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Abstract

We present a combinatorial study on the rearrangement of links in the struc-
ture of directed networks for the purpose of improving the valuation of a
vertex or group of vertices as established by an eigenvector-based centrality
measure. We build our topological classification starting from unidirectional
rooted trees and up to more complex hierarchical structures such as acyclic
digraphs, bidirectional and cyclical rooted trees (obtained by closing cycles
on unidirectional trees). We analyze different modifications on the struc-
ture of these networks and study their effect on the valuation given by the
eigenvector-based scoring functions, with particular focus on α-centrality
and PageRank.
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1. Introduction

In the analysis of propagation of ideas and influence through social net-
works, a much studied optimization problem is the selection of the most
authoritative nodes. This is the so-called influence maximization problem,
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which was first studied in [12], where it is shown NP-hard for several mod-
els of social networks and approximation guarantees for efficient solutions
are given. A related problem is to model the dynamics of social networks
that change in time by modifications on the topology of the network. These
topological modifications can significantly alter the hierarchy of influence
previously existing in a social network. For example, the situation arises in
academic networks, such as Academia or Research Gate, where participants
are often enticed by the administrator of the network to link (or follow)
others, in order to raise their social presence and consequently their net-
work score, which is computed by a form of centrality measure. Also, in the
World Wide Web, the role played by the topology of the internet has been
widely recognized as a key factor in the computation and improvement of
the scores given by the most used ranking measure, namely PageRank (see
[3], [10]).

In this paper we address the problem of how the modifications in the
link structure of a directed network, whose nodes are ranked by a measure
of centrality based on eigenvectors, affects the distribution of values given by
this type of scoring function. We propose to do this analysis progressively
with respect to the topological complexity of the network. Hence, we present
here the case of unidirectional rooted trees, acyclic digraphs through their
rooted subtrees, trees with bidirectional arcs and trees extended with cycles,
and for all these trees we set as our objective to improve the eigenvector-
based centrality score of the root.

We focus our analysis on α-centrality and PageRank scoring functions.
PageRank is arguably the most general form of eigenvector-based centrality
measure, producing more meaningful scores in directed networks than other
centrality measures in its class. As a matter of fact, measures of central-
ity based on the eigenvectors of the adjacency matrix of directed networks
are basically three: eigenvector centrality [8], Katz or alpha-centrality [9]
and PageRank [4, 5]. Eigenvector centrality is useless in acyclic digraphs
because it assigns a null score to all vertices. In general, a vertex hav-
ing arcs coming from source nodes (vertices with in-degree zero) obtains a
score of zero. More precisely, only vertices in, or connected from, a strongly
connected component have positive score. Katz and α-centrality fix the
eigenvector scoring limitations by aggregating a term to the scoring func-
tion independent of the link structure. This additional term accounts for
exogenous sources of information and in this way every vertex gets some
non-zero score that can transmit to its neighbors. However, the Katz (and
α) centrality score is transmitted uniformly, so that any number of vertices
receiving a link from one vertex with high centrality score becomes equally
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highly central too. This poses an unfair gain of relevance by many individu-
als in social networks, or pages in the World Wide Web, since it is enough for
them to have a highly reputed “sponsor”, regardless of their level of popular-
ity quantified by the number of links received. This anomaly is corrected by
the PageRank centrality measure by dividing the centrality scores inherited
from neighbor vertices by their out-degree. We will provide mathematical
formulations of all these eigenvector-based centrality measures so that the
reader can see how each generalizes the other in a formal way. For a more
in-depth exposition of these and other centrality measures see [16].

The paper is organized as follows: In Section 2 we fix the notation to
be used for digraphs, present the linear algebraic formulation of each of the
eigenvector based directed network centrality measures, and discuss these
measures from a perspective of power series. In Section 3 we specify the
PageRank formula for directed networks organized as rooted trees. This
formula depends solely on the number of vertices at each level of the tree
structure, and provides us with a full mathematical justification of the fact
that erasing the vertices farthest away from the root improves the PageR-
ank. We then give some rules to optimize the link structure of a web site
that stem from our results. Over rooted trees α–centrality coincides with
PageRank so all results in this section apply to α–centrality as well. Sec-
tion 4 presents a through analysis of how the basic combinatorial results
of previous section adapt to the α-centrality, as well as PageRank measure,
in the more general context of acyclic digraphs. In Section 5, we extend
the PageRank and the α–centrality formula obtained in Section 3 to ver-
tices of trees with bidirectional arcs, and cyclical trees (obtained by closing
cycles on unidirectional rooted trees), modeling these more complex hierar-
chical structures by means of infinite unidirectional rooted trees. We also
give a vectorial version of these formulas for bidirectional trees. In Section
6, we analyze the behavior of PageRank and α–centrality on bidirectional
and cyclical trees when their topology is modified. We give qualitative and
quantitative justifications on the consequences of these actions. We close
with Section 7 looking at the directed network through its condensation di-
graph as the acyclic digraph of its strongly connected components, where
PageRank can be calculated independently, thus justifying its computation
in parallel as suggested by some authors.

2. Preliminaries on eigenvector based centrality measures

By a digraph D we mean a pair D = (V,A) where V is a finite nonempty
set and A ⊂ V×V \{(v, v) : v ∈ V }. Elements in V and A are called vertices
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and arcs respectively. For an arc (u, v) we will say that u is adjacent to
v, and we also use uv to denote an arc (u, v). The in-degree id(v) (out-
degree od(v)) of a vertex v is the number of arcs uv (vu) in A.

A sequence of vertices v1v2 . . . vq, q ≥ 2, such that vivi+1 is an arc for
i = 1, 2, . . . , q − 1 is a walk of length q − 1 joining v1 with vq or more
simply a v1–vq walk. If the vertices of v1v2 . . . vq are distinct the walk is
called a path. A cycle of length q or a q-cycle is a path v1v2 . . . vq closed
by the arc vqv1. A digraph is acyclic if it has no cycle.

By a subdigraph of the digraph (V,A) we mean a digraph (W,B) such
that W ⊂ V and B ⊂ A. The subdigraph is called a partial digraph when
W = V . The induced subdigraph by the digraph (V,A) on W ⊂ V is the
digraph (W,A/W ) where A/W = A ∩ (W ×W ).

Let M = (mij) be theN×N adjacency matrix of the digraph D = (V,A).
If D represents a network (social or informational as WWW) mij > 0 stands
for the contribution of vertex vi to vj ’s status (and vivj ∈ A), and so we let
x = (x1, . . . , xN )t be a vector of centrality scores for the elements in V . The
eigenvector centrality measure assigns to each vertex vi a proportion of
the weighted sum of the centrality of the vertices connected to it:

λxi = m1ix1 +m2ix2 + . . .+mNixN , for i = 1, . . . , N, (1)

or in matrix form
Mtx = λx (2)

Then, the eigenvector centrality of the network D is given by the unique
nonnegative eigenvector x associated to the spectral radius ρ(Mt) of the
nonnegative matrix Mt (by Perron–Frobenius theory). Furthermore, such
eigenvector is non null if the corresponding spectral radius ρ(Mt) is non
null, which is equivalent to the existence of a cyclic structure in the digraph
D. Consequently, eigenvector centrality is useless in acyclic digraphs.

A more appropriate measure of centrality was introduced by Katz [11]
in 1953. Katz considers for each vertex vi the influence of all the vertices
connected by a walk to vi. Arc connections are penalized by an attenuation
factor α, and the contribution of each vj–vi walk of length k to the score of
vertex vi is αk. Taking into account that each element (Mk)ji of the matrix
Mk gives the number of vj–vi walks of length k, Katz centrality assigns to
each vertex vi the score

xi =
∞∑
k=1

N∑
j=1

αk(Mt)ji, for i = 1, . . . , N (3)
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Then the Katz centrality vector is given by the column sums of the matrix
∞∑
k=1

αk(Mt)k. If we set e = (1, . . . , 1)t to be the N -vector of ones, we have

the following matrix form for Katz centrality,

x =

( ∞∑
k=1

αk(Mt)k

)
e =

(
−I +

∞∑
k=0

αk(Mt)k

)
e (4)

where I is the N × N identity matrix. If α is smaller than the inverse
of the spectral radius of Mt, then the series

∑∞
k=0 α

k(Mt)k converges to
(I− αMt)−1. In this case Eq. (4) can be expressed as

x = (−I + (I− αMt)−1)e (5)

Another similar measure of centrality that also resolves the problems en-
countered by the eigenvector centrality is α–centrality (see [9]). This mea-
sure consists in adding to the Katz score of each vertex a constant term
independent of the connective structure of the network, so that every vertex
has a non zero centrality value. In this way,

xi = α

N∑
j=1

mjixj + βi (6)

with α, βi > 0 for each i = 1, . . . , N , where α is a parameter reflecting the
relative importance of endogenous versus exogenous factors in the determi-
nation of centrality [9]. In matrix form

x = αMtx + βe

and rearranging for x, we have

x = β
(
I− αMt

)−1
e (7)

Since we are interested in the relative values of the scores xi, the factor β is
irrelevant, and for convenience we set β = 1. So we have the α–centrality
measure given by

x = (I− αMt)−1e (8)

Thus, α-centrality is a simple translation of Katz centrality. In the remain-
der of this paper we will refer to both measures as α-centrality.

The next step to extend Eq. (8) to a more fair centrality measure that
distributes the centrality of a node among its neighbors in proportion to
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their number, is to consider the contribution of centrality from each node
divided by its out-degree. In mathematical terms, the centrality xi of vertex
vi is formalized as

xi = β + α

N∑
j=1

mji
xj

od(vj)
(9)

where β > 0 is some constant. This is the general form of the PageRank
scoring function which originally sets β = (1 − α)/N and α is a constant
in the real interval (0, 1) which is usually set to 0.85 [4, 5]. Additionally it
is assumed that all nodes have at least out-degree 1 in order to avoid inde-
terminate terms in the sum. We use P(vi) to denote the original PageRank
centrality measure for a vertex vi. Thus, Eq. (9) becomes

P(vi) =
1− α
N

+ α
N∑
j=1

mji
P(vj)

od(vj)
(10)

where mji = 1 iff vivj ∈ A or 0 otherwise. In matrix form

p =
(1− α)

N
(I − αMtD−1)−1e (11)

where D is the diagonal matrix with Dii = max[od(vi), 1], and p = (P(v1),
. . . , P(vN ))t is the PageRank vector of D. This p is a probability vector
(the sum over j on the right side of Eq. (10) is one, for all i = 1, . . . , N)
and, in fact, is the positive dominant eigenvector of the transition matrix
T = (1−α)

N J+αMtD−1 (where J is theN×N matrix of 1’s), associated to the
greatest positive eigenvalue λ and is the solution to the system of equations
given by (10) for all possible vertices of D. Since the digraph D has no sinks
(i.e. vertices with out-degree 0), the matrix T is stochastic by columns with
dominant eigenvalue λ = 1, and the PageRank of a node v can be interpreted
as the probability of a user reaching v directly (with probability (1−α)/N)
or after following all appropriate links, each with probability α. On the other
hand, if there are some sinks, then T is not stochastic, and so the proposed
method to make it stochastic is to connect every sink with all the vertices
of the digraph, including the sink itself, which amounts to normalizing to
1 the vector p by simply dividing all its components by their overall sum.
This 1-normalization is necessary to compare the PageRank of vertices in
different websites under the same metric conditions. The PageRank vector
p is computed by iterative methods based on the power method where fast
convergence is guaranteed by the domination of the spectral radius of T ,
and the convergence speed is given by the second eigenvalue of T . For an
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in-depth exposition of PageRank and the related linear algebra methods see
[13] and references therein.

Remark 1. Obviously, by the definitions, α–centrality and PageRank are
equivalent measures of centrality on digraphs without vertices of out-degree
greater than one. For this class of digraphs, formula (11) with D = I
coincides with formula (7) for β = (1− α)/N .

Centrality measures as power series. Yet another view of PageRank is
the analytical formulation given by Brinkmeier (see [6]), who conceived the
PageRank function as a power series. In this setting, a formula is given that
highlights the fact that the ranking of a vertex v, as assigned by PageRank,
depends on the weighted contributions of each vertex in every walk that
leads into v, being these contributions higher in value for vertices that are
nearer in distance from v.

For a given walk ρ = v1v2 . . . vn in the graph (V,A), define the branch-
ing factor of ρ by the formula

D(ρ) =
1

od(v1)od(v2) · · · od(vn−1)
(12)

Then, for any vertex a ∈ V , we have

P(a) =
1− α
N

∑
w∈V

∑
ρ :w−→ a

αl(ρ)D(ρ) (13)

where ρ : w−→a denotes a walk ρ joining a vertex w with a, and l(ρ) is the
length of ρ. We should remark that for effectively computing P(a) by the
power series in (13), Brinkmeier implements a breadth-first search strategy
where the inner sum is taken over all walks ending in a of a fixed length,
and this is done for all possible lengths; that is,

P(a) =
1− α
N

∑
l≥0

∑
ρ :w

l−→ a

αlD(ρ) (14)

where ρ : w
l−→ a denotes a walk ρ from any w to a of length l.

For α-centrality D(ρ) = 1 for all walks ρ, and formulas (13) and (14)
become for each vertex vi

xi = β
∑
w∈V

∑
ρ :w−→ vi

αl(ρ) = β
∑
l≥0

∑
ρ :w

l−→ vi

αl

with β = 1 as in Eq. (8) or β = (1 − α)/N . From now on we use β =
(1− α)/N for a precise comparison of α–centrality with PageRank.
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3. Rearranging the structure of rooted trees

Our starting case study is the set of rooted trees, where a tree with
root r is an acyclic digraph with a maximal vertex r, such that for every
vertex v 6= r there is a unique v–r path. Vertices with in–degree 0 are
called leaves. The root is the targeted page for improving its α-centrality
or PageRank valuation. The height of a vertex in a rooted tree is the
length of the path from the vertex to the root. The level Nk is the set of
vertices with height k; the root is at level N0. The height of a rooted
tree is the length of the longest path from a leaf to the root.

Rooted trees belong to the class of digraphs without vertices of out-
degree greater than one and so all the results of this Section expressed
in terms of PageRank are also valid in the same way for α–centrality (cf.
Remark 1).

Remark 2. Since we are interested in studying the behavior of PageRank
when localized in certain subdigraphs of the Web digraph, we think, in par-
ticular, of our trees as local closed web sites. This means that the value of
N in formula (10) is the number of vertices in the tree. �

To compute the PageRank of the root r of a tree all we need to do is count
the number of vertices at each level of the tree. For each vertex w there is
a unique w–r path of length k if w ∈ Nk, then by Eq. (13) we have:

Theorem 3. If a rooted tree has N vertices and height h, then the PageRank
of its root r is given by the formula

P(r) =
1− α
N

h∑
k=0

αknk (15)

where nk := |Nk| is the number of vertices of the kth–level, Nk, of the tree.
�

Remark 4. Theorem 3 shows that we can do any rearrangements of links
between two consecutive levels of a web set up as a rooted tree, and the
PageRank of the root will be the same. �

Remark 5. Due to Theorem 3, we will from now on describe a rooted tree
T r, with root r and h ≥ 0 levels, each of cardinality n0 = 1, n1, . . . , nh, as
the string T r = 1n1 . . . nh. Also the PageRank for the root r of T r, or
for any other vertex seemed as the root of a subtree in T r, will only depend
on the height and the number of vertices at each level of T r. �
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The following result shows that erasing vertices farthest away from the
root improves the PageRank. This corroborates the known fact that the
optimal configuration is a star, i.e. a rooted tree of height 1 (see e.g. [13]).

Theorem 6. If in a tree T r = 1n1 . . . nh we have that p vertices, 1 ≤ p ≤
nh, of the last level Nh are erased, then the PageRank of its root r, P(r),
increases its value.

Proof. After passing from the tree T r = 1n1 . . . nh, with N = 1 + n1 +
. . .+nh vertices and PageRank P(r), to the tree T ′r = 1n1 . . . nh−1(nh− p)
with N − p vertices and PageRank P ′(r), we get

P ′(r) − P(r) =
(1− α)p

(N − p)N
(1 + n1α+ . . .+ nh−1α

h−1 − (N − nh)αh)

=
(1− α)p

(N − p)N
(1 + n1α+ . . .+ nh−1α

h−1 − (1 + n1 + . . .+ nh−1)α
h)

=
(1− α)p

(N − p)N
((1− αh) + n1(α− αh) + . . .+ nh−1(α

h−1 − αh)) > 0

because 0 < α < 1 and h ≥ 1. �

Remark 7. Thus, in order to improve the PageRank of the root of a tree
one can delete as many vertices from highest level to lowest, as the context
permits. Conversely, if a new level of vertices is added to a tree, then the
PageRank of its root decreases. �

Remark 8. The previous result holds in absolute terms, i.e., not disregard-
ing the existence of a sink in the tree. Since in practice one needs to nor-
malize the PageRank vector to guarantee the stochastic properties of the
transition matrix ruling the system, and to compare the PageRanks of the
pages in different trees under the same metric conditions, we should establish
the truth of Theorem 6 for the 1-normalized version of PageRank. �

Proof of normalized version of Theorem 6. The key observation is
that the PageRank at level Nk, understood as the sum of all PageRank of
vertices at level Nk and which we denote as P(Nk), only depends of the
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quantities nk, nk+1, . . . , nh (see Remark 5). We have

P(N1) =
1− α
N

(n1 + n2α+ n3α
2 + . . .+ nh−1α

h−2 + nhα
h−1)

P(N2) =
1− α
N

(n2 + n3α+ . . .+ nh−1α
h−3 + nhα

h−2)

...
...

P(Nh−1) =
1− α
N

(nh−1 + nhα)

P(Nh) =
1− α
N

nh

The PageRank at level N0 is exactly P(r). The sum of all levels’ PageRank
is then

P(T r) :=
1− α
N

(N + (N − 1)α+ (N − 1− n1)α2 +

(N − 1− n1 − n2)α3 + . . .+ (nh−1 + nh)αh−1 + nhα
h)

and the normalization of P(r) is obtained by the quotient

P(r)

P(T r)
=

1 + n1α+ n2α
2 + . . .+ nh−1α

h−1 + nhα
h

N + (N − 1)α+ (N − 1− n1)α2 + . . .+ (nh−1 + nh)αh−1 + nhαh

If p vertices, 1 ≤ p ≤ nh, are removed from the last level Nh of T r, then the
normalized PageRank of r in the pruned tree T ′r is

P ′(r)
P(T ′r)

=
1 + n1α+ n2α

2 + . . .+ nh−1α
h−1 + (nh − p)αh

N ′ + (N ′ − 1)α+ (N ′ − 1− n1)α2 + . . .+ (nh − p)αh

where N ′ = N − p. Therefore,

P ′(r)
P(T ′r)

≥ P(r)

P(T r)
⇐⇒ P ′(r)P(T r) ≥ P(r)P(T ′r)

Note that both terms in the last inequality are polynomials in α of degree
2h. Then the inequality holds because the coefficients accompanying αk, for
k < h, are greater in P ′(r)P(T r) than in P(r)P(T ′r), and for k ≥ h the
corresponding coefficients are equal. �

Erasing p leaves from any other level Nk distinct from the last level Nh

can either increase or decrease the PageRank of the root. Hence, doing an
unorderly pruning has mixed consequences to PageRank, as the following
example shows.
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Example 9. Let the tree T r = 1n1n2 with PageRank P(r). Then consider
removing p leaves from the level N1, with 1 ≤ p ≤ n1 − 1. The resulting
pruned tree T ′r = 1(n1 − p)n2 has PageRank P ′(r) and we have that

P ′(r)− P(r) =
(1− α)2p

(N − p)N
(1− n2α)

which is positive for n2 = 1 and α ∈ (0, 1), and negative for any α > 1/n2.
This reduction of the PageRank of the root of this tree also holds in

relative terms. From the normalized version of Theorem 6 we have

P(r)

P(T r)
=

1 + n1α+ n2α
2

1 + n1 + n2 + (n1 + n2)α+ n2α2

and
P ′(r)
P(T ′r)

=
1 + (n1 − p)α+ n2α

2

1 + n1 − p+ n2 + (n1 − p+ n2)α+ n2α2

so that

P ′(r)P(T r)− P(r)P(T ′r) > 0 ⇐⇒ p(1− n2α) > 0

Hence, for this deletion of leaves at intermediate level, the relative variation
of PageRank of the root is equivalent to its absolute variation. �

If it were the case that for practical, or any other reason, we were obliged
to keep certain height, then a natural question is how much can we prune
the tree to improve on PageRank. The extreme situation is to prune all but
one arc at each level, so we take that structure as benchmark.

Theorem 10. The PageRank of the root of the tree T r = 1n1 . . . nh is
smaller than the PageRank of the root of the tree

T r
q := 1n1 . . . nbh−1

2
c 1 . . . 1︸ ︷︷ ︸
bh/2c+1

The tree T r
q is called queue tree.

Proof. We proceed recursively from the last level down to b(h− 1)/2c.
(a) The PageRank P(r) of the root r of T r = 1n1 . . . nh−1nh is smaller than
the PageRank P ′(r) of T ′r = 1n1 . . . nh−11. Indeed, let N = 1+n1+. . .+nh,
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then

P ′(r) − P(r) =
(nh − 1)(1− α)

(N − (nh − 1))N

(
h−1∑
k=0

nkα
k − (N − nh)αh

)

=
(nh − 1)(1− α)

(N − (nh − 1))N

h−1∑
k=0

nk(α
k − αh) > 0

Apply the same methodology for T r = 1n1 . . .nh−2nh−11 and T ′r = 1n1
. . .nh−211, and so on, up to bh/2c. At this last step we have
(b) T r = 1n1 . . . nbh−1

2
cnbh+1

2
c 1 . . . 1︸ ︷︷ ︸
bh/2c

, and we shall see that its PageRank

is less than that of the queue tree T ′r = 1n1 . . . nbh−1
2
c 1 . . . 1︸ ︷︷ ︸
bh/2c+1

. We work

separately the cases of h even or h odd.
(b.i) If h = 2p− 1 then T r = 1n1 . . . np−1np 1 . . . 1︸ ︷︷ ︸

p−1

, T ′r = 1n1 . . . np−1 1 . . . 1︸ ︷︷ ︸
p

and N = n1 + . . .+ np + p. Let M =
(np−1)(1−α)
(N−(np−1))N . Then

P ′(r) − P(r) = M

1 +

p−1∑
k=1

nkα
k − (N − np)αp +

2p−1∑
k=p+1

αk


= M

(1− αp) +

p−1∑
k=1

nk(α
k − αp) +

2p−1∑
k=p+1

(αk − αp)


= M

(
(1− αp) +

p−1∑
k=1

(nk − αp−k)(αk − αp)

)
> 0

(b.ii) If h = 2p then T r = 1n1 . . . np−1np 1 . . . 1︸ ︷︷ ︸
p

, T ′r = 1n1 . . . np−1 1 . . . 1︸ ︷︷ ︸
p+1

and N = n1 + . . .+np+p+1. One then shows P ′(r)−P(r) > 0 by a similar
argument as in (b.i). �

Remark 11. Theorem 10 can not be improved, in the sense that deleting
further vertices (but keeping the height) in a queue tree may or may not
improve the PageRank of the root. For small values of h, the queue tree is the
optimal pruning of a tree for increasing PageRank. For example, if h = 4 the
corresponding queue tree is T r

q = 1n1111 with PageRank P(r), and if n1 > 1

and we remove a vertex from level N1, we get the tree T ′r = 1(n1 − 1)111
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with PageRank P ′(h), and their difference is

P ′(r)− P(r) =
1− α

(n1 + 3)(n1 + 4)
(1− 4α+ α2 + α3 + α4) < 0

for any α such that 0.27568 < α < 1. For larger values of h, an improvement
of PageRank will depend on α and on the cardinalities of the levels N1, . . . ,
Nbh−1

2
c. �

A theoretically as well as commercially important problem is to find a
scheme for modifying the link structure of a local web in order to improve its
ranking, as set by PageRank or any other ranking function. In this section
we have presented the case of a network with a tree–like structure, where
the PageRank of the main page, located at the root of the tree, should have
the highest possible value, but at the same time the overall structure of the
web should satisfy certain conditions given by the context. We shall not
make precise the details of the context, which are surely determined by the
general conditions imposed by design. Let us refer to the context as Π. By
virtue of Theorem 3 this translates into the following optimization problem.
Main Objective: Given a certain context Π, to maximize the function

P(h, n1, . . . , nh) =
1− α

1 + n1 + . . .+ nh

h∑
k=0

αknk

for fixed α, such that 0 < α < 1, and all trees T r = 1n1 . . . nh with integer
values h, ni ≥ 1, 1 ≤ i ≤ h. If the total number N of vertices is bounded
then we can assure that the maximum exists. The complexity of the problem
depends mostly on the conditions imposed by the context Π. This justifies
approaching the solution through heuristics. Here we give an ad hoc list of
rules that clearly stem from our theorems.
Rule 1: Due to Theorem 6, the first action to take is to reduce the height
as much as the context allows.
Rule 2: Keep in mind that while applying Rule 1 (and deleting levels), links
between consecutive levels can be rearrange in any way you like, as long as
the context is kept consistent, and this has no effect on the root’s PageRank
value (by Theorem 3).
Rule 3: Once the optimal height h > 1 is attained4, we delete (as much
as possible) vertices from levels in the upper half of the tree, trying to

4Optimality here again depends on maintaining the context consistent. This height
could mean the minimal levels of a hierarchy that we need to reflect in the web site; say,
for example, of a corporation or a hypertext.
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get it close to its underlying queue tree (Theorem 10), and those vertices
that cannot be deleted should be moved as closer to level 1 as possible (by
Theorem 3).

4. Acyclic digraphs

We continue in this section with an analysis of the extend to which the
previous results hold for the different centrality measures in a general acyclic
digraph.

For an acyclic digraph (V,A) there exists at least one vertex v with
od(v) = 0. Such vertices are called maximals or sinks in the digraph. The
set of maximal vertices of (V,A) will be denoted by M , and a path v1v2 . . . vq
with vq ∈M will be called path with maximal end.

Moreover, the vertices in the acyclic digraph (V,A) can be distributed
by levels N0, N1, . . . , where N0 = M and, recursively for p > 0,

Np = {v ∈ V \
p−1⋃
i=0

Ni : v is maximal in the induced subdigraph on V \
p−1⋃
i=0

Ni}

Thus one has a partition of V , V = N0 ∪ N1 ∪ · · · ∪ Nh, h being the
height of the acyclic digraph, i.e. the last index such that Nh 6= ∅.

The closure5 of a vertex v in an acyclic digraph (V,A) is the set of
vertices

v̄ = {u : there is a path from u to v} ∪ {v}

Clearly, the union of the closures of the maximal vertices of the acyclic
digraph (V,A) covers the set of vertices V, and the arcs of its induced sub-
digraphs cover the set of arcs A:⋃

m∈M
m̄ = V,

⋃
m∈M

A/m̄ = A.

A labeling of a digraph (V,A) by the label set E is a bijective map
v : E −→ V , v(e) being denoted by ve for any e ∈ E. If (E,≤) is a totally
ordered set, the digraph (V,A) is said to be E-ordered if it is labeled by
E in such a way that if (vi, vj) ∈ A then i < j. We have the following
characterization of acyclic digraphs [14]: A digraph (V,A), with card(V ) =
N , is acyclic if and only if (V,A) is E-ordered by the set E = {1, . . . , N}.

5The set {v̄ : v ∈ V } can be taken as a sub-basis of closed sets for a topology over the
set of vertices V (see [15]).
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Definition 12. We call forest of paths associated to an acyclic digraph
(V,A) to the digraph (Ṽ , Ã) where Ṽ is the set of paths with maximal end of
(V,A) together with the set of maximal points M and Ã = {(p, q) ∈ Ṽ × Ṽ :
p /∈M and q is the path obtained from p by deleting the first element}.

If the acyclic digraph (V,A) is labeled by means of E = {1, . . . , N} by
the bijection v : E −→ V , then the forest of paths digraph (Ṽ , Ã) will be
considered labeled by Ẽ = {K ⊂ E : vK ∈ Ṽ } by means of the bijection ṽ :
Ẽ −→ Ṽ given by ṽ(K) = vi1 . . . viq ∈ Ṽ , where vK denotes the restriction of
v to the naturally ordered set K = {i1 < . . . < iq}. Moreover, if the acyclic
digraph (V,A) is E-ordered by E = {1, . . . , N}, then Ẽ is totally ordered by
the lexicographic ordering and therefore, the forest of paths digraph (Ṽ , Ã)
is an Ẽ-ordered digraph.

Proposition 13 (cf. [14]). The forest of paths digraph (Ṽ , Ã) of an acyclic
digraph (V,A) is a forest with m rooted trees, where m = Card(M). �

Remark 14. Each non maximal vertex of the acyclic digraph (V,A) gives
rise to a new vertex in the forest of paths (Ṽ , Ã) for each one of the paths
with maximal end in (V,A) starting from it. And each vertex in the forest
of paths is in the level Nk of this forest if and only if k is the length of the
corresponding path.

Proposition 15 (cf. [14]). The labels of the leaves in the forest of paths
(Ṽ , Ã) describe the digraph from the start (V,A).

Proof. It is clear that vi ∈ V if and only if vi is in the label of some leaf
of (Ṽ , Ã) and (vi, vj) ∈ A if, and only if, vi and vj are consecutive (in that
order) in the label of some leaf in (Ṽ , Ã). If we denote the set of leaves of
(Ṽ , Ã) by L, then we have:

V =
⋃
v∈L
{vi : vi being in the label of v ∈ L ⊂ Ṽ } and

A = {(vi, vj) : ∃v = vji ...vjrvjr+1 . . . vjq ∈ L in (Ṽ , Ã), i = jr, j = jr+1} �

Now we show how a labeling in an acyclic digraph (V,A) induces a
“prelabeling” in its forest of paths (Ṽ , Ã) which can be done by using the
same label set and in such a way as to enable the recovery of the original
structure of (V,A).

Definition 16. A prelabeling on a forest (Z,H) by the prelabel set E is
a surjective map p : Z −→ E. For every x ∈ Z, p(x) is the prelabel of x.
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Proposition 17. Let (V,A) be an acyclic digraph labeled by E = {1, . . . , N},
with x

¯
(i) = xi, and let (Ṽ , Ã) be its forest of paths labeled by Ẽ. The follow-

ing properties hold:

1. The map p : Ṽ −→ E such that p(xi1 . . . xiq) = i1 for any xi1 . . . xiq ∈
Ṽ , is a prelabeling on (Ṽ , Ã) by E.

2. If K is the arc set given by:

K = {(i, j) ∈ E×E : there exists (x, y) ∈ Ã with p(x) = i and p(y) = j}

then the labeling bijection p : E −→ V is a digraph isomorphism be-
tween (E,K) and (V,A).

3. The acyclic digraph (V,A) labeled by E can be recovered from its forest
of paths (Ṽ , Ã) prelabeled by E, being V the set of prelabels of Ṽ and
(u, v) ∈ A if and only if (u, v) ∈ Ã.

Remark 18. The vertices of Ṽ with the same prelabel i have the same clo-
sure ī, and the induced subdigraph by the forest (Ṽ , Ã) in ī is a rooted subtree
with root i.

Figure 1 includes, on the left, an E-ordered acyclic digraph (V,A) by
E = {1, . . . , 7}, with two maximal vertices; in the middle, its Ẽ-ordered
forest of paths (Ṽ , Ã) by Ẽ, the set of paths with maximal end; and, on the
right, the forest of paths (Ṽ , Ã) prelabeled by E.
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Figure 1: An acyclic digraph and its labeled and prelabeled forest of paths

The α–centrality and PageRank vectors of an acyclic digraph can be
obtained from its associated forest of paths. We then have the following
extension of Theorem 3 to acyclic digraphs.

Theorem 19. Let (V,A) be an acyclic digraph E-ordered by E = {1, . . . , N}
and let (Ṽ , Ã) be its forest of paths prelabeled by E. Then

16



1. The α–centrality vector of (V,A) is

x = (x1, . . . , xN ) =
1− α
N

(y1, . . . , yN ), with yi =
i∑

k=0

nikα
k (16)

where nik is the number of vertices of the level Nik in the rooted subtree
of the forest (Ṽ , Ã) with root i (the induced sub-digraph in ī).

2. The normalized α-centrality vector of (V,A) is

x1 =
1∑N
i=1 yi

(y1, . . . , yN )

3. The PageRank vector of (V,A) is

p = (P1, . . . ,PN ) =
1− α
N

(q1, . . . , qN ), with qi =

i∑
k=0

bikα
k (17)

where bik is the sum of the vertex’s branching of the level Nik in the
rooted subtree of (Ṽ , Ã) with root prelabeled by i.

4. The normalized PageRank vector of (V,A) is

p1 =
1∑N
i=1 qi

(q1, . . . , qN )

Proof. The α-centrality measures the contribution of the paths to each
vertex, and this is what has been modelled with the forest of paths. This
shows 1. For each vertex labeled by i we consider the induced subdigraph by
the forest of paths on the closure of i, and where each vertex is weighted by
the branching of the corresponding subpath. Then statement 3 follows by
Remark 14 and Proposition 15. Statements 2 and 4 are the 1-normalization
of the corresponding formulas. �

Theorem 19 gives us another way of computing the α-centrality and
PageRank measures for acyclic digraphs.

Example 20. Let us compute the α-centrality and PageRank of the acyclic
digraph shown in Figure 1. Using formula (7) with adjacency matrix M =
(mij)1≤i,j≤7, with non null elements m31 = m41 = m42 = m51 = m53 =
m54 = m61 = m65 = m74 = m75 = 1, we obtain the α-centrality

x =
1− α

7

(
1 + 4α+ 5α2 + 4α3, 1 + α+ 2α2 + 2α3,

1 + α+ 2α2, 1 + 2α+ 2α2, 1 + 2α, 1, 1
)
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One can see that this expression coincides with that given by formula (16).
Now compute the PageRank using formula (11) to get

p =
1− α

7

(
1 +

7

3
α+

13

12
α2 +

1

2
α3, 1 +

1

2
α+

5

12
α2 +

1

6
α3,

1 +
1

3
α+

1

3
α2, 1 +

5

6
α+

1

3
α2, 1 + α, 1, 1

)
Once again this expression can be easily obtained using formula (17). For
instance, to compute the PageRank of the vertex 1 in the acyclic digraph
(first term in the vector above) we look in the induced subgraph by the forest
of paths on the closure of 1, and obtain the value

P1 =
1− α

7

(
1 +

7

3
α+

13

12
α2 +

1

2
α3

)
where 7

3 , 13
12 and 1

2 are each equal to the sum of the branching of the vertices
of its corresponding level, namely, N1, N2 and N3, in the forest of paths
(Ṽ , Ã). Similarly the PageRank of vertex 4 is

P4 =
1− α

7

(
1 +

5

6
α+

1

3
α2

)
where the coefficients are obtained from the branching of the levels in the
induced subgraph by the forest of paths on the closure of 4. Figure 2 shows
the induced subdigraph in the closure of the vertices 1, 2, 3, 4 and 5, of the
prelabeled forest of paths in Figure 1.
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Figure 2: Rooted subtrees of (Ṽ , Ã) with branching

The previous Theorem shows that Remark 4 holds for α–centrality as
well as PageRank (provided one considers the sum bk of all branchings of

18



vertices at level k) on acyclic digraphs; that is, one can do any rearrangement
of links between consecutive levels of the network (being acyclic digraph)
and the α–centrality or PageRank measure will be the same. Remark 5 can
also be updated in this context of acyclic digraphs considering bk instead of
nk.

However, Theorem 6 does not hold for either α-centrality or PageRank
applied to measuring centrality of maximal vertices in acyclic digraphs. We
give an example below where it occurs that removing vertices with out-
degree greater than one from the last level can either increase or decrease
the values of the α-centrality and/or PageRank measures of the root of the
acyclic digraph. In Figure 3 we have, on the left, an acyclic digraph with
2k+3 vertices, k vertices from the last level (levelN3) connected to the vertex
2. In the middle, we have the forest of paths with vertices weighted by their
branching. The right-most figure shows the reduced digraph obtained by
removing the k vertices of degree 2 at level N3.
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Figure 3: Acyclic digraph, its forest of paths and reduced digraph

With the notations of Theorem 19, for the α–centrality of the acyclic
digraph in Figure 3 we have

y1 = 1 + α+ (k + 1)α2 + 2kα3, y2 = 1 + (k + 1)α+ 2kα2,

y3 = 1 + 2kα, yi = 1, for i = 4, . . . , 2k + 3, and

2k+3∑
i=1

yi = 2k + 3 + (3k + 2)α+ (3k + 1)α2 + 2kα3

and for the acyclic digraph without the k vertices of outdegree 2 we have

y′1 = 1 + α+ α2 + kα3, y′2 = 1 + α+ kα2,

y′3 = 1 + kα, y′i = 1, for i = 4, . . . , k + 3, and

k+3∑
i=1

y′i = k + 3 + (k + 2)α+ (k + 1)α2 + kα3
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Then, in relative terms, we have

x′1∑k+3
i=1 x

′
i

≥ x1∑2k+3
i=1 xi

⇐⇒ y′1

2k+3∑
i=1

yi ≥ y1
k+3∑
i=1

y′i

⇐⇒ (α+ 1)

(
α− 1−

√
k + 1

k

)(
α− 1 +

√
k + 1

k

)
≤ 0

Hence,
x′1∑k+3
i=1 x

′
i

≥ x1∑2k+3
i=1 xi

for k ≤ 3, α ∈ (0, 1), and

x′1∑k+3
i=1 x

′
i

≤ x1∑2k+3
i=1 xi

for k > 3, α ∈
(
1+
√
k+1
k , 1

)
For the PageRank of the acyclic digraph in Figure 3 we have

q1 = 1+α+(k2 +1)α2 + 3k
2 α

3, q2 = 1+(k2 +1)α+ 3k
2 α

2, q3 = 1+ 3k
2 α, qi = 1,

for i = 4, . . . , 2k+ 3, and
2k+3∑
i=1

qi = 2k+ 3 + (2k+ 2)α+ (2k+ 1)α2 +
3k

2
α3,

and for the acyclic digraph without the k vertices of outdegree 2 we have
q′i = y′i, i = 1, . . . , k + 3. Then, in relative terms, we have

P ′1∑k+3
i=1 P ′i

≥ P1∑2k+3
i=1 Pi

⇐⇒ q′1

2k+3∑
i=1

qi ≥ q1
k+3∑
i=1

q′i ⇐⇒ (m− 3)α2 − 4α− 2 ≤ 0

Hence,
P ′1∑k+3
i=1 P ′i

≥ P1∑2k+3
i=1 Pi

for k ≤ 9, α ∈ (0, 1), and

P ′1∑k+3
i=1 P ′i

≤ P1∑2k+3
i=1 Pi

for k > 9, α ∈
(
2+
√
2k−2

k−3 , 1
)

As a consequence, the notion of queue tree has no analogue in the context
of acyclic digraphs.

In the remainder of this work we shall concentrate on the analysis of
the behavior of PageRank in more general structures. Observing that α-
centrality can be seen as the particular case of PageRank where the branch-
ing of all paths is 1, from each result about PageRank we will obtain a
similar result for α-centrality as corollary.
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5. The bidirectional case

We turn now to trees with bidirectional as well as unidirectional arcs. A
digraph Br = (V,A) is a bidirectional tree with root r if its set of arcs
A can be partitioned in two disjoint sets A1 and A2 such that:

• (V,A1) is a partial tree with root r (the underlying tree of Br), and

• if uv ∈ A2 then vu ∈ A1, and in this case we have the bidirectional
arc (or 2-cycle) vuv.

Observe that for each arc uv ∈ A2 the corresponding bidirectional arc vuv
defines an infinite number of walks ending at the root r (just as would do any
cycle within a tree). Henceforth, to the effect of computing the PageRank of
r with formula (13), we can view each arc uv ∈ A2 as a path of infinite length
hanging from the vertex v, and containing alternatively copies of vertices u
and v, where at each v hangs a copy of the sub–tree rooted at v, T v, and
at each u hangs a copy of the remainder of the sub–tree rooted at u after
removing from it the sub–tree T v, that is, T u \ T v. Note that T u (and T v)
may contain bidirectional arcs. Extending this idea through all bidirectional
arcs, we can view the bidirectional tree Br as its associated infinite tree.
Figure 4 shows a bidirectional tree Br with two disjoint bidirectional arcs,
vuv and v′u′v′ (leftmost tree); next to it the bidirectional tree with an infinite
branch corresponding to vuv; and the rightmost tree is the full infinite tree
associated to Br.
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Figure 4: Bidirectional tree Br and its associated infinite tree in two stages.

This view of Br as an infinite tree makes it easier to understand the
interpretations we do below of formula (13) adapted to our trees. In formula
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(13), the sum is taken over all vertices w connected through a walk to a.
In the associated infinite tree this walk is a unique path ρ connecting w
with a. This path could have various incidence of bidirectional arcs. On the
other hand, each bidirectional arc vuv, with u 6= r and od(u) = 2, produces
an infinite number of walks: u, uvu, uvuvu, . . . , with branching factors
D(u) = 1, D(uvu) = 1/2, D(uvuvu) = 1/22, . . . ; hence, summing over all
these walks we get∑

ρ :u−→u

αl(ρ)D(ρ) = 1 +
α2

2
+
α4

22
+ · · · = 1

1− α2/2

Therefore, if the path ρ : w−→ a in formula (13) contains q vertices, each
meeting a bidirectional arc, the contribution to P(a) of the possible walks
produced on ρ is 1/(1− α2/2)q. If the bidirectional arc is vrv, with od(r) =
1, and hence D(rvr . . . vr) = 1 for any walk on this arc, we get that the
contribution to P(a) is 1/(1− α2). All the above observations lead to the
following result on computing the PageRank on bidirectional trees.

Theorem 21. Let Br = (V,A) be a bidirectional tree rooted at r.
(1) If od(r) = 0, then the PageRank of any a ∈ V is given by

P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− α2/2)q
(18)

(2) If od(r) = 1 with bidirectional arc rvr, then

P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− α2/2)q
, for a /∈ {r, v} (19)

and

P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− α2/2)q−1(1− α2)
, for a ∈ {r, v} (20)

where in all cases, ρ : w−→ a is the unique path from the vertex w to a, and
l(ρ) is the length of this path; n is the number of bidirectional vertices (i.e.
with od(u) = 2) not being an end-vertex in ρ; q is the number of bidirectional
arcs meeting ρ. �
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In particular, if od(r) = 0, then n = q and so

P(r) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

(2− α2)q
(21)

And if od(r) = 1, then n = q − 1 and

P(r) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

(2− α2)q−1(1− α2)
(22)

For α-centrality formulas (18) to (22) coincide.

Corollary 22. Let Br = (V,A) be a bidirectional tree rooted at r. Then the
α-centrality of a vertex vi ∈ V , i = 1, . . . , N , is given by

xi =
1− α
N

∑
w∈V

ρ:w−→vi

αl(ρ)

(1− α2)q
(23)

where ρ : w−→ vi is the unique path from the vertex w to vi, l(ρ) is the
length of this path, and q is the number of bidirectional arcs meeting ρ. �

Our proposed formula for computing the PageRank of the root in the
case of unidirectional trees (Eq. (15)) is founded on Brinkmeier’s breadth-
first search implementation of his analytical formulation (Eqs. (14) and
(13)). We would like to have a result on the same spirit of counting by
levels for bidirectional trees.

For a breadth-first search type of computation of PageRank on a bidi-
rectional tree, we must classify somehow the vertices by levels of the tree.
For each k > 0, the vertices at level Nk = {vk1, . . . , vknk} are characterize
by the number of bidirectional arcs met by their paths which ends in the
root, vki . . . r. Hence, nk = n0k + · · · + nk+1

k , where nqk denotes the number
of vertices at level Nk having q bidirectional arcs meeting their paths to r.
Some of these nqk could be null. The non-null nqk many vertices contributes to
the summation in equations (21) and (22) the quantities nqkα

k/(2− α2)q and
nqkα

k/(2− α2)q−1(1− α2) according to either case of od(r) = 0 or od(r) = 1.
Thus, we have the following result.

Theorem 23. Let Br be a bidirectional tree rooted at r, with N vertices and
height h > 0.

23



(1) If od(r) = 0, P(r) =
1− α
N

h∑
k=0

k∑
q=0

nqkα
k

(2− α2)q

(2) If od(r) = 1, P(r) =
1− α
N

h∑
k=0

k∑
q=0

nq+1
k αk

(2− α2)q(1− α2)

where q is the number of bidirectional arcs met by the path ending in r, but
distinct from the bidirectional arc incidence with r, if such bidirectional arc
exists. �

We can give a more succinct vectorial formulation of the previous result, if
we develop the sums “by rows” (outmost sum) and group column terms in
a vector.

Theorem 24. Let Br be a bidirectional tree rooted at r, with N vertices and
height h > 0. Then

P(r) =



1− α
N

h∑
q=0

∆q · Λq
(2− α2)q

if od(r) = 0

1− α
N

h∑
q=0

∆′q · Λq
(2− α2)q(1− α2)

if od(r) = 1

where ∆q = (nqq, n
q
q+1, . . . , n

q
h), ∆′q = (nq+1

q , nq+1
q+1, . . . , n

q+1
h ) and Λq = (αq,

αq+1, . . . , αh). �

Corollary 25. Let Br be a bidirectional tree rooted at r, with N vertices
and height h > 0. Then the α–centrality of the root r is given by

xr =
1− α
N

h∑
k=0

k∑
q=0

nqkα
k

(1− α2)q
=

1− α
N

h∑
q=0

∆q · Λq
(1− α2)q

where q is as in Theorem 23, ∆q and Λq are as in Theorem 24. �

5.1. Case of s-cycles

In this section we generalize the computation of PageRank to bidirec-
tional trees of height h > 1 on which we close permissible cycles of any
length obtained by joining vertices from level Nj with vertices from level
Nk, for 0 ≤ j < k ≤ h. In this way we can transform bidirectional arcs vuv
into cycles vuvs−1 . . . v2v of longer length, where the arc uv close the new
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Figure 5: Examples of cyclical trees.

cycle inserted in the rooted tree. Also the arc uv of the bidirectional arc
vuv can be substituted by a new arc ut closing a larger path t . . . vu in the
tree. In Figure 5 we exhibit some examples of these transformations.

Formally we define a digraph Cr = (V,A) as a cyclical tree with root
r, if its set of arcs A can be partitioned in two disjoint sets A1 and A2 such
that:

• (V,A1) is a partial tree with root r (the underlying tree of Cr), and

• if uv ∈ A2 then there is a path vsvs−1 . . . v1, beginning at vs = u,
ending at v1 = v and with intermediate vertices and arcs vi+1vi in A1,
and in this case we have the s-cycle vuvs−1 . . . v2v.

We proceed to compute the PageRank of these cyclical trees. Similarly to
the bidirectional case, we have that each cycle vu . . . v of length l ≥ 2 and
od(u) = 2 produces an infinite number of walks: u, uv . . . u, uv . . . uv . . . u,
. . . , with branching factors D(u) = 1, D(uv . . . u) = 1/2, D(uv . . .uv
. . .u) = 1/22, . . . ; hence, summing over all these walks we get∑

ρ :u−→u

αl(ρ)D(ρ) = 1 +
αl

2
+
α2l

22
+ · · · = 1

1− αl/2

Therefore, if the path ρ : w−→ a contains q vertices, meeting q cycles
of length l1, l2, . . . , lq, respectively, then the contribution to P(a) of the
possible walks produced on ρ is

1

1− αl1/2
· 1

1− αl2/2
· · · 1

1− αlq/2

If the cycle is vr l. . . v, with od(r) = 1, and hence D(rv . . . r) = 1, we get
that the contribution to P(a) is 1/(1− αl).
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Theorem 26. Let Cr = (V,A) be a cyclical tree rooted at r.
(1) If od(r) = 0, then PageRank for a vertex a ∈ V is given by

P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− αl1/2) · · · (1− αlq/2)

(2) If od(r) = 1 in the cycle rv1 . . . vlq−1r, then

P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− αl1/2) · · · (1− αlq/2)
, for a /∈ {r, v1, . . . , vlq−1}

and P(a) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

2n(1− αl1/2) · · · (1− αlq−1/2)(1− αlq)
, for a ∈

{r, v1, . . . , vlq−1}, where in all cases ρ : w−→ a is the unique path from
w to a, and l(ρ) is the length of this path; n is the number of bidirectional
vertices (i.e. with od(u) = 2) not being an end-vertex in ρ; q is the number
of cycles meeting ρ and of lengths l1, l2, . . . , lq. �

In particular, if od(r) = 0, n = q, and

P(r) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

(2− αl1) . . . (2− αlq)
(24)

And if od(r) = 1, n = q − 1, and

P(r) =
1− α
N

∑
w∈V

ρ:w−→a

αl(ρ)

(2− αl1) . . . (2− αlq−1)(1− αlq)
(25)

Corollary 27. Let Cr = (V,A) be a cyclical tree rooted at r. Then the
α-centrality for a vertex vi ∈ V , i = 1, . . . , N , is given by

xi =
1− α
N

∑
w∈V

ρ:w−→vi

αl(ρ)

(1− αl1) · · · (1− αlq)

where ρ : w−→ vi is the unique path from the vertex w to vi, l(ρ) is the
length of this path, and q is the number of cycles meeting ρ and of lengths
l1, l2, . . . , lq. �
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6. Rearrangements in rooted bidirectional and cyclical trees

Analogously to the case of unidirectional trees we shall analyze in this
section the behavior of PageRank on bidirectional, and more general, cyclical
trees when their topology is modified. Our first result shows that on a
unidirectional tree changing unidirectional arcs to bidirectional enhance the
PageRank value of the end-vertices of the transformed arc, but reduces the
PageRank of the root of the tree.

Theorem 28. If in a unidirectional tree T r an arc vu, with u 6= r, is
changed to a bidirectional arc vuv, then P(u) and P(v) both increase, but
P(r) decreases. The same holds for α-centrality.

Proof. We introduce some notation first. The term Px(T y) denotes the
PageRank of vertex x in the tree T y with root y and np(T y) denotes the
number of vertices at level Np in the tree T y. Now, assume that u is at level
Nk in the tree T r and, hence, v ∈ Nk+1 (see Figure 6).
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Figure 6: Number of vertices by levels

Then, we have that

Pr(T r) =
1− α
N

h∑
p=0

np(T r)αp

=
1− α
N

 h∑
p=0

np(T r − T u)αp +

h∑
p=k

np(T u)αp
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Therefore, if Br is the bidirectional tree obtained from T r by just changing
the arc vu to bidirectional arc vuv, using the results of Section 5, we have

Pr(Br) =
1− α
N

 h∑
p=0

np(T r − T u)αp +
1

2(1− α2/2)

h∑
p=k

np(T u)αp

 < Pr(T r)

which shows that the PageRank of the root r decreases. On the other hand,
the PageRanks of u and v are given by the equations:

Pu(Bu) =
1− α

N(1− α2/2)

h∑
p=k

np(T u)αp−k =
1

1− α2/2
Pu(T r) > Pu(T r)

Pv(Bv) =
1− α

N(1− α2/2)

α
2

h∑
p=k

np(T u − T v)αp−k +
h∑

p=k+1

np(T v)αp−(k+1)


> Pv(T v)

For α-centrality, the corresponding expressions can be obtained replacing
1

2
(
1−α2

2

) by 1
1−α2 in Pr(Br); 1

1−α2
2

by 1
1−α2 in Pu(Bu); 1

1−α2
2

by 1
1−α2 and

α/2 by α in Pv(Bv). �
Using same arguments as given for the previous theorem, we can gen-

eralized the result to the case where the original tree is bidirectional, and
some of its unidirectional arcs (if any) is promoted to being bidirectional.

Theorem 29. Let Br be a bidirectional tree, and let B′r be the tree resulting
from Br when a unidirectional arc vu, with u 6= r, is changed to a bidirec-
tional arc vuv (see Figure 7). Then

1. Pu(B′u) =
1

1− α2/2
Pu(Bu) > Pu(Bu).

2. Pv(B′u) > Pv(Bu).

3. If v′u′v′ is a bidirectional arc intersecting the path uv1 . . . vk−1r, then
Pu′(B′r) < Pu′(Br) and Pv′(B′r) < Pv′(Br).

4. Px(B′r) < Px(Br) for all vertex x in the path v1 . . . vk−1r.

5. In particular, Pr(B′r) < Pr(Br).
6. The vertices which are neither contained in the path uv1 . . . vk−1r nor

in the bidirectional arcs intersecting this path preserve their original
PageRank.

28



Similar inequalities hold for α-centrality changing (1−α2/2) by (1−α2).
�

Theorems 28 and 29 suggest that in order to increase the PageRank of
the root r of a tree we have to directly promote to bidirectional the arcs
incidence to r. The consequences of this manipulation is summarized in the
following theorem, which is a direct consequence of the two previous results.

Theorem 30. Let Br be a bidirectional tree, with od(r) = 0, and let B′r be
the tree resulting from Br when one of its arcs vr is changed to a bidirectional
arc vrv. Then

1. Pr(B′r) =
Pr(Br)
1− α2

.

2. Pv(B′r) = Pv(Br) +
αPr(Br)
1− α2

.

3. Pr(B′r) ≥ Pv(B′r)⇐⇒ Pr(Br) ≥ (1 + α)Pv(Br).
4. All other vertices (apart from r and v) preserve their PageRank. �

Note that, for α = 0.85, we have that Pr(B′r) ≈ 3.6Pr(Br), Pv(B′r) −
Pv(Br) ≈ 3.06Pr(Br) and that the PageRank of the root r is kept greater
than the PageRank of the vertex v if and only if the original PageRank of r
is greater than 1.85 times the PageRank of v.

Remark 31. For cyclical trees we have results similar to Theorems 28–
30 but replacing 1/(1 − α2/2) by 1/(1 − αl/2) for PageRank, or replacing
1/(1− α2) by 1/(1− αl) for α-centrality.
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case od(r) = 0
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Now, the pruning of the lower levels of a bidirectional tree has mix
consequences for the α-centrality and the PageRank of the root, in the same
way as it happened for acyclic digraphs. The following example illustrates
the possible outcomes of pruning lower levels of a bidirectional tree.

Example 32. Consider the tree shown in Figure 8, with root labelled 1 and
out-degree 0. We should compute the PageRank of vertex labeled by 1 before
and after removing the m vertices of the last level. Applying Equation (21)
we get

P(1) =
1− α
N

(
1 +

2α+ 2α2 + α3 + α4 +mα5

2− α2
+
α2 + 2α3 + nα4

(2− α2)2

)
where N = n + m + 10. Now, pruning the m vertices of the last level, we
get that the new PageRank of 1 in the pruned tree is

P ′(1) =
1− α
N ′

(
1 +

2α+ 2α2 + α3 + α4

2− α2
+
α2 + 2α3 + nα4

(2− α2)2

)
and N ′ = n+ 10. Then, for α = 0.85, we have that

P ′(1) > P(1) ⇐⇒ m(1443654850− 19126309n) > 0

which holds for n ≤ 75, and independently of the positive value of m. Thus,
for n ≤ 75 (n ≥ 76) and for all m ≥ 1, successive removal of the m
vertices of the last level increments (decrements) the PageRank of the root,
P(1). By similar arguments and using equation (22), in the tree shown in
Figure 9, which is an example of a tree with root having out-degree 1, we
have that for n ≤ 31 (n ≥ 32) and for all m ≥ 1, successive removal of
the m vertices of the last level increments (decrements) P(1).

The previous results give us some clues on ways of optimizing the α–
centrality or PageRank of tree-like organized networks. Obviously these
rules for rearrangement should apply insofar as the context allows.

Rule 1 To augment either eigenvector-based centrality value of the root,
transform incoming arcs into bidirectional ones. Furthermore, link
the root with vertices below in the tree (so that cycles passing by the
root are built).

Rule 2 To augment either eigenvector-based centrality value of a vertex u
different from the root, link u with a bidirectional arc to each one of the
vertices on the subtree with root u (hence obtaining a cyclical tree).

30



Keep in mind that this enhances the α–centrality or PageRank of u but
reduces the corresponding score of the root. One may interpret this
action as linking an individual with all its subordinates in a hierarchical
organization.

7. A note on fast computation of PageRank

There are several approaches in the literature to the task of speeding up
the calculation of PageRank, based upon the following general scheme (see,
for example, [10, 3, 7]):

Partition the directed network into local sub-nets; then compute
some independent ranking for each local sub-net, which will ap-
ply to the whole sub-net treated as a unit; and then compute
the ranking of the digraph of sub-nets.

In [3] and [7] the local splitting of the directed network is done in strongly
connected components (SCC), and further in [7, Thm 2.1], it is shown that
the PageRank can be calculated independently on each SCC, provided we
know the PageRank of all vertices outside the SCC, but directly linking to
vertices in the SCC.

We observe that if a directed network D = (V,A) is a cyclical tree with
root r then the set of arcs A can be partitioned in two disjoint sets A1 and
A2 such that:

• (V,A1) is a partial digraph whose condensation digraph is a tree of
SCCs with distinguished roots, where each pair of adjacent SCCs are
linked by a unique arc and the maximal SCC contains the root r (the
underlying digraph of D); and

• if uv ∈ A2 then there is a path vsvs−1 . . . v1, beginning at vs = v,
ending at v1 = u and with intermediate vertices and arcs vi+1vi in A1.

Therefore, cyclical trees with root give a simple splitting of a directed
network in the way of [3] and [7], namely as a tree of SCCs, with the addi-
tional strongest condition of having a single link between components, which
by the previously mentioned result of [7], can have PageRank computed in-
dependently in each SCC, and on a very simple way, provided we know the
PageRank of their descendants in the topological structure of the tree. This
suggests computing PageRank in parallel and through layers, as is proposed
in [7, §3], following an iterated process on the tree from a top level Nh down
to the root at N0. The cyclical tree is a suitable structure for the application
of this process.
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