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1  |   INTRODUCTION

The estimation of the partial volume fraction (PVF) of 
free water (FW) inside brain tissues, and specifically in-
side the white matter (WM), serves two purposes in dif-
fusion MRI: first, eliminating a confounding factor within 
diffusion tensor imaging (DTI),1 which emanates from the 
limited resolution of diffusion weighted images (DWIs).2 
Second, the FW-PVF itself can be a biological marker for 

the description of tumorous edema, neuro-inflammation, 
and others.3,4

Several techniques for FW-PVF estimation have been pro-
posed that can be classified depending on the kind of DWI 
collections they employ: micro-structure oriented meth-
ods like NODDI,5 spherical means,6 or MiSFIT7 consider 
multi-shells, that is, few medium–high b-values (∼2–4, up 
to 10, 000 s∕mm2) with ∼64–128 gradient directions each; 
spectral methods8,9 manage large sets (∼15) of low–medium 
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b-values (up to 2, 500 s∕mm2) with few gradients each (<15); 
finally, DTI-based methods use either single-shell acqui-
sitions near 1000 s∕mm22,3 or they complement this stan-
dard DTI acquisition with few gradients at a smaller b-value 
(∼ 500 s∕mm2).10

We are interested here in little demanding acquisitions. 
Even when single-shell estimates can be reliable if a proper 
regularization is embedded,3 it has been shown that these 
results must be interpreted with care.11 Since both regu-
larized10 and unregularized12 schemes benefit from using 
a complementary b-value, we will focus on samplings 
like those in Ref. [10], with ∼32-64 gradient directions at 
b ∼ 1000 s∕mm2 plus ∼6 gradients at b ∼ 500 s∕mm2. With 
a 3T, multi-coil device, acquisition times can thus be re-
duced from 40 to 15 minutes compared to the protocol sug-
gested in Ref. [12].

We propose a method to estimate the FW-PVF voxel wise, 
without any spatial regularization. It models the DWI as the 
convolution of a non-parametric fiber orientation distribution 
function (fODF) with an impulse response that depends on 
the cellular-water (CW) PVF. This has the additional advan-
tage of releasing our approach of the Gaussian assumption 

for CW diffusion, which inside the WM is strictly valid only 
if a unique dominant direction exists.3 CW-PVF estimation 
then reduces to a least squares (LS) fitting of two parameters, 
so that it can be attained from the spherical means of two 
acquired shells.

2  |   THEORY

According to the two-component model in Ref. [2], the signal 
S(gi, bi) obtained when a diffusion gradient gi with b-value bi 
is applied becomes the mixture of a CW-PVF, f, plus a FW-
PVF, 1 − f :

where S0 is the unweighted T2 baseline, D is the 3 × 3 sym-
metric diffusion tensor (DT), and D0 is the diffusivity of FW 
at body temperature (nearly 3.0 ⋅ 10−3 mm2∕s). Provided a 
collection {gi, bi}Ni=1, N ≫ 7 is available, Equation (1) can be 

(1)S(gi, bi)

S0
= f ⋅

CW

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
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(
−bi g

T
i Dgi

)
+ (1− f )⋅
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⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

exp
(
−bi D0

)
,

F I G U R E  1   Numeric comparison of the accuracy of FWE-DTI (left) versus the proposed FWE-SM (right) based on the model in Equation (7) 
(for either 1, 2, or 3 simulated fiber bundles). The sampling schemes ℳ1 (top) and ℳ2 (bottom) are taken from the Dryad volume, with a typical 
PSNR=30. Boxes represent the 25% and 75% quantiles of the estimated f; whiskers represent the extreme values; notches represent the median 
value; the quantity next to each boxplot represents the standard deviation of the corresponding data. All the boxplots are computed over 1000 
random samples
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solved for seven unknowns: the six free components of D 
and f itself. In Ref. [3], a unique b is used for all gi, which 
turns the problem ill posed. On the contrary, it is shown in 
Ref. [12] that a robust estimation of f is feasible voxel-by-
voxel by acquiring two shells, that is, two collections of 
evenly spaced gradients with two different b-values: 
{gi1 , b1}

N∕2
i1=1

⋃
{gi2 , b2}

N∕2
i2=1

.
Equation (1) models either the GM or single-bundled 

WM.3 To get rid of the latter limitation, we make use of 
the representation proposed in Ref. [7], which entails a 
continuous mixture of tensors in the space of orientations, 
Ω ≡ {v ∈ ℝ

3: ‖v‖ = 1}: 

where Φ(v) ≥ 0, which sums up to 1 in Ω, is an fODF that ac-
counts for the PVFs of the continuous mixture of WM bundles. 

The two parameters 0 ≤ 𝜆⊥ ≤ 𝜆‖ ≤ D0 describe the (distinct) 
eigenvalues of a prolate DT whose main eigenvector is aligned 
with v, which can be seen as the impulse response of each WM 
bundle.7,13 The key point in Ref. [7] is that, for shells-like sam-
plings, Equation (2) can be averaged over Ω to obtain one spher-
ical mean per measured shell that no longer depends on the 
fODF:
 

which depends on three unknowns, f, �‖, and 𝜆⊥, that need 
to be solved from M ≥ 3 equations corresponding to each 
acquired shell with b-value {bj}Mj=1. Provided we aim at es-
timating f from dual b-valued data sets, we first modify the 
method in Ref. [7] by fixing �‖ and solving Equation (3) 
for f and 𝜆⊥ from the spherical averages {̂sj}Mj=1 of M ≥ 2 
shells. The rationale behind this is the low sensitivity ob-
served for �‖ within the WM in Refs. [7, Figure 2] and [13, 
Figure 5].

3  |   METHODS

3.1  |  Numerical resolution of Equation (3)

Let ℳ =
⋃M

j=1 {gij , bj}
Nj

ij=1
 be a multi-shell sampling with 

M shells and Nj gradient directions each. The j-th spher-
ical mean, ŝj, is obtained by fitting the samples 
{S(gij , bj)∕S0}

Nj

ij=1
 in the basis of spherical harmonics (SH), 

following the numerical approach described in Ref. 
[14]: if C0

0
 is the DC component of the SH expansion, 

then ŝj = C0
0
∕
√
4� . Like in Ref. [7], we develop on 

Equation (3) to isolate f in one term and take logarithms. 

The problem reduces to a LS minimization over M ≥ 2 
shells: 

where we fix �‖ = 2.1 ⋅ 10−3 mm2∕s throughout, after the re-
sults in Ref. [7, Figure 2]. The penalty term weighted by the 
constant � ≥ 0 is a second necessary modification to Ref. [7], 
and promotes prolate convolution kernels when ℳ is restricted 
to small b-values. Finally, for the problem to be physically con-
sistent, we need to impose additional constraints to the objec-
tive function in Equation (4): 

 

Equation (5) ensures the CW-PVF remains in the allowed range 
[0, 1], meanwhile Equation (6) ensures the convolution kernel 
is actually prolate. The LS problem described by the objec-
tive function  (4) and the constraints  (5) and  (6) is solved by 
means of a gradient-projection algorithm derived from Ref. [7, 
Appendix A].

3.2  |  Generation of synthetic data

The validation of our proposal is partially based on numeric 
comparisons over synthetically generated voxels. For each 
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sample {gij , bj} ∈ℳ, the synthetic signal will fit this com-
pound multi-tensor model:

which allows simulating WM configurations with either a 
unique dominant fiber bundle, {�1 ≠ 0, 0, 0}, two bundles, 
{�1 ≠ 0, �2 ≠ 0, 0}, or three bundles {�1 ≠ 0, �2 ≠ 0, �3 ≠ 0}. 
In all cases, the non-null �k are generated as uniform random 
numbers in [0.4, 0.6], and then normalized to sum to 1. The 
eigenvalues of each DT, Dk, are designed as Gaussian random 
variables with mean and standard deviation retrospectively 
chosen based on the experiment in Figure 3: �1 ∼ N(1.3, 0.3);  
�2 ∼ N(0.4, 0.1); �3 ∼ N(0.25, 0.08) (× 10−3 mm2∕s). The 
eigenvectors of D1 are, respectively, aligned with axes “x,” 
“y,” and “z;” those of D2 are aligned with axes “y,” “z,” and 
“x;” those of D3, with “z,” “x,” and “y.” The whole ensemble 
is randomly rotated, and both the diffusion signal and the un-
weighted T2 baseline are contaminated with Rician noise with 
known PSNR (defined as S0∕�, with �2 the noise power in the 
complex domain).

3.3  |  Materials

Two different data sets have been used for testing:

•	 From the Dryad data repository (Available: https://datad​
ryad.org/stash/​datas​et/doi:10.5061/dryad.9bc43), the 
human data set described in Ref. [15]. It was acquired with 
a Siemens Trio 3T with resolution 2.5mm3 and matrix size 
96 × 96 × 19 covering the central part of the brain. Imaging 
parameters are TR = 7, 200ms, TE = 116ms, with a typi-
cal PSNR of 30 inside the WM. Among the available b-
values, we use a multi-shell scheme ℳ1 with M = 8 shells 
and Nj = 33, ∀ j gradient directions each. The b-values 
{bj}

8
j=1

 are evenly spaced from b1 = 200 to b8 = 1600 in 
steps of 200 (in s∕mm2). A sub-sampled multi-shell scheme 
ℳ2 is obtained from ℳ1 with just M = 2 shells: the first 
one, with all {gi5}

33
i5=1

 at b5 = 1000 s∕mm2 directly taken 
from ℳ1; the second one, by decimating the set {gi2}

33
i2=1

 
at b2 = 400 s∕mm2 from ℳ1 to six gradient directions 
minimizing the electrostatic repulsion energy (by greedy 
search). Hence, in ℳ2, M = 2, N1 = 33, b1 = 1000 s∕mm2,  
N2 = 6, b2 = 400 s∕mm2.

•	 A volume acquired with a 3T Philips Achieva at the 
Universidad de Valladolid (UVa), with a multi-shell 
scheme ℳ3 defined by M = 3 shells with Nj = 64, ∀ j gra-
dient directions each. The respective b-values (in s∕mm2) 
are b1 = 500, b2 = 1000, and b3 = 1500. The spatial resolu-
tion is 1. 8752 × 2.5mm3, with matrix size 128 × 128 × 52 

for full-brain coverage. The TE and TR are, respectively, 
83ms and 9000ms, granting a typical PSNR nearly 20 
inside the WM. We obtain an additional multi-shell 
scheme ℳ4 with M = 2, N1 = 64, b1 = 1000 s∕mm2,  
N2 = 6, b2 = 500 s∕mm2 by keeping the original shell 
at b = 1000 s∕mm2 from ℳ3 and decimating the shell at 
b = 500 s∕mm2.

The WM was roughly segmented by thresholding the frac-
tional anisotropy (FA) at a value of 0.35. The FA was com-
puted in all cases from a DTI fitted to the DWI with regular 
LS.16 Besides, the WM was classified in three groups based 
on Westin’s coefficients16: linear (Cl), planar (Cp), and spher-
ical (Cs). After initializing three clusters with centroids 
[Cl,Cp,Cs] = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, the C-means algo-
rithm was run until convergence. We can reasonably hypoth-
esize the first cluster corresponds to WM configurations with 
a unique dominant direction (�2 = �3 = 0 in Equation (7)), 
the second one to configurations with two dominant bundles 
(�3 = 0 in Equation (7)), and the third one to more complex 
configurations (�k ≠ 0, ∀k).

4  |   RESULTS

The proposed method (hereafter FWE-SM, standing for 
free-water elimination–spherical means) will be com-
pared to Ref. [12] (hereafter FWE-DTI), as long as it is 
also aimed at voxel-by-voxel estimation, without spatial 
regularization, with b-values typical of DTI. According 
to Section  3.2, we can simulate synthetic voxels for the 
multi-shell schemes ℳ1,2,3,4 with ground truth values of f, 
so that we can evaluate the performance of each method at 
scenarios reasonably similar to those expected within the 
WM of the subjects described in Section 3.3. The respec-
tive results are shown in Figures 1 and 2 (the parameter � 
in Equation (4) has been empirically fixed in all cases): 
with the whole samplings ℳ1 and ℳ3, both methods are 
precise, with small variances in all cases. In terms of preci-
sion, FWE-DTI provides smaller variances for one-bundle 
configurations, but similar or greater variances for two or 
three bundles. In terms of accuracy, while FWE-SM re-
mains unbiased for almost all configurations (except for 
very small f), FWE-DTI presents noticeable negative bi-
ases for two bundles and three bundles, reaching values 
near 5%-7% for CW-PVF in the range [0.7, 0.8]. Yet, the 
main purpose of the present paper is the accurate estima-
tion of f from acquisitions more alike ℳ2 and ℳ4. In these 
cases, FWE-SM remains accurate (no noticeable biases 
appear), with a more subtle effect on the precision than 
FWE-DTI suffers: note, both in Figures 1 and 2, the heavy 
increase of boxes and whiskers sizes (ie, 25%/75% quan-
tiles and extreme values), as well as variances, from the 

(7)
S(gij , bj)= f ⋅S0

∑3

k=1
�kexp

(
−bjg

T
ij
Dkgij

)

+ (1− f ) ⋅S0exp
(
−bjD0

)
,
∑3

k=1
�k =1,

https://datadryad.org/stash/dataset/doi:10.5061/dryad.9bc43
https://datadryad.org/stash/dataset/doi:10.5061/dryad.9bc43
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top line to the bottom for FWE-DTI, which is not equally 
dramatic for FWE-SM.

The consistency of FWE-SM for a real data set is checked 
in Figure 3, where f is calculated for the Dryad volume with 

the full sampling ℳ1. As it could be predicted from Figure 
1, the results from both FWE-DTI and FWE-SM look quite 
similar throughout the WM. This statement holds also for the 
GM, the main difference between the two approaches being at 

F I G U R E  2   Numeric comparison of the accuracy of FWE-DTI (left) versus the proposed FWE-SM (right) based on the model in Equation 
(7) (for either 1, 2, or 3 simulated fiber bundles). The sampling schemes ℳ3 (top) and ℳ4 (bottom) are taken from the UVa volume, with a typical 
PSNR = 20. The notation is as in Figure 1. All the boxplots are computed over 1000 random samples

F I G U R E  3   CW-PVF in the Dryad volume, f, as estimated with either FWE-DTI (A) or the proposed FWE-SM with � = 0.1 (B). For the 
latter, standard color-coded maps based on the first eigenvector of the DTI are shown before (C) and after (D) FW elimination. The central axial 
and coronal slices are shown in all cases. The red arrow points to CSF voxels for which FWE-SM overestimates f. The yellow arrows point to DTI 
outliers after FWE in these same regions
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F I G U R E  4   WM clustering of the Dryad volume. The 2D histograms compare the CW-PVF, f, computed with either FWE-DTI or the 
proposed FWE-SM (� = 0.1) with the full sampling ℳ1, inside each WM cluster. The black arrows point to histogram values coming from the 
saturation of f to its maximum value of 1. The equations y = a x + b are obtained from linear regression, so that b stands for the relative bias of 
FWE-DTI w. r. t. FWE-SM

F I G U R E  5   Comparison of the estimates of the CW-PVF, f, obtained with either ad hoc samplings (ℳ1, ℳ3) or DTI-like samplings (ℳ2, ℳ4): 
axial and sagittal slices are shown for the UVa volume, estimated with FWE-SM from (A) ℳ3 (� = 0.04), (B) ℳ4 (� = 0.01). The scatter plots depict 
the comparison of the full sampled data sets with the sub-sampled data sets, for both test volumes, and for either FWE-DTI or FWE-SM, inside the 
WM. Green dashed lines represent the 25%/75% quantiles, and red dashed lines represent the 10%/90% quantiles. The purple arrow points to pure 
CSF voxels, for which the FWE-SM model becomes ambiguous

(A) (B)
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the CSF (red arrow): in these pure FW regions, our FWE-SM 
tends to overestimate f, which is also visible in Figure 2 (top, 
right) for the sampling scheme ℳ3 (but not really evident in 
Figure 1 for ℳ1). Moreover, we can refer to Equation (1), 
then use standard LS,16 to compare the DTI estimation either 
with or without FW elimination as shown in Figure 3C,D. 
As expected, eliminating the FW compartment does not alter 
the structure or directionality of the WM bundles, but it no-
tably increases their observed anisotropy (which translates in 
brighter colors). On the other hand, FW elimination is likely 
to introduce outliers at the CSF (yellow arrows).

To further investigate the behavior observed in Figures 
1 and 2, Figure 4 compares FWE-DTI and FWE-SM inside 
three WM clusters obtained as described in Section  3.3, 
roughly corresponding to prolate, oblate, or spherical con-
figurations. In all cases, a prominent histogram mode at 
[1.0, 1.0] is present, likely corresponding to the saturation of f 
to its maximum value. Obviating this artifact, the histograms 
demonstrate a strong correlation between both methods with 
slope approximately 1. While the principal mode for the red 
cluster (purple contour) is completely over the identity line, 
the principal modes of the other clusters demonstrate a neg-
ative bias of FWE-DTI one order of magnitude above that 
found inside the red cluster, which is consistent with Figures 
1 and 2. The computation of the eigenvalues of the DTI inside 
the red cluster yields respective values (mean±standard devi-
ation, × 10−3mm2∕s): 1.3 ± 0.3; 0.4 ± 0.1; 0.25 ± 0.08.

The final experiment, summarized in Figure 5, is aimed at 
checking to what extent the performance in the estimation of 
f worsens when a nearly standard DTI acquisition, like ℳ2 or 
ℳ4, is used instead of an ad hoc one, like ℳ1 or ℳ3. The es-
timates obtained for either the Dryad volume with ℳ1 or the 
UVa with ℳ3 are used as a silver standard, and the respective 
estimates for ℳ2 and ℳ4 are compared against it: for the UVa 
volume, the appearance of the f maps are almost identical 
with both ℳ3 and ℳ4 (the results for the Dryad volume, not 
shown, are analogous), which translates in a tight fit of the 
25% ∕ 75% quantiles of the sub-sampled estimates compared 
to the silver standard. Although these quantiles spread more 
for the Dryad volume, probably due to the smaller number 
of gradients in the shell at b = 1000 s∕mm2, they still show 
a much better performance compared to the FWE-DTI ap-
proach, whose 10% ∕ 90% quantiles show a great dispersion 
for the extreme values. Noticeably, the miss estimation at 
CSF voxels becomes accentuated for the UVa volume, see 
the purple arrow in Figure 5A.

5  |   DISCUSSION AND 
CONCLUSIONS

The proposed FWE-SM is able to compute accurate es-
timates of the CW-PVF f from acquisitions comparable to 

those in DTI studies, at the only expense of acquiring as few 
as six additional gradients at a lower b-value. This allows to 
complement, or even improve, such DTI studies with little 
additional effort. With acquisitions specifically designed for 
FW elimination, it is as precise as DTI-based methods,3,10,12 
but it remains unbiased in almost all situations. Although the 
bias for FWE-DTI is predictable in terms of f itself, it directly 
depends on the number of crossing fibers, which is unknown 
beforehand. FWE-SM gets rid of this confounding factor by 
averaging all fiber bundles.

For the fast acquisitions object of study in this paper, 
the errors committed by FWE-SM may increase to 10% 
for typical CW-PVF values (in the range of [0.7, 1.0]), or 
up to 70% for CSF voxels. Although these errors are still 
below those achievable with FWE-DTI, it is arguable if 
this accuracy might suffice to describe FW voxel wise. As 
opposed to Refs. [3, 10], we do not rely on any spatial regu-
larization to provide consistent results, but such techniques 
could be used by either applying a corresponding penalty 
to Equation (4) or pre-processing the DWI with some sort 
of denoising technique. Since using reduced samplings in-
creases the variance of the results without notably biasing 
them, both approaches should help improving the voxel-
wise accuracy.

On the other hand, our proposal reduces the number 
of degrees of freedom by fixing �‖ in Equation (2), which 
compels using a regularization parameter � we need to fix. 
Fortunately, we have empirically checked that this parameter 
is much less sensitive to the PSNR than it is to the sampling 
scheme, so that it can be fixed, based on synthetic experi-
ments like those in Figures 1 and  2, for the entire volume 
(like we did throughout the paper). Moreover, since we are 
focusing on acquisitions like ℳ2 and ℳ4, we can recommend 
a standard value � = 0.01.

Finally, the proposed method fails at estimating f inside 
voxels with large CSF contamination, for which the convolu-
tion model in Equation (2) becomes ambiguous.7 This illness 
compromises its validity for the study of pathological con-
ditions like edema or WM hyperintensities, although ad hoc 
corrections like those in Ref. [12] could be thought of in the 
presence of abnormally large 𝜆⊥ and small f.
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http://www.lpi.tel.uva.es/dmrilab.
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