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Abstract 

In this article, we focus on structural and spectral properties of minimal strong 
digraphs (MSDs). We carry out a comparative study of properties of MSDs versus 
trees. This analysis includes two new properties. The first one gives bounds on 
the coefficients of characteristic polynomials of trees (double directed trees), and 
conjectures the generalization of these bounds to MSDs. As a particular case, we 
prove that the independent coemcient of the characteristic polynomial of a tree or 
an MSD must be — 1, 0 or 1. For trees, this fact means that a tree has at most one 
perfect matching; for MSDs, it means that an MSD has at most one covering by 
disjoint cycles. The property states that every MSD can be decomposed in a rooted 
spanning tree and a forest of reversed rooted trees, as factors. In our opinión, the 
analogies described suppose a significative change in the traditional point of view 
about this class of digraphs. 

Keywords: Minimal strong digraphs, trees, characteristic polynomial, spanning 
tree. 



1 Introduction 

A digraph is strongly connected or (simply) strong (SD) if every pair of vértices 
are joined by a path. An SD is minimal (MSD) if it loses the strong connection 
property when any of their ares is suppressed. This class of digraphs has been 
considered under different points of view. See, for instance, [4,6]. 

We are also interested in the following nonnegative inverse eigenvalue prob-
lem [8]: given k\, k-¿, • • •, kn real numbers, find necessary and sufficient condi-
tions for the existence of a nonnegative matrix A of order n with characteristic 
polynomial xn + k\Xn~l + k2Xn~2 + • • • + kn. The coefficients of the charac
teristic polynomial are closely related to the eyele structure of the weighted 
digraph with adjacency matrix A (see, for instance, [5]). The class of strong 
digraphs can easily be reduced to the class of minimal strong digraphs, so 
we are interested in any theoretical or constructive characterization of these 
classes of digraphs. 

In [6], a sequentially generative procedure for the constructive character
ization of the classes of MSDs is given. In addition, algorithms to compute 
unlabeled MSDs and their isospectral classes are described. These algorithms 
have been implemented to calcúlate the said classes of digraphs up to order 
15 classified by their order and size [10]. We are also interested in properties 
regarding the spectral structure of this class of digraphs, mainly about the 
coefficients of the characteristic polynomial. 

MSDs can be seen as a generalization of trees, as we pass from simple 
graphs to directed graphs. Although the structure of MSDs is much richer 
than that of trees, many analogies remain between the properties of both 
families. Other properties, nevertheless, undergo radical changes when passing 
from trees to MSDs. 

In this article, we focus on structural and spectral properties of MSDs. 
We carry out a comparative study of properties of MSDs versus trees. An 
extended versión of this work can be found in [7]. 

2 Minimal strong digraphs versus trees 

In this paper we use some standard basic concepts and results about graphs. 
A digraph D is a couple D = (V, A), where y is a finite nonempty set and 
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A G V xV—{(v,v): t)G V}. Elements in V and A are called vértices and ares 
respectively. If u, v € V we denote (u, v) by uv. A paí/í is a sequence of distinct 
vértices V1V2 • • • vq, q > 2, such that f¿f¿+i is an are for i = 1, 2 , . . . , q — 1. We 
denote a path from the vértex it to the vértex v by wf-path. A eyc/e of length 
q or a q-eycle is a path i^i^ . . . f9 closed by the are vqV\. It is denoted by Cq. 
A double directed tree is the digraph obtained from a tree by replacing each 
edge {u,v} with the two ares (u,v) and (v,u). 

We now record a number of basic faets about the strong digraphs (see [6] 
and the references therein). In an SD of order n > 2, the in-degree and out-
degree of the vértices are bigger than or equal to 1. A vértex is linear if it has 
in- and out-degree equal to 1. 

If D is an MSD and there is a uv-p&th in D, then there cannot be an are 
joining the vértex u to the vértex v, that is uv $. A. In general, an are uv in 
a digraph D is transitive if there is another uv-p&th distinct from the are uv. 
The semieyele consisting of a uv -path together with the are uv is a pseudoeyele. 
So an MSD has no transitive ares or pseudoeyeles; moreover, this condition 
characterizes the minimality of the strong connection. Consequently, if D is an 
MSD then so is every strong subdigraph of D. Furthermore, every subdigraph 
that is an MSD is an induced subdigraph. 

The contraction of a eycle of length k in an SD consists of the reduction 
of the eycle to a unique vértex, so that k — 1 of its vértices and its k ares are 
eliminated. The contraction obviously preserves the SD property. 

Lemma 2.1 The contraction of a eycle in an MSD preserves the minimality, 
that is, it produces another MSD. 

Lemma 2.2 The size of a minimal strong digraph D of order n > 2 verifies 
n < \A\ < 2(n — 1). The size of D is n if and only if D is an n-eyele. The 
size of D is 2{n — 1) if and only if D is a double directed tree. 

Lemma 2.3 Every MSD of order n > 2 has at least two linear vértices. 

Trees and MSDs are defined in a similar way. They are minimal connected 
graphs and minimal strong digraphs respectively, such that, in every case, the 
deletion of any edge and are respectively implies connectivity loss. Despite 
the analogy in the definition, it is expected that the properties of these two 
kinds of graphs are very different because, while trees have no eyeles, in every 
MSD, each are belongs to a eycle. 

However, surprisingly, there are many more analogies than differences be-
tween these two families of graphs. We explore the properties of both kind of 
graphs, so as to deeply understand the structure of MSDs, by using the very 



well-known family of trees. 
Trees and MSDs have a linear nnmber of edges and ares respectively m, 

related to the number of vértices n. The order of a tree determines the nnmber 
of edges, m = n — 1, whereas this does not hold for MSDs. In this case, the 
number of ares verifies n < m < 2(n — 1). On the other hand, considering 
an edge equivalent to two ares, in both cases, the maximal number of ares is 
va = 2(n — 1). 

There is an equivalent definition of trees: they are connected graphs with 
n — 1 edges. This fact is related to the following property of MSDs: an strong 
digraph with n ares is an MSD (Lemma 2.2). Furthermore, the two families 
of graphs verify that they have at least two linear vértices, i.e. vértices with 
degree one and in- and out-degree one respectively (Lemma 2.3). Also, in 
both cases, there are configurations with a great number of linear vértices: 
tree stars have n — 1 linear vértices and directed cycles have n; and with a 
vértex with high degree: both tree and MSD stars. 

There are two other meaningful differences, besides the nonexistence and 
the existence of cycles. Given two vértices u and v in any tree, there is a 
unique uv-paih. We denote this fact as path-tree property. Then, trees verify 
the path-tree property, while MSDs do not. If uv is an are in an MSD then 
this path is unique, but we cannot say the same in other cases. Nevertheless, 
there exists a subfamily of the MSD class where the property holds. It is 
defined below. 

Definition 2.4 A directed eyele digraph is an SD in which every topological 
eyele is a directed eyele. 

Here, a topological eyele means a eyele in the simple graph obtained by the 
substitution of every are by an edge. Obviously, every directed eyele digraph 
is an MSD. However, we also state below that the class of MSDs satisfying 
the path-tree property is exactly the directed eyele digraph class. 

Theorem 2.5 Let D be an, SD. Then, D verifies the path-tree property if and 
only if D is a directed eyele digraph. 

The second meaningful difference between trees and MSDs is the complex-
ity of the following algorithmic problem: Given a weighted connected graph 
and a weighted strong digraph, find the minimum spanning tree (MST) and 
the minimum spanning strong subdigraph (MSSS) respectively. While there 
are many polynomial algorithms to solve the MST problem [3], the MSSS 
problem belongs the the NP-hard class [1], even when all weights are one. 

In the problem of covering the vértices of a graph, by paths or cycles, we 



come upon three new similar properties. We state below that an MSD has 
at most one covering by disjoint cycles. The corresponding property for trees 
says that every tree has at most one perfect matching. This property becomes 
the previous one if we consider edges equivalent to two ares. 

Theorem 2.6 If D is an MSD then, D has at m,ost one covering by disjoint 
cycles. 

The covering of a strong digraph D with a cycles, not necessarily disjoint, 
where a is the stability number or the independent number of D7 constitutes 
the Gallai conjecture. This was proved by Bessy and Thomassé [2] and the 
proof also applies to MSDs and trees if we consider that edges are equivalent 
to two ares. There are examples of MSDs and trees where a cycles are needed 
in order to cover the corresponding digraph: MSD and tree stars. 

The covering of a strong digraph D with a — 1 disjoint paths, where a is, 
as above, the stability number or the independent number of D7 constitutes 
the Las Vergnas conjecture. This was proved by Thomassé [9] and the proof 
also applies to MSDs and trees if we consider that edges are equivalent to two 
ares. There are examples of MSDs and trees where a — 1 disjoint paths are 
needed to cover the corresponding digraph: MSD and tree stars. 

Finally, we want to remark the following properties in which trees and 
MSDs behave in a similar way. 

Let D = (V, A) be an MSD with n vértices and let km(D) be the coefficient 
of xn~m in the monic characteristic polynomial of the adjaceney matrix of D. 
Let Km(D) be the number of coverings of m vértices (or ares) in D by disjoint 
cycles. Henee, \krn(D)\ < Km(D). 

Theorem 2.7 Let D be a double directed tree with n vértices, n > 2. Then, 
\km(D)\ = Km(D), and: 

(i) For all m odd such that 2 < m < n, it is Km(D) = 0. 

(ii) For all m even such that 2 < m < n, it is Km(D) < I m
 2 ) • 

Conjecture 2.8 Let D = (V, Á) be an MSD with n vértices, n > 2, And m 
an integer such that 2 < m < n. Then, the following equality holds: 

A"(D)í("Tff) 
The property that best explains the structure of an MSD is its factorization 

into two arborescences, the first with a unique source (a rooted tree), and the 



second with a unique sink in each connected component (a forest of reversed 
rooted trees). 

T h e o r e m 2.9 / / D is an MSD then it factorises in a rooted spanning tree 

and a forest of reversed rooted trees. 
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