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Universidad de Valladolid, 47011 Valladolid, Spain.

3Instituto de F́ısica Rosario, CONICET-UNR,
Bv. 27 de Febrero, S2000EKF Rosario, Santa Fe, Argentina
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Abstract

The fractional calculus is useful to model non-local phenomena. We construct a
method to evaluate the fractional Caputo derivative by means of a simple explicit quadratic
segmentary interpolation. This method yields to numerical resolution of ordinary frac-
tional differential equations. Due to the non-locality of the fractional derivative, we may
establish an equivalence between fractional oscillators and ordinary oscillators with a dis-
sipative term.

1 Introduction

The study of fractional derivatives for its application in classical and quantum physics has lately
received a lot of attention [1–3]. Needless to say that one of the simplest and most studied of
those systems is the one dimensional harmonic oscillator. Thus, it would be a good point of
departure in the study of systems with fractional derivative, a task which has been carried out
in [4]. Damped oscillator with fractional derivative has been also the objective of some studies,
see [5]. Some extensions of the theory to other classical systems have been proposed, see for
instance [6] and references therein, or in [8].

In many of these papers, it was noted an analogy between a fractional oscillator and a
classical oscillator with a damping term. This could be an idea to be exploited in order to
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model quantum systems with dissipation, in which the second derivative of the wave function
in the Schrödinger equation be replaced by a fractional derivative, see [7].

The present work has been inspired by the article by Narahari et. al. [9], where in addition
to the study of the one dimensional harmonic oscillator with fractional derivative, they give a
comparison with an equivalent dissipative oscillator described on the phase plane and analyze
the stability of the solution.

Along the present manuscript, we show that it may be possible the determination of a time
interval in which the solution of a fractional one dimensional oscillator may be approximated by
the solution of a one dimensional ordinary equation with a dissipative term. The idea could be
described by using a very simple example. Let us consider the Caputo derivative Dα

0 , defined
in (1) below, and the fractional differential equation Dα

0 x(t) = 0, with 1 < α ≤ 2 and initial
conditions x(0) = 0 and ẋ(0) = −1. The solution is x(t) = −t. Then, let us consider the
equation z̈(t) = −pż(t), p > 0. The goal is the determination of a value of p such that the
solution of this equation with initial conditions z(0) = 0 and ż(0) = −1, i.e., the same initial
conditions imposed to the fractional equation, be approximated by the solution of the fractional
equation over a finite time interval. This is clear, since the solution of the equation on z(t) is

z(t) =
1

p
(−1 + e−pt) .

Therefore, on a time interval 0 < t < τ , with τ = 1/p, we have z(t) = −t + o(t2). In this
sense of having similar approximate solutions on a finite interval, we say that the fractional
and the dissipative equations are equivalent. Here, we want to extend this idea.

Observe that in our notion of equivalence, we have discarded the asymptotic regime. This
is essentially due to two reasons: i.) for large values of time, the fractional oscillator does not
show oscillations; ii.) the behaviour of the oscillator from a strictly physical point of view,
whether linear or non-linear but particularly the latter, has interest for finite times only. Its
asymptotic behaviour is not measurable and has a mathematical interest only, and it is not the
object of our study.

The present paper is organized as follows: On Section 2, we construct a method to obtain
approximate solutions of fractional differential equations, with fractional Caputo derivative to
be defined there, based on segmentary interpolation. This kind of interpolation has been used
successfully to obtain approximate solutions of ordinary differential equations [13]. On Section
3, we apply this method to the fractional linear oscillator and to some other simple examples
and make estimations on its precision. We compare results with those obtained replacing the
fractional oscillator by the ordinary oscillator with a dissipative term. We present a similar
analysis by replacing the equation of the oscillator by the van der Pol equation on Section 4.
We close this paper with some concluding remarks.

2 Caputo fractional derivative and its evaluation by seg-

mentary interpolation

Let α be a real positive number and denote by n = dαe the smaller integer bigger than α.
Let us define the Caputo fractional derivative, Dα

a , of a n times differentiable function of real
variable, x(t), as [10]
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Dα
a x(t) =

1

Γ(n− α)

∫ t

a

x(n)(s)

(t− s)α−n+1
ds , (1)

where x(n)(s) means the n-th derivative of the function x(s). Our objective, as mentioned at
the header of the present section, is an evaluation of (1) using segmentary interpolation. Here,
we consider that 0 < α < 1, so that the only choice for n is n = 1, and this will be the case
for some of our applications. Segmentary interpolation is a standard tool of wide use in the
approximation of solutions of differential equations [12]. Let us sketch the method here for
completeness, using an approach that has been used in previous articles by our group [13,14].

Let [a, b] be a compact interval in the real axis R. At regular intervals, we select n nodes,
a = t0 < t1 < · · · < tn = b, with tk − tk−1 = h, for all k = 1, 2, . . . , n, so that kn = b − a. Let
x(t) : [a, b] 7−→ C be a continuous function and use the notation xk := x(tk) and Ik := [tk−1, tk] ,
for all k = 1, 2, . . . , n.

Then, a quadratic segmentary interpolator S(t) for the function x(t), is a continuous function
S(t) : [a, b] 7−→ C, with first continuous derivative, such that

1.- On each interval of the form Ik = [tk−1, tk], k = 1, 2, . . . , n, we have that S(t) ≡ Pk(t),
where Pk(t) is a polynomial of order two, depending on the given interval.

2.- The function S(t) interpolates x(t), in the sense that for any of the nodes {tk}, one has
that

Pk(tk−1) = xk−1 , Pk(tk) = xk , k = 1, 2, . . . , n . (2)

The condition on the continuity of the derivative S ′(t) implies that

P ′k(tk) = P ′k+1(tk) , k = 1, 2, . . . , n− 1 . (3)

Thus, the construction of the segmentary interpolator S(t) relies in the construction of the
interpolating polynomials Pk(t). We propose the following form for the interpolating polyno-
mials: For each of the intervals Ik, let us define,

Pk(t) = pk(t) + ak(t− tk−1)(t− tk) , (4)

with

pk(t) =
t− tk−1

h
xk −

t− tk
h

xk−1 , (5)

and the complex coefficients ak are given by

ak =
n∑
j=0

ck,j xj . (6)

We still need to determine the values of the ck,j, which are
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cj,k =



(−1)k
h2

η1 , if j = 0 ,

(−1)k+1

h2
(2η1 + η2) , if j = 1 ,

(−1)k+j

h2
(ηj−1 + 2ηj + ηj+1) , if 1 < j < n− 1 ,

(−1)k+n−1

h2
(2ηn−2 + ηn−1) , if j = n− 1 ,

(−1)k+n

h2
ηn−1 , if j = n ,

(7)

where ηj = j/n if j ≤ k − 1 and ηj = j/n− 1 if j > k − 1.
Taking into account that S(t) is an approximation of x(t), on each of the nodes tk the

Caputo fractional derivative (1) is approximated by

Dα
ax(tk) ≈

1

Γ(1− α)

k∑
j=1

∫ tj

tj−1

P ′j(s)

(tk − s)α
ds , k = 1, . . . , n . (8)

Then, on each of the intervals Ik, we have that P ′k(t) = αk t+ βk, with

αk = 2ak , βk =
xk − xk−1

h
− ak(2tk−1 + h) , (9)

and, consequently, equation (8), takes the following form:

Dα
ax(tk) ≈

1

Γ(1− α)

k∑
j=1

c̃k,j αj + d̃k,j βj . (10)

The new coefficients c̃k,j and d̃k,j are given by

c̃k,j =

∫ tj

tj−1

s ds

(tk − s)α
, d̃k,j =

∫ tj

tj−1

ds

(tk − s)α
, (11)

which obviously depend solely of the partition.
It is customary to choose a = x0 = 0, which obviously does not restrict generality. Since

the integrals in (11) are easily solvable and we know expressions for αj and βj, we can write
the right hand side in (10) as

Dα
ax(tk) ≈

1

(−1 + α)(−2 + α) Γ(1− α)

k∑
j=1

γk,j αj , (12)

where,

γk,j = [h(−j + k)]−α [h(1− j + k)]−α
{
h(−1 + j − k) [h(−j + k)]α

×[−2h(−2 + j + k) + h(−3 + 2j)α− 2(−2 + α)tj−1]

−h(j − k) [h(1− j + k)]α [−2h(−1 + j + k) + h(−1 + 2j)α− 2(−2 + α)tj−1]
}
. (13)
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This is a quite simple and workable receipt to obtain, once x(t) is given, the values of its
Caputo fractional derivative at the nodes tk, so that we have an estimation of this fractional
derivative.

It is interesting to remark that, due to the linear dependence on {xn} of the coefficients
αj = 2aj given in (6), then, the derivative Dα

ax(tk) in (12) can be explicitly determined from
x(t).

A simple remark in relation with the dependence of the proposed method on the initial
conditions. This is that the approximation for the determination of the Caputo derivative
by means of the proposed quadratic spline is independent on any fixed initial condition. This
means that all manipulations from equation (1) to (11) are certainly independent from the initial
conditions. To illustrate the approximation (8) to the Caputo derivative, we have proceed with
our calculations assuming a = x0 = 0. Since we have taken xk = x0+hk, the choice x0 = 0 gives
a simple form for the coefficients in equations (9) and (11). A choice with x0 6= 0 would give
more complicated expressions for these coefficients, with the result that calculations become
more cumbersome without adding anything of interest to our results.

2.1 A type of differential equations with fractional derivative

Let x(t) : [a, b] 7−→ Rm be a differentiable real function of the real variable t and f(t, x) :
[a, b]× Rm 7−→ Rm. In addition, we assume that x(t∗) = x∗, where t∗ is one of the nodes {tk},
a ≤ t∗ ≤ b, and 0 < α < 1. Then, let us consider the following fractional differential equation:

Dα
ax(t) = f(t, x(t)) . (14)

The objective is to obtain an approximation for the solution of equation (14) under the
condition x(t∗) = x∗. We already know how to obtain the identity (14) in the nodes tk. Take
these nodes with the exception of t∗. Then, (14) provides of an algebraic system of equations
where the indeterminates are {xj,k}m,nj=1,k=0 with xj,k := xj(tk) and xj,k 6= x∗j = xj(t

∗). This
algebraic system may or may not be linear depending on the form of f(t, x(t)) and is of order
(mn) × (mn). A numerical solution of this system could be obtained by whatever method,
which gives a segmentary solution S(t), which is given once one has obtained the coefficients
ak defined in (6).

In the particular case in which f(t, x(t)) contains an eigenvalue λ and f be linear with
respect to (λ, x) this algebraic system is linear and homogeneous. The eigenvalue is determined
in the usual way.

As the reader may easily understand, this method is more general than the usual way to
obtain a solution knowing an initial value, since now t∗ could be any node. In particular,
the restriction to the solution that replaces the initial value condition could be imposed at t∗,
and this represents a great advantage when compared with the shooting method worked out
in [11,15].

3 The fractional linear oscillator

A simple example of an equation of the type (14) is the linear oscillator with the fractional
derivative, which is defined as
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Dα
0 x(t) = −ω2 x(t) . (15)

As in the standard harmonic oscillator the constant ω2 = k/m, where m is the oscillator
mass and k a constant, α being the order of derivation that in the present case we assume to be
1 < α ≤ 2. Using the definition (1), taking into account that for some differentiable function
f(t) (in our case f(t) = x(t) or f(t) = ẋ(t), where the dot means first derivative), we have that

lim
α→0+

1

Γ(α + 1)
tα f(0) = f(0) , (16)

and that n is either 2 or 3, we may integrate by parts (15) using (1), which gives the following
integral version of (2):

x(t) = x(0) + ẋ(0)− ω2

Γ(−α)

∫ t

0

(t− s)−α−1 x(s) ds . (17)

The general solution has the form

x(t) = c1Eα,1(−ω2tα) + c2 t Eα,2(−ω2tα) , (18)

where Eα,β(z) is the so called Mittag-Leffler function

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
. (19)

Thus, in order to obtain a particular solution, we have to impose some initial conditions. For
instance, if we choose x(0) = 1 and ẋ(0) = 0, the solution to (17) with these initial conditions
is given by

x(t) = Eα,1(−ω2tα) . (20)

Let us find a particular numerical solution to the fractional linear oscillator, using the
method introduced in Section 2.1. We have to choose a particular value for ω and the simplest
possibility is ω = 1. This is developed in the forthcoming subsection.

3.1 Some numerical estimations.

First of all, it is not the objective here to give explicit expressions for the approximate solutions
for the studied examples. It is not difficult to plot these solutions for different values of n.

Let us start with equation (15) with ω = 1 on the interval 0 ≤ t ≤ 1, with 0 < α < 1
and initial condition x(0) = 1. As seen above, this equation has exact solution given by
xexact(t) = Eα,1(−tα) [10]. The objective is now an estimation on the precision of the proposed
method. As customary, this precision is measured by using the following parameter:

en(α) =

∫ 1

0

[xexact(t)− xn(t)]2 dt , (21)

Here, n is the number of sub-intervals In in which we partite [0, 1], the number of nodes
being n + 1. The dependence of this parameter on α shows that the smaller is the value of
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α, or equivalently the closer is α to zero, the lower is the precision and, therefore, the slower
is the convergence to the exact value. However, we do not observe significative variations on
the precision when we increase the value of n, i.e., as we make the sub-intervals smaller and
smaller.

n en(0.1) en(0.5) en(0.9)

5 7.4 10−3 1.7 10−3 2.0 10−4

10 3.0 10−3 4.9 10−4 2.8 10−5

20 1.1 10−3 1.4 10−4 5.9 10−6

40 3.0 10−4 3.7 10−5 1.3 10−6

Table 1.- Values of the precision in terms of n and α.

This can be seen in Table 1, where we have chosen values of n ranging from 5 to 40. The
values of α studied are 0.1, 0.5 and 0.9.

Let us study the precision of the method with another example different from the fractional
oscillator, yet an equation of the form (14). Here, we have chosen,

D
1/2
0 x(t) = sin x(t) , (22)

on the interval [0, 1], with the initial condition x(1) = 5/2, which was already studied in [11],
where the integration was performed by means of the iterative shot method. Contrarily to the
previous example, here we do not know an exact solution. The way out is to define the precision
as

en =

∫ 1

0

[D
1/2
0 xn(t)− sinxn(t)]2 dx , (23)

where n is again the number of intervals and xn(t) is the interpolating function for the studied
case. After integration and using the boundary condition, we obtain x(0). Along with (23),
we introduce another parameter that measures the convergence and that we denote as er%. It
represents the relative variation between the value of y(0), obtained for a given value of n, and
the value given for the precedent value of n as listed on Table 2.

Table 2 is just a sample of numerous numerical examples we have performed. This sample
is significative, as it manifest an obvious convergence and shows that the result obtained for a
small number of nodes is satisfactory.

n y(0) er% en

5 1.74895 −− 1.8 10−2

10 1.73812 0.5 7.4 10−3

20 1.73326 0.3 2.6 10−3

30 1.73166 0.09 1.1 10−3

40 1.73085 0.05 5.6 10−4
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Table 2: Values of y(0), er% and en for a given value of n

Finally, we have performed another reliability test, which was the use of the value of y(0)
obtained numerically as initial value and evaluate the value of y(1). In all cases, we have
recovered the value y(1) = 5/2.

3.2 Damped oscillator with entire derivative.

As is well known, the damped oscillator with entire derivative is given by

mÿ(t) + pẏ(t) + ky(y) = 0 , (24)

where m, p and k are constants. Here, we assume that p > 0.
For p = 0, the limit for α 7−→ 2− in (15) should give the solution y(t) for (24), which we

denote here as limα→2− x(t) = y(t). The solution x(t) is damped oscillatory on the transitory
regime only [1, 9, 10]. Based on these notions, we propose the following Ansatz:

For each given 1 < α ≤ 2, there exists p > 0 such that the solution x(t) of (15) with α is a
good approximation of the solution y(t) of (24) with p, in the transitory regime.

Using this Ansatz, let us obtain an approximate solution y(t) for (24) such that this and its
corresponding solution x(t) for (15) fulfil the conditions y(0) = x(0) and ẏ(0) = ẋ(0). This is:

y(t) = exp
(
− p

m
t
)

(c− exp(−∆t) + c+ exp(∆t)) , (25)

where,

∆ =
√

(p/m)2 − 4ω2 , λ± =
−p±∆

2
, c± = ±λ∓

∆
, (26)

where ω2 was given in (15).
Then, the point is the determination of the value of p being given the value of α, or equiv-

alently the determination of a function p = p(α), in application to our Ansatz. This is an
optimal control problem. We have to find the optimal solution, which minimizes the following
functional:

E(α) :=
1

T

∫ T

0

[x(t)− y(t)]2 dt , (27)

where T is some time scale in which the amplitude of the oscillations are reduced by a factor
of 1/T . On the interval [0, T ], the transitory regime, we compare the solutions of the fractional
derivative x(t) and of the damped oscillator y(t). The functional E(α) measures the deviation
between x(t) and y(t). Then, go back to (20) and note that the function Eα,1(−ω2tα) is not
asymptotically oscillating as t 7−→ 0. This permits us to choose a value of T , although not
small, not very high either. Numerical experiments have shown that the choice T = 20 is
appropriate.

Let us give some numerical results. On Table 3, we give the dependence between values of
α, p(α) and E(α) for the values k = m = 1 and n = 50.
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α p E

1.10 1.140 6.4 10−3

1.30 0.891 5.7 10−3

1.50 0.668 4.7 10−3

1.70 0.433 3.3 10−3

1.90 0.152 1.1 10−3
1.95 0.754 4.3 10−4

2 0 0

Table 3: Comparison between the values of α, p and E,
for T = 20, k = m = 1 and n = 50.

An explicit expression of the function p(α) may be obtained by the least-square method
and this gives p(α) = 1.49409 + 0.056127α− 0.401446α2. This is depicted on Figure 2.

On Figure 1, we represent the usual behaviour in the transitory regime for x(t) and y(t),
when we choose α = 1.7 and n = 50.

It is interesting to remark that numerical experiments show that p(α) does not depend on
any choice of initial values.

3.3 Non-linear oscillator

Following the discussion on the damped oscillator, we present a similar problem given by the
following non-linear oscillator:

Dα
0 x(t) = y(t) , Dα

0 y(t) = − sinx(t) , (28)

with 0 < α ≤ 1. Let us choose the initial values given by x(0) = 1 and y(0) = 0. Clearly, for
small oscillations equation (28) becomes equation (15) with the replacement α → 2α. Again,
this is a non-linear problem having no analytic solution for α non-integer. Then, we proceed
by analogy with the damped oscillator. In this case, we consider the following system involving
entire derivatives only:

ż(t) = w(t) , ẇ(t) = −pw(t)− sin z(t) , p > 0 . (29)

On the transitory regime, we compare the solutions of systems (28) and (29) under the con-
ditions z(0) = x(0) = 1 and w(0) = y(0) = 0. To do this, we need the previous determination
of p(α), which we assume that minimizes the following quadratic dispersion:

E(α) =
1

T

∫ T

0

{[xn(t)− z(t)]2 + [yn(t)− w(t)]2} dt . (30)

Obviously, this expression generalizes (27). Again, we adjust the value of T by numerical
experiments, which show that T = 20 is, again, a convenient choice. On Table 4, we give some
values for the dependence between α, p(α) and E(α) after the choice T = 20 and n = 50.
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xHtL, yHtL Line: xHtL, Dashed: yHtL

Figure 1: The continuous line represents the solution, x(t) of the fractional equation (15), which is
given by (25). The dashed line gives the solution, y(t), of the equation with ordinary derivative (25).
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0.2
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0.8
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1.2

1.4
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Figure 2: Function p(α).

α p E

0.50 1.203 5.5 10−3

0.70 0.757 3.9 10−3

0.90 0.294 2.1 10−3

0.95 0.148 1.4 10−3

1.00 0 0

Table 4: Comparison between the values of α, p and E,
for the values T = 20 and n = 50.

The above examples manifest an analogous behaviour between a fractional linear oscillator
and a damped or even non-linear oscillator on some time interval. The solutions between the
fractional and the integer equation are very similar on some time scale. This could be a rather
general situation, so that in many practical cases and inside a time interval, we conjecture
that a fractional operator might be replaced by the frictional additional term on the classical
oscillator. The behaviour of the solutions is similar to that shown in Figure 1.

10



4 On the fractional van der Pol equation

The van der Pol equation is a second order non-linear ordinary differential equation [16,18]. It
has the following form:

ẍ(t)− µ(1− x2(t)) ẋ(t) + x(t) = 0 , (31)

where µ ≥ 0 is a constant. When µ = 0, (31) is the equation of the ordinary harmonic oscillator.
The van der Pol equation may be written in terms of a first order system as

ẋ(t) := z(t) , ż(t) = −µ(x2(t)− 1)z(t)− x(t) , µ ≥ 0 . (32)

This equation has a unique limit cycle for µ 6= 0, after the Liénard theorem [17]. This
suggested us the interest of considering the possible existence of a limit cycle for the fractional
system analogous to (32) given by

Dα
0 x(t) = z(t) , Dα

0 z(t) = −µz(t)(x2(t)− 1)− x(t) , 0 < α ≤ 1. (33)

One fractional van der Pol equation of the type

Dα+1
0 x(t) + µ(x2(t)− 1)Dα

0 x(t) + x(t) = 0 , (34)

has been studied in [19], where a relation between the parameters α and µ was given as a
sufficient condition for the existence of a limit cycle, using the balance harmonic method [20].

We have studied the system (33) through numerical as well as analytic methods. We have
performed a big amount of numerical experiments, which have shown the existence of a value
of the parameter µ, here called µc, where the subindex c stands for critical, which depends on
α and µc(α) > 0, such that

• For values of µ with 0 < µ < µc, there is a fixed point (x∗, z∗) = (0, 0), which remains
stable at the limit t 7−→ ∞, limt→∞(x(t), z(t)) = (0, 0). Therefore, there is no stable limit
cycle. In addition, there is no evidence of the existence of an unstable limit cycle.

• For values µ > µc, the fixed point (x∗, z∗) = (0, 0) is unstable. We found a unique stable
limit cycle. In this case a Hopf bifurcation emerges with µc as critical parameter.

• As shown in Figure 3, µc(α) decreases with α and limα→1 µc(α) = 0.

The point here is to show the existence of the critical value for the parameter µ for a given
value of 0 < α < 1, µc(α). This existence has been manifested by the numerical estimations
above. Nevertheless, this existence may be also shown analytically. To this end, we use the
following result [21]:

Let us consider the following system, where Dα
0 represents the Caputo fractional derivative:

Dα
0 x(t) = f(x, z) , Dα

0 z(t) = g(x, z) , 0 < α < 1 . (35)

A solution (x∗(t), z∗(t)) is in equilibrium if f(x∗(t), z∗(t)) = g(x∗(t), z∗(t)) = 0. It is asymp-
totically stable if the eigenvalues, λ, of the Jacobian matrix
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J(x, z) :=

(
∂f/∂x ∂f/∂z

∂g/∂x ∂g/∂z

)
, (36)

when evaluated at the equilibrium point satisfies

| arg(λ)| > α
π

2
. (37)

A comparison between (33) and (35) gives the precise form of f(x, z) and g(x, z) for our
particular case. This gives the precise form of (36) as

J(x, z) :=

(
0 1

−1− 2µ z(t)x(t) −µ(x2(t)− 1)

)
. (38)

Taking into account that the fixed point is located at (x∗, z∗) = (0, 0), we have that

J(0, 0) =

(
0 1

−1 µ

)
, (39)

which has the following eigenvalues:

λ± =
1

2
(µ±

√
µ2 − 4) . (40)

Obviously, if µ ≥ 2, then arg(λ±) = 0. On the other hand, if µ < 2, one has that,

arg(λ±) = arctan

±
√(

2

µ

)2

− 1

 . (41)

From (37), the critical value, µc, of µ should obey the following relation:

arctan

±
√(

2

µ c

)2

− 1

 = α
π

2
, (42)

which gives

µc =
2√

1 + tan2
(απ

2

) . (43)

This is to say, if we fix α and start from µ ≈ 0, as we increase µ, we go from a situation
with a asymptotically stable fixed point to an unstable point. This happens when µ > µc. The
transition from the stability to the unstability drives to the emergency of a limit cycle. We
may qualitatively interpret the limit cycle loss as follows: let us consider µ ≈ 0 in (33), which
may then be approximated by

Dα
0 x(t) = z(t) , Dα

0 z(t) = −x(t) . (44)
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Figure 3: Function µc(α).

This is the same than equation (28) with the paraxial approximation sin y(x) ≈ y(x). Note
that (44) does not show a limit cycle and, further, the trivial solution (0, 0) is an attractor. The
second equation in (33) contains the term −µ z(x)(y2(x)−1), which in the case of µ > µc is not
negligible. This fact outbalances the dissipation and this is precisely which makes it possible
the existence of a limit cycle.

On Figure 4 and on the phase plane, the continuous and slashed curves represent the solution
with entire and fractional derivative, respectively. Both trajectories are determined with same
initial values and same parameter µ. In all cases, the fractional limit circle is enclosed by the
trajectory of the limit cycle with entire derivative.

On Figure 3, we show the relation µc = µc(α). In the region above the curve, there exists a
stable cycle limit and, furthermore, the fixed point (0, 0) is unstable. Below the curve the limit
cycle does not exist and the fixed point is asymptotically stable. There is an obvious difference
with the results obtained in [19], which is due to the fact that the fractional equations (33) and
(34) are not equivalent.

4.1 Equivalence between the fractional van der Pol equation and
the same equation with entire derivative and dissipation.

On the previous section, we have compared the approximate solutions of a dissipative oscillator
with entire derivative with those of the linear oscillator with fractional derivative. Now, we
want to carry out a similar analysis with the fractional van der Pol equation and a van der Pol
equation with entire derivative and a dissipative term of the form βz(t), β > 0. This system
has the form,

x′(t) = z(t) , z′(t) = −z(t)(β + µ(x2(t)− 1))− z(t) , µ , β > 0 . (45)

Here, the fixed point is (x∗, z∗) = (0, 0). To check its stability, we consider again equation
(37), which in the present case gives at the fixed point the following expression

J(0, 0) =

(
0 1

−1 µ− β

)
, (46)

which has the eigenvalues

13



-2 -1 1 2

-2

-1

1

2

Α = 0.9 Μ=1.0 xmax=50 n=100

Figure 4: Comparison between the entire (continuous curve) and the fractional (slashed curve) van
der Pol solutions, with the same value of µ.

λ± =
(µ− β)±

√
(µ− β)2 − 4

2
. (47)

Therefore, the fixed point is stable if Re(λ±) < 0 and unstable if Re(λ±) > 0, or equivalently,
if µ−β < 0 and µ−β > 0, respectively. Then, for each µ, there exists a βc = µ, where the Hopf
bifurcation of the fixed point appears and, consequently, the destruction of the limit cycle.

In any case, according to the Liénard theorem [17, 18], we may show that there exists a
unique stable limit cycle if µ − β < 0. In consequence, the van der Pol equations with entire
derivative and dissipation and fractional have qualitatively the same properties.

We have checked numerically a qualitative equivalence, in the sense of having approximately
the same solution, through a substantial number of numerical experiments, between equations
(44) (with fractional derivative) and (45) (with entire derivative). Thus by trial and error, we
have determined a value of β giving the same cycle in both cases. For instance, if we give the
values α = 0.9 and µ = 0.1, we obtained β ∼= 0.315. In an analogous manner, we trial with
values for which µ < µc and obtained similar conclusions.

On Figure 5, we represent limit cycles for the fractional and dissipative entire van der Pol
equations.

5 Concluding remarks

We have applied a quadratic spline method in order to obtain functions that approximate the
result of applying a fractional derivative to a given function. This is suitable to obtain solutions
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Figure 5: Comparison between the damped (continuous curve) and the fractional (slashed curve) van
der Pol solutions.

to some differential equations with initial values or mixed conditions of potential interest in
Physics or Engineering. We have tested our method with the fractional linear oscillator, where
exact solutions are known and checked its degree of precision. Results of numerous numerical
experiments show that for values of α in the range 0 < α < 1, the higher is α, the better is the
precision of our method. Here, α is the order of the fractional derivation, Dα. However, there
are not substantial differences when we increase the number of nodes on the interval under our
consideration. Similar results have been obtained for non-linear oscillators.

Based on previous studies on the approximation of solutions of the fractional linear oscillator
by solutions of a damped oscillator, we have used our method to confirm these results. We have
shown that there exists a time interval for which the solutions of both equations are similar with
a high degree of accuracy, under the condition that a relation is given between the coefficient
p of the dissipative term of the damped oscillator and the order of the fractional derivation, α.

A similar study compares a fractional and a damped van der Pol equations, written as a
system of two equations on phase space, with similar results. In addition, we have considered
the behaviour of limit cycles and fixed points in terms of α and a parameter µ characteristic of
the van der Pol equation. Using analytic as well as numerical arguments, we show the existence
of a critical value for the parameter µ, µc, such that if µ < µc the origin of phase space is stable
and if µ > µc is unestable. This limit value µc depends on α and we give the exact relation.

As a final remark, we would like to add that we have chosen the Caputo derivative, since
it may be more suitable for prospecting applications in Physics. Nevertheless, if we replace
Caputo fractional derivative by the fractional derivatives in the senses of Riemann-Liouville,
Grundwald-Letnikov or Hadamard [1,10], we would have no difficulty whatsoever in extending
our results introduced in Section 2. Note that all these fractional derivatives are linear and, since
the function x(t) is being approximated by a segmentary quadratic function, the evaluation of
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the integrals yielded by the use of the above mentioned definitions is analytic in all cases. Thus,
one straightforwardly obtains the corresponding formula (12) valid for all of these choices on
the definition of fractional derivative. Then, we integrate the differential equations of the type
(14) following the route designed on Section 2.1.

Acknowledgements

This research has been financed by the Projects No. ING 19/i 402 and ING 80020180100064
of the Universidad Nacional de Rosario, the Spanish MINECO (Project No. MTM2014-57129)
and the Junta de Castilla y León (Project Nos. BU229P18 and VA137G18).

References

[1] A. Kilbas, H. Srivastava, J. Trujillo. Theory and Applications of Fractional differential
equations, Elsevier, Amsterdam (2006).

[2] R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, (2011).

[3] V.V. Uchaikin, Fractional derivatives for physicists and engineers. Volume I Background
and theory volume, Volume II Applications. Berlin Heidelberg: Springer Science & Business
Media (2013).

[4] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena,
Chaos, Solitons and Fractals, 7 (9), 1461-1477 (1996).

[5] F. Olivar-Romero, O. Rosas-Ortiz, Fractional driven damped oscillator, J. Phys. Conf.
Ser., 839, 012010 (2017).

[6] F. Olivar-Romero, O. Rosas-Ortiz, Transition from the Wave Equation to Either the Heat
or the Transport Equations through Fractional Differential Expressions, Symmetry, 10,
524 (2018).

[7] F. Olivar-Romero, O. Rosas-Ortiz, Factorization of the quantum fractional oscillator, J.
Phys. Conf. Ser., 698, 012025 (2016).

[8] Can Evren Yarman, Approximating fractional derivative of Faddeeva function, Gaussian
function, and Dawson’s integral, Math. Met. Appl. Scie., DOI: 10.1002/mma.5679 (2019).

[9] B.N. Narahari Archar, J.W. Hanneken, T. Enck, T. Clarke, Dynamics of the fractional
oscillator, Physica A, 297, 361-367 (2001).

[10] K. Diethelm, The Analysis of Fractional Differential Equations. An Application Oriented
Exposition Using Differential Operators of Caputo Type, Springer Verlag, Berlin (2010).

[11] K. Diethelm, W. McLean, Volterra integral equations and fractional calculus: do neigh-
boring solutions intersect?, Journal of Integral Equations and Applications, 24 (1), 25-37
(2012).

16



[12] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Springer,
Berlin and New York, 1993.

[13] M. Gadella, L.P. Lara, A study of periodic potentials based in quadratic splines, Int. J.
Mod. Phys. C, 29, 1850067 (2018).

[14] A. Ferrari, L.P. Lara, E Santillan-Marcus, Convergence analysis and parity conservation
of a new form of quadratic splines, arXiv:1906.10559v1 (2019).

[15] H. Demir, Y. Balturk, On numerical solutions of fractional order boundary value problem
with shooting method, ITM Web of Conferences, 13, 01032 (2017).

[16] B. van der Pol, On relaxation equations, The London, Edinburgh and Dublin Phil. Mag.
& J. of Sci., 2 (7), 978-992 (1927).

[17] S. Strogatz, Nonlinear Dynamics and Chaos, CRC Press, Taylor and Francis, Boca Raton,
London and New York, 2015.

[18] M. Farkas, Periodic Motions, Springer, New York and Berlin (1994).

[19] Z. Guo, A.Y.T. Leung, H.X. Yang, Oscillatory region and asymptotic solution of frac-
tional van der Pol oscillator via residue harmonic balance technique, Apply Mathematical
Modelling, 35, 3918-3925 (2011).

[20] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer, Berlin, 2006.

[21] E. Ahmed, A. El-Sayed, A.A. El-Saka, On some Routh-Hurwitz conditions for fractional
order differential equations and their applications in Lorenz, Rössler, Chua and Chen
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