk
r,s ≥ ρk

t,u + σ, ∀r, s, t, u : r > s ∧ t > u ∧ πk
rs > πk

tu [C5]

ρk
r,s ≤ ρk

t,u − σ, ∀r, s, t, u : r > s ∧ t > u ∧ πk
rs < πk

tu [C6]

ρk
r−1,r ≥ σ, for r = 2, . . . , gk [C7]

In this linear program, the first group of constraints, [C1], indicates that every subset of three
consecutive levels lk

c−2, lk
c−1, lk

c must be such that ρk
c−2,c−1 + ρk

c−1,c = ρk
c−2,c; a second group of

constraints, [C2], indicates that every subset of four consecutive levels lk
c−3, lk

c−2, lk
c−1, lk

c must be such
that ρk

c−3,c−2 + ρk
c−2,c−1 + ρk

c−1,c = ρk
c−3,c, and so on, until constraint [C3]. These constraints together

ensure linearity. For instance, if a scale has 5 linguistic terms (gk = 5), then these linearity constraints
would be: ρk

1,2 + ρk
2,3 = ρk

1,3, ρk
2,3 + ρk

3,4 = ρk
2,4, ρk

3,4 + ρk
4,5 = ρk

3,5 ([C1]), ρk
1,2 + ρk

2,3 + ρk
3,4 = ρk

1,4,
ρk

2,3 + ρk
3,4 + ρk

4,5 = ρk
2,5 ([C2]), and ρk

1,2 + ρk
2,3 + ρk

3,4 + ρk
4,5 = ρk

1,5 = 1 ([C3]).
Then, constraints [C4-C6] are needed to ensure the monotonicity of the ρ mapping. Constraint

[C4] can be used to reduce the number of variables in the linear program. Finally, constraint [C7]
requires the ρ mapping to be positive.

Proposition 1. If an OPM is uniform, then Equation (4) is an optimal solution for the above linear program.

Proof. Given several levels gk, a uniform OPM requires hk = gk proximity degrees and Equation (4)
yields ρ(δk

1) = 0, ρ(δk
2) =

1
gk−1 , ρ(δk

3) =
2

gk−1 , . . . , ρ(δk
gk
) = 1. In such OPMs, πk

12 = πk
23, πk

23 = πk
24,

etc., which by constraint [C4] implies ρk
1,2 = ρk

2,3, etc. Then, constraint [C3] implies ∑
gk
r=2 ρk

r−1,r =

(gk − 1)ρk
1,2 = 1, which means that the solution provided by Equation (4) is the only one satisfying

these constraints.
Moreover, ρk

c−2,c−1 = ρk
c−1,c = ρ(δk

2) and ρk
c−2,c = ρ(δk

3) = 2ρ(δk
2), hence the constraints [C1] are

satisfied. Similarly, all other linearity constraints [C2] until [C3] are naturally satisfied. Therefore,
Equation (4) is a feasible solution to the linear program and, since it is the only feasible solution,
it is also optimal.

3.3. Stochastic Analysis

As mentioned before, the ρ mapping can be obtained by a formula (e.g., Equation (4), which
considers equal differences between any consecutive qualitative levels on a given criterion), or it can
result from an optimization process enforcing linearity. However, in general there can be multiple other
ρ mappings preserving linearity. To analyze the results corresponding to the multiple ρ mappings that
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preserve linearity it is possible to follow a stochastic approach, inspired by the Stochastic Multi-attribute
Acceptability Analysis (SMAA) methods [36,49–51].

In the stochastic analysis, one samples randomly many ρ mappings, and then results are computed
for each of these mappings. This allows obtaining statistics about the results, such as:

• The rank acceptability indices rp
i (for each alternative xi, for each ranking position p), which

is the probability (in terms or relative frequency) that alternative xi is ranked in position p
(i, p = 1, . . . , n).

• The pairwise winning indices p(i, j) (for each pair of alternatives (xi, xj)), which is the probability
(in terms or relative frequency) that alternative xi is ranked better than xj (i, j = 1, . . . , n).

To generate a random ρ mapping preserving linearity it is sufficient to generate randomly the ρ

values corresponding to the differences in the consecutive levels ρk
1,2, ρk

2,3, . . . , ρk
gk−1,gk

. In one extreme
case, when the consecutive levels are all different, the number of random numbers to generate is
equal to gk − 1. In the other extreme case, when the consecutive levels are all equal, no random
number needs to be generated. The needed random numbers can be sorted from lowest to highest
and assigned in this order to the πk

i,i+1, from the lowest to the highest corresponding πk
i,i+1. When

needed, a hit-and-run approach [50] can be followed to exclude cases in which the ρ values obtained
by summing the obtained numbers do not respect the ordinal relation between the remaining πk

rs.
For the cases in which the ordinal relations are respected, the generated random values can be divided
by the sum ρk

1,2 + ρk
2,3 + · · ·+ ρk

gk−1,gk
to normalize this sum to unity.

4. Practical Applications

To show how the proposed procedure works, we present an illustrative example that considers
different proximities between the terms of OQSs. We also introduce a stochastic approach to assess the
robustness of the conclusions obtained. Lastly, we apply our procedure to rank a selection of Research
and Development (R&D) projects and compare its results with the ones obtained applying the methods
SMAA-O (see Lahdelma [36]) and ZAPROS III (see Larichev [37]).

4.1. An Illustrative Example

In this subsection, we apply the MCDM procedure to rank a set of alternatives. To do that, we
consider three hotels which have been assessed by six agents taking into account three criteria: location,
comfort of the rooms and service.

Table 1 shows the OQSs used for evaluating each criterion. To determine the criteria weights
in hotel selection, we consider an empirical study where the most important criteria are those
related to rooms such as: comfort and equipment of rooms, followed by the service and location
(see Zaman et al. [52]). The different weights associated with each criterion are presented in Table 2
and the assessments given by the agents over the hotels are collected in Table 3.

Table 1. OQSs for each criterion.

Location Rooms Service

l1
1 Poor l2

1 Very uncomfortable l3
1 Poor

l1
2 Acceptable l2

2 Somewhat uncomfortable l3
2 Fair

l1
3 Good l2

3 Neither comfortable nor uncomfortable l3
3 Good

l2
4 Somewhat comfortable l3

4 Excellent

l2
5 Very comfortable
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Table 2. Weights for each criterion.

Weights

w1 0.20

w2 0.50

w3 0.30

Table 3. Linguistic assessments given by the agents.

Hotel 1 Hotel 2 Hotel 3 Hotel 1 Hotel 2 Hotel 3

Location l1
2 l1

3 l1
2 Location l1

3 l1
2 l1

2

Rooms l2
4 l2

5 l2
3 Rooms l2

5 l2
4 l2

4

Service l3
2 l3

1 l3
3 Service l3

4 l3
3 l3

3

Assessments given by the agent 1. Assessments given by the agent 2.

Hotel 1 Hotel 2 Hotel 3 Hotel 1 Hotel 2 Hotel 3

Location l1
1 l1

2 l1
3 Location l1

2 l1
3 l1

3

Rooms l2
5 l2

3 l2
5 Rooms l2

3 l2
3 l2

4

Service l3
1 l3

2 l3
3 Service l3

2 l3
3 l3

3

Assessments given by the agent 3. Assessments given by the agent 4.

Hotel 1 Hotel 2 Hotel 3 Hotel 1 Hotel 2 Hotel 3

Location l1
2 l1

3 l1
2 Location l1

3 l1
3 l1

3

Rooms l2
3 l2

4 l2
2 Rooms l2

4 l2
5 l2

3

Service l3
4 l3

3 l2
3 Service l3

3 l3
1 l3

3

Assessments given by the agent 5. Assessments given by the agent 6.

To illustrate the proposed procedure, we consider three different cases. First, the uniform case;
and then, two non-uniform cases.

4.1.1. The Uniform Case

The uniform case considers the metrizable OPMs π1, π2 and π3 associated with the proximity
matrices A22, A2222 and A222:

A22 =


δ1

1 δ1
2 δ1

3

δ1
1 δ1

2

δ1
1

 , A2222 =



δ2
1 δ2

2 δ2
3 δ2

4 δ2
5

δ2
1 δ2

2 δ2
3 δ2

4

δ2
1 δ2

2 δ2
3

δ2
1 δ2

2

δ2
1


,

A222 =



δ3
1 δ3

2 δ3
3 δ3

4

δ3
1 δ3

2 δ3
3

δ3
1 δ3

2

δ3
1
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that can be visualized in Figure 1. The subindices of the matrices A′s correspond to the subindices
of the δ′s appearing in the coefficients just over the main diagonal. We follow this pattern to denote
subsequent matrices.

l1
1 l1

2

δ1
2 l1

3

δ1
2

(a)

l2
1 l2

2

δ2
2 l2

3

δ2
2 l2

4

δ2
2 l2

5

δ2
2

(b)

l3
1 l3

2

δ3
2 l3

3

δ3
2 l3

4

δ3
2

(c)

Figure 1. OPMs. Uniform case. (a) Metrizable OPM associated with the proximity matrix A22;
(b) Metrizable OPM associated with the proximity matrix A2222; (c) Metrizable OPM associated with
the proximity matrix A222.

Table 4 shows for Hotel 1 the π values obtained taking into account the above metrizable OPMs
and the linguistic assessments contained in Table reftab:assessments.

Table 4. δ values obtained for hotel 1. Uniform case.

Agent 1 Agent 2 Agent 3
vi vj π(vi, vj) vi vj π(vi, vj) vi vj π(vi, vj)

H1 vs. H2

Location l1
2 l1

3 δ2 l1
3 l1

2 δ2 l1
1 l1

2 δ2

Rooms l2
4 l2

5 δ2 l2
5 l2

4 δ2 l2
5 l2

3 δ3

Service l3
2 l3

1 δ2 l3
4 l3

3 δ2 l3
1 l3

2 δ2

H1 vs. H3

Location l1
2 l1

2 δ1 l1
3 l1

2 δ2 l1
1 l1

3 δ3

Rooms l2
4 l2

3 δ2 l2
5 l2

4 δ2 l2
5 l2

5 δ1

Service l3
2 l3

3 δ2 l3
4 l3

3 δ2 l3
1 l3

3 δ3

Agent 4 Agent 5 Agent 6
vi vj π(vi, vj) vi vj π(vi, vj) vi vj π(vi, vj)

H1 vs. H2

Location l1
2 l1

3 δ2 l1
2 l1

3 δ2 l1
3 l1

3 δ1

Rooms l2
3 l2

3 δ1 l2
3 l2

4 δ2 l2
4 l2

5 δ2

Service l3
2 l3

3 δ2 l3
4 l3

3 δ2 l3
3 l3

1 δ3

H1 vs. H3

Location l1
2 l1

3 δ2 l1
2 l1

2 δ1 l1
3 l1

3 δ1

Rooms l2
3 l2

4 δ2 l2
3 l2

2 δ2 l2
4 l2

3 δ2

Service l3
2 l3

3 δ2 l3
4 l3

3 δ2 l3
3 l3

3 δ1

After applying the procedure to Hotel 1 produces the following results:
Location:

0.20 ·
(
−1

2
+

1
2
− 1

2
− 1

2
− 1

2
+ 0 + 0 +

1
2
− 2

2
− 1

2
+ 0 + 0

)
= −0.50.
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Rooms:

0.50 ·
(
−1

4
+

1
4
+

2
4
+ 0− 1

4
− 1

4
+

1
4
+

1
4
+ 0− 1

4
+

1
4
+

1
4

)
= 0.375.

Service:

0.30 ·
(

1
3
+

1
3
− 1

3
− 1

3
+

1
3
+

2
3
− 1

3
+

1
3
− 2

3
− 1

3
+

1
3
+ 0
)
= 0.10.

Thus, for Hotel 1 we obtain S(H1) = −0.5 + 0.375 + 0.10 = −0.025.
After applying the procedure to Hotels 2 and 3, we have S(H2) = −0.025 and S(H3) = 0.05.

Then, Hotel 3 � Hotel 1 ∼ Hotel 2.

4.1.2. A non-Uniform Case 1

In this case, we continue taking into account the same OPM, A222 , for the third scale contained in
Table 1. However, we consider two different ways to devise the other scales. These latter scales are
equipped with the metrizable OPMs associated with the proximity matrices A23, A2332:

A23 =


δ1

1 δ1
2 δ1

4

δ1
1 δ1

3

δ1
1

 , A2332 =



δ2
1 δ2

2 δ2
4 δ2

6 δ2
7

δ2
1 δ2

3 δ2
5 δ2

6

δ2
1 δ2

3 δ2
4

δ2
1 δ2

2

δ2
1


,

A222 =



δ3
1 δ3

2 δ3
3 δ3

4

δ3
1 δ3

2 δ3
3

δ3
1 δ3

2

δ3
1


that can be visualized in Figure 2.

l1
1 l1

2

δ1
2 l1

3

δ1
3

(a)

l2
1 l2

2

δ2
2 l2

3

δ2
3 l2

4

δ2
3 l2

5

δ2
2

(b)

l3
1 l3

2

δ3
2 l3

3

δ3
2 l3

4

δ3
2

(c)

Figure 2. OPMs. Non-uniform case 1. (a) Metrizable OPM associated with the matrix A23; (b)
Metrizable OPM associated with the matrix A2332; (c) Metrizable OPM associated with the matrix A222.

After applying the procedure, we obtain S(H1) = −0.017, S(H2) = 0.083 and S(H3) = −0.067.
Then, Hotel 2 � Hotel 1 � Hotel 3.
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4.1.3. A Non-Uniform Case 2

In this second case we consider that the three OQSs are not uniform. The scales are equipped
with the metrizable OPMs associated with the following proximity matrices A32, A2332 and A233:

A32 =


δ1

1 δ1
3 δ1

4

δ1
1 δ1

2

δ1
1

 , A2332 =



δ2
1 δ2

2 δ2
4 δ2

6 δ2
7

δ2
1 δ2

3 δ2
5 δ2

6

δ2
1 δ2

3 δ2
4

δ2
1 δ2

2

δ2
1


,

A233 =



δ3
1 δ3

2 δ3
4 δ3

6

δ3
1 δ3

3 δ3
5

δ3
1 δ3

3

δ3
1


.

The OPMs considered in the non-uniform case 2 can be visualized in Figure 3.

l1
1 l1

2

δ1
3 l1

3

δ1
2

(a)

l2
1 l2

2

δ2
2 l2

3

δ2
3 l2

4

δ2
3 l2

5

δ2
2

(b)

l3
1 l3

2

δ3
2 l3

3

δ3
3 l3

4

δ3
3

(c)

Figure 3. OPMs. Non-uniform case 2. (a) Metrizable OPM associated with the matrix A32; (b) Metrizable
OPM associated with the matrix A2332; (c) Metrizable OPM associated with the matrix A224.

When we apply the proposed procedure, we obtain the following results: S(H1) = 0.07,
S(H2) = −0.03 and S(H3) = −0.04. Then, Hotel 1 � Hotel 2 � Hotel 3.

Table 5 summarizes the results obtained after applying the procedure in the three cases considered.
As can be seen, the rankings of the three hotels are different depending on how the proximities between
the terms of the scales are perceived. This makes it extremely important that the agents debate which
OPM best matches their interpretation of the linguistic terms, so that if proximities are not uniform
then an appropriate non-uniform OPM is used instead.

Table 5. Results obtained in the three cases.

The Uniform Case Non-Uniform Case 1 Non-Uniform Case 2

Hotel 3 Hotel 2 Hotel 1

Hotel 1 Hotel 2 Hotel 1 Hotel 2

Hotel 3 Hotel 3
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4.1.4. Stochastic Analysis of the Non-Uniform Case 2

To illustrate the use of the stochastic analysis (Section 3.3), let us consider the non-uniform
case 2 (Section 4.1.3). As depicted in Figure 3, for each scale only two random numbers need to be
drawn: one to represent ρ(δk

2) and another one to represent ρ(δk
3) (values are drawn independently

for each scale). These numbers are normalized dividing them by ρ(δ1
2) + ρ(δ1

2) in the case of A32,
dividing them by 2 · ρ(δ2

2) + 2 · ρ(δ2
2) in the case of A2332, and dividing them by ρ(δ3

2) + 2 · ρ(δ3
2) in

the case of A233. All other ordinality constraints are respected (e.g., ρ(δ3
5) is surely greater than ρ(δ3

4)

because ρ(δ3
3) + ρ(δ3

3) > ρ(δ3
2) + ρ(δ3

3)). The sampling was performed by running 10 000 iterations in
a Monte-Carlo simulation.

Table 6 presents the rank acceptability indices for the three alternatives. Hotel 1 wins most of
the times and is never ranked third (null acceptability for rank 3), whereas Hotel 2 never wins but
nevertheless stays in the second position more often than in the third. Hotel 3 can be placed in any of
the three positions, although it only reached the best position in less than 11% of the cases and its most
likely position is the worst one.

Table 6. Rank acceptability indices: probability of attaining each ranking position.

Alternative Rank 1 (Best) Rank 2 Rank 3

Hotel 1 0.892 0.108 0

Hotel 2 0 0.543 0.457

Hotel 3 0.108 0.349 0.543

These results can be further clarified by observing the pairwise winning indices on Table 7. It is
possible to see why Hotel 2 cannot win: Hotel 1 beat it in all the simulations. The few cases in which
Hotel 1 does not win correspond to the cases in which it is beaten by Hotel 3. This analysis indicates
that in this example, the choice of Hotel 1, as indicated in the right column of Table 5, is fairly robust to
changes in the definition of the ρ mapping. However, the conclusion that Hotel 2 is the second best
one is less robust.

Table 7. Pairwise winning indices: probability of row alternative being better than column alternative.

Hotel 1 Hotel 2 Hotel 3

Hotel 1 - 1.00 0.892

Hotel 2 0.00 - 0.543

Hotel 3 0.108 0.457 -

These results can be compared to the results that SMAA-O [36] would provide for the same data.
SMAA-O is a stochastic approach for ordinal data that samples values compatible with an ordinal
scale of g levels in a straightforward way: level l1 corresponds to value 0; level lg corresponds to value
1; levels l2 to lg−1 are assigned to g− 2 random values in ascending order. A uniform distribution in
[0,1] is used for this purpose.

Applying SMAA-O to this case yields the results presented in Tables 8 and 9.
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Table 8. Rank acceptability indices according to SMAA-O.

Alternative Rank 1 (Best) Rank 2 Rank 3

Hotel 1 0.340 0.486 0.174
Hotel 2 0.321 0.263 0.416
Hotel 3 0.339 0.251 0.410

Without the ability to exploit the knowledge of the ordinal proximities between the levels
associated with each criterion, SMAA-O is not able to point any alternative as being the best one.
Indeed, SMAA-O does not place any constraints on the mapping of qualitative scales other than
respecting their order, which in this case as in many other ones is insufficient to make a clear distinction
between the alternatives. Thus, when the decision makers define the criteria OPMs, the stochastic
approach proposed in this paper is preferable.

Table 9. Pairwise winning indices according to SMAA-O.

Hotel 1 Hotel 2 Hotel 3

Hotel 1 - 0.569 0.517
Hotel 2 0.431 - 0.501
Hotel 3 0.483 0.499 -

4.2. Application of the Proposed MCDM Procedure to a Project Selection

In this subsection, we apply the proposed MCDM procedure to rank a selection of R&D projects
and compare its results with the ones obtained applying the method ZAPROS III (see Larichev [37]).
ZAPROS III belongs to the family of verbal decision analysis methods, which are applied to problems
that use qualitative factors, especially difficult for formalization and numerical measurement.

Following the example presented by Larichev [37], we consider a decision maker that evaluates
nine R&D projects regarding three different criteria. The OQSs used for evaluating the criteria are
shown in Table 10. Although the three criteria have three levels, the OQSs are completely different and
therefore it would be a strong assumption to use the same OPM for all these criteria. The assessments
given by the decision maker to the projects are collected in Table 11.

Table 10. Criteria and OQSs for evaluating the R&D projects.

Originality Prospects Qualification of the Applicant

l1
1 Further development of previous ideas l2

1 Success is hardly probable l3
1 Unknown

l1
2 There are new elements in the proposal l2

2 Success is rather probable l3
2 Normal

l1
3 Absolutely new idea and/or approach l2

3 High probability of success l3
3 High
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Table 11. Linguistic assessments for each criterion.

Originality Prospects Qualification

x1 l1
3 l2

2 l3
2

x2 l1
2 l2

2 l3
3

x3 l1
1 l2

3 l3
2

x4 l1
3 l2

1 l3
3

x5 l1
2 l2

3 l3
1

x6 l1
1 l2

2 l3
2

x7 l1
1 l2

2 l3
3

x8 l1
1 l2

1 l3
3

x9 l1
2 l2

3 l3
2

The method ZAPROS III constructs a partial order over the set of the alternatives. ZAPROS III is
based on elicitation of preferences around values that represent distances between the assessments
on the ordinal scales of two criteria. However, this method does not use a specific weight for each
criterion and does not consider the proximity between the linguistic terms of the scales.

To illustrate our procedure and compare its result with the output of ZAPROS III, we assume that
all criteria have the same importance and consider in each criterion the following metrizable OPMs
associated with the matrix A23, A32 and A32, respectively (see Figure 4).

l1
1 l1

2

δ1
2 l1

3

δ1
3

(a)

l2
1 l2

2

δ2
2 l2

3

δ2
3

(b)

l3
1 l3

2

δ3
2 l3

3

δ3
3

(c)

Figure 4. OPMs corresponding to the R&D criteria. (a) Metrizable OPM associated with the matrix A23;
(b) Metrizable OPM associated with the matrix A32; (c) Metrizable OPM associated with the matrix A32.

Figure 5 shows the partial order of the projects obtained through the method ZAPROS III, and in
Table 12 the results obtained after applying the proposed MCDM procedure.

The results of the procedure presented in this paper are not directly comparable with ZAPROS as
these methods follow a different logic. It is noteworthy that results are in agreement concerning which
are the best alternatives (x1 and x9) and also concerning which are the worst alternatives (x5, x6 and x8).
Nevertheless, some differences can be highlighted. The first one is that our procedure always yields
a weak order, whereas ZAPROS III finds some alternatives are not comparable (e.g., x2 vs x3), i.e., it
can yield a partial order. Another important difference can be found in the comparison of the two top
contenders, x1 and x9. Without the ability to exploit information about ordinal proximities, ZAPROS
III places x9 better than x1. By exploiting the information contained in the OPMs, our approach places
x1 better than x9. Given the OPMs in Figure 4 (for different OPMs the result changes), their proximity
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in Originality (advantage of x1) is less (i.e., they are more distant) than the proximity in Prospects (the
Qualification level being equal). Therefore, it is natural to conclude x1 is preferred to x9.

x9

x1

x3 x2

x4

x7
x5

x6

x8

Figure 5. Partial order of projects applying ZAPROS III.

Table 12. Rank of the projects applying the proposed MCDM procedure.

Proposed Procedure

x1

x9

x2 x4

x3 x7

x5

x6

x8

5. Concluding Remarks

The main contribution of this paper is to provide a MCDM procedure for ranking alternatives
assessed by a group of agents regarding multiple criteria through several OQSs, which can use different
terms and even have different number of levels. To illustrate how the MCDM procedure works, we
have ranked a set of hotels considering different proximities between the terms of the OQSs. We have
also introduced a stochastic approach to assess the robustness of the conclusions.

It is important to mention that the MCDM procedure presents some advantages with respect to
other proposals that deal with qualitative information:

• The proposed procedure is developed in a multi-criteria setting where alternatives are assessed
by means of a specific OQS for each criterion. This is an important difference regarding other
MCDM procedures that use the same qualitative scale in all criteria.

• The procedure preserves and respects ordinal information of the OQSs by means of the concept of
ordinal proximity measure that takes into account how agents perceive the proximities between
the linguistic terms of the scales.

• The possibility of applying the procedure in real decision-making problems such as: clinical
diagnosis, quality control, customer satisfaction measurement, etc.

Regarding future research, it could be interesting to extend the proposed procedure to an uncertainty
context, where agents are allowed to express their assessment by means of several consecutive linguistic
terms instead of a single linguistic term (see García-Lapresta and González del Pozo [35]).
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