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FOREWORD

According to the Spanish national (R.D. 99/2011, BOE 35/2011) and regional (BOCYL
243/2012) regulations, this doctoral thesis consists of a series of original research

papers. Details for identification of these publications are listed below.

An extended introduction is included in this dissertation for contextualization and linkage
of the original research publications, and to help understanding the relevance of the
findings. A brief description of the main methods provides an overview of the range of
techniques applied, and it is not intended to give exhaustive details of the work done,
which is properly related in specific chapters (publications). Likewise, the compilation
of specific objectives, summary of results and discussion, provide just a synthesized

version of the entire work related in the publications.
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ABSTRACT

Forests play a dynamic role in the terrestrial carbon (C) budget, by means of the
biomass stock and C fluxes involved in photosynthesis and respiration. Remote sensing in
combination with data analysis constitute a practical means for evaluation of forest
implications in the carbon cycle, providing spatially explicit estimations of the amount,
quality, and spatio-temporal dynamics of biomass and C stocks. Medium and high spatial
resolution optical data from satellite-borne sensors were employed, supported by field
measures, to investigate the carbon role of Mediterranean pines in the Central Range of
Spain during a 25 year period (1984-2009). The location, extent, and distribution of pine
forests were characterized, and spatial changes occurred in three sub-periods were
evaluated. Capitalizing on temporal series of spectral data from Landsat sensors, novel
techniques for processing and data analysis were developed to identify successional
processes at the landscape level, and to characterize carbon stocking condition locally,
enabling simultaneous characterization of trends and patterns of change. High spatial
resolution data captured by the commercial satellite QuickBird-2 were employed to model
structural attributes at the stand level, and to explore forest structural diversity.
Aboveground biomass (AGB) was calculated retrospectively at specific dates (1990 and
2000) with modelled temporal trajectories of spectral indices, and maps were produced
with 30 m spatial resolution depicting biomass, biomass change, and measures of

uncertainty, from which carbon budgets were calculated.

Results indicate that the area occupied by pines in the Central Range of Spain fluctuated
during period 1984-2009, with a final net increase of 40%. A global activation of carbon
pools was observed, being the area intermittently covered by pines strongly involved in
processes of C exchange, while the permanent pines had a near to neutral net C character.
The temporal character of local carbon fluxes was identified and summarized by date,
showing that in 2000 there was a maximum of 33% of the area in a process of net C
accumulation. A widespread trend to accumulate biomass was confirmed, with 18% of
initial biomass accrued by the pine stable area between 1990 and 2000. On average, these
pines accumulated 0.65 t ha™ y* of carbon in the form of AGB between 1990 and 2000,
equivalent to 2.38 t ha y fixation of CO».

Remote sensing supports and enhances the value of forest inventories based on sample
plots for assessment of biomass and C budgets, complementing rather than substituting
3
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essential field work. Access to archived historical and contemporary images of high and
consistent quality provides opportunities to develop methods for unveiling information
related to the development of forest ecosystems that would otherwise remain incomplete or
unknown. In addition to international archives of medium spatial resolution images
providing data free of cost, like the US Geological Survey and the European Space
Agency, the Spanish Plan Nacional de Observacion del Territorio acquires national
coverage of high spatial resolution imagery annually, that constitutes an opportunity to

support the evaluation of the national forest resources for planning and decision making.

Keywords: aboveground biomass, carbon dynamics, remote sensing, forest structure,
structural diversity, spectro-temporal trajectory, successional process, modelling,
Mediterranean pines, Spain.
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RESUMEN

Los bosques realizan una funcion dinamica en el balance de carbono (C) terrestre, a
través de las reservas de biomasa y los flujos de C asociados a la respiracion y fotosintesis.
La teledeteccion, combinada con técnicas de andlisis de datos, constituye un medio
practico para evaluar el papel de los bosques en el ciclo de carbono, proporcionando
estimaciones de la cantidad, calidad, y evolucion de la biomasa y reservas de carbono. El
objetivo de este trabajo fue el desarrollo y aplicacion de técnicas para valorar la funcion de
los pinares del Sistema Central espafiol durante 25 afios (1984-2009) en el contexto del
carbono. Para ello se utilizaron datos épticos de media y alta resolucion espacial obtenidos
con sensores remotos, junto con datos de inventario medidos en campo. Se identifico la
localizacion, extension, y distribucion de los pinares, evaluando los cambios ocurridos en
tres subperiodos. Gracias a las series temporales de datos Landsat se desarrollaron técnicas
novedosas de procesamiento y andlisis de datos para identificar procesos de sucesion
forestal a escala de paisaje y para describir el caracter local de los almacenes de carbono,
facilitando la caracterizacion simultdnea de los patrones y las tendencias de cambio.
Utilizando iméagenes de alta resolucion espacial obtenidas por el satélite QuickBird-2 se
desarrollaron modelos de estructura forestal a escala de rodal y se exploro la diversidad
estructural. Se calcul6 la biomasa aérea de forma retrospectiva para los afios 1990 y 2000,
incorporando trayectorias espectrales como variables dindmicas en los modelos de
estimacion. Finalmente se desarrolld cartografia raster (resolucion 30 m) de biomasa aérea
y cambio de biomasa, junto a valores de la incertidumbre asociada. A partir de estos mapas

se calcularon valores totales de acumulacion y flujo de carbono.

Los resultados indican que el area ocupada por pinares en el Sistema Central espafiol
fluctud durante el periodo 1984-2009, con un incremento final neto del 40%. Se observo
una activacion generalizada de los almacenes de carbono, estando el area con cobertura
intermitente de pinar fuertemente involucrada en procesos de intercambio de C, mientras el
area con cobertura estable tuvo un comportamiento neto casi neutro. El caracter de los
flujos locales de carbono resumido por fechas demostré que en 2000 mas de un tercio de la
superficie considerada estaba acumulando carbono de forma neta. Se confirmd una
tendencia global de acumulacion de biomasa: entre 1990 y 2000 el area de pinar

permanente acumulé el equivalente al 18% de su biomasa inicial. Como media, la biomasa
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aérea de estos pinares almacend 0.65 t ha™ a™* de carbono entre 1990 y 2000, equivalente a
la fijacion de 2.38 tha™ a™* de CO.

La teledeteccion complementa y realza el valor de los inventarios forestales basados en el
muestreo de parcelas para la estimacion de biomasa forestal y reservas de C. El acceso a
archivos de imagenes historicas y contemporaneas ofrece la oportunidad de utilizar
cuantiosos datos y desarrollar métodos que ayudan a generar informacion relacionada con
el desarrollo forestal, de otra manera inexistente o incompleta. Ademas de los archivos de
imagenes de media resolucion espacial del US Geological Survey (USGS) y la Agencia
Espacial Europea (ESA), libres de coste economico, la adquisicion por parte del Plan
Nacional de Observacion del Territorio (PNOT) de una cobertura anual con imagenes de
alta resolucion espacial, constituye una oportunidad de respaldar la estimacion de los

recursos forestales nacionales para la planificacion y los procesos de decision.

Palabras clave: biomasa forestal aérea, carbono, teledeteccidn, estructura forestal,
diversidad estructural, trayectoria espectro temporal, proceso evolutivo, modelizacion,

pinares mediterraneos, Espafia.
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1. INTRODUCTION
1.1. The global Carbon context

Concern about widespread instability of ecosystems, presumably affected by changes
in atmospheric composition and gas circulation, has increased since the last decades of the
20™ century. Common distress has triggered the advance of a large-scale scientific
framework, aiming to understand climate oscillations and to identify the factors involved.
The cyclic flow and the balance of atmospheric gases, carbon dioxide, nitrous oxide,

ozone, and methane, have been recognized of particular relevance.

Forests play an important role in the terrestrial carbon budget (FAO, 2010; IPCC, 2007),
with an estimated annual net carbon uptake equivalent to 26% of the current human fossil
emissions (Pan et al., 2011). As part of the photosynthesis, trees and shrubs absorb carbon
dioxide (CO,) from the atmosphere and fix carbon by accumulation in the form of
biomass. A fraction of the in-taken carbon is outsourced in the continuous respiratory
process, and all can be released in the processes of combustion (Korner et al., 2003) or
decomposition (Krankina and Harmon, 1995). The net balance of respiration and primary
production determines the overall quality of a forest as a carbon sink or carbon source
(Law et al., 1999) and it is intimately related to age and development stage, health
condition, and structural characteristics (Brown, 2002; Goward et al., 2008).

The uptake of CO, by land sinks is not currently quantified with adequate accuracy
(LeQuére et al., 2009). Significant uncertainties in carbon (C) budgets exist related to
imprecise estimates of biomass location and biomass change (Houghton, 2005).
Furthermore, for prediction of future carbon scenarios, the gap of knowledge about
prospective efficiency of natural sinks constitutes an important hitch (LeQuéré et al.,
2012). The subsistence of uncertainties in C budgets motivates international collaboration
and establishment of multidisciplinary working programs, which aim to obtain harmonized
assessments of the global C balance. The Global Carbon Project (GCP) was established in
2001 to set up a framework for international coordinated research and observation, aiming
to develop a complete picture of the global C cycle, including biophysical and human
interactions. Additionally, and complementary to the GCP, the Integrated Global Carbon
Observations (IGCQO) system coordinates networks of systematic in situ and remote

measurements of C fluxes, pools, and processes. IGCO’s goals are: to provide long-term

9
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observations required to improve understanding of the present state and future performance
of the global C cycle, and to monitor and assess the effectiveness of carbon sequestration
and/or emission reduction activities on global atmospheric CO, levels, including
attribution of sources and sinks by region and sector. Collaborators of the GCP such as
CarboEurope, the North American Carbon Plan, or the Australian National Carbon
Accounting Project, provide regional contributions with scientific understanding of
sources, sinks, and changes in carbon stocks.

At regional and local scales, knowledge of forest C dynamics is relevant for marketing and
management decisions, and for calibration of larger scale estimations. Modelling and
estimation of forest carbon dynamics at medium scale is in continuous development, with
work done in all terrestrial forested biomes (Table 1). Field data from national forest
inventories constitute a main source of information for regional reports (e.g. Mékipaa et
al., 2008; Liski et al., 2006) and remotely sensed data sources have become irreplaceable
for this purpose (Lu, 2006).

Table 1. Examples of estimation and mapping of C dynamics and stocks at regional scale

in different biomes.

Biome Work Area location Goal
Chen et al., 2000 Canada C dynamics
Boreal
Liski et al., 2003 Eurasia, America  C stocks
Fang et al., 2001 China C dynamics
Temperate
Goward et al., 2008 USA C stocks
) Asner, 2009 Brazil C dynamics
Tropical _ :
Baccini et al., 2008 Africa C stocks

At the landscape level, the net exchange of carbon in a forest ecosystem is strongly
controlled by the spatial distribution of stand age, structure, and condition (Goward et al.,
2008). Integrating the dynamics of all stands with spatial data reporting on structure, age,
and their distribution is necessary for the assessment of carbon budgets (Song and
Woodcock, 2003). Unfortunately, the general lack of accurate spatial data regarding forest
biomass is one of the most persistent uncertainties concerning C budgets (Harrel et al.,
1995). Intense research is currently ongoing to mitigate this lack of information (e.g.
Powell et al., 2010; Sales et al., 2007).

10
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1.2. Spanish forests role in the Carbon context

The Spanish forests currently cover 18.5 million ha, and perform an annual C uptake
equivalent to 24% of the country fossil emissions (Montero and Serrada, 2013). As
signatory country of the Kyoto Protocol, Spain is committed to provide data to establish
the level of C stocks in 1990 and to enable an estimation of changes in carbon stocks in
subsequent years (UNFCCC, 1997). For the post-Kyoto era, advanced carbon estimation
methodologies are recommended to provide accurate, transparent, and reliable data to
serve as a basis for market tools and international carbon policymaking (Zhang et al.,
2012).

Variations in the Spanish forests C pools in relation to land use change are typically
associated with reforestation of agricultural land. Carbon stocks in stable forest areas are
modified by fire events, harvesting, recruitment, natural growth, and improvement of forest
quality (MMA, 2002). Measurements acquired by the Spanish National Forest Inventory
are currently the main source of data for calculation and evaluation of forest C balances at
national level (MMA, 2002; Gonzalez-Alonso, 2006) and regionally (e.g. Herrero and
Bravo, 2012).

1.3. Reporting on forest resources

Forest stakeholders are obliged to report locally, nationally, and internationally about
the state and condition of ecosystem resources, in order to meet management requirements
and conservation commitments (Wulder et al., 2008a). The extent and distribution of forest
stands, the biomass content, carbon sources, sinks and balances, species diversity, and
changing dynamics, are typical features requiring characterization (Tomppo et al., 2010).
Sustainable management is based on informed decisions about assets, and requires periodic
evaluation for updating of the coverage, structure, and condition of forests resources
(McDonald and Lane, 2004; Siry et al., 2005).

As regards to conservation, signatory countries of the United Nations Framework
Convention on Climate Change (UNFCCC) are committed to regularly update an
inventory of CO, and other greenhouse gas emissions using comparable methods
(Houghton et al., 1997). Party countries ratifying the Kyoto Protocol (1997), Spain

amongst them, are required to reduce their 1990 level of human induced carbon emissions,

11
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with an option to trade part of this reduction with the conservation and enhancement of
forestry resources through activities such as afforestation and reforestation (Patenaude et
al., 2005). Forests have therefore to be monitored to account for any gains and losses in
extent, and for changes in structure and condition that might impact carbon accounting.
Additionally, international carbon credit trading schemes are in development, (Gibbs et al.,
2007) and require accurate carbon stock estimation. Other international treaties, like the
Biodiversity Convention or the World Heritage Convention, oblige countries to report
regularly on changes in forest characteristics such as total forest area, woody biomass, or
diversity of tree species (Andersson et al., 2009). Assessment of these changes for
reporting at the national or regional level necessitates reliable and cost effective methods
for spatially explicit monitoring over large areas (Krankina et al., 2004).

1.4. Land cover and land cover change (LCLCC)

Land cover is fundamental information for management of resources at medium to
large scale (Smith, 2008). Identification of land cover type is the first step in any C
assessment program (Andersson et al., 2009). The extent and spatial distribution of forests
are naturally modified by disturbance agents such as fire, windstorm, or flood (Foster et
al., 1998), and also by human-induced activities such as harvesting or plantation (Hannah
et al., 1994). Land cover changes derived from afforestation or deforestation may turn the
character of an area from net carbon source to net carbon sink or vice versa, and therefore

they are significant events in the C budget (Houghton, 1999; Houghton et al., 2012).

To assess changes of land cover at medium and large scale, satellite remotely sensed data
is a long-standing source of information with demonstrated capability (Coppin et al.,
2004). When used synergistically with other sources of data, remote sensing technology is
adequate to evaluate changes in land cover use, as required by the Kyoto Protocol (KP)
(Patenaude et al., 2005). Since only the human induced land cover change episodes report
to the KP, these changes require verification with contemporary data (Rosenqvist et al.,
2003). A host of sensors onboard satellite platforms are well suited for detection of land
cover types, providing consistent and repeatable measurements at an appropriate scale
(Verbesselt et al., 2010). Optical sensors like SPOT VEGETATION and MODIS have
been widely used for this purpose (Homer et al., 2001; Guindon and Edmonds, 2002;
Potapov et al., 2008; Wulder et al., 2008b). The Landsat program has been during decades

12
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the gold-standard for land cover classification (Cohen and Goward, 2004) and change
detection (Wulder et al., 2008c), thanks to a suitable combination of spatial resolution (30
m), revisit period (16 days), and wide spatial coverage (185 km by 185 km). With a long
history of near continuous imagery acquisition of the Earth’s surface starting in 1972
(Leimgruber et al., 2005), Landsat archival imagery is adequate for the establishment of a

1990 baseline as required by the KP, and for monitoring change with calibrated imagery.

Ongoing operational land cover change detection programs at national level have a main
focus on forest change, and rely on Landsat imagery with support of data from other
programs (Hansen and Loveland, 2012). Table 2 offers an overview of relevant

international programs dedicated to LCLCC detection.

13
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Table 2. Overview of international programs dedicated to land cover and land cover

change detection.

Description
Product

Area Producer Images
CLC2000 Map of land cover in 29 countries and changes (at least 5 ha)
CLC90-2000 between 1990 and 2000
(CORINE Land Cover) Europe EEA and JRC Landsat
PRODES

] Deforestation maps and annual statistics of the Legal Amazon
(Program for Deforestation

Assessment in the Brazilian Legal

) Brazil INPE Landsat
Amazonia)
Lccp Monitors vegetation with a backdating strategy to initial date
d Cover Change Project) 1972 -
(Lan g J Australia NCAS Landsat

Land cover map and map of change at national scale with high

NLCD 2006 temporal (5 years) resolution representing change since 2001

(National Land Cover Database)

USA USGS Landsat
EOSD . . Forest land cover map
(Earth Observation for Sustainable
Development of Forests) Canada NRCAN Landsat
Global land cover database produced by coordinating 30
GLC2000 research partners
(Global Land Cover) SPOT
Global JRC VEGETATION

FAO Africover Regional land cover map

Africa GOFC-GOLD Landsat
. Regional land cover map
FAO Asiacover Asia GOFC-GOLD ALOS-AVNIR

Note. CORINE: Coordination of Information on the Environment; EEA: European Environment
Agency; JRC: Joint Research Centre; INPE: National Institute for Space Research; NCAS:
National Carbon Accounting System; USGS (United States Geological Survey); NRCAN: Natural
Resources Canada; SPOT: Satellite Pour I’Observation de la Terre; GOFC-GOLD: Global
Observation of Forest and Land Cover Dynamics; ALOS-AVNIR: Advanced Land Observation
Satellite-Advanced Visible and Near Infrared

Regional maps produced with independent classification schemes are difficult to compare.
To enable objective international comparison of land cover state and changes, FAO
developed a standard classification scheme, the Land Cover Classification System (LCCS)
(Di Gregorio and Jansen, 2000) that is being used by a growing number of international

projects (e.g. GLC, 2000) (Bartholomé and Belward, 2005). Moreover, a number of
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countries have translated their existing land cover legends to align with the LCCS system
(Latham, 2008).

For assessment of land cover change with digital image processing, a variety of techniques
have been developed (Singh, 1989; Coops et al., 2006) and classified in scientific literature
reviews according to different criteria (Coppin, 2004; Lu et al., 2004; Hussain et al., 2013).
Common approaches for assessment of land cover change include: image algebra (Jensen
and Toll, 1982), regression or correlation (Jha and Unni, 1994), statistical techniques
(White et al., 2011), post classification comparison (Lyons et al., 2012), and the combined
analysis of data in a GIS (Petit and Lambin, 2001). Change can be spatially evaluated with
pixel or object based approaches, either kind of methods with particular strengths (Hussain
et al., 2013). Successful implementation of any of these techniques requires identification
of real change and discrimination of change artefacts due to seasonality, sun illumination,

sensor orientation, and other confounding circumstances (Lu et al., 2004).

1.5. Forest structure and forest biomass

Forest structure refers to the vertical and horizontal arrangement of canopies (Coops
et al., 2007), that is, the distribution of heights and spacing of trees. Several variables are
useful to characterize forest structure: individual tree measures of height, diameter, and
crown size, collective attributes like number of trees and spacing, and statistical averages
or indicators of variability. Some structural parameters can be directly measured in ground
plots (e.g. diameter) for inventory, other parameters can be modelled from direct
measurements (e.g. volume). By means of wall-to-wall remotely sensed observations and
statistical methods, structural parameters may be estimated over large areas (Tomppo et
al., 2002; McRoberts and Tomppo, 2007).

Forest biomass is the organic matter weight of the above ground (i.e. stem, branches, and
leaves) and below ground (i.e. radical system) portions of trees and shrubs (Montero et al.,
2005). Structure and above ground biomass (AGB) are essential features for the
assessment of forest productivity (Soenen et al., 2010), for modelling fire risks (Narayan et
al., 2007), determining carbon budgets (Kurz and Apps, 1999), and selecting management
options (Zianis et al., 2005).

Monitoring changes in the amount and spatial distribution of forest biomass and carbon
stocks is required for the sustainable management of forest resources (Tan et al., 2007,
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Herrero and Bravo, 2012) and necessary to get some understanding of the forest carbon
budget. Measures of biomass can be readily transformed into values of C content through
species-specific or general conversion factors, being the relation of 0.5 carbon to biomass
(Kollmann, 1959; Penman et al., 2003) widely used. Consequently, maps of forest biomass
and biomass change enable spatially explicit estimates of forest carbon storage and fluxes
(Blackard et al., 2008).

Biomass and carbon temporal dynamics in forests are naturally ruled by successional
processes (Pregitzer and Euskirchen, 2004) and structural stage (Harmon et al., 1990).
Forest regeneration results in sequestration of C into the ecosystem, with young and
vigorously growing trees incorporating biomass in above and below ground fractions. As
regenerating stands approach maturity, the size of the vegetation C pool may eventually
reach its maximum stock level, with the age at which a forest becomes a net carbon sink
varying according to forest type, site productivity, and other factors (Birdsey et al., 2006;
Goward et al., 2008). Management systems organizing the structure and age distribution of
forest stands through space and time, and disturbances that modify the natural forest
successional course are crucial factors affecting forest biomass and carbon dynamics.
Quantifying the variability of forest biomass over large spatial extents and long periods of

time is essential for accurate carbon accounting (Goetz et al., 2009; Houghton, 2005).

1.6. Methods for measuring forest biomass and carbon content

Currently the main existent methods for accurate assessment of wood volume,
biomass, and carbon content in forests rely on sample plots measurements (Brown, 2002).
Basic attributes measured directly on trees, such as height and diameter at breast height,
can be readily converted to AGB through allometric regression equations (for individual
trees), or through biomass expansion factors (for stand-like areas). As many other
countries, the Spanish National Forest Inventory (NFI) has an established systematic
network of permanent plots re-measured periodically (Bravo et al., 2002). The NFI
provides reliable information on stocks, and also on growing rates, gains and losses, to
estimate stock changes at national level as recommended by the IPCC (2003) (Makipéé et
al., 2010). Species specific allometric equations for coniferous and broadleaved native
species have been developed by Montero et al. (2005) and by Ruiz-Peinado et al. (2011).

These equations were derived with data measured in local forests, facilitate assessment of
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most Spanish tree species, and represent a base for extending plot measures to larger

spatial units.

Forest inventories are typically designed based on statistical sampling to enable large area
knowledge of the variables of interest, in particular to facilitate assessment of biomass and
C resources. However, spatially explicit estimates of AGB over large areas that are derived
from traditional field based forest inventories may be incomplete (Du et al., 2011) and
limited by the sampling intensity (Wulder et al., 2008b). Carbon accounting approaches
requiring periodical reporting might also be limited by the temporal frequency of

measurements (Powell et al., 2010).

1.7. Remote sensing of forest biomass and carbon content

Remote sensing technologies constitute an effective instrument to evaluate
biophysical properties of terrestrial ecosystems, in particular forest structure and biomass.
Remote sensing has become the primary data source for biomass estimation (Lu, 2006),
providing repeat measurements with synoptic view of extensive areas, in digital format and
with affordable costs (Bettinger and Hayashi, 2006). Satellite observations contribute to
measuring and monitoring carbon stocks by routinely classifying land cover types,
extending in situ measurements over larger areas, informing ecosystem models, and
through direct relationships between biophysical attributes of vegetation and remotely

sensed observations (Goetz and Dubayah, 2011).

Medium spatial resolution (MSR) imagery (10 - 100 m pixel size) is well suited for
characterization of regional ecosystems. The Landsat series of satellites have provided
profuse base data in support of ecological assessments, for mapping forested areas, and for
estimating wood volume (Trotter et al., 1997; Kajisa et al., 2007), biomass (Zheng et al.,
2004; Luther et al., 2006) and carbon stocks (Foody et al., 1996; Turner et al., 2004).
Other satellites with similar spectral, spatial, and revisiting characteristics exist (Stoney,
2008) or are expected to be soon in operation (e.g. Sentinel-2) that may provide data to
cover potential gaps in the Landsat acquisition (Wulder et al., 2011). High spatial
resolution (HSR) imagery (< 5 m pixel size) is increasingly available to public use,
following the launch of commercial satellites: IKONOS (1999), QuickBird-2 (2001), and
GeoEye-1 (2008). The range of applications utilizing HSR imagery grows constantly and
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includes estimation of forest structural parameters (Hirata, 2008; Mora et al., 2010, 2013)

and biomass assessment (Greenberg et al., 2005; Proisy et al., 2007).

For estimation of biomass, remotely sensed data can be used with different approaches
(Wulder et al., 2008b), based on the assumption of a strong statistical relationship between
above ground biomass and the spectral response as captured by the sensor (Lu, 2006).
Relations can be established directly between ground biomass and spectral response, or
indirectly through other estimated attributes such as Leaf Area Index or crown closure.
Statistical strategies for establishment of the most reliable relationships include multiple
regression, imputation, neural networks, or decision trees. The adequacy of a particular
model depends on data availability, desired precision, transparency, and site-specific
characteristics (Labrecque et al., 2006). Plot based National Forest Inventories are
frequently the source of data for calibration of models (Gallaun et al., 2010), meeting the
requirements recommended for modelling: data are representative of all conditions present,

and are acquired according to consistent specifications (Duane et al., 2010).

Optical sensors have a recognized and extensively reported limitation in the estimation of
some forest biophysical parameters, namely the saturation of measured reflectance at high
values of biomass or other estimated variables (Turner et al., 1999; Duncanson et al.,
2010). Expected to alleviate to some extent the saturation problem of previous sensors
(Wulder et al., 2011), the radiometry of the optical sensor onboard Landsat 8 (launched
11" February 2013), has been improved (data quantized to 12 bit instead of 8 bit) (Irons et
al., 2012). Landsat provides a favourable spatial resolution, revisit period, radiometric
resolution, and four decades of continuous Earth Observation (EO). Until more promising
techniques become operational, Landsat sensors and others alike remain the most useful
means for regional estimations of forest attributes.

The development of new technologies to map forest structure and biomass is a priority for
remote sensing agencies (Hese et al., 2005; Lefsky, 2010). A range of satellite missions
have been planned in the last decades with main goal estimation of biomass and biomass
change. NASA’s projected mission DESDynl (Deformation Ecosystem Structure and
Dynamics of the Ice) (Hall et al., 2011) was intended to include InSAR (Interferometric
Synthetic Aperture Radar) and LiDAR (Light detection and ranging) equipment.
Unfortunately, this promising mission was cancelled before birth (Goetz, 2011) due to

redistribution of funding. BIOMASS is an ESA projected mission conceived to include P-
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band polarimetric SAR equipment with interferometric capability (Le Toan et al., 2011).
The advantage of radar technology is the transparency to atmospheric moisture,
particularly important in tropical and boreal systems, whereas LIDAR has demonstrated to

be highly sensitive to biomass change (Lefsky et al., 2002).

As part of the Global Monitoring for Environment and Security (GMES) programme, a
series of Sentinel satellites will commence operational phase in 2014 (Aschbacher and
Milagro-Pérez, 2012) providing continuity to SPOT and Landsat-type data. The Sentinel-2
is the optical high-resolution mission for GMES operational services (Drusch et al., 2012).
With global coverage, high revisit period (5 days) enabled by dual satellite constellation
and a set of narrow bands (12 bit quantization) dedicated to characterization of vegetation,
Sentinel-2 will be a good source of data for forestry characterization and monitoring of
change. Sentinel data policy is still undefined, but expected to be to allow anybody
(individuals and institutions from any part of the World) access to data of some processing
level (Aschbacher and Milagro-Pérez, 2012).

Synergistic use of data from passive and active sensors (e.g. LIDAR, radar) has shown
promising for improvement of biomass estimations. Combining Landsat with GLAS
(Geospatial Laser Altimeter System) data has shown successful to calculate biomass in
British Columbia (Duncanson et al., 2010) and forest height in Mississippi (Li et al., 2011)
while extending LiDAR estimates of forest parameters with Landsat imagery is becoming
frequent at the regional level (Maselli et al., 2011). In spite of the remarkable opportunities
offered by remote sensing technology and a continuous improvement of the space (i.e.
satellite, sensor) and ground (i.e. processing, distribution) segments, the estimation of AGB
is also restricted by uncertainties in the models, requiring further development and
refinement (Zhang et al., 2012). Nevertheless, remote sensing is the only feasible means
for national level assessments of AGB and carbon, and a growing number of countries are
incorporating remote sensing technologies in their National Carbon Accounting Systems
(e.g. Indonesia, Australia, USA).
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1.8. Remote sensing opportunities in Spain

As part of the Spanish Plan Nacional de Observacion Terrestre (PNOT), the Plan
Nacional de Teledeteccion (PNT) is committed to acquiring complete national coverage of
high spatial resolution satellite imagery annually (Arozarena, 2008). The acquisition phase
started in 2008 (Villa et al., 2009), capitalizing on archival data to backdate the database to
2005 coverage. Initial coverage consists of SPOT 5 HRG XS + P 2.5 m data, and other
sensors are being considered for future acquisitions (IGN, 2009). Access to this data source
represents a unique opportunity to incorporate HSR into Spanish forest inventories as an
operational and low cost data source to meet a range of information needs. The data is to
be collected with a primary focus on land-use land-cover change assessment (Villa et al.,
2009), but has capacity to generate information for forest monitoring and reporting.
Additionally, the PNOT acquires and pre-process abundant medium spatial resolution
imagery from the historical Landsat archive, making them available for research, and low
spatial resolution data from the AQUA/TERRA MODIS and ENVISAT MERIS sensors.
Furthermore, the Plan Nacional de Ortofotografia Aérea (PNOA) compiles LIiDAR data
(0.5 pulses per square meter) over the entire national territory since 2009, from which
digital elevation products of high resolution are derived. LIDAR and aerial photography
are very supportive material for forestry applications (Suarez et al., 2005; Wulder et al.,
2008d). The PNT provides opportunities for future work that might be informed by the

methods and results of the work developed in this doctoral thesis.
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2. AIMS AND OVERVIEW

This thesis focuses on the employment of satellite optical remotely sensed data of
medium and high spatial resolution, in combination with field measures, to estimate the
content and to assess changes of forest biomass and carbon fluxes over two and a half
decades (1984-2009) in pines of the Central Range of Spain. Novel techniques for data
processing and analysis are developed and tested in a dynamic forest area in Canada prior
to application in the target area. The location, extent, and distribution of pine forests are
characterized, and changes occurred during 25 years are evaluated. Capitalizing on
temporal series of spectral data, techniques are developed to identify forest successional
processes at the landscape level, and to characterize carbon stocking condition locally. In
addition to the characterization of trends and patterns of change through temporal
derivatives of medium spatial resolution spectral trajectories, an original application of
spatial statistics enables explanation of the spatial and temporal association of successional
processes. Forest structure is characterized at the stand level, and structural diversity
explored with high spatial resolution data captured by the QuickBird-2 satellite.
Aboveground biomass (AGB) is calculated retrospectively at specific dates (1990 and
2000) with modelled temporal trajectories of spectral vegetation indices. Maps are
produced at 30 m spatial resolution depicting AGB and change of AGB, providing
spatially detailed information and measures of the uncertainty associated, from which

carbon budgets are calculated.

2.1. Goal and main objective

The goal is to develop and test novel methods for estimation and monitoring of forest
biomass and carbon stock dynamics in pines of the Central Range of Spain, combining

optical remotely sensed data with field inventory data.

A specific objective is to obtain estimated values of above ground biomass and carbon
stored in pine areas of the Central Range of Spain, assessing changes that have occurred in

a twenty-five year period (1984-2009).
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2.2. Thesis structure, specific goals and objectives

This doctoral thesis is structured into five chapters, each one holding a self-contained
investigation published or under review in peer reviewed international journals. Each
chapter focuses on different aspects of remote sensing technologies dedicated to the
assessment of forest AGB and AGB dynamics: land-cover and land-cover change,
distribution and association of state and processes of change over the landscape, forest
structure, structural diversity, biomass modelling and mapping. A schematic overview of
the main topics covered by each chapter is shown in Figure 1. Table 3 synthesizes the

goals and objectives of each chapter.

The main methods applied in this work, main results, some discussion, and conclusions (in
English and Spanish) are synthesized and presented prior to the main five chapters that

correspond with peer reviewed publications. Each publication is preceded by a summary in

Spanish.
FOREST CONDITION
[ Distribution Chapter II Identification & Characterization
Structure Chapter Il

Quantitative modelling

Biomass/Carbon Chapter V
Diversity Chapter IV l Qualitative characterization
FOREST CHANGE
Processes Chapter | l
Qualitative characterization
Relati tificati
Dynamics Chapter I elative quantliication

MA L1

Biomass/Carbon Chapter V Quantitative estimation

Figure 1. Schematic overview of topics covered in the thesis.

22



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:

a remote sensing approach

Table 3. Summary of the goals, specific objectives, and outline of each chapter.

Chapter Il

Goal Specific objectives

Overview

. . . e To characterize forest landscape change using
TO_ |nve§t|gate the capacity of spectral Tasseled Cap Transformation derived indices
trajectories generated from a 35-year | o 1q jncorporate spatial and temporal properties
time-series of Landsat images for | into a hierarchical segmentation process to
description and analysis of spatially and capture forest landscape-level change
temporally diffuse change in a dynamic | e To analyze the spatial and temporal correlation
forest environment of landscape change and processes through
time

A temporal series (35 years) of calibrated and radiometrically normalized Landsat images helps
charactering landscape changes in a very dynamic forest region of Alberta, Canada. Drastic and
subtle processes are described through a new metric originated from the Tasseled Cap
Transformation (TCT) Greenness and Brightness components, the Tasseled Cap Angle (TCA)
and its derivative, the Process Indicator (PI). Simultaneous description of landscape process
and pattern is enabled

¢ To assess changes in extent of a Mediterranean
To characterize changes in area, forest with a multilevel object oriented
distribution, and  carbon  stocking | methodology

processes of pines in the Central Range of | ®T0 identify ~with  spatial ~precision the
Spain during a period of twenty-five years d'StF'bU“O” of.pl_nes in the C ent_ral Range of
(1984-2009) with a medium spatial Spain and variations occurring in three sub-

R ) . periods
resolution time series of images from the | {14 characterize carbon stocking areas with the
Landsat program TCA, assessing trends of change over the

period 1984-2009

Evaluates the distribution of pine forests in the Central Range of Spain during two and a half
decades (1984-2009), mapping areas permanently covered by pines and areas of change. The
state of development, that is, the closure or density condition is characterized and evaluated at
various key times with the Tasseled Cap Angle (TCA) and changes are assessed with the TCA
derivative, the Process Indicator (PI). The use of these newly derived indices, (TCA and PI)
enables a combined analysis of forest state and stocking process

Chapter 111

eTo model the relation between structural
parameters (quadratic mean diameter, basal
To explore the potential of high spatial | area, and number of stems per hectare)
resolution (HSR) imagery to characterize measured via field sampling and a set of
forest structure in Mediterranean pines in spectral and spatial variables derived from
the Central Range of Spain. Motivated by QuickBird-2 multispectral and panchromatic
this purpose the capacity of QuickBird-2 | 'Magery _ . o
imagery to model the quadratic mean e To test and -verlfy the ability of Cla55|f|_cat-|on
. and Regression Trees (CART) as the statistical
diameter, basal area, and number of trees | tocnnique for modelling structural parameters
per unit area at the stand level (as direct | o Tq jdentify the image derived variables with
estimators of volume and biomass) is| the greatest informative capacity in the
evaluated modelling of structural parameters, assessing in
particular the inclusion of image textural
metrics in the models
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Investigates the local relationships of variables derived from HSR images with forest structural
parameters such as quadratic mean diameter, basal area, and number of trees per unit area, as
descriptors of stand density and direct estimators of volume and biomass. Statistical models
based on dichotomous relations of images’ spectral and spatial features predict forest structural
attributes

e To determine and quantify the relationships
between forest structural diversity measured at
the plot level and data captured by a satellite-
borne sensor in the form of visible and NIR
spectral reflectance as well as spatial
combinations of panchromatic reflectance
values, as related by texture metrics

¢ To identify the relative relevance of reflectance
measures  versus  texture  metrics in
characterizing the forest structural diversity

e To assess how the spectral diversity-structural
diversity relationship varies under different
conditions of forest density, that is, determine if
different relations occur in open versus closed
forest conditions

To assess the potential of high spatial
resolution (HSR) imagery to characterize
forest structural diversity in
Mediterranean pines of the Spanish
Central Range

Explores the capacity of HSR data to assess the structural diversity in forest stands of various
crown closure conditions. The structural diversity is characterized at the plot level with a linear
combination of internal variability of height, bole diameter, and crown diameter measured on
the field. At similar spatial level the spectral and textural variability of multispectral and
panchromatic imagery are evaluated. The strongest relations between a combination of image
variables and a combination of field variables are identified with canonical correlation analysis.
The relative importance of spectral and textural attributes in these relations is assessed as a
function of stand density

¢ To explore the relationship between live AGB
derived from NFI ground plot measurements
and vegetation spectral indices derived from
Landsat data

e To model past AGB with historical spectral

To estimate and map historical AGB (at
specific dates in time), as well as a decade

of change in AGB, by combining the
precision of field measures from a
network of NFI plots with the wall-to-wall
spatial coverage provided by remotely
sensed data

data, including single-date data and multi-
temporal trajectories, providing a baseline for
comparison with more recent estimations

¢ To map historical AGB at two dates coincident
with NFI rotations (1990 and 2000) and
evaluate the distribution of change in view of
the uncertainties associated with the process of
modelling and mapping

Develops novel methods for spatially explicit assessment of historical biomass and biomass
change, based on the linkage between NFI data and archival Landsat imagery. Mathematical
transformations of the data system formed by spectral indices and two rounds of NFI data
enable derivation of dynamic variables associated to successional processes that happen to be
good predictors of biomass. A baseline AGB 49 is produced
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3. DATA AND METHODS
3.1. Study area

The Central Range of Spain is a mountain chain located in the middle of the Iberian
Peninsula, separating the North and South plateaus, and with a main SW to NE direction
(Figure 2). Its maximum height is reached at Pico Almanzor (Avila) with 2592 m. As the
Spanish plateaus lay at very different elevation, the Central Range base height is 900 m on
the north face and 400 m on the south face. This height difference has direct weather
implications, with generalized milder conditions on southern locations. Rainfall and
temperature are very variable: many places on northern expositions receive 1000 mm y* of
water, frequently in the form of snow, and average temperatures in some places remain
below zero. Soils are predominantly acidic, with abundant granites, gneiss, and shales
(Gandullo, 1976; Aparicio and Garcia Cacho, 1984).

Figure 2. Location of the area of interest in the middle of the Iberian Peninsula.
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Dominant vegetation communities are distributed mainly as a function of altitude. On the
lower heights evergreen Holm oaks (Quercus ilex L.), sometimes combined with pines and
juniperus, dominate the landscape. Marcescent Pyrenean oaks (Quercus pyrenaica Willd.)
occupy areas in the mid heights, and mountain pines are the dominant tree species over
1600 m. Natural and planted pines (P. sylvestris L., P. pinaster Ait., P. nigra Arnold) are
the most extended tree species, climbing to elevations of 2000 m, beyond which shrubs
(Cytisus sp., Genista sp., Erica sp., Echinospartum sp.) and high altitude meadows are the

prevalent vegetation (Rivas-Martinez, 1963).

The area of interest for the work reported in this dissertation covers approximately one
million hectares in the Central Range of Spain, occupying part of the Avila, Segovia,
Madrid, Guadalajara and Toledo provinces. It is centred at latitude 40° 37’ 56°° N and
longitude —4° 6” 47° E. Some forests in this region have been subject to a management
plan for more than a century, and although punctual socioeconomic circumstances
sometimes precluded perfect application (Bravo et al., 2010) forest structure has been

modified by silvicultural treatments.

3.2. Data

The work reported in this doctoral thesis was supported by data measured on the
ground and data sensed remotely. Measures from plot based field inventories served as
reference for derivation of statistical models of structure, diversity, and biomass, and in the
stages that required accuracy assessment of estimated values. Satellite remotely sensed
data was the base for identification and characterization of areas of interest (extent and
distribution), for up-scaling modelled parameters to the entire area, and to evaluate trends
and patterns of change, as well as absolute values of biomass and carbon content. Ancillary

data used include aerial photography at various dates and vector cartography.

Field inventory data

Field data from plot-based inventories such as the NFI and local management plans
were used at various stages of this research, being of particular value in the accuracy
assessment during the confidence building stages. Standard forest variables like tree
species, number of trees per plot, and diameter at breast height are measured in field

inventories, which are typically updated on a decadal basis.
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National Forest Inventory data

National Forest Inventories are meant to provide information on forest resources at
the national level. At the beginning of the 20™ century some NFIs introduced statistical
sampling as a means for basing their assessments (Tomppo et al., 2010), improving
calculations of volume stocks and forest growth. In Spain, the first global inventory was
motivated by the need of statistical data at the regional and national levels for policy
making, and by the requirement of estimates of forest areas and forest growing stock to
guide the establishment of new enterprises (Alberdi Asensio et al., 2010). The NFI1 was
conducted between 1965 and 1974, covered the entire national area, and employed
provinces (with ~10° ha on average) as the assessment units. The methods applied were
supported by aerial photography to determine forest/non-forest areas, and a sample of

spatially stratified non-permanent ground plots in which tree variables were measured.

Subsequent NFI rotations established a network of permanent plots over a systematic 1x1
km grid, with four concentric circular subplots of radius 5, 10, 15, and 25 m where trees of
different diameter at breast height (dbh) are measured (Bravo et al., 2002). NFI2 was
performed between 1986 and 1995, with spatial stratification of plots based on land-use
cartography, which had been created for agricultural use. To support NFI3 (1997-2007)
digital cartography was generated (Vallejo, 2005), and starting 2005 this NFI rotation
incorporated new measures for estimation of biodiversity (e.g. presence of threatened
species, volume of dead wood, soil parameters). Currently the fourth rotation of the NFI is
in course and expected to conclude in 2018. The NFI4 uses forest dedicated cartography of
scale 1:25000 and has consolidated the measurement of biodiversity variables. Application
of improved volume and growth equations is under investigation. To control the quality of
the inventory measurements, 5% of the plots are completely re-measured by a checking

crew soon after the regular measurement campaign.

Data from five provincial databases (Madrid, Segovia, Toledo, Guadalajara, and Avila)
acquired by NFI2 and NFI3 were used in this work.
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Management inventory data

In forest sites dedicated to production of timber, resin, pine nut or other extractive
resources, surveys or inventories are conducted periodically, for evaluation of forest
condition and assessment of resources. These inventories are based on interpretation of
aerial photography or on ground sample plots, systematically distributed over a stratified
grid of variable size that depends on forest condition. Plots are typically smaller than NFI
plots but located in a denser network. Attributes measured on the ground include diameter
at breast height (dbh), tree height, number of trees, and other features to characterize the
forest locally. Advanced technologies providing 3D data from ground measures, like
hemispheric photography with the ForeStereo (Montes et al., 2008) and Terrestrial Laser
Scanner (Maas et al., 2008) offer a range of opportunities to obtain comprehensive
information with some data processing back in the office. From aerial platforms, LIDAR
technology is progressively being incorporated into operational inventories (Hyppa et al.,
2012) as it is efficient in estimation of forest parameters at the stand level (Nasset, 1997),
for delineation of stands (Eysn et al., 2012), and for extraction of accurate elevation
models (Fricker et al., 2012). Lately, a number of management instructions in Spanish
forests require using these technologies for inventory. Data from two managed sites, Valle
de Iruelas (Avila) and Pinar de Valsain (Segovia), were used in the work presented in this
dissertation, as reference data for modelling structural parameters and structural diversity.

Satellite data

Satellite Earth Observation (EO) programs dedicated to observe the Earth landscape
started in 1960 with the launch of meteorological satellite TIROS-1 (Lauer et al., 1997). A
host of satellites have been launched and have orbited the Earth ever since, and forecast is
to see more in the future. Sensors onboard satellite platforms are identified as passive, if
they capture objects’ reflectance of the sun radiation (e.g. optical sensor), or active, when
the sensor captures its own radiation as reflected by other object (e.g. LIDAR and radar).
According to the pixel size or spatial resolution, (i.e. the minimum spatial unit on the
ground for which distinctive data acquisition is possible) (Jensen, 2005), sensors are
grouped into low- to very high- spatial resolution (Wulder et al., 2008d) (Table 4).
Tradeoffs between sensor resolutions (spatial, temporal, spectral, and radiometric) are key

for adequacy to applications (Lefsky and Cohen, 2003).
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Table 4. Examples of EO satellites and sensors of low-, medium-, high- and very high- spatial

resolution
Group Satellite (Sensor) Spatial resolution (m) Swath (km)
Very high (<1 m) GeoEye-1 1.65 (MS) 0.41 (Pan) 15.2
QuickBird-2 2.44 (MS) 0.68 (Pan) 16.5
High (1-10 m) Orbview-3 4 (MS) 1(Pan) 8
IKONOS-2 4 (MS) 1(Pan) 13.8
MSS 30-60 (MS/SWIR)
™ 30 (MS, SWIR)
Landsat ETM+ 30 (MS, SWIR) 30 185
(Pan)
30 (MS, SWIR)
OLI 15(Pan)
Medium (10-100 m) 2 (HVR) 20 (MS) 10 (Pan)
SPOT 4 (HVIR) 20 60
5 (HRG) 10 (MS) 20 (SWIR)
IRS (ResourceSat-1) 23.5 140
Terra (ASTER) 15 (MS) 30 (SWIR) 60
EO-1 (Hyperion) 30 (MS) 7.5
CBERS-1 and -2 20 113
Terra (MODIS) 250-1000 2300
Low (> 100 m) SPOT 5 (VGT) 1000 2250
NOAA-19 (AVHRR/3) 1100 2600

Note. MS: Multispectral; Pan: panchromatic; SWIR: shortwave infrared

The high temporal frequency and large image swaths of the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR)
make them adequate data sources for regional to global monitoring and mapping of broad
land cover patterns (Potter et al., 2005), for monitoring change over large areas (Potter et
al., 2003), and for rapid response action. Free economic cost and easy access to high
quality processed data support operational programs like Active Fire Mapping Project
(AFMP), which reports daily on fire activity in the USA and Canada, or DEFER project,
which offers monthly reports of tropical deforestation. AVHRR and MODIS programs
have provided daily records since 1981 and 2000, respectively, making them suitable for
medium term assessment of global transformations. High and very high spatial resolution
images (< 1-10 m pixel size) permit identification of small objects on the ground, like large
individual trees, and even related dimensions for estimation of forest structure (Wulder et

al., 2004a). Some commercial satellites offering this kind of data are steerable, enabling a
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short return period of 1-5 days. Small image footprints (image size per acquisition) and

high data costs preclude more regular use in the civilian world.

Medium spatial resolution (MSR) images are adequate for characterization of landscapes,
and to monitor change events at the scale of human impacts. MSR is well suited for
characterization of forest condition (Cohen and Goward, 2004), and to monitor forest
change at the stand level (Wulder et al., 2008d). Typical MSR images are captured with a
wide swath, providing synoptic views for regional studies, and with an adequate range of
visible and infrared wavelengths for accurate characterization of land covers. Recent
policies making imagery easily accessible (e.g. Brazilian INPE, USGS, ESA) positions this
type of data as the most used and reliable for regional works.

Landsat program

The Landsat program was the first to launch an Earth-observing satellite with the
express intent to study and monitor our planet’s landmasses (Lauer et al., 1997). Back in
1972 when Landsat 1 was launched, it was called Earth Resources Technology Satellite
(ERTS). With seven satellites successfully launched (Figure 3), the program has acquired
imagery covering all but the highest polar latitudes during more than forty years,
contributing to the longest and most geographically comprehensive record of the Earth's
surface ever assembled (Wulder et al., 2012a). Technical characteristics of all segments
(spacecraft, sensors, ground station, and data transfer) have evolved over the years,
improving the spectral, spatial, temporal, and radiometric resolution of the data, refining
the instruments’ calibration (Irons and Masek, 2006), and establishing an optimized plan
called Long Term Acquisition Plan for acquisition of global imagery (Arvidson et al.,
2006). Landsat 8 was launched in February 2013, assuring the continuity of monitoring
programs. Further operational missions (Landsat 9 and 10) are intended to follow

(Loveland and Dwyer, 2012) and will provide continuity of comparable measures.

The sequence of Landsat satellites, operational period and the office in charge of
management are presented in Figure 3. The spectral, radiometric, and spatial characteristics
of the optical components of sensors onboard all Landsat satellites (Multi Spectral
Scanner, Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land

Imager) are presented in Table 5.
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Table 5. Spectral, spatial, and radiometric characteristics of Landsat sensors (thermal components
of TM and ETM+ are not included). MSS: Multispectral Scanner; TM: Thematic Mapper; ETM+:
Enhanced Thematic Mapper Plus. OLI: Operational Land Imager.

MSS ™ ETM+ oLl
Width  GSD Width  GSD Width  GSD Width  GSD
#Band #Band #Band #Band
(pm) (M) (pm)  (m) (pm) (M) (pm)  (m)
1 0.43-0.45 30
Visible 1 0.45-0.52 30 1 0.45-0.52 30 2 0.45-0.51 30
4(1) 05-06 68x83 2 0.52-0.60 30 2 0.52-0.60 30 3 0.52-0.60 30
5(2) 0.6-07 68x83 3 0.63-0.69 30 3 0.63-0.69 30 4 0.63-0.68 30
NIR 6(3) 0.7-08 68x83 4 0.76-0.90 30 4 0.76-0.90 30 5 0.84-0.88 30
7(4) 08-1.1 68x83
SWIR 155-1.75 30 5 155-1.75 30 6 156-1.66 30
7 2.08-2.35 30 7 2.09-2.35 30 7 2.10-2.30 30
Pan 8 0.50-0.68 30 8 0.50-0.68 15
SWIR 9 1.36-1.39 30
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
[ [ ] T ’ I L 1 @ L I . 4 |. @ & I & >
(1972-1978)
Landsat 1 & ——8 rBy MsS
(1975-1982)
Landsat 2 & —— M rev Mss
(1978-1983)
Landsat 3 H RBV, MSS
(1982-1993)
Landsat 4 & —  Wwmss, ™
Landsat 5 & Shasiil Ml mss, ™
Launch failure 1993
Landsat 6 ® (ETM)
(1999- ) R
Landsat 7 ¢ > {ETas
OL, TIRS §-=---~ >
Landsat 8 (2013-)

’ Launch . Decommission # Launchfailure M Sensoronboard (1980-2000) Working live

Figure 3. History of Landsat satellites and sensors. Adapted from:

http://landsat.gsfc.nasa.gov/about/landsat7.html. RBV: Return Beam Vidicon, MSS: Multispectral

Scanner; TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus.
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Currently managed by the US Geological Survey (USGS) and the National Aeronautics
and Space Administration (NASA), the Landsat program has a network of international co-
operators well distributed over all continents. These co-operators, with established ground
stations, contribute to the downlink services and enable scientific and technical
collaboration. The European Space Agency (ESA), one of the Landsat international co-
operators, holds two million Landsat images, presently available for research under
licence, but expected to be transferred to the USGS archive and made available to the
public with the USGS standard level of processing. The USGS Landsat archive has more
than four million images® freely available through a website portal since 2008 (Woodcock
et al., 2008). Images of any part of the Globe are subject to a standard high level of
processing, including radiometric calibration, geometrically precise location and
registration (better than 0.44 pixels root mean square error in x and y directions), and

surface reflectance products that facilitate applications’ use.

Landsat images are identified by the Worldwide Reference System (WRS) that parcels the
Globe into 185 x 185 km scenes indexed by paths (north-south) and rows (east-west). This
research is focused on a single Landsat scene (WRS-2 Path 201, Row 032) as it

encompasses the most extensive continuous pine stands of the Spanish Central Range.

QuickBird-2 satellite

Some commercial satellites carrying high spatial resolution sensors have been
launched in the last fifteen years — IKONOS in 1999, QuickBird-2 in 2001, Orbview-3 in
2003, RapidEye in 2008- and are currently orbiting the Earth. QuickBird-2 is operated by
Digital Globe and provides data in five spectral bands (Table 6). It has the capacity to be
oriented and to capture images off nadir, enabling a temporal revisit of 2—6 days depending
on latitude. The pixel size of QuickBird-2 images is ~2.4 m for the multispectral bands and
~0.68 m for the panchromatic band (Table 6). QuickBird-2 is unique among other satellites

in this class as it has the largest image footprint and most on-board storage capacity.

Table 6. Characteristics of the QuickBird-2 imagery. Adapted from
Www.satimagingcorp.com

! http://www.landsat.usgs.gov
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Launch 18 October 2001 Pan 0.45-0.90
Altitude 450 km Blue |0.45-0.52
Speed 25560 km/h Bands (um) | Sreen (952057
Period 93.5 min NIR 0.76-0.90
Return period 1-3.5 days

Equator 10:30 a.m.

Radiometric resolution 11 bits

HSR imagery provides the opportunity for precise exploration of forest parameters,
reducing estimation errors to an acceptable level for operational applications (Kayitakire et
al., 2006). Very high spatial resolution imagery facilitates for instance the detection of
individual tree characteristics, providing improved estimates of forest attributes (Wulder,
1998). Nevertheless, dearth of established methods for processing and the complex
interactions between sun-sensor-surface geometry and forest structural characteristics
(Wulder et al., 2008d), particularly in complex topographies, make the use of these data
challenging (Falkowski et al., 2009a).

Ancillary data: cartography, aerial photography, digital elevation model

The Mapa Forestal Espafiol (MFES0) is the digital version of Ruiz de la Torre forest
map of Spain for the year 2000. In the construction of this map the source of data consisted
of aerial photography and field notes. Polygons interpreted on photography were
transferred to the 1:50000 National Topographic Map and the paper map version was later
digitized. This GIS database encompasses 68 attributes to characterize vegetation units.
Among relevant attributes for identification of pine forest areas are dominant species and
crown cover (that is, the proportion of area covered by the horizontal projection of the
canopy, in percentage). The MFES5O0 is used in this work for assessment of accuracy during

confidence building stages.

Aerial photography scale 1:10000 provided by Castile and Leon government was used in
support of accuracy assessment and checking stages. Historical and online aerial
photography was supportive in visual evaluation of the accuracy of changing trends

derived from satellite spectral series.

Digital elevation models (DEM) were used to support spatial registration of satellite
imagery: a 25 m DEM was used for orthocorrection of Landsat images, and a DEM
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derived from 1:10000 cartography (www.sitcyl.org) was used in processing stages of HSR

satellite imagery.

3.3. Management of data from field inventories

Plots from the National Forest Inventory (NFI) were selected with BaslFor 2.0
(Bravo et al., 2005), software dedicated to handle the NFI provincial databases for
research, management, and planning (Bravo et al., 2002). BaslFor 2.0 enables selection of
data based on location, species, or structural parameters, calculates volumes and growth,
and facilitates NFI2 and NFI3 data comparison. BaslFor 2.0 has an option to export results
in standard format, compatible for numerical analysis in common software. Spatial

location of data is facilitated by identification of plot coordinates.

Plots measured in the most recent inventories for planning of two pilot sites were
considered. To synchronize field measures with HSR satellite imagery, some data
measured on the ground were updated with species specific growth models as proposed in
the NFI methodology. Geographical Information System (GIS) tools assisted in location

and geo-processing for analysis of inventory data.

Forest structural variables were derived by application of standard formulas to field
measurements. Structural diversity attributes were evaluated at the plot level as the median
absolute deviation (MAD) of diameter, height, and crown diameter from regional average
values. The MAD metrics are always positive and their values are directly related with

structural diversity, i.e. plots with higher values of MAD are structurally more diverse.

3.4. Biomass calculation with allometric equations

Live AGB was calculated with the species specific allometric equations of Montero
et al. (2005) and Ruiz-Peinado et al. (2011) for trees with dbh > 7.5 cm. These equations
account the dry biomass fraction of stem, roots, and branches of various dimensions, but
we did not consider the root portion in our analysis. Expansion factors accounting for the
size of concentric NFI plots were applied, to scale measured attributes to standard spatial
units. Absolute and relative change of AGB between the NFI2 and NFI3 was calculated at
the plot level.
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Equations developed by Montero et al. (2005) require just measures of tree diameter as
inputs, and are available for a large number of species. Models by Ruiz-Peinado et al.
(2011) incorporate measures of tree diameter and height. These equations were derived
subject to an additive property: the sum of all biomass fractions (i.e. stem, branches, and

roots) equals the total biomass of the tree.

3.5. Satellite data processing

Remotely sensed data from satellite platforms are usually delivered by data providers
after basic processing, and require further treatment for incorporation into project flows to
generate information. However, recent technological improvements facilitate standard
processing and enable providers to offer data in high quality processing stage, sometimes
ready for user applications. Typical image preparation techniques include geometric and
radiometric adjustments. Figure 4 provides an overview of the main processing stages
applied in this work, and a brief description of the processes performed follows. Specific

processing applied at each stage is reported in individual chapters.

Selection of images Criteria

Ortho-correction
Geometric correction

Registration

Sensor radiometric calibration ﬁrface reflectance retriev%
/' calibrated  / / Calibrated TOA  /
/DN el j —,,l /
2y /  TOA Radiance / & Reflectance /
i ry

2= I
L4
Radiometric Calibration D o . ;
57 Atmospheric correction

Radiometric normalizatﬁ S COSTIEhEr 1950)

,
4
B
Normalization ‘ i ¢

IR-MAD R '-':7"".. Surface Reflectance "~
)

-

(Canty et al. 2004
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Figure 4. Overview of image processing flow with some specific methods applied in this
work. DN: Digital Number; TOA: Top of Atmosphere; COST: Cosine Theta; IR-MAD:

Iterative Re-Weighted Multivariate Alteration Detection.
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Selection of images

For monitoring and analysis of change a number of acquisitions of each scene
covering the area of interest are necessary, although the exact number, assuming
availability, is a trade-off between processing effort and detail of results. Trends of change
become reliable when examining frequent images with comparable characteristics:
atmospheric condition, sun elevation, sensor orientation, and vegetation phenology.
Anniversary images are desirable for monitoring forest ecosystems (Wulder and Franklin,
2002) and the acquisition of a historical time series of multiple Landsat images relatively
cloud-free can be a complicated task (Homer et al., 2004). In the study area, in order to
capture stable phenological conditions and to avoid the presence of snow in high altitudes,
summer images were preferred. The spectral suitability of images on the edge of season
(early or late summer images) required thorough checking through the processing stages to
detect and avoid possible phenology artefacts. The selection of MSR images consisted of
nine Landsat TM and two ETM+ (Scan Line Corrector on) images. To ensure a more
complete time series, the tolerance for a small amount of cloud cover in the images was
increased, but still, a yearly time series of images was not possible to obtain, and the time
step was not constant. There is a gap in images in the 1990s corresponding to the private
sector distribution era (Tolomeo et al., 2009) that had to be considered in interpretation of
results, as longer intervals between images may reduce detection accuracy for subtle
changes (Wilson and Sader, 2002; Jin and Sader, 2005).

In the near future, the Sentinel-2 satellites of the European Space Agency (ESA) will
collect data similar to the Landsat series of satellites, augmented by refinements to spatial,
spectral, radiometric, and temporal resolutions (Drusch et al., 2012). Notably, Sentinel-2 is
planned to be a two sensor constellation, off-setting two satellites in the same orbit to
shorten the revisit and increase the opportunity to obtain cloud free imagery. A large
imaging footprint will also aid the collection of data for desired time periods and free of

clouds, complementing Landsat acquisitions for monitoring projects.

Archived HSR images from QuickBird-2, covering the pilot areas for the study of forest
structure and diversity, and acquired during the summer with adequate technical

characteristics, were available from the supplier at standard price.
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Fourteen Landsat images (MSS, TM and ETM+) were employed for our study in Alberta
(Canada) (Chapter I) in which novel techniques were developed and changes on the forest
landscape were analysed and described (Gomez et al., 2011a).

Geometric correction

Remotely sensed raw images contain geometric distortions specific to the acquisition
system, mainly related to sensor orientation and viewing angle, sun elevation, and
atmospheric effects. Every system geometric distortions require a particular correction
approach prior to analysis or integration with other spatial data. Systematic distortions
introduced by the instrumentation (e.g. skew caused by Earth rotation effects, variation in
ground resolution cell size due to the scanning system) are corrected at ground receiving
stations or image distributors, but distortions related to specific acquisition time and

location (e.g. topographic relief) require correction by the user.

Geometric correction with 3D parametric mathematical models supported by a DEM is
superior to other methods (Toutin, 2004). In this work Landsat and QuickBird-2 images
were orthocorrected with DEMs of 25 m and 2 m resolution respectively, and adjusted
with ground control points manually identified over the images. To integrate all images
into a geospatial database enabling simultaneous use, geometric registration to reference
cartography is necessary. All images were co-registered to the UTM 30N (datum WGS84)

coordinate system.

Image rectification involves a geometric operation to compute the cell coordinates in the
original image, and a radiometric operation to compute the intensity value on the “map
image” cell (geometrically corrected) as a function of the intensity values of original image
cells (Toutin, 2004). This operation is performed by a resampling kernel applied to the
original image cells. Nearest neighbour resampling does not alter the radiometry of the
original image but introduces some geometric error and the visual quality is altered. As an
alternative a specific interpolation or deconvolution algorithm using the digital numbers of
the surrounding cells can be applied: bilinear interpolation does not alter the geometry but
produces a smoothing effect, while cubic convolution does not smooth but enhances and
generates some contrast in the image. Trade-offs of these options requires consideration in

deciding processing alternatives.
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Radiometric calibration

Radiometric image processing is aimed to transform raw data (i.e. radiant energy
coded by intensity and spectral character) as captured by the sensor into at surface
reflectance suitable for applications (Figure 4). Radiometric processing includes sensor
radiometric calibration, surface reflectance retrieval based on atmospheric corrections,
image normalization to provide radiometric consistency across multiple scenes and/or
dates, and specialized corrections for surface terrain induced variations (Peddle et al.,
2003). A robust radiometric calibration of images is essential in change detection
applications (Lu et al., 2004; Coppin et al., 2004), and it is crucial if images are to be
related with biophysical phenomena (Gong and Xu, 2003) like forest structure, health,
biomass, or successional development. This task becomes especially challenging when

various sensors are included in the analysis (Roder et al., 2005).

The radiometry of satellite sensors is evaluated periodically to account for changes
produced after pre-launch calibration. Onboard systems, pseudo-invariant targets and
cross-sensor approaches are used for calibration, and coefficients to transform digital
numbers into radiance and at sensor (top of atmosphere-TOA) reflectance are provided in
user manuals (Chander et al., 2009). The reduction in scene-to-scene variability is an
advantage of reflectance over radiance, due to the removal of the cosine effect of different
solar zenith angles, the compensation for different values of the exoatmospheric solar
irradiance, and the correction for variation in the Earth-Sun distance between different data
acquisition dates.

To account for atmospheric effects (i.e. haze) when transforming at sensor reflectance to
surface reflectance, absolute correction with models based on radiative transfer theory (e.g.
6S-second simulation of a satellite signal in the solar spectrum) require frequently
unavailable atmospheric data. Image-based correction approaches based on the dark-object
theory provide a reliable alternative solution. Assuming the radiance of a dark object (e.g.
water body, shadow) is near to zero, its value of reflectance as captured by the sensor is
credited to atmospheric effects and subtracted from all pixels in each spectral band. The
cosine-Theta (COST) model (Chavez, 1988) is an improved dark-object subtraction
technique that, based on a relative scattering model, identifies wavelength dependent haze

values correlated with each other, and maintains a correct relationship between spectral
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bands. We applied the COST model for correction of atmospheric effects in Landsat and
QuickBird-2 images, obtaining the minimum value of reflectance from imaged water

bodies.

Image normalization is the adjustment of the radiometric properties of one image to match
that of another. Normalization is important in forest applications that involve multiple
images acquired over large areas or at different times (e.g. inventory, change detection).
For analysis of spectral trajectories, a relative calibration or radiometric normalization of a
sequence of images with the Iterative Re-Weighted Multivariate Alteration Detection (IR-
MAD) process (Canty et al., 2004) had been recommended (Schroeder et al., 2006) and
was used in this work. Image normalization transforms images to a common radiometric
scale, minimizing sun and sensor view angles, as well as atmospheric differences among
images. The process of normalization reduces the amount of artefacts due to illumination
or atmospheric variations, enabling more reliable detection of true change (Song et al.,
2001).

3.6. Vegetation indices

A vegetation index is a dimensionless, radiation based measurement that indicates
relative abundance and activity of green vegetation (Jensen, 2005) by isolating its
contribution from other materials (Asner et al., 2003). Vegetation indices are simple,
reduce data dimensionality, and can easily be applied to different scenes. Vegetation
indices take advantage of the unique spectral signature of vegetation, characterized by a
large difference in reflectance between the visible (high absorption) and near-infrared
(reflectance). Typical indices use the ratio or difference of NIR (near infrared) and VIS
(visible) reflectance, and most commonly are defined with VIS in the red region of the

visible spectrum (630-690 nm).

Vegetation indices are frequently used in forestry applications, capitalizing on a strong
relationship with structural attributes like Leaf Area Index (LAI) and canopy cover, to
estimate, map, and monitor forest health, biomass content, and landscape disturbances (i.e.
fire, windstorms). When used for discrimination of land cover and characterization of
vegetative condition, vegetation indices must normalize effects such as sun angle or

atmospheric effects for consistent comparisons in time and space.
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Normalized Difference Vegetation Index

One of the most widely used vegetation indices is the Normalized Difference
Vegetation Index (NDVI) developed by Rouse et al. (1973). NDVI1 is defined as (eq. 1)

NDVI = Prir = Prea. (eq. 1)
pnir + pred

where p, and p,_, are the reflective values in the NIR and red bands for each pixel.

NDVI values vary between 0 and 1 and are directly related to the vigour of vegetation.
NDVI is extensively used to monitor seasonal and annual global changes in vegetation
communities, and as a component of particular models. NDVI has demonstrated useful for
evaluation of forest biomass and structure (Piao et al., 2005; Dong et al., 2003). Chuvieco
(2002) noted as a weakness of the NDVI its inability to discriminate between areas with
different proportion of vegetation/soil: an area with vigorous canopy and scarce density

can show the same NDVI value as other area with higher density but less vitality.

NDVI values were calculated on the series of Landsat images and on QuickBird-2 images.
Figure 5 illustrates the usefulness of this index to discriminate vegetation from other land

cover classes.

Forest Vegetation Bare soil

sl NN

Blue Green Red NIR SWIR1 SWIR2
Landsat band

Figure 5. Left: Landsat NDVI image of part of the study area. Dark regions are water
bodies, roads and bare soil; bright regions are forest. Middle: same region, visualization

R/G/B: 3/4/1; Right: Spectral signatures of some cover classes.
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Tasseled Cap Transformation and derived indices

The Tasseled Cap Transformation (TCT) (Kauth and Thomas, 1976; Crist and
Cicone, 1984; Crist, 1985; Huang et al., 2002) is a linear transform for reduction of the
Landsat spectral space that was initially developed by Kauth and Thomas (1976) for
understanding of crop spectral behaviour. The TCT has been broadly employed in forestry
studies of structure (Hansen et al., 2001; Cohen et al., 2001), condition (Wulder et al.,
2006, Healey et al., 2006), successional state (Peterson and Nilson, 1993; Helmer et al.,
2000) and change detection (Lea et al., 2004; Jin and Sader, 2005) in a range of forest

environments.

The first three components of the TCT were named Wetness, Greenness, and Brightness, in
relation with their physical interpretation, and have received special attention for forest
applications. The Tasseled Cap Brightness (TCB) and Tasseled Cap Greenness (TCG)
components form the vegetation plane (Crist and Cicone, 1984), where the spectral
behaviour of forest stands provides insights into forest cover densities and forest
development stages. By combination of TCG and TCB values in the vegetation plane, the
Tasseled Cap Angle (TCA) and Tasseled Cap Distance (TCD) condense in single values
information related to forest structure and successional stages that can be related to
biomass and diversity. The TCA is defined as the angle formed by TCG and TCB (eq. 2),
whereas the Tasseled Cap Distance is the distance to the origin of the vegetation plane (eq.
3) (Figure 6). TCA and TCD were tested for the first time in temperate forests of Oregon
(USA): Powell et al. (2010) related these indices with AGB and Duane et al. (2010) with
forest structure. TCA was used by Gomez et al. (2011a) for analysis of temperate forests of
Canada (this dissertation), and combined with TCD by GoOmez et al. (2012a) in
Mediterranean pines of Spain (this dissertation) in relation with structure and biomass.
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Figure 6. Vegetation plane of the Tasseled Cap Transformation. Tasseled Cap Angle
(TCA) and Tasseled Cap Distance (TCD) are represented.

TCA =arctan(TCG/TCB) (eq. 2)

TCD =+/TCG2 +TCB? (eq. 3)

3.7. Image texture

Image texture was defined by Haralick and Bryant (1976) as “the pattern of spatial
distributions of grey-tone”, and describes the relationship between elements of surface
cover (Wulder et al., 1998). Image texture is one of the most valuable criteria in visual
interpretation. The estimation of forest stand parameters with digital data is sometimes
improved with a combination of spectral and spatial information (Lu, 2006) such as
texture. Consequently a host of texture measures have been utilized to predict structural
parameters in various environments (Franklin et al., 2001; Devereux et al., 2004; Couteron
et al., 2005) and has shown particular utility in complex structures such as tropical forests

for above ground biomass estimation (Lu et al., 2002; Lu and Batistella, 2005).

For evaluation of image texture various methods (e.g. variograms, Fourier transform,

fractal dimension) have become relatively fast and simple with computer algorithms (Han
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Bell, 2007). One approach for texture analysis (used in this work) can be based on
measures derived from the Grey Level Coocurrence Matrix (GLCM) (Haralick et al., 1973;
Caridade et al., 2008). The GLCM is a tabulation of how often different combinations of
pixel grey levels occur in an image (Hall-Beyer, 2007) at a specific distance and
orientation (within a particular processing kernel, or analysis window). Texture measures
calculated from the GLCM (e.g. homogeneity, entropy) consider the relationship between
neighbouring pixels, and are known as second order or coocurrence texture measures, as
opposed to first order texture measures simply calculated from the original image values
(e.g. variance, standard deviation). Since texture analysis is a multi-scale phenomenon
(Ahearn, 1988), choosing the right window size to capture meaningful local variance
without generalizing unrelated features (Kayitakire et al., 2006) is one of its key challenges
(Ferro and Warner, 2002). Among the range of texture variables that can be derived from
the GLCM, Homogeneity, Contrast, and Entropy (eq. 4-6) showed high values of
correlation with structural parameters in pre-analysis investigations in the study area. Some

examples of forest areas with different visual texture are depicted in Figure 7.

N-1 Pj
Homogeneity = » ——1— eq. 4
genely %H(I—J)2 (eq. 4)
N-1
Contrast = > P, (i — j)’ (eq. 5)
i,j=0
N-1
Entropy = zpi,j(_ln P.i) (eq. 6)

i,j=0

where i is the (1) th entry of the normalized GLCM matrix, N is the number of rows
and columns in the image.
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Figure 7. Examples of forest areas with different visual texture, associated with forest

structure, as depicted in HSR images. Top: panchromatic visualization; bottom:

multispectral visualization.

3.8. Image segmentation for object oriented analysis

Digital images provide data coded into square picture elements (pixels) which
seldom correspond with objects of interest on the ground. Target objects larger than one
pixel can be identified on the image by a process of aggregation based on a rule of
similarity. Following this rationale, image segmentation consists in the partition of the
image into homogeneous spatial units (Devereux et al., 2004) based on one or more
attributes. With the image segmented into meaningful objects with distinctive attributes,

visualization and analysis of spatially correlated properties is facilitated.

There is no unique way of partitioning the landscape (Burnett and Blaschke, 2003) for
ecological analysis and no single spatial scale is optimal for characterizing the multiple
options in which the image can be divided (Hay et al., 2005). Defining semantic rules to
relate multi-level landscape divisions of organization is a big challenge (Burnett and
Blaschke, 2003) and three is the minimum number of levels recommended for analytical
studies of landscape (O’Neill, 1986).

Through the application of automated algorithms, the criteria for homogeneity can be
defined by the user, based on parameters such as tone or spatial pattern. Image objects or

segments composed of various pixels provide supplementary features for image analysis,
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not available in pixel based analysis, such as local statistical relations of digital numbers
(Chubey et al., 2006), shape, size or context. That is, once segments are produced, objects
(e.q., trees or groups of trees) or spatially constrained summaries of the digital numbers
within the segment may be used to provide representative segment-level information
(Palace et al., 2008). In forest environments, the segments can often be considered as

analogous to the manually delineated stands found in forest inventories (Hay et al., 2005).

Definiens Cognition Network Technology® is software dedicated to image segmentation,
with strong capacity to incorporate contextual information. In the process of image
segmentation the size of resulting objects is determined by the scale parameter and by the
landscape characteristics; for instance, a given scale value would produce larger objects in
a homogeneous landscape and smaller objects in irregular areas. Other settings guiding the
segmentation routine include complementary criteria of colour-shape and smoothness-
compactness. The homogeneity criterion is based on weighted selected bands, which can
include spectral or thematic layers. Definiens Cognition Network Technology® was
employed for segmentation of Landsat and QuickBird-2 images at various stages of
processing and analysis in this work. Specific segmentation parameters are reported in

corresponding chapters.
3.9. Spectro-temporal trajectory

A spectro-temporal trajectory is the sequence of spectral values corresponding to a
single pixel (or object when averaged) on temporally consecutive co-located images. The
preferred time step of values (i.e. the time lapse between image repetitions) depends on
applications: while frequent data would benefit the monitoring of a fast changing
phenomenon, it could be a source of noise in identification of slow changing processes.
However, the frequency of image captures is limited by the sensor and platform
operational characteristics. When the spectral attribute is associated with a biophysical
property, the temporal trajectory may provide information of that property evolution
through time. Spectro-temporal trajectories of low spatial resolution have been used for
some time, but the use of medium spatial resolution temporal trajectories has only recently

become doable, as result of the open access data policies (Wulder et al., 2012a).
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Spectral trajectories of calibrated and normalized imagery inform at least on trends of
change (Powell et al., 2010), and when analyzed thoroughly they can provide information
of the target object physical changes (Pflugmacher et al., 2012). Methods for extraction of
information from spectral trajectories of medium spatial resolution, like polynomial
characterization of spectral curves (Goodwin et al., 2010) or identification of distinctive
trajectory segments (Kennedy et al., 2010) are still on the infancy of development, and are
a promising field of research.

3.10. Data analysis techniques for exploration, characterization, and

modelling

Statistics and techniques for data analysis were fundamental tools in most stages of
this work, for exploration and description of datasets, in determining relations among data,
and for modelling. A brief description of the main statistical and data analysis methods

employed follows, oriented to the specific application made in this work.

Classification and regression trees (CART)

One option to identify relations between variables in multivariate data sets is the use
of decision tree data analysis (Chubey et al., 2006) also known as Classification And
Regression Trees (CART). Regression trees identify relationships between a single
continuous response (dependent variable) and multiple, continuous and/or discrete,
explanatory (independent) variables, through a binary recursive partitioning process, where
the data are split repeatedly into increasingly homogeneous groups (nodes), using
combinations of variables (rules) that best distinguish the variation of the response
variable. Tree models do not make assumptions regarding the distribution of the input data
(Pal and Mather, 2003; Baccini et al., 2008); plus, they are able to capture non-linear
relationships between variables and are robust to errors in the input and results. Tree
modelling is a nonparametric method which basic theory is reported in Breiman et al.
(1984).

CART approaches have frequently been used in the environmental remote sensing
community for classification and mapping (Brown de Colstoun et al., 2003; McDermid
and Smith, 2008; Ke et al., 2010) for modelling (Andrew and Ustin, 2009; Im and Jensen,
2005; Lozano et al., 2008), for forest characterization (Falkowski et al., 2009b) and in
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particular in the estimation of forest structural parameters with HSR satellite imagery
(Chubey et al., 2006; Goetz et al., 2003; Mora et al., 2010).

CART was employed in Chapter 111 to model structural parameters and in Chapter V to

model biomass retrospectively.

Canonical correlation analysis

Canonical correlation analysis (CCA) is defined as “a multivariate statistical model
that facilitates the study of interrelationships among sets of multiple dependent and
multiple independent variables” (Hair et al., 1998). Forest structure is difficult to
characterize using a single variable (Lefsky et al., 2005) requiring multiple attributes for
description (e.g. height, canopy cover). Hence, CCA is particularly suited to explore

relationships between forest structure and multiple spectral variables.

CCA generates the canonical variates, representing the optimal linear combinations of
dependent and independent variables, and the canonical correlation, representing the
relationship between canonical variates. During the analysis each group of variables is
linearly combined into a variate; one is identified as the dependent variate, the other as the

independent. The dependency roles are interchangeable and thereby are easier to interpret.

The strength of the relationship between the dependent and independent variables is
quantified by the canonical correlation coefficient. Canonical functions maximize the
correlation between the linear composites (variates), and canonical weights, the
coefficients of each variable in the canonical functions, represent the partial correlations of
the variables with the respective canonical function. Although the canonical weights enable
an understanding of the composition of each canonical function, they can be unstable and
are therefore not typically used to interpret the canonical variates (Hair et al., 1998). To
facilitate comparison between canonical weights, they are transformed into standardized
variables (i.e., with a mean of 0 and a standard deviation of 1) and are used to calculate
canonical scores for the canonical variates. Canonical loadings measure the simple linear
correlation between an original observed variable in the dependent or independent set and
the set's canonical variate: canonical loadings indicate the variance that the variable shares
with its canonical variate. Variables that are highly correlated with a canonical variate have
more in common with the variate and should therefore be given more importance in the

variate's interpretation. Finally, a measure of redundancy may be calculated that informs on
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the amount of variance in a set of input variables (dependent or independent) that is
explained by the other canonical variate. For example, a measure of redundancy for the
dependent variate represents the amount of variance in the dependent variables that is
explained by the independent variate. As canonical functions may have statistical
significance even though they lack practical significance (Hair et al., 1998), the canonical
functions to be interpreted require being determined with criteria such as the level of
statistical significance of the canonical function, the practical significance of the canonical

correlation, and the redundancy measures for each variate.

For assessment of the CCA validity, a reliable option is to run the analysis repeatedly, by
removing individual independent variables, and assess the stability of the canonical
loadings, the overall canonical correlations, and the redundancy measures. The
applicability of CCA in remote sensing is demonstrated and described in detail by Cohen et
al. (2003). CCA has been successfully applied by Lefsky et al. (2005) to compare the
relationships between LiDAR-measured canopy structure and coincident field
measurements of forest structure, and by White et al. (2010) to explore the relationship

between spectral diversity and forest canopy structural diversity.

CCA was employed in Chapter IV for characterization of the strength and quality of the

relationship between structural diversity measures and image diversity measures.

Geostatistics: kriging interpolation and variogram

Geostatistics focus on spatial and spatio-temporal datasets, and provides means for
extrapolation of measured values to unmeasured points and areas, facilitating the
derivation of thematic layers for integration with other data (Chica-Olmo, 2005).
Geostatistical methods are more appropriate for generating estimates of the distribution of
forest properties than the use of simple average or statistical models that ignore spatial
correlation (Sales et al., 2007).

Kriging is a spatial interpolation method that yields the best possible estimation of the
spatial variable of interest at every unmeasured point (Curran and Atkinson, 1998). The
error committed at each point in the estimation is minimized and known (Clark, 2001).
Kriging facilitates mapping of forest variables of interest measured in ground plots (e.g.
inventory attributes) into raster layers. Moreover, block kriging enables estimation of the

relative standard error (i.e., the standard error of the kriged surface relative to the mean
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attribute value at the polygon level). Since sampling is complete and the spatial correlation
of plot values is accounted for, inside polygon average values are more accurate than

standard means.

Variogram is by definition the expected squared difference between two data values
separated by a given distance vector. The variogram calculated with digital image values is
a useful tool to characterize forest structure, relating range and sill with forest stands
characteristics (e.g. Cohen and Spies, 1990; Merino de Miguel et al., 2010). The range of
the variogram indicates the distance beyond which sample values (e.g. pixel values) are no
longer correlated (Johansen et al., 2007) and it is indicative of the elements forming the
texture present within the scene. The range is frequently associated with the most
dominant elements in the scene, be it single tree crowns in open forests, or the canopy of
groups of trees in close environments. It is a measure of variability and increases as
samples become more dissimilar (Gringarten and Deutsch, 2001). The semivariogram
approach (Johansen et al., 2007; Nijland et al., 2009) is used in image analysis to identify
the size of the relevant scene objects, and to determine an adequate window size for texture
analysis (Franklin et al., 1996). Homogeneous forests require smaller windows for analysis
and characterization than heterogeneous ones, which might also benefit from a series of

different size windows.

The variogram approach was employed in Chapter 111 and Chapter 1V for identification
of the most adequate textural window sizes. Kriging was applied in Chapter |11 for

interpolation of field measured plot data.

Moran Index for analysis of spatio-temporal correlation

Moran’s Index (Moran, 1948) is one of the most commonly used statistical measures

for spatial autocorrelation (Anselin, 1992), and it can be expressed as (eq. 7):

= N *Zizjwij(xi —1)(X; — u)
ZiZj W zi (x _#)2 w“r

Where x; is the variable of interest x measured at location i, N the number of observations,
u the mean of the variable, and wj; are the elements of the spatial weights matrix, which
expresses the membership of observations in the neighbourhood set for each location

(Anselin, 1992). For easiness of interpretation, a standardized z-value is reported instead of

49



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:
a remote sensing approach

the index itself; z-value is calculated by subtracting the expected value for the statistic, and
dividing the result by the standard deviation (eq. 8). When interpreted as a global measure,
positive z-values point to positive spatial correlation and negative z-values point to
negative spatial correlation; a zero value indicates there is no spatial association in the
dataset. Moran’s | can be interpreted as a spatially weighted form of Pearson’s correlation
coefficient (Goovaerts et al., 2005) and its significance is assessed against a null
hypothesis of no correlation with a permutation procedure (Anselin, 2003).

7 = Ii_E(Ii)

i W (eq. 8)

For visual exploration and interpretation of the global Moran’s I, the Moran scatterplot is a
useful tool (Anselin, 1993). All observations are plotted on the horizontal axis versus
corresponding spatial lags (neighbours’ weighted averaged values) (Anselin, 1992) on the
vertical axis. The slope of the regressive line is an estimate of the index, and points in each
quadrant of the scatterplot can readily be interpreted: values in the upper right and lower
left quadrants represent positive spatial association (Anselin, 1993). For the upper right the
association is between values above the mean, for the lower left quadrant the association is
between values below the mean. The relative density of these quadrants provides an
indication of the extent to which the global measure of spatial association is determined by
patterns of association between high or low values. The lower right and upper left

quadrants identify spatial outliers.

For analysis of local associations or clusters, and for identification of local outliers, i.e.,
observations out of the local pattern, a Local Indicator of Spatial Analysis (LISA)
(Anselin, 1995) is more adequate. A LISA is any statistical measure (e.g. local Moran’s I)
that gives an indication of the significant spatial clustering of similar values around each
observation, conditioned to sum proportionally to a global indicator of spatial association
when all observations are added (Anselin, 1995). Maps of clusters (LISA cluster map)
identifying and classifying (high-high, low-low, high-low and low-high) locations with
significant association and significance maps can be visualized together, with the option to

assess the sensitivity of results to multiple comparisons (Anselin et al., 2006).

LISA analysis of univariate data permits detection of spatial patterns of correlation at a
single date. Furthermore, the option of bivariate LISA analysis facilitates temporal analysis
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of the spatial correlation, detecting if there is any association between the variable
measured at a reference time and the same variable measured in the neighbourhood at a
different time (Anselin, 2003).

Moran Index was applied in Chapter | for characterization of the spatial correlation of
state and process of change over the landscape, and for temporal analysis of spatial

associations of state and processes of change.

Wavelet transformations for analysis of remotely sensed data

Wavelet is a function that oscillates around zero, and that is localized in a finite
width interval (Meyers et al., 1993). As a tool for analysis of data, Wavelet Transform
(WT) techniques facilitate the characterization of non-stationary processes (Meyers et al.,
1993), that is, processes of change dependent on the scale of variation. The most
distinctive property of WT is the capacity to provide local information of the target series
F(x) and at a range of selected scales (Lindsay et al., 1996). Basically, a WT decomposes
an original series of data F(x) into a set of functions by convolving F(x) with a family of
wavelets, which are derived by scaling and translation of a mother or basis function G(x).
As result of the WT a number of functions are produced, one approximation (Ai) and one
detail (Di) function per scale or level. The original series can always be reconstructed from
its decomposed elements: at any level of decomposition (i) the original series F(x) equals

that level approximation Ai plus the sum of all lower level details (XDj) (j= 1...i-1).

For interpretation approximation functions inform trends of change whilst detail functions
account for high frequency related with noise (Percival et al., 2004) and are associated
with changes in averages at each given scale. A measure of variance or energy associated
with each function helps identifying which are the most relevant levels of the WT

decomposition (Lindsay et al., 1996).

Wavelet transforms have been used in the remote sensing community for image blending
(Garguet-Duport et al., 1996; Zhou et al., 1998), for detection of haze (Du et al., 2002),
spectral unmixing of hyperspectral data (Li, 2004), post-classification change detection
(Raja et al., 2013) and feature extraction (Simhadri et al., 1998; Fukuda and Hirosawa,
1999; Niedermeier et al., 2000). In relation to vegetation dynamics Sakamoto et al. (2005)
developed a method for detection of crop phenology. Percival et al. (2004) proposed the

usefulness of the multi-resolution analysis (MRA) applied to vegetation time series, with
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which Martinez and Gilabert (2009) identified seasonal and long term trend changes of
various land covers in Spain. Freitas and Shimabukuro (2008) applied MRA to spectral
fractions of MODIS bands for analysis of land cover change in Brazil, identifying the

location and time of disturbance events.

Wavelet transforms were applied in Chapter V for identification of the relationship
between vegetation spectral indices and aboveground biomass values as calculated from

field measures, and to help identification of modelled local patterns of spectral trajectories.

Dynamic time warping

Dynamic Time Warping (DTW) is a flexible algorithm for alignment of vectors (e.g.,
time series) (Giorgino, 2009) that compares and evaluates the difference between series of
values. DTW is more sensitive than the Euclidean distance to distortion in the time axis
(Ratanamahatana and Keogh, 2005) allowing certain stretch or compression defined by
user criteria, such as delays in a curve maxima or minima, and has ability to handle
sequences of different lengths (Ratanamahatana and Keogh, 2005). DTW has been applied
in a variety of fields, including word recognition (Velichko and Zagoruiko, 1970),

biometrics (Faundez-Zanuy, 2007) and gene expression profiles (Aach and Church, 2001).

The rationale supporting DTW is that given two series of data, local stretching or
compressing makes one resemble the other as much as possible, and the optimal alignment
is obtained by minimization of a dissimilarity function. DTW provides a distance measure
and the warping function which optimally deforms one of the two input series onto the
other (Giorgino, 2009). A variety of DTW algorithms differ in the input feature space, the
local distance assumed (e.g. Euclidean, Manhattan), and the presence of local and global

constraints on the alignment (e.g. monotonicity) to ensure reasonable warps.

Dynamic Time Warping was used in Chapter V to identify similarities in time series of
spectral values.
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4. RESULTS

Technical approaches were specifically designed and implemented for the first time
in this research. The performance and main outcomes of those novel techniques are
mentioned here, and the most important results are summarized. Detailed results are

described in each chapter.

CHAPTER I: Characterizing the state and processes of change in a dynamic forest
environment using hierarchical spatio-temporal segmentation.
|
e The Tasseled Cap Angle (TCA) spectral index was related with the vegetation-non
vegetation proportion in a forest ecosystem, and showed proficient to describe the
landscape state over time. TCA provides a bridge to link information from the entire
series of Landsat sensors. The temporal derivative of the TCA trajectory, the Process
Indicator (PI), managed to describe processes of forest change, including rate and

directionality, of drastic and of subtle character.

e The TCA and PI condense information from the visible and near-infrared wavelengths,
and constitute an instrument for characterizing the state and processes of change from
lengthy time series of medium spatial resolution imagery. The Lagrange polynomial
interpolation and its derivative provided a mechanism to deal with the irregular and

incomplete character of the temporal series of imagery available.

e Spatial and temporal distribution of state condition and processes of change were
characterized with the Moran Index, identifying patterns and local associations of state
and processes at the landscape level. Thirty five years of spectral trajectories
summarized by homogeneous image objects facilitated the analysis of the landscape
change.

e The area chosen to test these novel tools, located in Alberta, Canada, was in a constant
state of change, and maintained a high average proportion of vegetation to non-
vegetation during period 1973-2008. The amount of total landscape modified per decade
increased from 18% and 14% in the 1970s and 1980s respectively, to more than 30%
and 33% in the 1990s and 2000s. On average, the proportion of vegetation to non-
vegetation was increasing prior to 1981, decreasing between 1981 and 1997, and
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increasing post-1997. There was a high degree of spatial correlation amongst processes
of change, with a maximum Moran’s | of 0.79 in 1973; landscape change became more
spatially disperse and widespread after 1981. Temporal correlation of processes of
change was observed locally, with the period 1990-1995 having the most persistent

change.

CHAPTER I1: Characterizing 25 years of change in the area, distribution, and
carbon stock of Mediterranean pines in Central Spain.
|
e The location and area covered by Mediterranean pines in the Spanish Central Range
fluctuated between 1984 and 2009. The analysis of the area considered revealed a net
increase of 40%, from 1211 to 1698 square kilometres, and a variable rate of change

over the twenty five year period.

e The distribution of pine dominated areas indicates an intermittent coverage of 945 km?
actively implicated in processes of carbon exchange and a more stable carbon stock in

the 765 km? area permanently covered with pines.

e A strong relation between TCA values and density variables measured in plots
dominated by pine species, (Pearson’s correlation of 0.89), supported the rationale of
the carbon stocking processes: in the absence of disturbance or evident removals,
biomass accrual or depletions occurring naturally can be related to the carbon stock

existent.

e Spectral variations detected in a series of calibrated and normalized Landsat images
served to describe trends of change in carbon stocks, identifying sources and sinks.
Between 1984 and 2009, there has been a clear trend of activation of the carbon pools,

with a variable rate of change.

e In 2000 more than 33% of the entire area, a maximum during the 1984-2009 period,
was in a process of net carbon stocking, but there was an apparent posterior decline in
the global stocking. At the end of the analysis period, 20% of the potential pine area is

increasing its carbon stock and 40% of this area is experiencing a decrease.
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CHAPTER I1l: Modeling forest structural parameters in the Mediterranean pines of

central Spain using QuickBird-2 imagery and classification and regression tree
analysis (CART).

Models of quadratic mean diameter (QMD) created with spectral and textural variables
derived from the commercial satellite QuickBird-2 images (pixel sized 2.4 m
multispectral, 0.68 m panchromatic) were accurate (R* = 0.8; RMSE = 0.13 m) and with
an average error of 17%. Average error of basal area (BA) models was 22% (RMSE =
5.79 m? ha). When the measured number of trees per unit area (N) was categorized, as
per frequent forest management practices, CART models correctly classified 70% of the

stands, with all other stands classified in an adjacent class.

The pattern of residuals generated in models indicates that the accuracy of the attributes
estimated is expected to be better when canopy cover is more open and attribute values
are at the lower end of the range present.

The outcomes of this work indicated that attributes derived from HSR imagery captured
from space-borne platforms have capacity to inform on local structural parameters of

Mediterranean pines.

CHAPTER 1V: Forest structural diversity characterization in Mediterranean pines

of central Spain with QuickBird-2 imagery and canonical correlation analysis.

e Combining multiple aspects of tree conditions at a stand level, forest structural diversity

was characterized at the plot level (N = 1022) as a linear combination of the median of
absolute differences (MAD) of individual trees’ bole diameter, height, and crown
diameter, from the local median equivalents. Ground measured forest diversity showed
robust relations with multispectral reflectance variations in the visible and NIR
wavelengths (2.4 m spatial resolution), as well as image co-ocurrence texture metrics
from the panchromatic imagery (0.68 m spatial resolution), generated at various

window sizes.
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Canonical correlation analysis aided identifying combinations of reflectance and texture
metrics generated from circular 0.3 ha areas most highly related with forest structural
diversity (R~0.89).

Reflectance diversity was found to be more important than co-occurrence texture
features in describing forest structural diversity when forest structure was limited
(R~0.47 versus R~0.39), whereas texture was more informative to the model when the
forest structural diversity was high (R~0.88 versus R~0.63) — relating more complex

forest conditions.

While diameter variability was the most relevant parameter in building the forest
structure diversity variate, contrast and homogeneity were the image variables most

strongly correlated with forest structural diversity.

CHAPTER V: Historical forest biomass dynamics modelled with Landsat spectral

trajectories.

56

Spectral trajectories modelled from a 25-year period of Landsat images and supported
with ground data from the National Forest Inventory, successfully predicted
aboveground biomass retrospectively at specific dates (1990 and 2000).

Patterns of change found in Normalized Difference Vegetation Index values were
associated and related well to classes of past AGB. The Tasseled Cap Angle index was
found to be strongly related with forest density, although the related patterns of change
had little relation with variability in historic AGB. 25-year patterns provided more
accurate information than 15-year patterns, but a combination of both explained better
the historical AGB variability.

Binary models (CART) of biomass built at the pixel level were successfully scaled to
the object level, with 95% of objects characterized by dynamic variables (temporal

spectral trajectories) fitting rules to the final nodes of the decision tree.

Maps of biomass dynamics in the period 1990-2000 were produced with 70% accuracy,

providing a reliable source of historical spatial information.
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e In an area permanently covered with pines during period 1984-2009, the aboveground
biomass increased 18% between 1990 and 2000 with an irregular spatial distribution of
the change. On average, the AGB of these pines accumulated 0.65 t ha™ y™* of C in the
decade 1990-2000, equivalent to a 2.38 t ha™ y™* fixation of CO,.
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5. DISCUSSION

Assessment of forest aboveground biomass and its dynamics over time at the
landscape level involves evaluation of diverse and related aspects. The location, extent and
distribution of the forest area, as well as any changes over time require identification; the
forest quality, that is, its structure and diversity, has to be described; ongoing successional
processes and trends of change characterized; models derived from available data and
extended to the entire area, and maps accounting uncertainties created for informed
interpretation by users. Remote sensing technology is well suited to support these activities
and has become the primary data source for biomass estimation (Lu, 2006) in medium to
large areas. Synoptic, repetitive and consistent observations of the landscape provide
information in a range of electromagnetic wavelengths associated with forest traits at
affordable cost (Bettinger and Hayashi, 2006) to assist in the process of regional and global

forest biomass assessment and monitoring.

The work performed in this doctoral thesis covered a range of topics necessary for the
assessment of forest biomass at the landscape level. Novel methods were developed
building on the most recent research literature, which in turn contributed to the advance of
scientific knowledge on the field. Remarkably, analysis and interpretation of medium
spatial resolution temporal spectral trajectories and associated temporal derivatives for
description of landscape change and forest carbon dynamics, application of hierarchical
spectro-temporal segmentation for combined interpretation of the state and processes of
change across the landscape, and modelling patterns of spectral trajectories associated with

past biomass values are original techniques designed and applied here for the first time.

Interpretation of temporal spectral trajectories for assessment of landscape processes has
only recently become possible. Methods for analysis of spectral time series are being
developed, leveraged by the free access to high quality archived imagery and by improved
computing capacity (Wulder et al., 2012a). Pixel level processing is intuitive and
prevalent, but ecological processes rarely conform to single pixels. The extension of
processing methods developed in the temporal realm at the pixel level into patch
aggregation methods remains a conceptual difficulty (Kennedy et al., 2014). In particular,
defining objects that remain meaningful over time is a fundamental challenge (Chen et al.,

2012): a homogenous entity identified at initial stages of the period of analysis might be
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only partially changed over time, losing its initial integrity for interpretation. Methods
considering temporal linkages (Hofmann and Blaschke, 2012) are being developed to cope
with this kind of limitations in object-based analysis of change. In this context, the nested
hierarchy of spatial units (Gémez et al., 2011a) constitutes an optional framework for
analysis and interpretation of landscape dynamics. The approach is based on a double way
(top-down and bottom-up) (Hay et al., 2001) transfer of contextual information between
various spatial levels, where the larger spatial objects encompass the smaller ones and each
level is defined with a different similarity condition. The criteria and order for definition of
meaningful units in a hierarchical multi-scale segmentation is important for interpretation

and analysis (Gémez et al., 2011a).

Temporal segmentation was coined and applied for the first time by Desclée et al. (2006),
partitioning a two-date image stack into spatial objects. These objects incorporated
temporal information that facilitated identification of change or no-change by statistical
comparison of averaged spectral signatures. This temporal segmentation technique has
been enhanced by inclusion of more imagery into the stack (Bontemps et al., 2008, 2012)
and has been applied followed by other types of analysis (Conchedda et al., 2008;
Duveiller et al., 2008) for evaluation of landscape change. The hierarchical spectro-
temporal segmentation approach developed in this thesis capitalizes on the compilation of
temporal series of spectral values related with forest condition (state) and processes of
change, to define homogeneous forest units. Rather than single date spectral or textural
image values, the criteria of similarity for definition of three nested levels of spatial units
were forest state and process of change (as related by spectral vegetation indices) at
specific dates, facilitating the analysis of the landscape at various spatial scales. The
hierarchical spectro-temporal segmentation is a flexible approach that allows diverse

criteria of similarity in relation with the analysis perspective.

Inference of forest condition from traits of past spectral trajectories is a current and
promising field of research (e.g. Pflugmacher et al., 2012; Ahmed et al., 2013). A new
temporal segmentation concept has emerged (Kennedy et al., 2010) with methods designed
for application to dense time series of images (one image per year), whereby pixel-level
temporal trajectories are segmented into fragments representative of processes of forest
change. Some features of these temporal spectral fragments (e.g. onset, duration) have

demonstrated powerful for prediction of current forest structural attributes (Pflugmacher et

60



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:
a remote sensing approach

al., 2012). In areas where annual data of enough quality are not available, data modelling
contributes to overcome difficulties related with the incompleteness and irregularity of the
spectral series, and to enable interpretation of continuous change. Our approach shows that
under certain conditions, an entire spectral trajectory (of certain duration) enables the
inference of forest past attributes. Patterns of temporal spectral trajectories of medium
spatial resolution were considered as dynamic variables to model values of past biomass
(at specific dates) in a Mediterranean environment. In this area, sudden perturbations had
not been the rule during the period of analysis, and semi-natural succession could be
assumed. Past values of biomass constitute a valuable baseline, necessary as reference in

scenarios of change (Krankina et al., 2004).

Non-parametric techniques (e.g. neural networks, decision trees) improve the accuracy and
precision of more traditional methods (e.g. multivariate regression) in models of forest
structural attributes based on optical imagery, particularly when the linear relationship
between field and spectral data is relatively weak (Chirici et al., 2008). Non-parametric
methods facilitate identification of non-linear relations and inclusion of numerous
predictors into the models (Aertsen et al., 2010). Furthermore, decision trees are easily
applied and interpreted. Notwithstanding notable improvements in modelling algorithms,
optical data is a limited source to inform forest condition, constrained by the inability to
provide below canopy structural information. Although Lidar technology has lately
bloomed in forestry research and operational applications (Wulder et al., 2013), with direct
measures of the canopy height enabling derivation of other variables of interest (e.g.
volume, biomass), its use is unfeasible or economically unaffordable for large area wall-to-
wall applications. Optical data is supportive in combined modelling approaches (Ke et al.,
2010; Chen and Hay, 2011), providing complete coverage complemented by a sample
based Lidar dataset (Wulder et al., 2012b). Lidar data captured over the study area (Villa et
al., 2009), not available at the time of the study, might complement and improve some of
the results obtained in this work. For applications based on historical data, Landsat is

definitely the only reliable data source.
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5.1. Location, extent, distribution, and change of pine forests

The area and distribution of pines in the Central Range of Spain varied during the
twenty-five year period studied (1984-2009). The characteristic spectral signature shown
by pines and a multilevel object-based classification of geometrically coincident and
radiometrically calibrated historical images acquired at regular intervals, enabled reliable
identification of changes over time. Land use in the Central Range of Spain is governed by
national and regional administrations, and land use changes do not proliferate. Moreover,
pines have been managed in a sustainable manner for several decades (Bravo et al., 2010),
with extractions of light intensity and assurance of regeneration by natural methods or
plantation; clear cutting is not a local forest practice. To detect the expected small
variations of the pine dominated area, the approach applied was based on objects with
contextual information (Johansen et al., 2010) and included the Tasseled Cap Angle (TCA)
among the input features to aid in sorting stand density. Thanks to the multilevel character
of the land cover classification approach implemented (Gémez et al., 2012a), simultaneous
detection of larger stands with the required characteristics (species and density) and
smaller objects in patchy areas was possible. This technique is of particular interest to
distinguish small changes in distribution that would otherwise blur into larger objects or be
rejected as a speckle effect in a pixel-based classification. Results indicate that the pine
dominated area in the Central Range increased 40% from initial to final date; there was an
area permanently covered with pines and a large extent only temporarily occupied during

these decades.

One of the difficulties when comparing the Spanish National Forest Inventory (NFI) data
for assessment of change is the declared disparity of base cartography used in each NFI
repetition (Vallejo, 2005). With a historical series of good quality images available,
retrospective studies of change become feasible and offer increased precision. In this work
images acquired at time intervals similar to NFI repetitions (10 years) were classified, and
results are in agreement with other works based on field data comparison (i.e. indicating a
trend of increment in forest area). The spatially detailed information provided and the
capacity to readily incorporate data at intermediate dates for more detailed reports are key
strengths of methods based on remotely sensed data. The classification accuracy, assessed

with independent reference information (Congalton and Green, 1999), was > 90% in the
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present work. The accuracy of the multiple dates’ classifications relied on the exhaustive
process of radiometric normalization, since class signatures were transferred from samples

acquired in reference image.

Further discussion and deeper insights can be found in Chapter 11.

5.2. Landscape processes and spatio-temporal associations

Forest landscapes are dynamic ecosystems with different processes of change
ongoing at any given time, which affect the quality and quantity of biomass and carbon
stocks. Although a variety of remote sensing techniques have the capacity to detect stand
replacing events, the detection of subtle alterations that result in only minor spectral
changes remains a challenge (Goodwin et al., 2010) as different phenology and
illumination of images induce detection of false change. To detect and assess forest cover
condition the Tasseled Cap Angle (TCA) is a valuable tool, reporting the proportion of
vegetation to non-vegetation (occupation state) in a defined area. A temporal series of
spatially coincident and radiometrically normalized images providing TCA temporal
trajectories for individual locations (pixel or object) enables the assessment of change in
the proportion of vegetation to non-vegetation. The temporal derivative of the TCA series,
the Process Indicator (PI), informs rate and directionality of ongoing processes, providing
informative values at individual dates. These coupled indices, TCA and PI, condense
information from the visible and NIR wavelengths, and facilitate comparison of data from
all Landsat sensors, enabling the study of forest landscape change with a lengthy series of
historical satellite images dating from 1972 to present. Temporal derivatives had been used
in temporally dense series of low spatial resolution images, and were implemented in our
study for the first time on a series of Landsat images, encouraged by a long series of
images subject to robust radiometric normalization and the flexible polynomial

approximation of Lagrange (Gomez et al., 2011a).

With disrupting artefacts suppressed, the Pl would be able to account for a wide variety of
change types, providing information of slight or substantial modifications that is made
available by a temporal series of three or more normalized images: low positive values of
Pl indicate a slow increment in the occupation state due to natural growth, while low
negative values of Pl point to natural processes of decay, such as aging or disease, or

human induced modifications such as partial harvest or thinning. More notable and fast
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changes in the occupation state, like a disturbance with reduction of vegetation or a
process of vegetation emergence are indicated with high negative or positive Pl values,
respectively. The capacity to relate both positive and negative changes is a powerful aspect

of the PI, unveiling insights relating both forest (vegetation) gain and loss.

Analyzing a temporal series of images supports the assessment of trends and rates of
change that otherwise might be missed with only a bi-temporal change detection approach
(Lunetta et al., 2004). The adequate interpretation of tendencies is conditioned by the time
interval between consecutive images, and the scarcity of data for any one period may
preclude a complete understanding of the landscape change. A decadal interval might be
sufficient for preparing a summary of conditions and for planning silvicultural treatments
and wood extractions, but more frequent information is required for monitoring of forest
health and biomass. Jin and Sader (2005) recommend a period of three to five years for
interpretation of condition and change in a forest area, but the ideal number of images and
acquisition timing is site dependent (Wilson and Sader, 2002) and often restricted by image
availability. In a very dynamic forest landscape in Canada, where we tested this technique
of analysis for the first time, a quasi-quinquennial interval was considered for evaluation of
change processes (P1) and a decadal interval for summary of change in the landscape state

(TCA) obtaining sound and useful outcomes.

As long as temporal factors are considered, the interpretation of TCA and Pl may be
combined to provide insights on the processes of change that are active in a forest
landscape: varying rates of cover change could have different effects on dense or open
forests and could trigger different phenomena. A simultaneous view of occupation states
defining the landscape pattern and current processes of change could help understanding
the relation between pattern and process, a recursive question difficult to solve in
landscape ecology (Turner, 1989; Walsh et al., 2009). The combined interpretation acts to
facilitate analysis of successional patterns, and the contextual temporal information given
by the TCA enables proper interpretation of change that may be confounded with
traditional techniques (Masek et al., 2008). The TCA provides information of vegetation
proportion and the PI gives an instantaneous picture of the process of change; together with
some ecological knowledge, forest seral stages may be identified (i.e., young stand
growing, young stand with disease, mature stand in decay, recovery from disturbance, or
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other situation). It must be noted that in order to enable accurate understanding of a

trajectory of change, some knowledge of the local ecology is always required.

The spatial scale is a key parameter for assessment of ecological processes. To provide
meaningful reporting units and to investigate the spatial and temporal correlation of
occupation state and ongoing processes, we defined objects analogous to forest stands,
implementing an object oriented approach. A data driven method was implemented in the
definition of spatial units, based on homogeneity of areas at the initial and final dates of the
period under investigation (1973-2008). The transmission of significant contextual
information was assured by the establishment of a hierarchy of spatial levels: larger objects
defined by initial state (TCA) similarity and smaller objects defined by final state
similarity are connected through an intermediate spatial level defined by similar processes

of change, as depicted by the entire trajectory of PI.

Spatial and temporal correlation is a complex and scale dependent phenomenon that is
expected in natural environments. In the time period analyzed, some relations and patterns
were unveiled for occupation state and change processes in the target area. The spatial
correlation of occupation state was always positive, with objects of similar state clustering
together; change processes were positively correlated at the global spatial level, but the

tendency was towards lower association over time, creating a mosaic of ongoing processes.

Further discussion and deeper insights can be found in Chapter | and Chapter 11

5.3. Carbon stocking processes

The rationale of the combined TCA and PI, obtained from a time series of Landsat
images, to describe state and processes of change was applied in pines of the Spanish
Central Range, capitalizing on the local relation of these spectral indices with forest
variables. The TCA is strongly correlated with stand density in the study area, and its
temporal derivative, the PI, characterizes rates and directionality of change, enabling
description of processes. Biomass accrual occurs naturally in the absence of disturbance,
unless there is depletion in cases where removals are evident, and carbon equivalents
generally follow the same logic. Analyzing and interpreting the spectral dynamics of pines,

results show that the carbon stocking pools of the study area have been activated in the
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second half of the analysis period (1984-2009), when larger areas show faster rates of

carbon stocking rise and carbon stocking fall.

The TCA index is relatively new, but the relation of Greenness to Brightness components
of the TCT for characterizing forest density classes and successional stages has been used
before in various forest environments. TCA and PI, as resulting from the TCT, are scene
dependent (Crist and Cicone, 1984). Since the TCA is strongly related with forest density
in the study area, with three or more consecutive images the PI enables characterization of
relative rates of change in forest density and carbon stocks. Possible artefacts induced by
annual phenology dissimilarities are minimized by a rigorous process of image
normalization. Trends in carbon stocking were analyzed for the area potentially covered by
pine during the entire period, and rates of change were assessed, comparing outcomes from
the areas permanently or intermittently covered with pines. There was a global trend
towards activation of carbon pools, and the intermittent area showed higher variability of
processes, whereas the area of permanent pine had a near to neutral carbon pooling
character. A combined interpretation of the TCA and the PI can provide simultaneous view

of forest density and ongoing relative carbon stocking processes.

The PI continuous scale of values provides versatility in change detection capacity and
enables the characterization of rapid (high PI values) and slow (low PI1 values) rates of
change. Subtle changes in forest density can be detected, which is of particular interest in
the Mediterranean area, where the majority of forests are subject to some drought and
consequently are relatively slow growing when compared with other temperate areas
(Merlo and Croitoru, 2005). In managed forests, partial harvest or thinning operations
might be detected (low negative Pl value) and later recovery of density tracked (positive Pl
value). If the silvicultural goal is to maintain a constant value of basal area, a time series of
Pl values would remain close to zero. Historic trends of relative carbon stocking can be
assessed, and the effect of management practices monitored with detailed spatial
information. A Pl based approach is especially informative for locations characterized by

subtle, non stand-replacing disturbances.

Further discussion and deeper insights can be found in Chapter 11.
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5.4. Forest structure and structural diversity

Forest structure and variability provide information of standing biomass and carbon
content. Structural parameters such as quadratic mean diameter (QMD), basal area (BA),
and number of trees per unit area (N) are crucial data for estimation of biomass and for
carbon account. These parameters are typically measured on the ground in a limited sample
of plots, frequently restricted to managed forests. Estimation of structural parameters and
variability over large areas for comprehensive assessment of biomass can only be achieved
by modelling, and requires adequate input data. Furthermore, the necessity to account and
evaluate forest biodiversity imposed by international commitments, obliges quantification
of structural diversity (Gordillo et al., 2001) and makes appealing the exploration of

remote sensing as an optional means for this purpose (e.g. Alberdi Asensio et al., 2009).

High spatial resolution QuickBird-2 imagery (2.4 m multispectral and 0.68 m
panchromatic) was tested as source of data for modelling structural parameters (Gomez et
al., 2012b) and as potential surrogate of field measures for evaluation of forest structural
diversity (Gomez et al., 2011b). Reflectance and texture metrics were considered in both
efforts. In modelling structural parameters the results showed reasonable accuracy (R® =
0.8) and precision (estimation relative error ~17%) for the QMD model and robust models
(R > 0.7) for BA and N but with higher estimation relative error (22-31%). A strong
relationship between field-derived and image-derived diversity features was found at the
plot level when an appropriate range of variation was considered, indicating the potential
of remote sensing and image processing as an approach for characterization of forest

structural diversity over wide areas.

Although management plans were initiated in Spanish forests more than a hundred years
ago (Bernués, 2008), less than 20% of the treed forest area in Spain is currently governed
by a management plan under formal implementation (MMA, 2009). The high cost of field
inventories is frequently noted as a reason for this unfavourable proportion, limiting
surveys to forests with high potential to produce economic revenue. However, with the
increasing concern over environmental issues, current forest inventories are aimed at
informing a variety of long-term objectives including biodiversity, carbon accounting,
habitat protection, and sustainable timber production (Wulder et al., 2004b). Remote

sensing can contribute to the ability to produce timely, cost efficient inventory estimates
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via image segmentation for stand delineation (Leckie et al., 2003; Pascual et al., 2008) and
statistical modelling for assessment of attributes with acceptable precision (McRoberts and
Tomppo, 2007). If adequately trained, segmentation algorithms have the ability to semi-
automatically divide images into structurally homogeneous areas only requiring human
revision (Wulder et al., 2008e), that can be used as strata to optimize the field sampling
design (Lamonaca et al., 2008) and allow the reduction of sample collection needs. In
other words, the complete spatial coverage of remotely sensed images allows thinning the
dense network of sample plots required for an adequate assessment of varying conditions
(Maselli, 2004) typically found in Mediterranean environments. Remote sensing is not
seen to fully supplant the need for field measures, but to spatially and temporally augment
such measures, with regular and consistent data acquisitions; in particular, HSR satellite
sensors emerged a few years ago as promising data sources for forest inventory (Culvenor,
2003; Falkowski et al., 2009a) providing consistent and frequent imagery. Our studies
demonstrate that in Mediterranean pines of Spain, QuickBird-2 or similar imagery
combined with modelling techniques would be useful and affordable for assisting in the
assessment of structure and diversity of forest areas with a variety of objectives (e.g.,
recreation, carbon storage), though caution is required to deal with inherent modelling

uncertainties.

Among the strengths of HSR imagery is the high geometric fidelity (Aguilar et al., 2008)
and the possibility to identify individual elements such as trees or groups of trees. Textural
and spectral signatures provide information that is complementary (Lu et al., 2002), for
estimation of forest parameters (Lu and Batistella, 2005) and evaluation of structural
diversity. Image texture is influenced by several biophysical parameters including crown
diameter, distance between trees, tree positioning, Leaf Area Index (LAI), and tree height,
and has demonstrated to improve structural models in a variety of environments (e.g.
Waulder et al., 1998; Chubey et al., 2006) being particularly useful in complex structures
(Lu and Batistella, 2005). The importance of the window size for evaluation of texture
measures has been stressed (Ferro and Warner, 2002; Kayitakire et al., 2006) and the
variogram approach is recommended as an appropriate method to guide window size
selection (Franklin et al., 1996). A common variogram range value was found in our two
study sites (with open and closed canopy conditions), which is coincident with the median

value of crown diameter present; additional range values were found, as a function of the
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local structural diversity. The absence of shadows in the imagery allowed identification of
individual trees as dominant textural objects on the ground (Kayitakire et al., 2006).
Alternately, for monitoring programs with various dates of imagery and more than one
scene, off-nadir view angles and differing solar and atmospheric conditions should be
considered (Wulder et al., 2008f) as they may pose analysis difficulties. The limited use of
texture parameters previously indicated as due to a lack of software tools (Bruniquel-Pinel
and Gastellu-Etchegorry, 1998) is progressively being overcome, but other considerations
remain, such as viewing and illumination configurations, spectral domain, and spatial
resolution. However, image texture analysis has demonstrated utility for characterizing
habitat structure (St-Louis et al., 2006) and to identify areas of high diversity with

conservation priority.

Combining complex data of different nature and origin requires a careful choice of tools
for processing and analysis. Classification And Regression Trees (CART) models are
easily interpreted and applied, with few statistical requirements imposed that make it an
appropriate method of estimation in forest environments. Data employed in support of
modelling efforts also require conscious use to allow consideration of all sources of
uncertainty: for instance employing data from field inventories of managed stands has an
intrinsic limitation related to the dearth of measurements of small trees, possibly related to
a bias of the data considered as truth, and could lead to underestimation trends in models.
Accurate spatial location of field plots and high quality geometric processing of the
remotely sensed data are important factors to develop strong empirical models, particularly
in Mediterranean forests with complex topography (Salvador and Pons, 1998) which often
results in high spatial heterogeneity (Neumann and Starlinger, 2001). The amount of data
used for calibration has an impact on the accuracy of models, tending to increase with
increasing calibration sample size (Ferro and Warner, 2002). Mora et al. (2010) in Yukon
(Canada) demonstrated that a smaller calibration dataset (30% of the sample) could
perform adequately if there were difficulties to obtain reference information, making
CART methods even more appealing tools for inventory. With a simple structure, that is,
low number of rules and final nodes, CART constitute a practical and parsimonious tool to

classify stands for management or planning.

Diameter and basal area are the attributes most frequently used in studies of structural
diversity (Solomon and Gove, 1999; Varga et al., 2005; Motz et al., 2010) and forest
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structure per se (Goodburn and Lorimer, 1998; Rouvinen and Kuuluvainen, 2005; Rubin et
al., 2006). Field measured variables (dbh, height, and crown diameter) were included in
characterization of structure diversity for ease of measurement (McElhinny et al., 2005)
and as identified by Rio et al. (2003) among the most important aspects of forest structure.
Dbh was found to be the attribute indicating variation in forest structure at the plot level
that had the highest relevance. Height showed slight importance but is still relevant to the
model, as shown in the sensitivity analysis. Height variation is difficult to detect with
optical sensors (Mora et al., 2010), which are better suited for mapping horizontal structure
(Hyde et al., 2006). Although shadows and gap fraction are sometimes useful (Shettigara
and Sumerling, 1998; Leboeuf et al., 2007), the images used in our investigation, captured
with high elevation angles (> 60 degrees), did not include significant shadows. Including
LIDAR measured heights in the modelling process may improve the study results, as
fusion of high spatial resolution and LiDAR data is an approach yielding good results (St-
Onge et al., 2008; Ke et al., 2010; Chen and Hay, 2011).

Furthermore, the scale of analysis is an important factor when measuring or characterizing
diversity (Lahde et al., 1999), and was determined in our case by the availability of field
data. The detailed plot-level measures available made for a logical informational link
between the field and image-based data sources with both of a comparable scale. At this
scale of analysis (alpha diversity) the study showed there is potential for characterization
of structural diversity from the space. Lamonaca et al. (2008) reached similar conclusions
in a study that applied an object oriented approach for characterization of the structure
diversity in Mediterranean environments at the stand level. Pasher and King (2010)
modelled and mapped forest structural diversity in temperate hardwood forests of Quebec
(Canada) with airborne derived data, highlighting the convenience of satellite derived data

for mapping of larger areas.

Interestingly, we found that the relation between the variability in image derived variables
and forest structural diversity was stronger when considering various crown closure
conditions pooled together, that is, open and dense forest sites’ data analyzed jointly, than
when considering either individual scenario alone. In our scenarios of relatively low
structural diversity, considering close or open canopy conditions individually, the variation
in reflectance of the visible and NIR was more explicative of the structural diversity than

variations in texture measures evaluated with finer spatial resolution panchromatic data.

70



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:
a remote sensing approach

Similarly, Rocchini et al. (2010) highlight the relevance of spectral resolution versus
spatial resolution for evaluation of species diversity, supported by a series of studies in
different environments that buttress this idea.

As demonstrated in our studies, HSR imagery from optical sensors, integrated with field
measures provides a useful approach to investigate and characterize forest structure and
structural diversity in Mediterranean pine forests. The acquisition of periodic HSR
coverage of the entire Spanish territory by the Plan Nacional de Teledeteccion (PNT) poses
an unprecedented opportunity to use remote sensing for assessment of the structure and

diversity of Spanish forests that managers should strongly consider.

Further discussion and deeper insights can be found in Chapter 111 and Chapter IV

5.5. Historical biomass modelling, mapping, and dynamics

As a baseline for comparison with more recent estimates, an assessment of past
aboveground biomass (AGB) with spatial detail is of value to support monitoring and
reporting commitments. Historical forest AGB was modelled, evaluated, and mapped,
combining a set of NFI plots representative of the forest conditions present and spectral
data captured by Landsat sensors over a period of 25 years (1984-2009). In this area,
characterized by absence of major perturbations and moderate human intervention during
succession stages, dynamic variables of change (i.e. predictors combining data captured at
various dates), showed higher predictive capacity than static variables to explain the

variability of AGB retrospectively.

Spectral response related to forest structure (Cohen et al., 1995) develops progressively
with successional state (Peterson and Nilson, 1993). Under equal environmental conditions
and absent disturbance, forest stands develop similarly and are expected to show similar
temporal spectral trajectories, although slight deviations from a pattern may exist.
However, although forest attributes have been modelled accurately with spectral variables,
forest change remains elusive for direct modelling: spectral differences alone have
demonstrated inadequate for the purpose (Healey et al., 2006), and trends of spectral
trajectories do not necessarily have a direct relation with the increase or decrease of
biomass (Campbell et al., 2012).
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Previous attempts to model biomass in the Central Range of Spain with single date optical
data were limited, characterized by moderate fitting correlation (R = 0.7) and mean error of
0.78 (Gomez, 2006). Also in the same area, Vazquez de la Cueva (2008) found structural
parameters (canopy crown closure, stand height, stem density, and basal area)
insufficiently explained by the multispectral predictors selected to derive empirical models;
however, the Tasseled Cap Wetness had a stronger relation with forest density than NDVI
or other TM/ETM+ bands. Interestingly, in the present work the TCA was found
significant as static variable, while patterns associated with NDVI were relevant as process
variables. The Tasseled Cap Distance (TCD), more related to age and associated structural
complexity than other Tasseled Cap related indices in coniferous forests of Oregon, USA
(Duane et al., 2010), was also found linked to forest diversity in these Mediterranean pines,
despite a low correlation between AGB and parameters of structural diversity. In view of
local difficulties to directly model forest attributes with Landsat data, mathematical
transformations based on 2D wavelet algorithms were applied to a data-system created
with information from two rounds of field measures and eight repetitions of calibrated
spectral data. This technique helped filtering fundamental relations from environmental
and endogenous noise. Dynamic variables (i.e. variables with an inherent temporal
component) associated with patterns of change, including rate and shape, characterized
ground plots, and together with static variables served to model AGB and calculate AGB
dynamics. This approach significantly improved previous results, but no single predictor

was able to accurately classify biomass.

Frequency and regularity of measurements can be critical in providing an accurate
understanding of ecological processes. Gaps in a series of measures and irregular data
frequencies leave intervals of uncertainty in explaining continuous processes that might be
notable in ecosystems prone to rapid changes related to disturbance (Jin and Sader, 2005).
Successional patterns are more predictable in undisturbed forests than in areas with
unexpected perturbations (Schroeder et al., 2007; Vogelmann et al., 2009) and the rate of
spectral variation is typically greater in immature stands when compared to more mature
stands in similar environments. Wavelet transform analysis is particularly suited to detect
anomalies in series of data (Mallat and Hwang, 1992) and does not require periodic
sampling (Daubechies et al., 1999), conferring this approach versatility for analysis of data

in a wide range of environments. The limited number of seasonally appropriate, cloud-free
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images available at the time of this study is not necessarily indicative of the full Landsat
archive, which the USGS is currently consolidating with unique images held by
International Cooperators (Loveland and Dwyer, 2012). As of writing, the European Space
Agency has yet to provide Landsat data through the free and open access model
demonstrated by the USGS. Reportedly there are plans to share these European images
with the USGS, which when implemented, will improve the density of images available

over Spain.

The temporal configuration (i.e. the duration, starting point, and position relative to the
target date) of the dynamic variables presumably affects the capacity to predict structural
and successional forest attributes, as suggest different results in modelling AGB in 1990
and 2000. AGB 1990 corresponds with the initial stages of a trajectory to resemble one of a
series of temporal patterns, with possible deviations or delays of key features. Deviation of
forest stands from standard expectations of development is often related to site index
differences, canopy cover and density, or species characteristics, factors requiring attention
when deriving, applying, and interpreting model results. Alternatively, AGBg00
corresponds with an intermediate position of the available spectral trajectories, with which
processes are not aligned. The duration of spectral trajectory necessary to identify
significant temporal patterns in AGB is presumably variable and site dependent. Liu et al.
(2008) demonstrated that a series of images covering a longer period predicts forest age
more accurately, but in some cases a shorter time series of imagery may suffice. In our
work, a combination of 25-year and 15-year trajectories was the best option for estimating
retrospective AGB. Longer-term patterns may potentially explain the variability of AGB
more precisely, but they may also introduce irregularities outside the time lapse between
data used for calibration of the trajectory models; on the other hand, shorter-term patterns
are more explicit and less prone to variations out of the reference period. Further work is
necessary to clarify the distinctive effect that duration and relative location of spectral
trajectories produce when employed as dynamic variables. Another set of ground plot
measures (NFI4 ca. 2010) in the study area is expected to be released shortly, with
available spectral data completing the temporal series to that date and beyond. Hence the
duration, starting point, and temporal character (retrospective, prospective or inclusive) of
the trajectory will be available for further exploration.
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The uncertainty remaining in maps of AGB dynamics originates from possible imprecision
in modelling, but also from the various stages in the overall approach, including location of
plots, field measures, allometric equations, image capture, and image processing (Lu et al.,
2012). To minimize the impact of these factors, a representative sample acquired to
consistent specifications, such as NFI plots, is recommended for modelling (Duane et al.,
2010), and necessary to obtain a comprehensive domain of trajectory patterns for accurate
identification by the similarity algorithm. Confusion was identified in the final map of
change with an inclusive approach of all error sources, but from plot based model to final
maps, some aspects could be subject to individual testing, such as the equivalence of pixel

and object trajectory or the vector to raster transformation.

Our estimates of AGB dynamics between 1990 and 2000 are in agreement with
complementary regional studies. For instance, pines in the Central Range were found to be
more dense and mature in year 2000 than during the previous decade, and — as could be
expected — accounted a net increment of biomass and carbon stock. On average, our
estimation was that the AGB of these pines accumulated 0.65 t ha™ y™* of C in the decade
1990-2000. Analyzing inputs and outputs recorded by NFI measures, Herrero and Bravo
(2012) corroborated a net carbon sinking character between NFI2 and NFI3 rotations, with
AGB allocated in pines of 85 t ha™, while Montero et al. (2004) estimated an annual
increment of 0.9 t ha™ of pine biomass between 1993 and 2003.

Modelled spectral trajectories have been useful for characterizing mountain pine beetle
infestations (Goodwin et al., 2010) and for prediction of forest change (Zhu et al., 2012).
Directly linked to field derived measurements, the information provided by Landsat
spectral trajectories has proven useful to improve estimation of current biomass and other
structural attributes, particularly in ecosystems with stand replacing disturbances
(Pflugmacher et al., 2012). The identification of temporal patterns in the trajectory of
vegetation indices (i.e. dynamic variables) was found in this work to provide useful

information to model and explain historical biomass variability.

Further discussion and deeper insights can be found in Chapter V.
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CONCLUSIONS

Overall

Pine forests in the Central Range of Spain constitute a spatially and temporally
dynamic stock of biomass that plays a significant role in the regional carbon budget. For
assessment of forest above ground biomass (AGB) and carbon (C) resources, remote
sensing supports and enhances the value of the National Forest Inventory (NFI),
complementing rather than substituting essential field work. Access to archived historical
and contemporary images of high and consistent quality, provides the opportunity to build
up methods for unveiling information related to the development of forest ecosystems that
would otherwise remain incomplete or unknown.

Particular

1. The location, extent, and distribution of forest resources in central Spain can be
effectively and accurately evaluated with optical images of medium spatial
resolution obtained with sensors onboard satellite platforms. The historical Landsat
archive enables the characterization of past conditions, and the assessment of four
decades of change in forest resources. The area covered by Mediterranean pines in
the Spanish Central Range fluctuated between 1984 and 2009, with a net increase
of 40% and a variable rate of change over the period. The distribution of pine
dominated areas indicates an area of intermittent coverage actively implicated in
processes of carbon exchange and a more stable carbon stock in the area
permanently covered with pines.

2. High spatial resolution data obtained remotely and available from commercial
sources provide useful information for characterization of forest structural
parameters, and for assessment of structural diversity. Spectral variables from the
visible and near infrared spectrum range, and spatial variables in the form of image
texture support this process, showing variable relevance as a function of canopy
closure: homogeneous areas are better characterized by spectral measures while
texture variables are more relevant in structurally complex areas. In Spain, the Plan
Nacional de Observacion del Territorio (PNOT) acquires national coverage of high
spatial resolution (2.5 m) imagery annually, providing an opportunity to support the
evaluation of forest resources for planning and decision making.

3. The forest area in the Spanish Central Range considered in this work was a net C
sink over the period 1984-2009, with dynamic temporal and spatial distribution of
sources and sinks. Between 1984 and 2009, there has been a clear trend of
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activation of carbon pools, with a variable rate of change. In 2000 more than a third
(567 km?) of the entire area, a maximum in the 1984-2009 period, was in a net
process of carbon stocking.

In the area permanently covered with pines during period 1984-2009, the AGB
increased 18% between 1990 and 2000, with an irregular spatial distribution of the
change. On average, the AGB of these pines accumulated 0.65 t hay™ of C in the
decade 1990-2000, equivalent to a 2.38 t ha™ y* fixation of CO».

Temporal series of calibrated and co-registered medium spatial resolution imagery
provide information associated with forest successional processes and, when
supported with spatial statistics, enable identification of spatial and temporal
relations between patterns and processes at the landscape level. Reliable
comparisons of information along temporal series of data are based on accurate
calibration of imagery and on the application of spectral measures that provide
consistent information across sensors. Vegetation indices derived from the
Greenness and Brightness components of the Tasseled Cap Transformation, the
Tasseled Cap Angle and the Process Indicator, were shown to be good measures to
bridge information between all Landsat sensors.

Information provided by series of temporal spectral data captured remotely can be
related to patterns of forest succession. Spectral trajectories inform about stability
or change, and about trends in structural and sanitary condition. Temporal traits of
spectral trajectories showed capacity to inform on forest condition at a given point
in time. Although the processing, modelling, and interpretation are in the early
stages of development, spectral trajectories are a promising source of information
for the study of ecological processes and the assessment of retrospective and
present ecosystem attributes.

The results of this work corroborate that remote sensing supports and enhances the
value of NFI data for the assessment of forest AGB and C balances. Remote
sensing does not substitute field work, but rather highlights the importance of field
data to support modelling and spatial extension of models to larger areas of interest.

The spatial identification of sources and sinks of carbon, as well as changing trends
over time provided by the analysis of remotely sensed data, are valuable
contributions for the global issue of carbon budgeting reports, and for evaluation of
management strategies. However, remote observations are not the sole answer to
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resolving uncertainty in carbon budgets, and field measures are essential for
calibration and validation of estimates.

Image processing combined with mathematical transformations showed capacity to
unveil relationships between temporal spectral trajectories and forest properties.
Dynamic spectral features related to successional processes, such as pattern and
rate of change, had capacity to explain past and present biophysical conditions.
Dynamic variables showed to be more relevant than static variables in the
retrospective estimation of AGB in Mediterranean pines of central Spain, in order
to establish a historical baseline that would enable reporting of change.

The applications demonstrated in this work show that for assistance in the
fulfilment of the Kyoto Protocol commitments, remote sensing can effectively help
assessing land cover and change; establishing a biomass and carbon baseline in
1990, and estimating carbon stocks and changes with acceptable uncertainty; and
identifying the spatial distribution of successional processes.

7
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CONCLUSIONES

Generales

Los pinares del Sistema Central espafiol constituyen un almacén permanente y
dinamico de biomasa y juegan un papel relevante en el balance regional de emision y
fijacion de carbono (C). La teledeteccion es una herramienta de apoyo que complementa el
valor del Inventario Forestal Nacional (IFN) en la evaluacion de las existencias de biomasa
forestal y los sumideros de carbono asociados, pero no sustituye el trabajo de campo. El
acceso a los archivos de imagenes contemporaneas e historicas de calidad coherente,
ofrece la oportunidad de utilizar cuantiosos datos y desarrollar métodos que ayuden a
obtener informacion relacionada con el desarrollo de los ecosistemas forestales, de otra
forma incompleta o inexistente.

Particulares

1. La localizacién, extension, y distribucion de los recursos forestales en el centro de
Espafia se puede evaluar de forma precisa y efectiva mediante imagenes Opticas de
resolucion espacial media obtenidas mediante sensores remotos en Orbita espacial.
El archivo historico de Landsat permite caracterizar situaciones pasadas y evaluar
més de cuarenta afios de evolucion de los recursos forestales. La extension de los
pinares mediterraneos del Sistema Central espafiol fluctud entre 1984 y 2009, con
un incremento neto del 40% y una tasa de cambio variable a lo largo de este
tiempo. Al estudiar la distribucion del area con predominio de pinar se observa una
zona de cobertura permanente, con reserva estable de carbono, ademés de otras
zonas con cobertura intermitente y responsables principales de los flujos de
carbono.

2. Imagenes de alta resolucion espacial proporcionan informacién atil para la
caracterizacion de la estructura forestal y la evaluacion de su diversidad estructural.
Los valores espectrales de la zona visible e infrarroja del espectro
electromagnético, y las variables espaciales en forma de textura local de la imagen,
tienen distinta relevancia en esta caracterizacion, en funcion del tipo de cobertura:
zonas homogéneas son caracterizadas mejor mediante variables espectrales,
mientras las variables de textura aportan mayor informacion en regiones de
estructura compleja. Espafia, a través del Plan Nacional de Observacion del
Territorio (PNOT) adquiriere una cobertura anual de imégenes de alta resolucion
espacial (2.5 m) sobre todo el territorio nacional. La existencia de estos datos
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supone un apoyo para la evaluacion periodica de existencias forestales, factor
critico en procesos de decision y planificacion territorial.

La superficie forestal objeto de este trabajo constituyd un sumidero neto de C
durante el periodo 1984-2009. Localmente, las fuentes y sumideros de C alternaron
su funcion dominante, ofreciendo en conjunto una distribucion espacial y temporal
dinamica. Entre 1984 y 2009 tuvo lugar una tendencia generalizada de activacion
de los flujos de C, con tasa de cambio variable en funcion del momento y
localizacion. El afio 2000 registr6 el maximo de superficie actuando como
sumidero, con mas de un tercio (567 km?) del area considerada fijando C de forma
neta.

La zona con cobertura permanente de pinar durante el periodo 1984-20009,
incrementd en un 18% su biomasa aérea total entre 1990 y 2000. La distribucién
espacial de los cambios de biomasa se produjo de forma irregular. Como promedio,
la biomasa aérea de estos pinares acumulé 0.65 t ha™ a™* de C en el decenio 1990-
2000, equivalente a la fijacion de 2.38 t ha™ a™* de CO-,

Series temporales de imagenes de media resolucion espacial proporcionan
informacién asociada a procesos de sucesion forestal. Mediante técnicas
estadisticas, los datos espectrales permiten identificar la distribucion, y las
relaciones espaciales y temporales entre los procesos que ocurren a escala de
paisaje, identificando patrones espaciales y tendencias temporales. La fiabilidad de
esta informacion, que se obtiene por comparacion de datos captados a lo largo del
tiempo, se basa en técnicas rigurosas de calibrado de iméagenes y en la utilizacion
de medidas espectrales coherentes entre sensores. Los indices de vegetacion
derivados de las componentes Verdor y Brillo de la Transformacion Tasseled Cap,
TCA y PI, han demostrado ser buenas medidas para actuar de vinculo y enlace
entre sensores de Landsat, y por tanto son indicadores fiables de la evolucién de
variables biofisicas que correlacionan con ellos.

La informacién proporcionada por secuencias temporales de datos espectrales es
indicativa de procesos de estabilidad o cambio en las masas forestales. Esos
procesos estan ligados a estados evolutivos y a tendencias en el estado sanitario o
estructural. Asi mismo, como portadoras de informacion temporal, representan
modelos de evolucion que se pueden asociar a caracteristicas biofisicas en
momentos puntuales. Aungue el procesamiento e interpretacion de las trayectorias
espectrales de media resolucion espacial esta en fases iniciales de desarrollo, este
campo promete ser una fuente valiosa de informacion para el estudio de procesos
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ecologicos y para la evaluacion retrospectiva (y actual) de caracteristicas de los
ecosistemas.

Los resultados de este trabajo corroboran la utilidad de la teledeteccién como
respaldo del IFN, realzando su utilidad para la evaluacion de la biomasa forestal
aérea y los balances de carbono. La teledeteccion no es sustitutiva del trabajo de
campo, sino que pone de relevancia la importancia que este tiene como base de
informacién y validacion de los modelos estadisticos, y en la aplicacion espacial de
los modelos a toda el area de interés.

La identificacion espacial de las fuentes y sumideros de C, asi como de los cambios
de tendencia en la fijacion neta a lo largo del tiempo que proporciona el analisis de
datos de teledeteccion, son una valiosa contribucion para la generacion de informes
de emisiones de carbono, y para la evaluacion de estrategias de planificacion
territorial. Los datos de satélite no son por si mismos una soluciéon que permita
despejar la incertidumbre asociada a los ciclos de carbono. Los datos de campo son
esenciales para calibrar y validar las estimaciones de biomasa y carbono que se
derivan de observaciones remotas.

Mediante procesamiento de iméagenes y transformaciones matematicas de datos se
descubrieron relaciones subyacentes entre las trayectorias espectrales y ciertas
propiedades forestales. Variables dindmicas derivadas de series espectro-
temporales y asociadas a procesos de sucesion forestal, tales como el patron y la
tasa de cambio, han demostrado capacidad predictiva en modelos de parametros
forestales. Las variables dindmicas fueron mas efectivas que las estaticas en la
estimacion retrospectiva de biomasa aérea en pinares mediterraneos del Sistema
Central espafiol, estableciendo una referencia histdrica que permite hacer
comparaciones con valores posteriores.

Las aplicaciones demostradas en este trabajo demuestran que la teledeteccion es
una herramienta de ayuda al cumplimiento de los compromisos del Protocolo de
Kioto. En concreto es Util para la evaluacion de la cobertura del suelo, asi como de
su conversion; para el establecimiento de una referencia en las existencias de
biomasa y carbono con grado de incertidumbre aceptable; y para la identificacion
espacial de procesos de sucesion forestal.
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RESUMEN

Caracterizacién del estado y procesos de cambio en zona forestal dinamica mediante
segmentacion espacio-temporal

Los cambios de naturaleza discreta en masas forestales, como abundancia, distribucién y
productividad, se detectan facilmente mediante técnicas de teledeteccion. Sin embargo las
transformaciones de naturaleza continua, como crecimiento y procesos de sucesion, son
mas dificiles de evaluar. En este trabajo se exploré la capacidad de las trayectorias
espectrales generadas con una serie temporal de 35 afios (1973-2008) de imagenes Landsat
para caracterizar los procesos de cambio en una zona forestal muy dinamica del noroeste
de Alberta, Canada. Para caracterizar los procesos de cambio espacialmente difusos y
temporalmente imprecisos se aplico un método de segmentacion de imagenes espacio-
temporal y jerarquico. Tras un proceso de calibrado y normalizacion radiométrica de las
imagenes Landsat, las componentes Verdor y Brillo de la Transformacion Tasseled Cap
(TTC) se combinaron formando el indice Tasseled Cap Angle (TCA). TCA es una medida
de la proporcion de vegetacién a no vegetacion (estado de ocupacion), y su derivada
temporal, el Indicador de Procesos (PI) es una medida de cambio en esa proporcién a lo
largo del tiempo. Ambos indices condensan en un unico valor informacion de las
longitudes de onda del visible e infrarrojo cercano, y facilitan el analisis de series
temporales de paisaje forestal, pudiendo incorporar informacion de todos los sensores
Landsat.

Combinando la secuencia original de TCA y su derivada temporal, se realizo el proceso de
segmentacion de imagen en tres niveles jerarquicos. Los niveles superior e inferior definen
objetos homogéneos al inicio y fin del periodo de estudio respectivamente, mientras el
nivel intermedio identifica trayectorias espectrales similares. Se describio la evolucion a lo
largo del tiempo de los valores TCA y PI. Las asociaciones espaciales y temporales de los
procesos de cambio se evaluaron estadisticamente con el indice | de Moran.

El paisaje forestal experimentd multitud de transformaciones de tipo variado: desde
perturbaciones drasticas con sustitucion completa de la cubierta forestal a crecimiento
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progresivo y procesos de sucesion. Los resultados indican que la region esta en continua
transformacion y mantiene una proporcién elevada de vegetacion a no vegetacion. La
proporcidn total de paisaje modificado en cada decenio analizado aumentd de 18% y 14%
en los afios 1970s y 1980s respectivamente, a valores superiores al 30% y 33% en los afios
1990s y 2000s. En promedio, la proporcion de vegetacion a no vegetacion aumentaba con
anterioridad a 1981, disminuia entre 1981 y 1997, y se incrementaba de nuevo tras 1997.
Se detectd un alto nivel de autocorrelacion espacial en los procesos de cambio, con valores
méaximos del indice | de Moran 0.79 en 1973. A partir de 1981 las transformaciones del
paisaje se hicieron mas dispersas. También se observo correlacion temporal localizada de
los procesos de cambio, siendo el periodo 1990-1995 el de cambios mas persistentes.

Palabras clave: Landsat, trayectoria espectral, Tasseled Cap Angle, TCA, Indicador de

Procesos, PI, bosque, cambio, segmentacion jerarquica espacio-temporal, seguimiento,
modelo de paisaje, procesos del paisaje
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Discrete changes in forest abundance, distribution, and productivity are readily detectable using a number of
remotely sensed data sources; however, continuous changes such as growth and succession processes are
more difficult to monitor. In this research we explore the potential of spectral trajectories generated from a
35-year (1973-2008) time-series of Landsat imagery to characterize change processes in a dynamic forest
environment in northwestern Alberta, Canada. We propose a method of hierarchical spatio-temporal
segmentation that enables the characterization of change processes that are spatially diffuse and temporally
imprecise. Calibrated imagery from Landsat sensors are radiometrically normalized and two metrics derived
from the Tasseled Cap Transformation components, greenness and brightness, are used to generate the
Tasseled Cap Angle (TCA). The TCA is a measure of the proportion of vegetation to non-vegetation (the
occupation state), and its derivative, the Process Indicator (PI), is a measure of change in this proportion
through time. These indices condense information from the visible and near-infrared wavelengths, and
facilitate lengthy time series analysis of forest landscape change using data from all Landsat sensors.
A combination of the original TCA and its derivative sequence are input to a three level hierarchical
segmentation process with the highest and lowest levels defining homogeneous objects at the initial and final
date, and the intermediate level identifying trajectories with similar change processes. The development
through time of the TCA and PI are described, and the spatial and temporal associations of processes are
statistically assessed using the Moran's Index.
A full range of change types were identified on the landscape, from stand replacing disturbances to more
subtle growth and succession processes. Results indicate that the study area is in a constant state of change,
and maintains a high average proportion of vegetation to non-vegetation. The amount of total landscape
modified per decade increased from 18% and 14% in the 1970s and 1980s respectively, to more than 30% and
33% in the 1990s and 2000s. On average, the proportion of vegetation to non-vegetation was increasing prior
to 1981, decreasing between 1981 and 1997, and increasing post-1997. There was a high degree of spatial
autocorrelation amongst change processes, with a maximum Moran's [ of 0.79 in 1973; landscape change
became more spatially disperse and widespread after 1981. Temporal correlation of change processes was
observed locally, with the period 1990-1995 having the most persistent change.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.

1. Introduction

such as fire or harvest, and are more steadily modified when subtle
growth, natural succession, or decay occur.

Forests are naturally dynamic ecosystems in continuous change
with a key role in water (Van Dijk and Bruijnzeel, 2001) and carbon
cycles (Muukkonen & Heiskanen, 2007), and in wildlife habitat
quality (Nadkarni et al., 2004). Ecological benefits provided by forests
depend on the stage of development, health condition, spatial
distribution, and structural characteristics (Numa et al., 2009; Spies
et al, 1994; Wulder et al., 2008a). The ecological and economic
services delivered by forests are markedly altered after disturbances

* Corresponding author. Tel.: +1 250 363 6090; fax: +1 250 363 0775.
E-mail address: mike.wulder@nrcan.gc.ca (M.A. Wulder).

Insights into patterns, rates, and trends of landscape changes are
necessary to understand forest dynamics, enable preservation, and
assess the effectiveness of management approaches (Hayes & Cohen,
2007; Huang et al., 2009a). Remotely sensed data have become a
major information source for change detection (Lu et al., 2004) and
are possibly the only feasible and cost-effective option for extensive
areas (Lunetta et al., 2004). The Landsat series of satellites, the first of
which was launched in 1972, provides a lengthy temporal sequence of
images, and is unique among Earth observing satellites with imagery
systematically collected to ensure global coverage, processed to an
end-user applications ready state, and available via the Internet
without cost. The spatial resolution (30 m), revisit cycle (16 days),

0034-4257/$ - see front matter. Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2011.02.025
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and spatial extent (185 kmx 185 km) of Landsat data are well suited
to characterizing forest change (Wulder et al., 2008b).

Our goal is to explore the capacity of spectral trajectories
generated from a 35-year time-series of Landsat images for explora-
tion and analysis of spatially and temporally diffuse change in a
dynamic forest environment. For this purpose we develop a
hierarchical spatio-temporal segmentation method that combines
information at various spatial and temporal resolutions; the persis-
tence of relations between objects at the multilevel scale is assured by
its hierarchical character. Specific objectives of this study are:

1. To characterize forest landscape change using an index generated
from the Tasseled Cap Transformation components Greenness and
Brightness, as well as the first derivative of this index. This index
characterizes the proportion of vegetation to non-vegetation in a
pixel and uses spectral channels that enable bridging across all
Landsat sensors.

2. To incorporate both spatial and temporal properties into a
hierarchical segmentation process to capture landscape-level
change and incorporate spatial information regarding these change
units through time.

3. To analyze the spatial and temporal correlations of changes through
time over an area with changing amounts, rates, and related spatial
distributions of disturbance in a study area important from both
ecological (habitat) and economic perspectives.

2. Background
2.1. Disturbances and subtle change

Abundant research effort has focused on the assessment of
disturbances in large area monitoring programs. Stand replacing
disturbances, such as clearcuts and wildfires that drastically modify
the landscape and require a lengthy period of time to recover their
initial state, can be detected with confidence using remotely sensed
data (Coops et al., 2006), particularly Landsat data. For example, Cohen
et al. (1998) applied and compared various methods for mapping
clearcuts in Western Oregon, achieving results with greater than 90%
accuracy. In the same region, Cohen et al. (2002) characterized the rate
and distribution of stand replacing disturbance over a 23-year period
with MSS and TM images, finding public land more affected by natural
disturbance, while private land was more intensely harvested. Healey
et al. (2005) compared the ability of four Tasseled Cap (TC) structures
in detecting harvest disturbance; a newly developed Disturbance
Index (DI) was the best performer in areas with slower succession
rates. The DI was later used by Masek et al. (2008) to compile a 10-year
record of forest disturbances in North America, reporting omission
errors of 30-60% and commission errors of 20-30%.

Less studied is the characterization of subtle, slow, continuous
change related to partial harvest and natural regeneration or decay
processes, which have less obvious effects on the landscape (Coops et
al., 2006). Forest successional stages have been described (Cohen et
al.,, 1995; Helmer et al., 2000; Jakubauskas, 1996), but studying the
transitions between development stages is less common: Peterson
and Nilson (1993) described trajectories of reflectance change in
secondary succession of mono-specific birch and pine stands in
Estonia; Schroeder et al. (2007) characterized patterns of recovery
post-harvest in Western Oregon, and Vogelmann et al. (2009)
characterized forest decline and mortality caused by persistent insect
defoliation from 1988 to 2006 in New Mexico.

2.2. Time series of images and spectral trajectory
Two images acquired at different dates may be sufficient for

identifying landscape change (Coppin & Bauer, 1996); however, the
use of more than two image dates is recognized as a superior

technique when the objective is to characterize the rate of change (as
opposed to just the presence or absence of change) (Goodwin et al.,
2008). A time series of remotely sensed images enables the
identification of a greater range of processes (Gillanders et al., 2008)
as well as the characterization of temporal patterns. Dense time-series
are particularly useful for detecting change in very dynamic forests
with a fast recovery rate (Huang et al., 2009b; Lunetta et al., 2004).
Interpretation of a sequence of images, or temporal trajectory, makes
it possible to characterize vegetation dynamics on different temporal
scales (Bontemps et al., 2008). With the extensive Landsat image
archive of the USGS being made freely available to the public
(Woodcock et al., 2008) it has become possible to obtain a
considerable number of images for long-term monitoring of ecosys-
tems and for trajectory analysis approaches (Linke et al., 2009).

2.3. Object analysis approach for change detection

Object-based analysis has increased in the Earth Observation
community in the last decade (Blaschke, 2010; Hay et al., 2005) as an
alternative to pixel based analysis. Among the strengths of object-
based analysis for change detection are the reduction of misregistra-
tion and shadowing effects (Johansen et al., 2010) and the inclusion of
contextual information.

The spatial resolution of the imagery selected is crucial in the
definition of objects analogous to forest stands. Landsat medium
spatial resolution is well suited to the detection of change in forest
environments at the stand level. The study of change with an object
approach, and particularly the definition of objects can be done in a
number of ways: if using various images, the segments can first be
defined on a reference image and compared later in other dates (Hall
& Hay, 2003); alternatively, objects could be defined by a pre-existing
GIS layer as in Walter (2004); a third approach is the simultaneous
segmentation of various dates of images (Bontemps et al., 2008;
Desclée et al., 2006).

3. Methods
3.1. Study area

The study area covers 13,818 km? of the Foothills boreal forest
region (Rowe, 1972) on the eastern side of the Rocky Mountains,
Alberta, Canada (Fig. 1). It is a transition zone between boreal and
sub-alpine forest regions with lodgepole pine (Pinus contorta Dougl.ex
Loudon), trembling aspen (Populus tremuloides Michx), and balsam
poplar (Populus balsamifera L.) as prevalent pioneer tree species
appearing after catastrophic events. Other species normally found in
older stands are white spruce (Picea glauca (Moench) Voss) and black
spruce (Picea mariana (Mill.) BSP) and less frequently white birch
(Betula papyrifera Marsh.), tamarack (Larix laricina (Du Roi) K. Kock),
balsam fir (Abies balsamea (L.)) and alpine fir (Abies lasiocarpa (Hook.)
Nutt.). Elevation ranges from 600 to 2500 m.

The area is rich in live and fossilized natural resources (Alberta
Sustainable Resource Development, 2009) and provides important
habitat for grizzly bear (Ursus arctos L.) (Nielsen et al., 2004) and
woodland caribou (Rangifer tarandus caribou Gmelin). Industrial
extraction activities such as oil and gas, mining, and forest harvesting
have been ongoing since the 1950s (Andison, 1998), with an
increased intensity in recent decades (Schneider et al., 2003).

3.2. Data

We used a time sequence of fourteen images (Table 1) acquired
between 1973 and 2008 by the Landsat series of satellites with various
sensors: the Multi-Spectral Scanner (MSS), the Thematic Mapper
(TM), and the Enhanced Thematic Mapper Plus (ETM+). All images
were selected within the summer and early fall seasons for
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WRS2: 049/026

Fig. 1. Location of the study area. The inset displays a combination of Tasseled Cap Angle (TCA) layers of years 2001 (red), 2002 (green), 2004 (blue); areas of clouds and altitude over

1700 m are masked out.

consistency in forest phenological condition (Wulder et al., 2004).
Images were obtained from the United States Geological Survey
(USGS), the Global Land Cover Facility (GLCF), and the Canada Centre
for Remote Sensing (CCRS) archives.

3.3. Image preprocessing

Preprocessing of a sequence of images for change detection has
two critical stages: spatial registration to assure positional coinci-
dence of features, and radiometric calibration and normalization to
ensure that changes in spectral reflectance correspond to actual
change events. Failure to correctly perform either of these two could
trigger significant errors in the analysis and lead to misinterpretation
of change events (Lu et al., 2004).

All but two of the images were acquired in an orthocorrected
format. The two images received in raw format were geometrically
corrected using Toutin's model (PCI Geomatica) and registered to the
1995 TM base image using 250 Ground Control Points (GCPs) and the
thin plate spline algorithm. All of the MSS images were resampled
from their original 57 m spatial resolution to 30 m. Finally, an image-

Table 1

Landsat time-series of imagery used in the study.
Landsat/sensor Path/row Date Sun elevation Source

(dd/mm/yyyy) (degrees)

1/MSS 50/22 16/09/1973 36.21 GLCF
2/MSS 50/22 27/09/1976 30.40 CCRS
2/MSS 50/22 25/07/1978 49.00 GLCF
2/MSS 50/22 14/08/1981 46.10 CCRS
5/TM 46/22 06/09/1990 37.38 USGS
5/TM 46/22 23/07/1991 50.25 USGS
5/TM 46/22 04/09/1995 36.99 USGS
5/TM 46/22 25/09/1997 32.21 CCRS
7/ETM+ 46/22 25/09/2000 32.82 USGS
7/ETM+ 46/22 28/09/2001 31.70 USGS
7/ETM+ 46/22 15/09/2002 36.48 USGS
5/TM 46/22 11/08/2004 47.31 CCRS
5/TM 46/22 30/06/2006 55.86 USGS
5/TM 46/22 06/08/2008 48.80 USGS

CCRS: Canadian Centre for Remote Sensing.
GLCF: Global Land Cover Facility.
USGS: United States Geological Survey.

to-image registration was used to co-register all of the images to the
base image with a RMS error of less than 30 m (1 pixel).

Robust radiometric preprocessing is essential for monitoring
landscape change (Lu et al, 2004) and for linking images with
biophysical phenomena (Gong & Xu, 2003); it is particularly
challenging if images from various sensors are included in the analysis
(Roder et al., 2005). We used the approach of Han et al. (2007) to
convert digital numbers to Top of Atmosphere (TOA) radiance with
coefficients recommended by Chander et al. (2009). Greenness and
Brightness components of the Tasseled Cap Transformation (TCT)
(Crist & Cicone, 1984; Huang et al., 2002; Kauth & Thomas, 1976) were
calculated and normalized to the reference image Greenness and
Brightness, as in Powell et al. (2008). For relative radiometric
normalization we applied IR-MAD (Iteratively Reweighted Multivar-
iate Alteration Detection) (Canty et al., 2004) as recommended by
Schroeder et al. (2006) for temporal spectral trajectories. This
automatic process is based on the invariance property of MAD
transformation and performs an orthogonal linear regression (Canty &
Nielsen, 2008) of the target image pixels on to the reference image
pixels; the process is invariant to linear transformations (Canty et al.,
2004; Nielsen et al., 1998). The reference was a Landsat-5 TM image
free of clouds and haze, dated 1995, in the middle of the series. The
process of normalization reduces the amount of artifacts due to
illumination or atmospheric variations, enabling more reliable
detection of true change (Song et al., 2001).

3.4. Tasseled Cap Angle (TCA)

The Tasseled Cap Transformation (TCT) (Crist, 1985; Crist &
Cicone, 1984; Huang et al., 2002; Kauth & Thomas, 1976) is a linear
transform of the original Landsat spectral space that has been broadly
employed in forestry applications (Cohen & Goward, 2004). It has
served to characterize forest structure (Cohen et al., 2002; Hansen et
al., 2001), condition (Healey et al., 2006; Wulder et al., 2006),
successional state (Helmer et al., 2000; Peterson & Nilson, 1993), and
also for change detection (Jin & Sader, 2005; Lea et al., 2004). The first
two orthogonal components of the TCT, Brightness (B) and Greenness
(G) define the vegetation plane (Crist & Cicone, 1984) (Fig. 2a) and are
a practical bridge between MSS and TM-ETM+ imagery (Powell et al.,
2008).

The study of forest stands' spectral behavior in the vegetation plane
provides insights into forest cover densities (Cohen et al., 1995; 1998)
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and forest development stages (Peterson & Nilson, 1993; Price &
Jakubauskas, 1998). The B component is by definition a positive value,
whereas G depends on the contrast between the visible and near-
infrared bands (Table 2), with exposed soil having negative values
(Gillanders et al., 2008) and vegetated areas having positive values.

The Tasseled Cap Angle (TCA), defined as the angle formed by G
and B in the vegetation plane (Eq. 1), condenses in a single value the
information of the relation G/B (Fig. 2a) and represents essentially the
proportion of vegetation to non-vegetation. A range of studies in
coniferous forests have confirmed higher values of G and lower values
of B in dense cover classes when compared to open stands or clearcuts
(Cohen et al., 1995; Price & Jakubauskas, 1998). Accordingly, dense
forest stands show higher TCA values than more open stands or bare
soil (Fig. 2a). We evaluated the TCA in the study area, assessing values
over a set of 5000 stand replacement disturbance events dated
between 1972 and 2008, finding TCA in recent clearcuts significantly
lower than in any other cover stage of the forest and a clear increasing
tendency with time-since-disturbance (Fig. 2b).
TCA = arctan (G/B) (1)

The range of values of the TCA is scene dependent, as are the TCT
components (Crist & Cicone, 1984). An absolute assessment of forest
density with the TCA would require local calibration with field data.
On the contrary, evaluating relative changes of TCA does not require
calibration: increments or reductions in the proportion of vegetation
to non vegetation results in a concomitant change of TCA values.

The TCA images for each date were combined into a single, multi-
band image file, hereafter called TCA image for further analysis. To
describe the forest landscape cover with the TCA we define the
occupation state characterizing categories of proportion of vegetation
to non-vegetation: areas more densely occupied by vegetation have
higher values of TCA than areas with less dense vegetation; the bare
soil situation, with zero proportion of vegetation is illustrated with
negative values of the TCA.

3.5. Image masks

To reduce the detection of false changes, we excluded areas with
elevations greater than 1700 m, water bodies, clouds and cloud
shadows prior to analysis. High elevation areas were identified with a
digital elevation model, water bodies were identified with 1:50,000
National Hydrology Network data; clouds and cloud shadows were

a
Greenness
TCA
Vegetation plane
”*xr’ TCA
Brightness
TCA

B Higher proportion of vegetation-non vegetation
@ Lower proportion of vegetation-non vegetation
# Bare soil
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Table 2

Coefficients used for calculation of TCT indices.
Sensor Component R G B NIR  SWIR1 SWIR2
MSS  Brightness 0433 0.632 0.586 0.264 N/A N/A
Greenness —0.290 —0.562 0.600 0.491 N/A N/A
TM Brightness 03037  0.2793 04343 0.5585 0.5082  0.1863
Greenness —0.2848 —0.2435 —0.5436 0.7243  0.0840 —0.1800
ETM+ Brightness  0.3561 03972  0.3904 0.6966 0.2286  0.1596
Greenness —0.3344 —0.3544 —0.4556 0.6966 —0.0242 —0.2630

identified using a semi-automatic approach for each image. The area
remaining for analysis, after all masks were applied to the TCA image,
was approximately 12,740 km?.

3.6. Process indicator (PI): the TCA derivative

The spectral profile of the TCA image at each pixel characterizes the
evolution or trajectory of its TCA value over time. Each pixel trajectory
was approximated with a Lagrange second order polynomial
(Appendix A), which enables interpolation with uneven intervals
among occurrences.

The interpolated TCA image was derived with respect to time
(years), producing a new cube with the same number of bands as the
TCA image, hereafter called Process Indicator (PI) image, where each
pixel's spectral profile is the derivative of its corresponding input
image's profile (Fig. 3). Values of this new image represent the rate of
TCA change over time, and unlike image difference methods, this
technique assigns a value to each input date. The PI profile is the
derivative of a smoothed curve, and is appropriate for detecting
continuous subtle changes such as natural succession and decay, and
progressive decadence due to disease or insect attack, which are
difficult to assess with traditional change detection techniques (Coops
et al., 2006).

3.7. Hierarchical spatio-temporal segmentation

Image segmentation is the partitioning of an image into homoge-
neous spatial units (Devereux et al., 2004) based on one or more
attributes to facilitate visualization and analysis of spatially correlated
properties; basic subdivisions contain information about raster
attributes, shape, and position. Hierarchical spatio-temporal segmenta-
tion is a technique for exploration and analysis of changing properties

b
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Fig. 2. (a) Tasseled Cap Transformation Brightness and Greenness components form the vegetation plane (Crist & Cicone, 1984). The TCA is the arc tangent formed by Greenness and
Brightness. Forest stands with a higher proportion of vegetation-non vegetation show higher values of TCA, bare soil shows negative TCA. (b) TCA average values of disturbed areas

in the study area in the last 35 years; recent clearcuts show negative TCA value.
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Fig. 3. TCA (1973-2008) and PI (1976-2006) trajectories of a L1 object. The Pl is calculated as the derivative of the TCA curve (interpolated with a second order Lagrange polynomial).

PI values correspond to each date.

of the landscape at various spatial and temporal scales: an image is
divided in a hierarchy of levels, each one inheriting or passing on the
boundaries of its objects to the subsequent level. The attributes of the
spatial units, e.g. the spectral trajectory can be analyzed. The
underlying assumption is that forest change processes are spatially
and temporally correlated at certain scales.

There is no unique and singular solution to how an image
partitions the landscape (Burnett & Blaschke, 2003) for ecological
analysis and no single spatial scale is optimal for characterizing the
multiple options in which the image can be divided (Hay et al., 2005).
Attempting to interpret processes with a multi-scale segmentation
requires the definition of semantic rules to relate lower level
landscape units to higher levels of organization (Burnett & Blaschke,
2003). Three is the minimum number of levels recommended for
landscape analysis (O'Neill et al., 1986).

The current landscape in the study area is highly fragmented as a
result of natural factors and human activities (Andison, 1998), and
spatial units at the same occupation state are smaller than a few
decades ago. We define two levels of segmentation based on initial
(1973) and final (2008) TCA values (L3 and L1 respectively). The
smaller objects in L1 made up larger homogeneous spatial units at the
beginning of the period considered; each of them has evolved

following a different process path. An intermediate process level (L2)
defined by the PI trajectory (change process) links both state levels
(Fig. 4).

We introduce a mixed top-down/bottom-up approach whereby
information at higher levels of the segmentation hierarchy (top:
larger objects) is used to derive information at lower levels of the
segmentation hierarchy (bottom: smaller objects) and vice versa (Hay
et al, 2001). The order followed in the definition of objects in a
hierarchical multi-scale segmentation of the landscape incorporating
state and processes is important for interpretation and analysis. At the
state levels L1 and L3, intra-object TCA variability is smaller that inter-
object variability. The intermediate process level L2 acts as a bridge
between the actual conditions (2008 TCA) and the initial state (1973
TCA), its segments have had a similar changing path (PI trajectory)
during the study period (1973-2008). Adjacent objects in level 2
followed a significantly different evolution path, and there is more
variability in the process path between objects than within objects
(Definiens, 2005).

The process of segmentation is performed with Definiens
Cognition Network Technology® (Baatz & Schdpe, 2000; Definiens,
2005). L1 is defined with scale parameter 10, color-shape 0.7-0.3,
smoothness—compactness 0.5-0.5 (Wulder & Seemann, 2003); the
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Fig. 4. Hierarchical spatio-temporal segmentation process. Bottom level 1 of
homogeneous actual occupation state objects serves as base for the creation of top
level 3 representing homogeneous occupation state objects at initial date. Objects of the
intermediate process level are limited in size and boundaries by both occupation state
levels.

scale is 20 for L2 and 50 for L3. In defining the process level all PI layers
are equally weighted.

3.8. Spatio-temporal correlation of forest occupation states and forest
change processes

Once objects were defined, we sought to describe how occupation
states and change processes were arranged across the study area
within single years, and whether the condition of an object in one year
was related to its condition and its neighborhoods' in a subsequent
year. Thus, we required spatial statistics that could be calculated both
at a local scale and a global scale, and could include both intra- and
inter-year effects. We employed the Moran's Index (Moran, 1948)
statistic (Appendix B) implemented in GeoDa™ which is a free
software dedicated to spatial data analysis (Anselin et al., 2006).

Moran's I can be interpreted as a spatially weighted form of
Pearson's correlation coefficient (Goovaerts et al., 2005): positive and
negative z-values point to positive and negative spatial correlation of
objects’ values respectively, and a zero value indicates there is no
spatial association in the dataset. The Moran scatterplot facilitates
visual exploration and interpretation of the global value of Moran's I
(Anselin, 1993) (Fig. 5): the distribution of the cloud of points
(observation versus spatial lag (neighbor's weighted averaged
values)) reflects the pattern of spatial association, and the slope of
the regression line is an estimation of the global Moran's I.

For explicitly spatial description, local associations (clusters) and
outliers can be identified and analyzed with a Local Indicator of Spatial
Analysis (LISA) (Anselin, 1995). In this study we implemented the
local Moran's I for detection of local patterns of forest occupation state
and forest change processes, and created maps of clusters (LISA cluster
map) that identify and classify (high-high, low-low, high-low and
low-high) locations with significant association.

Spatial and temporal correlations of objects' TCA and PI values
were assessed independently as a variable evaluated at multiple
dates. LISA analysis of univariate data enables detection of spatial
patterns of correlation at a single date. Furthermore, the option of
bivariate LISA analysis facilitates temporal analysis of the spatial
correlation, detecting if there is any association between the variable
measured at a reference time and the same variable measured in the
neighborhood at a different time (Anselin, 2003). In all our spatial
analysis we defined the neighborhoods with the first order Queen's

Moran'’s | scatterplot

Spatiol lags

Low-high
Outliers

High-high (over the average)
Positive correlation

Observations

Low-low (below the average)
Positive correlation

High-low
Outliers

Fig. 5. Moran's I scatterplot. The slope of the regression line is an estimation of the
global Moran's 1. Relative density of points in the correlation quadrants indicates how
the global measure of spatial association is determined by association between high
and/or low values.

contiguity measure, i.e. each object's neighborhood consists of all
other segments sharing some boundary with it.

4. Results
4.1. Hierarchical spatio-temporal segmentation

The hierarchical spatio-temporal segmentation yielded a number
of objects at each level of segmentation with the average size per
object shown in Table 3. There are 4.46 L2 objects per each L3 object
on average, and 3.27 L1 objects in each L2 object on average. The
average size of the smaller objects (L1) is approximately 40 ha.

Most of the statistical summaries and results shown in the
following sections concern L1 objects; results at other levels of
segmentation show similar trends.

4.2. Landscape occupation state—TCA

Considering the entire study area, the mean value of the objects' TCA is
consistently greater than 190 over the whole period of analysis, and
describes a landscape with a high proportion of vegetation to non-
vegetation. Between 1997 and 2001, the mean TCA was at its lowest, with
the minimum mean TCA occurring in 1997 (minimum average TCA value,
Table 4, Fig. 6)—the coincidence of three consecutive late season images
in this period encourages a cautious interpretation. After 2001, TCA
values trend upwards, indicating a global average increase in the
proportion of vegetation to non-vegetation.

The standard deviation of the TCA (Fig. 6, Table 4) indicates that
the lowest dispersion in objects' TCA values occurred before 1990—
images from the MSS era, with 6-bit rather than the 8-bit radiometric

Table 3
Characteristics of hierarchical spatio-temporal segments.
Level Similarity Attribute for Mean size Number
definition (ha) objects
L3 Initial occupation state 1973 TCA 634.4 2021
L2 Change process trajectory 1973-2008 PI 1419 9032
L1 Final occupation state 2008 TCA 43.1 29544
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Table 4

Statistics of TCA and PI values at L1 level.
TCA 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008
Mean 227.13 229.99 241.33 244.05 231.83 232.73 226.40 195.23 204.64 201.81 23593 240.01 237.69 24456
Std deviation 74.21 59.55 66.24 66.02 80.78 84.46 87.18 91.88 95.05 95.73 83.23 80.19 81.59 78.90
Kurtosis 5.57 2.14 5.55 6.30 458 10.03 8.62 10.74 15.34 13.48 743 7.96 8.30 8.89
Skewness —1.21 —0.58 —0.86 —0.93 —1.21 —1.92 —1.99 —2.45 —2.98 —2.66 —1.67 —-1.77 —1.75 —1.90
Min. —46392 —83.08 —45094 —491.11 —322.71 —64656 —50543 —56648 —73587 —701.26 —457.65 —499.27 —53934 —502.49
Max. 43241 432.66 399.30 417.55 438.03 407.07 441.63 446.87 454.64 447.31 447.03 413.21 399.25 405.40
Pl 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006
Mean 7.10 7.03 —4.75 —5.66 —271 —1875 —10.88 3.29 15.64 19.10 0.88 227
Std deviation 20.30 26.14 18.88 21.38 16.28 3441 25.15 17.90 2531 30.58 17.32 12.93
Kurtosis 7.65 1.26 8.97 12.10 1191 1.58 8.55 11.51 2.64 483 6.22 1494
Skewness 1.05 0.06 —1.07 —2.30 —1.21 —0.58 —1.21 —0.70 1.00 0.73 —0.12 —0.20
Min. —33831 —227.89 —21741 —32004 —23586 —310.10 —420.88 —369.72 —109.03 —21348 —128.77 —126.84
Max. 189.68 134.98 31438 97.04 108.96 164.26 202.64 144.69 284.95 378.67 185.01 214.39

resolution of later Landsat sensors encourages cautious interpreta-
tion; since that time, the standard deviation has been higher, with a
maximum in year 2001, which was the ceiling of diversity of
occupation states at L1. As we would expect, from a high cover state,
increased variance implies reduced cover, with non-vegetation
locations (stand replacing disturbances) intermingled with forest
stands at various stages of coverage and growth.

The histograms of TCA distribution at all dates are similar, with a
maximum occurring between values 220 and 240, but some
differences are apparent (Fig. 6). Of particular note is the variation,
by year, of negative TCA values, indicative of non-vegetated areas, and
of the high positive TCA objects that have a high proportion of
vegetation or are densely occupied. To gain better insights of these
changes, the range of TCA values over the scene was split in four
categories, with a criterion based on the statistical distribution (the
mean TCA, considering all dates, 4-one standard deviation (i.e. 140,
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310), and zero). Groups were labeled as Negative (TCA below zero,
corresponding to non-vegetated objects), Low, Medium, and High,
having an increasing proportion of vegetation to non-vegetation.
Objects were classified in these four groups and their progression
through TCA categories analyzed at quasi-decadal intervals: from
1973 to 1981; 1981-1990; 1990-2000 and 2000-2008. Objects for
which the TCA value changed category from initial to final date in each
decade were counted (Fig. 7).

In the 1970s, 17.8% of all L1 objects (5273) changed the occupation
state enough to switch TCA category. Among these, 47% evolved from
medium to high and 31% from low to medium: there was a clear net change
towards higher densities and abundant interchange in the high and
medium groups—areas with high coverage and also common change
events inducing average TCA variations. In the 1980s, 13.8% of all L1
objects (4083) changed their occupation state sufficiently to switch TCA
category. The high to medium and vice versa changes were again marked,
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Fig. 6. Mean + 1 standard deviation of TCA values of L1 objects (other object levels show similar trends) (left). Histograms of TCA and PI distribution (right).
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Fig. 7. Changing objects between TCA categories in each of the last four decades. Evolution of total number of objects in different TCA groups at level 1 (top left inset) (other levels of

segmentation show similar trend).

with a net 11% change from high to medium. Medium to low changes
accounted 29% of all changing objects; the overall change was towards
lowering density. In the 1990s, 30.4% of all L1 objects (8989) switched the
occupation state sufficiently to move TCA category, relating a transition
over the landscape towards lower canopy cover densities: more than half
of the changes in TCA category (56%) occurred from the high group to the
medium group, followed by transition from medium to low (22%).

The last period analyzed, 2000-2008, experienced the highest rate
of TCA category switches: 9972 L1 objects (33.7% of the total) swapped
occupation state group. Among these, 60% exchanged from medium to
high, 22% from low to medium, and 9% moved from high to medium.
Despite the frequency of transformations produced in this time period,
the global average occupation state was maintained (Fig. 6).

We considered all mathematical options of transition amongst
these TCA categories; in reality, however, frequent swaps at the
spatial scale considered only occurred between adjacent groups,
reflecting that changes of occupation state at the landscape level occur
in a progressive manner. Transitions such as high to negative, high to
low, or negative to high were infrequent or nonexistent in the study
area at the time and spatial scale considered; such drastic changes
would reveal alterations in occupation state produced by typical stand
replacing disturbances such as fire, windthrow, or an accumulation of
forest harvesting.

Summarizing change by decade is a useful approach, but
sometimes a more detailed temporal examination is necessary for
detecting trends. The total number of objects in each TCA category
(Fig. 7 left inset) reveals changing tendencies and aids in under-
standing fluctuations in the global average (Fig. 6). TCA medium
category objects are significantly more common than any other group
between 1973 and 2008, oscillating between 67% and 84% of the total
number of objects. The diminution of high objects between 1997 and
2001 is noteworthy and mathematically explains the decrease in the
TCA global average (Fig. 6). Negative and low categories of TCA are the
least common objects for all dates, with a slight increment in low

objects between 1997 and 2000; but late season images used to study
this period (1997-2000) could somehow have conditioned lower
values of the TCA.

4.3. Landscape change processes—PI

The average PI value describes the global state of change at the
landscape level; assessing this average at consecutive dates (Fig. 6)
permits examination of trends in the study area. Prior to 1981, low
positive values of the PI indicate a slow increasing rate in the
proportion of vegetation to non-vegetation: the landscape is in an
average state of forest growth. From 1981 to 1997, the average PI
values are negative, indicating a decline in the proportion of
vegetation to non-vegetation mainly caused by forest harvesting
and, to a lesser extent, other disturbances; in the 2000s PI values are
again positive (Table 4, Fig. 6). The standard deviation of PI values
(Table 4, Fig. 6) is relatively high for the entire period indicating that
this forest landscape is very dynamic and that there is a great variety
of change processes occurring simultaneously.

Although the variation in the interval between image dates was
considered when computing the PI values, the dearth of image data in
the 1980s limits the analysis of trends. Further, the effect of late
season imagery on PI values has to be considered in the interpretation
of changes. Despite these facts, a general decline in the occupation
state (negative PI average) is observed in the 1980s and 1990s
(Table 4, Fig. 6) and a time of frequent and diverse changes reflected
by the high values of the PI standard deviation.

For most image dates, the distribution of polygons with different
change processes (PI values) is unimodal (Fig. 6), with the majority of
objects having a mean PI value close to zero (i.e., stable). The sample
was divided in groups of PI values for exploration of changing
patterns. With no ground truth to determine splitting thresholds, we
used statistical criteria. The stable group, with PI close to zero, is a
relevant group, representing areas with no change in the proportion
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of vegetation to non-vegetation. The slow increase and slow decrease
groups were defined approximately by the values of the mean + two
standard deviations of PI at all dates (i.e.,, 60 and —70). The fast
increase and fast decrease groups include the remaining extreme
values (Fig. 6).

Objects in the fast decrease group (i.e., being highly disturbed), are
the smallest group in all time periods (Fig. 8): there is a small
proportion of the landscape with a rapid net loss of vegetation.
Similarly, objects in the fast increase group (i.e., in a state of rapid
emergence or occupation) are also relatively infrequent. In contrast,
the slow increment PI objects (i.e., growing stands) are normally the
most frequent, with the exception of 1995 and 1997, when slow
decrease (i.e., decay by aging, disease, or partial harvest) was more
common.

4.4. Spatial autocorrelation of forest occupation states and forest change
processes

Global values of Moran's I show there is a consistent positive and
high spatial autocorrelation of forest occupation states (TCA values)
during the period from 1973 to 2008 (Table 5), with an average value
of 0.643 at the L1 level of segmentation, and slightly lower for larger
levels (results not shown). Change processes (PI values) are also
positively and highly spatially correlated, with an average global
Moran's I of 0.636 (Table 5). Whilst Moran's I values of TCA do not
follow a clear trend, Moran's [ values for Pl generally decrease through
time (Fig. 9): similar change processes were spatially more concen-
trated at the beginning of the period of analysis, and have
progressively lost spatial association, turning the landscape into a
mosaic of change processes with smaller but more spread disturbance
events and subsequent recovery. Observation of Fig. 9 suggests there
is no apparent correspondence between global spatial associations of
TCA and Pl values over time, state and process seem to have a different
pattern.

Exploration of the Moran's scatterplot informs about patterns of
spatial autocorrelation, in particular if associations are between values
over or below the average. As an example, the 1997 scatterplot of
occupation states (TCA) (Fig. 9, 1) illustrates that spatial associations
at this date are produced between a large range of values below the
average (Fig. 9, panel 1, notation A). Spatial associations are also
produced between values over, but close to the average (Fig. 9, panel
1, notation B). In this case a few points in the upper left and lower
right quadrants depict spatial outliers with a markedly different
occupation state compared to those neighboring; for instance these
areas relate to changed areas (island polygons) amid unchanged
forest areas (or the converse, unchanged islands amidst change).
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The pattern of spatial association shown by the Moran's scatterplot
of change processes (PI values) in 1973 is different, the distribution of
points in both quadrants of positive correlation is similar (Fig. 9, 2):
there is spatial association between values below and over the
average, i.e., processes of change are spatially associated, whether
they are related with growth, disturbance or stabilization.

The temporal correlation of occupation states (TCA) and change
processes (PI) is explored by studying the bivariate (temporal) Moran's
I. The spatial association of the target variable at two consecutive dates
is evaluated (Table 5) to investigate the impact of particular
occurrences on its neighborhood over time; care with different time
intervals is necessary for interpretation. Results show a global positive
correlation of TCA at all time intervals (similar occupation states are
spatially associated at consecutive dates, which seems very natural in
the absence of disturbance), with a minimum of 0.352 in period 1976-
1978 and a maximum of 0.656 in period 1978-1981. Bivariate
(temporal) global Moran's I of PI is in most cases positive (Table 5)
and not very large; a maximum of 0.494 occurs in period 2000-2001
and a minimum of —0.032 in period 1997-2000. The pattern of
Moran's scatterplot of TCA (2000-2001 as an example in Fig. 9, 3) is
similar to the univariate case, with TCA values dispersed in the low-
low quadrant and few outliers. In the PI example (1978-1981), the
temporal Moran's scatterplot is an agglomeration of points around zero,
different to the univariate case: while the univariate picture shows
clustering of similar change processes, there is not a clear pattern of
association in the bivariate case (Fig. 9, 4) and areas at varying change
processes of growth or decay at consecutive dates are intermingled.

Local analysis with a map of clusters can provide spatially explicit
information on clustering (Fig. 10) informing and characterizing local
associations; it is a useful tool for visual interpretation. The examples
in Fig. 10 illustrate the association type of change processes (PI) in the
study area for the period investigated (1973-2008). Red polygons
denote association of values greater than average (high-high), blue
polygons association of values less than average (low-low); purple
polygons are high-low outliers (with a value greater than the mean at
the initial date, and surrounded by polygons with values less than the
mean at the second date) and green denotes low-high outliers (with a
value less than the mean at the initial date, and surrounded by
polygons with values greater than the mean at the second date).
Polygons of the same type grouped together indicate larger
homogeneous areas with respect to the variable analyzed, as occurs
in 1995-1997, whereas small groups of clusters or isolated patches
indicate a more heterogeneous landscape, as is the case in 1978-1981.

Despite the low values of global Moran's I for temporal PI
correlation (Table 5), local analysis and examination of the cluster
maps reveal that there is a substantial number of change process
clusters of all categories.

Distribution of objects in PI categories

B Fast increase (PI>>0)
O Slow increase (PI>0)
Stable (PI=0)

O Slow decrease (Pl<0)

.
|
.
|
.
.
%
%
%

B Fast decrease (Pl<<0)

1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006

Fig. 8. Evolution of change process (PI) categories of level 1 objects.
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Table 5

Values of Moran's Index of univariate (spatial) and bivariate (temporal) TCA and PI. All correlations with p-value<0.001.
Spatial 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008
TCA 0.6740 0.5397 0.6959 0.6709 0.6804 0.6813 0.6625 0.6083 0.5087 0.5983 0.6601 0.6723 0.6848 0.6657
PI 0.7940 0.6365 0.7275 0.6095 0.6690 0.6422 0.6880 0.6521 0.6311 0.6860 0.6070 0.5086 0.5691 0.5336
Temporal 73-76 76-78 78-81 81-90 90-91 91-95 95-97 97-00 00-01 01-02 02-04 04-06 06-08
TCA 0.3959 0.3523 0.6557 0.6003 0.6522 0.6290 0.5112 0.5637 0.5744 0.5284 0.6235 0.6448 0.6512
Pl 0.1170 0.2259 0.0434 0.4209 0.1729 0.3140 0.4668 —0.0321 0.2301 0.4940 0.2360 0.1307 0.0397

The varying time intervals between available image data makes
inference of trends in temporal association less reliable; a periodic series of
images would facilitate a thorough temporal study. To investigate a
possible trend, we calculated global and local correlations at quasi-
quinquennial intervals: 1976-1981, 1981-1990, 1990-1995, 1995-2000,
and 2000-2006, and analyzed total amounts of each category of local
clusters (Table 6, Fig. 10). Given the location (latitude and alpine
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transition) combined with local forest productivity levels influencing
successional processes, five to ten years is an adequate period to capture
and portray the forest stand dynamics occurring; however, to detect more
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The highest number of significant (p<0.001) spatial clusters occur in
the central periods, 1995-2000 and 2000-2005 (Fig. 11, Table 6), a time
with persistent change. It is between 1981 and 1990 when more
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Fig. 10. LISA maps of temporal association PI clusters; only significant polygons (p<0.01) are colored.

positive spatial associations of change processes happens; interestingly,
in this longer time lapse spatio-temporal associations are equally
distributed between processes over the average (regrowth) and below
the average (disturbance and decay) change process. A close look at the
original images reveals that clearcutting practices and subsequent
regrowth were more concentrated in fewer areas than during more
recent dates. The time interval is an important parameter to control in
the analysis of temporal correlation of change processes for accurate and
reliable reports and conclusions, and although global values of
correlation do not give exhaustive information, local analysis can give
important and detailed spatial information.

5. Discussion

The Tasseled Cap derived indices employed in this work are
valuable tools for the capture and assessment of forest cover condition

Table 6
Number of significant PI (p<0.01) clusters for quasi-quinquennial intervals.

Cluster 1976-1981 1981-1990 1990-1995 1995-2000 2000-2006

High-high 612 1559 1448 890 1192
Low-low 501 1239 885 561 370
Total positive 1113 2798 2333 1451 1562
High-low 1273 349 1788 2411 1205
Low-high 1015 306 2023 2393 1280
Total outliers 2288 655 3811 4804 2485
Total 3401 3453 6144 6255 4047

and change. The Tasseled Cap Angle reports the proportion of
vegetation to non-vegetation (occupation state) in a defined area
and its derivative, the Process Indicator informs the current process of
change. These indices condense information from the visible and NIR
wavelengths, and facilitate comparison of data from all of the Landsat
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Fig. 11. Evolution of significant clusters per quasi-quinquennial period.
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sensors, enabling the study of forest landscape change with a lengthy
series of historical satellite images dating from 1973 to 2008. Results
of our study indicate that the landscape change was more spatially
clustered prior to 1981, but that change became more widespread and
dispersed in later years. Certain periods had a more intense change, as
indicated by their temporal spatial correlation.

Forest landscapes, particularly managed forest landscapes, are
dynamic ecosystems with a number of different change processes
ongoing at any given time. Although a variety of remote sensing
techniques have the capacity to detect stand replacing events, the
detection of subtle alterations that result in only minor spectral
changes remains a challenge (Goodwin et al., 2010) as different
phenology and illumination of images induce detection of false
change. With disrupting artifacts suppressed, the PI would be able to
account for a wide variety of change types, providing information of
slight or substantial modifications that is leveraged by a temporal
series of three or more normalized images: low positive values of PI
indicate a slow increment in the occupation state due to natural
growth, while low negative values of PI point to natural processes of
decay, such as aging or disease, or human induced modifications such
as partial harvest or thinning (Table 7). More notable and fast changes
in the occupation state, like a disturbance with reduction of vegetation
or a process of vegetation emergence are indicated with high negative
or positive values, respectively. The capacity to relate both positive
and negative changes is a powerful aspect of the PI, enabling insights
relating to both forest (vegetation) gain and loss.

The TCA and PI, as derived from the TCT, are relative to the scene
considered and would require a process of normalization to enable
comparisons between different sites. If field data are not available, a
study of relative change is the best option for the examination of
trends. The availability of ground data for calibrating these indices
could enable them to work as a look up table for other attributes, such
as cover percentage, seral stage, or biomass content, facilitating forest
monitoring efforts (e.g., Powell et al., 2010).

Analyzing a temporal series of images supports the assessment of
trends and rates of change that otherwise might be missed with only a
bi-temporal change detection approach (Lunetta et al., 2004). The
adequate interpretation of tendencies is conditioned by the time
interval between consecutive images, and the scarcity of data for any
one period may preclude a complete understanding of the landscape
change. A decadal interval might be sufficient for preparing a
summary of conditions and for planning silvicultural treatments and
wood extractions, but more frequent information is required for
monitoring of forest health and biomass. Jin and Sader (2005)
recommend a period of three to five years for interpretation of
condition and change in a forest area, but the ideal number of images
and acquisition timing is site dependent (Wilson & Sader, 2002) and
often restricted by image availability. We used a quasi-quinquennial
interval for evaluation of change processes (PI) and a decadal interval
for summary of change in the landscape state (TCA) obtaining sound
and useful outcomes.

As long as temporal factors are considered, the interpretation of
TCA and PI may be combined to provide insights on the change
processes that are active in a forest landscape: varying rates of cover

Table 7
Interpretation of TCA and PI values.

Value TCA PI
Occupation state Change process

Positive High High proportion Veg-nonVeg Emergence
Low Low proportion Veg-nonVeg Growth
Zero Greenness =0 Stable

Negative Low Non-vegetated Decrease (natural decay

or partial harvest)

High Non-vegetated Disturbance

change could have different effects on dense or open forests and could
trigger different phenomena. A simultaneous view of occupation states
defining the landscape pattern and current change processes could
help understanding the relation between pattern and process, a
recursive question difficult to solve in landscape ecology (Turner,
1989; Walsh et al., 2009).

Although there is no confirmed link between these indices and
ecological succession stages, the combined interpretation acts to
facilitate analysis of succession patterns. The contextual temporal
information given by the TCA enables proper interpretation of change
that may be confounded with traditional techniques (Masek et al.,
2008). The TCA provides information of vegetation proportion and the
PI gives an instantaneous picture of the change process; together with
some ecological knowledge, forest seral stages may be identified (i.e.,
young stand growing, young stand with disease, mature stand in
decay, recovery from disturbance, or other situation). It must be noted
that in order to enable accurate understanding of a trajectory of
change, some knowledge of the local ecology is always required.
Fig. 12 depicts possible interpretation of consecutive change processes
for a homogeneous area.

The object oriented approach implemented to help in the analysis
of change at the landscape level provides meaningful reporting units,
that is, objects analogous to forest stands. The spatial scale is a key
parameter for assessment of ecological processes; we opted for a data
driven method in the definition of spatial units, based on homoge-
neity of areas at the initial and final dates of the period (1973 and
2008). Establishing the hierarchy on the variables of interest, the
transmission of significant information between levels is assured:
initial and final state levels are connected through an intermediate
level of processes accounting for the entire trajectory of change.
Different intermediate levels could be defined for specific applica-
tions. For example, a forest health monitoring study may be interested
in the progress of defined segments since the time of infection, and
subtle changes could be detected from that point on. We reported the
state and change of forest landscape with objects of a mean size of
approximately 40 ha, with a common initial state and intermediate
history of change; however, the method allows any sized object to be
used, enabling the selection of the most appropriate size given the
ecological processes operating in the area.

Spatial and temporal autocorrelation is a complex and scale
dependent phenomenon that is expected in natural environments. In
the time period analyzed, some relations and patterns were unveiled
for occupation state and change processes. The spatial correlation of
occupation state was always positive; change processes were also
positively correlated at the global spatial level and with a decreasing
tendency over time. Temporal spatial autocorrelation of change
processes was found in local aggregations, necessitating further
analysis with local measure to understand the local variability.

6. Conclusion

The study of environmental long term historical change is facilitated
with the free access to the United States Geological Survey Landsat data
archive. Extensive areas can now be monitored retrospectively with
techniques that incorporate multi-temporal information in a spatially
explicit manner, and which are capable of seamlessly integrating data
from a variety of sensors. An index derived from the well known TCT, the
Tasseled Cap Angle, and its derivative, the Process Indicator, have
demonstrated the potential for characterizing the change in state and
process in a dynamic forest area, enabling detection of subtle changes as
well as more obvious stand-replacing disturbances. Combined, the
interpretation of the TCA and its derivative, the PI, provides a
simultaneous view of the occupation state and the change processes
that are operating in a forest landscape, thereby enabling some
understanding of the elusive relationships between landscape pattern
and process—a recursive question of landscape ecology. A hierarchical
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Fig. 12. Relative TCA values of various occupation states of the coniferous forest in the study area and PI values of changing processes.

segmentation process incorporating spatial and temporal properties
provides flexibility in the establishment of the scale of analysis. Spatial
statistics applied to multipixel objects enable assessment of spatial and
temporal correlation of change events at the landscape level. Applica-
tions that require temporally detailed and spatially explicit information,
such as forest succession studies, forest health monitoring, habitat
models, and biomass or carbon accounting programs, will benefit from
the use of these tools that provide dynamic information of the forest
state and processes. Further work to link TCA and PI values with better
known scales of forest variables is recommended to facilitate
interpretation.
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Appendix A. Lagrange interpolation of the TCA

The Lagrange interpolating polynomial of the TCA profile at each
pixel is given by:

2
(A1)

where f>(t) stands for the 2nd order polynomial that approximates
the function TCA=f{(t) given at 3 data points as (to, TCAo), (t1,TCA),
(£, TCA,), and the Lagrangian weights are:

i (A2)
Jj=0
i

The polynomial formula for the interpolated TCA at each pixel is
therefore:

TCAD= (ff)__tfll > (fi)__ttzz ) TCAlto)+ (ftl__t?o> <ft1__tt22> TCAR)  (A3)

t—tp\ [ t—t;
<t<
+ (tz—to) (tz_t1>TCA(t2)t0_t_t2.

The PI or derivative of this polynomial can be expressed as:

2t—t; —t 2t—ty—t
PI(t) = 12 TCA(ty) + ~————2 2 TCA(t A4
® (to—t1)(to—t) (fo) (ty—to)(t;—ty) () (A9
2t—ty—t;
———— _TCA(ty), t,<t<t,.
(ty—to)(t—t) (). fo >
Appendix B. Moran's Index
Moran's Index can be expressed as:
| N ZiZjWij<Xi —W (Xj*ll) (AS)
= *
22w 2ilxi—p)?

where x; is the variable of interest x measured at location i, N the
number of observations, u the mean of the variable, and w;; are the
elements of the spatial weights matrix, which express the membership
of observations in the neighborhood set for each location (Anselin,
1992).

A standardized z-value is reported for ease of interpretation.
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RESUMEN

Caracterizacion de 25 afios de cambio en la extension, distribucion, y almacenamiento
de carbono en pinares mediterréneos del Sistema Central espafiol

Los pinares mediterraneos sufren cambios continuos bajo la influencia de factores
naturales y humanos. La teledeteccion ofrece los medios necesarios para describir y
caracterizar simultdneamente los cambios producidos en areas extensas. En este trabajo se
utilizé una serie temporal de imagenes Landsat para describir 25 afios (1984-2009) de
evolucion en los pinares del Sistema Central espafiol. Para identificar las variaciones en
extension y distribucion de las masas arboOreas a escala de paisaje se utilizaron técnicas
basadas en unidades espaciales, mediante segmentacion de imagenes.

En ausencia de perturbaciones importantes, la incorporacion de biomasa en masas
forestales o su disminucidn en caso de existir extracciones, se relacionan directamente con
variaciones en el carbono almacenado. De esta manera los cambios espectrales detectados
mediante imagenes y asociados a variaciones de biomasa, pueden describir también
procesos de almacenamiento de carbono. Para identificar la localizacion y las variaciones
en extension y distribucion de los pinares, se utilizaron las bandas 3, 4, and 5 de Landsat y
el indice Tasseled Cap Angle (TCA) derivado de las componentes verdor y brillo de la
transformacion Tasseled Cap (TCT). Para la tipificacion de los procesos de
almacenamiento o fuga de carbono, se utilizo el Indicador de procesos (PI), valor en cada
momento de la derivada temporal de TCA, capaz de informar sobre la direccionalidad y la
tasa de cambio. Los resultados mostraron un incremento del 40% en superficie de los
pinares entre 1984 y 2009, de 1211 a 1698 kilébmetros cuadrados. El incremento en
superficie se produjo durante este periodo de forma irregular en el espacio y tiempo. La
distribucién de los pinares también varié, estando 765 km? ocupados permanentemente y
945 km? solo de forma transitoria o intermitente. Continuando con la légica propuesta de
los procesos de acumulacién de carbono, se encontré que al final del periodo de analisis el
20% del area potencialmente ocupada por pinar aumentaba de forma neta el carbono
fijado, mientras que el 40% experimentaba disminucién neta.
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Mediterranean pines are subject to continuous change under the influence of natu-
ral and human factors. Remotely sensed data provide a means to characterize these
changes over large areas. In this study we used a time series of Landsat imagery
to capture 25 years (1984-2009) of change in the pine-dominated forests of the
Central Range in Spain. Object-based image analysis methods were used to identify
landscape-level changes in the area and the distribution of forests. We also propose
that in the absence of disturbance, biomass accrual is occurring (or depletion in
cases where removal is evident) and may be related to changes to the carbon stock;
we describe the detected spectral changes in terms of biomass changes as the carbon
stocking process. The primary inputs for the identification of changes in the area
and distribution of pine stands were Landsat bands 3, 4 and 5 and the Tasseled Cap
Angle (TCA) — a metric derived from the greenness and brightness components of
the Tasseled Cap Transformation (TCT). In the identification of carbon stocking
processes the temporal derivative of the TCA, the Process Indicator (PI), was used
to inform on the rate and directionality of the change present. Our results show
that the total area of pine forest has increased by 40%, from 1211 km? to 1698 km?,
during this period, with a variable rate of change. The distribution of pine-domi-
nated forest has changed as well: there is an area of 765 km? permanently covered
with pines and 945 km? found to be temporarily occupied. Following the logic of
carbon stocking processes, our findings show that at the end of the analysis period,
20% of the potential pine area is increasing its carbon stock and 40% of this area is
experiencing a decrease.

1. Introduction

Forests have been described as the most important land carbon sinks (Le Quéré ez al.
2009) and therefore play a relevant role in the global carbon budget (Bravo et al. 2008).
The global carbon balance is markedly altered by the extent of forests, as well as
the biomass content per surface unit (Houghton 2005). The character of forests as
a sink or source of carbon dioxide is determined by the ratio of respiration to net
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primary production (Law et al. 1999), and this relation is strongly influenced by the
stand successional stage (Odum 1969) and health condition (Brown 2002). Net ecosys-
tem carbon balances are complex and multifaceted, resulting in evaluation difficulties
(Schulze et al. 2000). To reduce complexity, a simple rule for above-ground forest com-
ponents is that mature stands are more stable stocks of carbon and growing stands
are net sinks of carbon (Goetz et al. 2006), but the age at which a forest becomes
a net carbon sink varies according to forest type, site productivity and other factors
(Goward et al. 2008). However, while carbon-capturing ability is difficult to determine,
the stocking magnitude of a forest stand is undoubtedly proportional to the biomass
it stores (Masera et al. 2003, Houghton 2007).

A map of the dynamics of distribution, biomass content and succession stages of
forests through time is an invaluable tool for spatially explicit assessment of forest
carbon stocks, sinks and sources (Powell et al. 2010). Together with a timeline of
change events, the effectiveness of management approaches can be evaluated (Hayes
and Cohen 2007, Huang et al. 2009). Medium spatial resolution remotely sensed
data (i.e. 10-100 m pixel) is well suited to characterize forest change (Wulder et al.
2008b) and is the only feasible, cost-effective option for extensive areas (Lunetta et al.
2004). Since 1972, the United States Geological Survey (USGS) has been archiving
Landsat images. In 2008 the USGS opened the archive to unfettered public access
to analysis-ready images (Woodcock et al. 2008), removing access and cost limitations
and creating a myriad opportunities for characterizing both spatial and temporal land-
scape processes (Goodwin et al. 2008, Olsson 2009, Verbesselt et al. 2010, Potapov
etal. 2011).

In this work we aim to characterize the changes in area, distribution and carbon
stocking processes of pines in the Central Range of Spain over a period of 25 years
(1984-2009) with a medium spatial resolution time series of images from the Landsat
programme. We apply a multilevel object oriented methodology for identification and
classification of pine-dominated areas, and analyse trends in carbon stocking processes
at the stand level with an index derived from the Tasseled Cap Transformation (TCT).
The specific objectives of the study are:

1. to assess changes in the extent of a Mediterranean forest, where natural change
is relatively slow and human-induced change has historically been controlled,
with a multilevel object-oriented methodology;

2. to identify with spatial precision the distribution of pines in the Central Range
of Spain and variations occurring in three sub-periods during the last 25 years
(1984-2009); and

3. to characterize carbon stocking areas with an index derived from the TCT,
assessing trends of change over a 25 year period (1984-2009).

2. Background
2.1 Mediterranean pine forests

Mediterranean forests and woodlands cover 73 million ha, approximately 8.5% of
the Mediterranean basin region (EFI 2009), and have a notable richness in species
diversity (Myers et al. 2000). In Mediterranean ecosystems, pine forests generate non-
wood products (Calama and Montero 2007) and serve important ecological functions
including water regulation, erosion control and provision of recreational opportunities
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and wildlife habitat (Merlo and Croitoru 2005). Pine forests have a significant carbon
sink capacity that could help signatory countries of the Kyoto protocol achieve their
targets for the reduction of greenhouse gas emissions (Myneni et al. 2001).

2.2 Monitoring change in Mediterranean forests

In Spain, similar to other Mediterranean countries, a National Forest Inventory (NFI)
provides periodical detailed data for the assessment of biomass and carbon pools
through sampling and reporting supported by statistics (MMA 2008). The NFI’s
10 year re-measurement cycle enables comparison of data over time, but, similar to
other sample-based NFIs, has some known limitations, including the discrete char-
acter of the sampling, which obliges extrapolation of data (Salvador and Pons 1998),
and the use of different basic cartography in subsequent updates of the NFI database
(Villaescusa et al. 2001). Also, a decade can be too long an interval in areas under-
going rapid change that need up-to-date information and more frequent reporting on
change events (FAO 2010). Some researchers have explored the potential of remotely
sensed data in quantifying change in Mediterranean environments (table 1), especially
integrating both forest disturbance and recovery; to the best of our knowledge no one
has developed a method for the characterization of carbon stock change focused on
this unique ecosystem.

2.3 Retrospective analysis of change

Monitoring change over large areas, and particularly historical change, is only feasible
with satellite data (Nielsen et al. 1998, Townsend et al. 2009). Satellite imagery pro-
vides consistent and repeatable measurements at an appropriate spatial scale (Kennedy
et al. 2007) for regional land-cover assessment. The repetitive data acquisition, syn-
optic view and digital format suitable for computer processing have made remotely
sensed imagery the major data source for change detection during the last few decades
(Wulder et al. 2008b). Medium spatial resolution satellite sensors such as those of the
Landsat series (Multi Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced
Thematic Mapper Plus (ETM+)) are well suited to capture forest cover and change
at the stand level in support of research and reporting, relating both natural and
anthropogenic drivers of change (Achard et al. 2007, Olander et al. 2008, White et al.
2011).

Now that almost four decades of Landsat images have been made freely available to
the public (Woodcock et al. 2008), an unprecedented opportunity for change research
has emerged. The study of a time series of images (i.e. more than two images) has two
main advantages over the use of traditional two-date change detection approaches:
the first is the ability to study long-term trends in spectral response (Vogelmann ez al.
2009) while controlling the variability associated with solar angle, atmospheric effects
(Wulder et al. 2008a) and phenology (Sonnenschein e a/. 2011). The second advantage
is the opportunity to determine rates of change (Gillanders e? a/. 2008a).

Extensive research is currently directed at assessing historical change in boreal
and temperate forests with increasingly sophisticated image-processing algorithms
(e.g. Huang et al. 2009, Olsson 2009, Kennedy et al. 2010, Powell et al. 2010) that
take advantage of the temporal information leveraged by a dense series of calibrated
images. Determining long-term change in Mediterranean forests using an image
trajectory approach remains to be explored further.
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3. Methods
3.1 Study area

The area of interest covers approximately 1 million ha in the Central Range of Spain,
occupying part of the Avila, Segovia, Madrid, Guadalajara and Toledo provinces. It is
centred at latitude 40° 37" 56" N and longitude —4° 6’ 47" E. Pines (Pinus sylvestris L.,
Pinus pinaster Ait., Pinus nigra Arn.) are the dominant tree species, except in the most
western area where broadleaf species (Quercus pyrenaica Willd.) dominate. Forests
extend to elevations of 2000 m, beyond which shrubs (Cytisus sp., Genista sp., Erica
sp., Echinospartum sp.) are the prevalent vegetation (Rivas-Martinez 1963).

3.2 Satellite images

With the recent public access to the Landsat archive (Woodcock et al. 2008) it is
now possible to freely download over the Internet (glovis.usgs.gov) a time series of
images for almost any area of the Earth (Wulder ez al. 2011). As an additional
source of data, the Spanish Instituto Geografico Nacional (IGN) has been compil-
ing and pre-processing abundant Landsat imagery since 2008 as part of the Plan
Nacional de Teledeteccion (PNT) and making it available for research (Villa et al.
2009).

Still, the acquisition of a historical time series of multiple adjacent Landsat images
(relatively cloud-free) is a complicated task (Homer et al. 2004). We focused our
research on a single Landsat scene (WRS-2 Path 201, Row 032) (figure 1) as it encom-
passes the most extensive continuous pine stands of the Central Range. Anniversary
images were selected when possible (table 2), as recommended for monitoring stud-
ies (Wulder and Franklin 2002). In order to capture stable phenological conditions
and to avoid the presence of snow in high altitudes, summer images were selected.
The spectral suitability of early summer images (years 2000, 2001 and 2005) was thor-
oughly checked through the processing stages to detect and avoid possible phenology
artefacts.

Our time series consisted of nine Landsat TM and two ETM+- (Scan Line Corrector
(SLC) on) images. To ensure a more complete time series, we increased our tolerance
to a small amount of cloud cover in the images, but still, a yearly time series of images
was not possible to obtain and the time step is not constant; there is a gap in the
sequence of images in the 1990s corresponding to the private sector distribution era
(Tolomeo et al. 2009). Longer intervals between images may reduce detection accuracy
for subtle changes (Wilson and Sader 2002, Jin and Sader 2005).

3.3 Auxiliary data

The Mapa Forestal Espaiiol (MFES0) is the digital version of the Ruiz de la Torre
forest map of Spain for the year 2000. In the construction of this map, the source of
data consisted of aerial photography and field notes. Polygons interpreted on the aerial
photographs were transferred to the 1:50 000 National Topographic Map (MTN) and
this original paper map version was later digitized. This GIS database encompasses
68 attributes to characterize vegetation units. Some relevant attributes for the identifi-
cation of pine forest areas are dominant species and crown cover (that is, the proportion
of area covered by the horizontal projection of the canopy (as a percentage)).

Field data from plot-based inventories such as the NFI and other local manage-
ment plans were used at various stages of the research, being of particular value in
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Figure 1.

Location of the study area.

Table 2. List of Landsat images used in the study.

Landsat/sensor Source Date Sun elevation (°)
5/TM EarthExplorer 18 August 1984 52.89
5/TM EarthExplorer 11 August 1987 54.11
4/TM EarthExplorer 11 August 1990 54.38
4/TM EarthExplorer 14 August 1991 51.68
7/ETM-+ EarthExplorer 22 August 2000 54.87
7/ETM+ EarthExplorer 6 June 2001 64.24
5/TM EarthExplorer 17 June 2002 62.20
5/TM EarthExplorer 7 August 2003 56.50
5/TM Aurensis 25 August 2004 53.15
5/TM Junta de Castillay Leén 24 May 2005 62.80
5/TM EarthExplorer 23 August 2009 54.48

Notes: TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus.

5551

Reference image for radiometric normalization (22 August 2000) is highlighted.

accuracy assessment during the confidence-building stage. Standard forest variables
such as species, number of trees per plot and diameter at breast height are measured
and updated on a decadal basis.
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3.4 Pre-processing

All images were orthocorrected with a 30 m digital elevation model (DEM) derived
from 1:10 000 digital cartography (sitcyl.org) and co-registered to the UTM 30N
(datum WGS84) coordinate system with root mean square errors (RMSEs) of less
than half a pixel. Twenty-five ground control points were manually identified in the
images and used for adjustment.

A robust radiometric correction is essential in change detection applications
(Coppin et al. 2004, Lu et al. 2004) and when image values are related to biophys-
ical phenomena (Gong and Xu 2003). It is particularly challenging if images from
various sensors are included in the analysis (Roder ef al. 2005). We applied a relative
radiometric normalization to the sequence of images; the reference image was selected
in the middle of the time series for its good quality and absence of haze (table 1).
Digital Numbers (DNs) were converted to top of atmosphere (TOA) reflectance fol-
lowing instructions and recommended coefficients from Chander ez al. (2009), which
give the recommended calibration for each Landsat sensor (including changes occur-
ring over the lifetime of a given sensor). Atmospheric effects on the reference image
were corrected with the cosine-Theta (COST) model (Chavez 1988). All other images
were normalized to the reference image with the Iterative Reweighted Multivariate
Alteration Detection (IR-MAD) process (Canty ef al. 2004) — an automatic ordination
algorithm recommended for spectral trajectory analysis (Schroeder et al. 2006). Image
normalization transforms images to a common radiometric scale, minimizing Sun,
sensor and view angles, as well as atmospheric differences among images. The process
of normalization reduces the amount of artefacts due to illumination or atmospheric
variations, enabling a more reliable detection of true change (Song et al. 2001).

3.5 Tasseled Cap Transformation and Tasseled Cap Angle

The Tasseled Cap Transformation (TCT) (Kauth and Thomas 1976, Crist and Cicone
1984, Crist 1985, Huang et al. 2002) has been broadly employed in forestry stud-
ies of structure (Cohen et al. 2001, Hansen er al. 2001), condition (Healey et al.
2006, Wulder et al. 2006), successional state (Peterson and Nilson 1993, Helmer ef al.
2000) and change detection (Lea et al. 2004, Jin and Sader 2005) in various forest
environments.

The TM brightness (B) component is by definition (Crist and Cicone 1984) a pos-
itive value, whereas the greenness (G) component depends on the contrast between
visible and near-infrared bands (table 3), with exposed soil having negative values
(Price and Jakubauskas 1998, Gillanders et al. 2008b) and vegetated areas pos-
itive values. G and B components define the vegetation plane (Crist and Cicone
1984) (figure 2). Studying the spectral behaviour of forest stands in the vegetation
plane provides insights into forest cover densities and forest development stages
(table 4).

A range of studies in coniferous forests has confirmed higher values of G and lower
values of B in dense forest cover classes when compared with open stands or clearcuts
(Cohen et al. 1995, Healey et al. 2005). The Tasseled Cap Angle (TCA) index, defined
as the angle formed by G and B in the vegetation plane (equation (1)) and first used by
Powell et al. (2010) for modelling biomass in coniferous and mixed forests of Arizona
and Minnesota (USA), condenses the G/ B information to a single value (Goémez et al.
2011): dense forest stands exhibit higher values of TCA than open stands or bare soil
(figure 2).
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Table 3. Coefficients used for calculation of Thematic Mapper TCT indices.

Sensor Component Red Green Blue NIR SWIR1 SWIR2

™ Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863
Greenness  —0.2848  —0.2435  —0.5436 0.7243 0.0840  —0.1800
ETM+ Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596
Greenness  —0.3344  —0.3544  —0.4556 0.6966 —-0.0242  —0.2630

Tasseled Cap
Greenness

Vegetation plane

TCA

TCA Tasseled Cap
Brightness

QLess dense @ More dense

Figure 2. Vegetation plane formed by TCT greenness and brightness components. The TCA
is the angle formed by these components: TCA = arctan (G/B).

TCA = arctan (%) . (1)

Considering these notions, we explored the relationship of the TCA to forest density
variables at the stand level in the Mediterranean pines of the study area. Data from
plot-based field inventories were krigged to 30 m spatial resolution and regressed with
values of the TCA at the stand level. The entire range of basal area (BA) representative
of the study area was included in the correlation analysis. To support later analyses, we
find that, as expected, the TCA and BA are linearly related, with a high and positive
value of correlation (coefficient of determination, R> = 0.80).

We calculated the angle between normalized G and B components (equation (1))
for our time series of images. As derived from the TCT, the TCA range of values
is scene dependent (Crist and Cicone 1984). Based on the strong relation between
TCA and density variables in the study area we posit that analysing the TCA values
over a time series of images provides information on relative changes in the den-
sity of forest stands: the TCA is stable if there is no change in density (constant
BA); an increment in BA (e.g. natural regeneration or plantation stand maturity
or increase of crown closure) results in a concomitant increase in the TCA and
conversely, when the BA diminishes (e.g. after a partial harvest or thinning opera-
tion, or after a disturbance such as a fire), the TCA value decreases (figure 3). The
eleven TCA layers were combined in a single image, noted hereafter as the TCA
image.
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Carbon stocking process

TCA
m (Carbon pool)

PI>0 Rise
(Increase)
PI=0 Neutral
(Stable)
PI<Q Drop
(Decrease)

Figure 3. Process Indicator (PI) and carbon stocking processes.

3.6 The Process Indicator

Each pixel TCA profile was approximated with a Lagrange second-order polynomial
(which enables interpolation with uneven intervals among occurrences), and its deriva-
tive with respect to time (years) was calculated. The result is a multiband spectral
image with the same number of bands as the original TCA image, which we define
as the Process Indicator (PI) image (Gomez et al. 2011). The PI image illustrates
at each pixel the rate of TCA change over time. As the TCA provides information
about the relative forest density at each date, the PI similarly gives information on
the rate of change in forest density at each time. For example, a high positive value
of PI indicates a relatively fast rise of TCA (e.g. a stand rapidly augments density
by rapid growth or quickly develops towards crown closure); a high negative value
of PI indicates a relatively fast drop of TCA value (and stand density) (e.g. after a
stand-replacing disturbance or a strong thinning). Moderate values of PI refer to slow
and slight changes in TCA value, such as a lowered density after a partial harvest
(negative PI) or increasing density with slow natural growth or development (posi-
tive PI). Relative changes in carbon pools associated with changes in forest density
can be similarly assessed (figure 3). PI values are direct indicators of processes of
change and constitute a practical tool to monitor temporal relative changes; for an
estimation of absolute values of change, a thorough calibration of the index would be
required.
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3.7 Classification of pine-dominated areas and change over time

To identify pine-dominated areas and assess changes in extent and distribution over
the period 1984-2009, we implemented a methodology supported by a supervised clas-
sification based on objects. Four images that divide the period into three epochs of
approximately similar duration (i.e. 1984-1990, 1990-2000 and 2000-2009) were inde-
pendently classified. Input data for classification were normalized bands 3, 4 and 5 of
the Landsat image, and the TCA layer, which incorporates information on vegetation
density. Each of the four images was individually segmented into three hierarchical lev-
els (scale parameter 1, 2 and 5; colour-shape 0.9-0.1; smoothness 0.5) with Definiens
Cognition Network Technology® (Baatz and Schipe 2000, Definiens 2005). Only one
class (pine) was to be retained but we considered a seven class scheme to reduce the
error in change detection (Fuller ez a/. 2003). The image dated 2000 was classified first
and its accuracy assessed with reference data from the MFE (Mapa Forestal Espafiol)
and NFI. The nearest neighbour classification algorithm used in classifying the other
three images was trained with the spectral signatures of samples acquired for the refer-
ence classification (i.e. year 2000 image); in so doing, the robustness of the radiometric
normalization assured comparable results. Objects classified as pine in any of the three
hierarchical levels (scale 1, 2 and 5) were merged and the resulting areas at each date
(i.e. 1984, 1990, 2000 and 2009) were compared in a GIS for an assessment of change.

3.8 Assessment of carbon stocks

We defined the maximum potential pine areca (MPPA) for the period 1984-2009 as
the overall union of pine areas at any of the four dates considered. The MPPA rep-
resents the maximum extent occupied by pines at any time during this period, and it
encompasses a region persistently occupied by pines (permanent) and other areas that
have only been intermittently covered with pines during the last 25 years (intermittent)
(figure 4).

Segmenting the landscape into homogeneous spatial units facilitates visualization
and analysis of its properties. There is no unique way of partitioning the landscape for
ecological analysis (Burnett and Blaschke 2003) and no single spatial scale is optimal

Pine
Permanent
@& Intermittent

Pine
@& Al dates
@8 1984
&3 1990
73 2000
@8 2009
C3 MPPA

Figure 4. Schematic definition of the MPPA, permanent and intermittent areas.
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for characterizing the multiple options into which it can be divided (Hay et a/. 2005).
We chose the TCA 2000 image, completely free of clouds, for delineation of reference
units for analysis (also in keeping with the classification reference image used). The
parameters applied for definition of spatial units with homogeneous forest density at
this date (year 2000) were scale 10, colour 0.9 and smoothness 0.5. Internal variation
of the TCA (and forest density) in these segments is lower than the difference with
their neighbours (Definiens 2005). Objects affected by small cloudy patches or cloud
shadows in any of the images were excluded from analysis.

Relative rates of change of the TCA (surrogate of forest stand density) and con-
comitant relative rates of change of carbon stock associated with each segment were
examined with its Process Indicator value at each date. Trends and rates of change of
carbon stocks were analysed and statistically assessed.

4. Results
4.1 Change in area and distribution

The applied method enabled the assessment of the area and distribution of pines
in the Central Range and also the description of changes that occurred over the
25 year period from 1984 to 2009 with spatially explicit detail. For an exhaustive
account of changes in the area occupied by pines in each sub-period (i.e. 1984-1990,
1990-2000 and 2000-2009), the following concepts are used.

* Stable: area classified as pine on the initial and final date of the analysis period.

* Increment: area classified as pine on the final date but was a different land-cover
class on the initial date of the analysis period.

* Reduction: area classified as pine on the initial date and not on the final date of
the analysis period.

* Net change: Increment — Reduction (>0 or <0).

* Changed: Increment 4+ Reduction. Area subject to change.

* Potential area: Stable + Changed. Area occupied by pine on initial and/or final
date of the analysis period.

From the initial date (1984) to the final date (2009) there has been a 40% incre-
ment in the area dominated by pine species, a result confirmed by the NFI updates
(NFI2 and NFI3) (Gonzalez-Alonso et al. 2006) and mainly attributed to agricul-
tural land abandonment. During the first sub-period (1984-1990), there was abundant
transformation: an extent equivalent to 57% of the original pine area changed, pro-
ducing a net increment similar to 36% of the original extent. In the second sub-period
(1990-2000) the amount of area changed was less notable, equivalent to 33% of the
extent of pine on the initial date (1990) and with a net loss of 17% of the pine-
dominated area. This decade maintained the most extensive stable area of the three
sub-periods. In the course of the last sub-period (2000-2009) the Increment was
3.6 times the Reduction of the pine area, resulting in a net change equivalent to 25% of
the area occupied by pines in 2000. All results are summarized in table 5 and mapped
in figure 5.

Pines cover a discontinuous area in the Central Range, frequently broken up by
topographic features and human activities such as agriculture or urban development.
Three regions or units can be distinguished in the study area: a central region of almost
continuous and permanent pine coverage (B in figure 5); a southern relatively large
region with discontinuous spatial and temporal pine coverage (A in figure 5); and a
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Table 5. Pine area and changes during three sub-periods.

Net
Increment Reduction change Changed Potential Stable
Pine *(% of *(% of *“of  *(%of  *(%of  *(%of
Year area (ha) Period initial) initial) initial) initial) initial)  initial)

1984 121144 56496 12858 43638 69354 177365 108011

1984-1990  “uss) (0.6 (G6.0)  (57.2)  (1464) (89.2)

1990 164622 000 000 12502 41306 28804 53808 177023 123215
76) Q50 (=175  (327)  (107.5) (748)

47149 13001 34148 60150 182757 122607

2000 135980 2000-2009 2,00 94y (25.0)  (442) (1344  (90.2)

2009 169 825

Overall total stable 91 349
Overall total potential 197 144

Note: *Equivalent to the area on initial date of the sub-period.

smaller region (C in figure 5) with a high proportion of permanent pine coverage. As a
general rule, changes in the distribution of pines have occurred at the boundaries of
permanently covered areas in all three regions (figure 5). Increments in the pine area,
probably motivated by natural colonization or by plantation of agriculture abandoned
lands were common in the three regions during the period 1984-1990, mostly located
in region C during the intermediate period (1990-2000) and particularly frequent in
region A during the period 2000-2009. On the other side, reductions of the pine area
were more frequent in region C during the initial period, distributed across regions
A and B during the intermediate stage and similarly distributed across regions A and
C in the last period (2000-2009). Clear cutting is a forestry technique in disuse in
the Central Range and all wood extractions are now of low intensity; however, a few
stand-replacing disturbances due to fire have been identified.

4.2  Classification accuracy assessment

A thematic accuracy assessment aims to provide information on the validity of the
results and it can only be as good as the reference data used (Foody 2009). We assessed
the accuracy of the pine class in the year 2000, for which field data were available. Our
confidence that other classifications have similar validity is based on the robustness of
the radiometric calibration and normalization applied and the transference of spectral
signatures. The process of accuracy assessment was specifically designed for this appli-
cation; it includes the steps described by Congalton and Plourde (2001) and provides
information of the classification reliability.

After visual inspection and approval of the map, field plot data of the NFI3 (dated
2000) were referenced for specific analysis of the omission error incurred, i.e. pine areas
on the ground that our image classification did not capture. Ninety-two per cent of the
pine-dominated NFI3 plots (730 plots) fell inside pine classified segments; some of the
remaining NFI3 pine-dominated plots had very low coverage fraction (below 20%),
a criterion for exclusion from our pine class. Consequently, seventeen plots (2% in
number) were in error by omission. To assess the magnitude of the commission error
(i.e. areas classified as pine that were not considered as such by the reference data),
a surface approach was implemented. Because assessing the accuracy of objects with
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Figure 5. Maps of stable and changed area in the three periods (1984-1990, 1990-2000 and
2000-2009). Green is the area that remains as pine during the period, red shows the reduced
pine area and yellow shows the increased pine area. The study area (top left inset) is divided
in three sections (A, B and C) to facilitate the description of change over the three periods of
interest.
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punctual field measures is especially difficult in a non-homogeneous landscape, we
used the MFE for assessment of the commission error. When a level 5 pine segment was
outside an MFE pine polygon, it was deemed erroneous: this occurred in 181 cases (an
area representing 1.8% of the total classified pine area). The MFE had been derived
using generalization criteria that make it not sufficiently adequate for assessment of
our lower levels of segmentation and classification.

4.3 Trends in landscape carbon stocking

After segmenting the MPPA and vetting cloud and cloud shade-affected segments,
5042 objects remained for analysis, representing the extent and percentages shown in
table 6.

Change in carbon stock was evaluated over the MPPA. The global average PI indi-
cates the average performance of these forests as carbon pools; studying how the
average PI changes over time permits inference of carbon stock trends. A low aver-
age PI during the 25 year period, in the range —15 to 15, reveals the overall carbon
neutral quality of these pine forests: on average the rate of change of carbon stocks
is slow. The highest PI average occurred in 2000 (average PI 12.91) and the lowest PI
average in 2002 (average PI —11.91, figure 6(«)). Prior to 1990 the mean PI is relatively
low and remains steady; from 1991 to 2000 the PI tended to increase, but our scarcity
of data during this time period precludes detailed description. In the last decade there
is a tendency towards lower PI averages, with transitional fluctuations (figure 6(a));
in this time period higher values of the PI standard deviation denote the increasing
complexity of landscape carbon pools.

It is worth emphasizing that the PI is an indicator of processes and not of states;
it does not enable estimation of absolute carbon stocks, but indicates relative rates of

Table 6. Characteristics of the maximum potential pine area (MPPA) segments
after vetting and removing cloud affected objects.

No. of objects Area (ha) Average size (ha) Area percentage (%)

Permanent 1981 76 545 38.6 44.7
Intermittent 3061 94 570 30.9 553
Potential 5042 171 116 33.9 100.0
(a) MPPA Pl average and standared deviation (b) Pl average
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Figure 6. Average PI values during the period 1984-2009. (a) Average and standard deviation
(shown by the error bars) in the MPPA; (b) average values for the permanent and intermittent
areas.
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change in carbon stocks: a positive PI value indicates that the forest is in a process of
augmenting its carbon storage (e.g. density increment by natural growth); a negative
PI value indicates that the forest is in a process of reducing its carbon storage (e.g.
diminution of density in a thinning operation).

Changes over time of the PI average follow a similar trend in areas of permanent
and intermittent pine coverage (figure 6(b)). Maximum and minimum PI values are
coincident in time: year 2000 is the maximum PI — i.e. the maximum average rate of
positive change (fast rise of carbon stocks); year 2002 is the minimum PI - i.e. the
minimum average rate of negative change (fast drop of carbon stocks). However, fluc-
tuations of the PI average are notably more accentuated in the intermittent area. The
PI standard deviations and range of values are lower in permanent than in intermittent
areas (table 7), corroborating the more stable character of the persistent pines.

4.4 Assessment of carbon pooling areas

Assessment of the trends of change in carbon stocks was feasible by exploring density-
homogeneous landscape units. The PI values of homogeneous elements defined in
2000 with the TCA (forest density proxy) are normally distributed, with a mean value
very close to zero on all dates (figure 7) and standard deviation around 40 (table 7).
As expected, the distribution is narrow on initial dates, with a low variance of PI; the
variance increases steadily before 1991 and more notably later. The global stability
of the landscape carbon stocks decreases progressively (figure 7) during the period of
analysis: areas with relatively steady carbon stocks (i.e. not modifying forest density)
at initial dates develop towards higher carbon stocks (e.g. density increment) or lower
(e.g. density drop) carbon stocks.

To facilitate interpretation of these results and to produce more detailed informa-
tion on the spatial distribution of carbon pooling changes over time, we established five
categories of PI values, based on the statistical distribution present (figure 7, table 8).
The carbon stock of objects in the neutral group is not in a process of change; the slow
drop and slow rise groups are in a slow process of changing their carbon stock towards
lower or higher levels, respectively, and the fast rise and fast drop groups are in a rel-
atively rapid process of changing their carbon stock towards higher or lower levels,
respectively. The scene-specific character of the PI values produces results relative to
the area; comparison with results in other areas would require a thorough calibration
of values.

All segments were classified at each date in one of these five categories (table 8); the
number of objects and the area in each of the carbon pooling groups at each date was
assessed. On average there was 64% of the area in a neutral carbon pooling process
over the entire period (figure 8(a), table 9). The maximum area in this process group

Table 7. Statistics of the overall PI values (all dates considered).

Potential Permanent Intermittent
Mean 1.065 1.018 1.096
Standard deviation 40.920 37.596 42.935
Kurtosis 15912 9.533 17.938
Skewness —0.09700 0.29412 —0.26743
Minimum —794.60 —495.49 —794.60

Maximum 784.77 473.84 784.77
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Figure 7. Distribution of MPPA 2000 objects’ PI values at different dates.

Table 8. Classification of PI values in carbon stocking classes.
Groups are defined based on statistical distribution criteria.

Carbon stocking

PI process Simplified class
<—60 Fast drop Drop

—60 to —20 Slow drop

—20t0 20 Stable Neutral
20-60 Slow rise Rise

>60 Fast rise

occurred in 1987 (96% of total area) and the minimum in 2005 (40% of total area). The
neutral area followed a consistent lowering trend over time (figure 8(5)). On average,
only 2% of the potential area was in fast rise and a similar 2% of the area was in
fast drop carbon stocking processes during the period (table 9). Slow rise and slow
drop carbon stocking processes represent equivalent areas along this period, with an
overall average of 17% and 15%, respectively (table 9).

Because the fast rise and fast drop categories made up very small proportions, we
considered a more simplified classification in further description: rise, neutral and drop
are the three categories considered (table 8). Neutral is the area maintaining the carbon
stock without significant change, and as mentioned before, it was diminishing over
time to balance an increasing activation of carbon pools (figure 8(b)): larger areas
were progressively entering processes of rising or dropping carbon stock.
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Table 9. Area proportion (%) of carbon stocking groups.

Process 1987 1990 1991 2000 2001 2002 2003 2004 2005 Average
Fast rise 0.06 021 050 9.11 1.62 029 050 2.13 4.04 2.05
Slow rise 231  8.19 1296 24.05 2344 12.84 18.00 15.10 1587 14.75
Rise 2.37 840 13.47 3316 2506 13.13 18.50 17.23 1991 16.80
Neutral 96.37 8291 7239 4436 62.08 5743 60.03 62.62 40.05 064.25
Slow drop 1.24 8.48 13.64 19.51 12.63 26.65 18.66 18.80 32.58 1691
Fast drop 0.02 022 050 297 023 2.79 281 1.35 7.46 2.04
Drop 1.27 8.70 14.14 2248 12.86 29.44 21.47 20.15 40.04 18.95
Net active 1.10 —0.30 —0.67 10.68 1220 —16.31 —2.97 —2.92 —20.13 —-2.15

(‘rise’

minus

‘drop’)

Before 2000, more than 70% of the MPPA area was neutral and after that it fluc-
tuated between 40% and 64%. The area in a process of rising carbon stock reached
a minimum proportion in 1987 (2%) and a maximum proportion in 2000 (33%). The
area in a process of dropping carbon stock reached a maximum proportion in 2005
(40%) and a minimum in 1987 (2%). The area fractions in different categories of
carbon stocking process at various dates are shown in figure 8(c).

4.5 Intermittent and permanent area carbon pooling

In order to determine whether the area permanently covered with pine and the area
only intermittently covered follow similar carbon pooling trends during the time stud-
ied, these areas were analysed separately. We found that the neutral area — stands in
which carbon stock is not changing appreciably — follow a linear decreasing trend in
both areas, although it was more pronounced in the intermittent area (figure 9(a)).
The permanent area has a more equitable distribution of areas in the process of
rising and dropping carbon stocks, with distributions only out of the 30:70 range
on two occasions (2003 and 2005, figure 9(b)). The intermittent area shows a rela-
tively equitable distribution of areas in the process of rising and dropping carbon
stock, except in the initial years of the last decade, when distributions reached the
80:20 range.

Observing the enlargement of area ongoing processes of rising or dropping carbon
stock, it is clear that a carbon pooling activation has occurred in the last 25 years.
Designated as an active area in figure 10, the changing area shapes a trend comple-
mentary to neutral (figure 9(a)). Rising and dropping areas have been compensated for,
driving the net area chrono-line very close to zero (figure 10). Contributions of the
permanent and intermittent regions are shown.

Discussion

Variations in the area and distribution of pines occurred during the last 25 year period
in the Central Range of Spain were assessed with a multilevel object-based classifi-
cation of normalized images acquired at regular intervals. Further, the time series of
Landsat images and two spectral indices derived from the TCT enabled description
and analysis of changes in carbon stocking pools. The TCA is strongly correlated with
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forest stand density in the study area, and its derivative, the PI, characterizes rates
of changing processes. Results indicate that the pine-dominated area in the Central
Range has increased by 40% from the initial to the final date; there is an area perma-
nently covered with pines and a large extent only temporarily occupied during these
decades. Carbon stocking pools have been activated in the second half of the analysis
period, when larger areas show faster rates of rise and fall of carbon stocking.

Land use in the study area is governed by national and regional administrations,
and land-use changes do not proliferate. Moreover, pines in the Central Range have
been managed in a sustainable manner for several decades (Bravo et al. 2010), with
extractions of light intensity and assurance of regeneration by natural methods or
plantation; clear cutting is not a local forest management practice. We expected small
variations of pine area during the 25 year period of analysis, except in sporadic fire
disturbed areas. The approach applied for land-cover classification is based on objects
with contextual information (Johansen et al. 2010) and includes the TCA among the
input features to aid in sorting stand density. Thanks to the multilevel character of
each date classification, simultaneous detection of larger stands with the required char-
acteristics (species and density) and undersized objects in patchy areas was possible;
this technique is of particular interest in distinguishing smaller changes in distribution
that would otherwise blur into larger objects or be rejected as a speckle effect in a
pixel-based classification.

Class signatures from samples in the reference image (date 2000) were used to
classify other images (date 1984, 1990, 2009) assuring identical classification crite-
ria. For assessment of classification accuracy, the independent reference information
required (Congalton and Green 1999) was only available for one date; we relied on
the exhaustive process of radiometric normalization and assumed similar accuracy
in other classifications (accuracy >90%). One of the difficulties when comparing the
Spanish NFI data for assessment of change is the declared disparity of base cartog-
raphy used in each repetition (Vallejo 2005). With a historical series of good quality
images available, retrospective studies of change become feasible and offer increased
precision. In this work we classified images acquired at time intervals similar to NFI
repetitions (10 years), and our results are in agreement with other studies based on
field data comparison (i.e. indicating a trend of increment in forest area). The spatially
detailed information provided and the capacity to readily incorporate data at inter-
mediate dates for more detailed reports are some key strengths of methods based on
remotely sensed data.

Obtaining reference independent information with sufficient temporal frequency for
validation of change maps is complicated (Lu et al. 2004, Cohen et al. 2010). Visual
validation of changes was possible in the eastern area (Madrid province) where online
historical aerial photography is available (http://gestiona.madrid.org) at varying time
steps. We could readily corroborate the spatial location of change events, but the exact
time of occurrence was more complicated, especially when the time step of our series
of images differed markedly from the reference data; subtle changes could only be
visually compared. The decadal frequency of typical field data is insufficient for the
validation of frequent change maps. Further, more work is needed in developing meth-
ods for the evaluation of historical change accuracy; some strategies incorporating
high spatial resolution images are emerging, like the TimeSync tool from Cohen ez al.
(2010), which incorporates images from Google Earth. Although this is an invalu-
able source of data, Google Earth images are only available for a short historic period
and its global coverage is not complete with a sufficiently dense frequency, making
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design-based methods (Thomas et al. 2011) the most feasible option for our situation
in Central Spain.

The TCA index is relatively new, but the relation of greenness to brightness compo-
nents of the TCT for characterizing forest density classes and successional stages has
been used before in various forest environments. In our study area the TCA is strongly
related to forest density; with three or more consecutive images the PI enables the char-
acterization of relative rates of change in forest density and carbon stocks. TCA and
its derivative, the PI, resulting from the TCT, are scene dependent (Crist and Cicone
1984). Possible artefacts induced by annual phenology dissimilarities are minimized
by a rigorous process of normalization. We analysed trends in carbon stocking for the
MPPA (area potentially covered by pine during the whole period) and assessed rates
of change, comparing the area permanently covered with pines and the area intermit-
tently covered. There is a trend towards activation of carbon pools, but the intermittent
area shows a higher variability of processes and the area of permanent pine confers a
more neutral carbon pooling character. We focused our analysis on change processes,
but a combined interpretation of the TCA and its derivative, the PI, can provide a
simultaneous view of forest density and change processes going on, thereby enabling
some understanding of the elusive relationships between landscape patterns and pro-
cesses — a recursive question of landscape ecology. Further work to calibrate the TCA
values with quantitative density estimations is recommended to permit a simultaneous
characterization of patterns and processes.

The PI continuous scale of values provides versatility in change detection capacity
and enables the characterization of rapid (high PI values) and slow (low PI values)
rates of change. With an adequate time interval between images, subtle changes in for-
est density can be detected; this is of particular interest in the Mediterranean area,
where the majority of forests are subject to some drought and are relatively slow
growing compared with other temperate areas (Merlo and Croitoru 2005). In man-
aged forests, partial harvest or thinning operations might be detected (low negative PI
value) and later recovery of density tracked (positive PI value). If the silvicultural goal
1s to maintain a constant value of BA, a time series of PI values would remain close to
zero. Assessment of the absolute values of carbon sinks and sources remains an ongo-
ing question (Houghton 2003) but historic trends of relative carbon stock changes can
be assessed, and the effect of management practices monitored with detailed spatial
information. A PI-based approach is especially informative for locations characterized
by subtle, non-stand-replacing disturbances.

Conclusions

The availability of a long time series of Landsat images offers an opportunity for
retrospective historical studies of forest change. Temporally dynamic models relat-
ing spectral properties and forest structural condition facilitates the evaluation of
changing trends. A relatively new index derived from the TCT, the TCA has sup-
ported the assessment of change in the area and distribution of Mediterranean pines
in Central Spain for a 25 year period. Although absolute values of carbon fluxes
were not assessed, characterization of changing trends in relative carbon stock was
assessed with the Process Indicator (PI), the TCA derivative, and further characterized
by sub-periods of time, with subtle change detection also enabled and demonstrated.
The spatial definition of sources and sinks as well as changing trends over time are
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a valuable contribution for the global issue of carbon budgeting reports and for
evaluation of management strategies.
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CHAPTER Il1

Cristina Gomez, Michael A. Wulder, Fernando Montes, José A. Delgado, 2012. Modeling
Forest Structural Parameters in the Mediterranean Pines of Central Spain using
QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART).
Remote Sensing, 4, 135-159. doi:10.3390/rs4010135

RESUMEN

Modelizacion de parametros estructurales en los pinares mediterraneos del Sistema
Central espafiol mediante imagenes QuickBird-2 y CART

El diametro cuadratico medio, el area basal y el nimero de pies por hectarea son parametros
descriptivos de la estructura forestal, relevantes en el calculo de volimenes maderables y en
la estimacion de biomasa, y son por tanto medidas clave en los inventarios forestales. La
informacion que proporciona el inventario forestal es indispensable para llevar a cabo una
gestion sostenible de las masas forestales, asi como para el conteo de carbono acumulado y
para el desarrollo de cualquier estrategia de planificacion regional. El tratamiento de
imagenes obtenidas mediante teledeteccion se utiliza cada vez méas para complementar los
métodos tradicionales de medida y estimacion de la estructura forestal, especialmente sobre
grandes extensiones, y para evaluar cambios a lo largo del tiempo. Con frecuencia se estima
de manera empirica las caracteristicas forestales mediante imagenes de teledeteccion, a pesar
de ciertas limitaciones conocidas y que son especialmente notables en zonas complejas como
los bosques mediterraneos. En este trabajo se investigd la capacidad de las imagenes de alta
resolucién espacial (< 5m) y algunas técnicas relacionadas para modelizar pardmetros de
estructura a escala de rodal (n = 490) en pinares mediterraneos del centro de Esparia. Las
imagenes utilizadas son multiespectrales y pancromaticas, de resolucion espacial 2.4 m y
0.68 m, recogidas por el satélite comercial QuickBird-2. A partir de estas imagenes se
extrajo informacion espectral (del visible e infrarrojo cercano) y espacial (textura de imagen)
que se utilizo en la modelizacion. La técnica estadistica elegida para desarrollar los modelos
de los parametros estructurales es Classification and Regression Tree Analysis (CART). El
didmetro cuadratico medio se pudo modelizar con precisién (R? = 0.8; RMSE = 0.13 m)
dando un error medio del 17% mientras que el error medio en los modelos de area
basimétrica fue del 22% (RMSE = 5.79 m? ha™). En cuanto a la densidad, aplicando
categorias como suele hacerse en la gestion forestal, los modelos CART clasificaron
correctamente el 70% de los rodales, con el resto en una categoria adyacente. En la
estimacion de parametros forestales mediante teledeteccion, se suele obtener mayor
precision en zonas de cobertura media y en el rango inferior que estos parametros muestran

157



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:
a remote sensing approach

en la zona de estudio. Esta circunstancia quedo aqui corroborada por la estructura de los
residuos de los modelos. Los resultados demuestran la capacidad de algunas propiedades
de las iméagenes de alta resolucién tomadas desde satélite para informar sobre la estructura
local de los pinares mediterraneos. ElI Plan Nacional de Teledeteccion espafiol (PNT)
comenzo recientemente la recogida de coberturas anuales de alta resolucién sobre todo el
territorio nacional, ofreciendo una oportunidad Gnica para la estimacion de la estructura
forestal. Gracias a la frecuencia de los datos pueden detectarse las pérdidas o
incorporaciones de arboles y refinar la estimacion de los parametros estructurales. Ademas,
las imagenes de alta resolucion y los productos derivados pueden utilizarse para producir
sinergias, sin necesidad de entrar en competencia, con métodos de inventario tradicionales
para la provisién de datos durante los ciclos de inventario y para detectar posibles
perturbaciones.

Palabras clave: estructura forestal; alta resolucion espacial; segmentacion de iméagenes;
CART,; seguimiento forestal
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Abstract: Forest structural parameters such as quadratic mean diameter, basal area, and
number of trees per unit area are important for the assessment of wood volume and biomass
and represent key forest inventory attributes. Forest inventory information is required to
support sustainable management, carbon accounting, and policy development activities.
Digital image processing of remotely sensed imagery is increasingly utilized to assist
traditional, more manual, methods in the estimation of forest structural attributes over
extensive areas, also enabling evaluation of change over time. Empirical attribute estimation
with remotely sensed data is frequently employed, yet with known limitations, especially
over complex environments such as Mediterranean forests. In this study, the capacity of high
spatial resolution (HSR) imagery and related techniques to model structural parameters at the
stand level (n = 490) in Mediterranean pines in Central Spain is tested using data from the
commercial satellite QuickBird-2. Spectral and spatial information derived from
multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively)
served to model structural parameters. Classification and Regression Tree Analysis
(CART) was selected for the modeling of attributes. Accurate models were produced of
quadratic mean diameter (QMD) (R* = 0.8; RMSE = 0.13 m) with an average error of 17%
while basal area (BA) models produced an average error of 22% (RMSE = 5.79 m’/ha).
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When the measured number of trees per unit area (N) was categorized, as per frequent
forest management practices, CART models correctly classified 70% of the stands, with all
other stands classified in an adjacent class. The accuracy of the attributes estimated here is
expected to be better when canopy cover is more open and attribute values are at the lower
end of the range present, as related in the pattern of the residuals found in this study. Our
findings indicate that attributes derived from HSR imagery captured from space-borne
platforms have capacity to inform on local structural parameters of Mediterranean pines.
The nascent program for annual national coverages of HSR imagery over Spain offers
unique opportunities for forest structural attribute estimation; whereby, depletions can be
readily captured and successive annual collections of data can support or enable refinement
of attributes. Further, HSR imagery and associated attribute estimation techniques can be
used in conjunction, not necessarily in competition to, more traditional forest inventory
with synergies available through provision of data within an inventory cycle and the
capture of forest disturbance or depletions.

Keywords: forest structure; high spatial resolution; image segmentation; CART;
monitoring

1. Introduction

Sustainable management of Mediterranean pine forests requires detailed and up-to-date information
regarding structural parameters [1]. Wood volume and biomass content in forest stands, calculated
with structural indicators such as mean height and quadratic mean diameter, are basic data for
administration of resources. Moreover, increasingly important and emerging environmental concerns
related to habitat protection, carbon accounting, and biodiversity, make reliable knowledge of forest
resources a requirement for national and international reporting [2].

In Spain, as in many other countries, accurate information of structural parameters is usually
obtained via direct measurements by crews on the ground of systematically sampled field inventories,
based upon a network of plots located on a regular grid [3] that is also subject to prior stratification.
Field surveys are often costly and typically not spatially exhaustive. Field surveys are also often
collected over a given re-measurement period, which can preclude adequate updating of information
for periodic reports, and are of questionable validity over dynamic or non-merchantable forests.
Despite these concerns, ground based inventories provide reliable and detailed information for
development of models such as yield tables per species and given location. It is the difficulties in
portraying these plot based measures spatially that for many applications limit the utility of this
information to address more broad forest monitoring and reporting objectives [4], especially in
heterogeneous forests.

Satellite imagery has been shown to support forest inventories of extensive areas by providing
timely observation, increasing the accuracy of area estimates, producing wall-to-wall thematic maps,
and providing inventory estimates with acceptable bias and precision [5]. The spatially detailed
information provided by high spatial resolution (HSR) imagery makes it an appropriate data source to
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aid in accurate estimation of structural parameters, and following suitable methods facilitates the
characterization of subtle changes in forest structure through time [6].

The goal of this research is to explore the potential of HSR imagery to characterize forest structure
in Mediterranean pines in the Central Range of Spain. Motivated by this purpose we examine the
capacity of QuickBird-2 imagery to model the quadratic mean diameter, basal area, and number of
trees per unit area at the stand level (as direct estimators of volume and biomass). Our specific
objectives are:

e To model the relation between structural parameters (quadratic mean diameter, basal area, and
number of stems per hectare) measured via field sampling and a set of spectral and spatial
variables derived from HSR multispectral and panchromatic imagery.

e To test and verify the ability of Classification and Regression Trees (CART) as the statistical
technique for modeling structural parameters.

e To identify the image derived variables with the greatest informative capacity in the modeling
of structural parameters, assessing in particular the inclusion of image textural metrics in
the models.

2. Background

Space-borne optical remote sensing is a reliable source of information for assessment of forest
characteristics over wide areas [7]. The synoptic view and the regular acquisition cycle of image data,
combined with the burgeoning selection of techniques available for attribute estimation, make
remotely sensed data an appropriate and valuable source of data for assessment of forest condition and
detection of change—offering information to augment costly and time consuming field campaigns for
inventory update and re-measurement [8].

2.1. High Spatial Resolution (HSR) Imagery

Spatial resolution is an important consideration when using remote sensing for forest
characterization [9]. Currently the spatial resolution of systems frequently used for vegetation
characterization range from coarse (e.g., 1 km of the Advanced Very High Resolution Radiometer) to
very high (e.g., 0.4 m of the GeoEye-1 sensor). The adequacy of remotely sensed data for a specific
purpose (e.g., attribute level: tree, stand, landscape, region) is conditioned by its spatial resolution,
which is also inversely related to the extent covered by the image [10], also known as the
image footprint.

Medium spatial resolution data with pixels sized 10—-100 m (e.g., Landsat Thematic Mapper (30 m),
ASTER (15 m)) are appropriate for characterization of forest condition [11] and monitoring of
conditions and change at the forest stand level [12]. Certainly a key to the applications and monitoring
success of Landsat is the ability to capture conditions and dynamics that relate human interaction with
terrestrial ecosystems. However, more detailed spatial data available since the launch of various
commercial satellites (e.g., IKONOS in 1999, Orbview-3 in 2003) provide the opportunity for more
precise depiction of forest parameters and are poised to reduce estimation errors of forest attributes to
an acceptable level for operational applications [13]. HSR imagery facilitates, for instance, the
detection of individual tree characteristics [14], providing improved estimates of forest structural
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attributes [7]. Panchromatic imagery, with fine spatial resolution (< 1 m) is particularly well suited for
analysis of spatial relations through image texture measures [15,16]. Texture measures enable the
combination of spatial detail of panchromatic imagery with unique spectral information conferred by
multispectral imagery serving to leverage complementary information [17] that can be employed
separately or with a pan-sharpening approach [18,19]. Spectral measures may be understood to inform
on vegetation status, type, and condition with textural measures informing on vegetation structure.

Still, the dearth of established methods for image processing and the complex interactions between
sun-sensor-surface geometry and forest structural characteristics [20], particularly in complex
topographies, persist in making the use of HSR data challenging [6]. HSR imagery acquired using
space-borne platforms allows for data collection over remote areas, with predictable georadiometic
qualities, and information content analogous to mid-scale aerial photography—commonly used for
forest inventory purposes. Lidar (Light detection and ranging) technology has a demonstrated capacity
to characterize forest structure [21-24] albeit with high costs persisting to limit operational, wide-area
applications [25]. Although lidar, with a capacity to collect highly detailed information regarding
forest attributes, shows promise as a means to collect plot-like data for training attribute estimation
algorithms applied to HSR imagery.

2.2. HSR Related to Forest Structure

The research literature is replete with studies relating forest structural parameters estimated from
HSR satellite data (Table 1). Frequent techniques to obtain information from HSR images include
crown isolation [26,27], shadow analysis [18,28], texture analysis [13,29,30], and geostatistical
approaches [31-33]. The capacity to characterize forest structural attributes typically decreases as
crown closure increases [6], with an asymptotic relationship predictably emerging for vertically
distributed attributes of forest structure [34].

Table 1. Studies employing satellite HSR imagery for estimation of forest structural parameters.

. Environment Sensor Statistical Analysis
Study  Attribute Best Result
Location Data (spa. res., m)  Parameter
Sooke River watershed IKONOS ANOVA Homogeneity in
large window
[29]  Ageclass British Columbia sizes performs
Pan (0.82) Texture measures
(Canada) better than
variance
. Conifer plantation IKONOS Delineation
[26] Stem density ) ; ; 83% accuracy
Ontario (Canada) Pan (0.87) Tree crown delineation
Diameter Lake Tanoe Basin IKONOS Linear regression R=0.67
[35] Crown area California (USA S o c had R=0.77
Stem density alifornia ( ) an-sharpened (1) rown shadow R =087
Circumference Even aged Norway ) . R*=0.82
. IKONOS-2 Linear regression )
Height spruce forest R =0.76
[13]  Stand density R*=0.82
Hautes-Fagnes . 2
Age . Pan (0.87) GLCM textural metrics R*=0.81
(Belgium)

Basal area R*=0.35
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Table 1. Cont.
Conifers QuickBird Linear regression
. . Sierra Nevada N
[36] Maximum height . . . R"=0.66
mountains California MS (2) Reflectance
(USA)
Height Mature forest in the A 49,
ei ccurac
& foothills of the Rocky ~ IKONOS Decision tree v
[37] Age Mountai Accuracy 57%
ountains
Crown closure Accuracy 85%
Alberta (Canada) MS (4) and Pan (1)  Reflectance and texture
. Boreal spruce forest QuickBird Linear regression )
[28] Biomass ; R*=0.87
Canada Pansharpened (0.6)  Shadow fraction
Conifer and hardwood = IKONOS Linear regression
‘ R*=0.73
[31] Mean crown size . Variogram
North Carolina (USA)  Pan (not reported) . . RMSE =0.10
Image variance ratio
Mangrove IKONOS Linear regression
[38] Biomass . Fourier textural R?=0.92
French Guiana NIR (4) Pan (1) L
ordination indices
Coniferous plantations . . .
. ) QuickBird Modeling-allometry .
7] Stand density in slopes R = 0.82 density
Stand volume Shikoku Iskland R =0.78 volume
Pan (0.61) Reflectance
(Japan)
Crown width Tropical forest IKONOS Allometric equations L
. Crown within 3%
[39] Tree diameter )
Stem i Brazil Pan (1.00) Local extreme filter of field measures
em frequency
Open Juniperus forest ~ QuickBird Linear regression R = 0.67
[18] Volume Shadow area 2 ’
Turkey Pansharpened (0.61) R*=0.51
Crown area
Pine and poplar plant. ~ QuickBird Variogram
[32] Mean crown size  Beijing and Shanxi, Error: 2.52-42%
. Pan (0.61-0.67) Reflectance
(China)
IKONOS and _ . R*=0.60
Hardwoods . . Linear regression .
QuickBird regression
CD~variance ratio
. (RMSE =0.82)
[16] Mean crown size . )
Ohio and North . . R“=10.74 across
. Pan (1) Pan (0.73) Image variance ratio . .
Carolina (USA) site comparison
R* = 0.52 across
sensors
) Boreal forest QuickBird Regression tree R*=0.53
[40] Mean stand height
Yukon, Canada Pan (0.68) Reflectance RMSE=2.84 m

2.3. Status in the Use of Remote Sensing for Estimation of Forest Structure in Spain

The Spanish Plan Nacional de Teledeteccion (PNT) is committed to acquiring complete national

coverages of HSR satellite imagery annually [41] and to make data available for research at no cost.

The acquisition phase started in 2008 [42], capitalizing upon archival data to backdate the database to
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2005 coverage. Initial coverage consist of SPOT5-HRG XS+P (2.5 m) data, with other sensors being
considered for future acquisitions [43]. Access to this data represents a unique opportunity to
incorporate HSR into Spanish forest inventories as an operational and low cost data source to meet a
range of information needs. The data is to be collected with a primary focus on land-use land-cover
change assessment [42], but capacity to generate information for forest monitoring and reporting can
also be generated.

Encouraged by a readily available source of data there has recently been an increased interest by the
Spanish research community in relation to remote sensing technologies and the potential application to
forest environments, in particular the characterization of forest structure. Vazquez de la Cueva [44]
explored relationships between forest structural attributes at the plot level (e.g., height, basal area, and
crown canopy closure) and spectral information derived from Landsat Enhanced Thematic Mapper
Plus (ETM+; 30 m pixel size) imagery combined with topographic data. The study considered three
types of forest in Central Spain and applied a multivariate canonical ordination method. The author
found a strong influence of vegetation type on the results, with a low percentage of variance explained
precluding development of robust empirical models. Pascual et al. [45] used lidar data and a two stage
object based methodology to characterize the structure of Pinus sylvestris L. stands in forests of
Central Spain. Five structure types were defined based on height and density parameters. The median
and standard deviation of height were found to be the most valuable for definition of structure types,
with the approach developed being proposed for operational application suitable for inclusion in forest
inventory procedures in support of forest management plans. Merino de Miguel ef al. [33] investigated
the strength of relations between dasometric parameters and textural variables in Pinus pinaster Ait.
stands in Central Spain. The authors used geostatistical tools (i.e., variograms), calculated with
orthophotography and IKONOS-2 imagery with original and degraded spatial resolutions. The authors
found the strongest correlations when the variogram was calculated for spatial resolutions of 1 m and
2 m. As such, opportunities to further explore the capacity of HSR imagery to estimate a range of
forest structural parameters remain.

3. Methods

Below, and in Figure 1, we summarize the approach implemented and the data utilized in this
research. Forest structural attributes (QMD, BA, and N) are derived from data measured on the field
through a process of geostatistical interpolation. Spectral and spatial variables from HSR imagery
direct the delineation of stand-like areas for summarizing data. Statistical models linking forest
parameters and imagery data are built with CART and validated with numerical and graphical tools.

3.1. Study Area and Field Data

The study focuses on pines in the Central Range of Spain (Figure 2), an area mainly dominated by
P. sylvestris L., P. pinaster Ait., and P. nigra Armn. species. Two sites representing different forest
conditions were chosen for availability of field data. Pinar de Valsain (hereafter Valsain) is a 7,627 ha
forest of Pinus sylvestris L. on the North facing slopes of Sierra de Guadarrama (Segovia). It is a
multifunctional forest (timber production, recreation, and protection) with an established management
plan since 1889 that has evolved from a rigid to a more flexible scheme over the subsequent decades.
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Management actions and recreational activities have had an impact on the forest structure [46]. Valle de
Iruelas (hereafter Iruelas) is a 5,483 ha forest of P. pinaster Ait., P. sylvestris L., and P. nigra Arn. in
Sierra de Gredos (Avila). It is also a multifunctional forest (wood, resin, and pasture production,
recreation, and wildlife habitat). Although the first management plan was approved in 1886, historical
circumstances prevented its implementation. The production of resin during the twentieth century
favoured old growth development and a complex history of fires has also conditioned the forest structure.

Figure 1. Schematic methodology followed in the study.

[ Field inventory plots ‘ QuchBud-" imagery ‘
Raster layer of structural attributes:
QMD, BA, N l MS Reflectance + Pan Texture

’

[ Stand-like 0b]th5

Characterization
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‘ Statistical modcls

‘

Systematic surveys based on ground sample plots are conducted periodically over the study sites
measuring attributes including density, diameter at breast height (dbh), and height. For this study, data
is from 2005 for fruelas and 1999 for Valsain, with the latter updated to 2004 conditions using a
locally appropriate growth model following procedures recommended by the Spanish National Forest
Inventory. The quadratic mean diameter (QMD) and basal area (BA) were calculated at each inventory
plot (Equations (1-2)) where the total number of trees per unit area (N) was also available; expansion
factors were used to scale values to a given area [47]. BA and QMD are adequate attributes for volume
modeling at the stand level. QMD was preferred over the arithmetic mean diameter as it has a stronger

2d;
OMD = ||~ (1)

BA=* Y @

i

correlation to stand volume [48].
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Figure 2. Location of the study sites. Insets show QMD values as kriged from inventory
plots in the treed areas of Valle de Iruelas and Pinar de Valsain. Subset areas covered by
834 plots in Valsain and 661 plots in [ruelas were investigated in the study.
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Geostatistics provides a means for extrapolation of measured values to unmeasured points and
areas, and facilitates the derivation of thematic layers for integration with other data [49]. Kriging is a
spatial interpolation method that yields the best possible estimation of the spatial variable of interest at
every unmeasured point [50] and the error committed in the estimation is minimized and known at
each point [51]. In this study we mapped the forest variables of interest (QMD, BA, and N) measured
in ground plots located over grids sided 150 m in /ruelas and 200 m in Valsain into raster layers
through a process of ordinary kriging. The relative standard error (i.e., the standard error of the kriged
surface relative to the mean attribute value at the polygon level) was on average 15% for the QMD
kriged layer and 25% for the BA and N layers, similar to the variability found for multiple plots found
within the same polygon. More accurate averaging is facilitated, as sampling is complete and spatial
correlation of plot values is accounted for.

3.2. HSR Imagery

QuickBird-2 is an Earth Observation satellite launched by Digital Globe in 2001, providing data in
five spectral bands (Table 2). It has the capacity to be oriented and to capture images off nadir enabling
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a temporal revisit of 2—6 days depending on latitude [52]. The pixel size of QuickBird-2 images is
2.4 m for the multispectral bands and 0.68 m for the panchromatic band (Table 2).

Two QuickBird-2 images, supplied in a georeferenced form by the data provider were used in this
study, each covering one of the study sites (Figure 2, Table 2). Images were orthorectified with a
Digital Elevation Model (DEM) derived from a contour vector map 1:10,000 (www.sitcyl.jcyl.es) and
registered to aerial photography with 0.25 m pixels (www.sitcyl.jcyl.es). The multispectral and
panchromatic bands were orthorectified separately with root mean square errors (RMSE) of 0.69-0.72 m
(multispectral bands) and 0.66—0.81 m (panchromatic band). Images were resampled with cubic
convolution to 2.0 m (multispectral bands) and 0.6 m (panchromatic band) for alignment with the
regionally appropriate coordinate grid (UTM 30N) and to facilitate integration with rasterized attributes.
Atmospheric correction of the multispectral images was performed with the COST model [53] using
water bodies as dark objects and the atmosphere-scattered path radiance L,” estimated with a relative
spectral scattering DOS model (A~*) under very clear atmospheric conditions [54].

Table 2. Characteristics of the satellite imagery used in the study.

QuickBird-2 Imagery

) ) Multispectral 24 m
Spatial resolution .
Panchromatic 0.68 m
Blue 0.45-0.52 pm
Green 0.52-0.60 pm
Bands Red 0.63-0.69 pum
NIR 0.76-0.90 pm
Pan 0.45-0.90 pm
Valsain Iruelas
Date (dd/mm/yyyy) 19/05/2004 05/08/2005
Sun elevation (°) 58.4 72.0

3.3. Image Segmentation

Image segmentation is the partitioning of images into uniform continuous spatial units [55].
Through the application of automated algorithms the criteria for homogeneity can be defined by the
user, based on parameters such as tone or spatial pattern. Image objects or segments composed of
various pixels provide supplementary features for image analysis, not available in pixel based analysis,
such as local statistical relations of digital numbers [37], shape, size or context. That is, once segments
are produced, objects (i.e., trees or groups of trees) or spatially constrained summaries of the digital
numbers within the segment may be used to provide representative segment-level information [39]. In
forest environments, the segments can often be considered as analogous to the manually delineated
stands found in forest inventories [56].

Segmentation routines were applied to the QuickBird-2 images using Definiens Cognition Network
Technology® [57,58]. In the process of image segmentation the size of resulting objects is determined
by the scale parameter and by the landscape characteristics; for instance a given scale value would
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produce larger objects in a homogeneous landscape and smaller objects in irregular areas. The scale
parameter was 50 in fruelas and 100 in Valsain. Other settings guiding the segmentation routine
include color-shape 0.8-0.2 and smoothness-compactness 0.5-0.5. The homogeneity criteria included
the visible and NIR bands with similar weight, and an aspect layer derived from the DEM to incorporate
topographic information as one of the possible structural driving factors [59] was weighted 0.1.

3.4. Image Texture Metrics

Image texture, defined by Haralick and Bryant [60] as “the pattern of spatial distributions of
grey-tone”, describes the relationship between elements of surface cover [61] and is one of the
most valuable criteria in visual interpretation. The estimation of forest stand parameters is
sometimes improved with a combination of spectral and spatial information [62] such as texture.
Consequently a host of texture measures have been utilized to predict structural parameters in various
environments [13,29,55,63,64] and has shown particular utility in complex structures such as tropical
forests for above ground biomass estimation [17,65].

Table 3. Attributes used for modeling. The mean and standard deviation of each of these
attributes was de facto used in the decision trees.

Predictor Variable Description

Reflectance
BI (Blue) Reflectance band 1
B2 (Green) Reflectance band 2
B3 (Red) Reflectance band 3
B4 (NIR) Reflectance band 4

Textural
HS Homogeneity Small window
Con_S Contrast Small window
ES Entropy Small window
H M Homogeneity Medium window
Con M Contrast Medium window
EM Entropy Medium window
H L Homogeneity Large window
Con L Contrast Large window
E L Entropy Large window

Topographic

Aspect Orientation

We applied an approach for texture analysis based on measures derived from the Grey Level
Coocurrence Matrix (GLCM) [66,67]. The GLCM is a tabulation of how often different combinations
of pixel grey levels occur in an image [68] at a specific distance and orientation (within a particular
processing kernel, or analysis window). Texture analysis is a multiscale phenomenon [69] and
choosing the right window size to capture meaningful local variance without generalizing unrelated
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features [13] is one of its key challenges [70]. For selection of window sizes to calculate the GLCM
texture measures we used the semivariogram approach [71,72]. Semivariograms were calculated for
image subsets over five experimental structural plots in Valsain [73] and ten structurally different areas
in [ruelas, identified with a combined approach based on inventory data and visual interpretation to
cover all distinctive structural conditions. The range in the variogram indicates the distance beyond
which pixel values are no longer correlated [71] and is an indication of the elements forming the
texture present within the scene. The range is frequently associated with the most dominant elements
in the scene, be it single tree crowns in open forests, or the canopy of groups of trees in close
environments. Once the variograms were calculated, the range values were manually identified at the lag
distance, where the variograms first flattened, corresponding with window sizes on the QuickBird-2
panchromatic band of 7 x 7,9 x 9, and 13 x 13 pixels in Valsain and 7 x 7, 13 x 13, and 23 x 23 pixels
in fruelas. We considered three GLCM texture variables, that is, Homogeneity, Contrast, and Entropy
for each size of window (Small, Medium, and Large) (Table 3) based on their high values of
correlation with structural parameters observed and pre-analysis investigations (results not shown).

3.5. Decision Tree

One option to identify relations between variables in multivariate data sets resulting from object
analysis is the use of decision tree data analysis [37] also known as Classification and Regression
Trees (CART). Regression trees identify relationships between a single continuous response
(dependent variable) and multiple, continuous and/or discrete, explanatory (independent) variables,
through a binary recursive partitioning process, where the data are split repeatedly into increasingly
homogeneous groups (nodes), using combinations of variables (rules) that best distinguish the
variation of the response variable. Tree models do not make assumptions regarding the distribution of
the input data [74,75]; plus, they are able to capture non linear relationships between variables and are
robust to errors in the input and results. Tree modeling is a nonparametric method which basic theory
is reported in Breiman et al. [76].

CART approaches have frequently been used in the environmental remote sensing community for
classification and mapping [77-79] for modeling [80-82] and for forest characterization [83]. In the
estimation of forest structural parameters with HSR satellite imagery, decision trees have been applied in
diverse environments: Chubey et al. [37] used CART for analysis of percent species composition, crown
closure, stand height, and age with IKONOS imagery based on analysis of objects in Alberta, Canada,
obtaining the best estimations for species composition and crown closure. Goetz et al. [84] used
IKONOS and shadow analysis to model and derive classified maps of canopy cover, with 97.3% overall
accuracy, in Maryland, USA. Mora et al. [40] estimated mean height of forest stands in boreal coniferous
forests in Yukon, Canada, obtaining a prediction accuracy of 53% and an RMSE of 2.84 m on stand
height. All of the abovementioned approaches suggest local models for estimation of forest structural
parameters as an alternative tool for alleviation of often costly and time consuming field inventories.

3.6. Applied Decision Tree

For development of decision tree models each segment was characterized with the mean and
standard deviation of the reflectance and texture variables described above (Table 3), and the mean
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values of the kriged forest structural parameters (QMD, BA, N) and topographic orientation. These
sets of data were input for the CART analysis in Matlab®.

Samples were randomly split into calibration (two thirds) and validation (one third) sets. The
representativeness of the subsamples was tested with a Multi Response Permutation Procedure
(MRPP) [85,86]. This non-parametric method tests the hypothesis of no difference between two or
more data sets for a range of parameters (i.e., the metrics used as inputs to the regression tree). To fit
the model a cross validation process with ten iterations was performed; to avoid over-fitting we
considered the establishment of a minimum number of cases in terminal nodes and pruning with the 1
SE rule [76].

4. Results
4.1. Stand-Like Areas Produced by Segmentation of the QuickBird-2 Imagery

Objects smaller than 0.5 ha produced in the process of segmentation were eliminated. Furthermore,
screening outliers of reflectance and texture variables (i.e., segments which values were three or more
standard deviations from the mean) enabled identification of objects that did not appear representative
of known local forest conditions, typically corresponding with shepherding areas with buildings
present in Valsain and objects dominated by bare soil in Iruelas. Thirty nine such unusual objects were
removed as outliers for subsequent analysis. Finally the number of objects preserved for modeling was
490, with an average area of 5.3 ha. Table 4 lists the statistical descriptors of the structural attributes
(QMD, BA, N) and topographic parameter (aspect) at the stand-like level. Figure 3 illustrates the
distribution of the structural parameters.

Table 4. Statistical descriptors of structural (QMD, BA, N) and topographic (aspect)
parameters of the stand-like objects obtained with the segmentation process and after
removal of outliers. To fully capture the ecological meaning of the stand orientation and to
avoid operational ambiguities we computed aspect values to be expressed as a non-polar
complex number using the notation of Euler: Aspect = exp(—i x (6 — [1/2)).

QMD(m) BA(m’/ha) N(n/ha)  Aspect (6°)
Mean 0.5715 26.5344 323.2064 168.5636
Standard Error 0.0138 0.5044 6.4277 4.3050
Median 0.3918 26.5148 306.461 155.2855
Standard Deviation 0.3062 11.1671 142.2839 95.2968
Kurtosis —0.7460 —0.6941 0.1987 -1.2352
Skewness 0.7943 0.2266 0.6035 0.1926
Range 1.2407 53.8552 805.0587 337.2344
Minimum 0.2148 5.8128 39.1273 10.1746

Maximum 1.4555 59.6681 844.186 347.4090
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Figure 3. Distribution of the structural parameters (QMD, BA, N) in the stand-like
polygons produced with the segmentation of the satellite images. Note that QMD graph

bins are not all equal.
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4.2. Regression Trees

147

Information regarding the calibration and validation subsamples is presented in Table 5. The MRPP

test, performed including all stand level predictors, confirmed there were no significant differences

between the calibration and validation datasets (p-value 0.77).

Table 5. Number of samples used for calibration and validation of the CART models.

Samples Stand-Like Segments
Total 490
Calibration 327
Validation 163

Fitting all regression tree models was statistically significant (p-value < 0.001) and with high values

of correlation (Table 6) between structural parameters and image predictors. To assess the performance

of the models we applied them to the independent set of validation data, analyzing values of the Root
Mean Square Error (RMSE) and correlation coefficient (R?) (Table 6) and evaluating discrepancies
between values measured on the field and values predicted by the regression tree models with the help

of graphic tools (Figures 4 and 5).

Applied to the validation sample the models show varying strength of the relation between the

structural parameters and the image variables used as predictors. The QMD model correlation value is
the highest, followed by the BA model and with the N model ranking last (Table 6). The RMSE



Remote Sens. 2012, 4 148

values, a means to measure the precision of the models, are moderate for QMD and BA, and relatively
higher for N when a prediction of the exact number of trees is expected (Table 6). As practical
decisions in forest management are often based on classes of attributes rather than exact values of
structural parameters, we evaluated the performance of the CART model to classify values of N. The
measured number of trees per unit area (N) was classified into density categories ranging from open
(N < 150) to closed (N > 500) categories. The CART model classified 70% of the stand-like segments
in the correct group, with all other segments classified in an adjacent class. The average relative error
of the models was also evaluated as the percentage of RMSE respect to the average measured
parameter (Table 6).

Table 6. Fitting and performance results of the regression tree models for QMD, BA, and N.

Structural Validation Fitting

Parameter RMSE % Average Error R’ Rho p-value
OMD 0.13 17 0.80 0.89 1.81 e-59
BA 5.79 22 0.70 0.85 7.08 e-47
N 98.86 31 0.46 0.71 1.80 e-26

Scatter plots in Figure 4 illustrate the relation of observed values of QMD (a), BA (b) and N (c)
versus the corresponding estimated values of the validation subsample (n = 163). The QMD model
performs with very good accuracy for the smaller diameters, with points close to the 1:1 line, and more
randomly spread to both sides for larger diameters. The BA model depicts a similar but less accurate
pattern, while the N model shows increasing disagreement of observed to modeled values at the more
dense stands. Noteworthy is a tendency of underestimation for parameters at high values (QMD > 1.2,
BA > 50, and N > 600), likely as an expression of the well known saturation of optical sensors at
increasingly high biophysical parameter values [34,87]. This kind of error is important to note with
reference to volume and biomass estimation, since larger trees contribute more to these estimates [88],
but it is of minor importance in this particular area where few stands are over the thresholds mentioned
above (Figure 3; Table 4).

Figure 4. Plot of the observed structural parameters QMD (a), BA (b), and N (¢), versus
estimated values for the validation subsample (n = 163).
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Figure 4. Cont.
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A closer look at the residuals confirms the relative precision of the QMD model (Figure 5(a)); an
assessment of relative errors revealed that the relative error committed is below 20% in 76% of the
validation sample (n = 123). A comparison of 5 cm diametric classes between the estimated and
observed data indicated an agreement in 53% of the stand-like segments, with 19% falling in the adjacent
class. Furthermore, the random distribution of residuals in the most frequent classes (0.30-0.40) leads
to an almost complete compensation of the average error. This optimistic result should be carefully
considered, as averaged values over areas of different sizes could lead to miscalculations. The
residuals in the BA model look randomly distributed (Figure 5(b)), but there is a higher number of
underestimates (57% of the validation sample) and in these cases the absolute value of residuals is
higher. In the N model 55% of the validation segments are underestimated; a tendency to underestimate
lower values and overestimate higher densities is observed.

Figure 5. Plot of the observed QMD, BA, and N versus the residuals of the models.
(a): QMD, (b): BA, (¢): N.
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To reduce over-fitting and to make the models practical and operationally viable we established a

minimum number of cases in terminal nodes (n = 80). Furthermore, examining the terminal nodes

average values and the improvement of intra-group variance they represent from father nodes (i.e.,

decreased variance) appropriate pruning levels were determined. With these premises the number of

terminal nodes obtained was between seven (for the QMD and BA models) and eight (for the N model)

(Figure 6; Table 7).

The most relevant predicting variables determining decisions in the regression tree models are

shown in Table 7. Noteworthy is the primacy of stdev Bl (standard deviation of blue reflectance)

which enters all models in first place. All other reflectance bands (green, red and near-infrared) did

also determine some branch rules (Figure 6). Among textural variables, contrast and entropy of various

window sizes were the more relevant; homogeneity was not included in decision rules. A total of five

or six variables were included in each of the models.
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Figure 6. Example of a regression tree model of QMD. Hollow boxes represent branch
rules; elements fulfilling the rule go to the left, the rest go to the right. Values of terminal
nodes average QMD of elements in the group.

| stdB1<0.003358 |

| Mean B3<0.050656 | | Mean Contrast 1<4.92715 |
1.02 | Mean B4<0.204511 | | stdB4<0.067646 | | stdB1<0.005892 |
/ lo87| [034| [039] 035 026
Table 7. Relevant predictors in regression trees of QMD, BA and N and number of terminal nodes.
Structural Parameter Relevant Predictors Terminal Nodes
Stdev Bl
Mean B3
OMD Mean Contrast Larger window 7
Mean B4
Standard deviation B4
Stdev Bl
Mean B3
BA Mean Bl 7
Standard deviation B2
Mean Entropy Small window
Stdev Bl
Mean Bl
N Standard deviation B4 g
Mean Entropy Medium window
Mean B2
Mean B3

5. Discussion

Structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area
of Mediterranean pines in Central Spain have been modeled with regression trees and with HSR
reflectance and texture metrics from QuickBird-2 imagery as model inputs. Results, although limited
by uncertainties in the reference data and processing techniques, show reasonable accuracy (R* = 0.8)
and precision (estimation relative error ~17%) for the QMD model and robust models (R > 0.7) for BA
and N but with higher estimation relative error (22-31%).
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Management plans were initiated in Spanish forests more than a hundred years ago [89]. Albeit the
early start, only 19% of the treed forest area in Spain is currently governed by a management plan
under formal implementation [90]. Often noted as a primary reason for this unfavorable proportion, is
the high cost of field inventories, limiting surveys to forests with potential to produce economic
revenue. However, with the increasing concern over environmental issues, current forest inventories
are aimed at informing a variety of long-term objectives including biodiversity, carbon accounting,
habitat protection and sustainable timber production [91]. Remote sensing can contribute to the ability
to produce timely, cost efficient inventory estimates via image segmentation for stand delineation [45]
and statistical modeling for assessment of attributes with acceptable precision [5]. HSR satellite
sensors emerged a few years ago as promising data sources for forest inventory [6,92] providing
consistent and frequent imagery. Our study demonstrates that in Mediterranean pines of Spain
QuickBird-2 imagery and CART modeling would be useful and affordable for assisting in the
assessment of forest areas with a variety of objectives (e.g., recreation, carbon storage), though caution
is required to deal with inherent modeling uncertainties. Although remote sensing is not expected to
replace completely field measurement any time in the near future [5] it would facilitate planning and
management with realistic goals.

Among the strengths of HSR imagery is the high geometric fidelity [93] and the possibility of
identification of individual elements such as trees or groups of trees. The unique capabilities of the
QuickBird-2 instrument are exploited here by including texture metrics in the modeling, as image
texture is influenced by biophysical parameters like crown diameter, distance between trees, tree
positioning, LAI, and tree height. The historic limited use of texture parameters is often indicated as
related to a paucity of appropriate software tools [94] and is being progressively overcome.
Alternately, for monitoring programs with various dates of imagery and more than one scene, off-nadir
view angles and differing solar and atmospheric conditions should be considered [20] as they may pose
analysis difficulties.

Heterogeneous environments typically require a dense network of sample plots for an adequate
assessment of varying conditions [95]; likewise, the capacity of a grid of inventory plots to capture the
diversity of Mediterranean forests could be argued. With the complete coverage offered by remotely
sensed data, selective sampling may become unnecessary, for instance if imputation techniques are
applied. Furthermore, in applications where sampling is needed, segmentation of HSR images helps
the design of sampling units by automatically and consistently defining homogeneous areas [96],
otherwise delineated with human expert and costly effort. If adequately trained, segmentation algorithms
have the ability to semi-automatically divide images into structurally homogeneous areas only
requiring human revision [25], that can be used as strata to optimize the field sampling design [97] and
also allowing the reduction of sample collection needs.

Tree models are easily interpreted and applied, with few statistical requirements imposed that make
it an appropriate method of estimation in forest environments. Employing data from managed stands’
field inventories in the support of modeling efforts has an intrinsic limitation related to the dearth of
measurements of small trees; this circumstance is possibly related to a bias of the data considered as
truth, and could partly excuse the underestimating trend of our models. All sources of uncertainty
should be thoroughly considered for aiding the interpretation of modeling results. Our calibration
dataset consisting of 327 stands is relatively large (66% of the sample) as the accuracy of decision tree
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models tends to increase with increasing calibration sample size [70]. Mora ef al. [40] in Yukon
(Canada) demonstrated that a smaller calibration dataset (30% of the sample) could perform
adequately if there were difficulties to obtain reference information, making this method an even more
appealing tool for inventory. With a simple structure, that is, low number of rules and final nodes,
CART constitute a practical and parsimonious tool for classification of stands for management or
planning. The acquisition of periodic HSR coverage of the whole territory by the PNT poses an
unprecedented opportunity to use remote sensing for assessment of the structure of Spanish forests that
managers should strongly consider.

6. Conclusions

High spatial resolution (HSR) satellite imagery, such as QuickBird-2, has information content
enabling the modeling of structural parameters for the pine forests of Central Spain. In this research the
quadratic mean diameter (QMD), basal area (BA), and number of trees per hectare (N) of pines in the
Central Range of Spain were modeled at the stand level with classification and regression trees
(CART). Models were produced with average estimation errors suitable for planning purposes:
predictions of QMD had an average error of 17% and BA an average error of 22%, while N was
correctly classified in 70% of the cases. Although some refinement of the techniques applied here is
possible to support operational activities, this study has demonstrated that following the selection of
appropriate statistical tools combined with the periodic acquisition of HSR imagery by the Spanish
Plan Nacional de Teledeteccion (PNT) could be of great value to the forest community as a low cost
option to support planning activities. Additional stakeholders could also be accommodated and
supplied with wide-area estimates of forest structural attributes following the methods suggested in this
research. The capacity to revise the estimates with new plot data in subsequent years and to incorporate
depletions using change detection procedures also points to additional utility and value that can be
created from the national PNT image collections.
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RESUMEN

Diversidad estructural en pinares mediterréaneos del Sistema Central espafiol
mediante imagenes QuickBird-2 y analisis de correlacion candnica

El conocimiento de la variabilidad estructural proporciona informacion sobre la
biodiversidad en los bosques, ya que estructuras forestales irregulares se asocian a una
mayor complejidad de la vegetacion. La caracterizacion de la diversidad estructural
mediante teledeteccion contribuye al seguimiento de los ecosistemas, al desarrollo de
estrategias de gestion y a la produccion de informes. En este trabajo se investigd las
relaciones entre la diversidad de estructura en pinares mediterraneos del Sistema Central
espafiol y las variables derivadas de imagenes de alta resolucion espacial obtenidas con el
satélite comercial QuickBird-2 (pixel de tamafio 2.4 m multiespectral y 0.68 m
pancromatica).

Se caracterizd la diversidad estructural a escala de parcela (N = 1022) como combinacion
lineal de varias medidas de dispersion (MAD: desviacion absoluta de la mediana) en
relacion a las medias equivalentes locales, considerando los diametros de troncos
individuales, alturas y didmetros de copa. Paralelamente se evaluaron las variaciones
espectrales en las bandas del visible e infrarrojo cercano, asi como varias medidas de
textura extraidas de las imagenes pancromaticas y evaluadas con varios tamafios de
ventana. Estas medidas espectrales y de textura se calcularon sobre areas circulares de 0.3
ha en correspondencia con las parcelas medidas sobre terreno. El analisis de correlacion
candnica ayudo en la identificacion de las combinaciones de reflectancia y medidas de
textura que mayor relacion tienen con la diversidad estructural forestal (R~0.89). Se
encontré que la diversidad de reflectancia tiene mayor capacidad que las medidas de
textura para describir la diversidad estructural forestal cuando las masas son homogéneas
(R~0.47 versus R~0.39), mientras que la textura cobra relevancia en el modelo cuando la
estructura forestal es compleja (R~0.88 versus R~0.63). A pesar de que los resultados estan
definidos empiricamente por las condiciones locales y las caracteristicas de adquisicion de
las imagenes, demuestran la capacidad de las imagenes de alta resolucién espacial para la
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descripcion de la diversidad estructural en bosques del entorno Mediterraneo, un resultado
de especial relevancia en Espafia, donde el Plan Nacional de Teledeteccion ha comenzado

la coleccién de una cobertura anual de imagenes de alta resolucién espacial sobre todo el
territorio nacional.

Palabras clave: diversidad estructural forestal, pinares mediterraneos, QuickBird-2,

textura, reflectancia, analisis de correlacion candnica, seguimiento, informes
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Forest structural diversity characterization in
Mediterranean pines of central Spain with
QuickBird-2 imagery and canonical correlation
analysis

Cristina Goémez, Michael A. Wulder, Fernando Montes, and José A. Delgado

Abstract. Variation in forest structure provides information on vegetation complexity and provides insights on
biodiversity. Characterizing forest structural diversity with remotely sensed data supports reporting, monitoring, and
policy development. We explored the relationship between forest structural diversity in Mediterranean pines of the
Spanish Central Range and variables derived from imagery captured with a commercial high spatial resolution satellite
(QuickBird-2; with pixels sided 2.4 m multispectral and 0.68 m panchromatic). To combine multiple aspects of tree
conditions at a stand level, “structural diversity” was characterized at the plot level (N = 1022) as a linear combination
of the median of absolute differences of individual trees’ bole diameter, height, and crown diameter measured on the
field from the local median equivalents. Spectral reflectance variations in the visible and near-infrared, as well as image
co-occurrence texture metrics from the panchromatic imagery at various window sizes were generated. All relationships
to image-derived values were assessed against circular 0.3 ha areas corresponding with the field measured plots.
Canonical correlation analysis aided in identification of combinations of reflectance and texture metrics most highly
related with forest structural diversity (R = 0.89). Reflectance diversity was found to be more important than
co-occurrence texture features in describing forest structural diversity when forest structure was limited (R = 0.47 vs.
R = 0.39), whereas texture was more informative to the model when the forest structural diversity was high
(R = 0.88 vs. R = 0.63), relating more complex forest conditions. Our results, although empirically defined by the local
conditions and image acquisition characteristics, demonstrated the potential in high spatial resolution imagery for
description of forest structural diversity in forests of the Mediterranean environment, especially important for Spain
where a national high spatial resolution image data base has been collected.

Résumé. La variation de la structure forestiere fournit de I'information sur la complexité de la végétation et apporte un
éclairage quant a la biodiversité. La caractérisation de la diversité de la structure forestiére a 1’aide des données de
télédétection est un outil utile pour la communication des données, le suivi et le développement de politiques. On a exploré
la relation entre, d’une part, la diversité de la structure forestiére dans les pins méditerranéens dans la cordillére centrale
de I’Espagne et, d’autre part, les variables dérivées des images acquises par un satellite commercial a haute résolution
spatiale (QuickBird-2 avec un espacement de pixels de 2,4 m en mode multispectral et de 0,68 m en mode
panchromatique). Pour combiner les multiples aspects des conditions des arbres au niveau du peuplement, la “diversité
structurale” a été caractérisée au niveau de la parcelle (N = 1022) comme étant une combinaison linéaire de la médiane
des différences absolues du diamétre des troncs, de la hauteur et du diamétre de la couronne des arbres individuels mesurés
sur le terrain a partir des équivalents de la médiane locale. On a ainsi généré des variations de la réflectance spectrale dans
le visible et le proche infrarouge de méme que des mesures de cooccurrence de la texture a partir des images
panchromatiques pour diverses dimensions de fenétre. Toutes les relations par rapport aux valeurs dérivées des images ont
été évaluées en fonction de parcelles circulaires de 0,3 ha de superficie correspondant aux parcelles mesurées sur le terrain.
Une analyse de corrélation canonique a permis d’identifier les combinaisons de mesures de réflectance et de texture les
plus reliées a la diversité de la structure forestiére (R = 0,89). On a pu observer que la diversité de la réflectance était plus
importante que les caractéristiques de cooccurrence de la texture pour décrire la diversité structurale de la forét lorsque la
structure de la forét était limitée (R = 0,47 vs. R = 0,39), alors que la texture procurait plus d’information pour le modele
lorsque la diversité structurale de la forét était élevée (R = 0,88 vs. R = 0,63), montrant des conditions forestiéres plus
complexes. Nos résultats, bien qu'empiriquement définis par les conditions locales et les caractéristiques d’acquisition
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d’image, démontrent le potentiel des images a haute résolution spatiale pour la description de la diversité structurale de la
forét dans les foréts en milieu méditerranéen, ce qui est particuliérement important dans le cas de I’Espagne ol une base de

données nationale d’images a haute résolution a été ¢laborée.

[Traduit par la Rédaction]

Introduction

Forest structural diversity is important for sustainable
management (Rio et al., 2003) and for conservation of
biodiversity (Gil-Tena et al., 2010). Structurally complex
forests are found to better contribute to recreational uses
compared with plantations (Rydberg and Falck, 2000), and
they provide a wider range of habitat conditions as well
(Sullivan et al., 2001). The complexity in the arrangement
of forest elements is also associated with the resilience to
change, that is, the ability to adapt and respond to
disturbances and perturbations (Rozdilsky and Stone,
2001; Elmqvist et al., 2003; Garcia-Lopez and Allué, 2011).

The structure of forest stands can be characterized by
the size, age, and species distribution in vegetation
layers, frequently focusing on the tree component (Poage
and Tappeiner, 2005). Measures of forest structure often
include vertically distributed features (e.g., dominant height,
number, and distribution of strata) and horizontal features
(e.g., crown size, gaps) (Spies and Franklin, 1991; Wulder
et al., 2004), as well as species richness (Maltamo et al.,
2005). The number and variation of relative abundance of
different attributes across forest stands defines the forest
complexity (McElhinny et al., 2005). When species richness
is low, tree size variables such as height, diameter, and crown
dimension may become the most important factors affecting
structural diversity (Neumann and Starlinger, 2001) and a
key aspect to assess stand biodiversity (Pommerineng, 2006).

A variety of indices have been developed to quantify tree
size diversity (e.g., Shannon index, Gini coefficient, Simpson
index) (McElhinny et al., 2005), requiring measurement of
certain parameters on the ground for evaluation (Lexerod
and Eid, 2006). Measures describing tree size diversity
within stands are important to assess economical, ecological
and social values of the forest (Lexerod and Eid, 2006).
For an accurate description of stand structure a combina-
tion of various measures or resultant indices is often
required (Rouvinen and Kuuluvainen, 2005). Furthermore,
mapping and monitoring tree size diversity over large areas,
and with a given temporal repetition for local and interna-
tional reporting purposes, requires affordable methods from
both economic and application perspectives. The synoptic
view, extensive coverage, and the consistency and frequency
of data acquisition, make remote sensing uniquely well
suited as a source of information for the periodic assessment
of forest structural diversity. Remote sensing provides data
collected in a consistent and systematic fashion representing
large areas at a known period in time (Wulder et al., 2004).
The remotely sensed data can be integrated with ground
data to extend and inform about local measures to represent
wide areas in a consistent, practical, and repeatable manner.
The goal of this research is to assess the potential of high
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spatial resolution imagery to characterize forest structural
diversity in Mediterranean pines of the Spanish Central
Range with the following objectives: (i) to determine and
quantify the relationships between “forest structural
diversity”” measured at the plot level and data captured by
a satellite-borne sensor in the form of visible and
near-infrared (NIR) spectral reflectance as well as spatial
combinations of panchromatic reflectance values, as related
by texture metrics; (i7) to identify the relative relevance of
reflectance measures versus texture metrics in characterizing
the forest structural diversity; and (iii) to assess how the
spectral diversity — structural diversity relationship varies
under different conditions of forest density, i.e., determine
if different relations occur in open versus closed forest
conditions.

Background

Remote sensing has been widely used to characterize
forest structure (St-Onge and Cavayas, 1995; Cho et al.,
2009; Wolter et al., 2009) and forest structural complexity
(Coops and Catling, 1997; Ozdemir et al., 2008; Pasher and
King, 2010) with data acquired from a variety of sensor
types representing a range of scales of information. Cohen
et al. (1995) applied the Tasseled Cap Transformation
components from medium spatial resolution Landsat
imagery (30 m pixel size) to map four structurally different
coniferous classes in Oregon, with an overall accuracy of
82%. White et al. (2010) characterized forest canopy
structural diversity in coastal temperate forests of Canada
with hyperspectral data from Hyperion EO-1 and canonical
correlation analysis. They found that age and height
diversity are the structural attributes most strongly related
to spectral diversity and concluded that in addition to
species, structural diversity should be considered for assess-
ment of biodiversity in coastal environments. Miura and
Jones (2010) demonstrated that LiDAR (Light Detection
and Ranging) is particularly valuable for description of
vertical structure. They developed a protocol for character-
ization of the structure of a dry Eucalypt forest landscape
using different laser pulse return properties from a waveform
LiDAR system. The classification scheme consisted of eight
structural categories and allowed the quantification of
gaps in different layers. Hyde et al. (2006) tested the synergy
of various types of sensors for estimation of structural
parameters at the stand and at the landscape level in a
range of forests environments in California. They concluded
that LiDAR with Landsat Enhanced Thematic Mapper
Plus (ETM + ) was the best combination of sensors produ-
cing the most accurate regression models between forest
structural parameters and remotely sensed metrics. The
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synoptic view and the range of techniques available for
analysis of data make remote sensing valuable for assisting
the assessment of forest structure conditions (Cohen and
Goward, 2004).

The availability of high spatial resolution imagery has
enabled the development and application of image analysis
techniques such as “crown isolation” (Gougeon and Leckie,
2006; Hirata, 2008), “shadow analysis” (Greenberg et al.,
2005; Leboeuf et al., 2007), “texture analysis” (Franklin
et al., 2001; Kayitakire et al., 2006) or “geostatistical”
approaches (Song, 2007; Feng et al., 2010) that individually,
or combined, facilitate the study of forest structure and
structure complexity at local spatial scales. Panchromatic
imagery, with finer spatial resolution (<1 m pixel size) than
multispectral (MS) imagery is well suited for accurate
identification of individual tree characteristics (Colombo
et al.,, 2003), enabling the analysis of spatial relations
through image texture measures (Ouma et al., 2006; Song
et al., 2010). Combining the spatial detail of panchromatic
imagery and the unique spectral information conferred
by MS imagery leverages complementary information
(Lu et al., 2002) that can be employed separately or with a
pan-sharpening approach (Ozdemir 2008; Pu et al., 2011).
It has been frequently noted that as crown closure increases
the capacity to characterize forest structural attributes
decreases (Falkowski et al., 2009), with leaf area index
(LAI) as an example where an asymptote in LAI is typically
reached (e.g., LAI approx. 3-3.5, crown closure 60%). Based
upon this understanding of the limitation of optical imagery
and related analysis techniques, we posit that forest open-
ness (e.g., open, semi-open, or closed) may indicate which
technique is most appropriate for a particular site and that
some techniques might be transferable between sensors and
sites (Song et al., 2010).

In Mediterranean environments the study of forest
structure and complexity has received heightened attention
during recent years. Pascual et al. (2008) used LiDAR data
and a two-stage object-based methodology to characterize
the structure of Pinus sylvestris L. stands in forests of central
Spain. Five structure types were defined based on height and
density parameters. The median and standard deviation
of height were the most valuable variables for definition of
structure types. The approach applied was proposed for
operational application in the inventory procedure and
forest management plans. Vazquez de la Cueva (2008)
explored the existence of relations between forest structural
attributes at the plot level (e.g., height, density, basal area,
and crown canopy closure) and spectral information derived
from Landsat ETM + (30 m pixel size) imagery combined
with topographic data. The study considered three types of
forest in central Spain and applied a multivariate canonical
ordination method (redundancy analysis). There was a
strong influence of vegetation type on the results but the
low percentage of variance explained by the statistical
analysis precluded derivation of practical empirical models.
Merino de Miguel et al. (2010) explored the existence of
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relations between dasometric parameters and textural vari-
ables in Pinus pinaster Ait. stands in central Spain. The
research applied geostatistical tools such as the variogram,
calculated with orthophotography and IKONOS-2 imagery
of original and degraded spatial resolution and found the
strongest correlations when the variogram was calculated for
spatial resolutions of 1 m and 2 m.

Lamonaca et al. (2008) explored forest structural complex-
ity of a beech forest in Italy with a multilevel classification of
QuickBird imagery. Applying field-based diversity indices of
tree size, spacing, and species assemblage, they quantified
structural heterogeneity amongst forest regions delineated by
segmentation and evaluated the relationships between spatial
heterogeneity in forest structure and segmented polygons.
Their results supported the premise that a mixture of macro
and micro structural heterogeneity is present within the beech
forests investigated. Ozdemir et al. (2008) examined the
potential of ASTER imagery (15 m pixel size) to estimate tree
size diversity over forested landscapes in Turkey. With an
object-oriented approach they related texture measures with
diversity indices, finding the Gini coefficient more related
with image parameters than the Shannon index. To the best
of our knowledge there has not been any exploration of the
capacity of high spatial resolution (<5 m pixel size) imagery
to characterize forest structural diversity in Mediterranean
forests at the plot level.

Methods

Forest parameters measured in the field, analogous to
those made in support of forest management inventories,
were used to derive the structural diversity attributes. The
spectral and spatial measures were generated from Quick-
Bird-2 multispectral and panchromatic imagery. The rela-
tionship between the measures of forest structural diversity
at the plot level and reflectance-texture diversity were then
explored using Canonical Correlation Analysis (CCA) and
the outputs were interpreted based on the correlations
between the diversity measures and the canonical variates
(Figure 1).

Study area

The study focused on two pine forests in the Central
Range of Spain (Figure 2): Pinar de Valsain (hereafter
Valsain) and Valle de Iruelas (hereafter Iruelas), with
distinctive structural parameters derived from natural
circumstances (e.g., species composition, site condition,
disturbances) and human induced factors (e.g., silvicultural
treatments and production use) (Table 1).

Valsain is a 7627 ha forest of Pinus sylvestris L. on the
north facing slopes of Sierra de Guadarrama (Segovia). It is
a multifunctional forest, dedicated to timber production,
recreational opportunities, and protection, with an estab-
lished management plan since 1889. The silvicultural system
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Figure 1. Schematic methodology followed in the study. The relationship between forest
structural diversity evaluated with data collected on the ground at the plot level and remotely
sensed data measures of diversity is evaluated with CCA.

applied evolved from an initial uniform shelterwood system
in permanent blocks (rotation of 120 years and regeneration
period of 20 years) to a selective cuttings system until
1988, when a flexible management system was established
to allow for revisions to the established plan with reference
to the overall production objectives. Management actions
and recreational activities such as trail walking, which have
gained importance in recent decades and occur mainly at
lower elevations, have had an impact on the forest structure
(Montes et al., 2004).

Iruelas is a 5483 ha forest of P. pinaster Ait., P. sylvestris
L., and P, nigra Arn. in Sierra de Gredos (Avila). Itis also a
multifunctional forest producing wood, resin, and pastures
and providing recreation opportunities such as trail walking,
camping, and bird watching. Although the first management
plan was approved in 1886, historical circumstances pre-
vented an implementation directly following specification.
The production of resin during the twentieth century
favoured old growth development; a rich history of fires
has also conditioned the forest structure.

Forest structure diversity parameters

Forest structure is difficult to characterize using a single
variable (Lefsky et al., 2005) and requires information
relating both vertical and horizontal distribution of vegeta-
tion elements. Horizontal structure largely concerns the
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spatial distribution and density of trees (St-Onge and
Cavayas, 1995) and is frequently described through the
diameter at breast height (DBH) or some derived statistics;
vertical structure refers to tree height distribution requiring
some height related parameter for description (Tappeiner 11
et al., 2007).

Plot-based forest inventories are periodically conducted
for management in both study sites. Following local
management inventory practices circular plots of 11 m
radius, on average, are established over a regular grid with
GPS providing precise location, with attributes such as
DBH, height, crown diameter, and number of trees being
measured for all or a representative sample of trees in each
plot. The distribution of structural parameters of individual
trees follows an inverse J-shaped curve in Valsain and
Iruelas at a global level, as typically occurs in sustainably
managed Mediterranean forests.

We derived “structure diversity attributes” from field
measured mensurational data (Table 1); the Median Abso-
lute Deviation (MAD) (Equation (1)) of the DBH (Dyap),
height (Hyap) and crown diameter (Cyap) Was calculated
at the plot level for a total of 1022 plots (461 in Valsain and
561 in Iruelas). MAD variables were normalized with a
Box—Cox algorithm (Box and Cox, 1982). The “MAD
metrics’” are always positive and their values are directly
related with structural diversity, i.e., plots with higher values
of Dyvap, Hvap, and Cyap are structurally more diverse
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Valle de Iruelas Pinar de Valsain
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| 1 | 1 | L 1 | ] |

Figure 2. Location of study sites in the Central Range of Spain. Valle de Iruelas is located in Avila province; Pinar de Valsain in Segovia
province.

Table 1. Descriptive parameters of forest structural attributes measured on the ground.

Valsain Truelas Combined

DBH H C N DBH H C N DBH H C N
Mean 23.30 15.20 4.46 445.78 30.5 13.81 4.61 451.32 30.58 15.97 4.63 448.92
Standard error 0.09 0.03 0.01 13.42 0.11 0.32 0.01 16.07 0.11 0.23 0.01 10.79
Median 25 13.7 4.26 398.67 26.2 133 4.17 324.67 26.25 147 4.18 365.44
Standard deviation 14.56 6.09 1.75 289.25 15.13 5.57 1.69 395.27 15.24 6.68 1.70 353.04
Sample variance 212.01 37.15 3.09 83667 229.19  31.13 2.87 156243 232.51 44.64 290 124641
Range 122 44.2 13.30 1893 204.6 30.5 18.98 2532 209.6 44.5 19.30 2532
Minimum 10 5.8 0.92 33.22 15.0 4.5 2.71 32.46 10 4.5 0.92 32.46
Maximum 132 50 14.23 1926 219.6 35 21.69 2564 219.6 50 21.69 2564.0

Note: DBH, diameter at breast height (1.30 m); H, height; C, crown diameter; N, number of trees per ha.
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(and therefore more complex) than plots with lower values.
A zero value is possible, while unlikely, if all trees measured
in a plot have exactly the same dimension. As a density
attribute, the number of trees per ha (V) would be expected
to be significant in the characterization of forest structure
diversity at the stand level, but at the scale of analysis (plot
level) there is no internal variation of this variable. We
included the number of trees per ha (V) as an absolute value
(no plot MAD could be calculated) in the initial stages of
analysis, but found no significance in the models.

MAD = median,(abs (X; — median;(X))) (1)

where X; is the attribute (i.e., DBH, height, crown diameter)
of the ith element in each plot and X; is the attribute of the
Jjth element of the complete sample.

High spatial resolution imagery

Imagery acquired by the QuickBird-2 satellite covering
the study sites was used. QuickBird-2 collects data in various
regions of the electromagnetic spectrum, with three bands in
the visible and one in the NIR (with 2.4 m x 2.4 m pixels);
an additional panchromatic band provides data with finer
spatial resolution (with 0.68 m x 0.68 m pixels; Table 2).
QuickBird-2, launched 18 October 2001, is a commercial
satellite and is unique among other satellites in this class as
it has the largest image footprint and most on-board storage
capacity.

Processing of imagery involved: atmospheric correction
of the multispectral images with the COST model (Chavez,
1996) using water bodies as dark objects and the atmo-
sphere-scattered path radiance L/ estimated with a relative
spectral scattering DOS model (2% under very clear
atmospheric conditions (Chavez, 1988). Separate orthorec-
tification of the multispectral (MS) and panchromatic (Pan)
bands with a digital elevation model derived from a contour
vector map 1:10 000 (www.sitcyl.jeyl.es) (Root Mean Square
Error of 0.69-0.72 m for the MS bands and 0.66-0.81 m
for the Pan bands); and registration to aerial photography

Table 2. Characteristics of the satellite imagery used in the study.

QuickBird-2 imagery

Spatial resolution Multispectral 24 m
Panchromatic 0.68 m

Bands Blue 0.45-0.52 pym
Green 0.52-0.60 pm
Red 0.63-0.69 pm
NIR 0.76-0.90 um
Pan 0.45-0.90 pm
Valsain Iruelas

Date 19 May 2004 05 August 2005

Sun elevation (°) 58.4 72.0
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of 0.25 m pixel size (www.sitcyl.jeyl.es), with the full suite
of characteristics in Table 2.

Image metrics: reflectance and texture
diversity

Image texture is a valuable criterion for visual inter-
pretation, contains information about spatial and structur-
al arrangement of objects (Tso and Mather, 2001), and
provides context that may improve estimates of forest
structural parameters (Wulder et al., 1998). Image texture
is a means to interpret the spatial relationships between
digital numbers (Haralick et al., 1973) and to understand
how the variability in these values can inform on what is
being portrayed by the imagery. Single pixel measures often
inform on a portion of an object, with additional content
offered when considering neighbouring pixels. Texture
measures provide information regarding the simplicity or
complexity of neighbourhoods of pixels. For characteriza-
tion of forest structure, high resolution imagery texture
provides spatial information about density, distribution,
and spatial arrangement of trees (Ouma et al., 2006) and is
also related to the three-dimensional organization of tree
crowns (St-Onge and Cavayas, 1995; Bruniquel-Pinel and
Gastellu-Etchegorry, 1998). Greater variance in digital
numbers often implies a more complex forest environment,
whereas simple forest structure is associated with less image
variance (Cohen et al., 1990). In short, a relationship exists
between image spatial structure and the forest structure in
the scene (Wulder et al.,, 1998). One approach for
characterizing the spatial inter-relationships between image
digital numbers is the grey-level co-occurrence matrix
(GLCM) and associated indices that can be used to
describe the matrix (Haralick and Bryant, 1976). The
GLCM is a tabulation of how often different combinations
of pixel grey levels occur in an image (Hall-Beyer, 2007) at
a specific distance and orientation. For evaluation of image
texture we applied the approach of Haralick (Haralick and
Bryant, 1976), a method using statistical measures based
on the GLCM values (Caridade et al., 2008) that is also
known as a second order approach.

Exploratory research over a range of measurement
contexts (i.e., plot, stand) indicated that second order
texture metrics “homogeneity”, “contrast”, and “entropy”
appeared as most appropriate of the GLCM texture metrics
for distinguishing forest stands of varying structure (differ-
ing height, age, number of trees per hectare, and DBH) for
the Mediterranean pine forests present. Homogeneity and
contrast are measures of the amount of local variation in the
image (Haralick et al., 1973) and are by definition
highly correlated (Equations (2-3)). Entropy is a measure
of orderliness (Hall-Beyer, 2007) (Equation (4)) or lack of
image structure.
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N-1 P..
Homogeneity = — )
;) L+ (i —))
N-l
Contrast = » P, (i —j)* 3)
ij=0
N-1
Entropy = Z P (~InP,)) 4)
ij=0

where P;; is the (i, j)th entry of the normalized GLCM
matrix, N is the number of rows and columns in the image.

Texture metrics evaluated at three different window
sizes were calculated over the panchromatic channel of the
QuickBird-2 imagery. For evaluation of texture metrics
we aimed to apply window sizes corresponding to the
mean dimension of the scene objects (Kayitakire et al.,
20006), that is, a distance equivalent to individual crown

Table 3. Texture metrics evaluated in the study sites.

Window Metric Valsain Truelas

Small Homogeneity 7 x 7 7 x 7

Contrast

Entropy

Homogeneity 9 x9

Contrast

Entropy

Large Homogeneity
Contrast

Entropy

Medium 13 x 13

13 x 13 23 x 23

diameters or groups of trees’ canopy size, in each of the sites
(Table 3). For this purpose we followed the semivariogram
approach (Johansen et al., 2007; Nijland et al., 2009)
whereby the “range” value of the semivariogram identifies
the size of the scene objects and therefore determines the
window size to use (Franklin et al., 1996). As expected, the
uneven structure in Iruelas indicated a need for larger and
different window sizes than in Valsain, where the species
and silvicultural system applied have made the forest stands
more homogeneous (Figure 3). These findings are included
at this stage of the communication as the window sizes
produced are used to guide subsequent analyses.

To quantify the variation of the image metrics at the plot
level we used the MAD which, unlike the standard devia-
tion, is resistant to outliers (Chung et al., 2008); half the
values are closer to the median than the MAD and half
are further away. For each reflectance band (three in the
visible and one in the NIR) the MAD of pixel values was
calculated for each 0.3 ha circular area (approx. 616 pixels)
and the absolute difference with each equivalent global
MAD (calculated using all plots at each site) was evaluated.
A similar process was followed with co-occurrence texture
metrics over the panchromatic image (approx. 6640 pixels
per 0.3 ha circular area).

Canonical correlation analysis

While complex, quantifying structural diversity may be
approached through the application of multivariate statistical
analysis (McElhinny et al., 2005). The statistical analysis

Figure 3. Examples of areas with different forest structure and visual texture (top line: multispectral visualization (Red: NIR, Green: red,
Blue: green); bottom line: panchromatic visualization).
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required in this study will demonstrate if there is a relation,
and how strong it is, between the forest structural diversity
measured at the plot level as captured by the inventory
attributes and the spectral diversity measured by the reflec-
tance of the MS satellite-borne high spatial resolution sensor
and texture co-occurrence metrics evaluated with various
window sizes. We chose the CCA statistical approach as it
facilitates the study of interrelationships among sets of
multiple dependent and independent variables (Hair et al.,
2010). CCA places few restrictions on the data: normality,
that was tested with the Jarque-Bera test, and absence of
outliers that was checked through the Grubbs test (Grubbs,
1950). The ratio of sample size to number of variables was in
our case well over the recommended value of ten. In Table 4 we
summarize the variables included in the statistical analysis.

CCA enables generation of two outcomes of interest:
the “canonical variates” representing the optimal linear
combinations of dependent and independent variables and
the “canonical correlation” representing the strength of
the relationship between them. All variables are linearly
combined by group (dependent and independent) into
“variates”’; the dependence role is interchangeable and
used to facilitate interpretation.

A number of orthogonal (independent) “canonical func-
tions” are derived, maximizing the correlation between linear
composites. Each variable partial correlation with the respec-
tive canonical function is represented by its coefficient or
“canonical weight”, which enables understanding of the
function composition. However, frequent instability of these
coefficients advice the alternative use of “canonical loadings”
after a process of variables standardization (Hair et al., 2010).
Therefore, canonical loadings measure the simple linear
correlation between an original observed variable in the
dependent or independent set and the set’s canonical variate,
intended to indicate the variance that the variable shares with
its canonical variate. Variables that are highly correlated with

a canonical variate have more in common with the variate and
should therefore be given more importance in the variate’s
interpretation. Additionally, a measure of “redundancy’” may
be calculated that informs on the amount of variance in a set
of input variables (dependent or independent) that is ex-
plained by the other canonical variate. To determine which of
the canonical functions to interpret, a combined criterion
based on the statistical significance, the practical significance
of the canonical correlation and the redundancy measures for
each variate should be applied (Hair et al., 2010). “Canonical
cross-loadings” measure the simple linear correlation be-
tween the original observed variables and the opposite set’s
canonical variate, i.e., they represent the relation between one
variable and the linear combination of variables on the other
side. These coefficients are useful to determine which
independent variables are explicative of the dependent set
combination and, in our case, which spectral or textural
metrics would better explain the forest structural diversity.

Results

The CCA yielded two results of interest: the canonical
variates, which represented the optimal linear combinations
of dependent (forest structural diversity) and independent
(image reflectance—texture diversity) variables and the
canonical correlation, representing the relationship between
variates. We describe and interpret some outcomes of the
analysis which were relevant to our study objectives.

Canonical correlations and relative
importance of reflectance and texture
metrics

The number of canonical functions CCA yields is limited
by the lower number of variables in either the dependent or

Table 4. Dependent and independent variables used as input into the canonical correlation analysis.

Dependent variables

Independent variables

MAD (Median Absolute Deviation) of:
Diameter (Dyap)
Height (Hmap)
Crown diameter (Cyap)

Reflectance

MAD of:
Blue
Green
Red
Near infrared

Texture

MAD of:
Homogeneity small window
Homogeneity medium window
Homogeneity large window
Contrast small window
Contrast medium window
Contrast large window
Entropy small window
Entropy medium window
Entropy large window

© 2012 Government of Canada
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independent variate (Hair et al., 2010); in our case the
maximum number of functions was three, as this was the
number of original dependent variables considered
(Dmap> Hvap, Cvmap). Our interest focused on determining
if there is a relation and how strong it is between variates.
Therefore, only the strongest relation in each case scenario
was retained for further analysis and discussion, even if
more than one function was statistically significant (Table
5). The statistical significance was tested with the y? test.

In both Valsain and Iruelas there was a moderate relation
between the dependent (forest structural diversity) and the
independent (reflectance—texture diversity) variates, with
similar values of correlation in both cases (0.50 in Valsain
and 0.51 in Iruelas). To test the strength of the relationship
between forest structural diversity and the reflectance and
texture variables’ groups individually, we ran the analysis
independently with either set treated as independent.
This analysis showed that when including all variables in
the independent group there was a stronger relation than
including just one type of image variables (reflectance or
texture), which demonstrated the information associated
with spectral and textural signatures is complementary
(Lu et al., 2002; Colombo et al., 2003; Ouma et al., 2006).
Although they exhibited a relatively weak relationship, the
reflectance variables alone were more related in both sites
with structural diversity than the texture variables alone
(Table 5).

In a combined scenario, considering all plots from Valsain
and Iruelas together, with “expectation” median values
evaluated together, we found a strong relation between
variates, with an R of 0.89 (Table 5). This scenario illustrates
a more heterogencous forest where the range of forest
parameters is considerably higher than either the individual
sites (Table 1). In this case, texture diversity measures were
more able to explain forest structural diversity (R of 0.88 vs.
R of 0.63). Possibly the limited explanatory power of texture
variables in the individual sites was in part due to the limited
range of ground variables and consequent limited variation
in image texture outcomes.

Table 5. Canonical correlations of the first canonical function in
different scenarios (all statistically significant).

R (canonical

Site Independent group correlation)
Valsain Diversity (reflectance and texture) 0.505
Diversity reflectance 0.474
Diversity texture 0.389
Truelas Diversity (reflectance and texture) 0.512
Diversity reflectance 0.460
Diversity texture 0.360
Combined Diversity (reflectance and texture) 0.890
Diversity reflectance 0.634
Diversity texture 0.882
636

Most significant variables

Canonical cross loadings were interpreted to assess how
the individual independent variables (measures of reflectance
and texture diversity) related linearly with the forest structural
diversity or dependent variate. This procedure enabled
identification of those image metrics most contributing in
the characterization of structural diversity for the combined
case scenario (Valsain and Iruelas plots analyzed together).

Contrast and homogeneity evaluated at different window
sizes were the variables most strongly correlated with forest
structural diversity (Figure 4). This result supported the
intuitive notion that visual changes in the image are related
with variability of tree sizes on the ground, as this variability
produced internal shadowing effects within the stand. As
contrast and homogeneity are by definition strongly corre-
lated metrics, similar cross-loading values were expected, and
the opposite sign that occurred at medium window sizes
remains unexplained. Variations in the reflectance bands
were positively correlated with structural diversity, with the
three visible bands found more strongly correlated than the
NIR band. The character of entropy is variable and not
completely clear, being negatively correlated with structural
diversity when measured at the small window size (that is,
7 pixels x 7 pixels, or 4.2 m x 4.2 m) and weakly correlated
when measured at the other window sizes. It should be noted
that at the smaller window sizes, single tree crowns may be
represented, resulting in texture measures with a high local
variance (with noncrown conditions represented in
neighboring locations). These findings support the use of
larger windows relating stand conditions, rather than
individual trees (objects). Varying behaviour of GLCM
metrics at different window sizes was previously reported
(Moskal, 1999) and detailed examination would be required
for complete understanding in local circumstances.

The linear correlation between the original variables
(Dmap, Cmap, Huap) and the forest structure diversity
variate is measured by the canonical loadings. These coeffi-
cients showed diameter variability (Dyap) was the most
relevant parameter (loading 0.63) in building the forest
structure diversity variate, followed by crown diameter
variability (Cyap, loading 0.15), and leaving height varia-
bility (Hyap loading 0.10) in third position. The importance
of diameter variability for characterization of forest structural
complexity was an expected result, as diameter is a common
variable used for description of forest structure and its
variation is frequently used for computation of diversity
indices such as Simpson or Shannon (McElhinny et al., 2005).

Validation of the CCA in the combined case
scenario

To ensure that the results of the CCA were not specific to
the sample data, the method was validated over a subsample
of 500 plots, proportionally and randomly selected from

© 2012 Government of Canada



Canadian Journal of Remote Sensing / Journal canadien de télédétection

E
= = ©
-
£ @ E g &
v i _ = = 3 = m
z T % z § § z b
2 s 5§ @ = s ¢ 3 =
o % = o 0 > & 0 >
c o o o B 2 o = e
Yy § v « E £ & E E E £ E &
= 5] & = T S ] = S b T S S
1.05
0.8351
7
0.8 4 . 0.7334 Oigfed
6321
0.5702 06014 05823 3
0.6 4
0.4 4 oziay 130
D24 H 0.0896 01142
SN 0 T A B R = A A i
03 4 -0.0700
0.4 A
-0.4434
-0.6 -
Figure 4. Cross loadings in the combined scenario. Homogeneity and contrast at various
window sizes were the variables with highest explicative capacity; visible reflectance was more
relevant to the model than NIR data.

both sites (226 plots from Valsain and 274 plots from
Iruelas). The validity of the CCA was assessed by conduct-
ing a sensitivity analysis in which the stability of the
redundancy index and the overall canonical correlations
was assessed applying the same procedure after removing
individual independent variables from the analysis (Hair
et al., 2010) (Figure 5). The similarity of the values of the
redundancy index and canonical correlation for all tested
situations indicated the stability of the CCA results; cross-
loadings were also found to be relatively stable.

Optical sensors have limited capacity to identify canopy
height and differences (Hudak et al., 2002), often relying on
the existence of image shadows or the calculation of gap
fraction to partially accomplish this task (see Mora et al.
(2010) for a summary of height estimation from optical
imagery). To test the relevance of Hyjap in the model, it was
removed from the analysis and results were checked: the
canonical correlation decreased markedly and the redun-
dancy index was lower than all other situations, demonstrat-
ing the significance of Hyap contribution to the structural
dependent variate in this model. As expected more notable
reductions in redundancy index were found when Dyap or
Cmap were removed from the analysis.

Discussion and conclusion

Forest structural diversity defined in terms of field
inventory measures at the plot level has been related to
values of reflectance and texture diversity as captured by a
fine spatial resolution satellite-borne optical sensor in

© 2012 Government of Canada

Mediterranean pine forests of the Central Range in Spain.
Results showed a strong relationship between both sets of
diversity features (field derived and image derived) when
considered at the plot level and with an appropriate range of
variation, indicating the potential of remote sensing and
image processing as an approach for characterization of
forest structural diversity over wide areas.

Quantifying structural diversity on the ground is difficult
and costly, and its importance for biodiversity and produc-
tion (Lexerod and Leid, 2006) makes exploring remote
sensing as an optional means for this purpose. Remote
sensing is not seen to fully supplant the need for field
measures, but to spatially and temporally augment such
measures. The data acquisition regularity offered by satel-
lites and the consistency over space and time enables
repetitive estimations and monitoring. In this study we
included field measured variables (DBH, height, and crown
diameter) in structure diversity characterization for ease of
measurement (McElhinny et al., 2005) and, as identified by
Rio et al. (2003), among the most important aspects of
forest structure. Furthermore, the scale of analysis is also an
important factor when measuring or characterizing diversity
(Lédhde et al., 1999). The availability of field data determined
the scale of our analysis, enabled by accessibility to high
spatial resolution imagery. The detailed plot-level measures
available made for a logical informational link between the
field and image-based data sources with both of a compar-
able scale. We worked with circular spatial units of 0.3 ha,
analogous to the inventory plots established and measured
on the ground. At this scale of analysis (alpha diversity) the
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Figure 5. Sensitivity analysis of CCA results. The stability of the results is indicated by minor changes in the
redundancy index and canonical correlations when individual variables were removed from the dependent variate.

study showed there is potential for characterization of
structural diversity from the space. Lamonaca et al. (2008)
reached similar conclusions in a study that applied an object
oriented approach for characterization of the structure
diversity in Mediterranean environments at the stand level.
Pasher and King (2010) modelled and mapped forest
structural diversity in temperate hardwood forests of
Quebec (Canada) with airborne derived data, highlighting
the convenience of satellite derived data for mapping of
larger areas.

Interestingly, among our findings was the consideration of
the scenarios with various crown closure conditions pooled
together, that is, the data from open and dense forest sites
analyzed jointly. In this case the relation between the
variability in image-derived variables and forest structural
diversity was stronger (higher canonical correlation) than
considering either individual scenario alone. Previous works
with remotely sensed data in the study area (Merino et al.,
2010; Vazquez de la Cueva, 2008) found significant relations
between image and field variables but poor explanatory
power of statistical models. Further work is recommended
to determine if the limited success relating structural
measures with optical sensors’ data is due to the limited
local variation in structural parameters.

Diameter and basal area are the attributes most fre-
quently used in studies of structural diversity (Solomon and
Gove, 1999; Varga et al., 2005; Motz et al., 2010) and forest
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structure per se (Goodburn and Lorimer, 1998; Rouvinen
and Kuuluvainen, 2005; Rubin et al., 2006). We found these
to be the attributes indicating variation in forest structure at
the plot level that had the highest relevance in the canonical
variates in all scenarios. Height showed slight importance in
the canonical relations between field-measured and image-
detected diversity but was still relevant to the model, as
shown in the sensitivity analysis. Height variation is difficult
to detect with optical sensors (Mora et al., 2010), which are
better suited for mapping horizontal structure (Hyde et al.,
2006). Although shadows and gap fraction are sometimes
useful (Shettigara and Sumerling, 1998; Leboeuf et al.,
2007), the images we used, captured with high elevation
angles (>60 degrees), did not include significant shadows.
Including LiDAR measured heights in the modelling process
may improve the study results, as fusion of high spatial
resolution and LiDAR data is an approach yielding good
results (St-Onge et al., 2008; Ke et al., 2010; Chen and
Hay, 2011).

In scenarios of relatively low structural diversity, when
we considered each of the study sites individually, the
variation in reflectance of the visible and NIR was more
explicative of the structural diversity than variations in
other texture measures evaluated with finer spatial resolu-
tion panchromatic data. Similarly, Rocchini et al. (2010)
highlighted the relevance of spectral resolution versus
spatial resolution for evaluation of species diversity,
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supported by a series of studies in different environments
that buttress this idea.

The information associated with spectral and textural
signatures is complementary (Lu et al., 2002) in estimation
of forest parameters (Lu and Batistella, 2005). Wulder et
al. (1998) observed an improvement of correlation between
LAI and image variables including texture in northern
deciduous and mixed wood forest in Canada using aerial
imagery. Chubey et al. (2006) studied structural parameters
of forests in Alberta, Canada, with Ikonos-2 imagery,
obtaining successful results when including reflectance and
texture variables. Other studies used textural parameters
only (Franklin et al., 2001; Couteron et al., 2005;
Kayitakire et al., 2006) for estimation of forest structure,
which was shown to be particularly useful in complex
structures such as tropical forests (Lu and Batistella, 2005).
Image texture is influenced by several biophysical para-
meters including crown diameter, distance between trees,
tree positioning, LAI, and tree height. The importance of
the window size for evaluation of texture measures has
been stressed (Ferro and Warner, 2002; Kayitakire et al.,
2006) and the variogram approach is recommended as an
appropriate method to guide window size selection (Frank-
lin et al.,, 1996). We found a common variogram range
value in both study sites (open and closed canopy
conditions) which is coincident with the median value of
crown diameter. The absence of shadows in the imagery
allowed the identification of individual trees as dominant
textural objects on the ground (Kayitakire et al., 20006).
The limited use of texture parameters, previously indicated
as due to a lack of software tools (Bruniquel-Pinel and
Gastellu-Etchegorry, 1998), is progressively being over-
come, but other considerations remain, such as viewing
and illumination configurations, spectral domain, and
spatial resolution. However, image texture analysis has
demonstrated utility for characterizing habitat structure
(St-Louis et al, 2006) and identifying areas of high
diversity with conservation priority.

Mediterranean forests are notorious for their complex
topography (Salvador and Pons, 1998) which often results in
high spatial heterogeneity (Neumann and Starlinger, 2001).
If field information is contrasted with image data, the
accurate spatial location of field plots and a high quality
geometric processing (e.g., low RMSE) of the remotely
sensed data are particularly important to develop strong
empirical models. As demonstrated in this study, high
spatial resolution imagery from optical sensors integrated
with field measures of forest structure provided a useful
approach to investigate and characterize forest structural
diversity in Mediterranean pine forests, particularly in Spain
where a national high spatial resolution image data base has
been initiated, with an annual revisit proposed. Details on
the nature of the database and access criteria through
Spanish Plan Nacional de Teledeteccion remain to be
determined and communicated.
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RESUMEN

Biomasa forestal estimada mediante modelos de trayectoria espectral Landsat

Para conocer el papel de los ecosistemas forestales en el balance de carbono a nivel local y
global, es necesario estimar la biomasa aérea forestal y su evolucion en el tiempo. La
evaluacion del cambio requiere establecer unos valores de referencia de forma retroactiva.
En este estudio se utilizaron trayectorias espectro-temporales, con informacion intrinseca
relacionada con los procesos de sucesion, para modelizar y cartografiar valores recientes e
historicos de biomasa aérea en pinares mediterrdneos del Sistema Central. Los valores de
biomasa generados a partir de dos repeticiones (1990 y 2000) de medidas del inventario
forestal nacional (IFN) espafiol se tomaron como referencia y se relacionaron con datos
espectrales estaticos y dinamicos medidos por los sensores Thematic Mapper (TM) y
Enhanced Thematic Mapper Plus (ETM+) de Landsat en un periodo de 25 afios (1984-
2009). Primero se investigd la relacion entre biomasa e indices de vegetacion mediante
transformaciones wavelet unidimensionales, comprobando la fuerte influencia de la
complejidad estructural en estas relaciones. Mediante transformaciones wavelet en dos
dimensiones se identificaron trayectorias espectrales tipo para esta zona que se relacionan
con caracteristicas individuales de las parcelas del IFN mediante un algoritmo flexible de
méaxima similitud. Los indices espectrales de vegetacion, las trayectorias espectrales y sus
derivadas temporales (asociadas a procesos de sucesion forestal), se incluyen como
variables independientes en un proceso de decision binaria para modelizar, estimar, y
cartografiar la biomasa y las reservas de carbono en toda el &rea considerada. Los
resultados indican que las trayectorias tipo de variacion de NDVI durante periodos cortos
estdn relacionadas con clases de biomasa forestal. El indice TCA estd fuertemente
relacionado con la densidad forestal pero sus patrones de cambio tienen poca relacion con
la dinamica de biomasa en el pasado. Los modelos de biomasa obtenidos se extendieron a
todo el area de estudio a traves de pequefios segmentos espaciales (~2.5 ha) definidos
mediante homogeneidad espectral. Se cartografiaron los cambios de biomasa durante el
periodo 1990-2000 (70% de precision al validar con los valores de cambio medidos en
parcelas), revelando un incremento del 18% distribuido irregularmente sobre 814 km? de

203



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range:
a remote sensing approach

pinares. La acumulacion media de carbono en biomasa aérea en estos pinares
mediterraneos fue de 0.65 t-ha™-a™, equivalente a la fijacion de 2.38 t-ha™-a™ de di6xido de
carbono.

Palabras clave: serie temporal; retrospectivo; biomasa aérea; Landsat; transformacion
wavelet, dynamic time warping, Inventario Forestal Nacional, Espafia
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Abstract

Estimation of forest aboveground biomass (AGB)niforimative of the role of forest
ecosystems in local and global carbon budgets.€Tisea need to retrospectively estimate
biomass in order to establish a historical basediné enable reporting of change. In this
research, we used temporal spectral trajectoriesinform on forest successional
development status in support of modelling and rmappof historic AGB for
Mediterranean pines in central Spain. AGB generavét ground plot data from the
Spanish National Forest Inventory (NFI), representiwo collection periods (1990 and
2000), are linked with static and dynamic speadti@h as captured by Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (EJls&nhsors over a 25 year period
(1984-2009). The importance of forest structurahplexity on the relationship between
AGB and spectral vegetation indices is revealedhgyanalysis of wavelet transforms.
Two-dimensional (2D) wavelet transforms support ittentification of spectral trajectory
patterns of forest stands that in turn, are astatiwith traits of individual NFI plots,
using a flexible algorithm sensitive to capturinmge series similarity. Single-date spectral
indices, temporal trajectories, and temporal déikea associated with succession are used
as input variables to non-parametric decision tfeesnodelling, estimation, and mapping
of AGB and carbon sinks over the entire study aResults indicate that patterns of
change found in Normalized Difference Vegetatiodeta (NDVI) values are associated
and relate well to classes of forest AGB. The Tlasks€ap Angle (TCA) index was found
to be strongly related with forest density, althoule related patterns of change had little
relation with variability in historic AGB. By scalg biomass models through small (~2.5
ha) spatial objects defined by spectral homogendity AGB dynamics in the period
1990-2000 are mapped (70% accuracy when validaigd plot values of change),
revealing an increase of 18% in AGB irregularlytdizited over 814 kiof pines. The
accumulation of C calculated in AGB was on aver@gss t hd y*, equivalent to a

fixation of 2.38 t h&y™ of carbon dioxide.

Keywords: remote sensing; time series; retrospegctiove ground biomass; Landsat;

wavelet transform, dynamic time warping, Nationatdst Inventory, Spain



1. Introduction

Aboveground biomass (AGB) is a fundamental elenwnforest ecosystems. AGB is
significant for its carbon storage capacity (Liskial., 2000; Muukkonen and Heiskanen,
2007), and as a potential source of timber and ymtah of bio-energy (FAO, 2003;
Smeets and Faaij, 2007). Biomass amount per sutfaiteindicates the condition and
productivity of a forest (FAO, 2010; Hadt al., 2006) and it is associated with ecological
benefits related to biodiversity. Assessing fo®GB and related dynamics with spatially
explicit detail is important for sustainable foresanagement (Herrero and Bravo, 2012,
Tan et al., 2007), ecological applications (Barlow and Pe&&)4; Lewiset al., 2004),
carbon accounting (Barreda al., 2012; Houghton, 2005), for providing information
support of carbon markets (Goedz al., 2009; Wanget al., 2009), and for reporting
commitments (Anderssaa al., 2009; Kurz and Apps, 2006).

Remote sensing has become the primary data sourtarde area biomass estimation (Lu,
2006), providing spatial detail to capture grouratiability (Wulderet al., 2008), and
temporal repetition to account for change (Powtedl., 2010). As summarized by Kangas
and Maltamo (2006), national forest inventories INfeipply precise information based on
plot measurements (e.g. Finland, USA), frequentlgperted by aerial photography or
satellite data (e.g. UK, Canada) that can be scatetl extended to unmeasured areas
through direct modelling with passive or active odely sensed data (Baccktial., 2004;
Blackard et al., 2008). Estimation and monitoring of AGB with retely sensed data
sources can be fast and relatively low cost, piogidinformation for remote and
inaccessible areas (Bortolot and Wynne, 2005). itor estimates are ultimately linked
to the quality of the reference data (Bacainal., 2007), improved processing algorithms
and techniques for data analysis can enhance tberaamy of AGB estimates from
remotely sensed data sources (Lu, 2006). The radrarsaturation of optical sensors at
high levels of biomass is well known (Gemmell, 1994, 2005; Turneret al., 1999).
Saturation is also a problem for radar instruméBtgylhartet al., 2011; Mitchardet al.,
2009), with the degree of saturation dependent avelength, polarization, and vegetation
structure (Lu, 2006). Airborne and spaceborne LiDZsiR provide an important alternative
source of forest structural information (Duncansbal., 2010; Kwaket al., 2010; Naesset
and Gobakken, 2008), and combinations of data frounitiple sensors provide robust

options for estimation of forest biomass (%tial., 2011; Yuet al., 2010).



Retrospective estimation of AGB to establish adrmisél baseline and enable change
reporting is feasible with archival data, where ttadsat program provides the longest
and most consistent repository of imagery, goincklda 1972 (Wuldeet al., 2012). The
Landsat archive is also the only realistic sourtdata for mapping at the level of detail
required by international treaties (e.g. Kyoto Becol). Methods to map historical forest
attributes may apply date invariant relationshigedleyet al., 2006; Powelkt al., 2010)

to past data using static measures (i.e. speatedigtors obtained at a given time). The
relationship between contemporary spectral anderée data is extended to other dates of
interest, relying on a robust process of relatagiometric normalization of imagery, for
estimation of change. Incorporation of dynamic afles, that is, predictors combining
data captured at various dates, for modelling AGB i&s dynamics remains unexplored.
In this work we estimate and map historical AGB dentral Spain using temporally
irregular trajectories of spectral indices from Haat records, supported with information

derived from NFI measurements.

Our goal is to estimate and map historical AGBsfacified dates in time), as well as a
decade of change in AGB, by combining the precisibfield measures from a network of

NFI plots with the wall-to-wall spatial coverageogided by remotely sensed data. We first
explore the relationship between live AGB deriveohf NFI ground plot measurements
and vegetation spectral indices derived from Lanhds#a. Second, we model past AGB
with historical spectral data, including single@atata and multi-temporal trajectories,
providing a baseline for comparison with more récestimations. Lastly, we map

historical AGB at two dates coincident with NFlatons (1990 and 2000) and evaluate
the distribution of change in view of the uncert@s associated with the process of

modelling and mapping.

1.1 Background
Estimation of forest biomass with optical remotegnsed data is based on the assumption

of a strong statistical relationship between AGH #me spectral response as captured by
the sensor (Lu, 2006). Providing there are an aategoumber of quality ground samples,
direct modelling of AGB relies on the choice ofed ef appropriate predictor variables and
the development of suitable estimation models é.wal., 2012). The most frequently
attempted model types are regression (Gonzalezsaleral., 2006; Rahmast al., 2005),
imputation (Chiriciet al., 2008; Fazakagt al., 1999), neural networks (Foodyal., 2001;
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Jin and Liu, 1997) and decision trees (Blacketrdl., 2008; Mutangeet al., 2012). The
adequacy of a model depends on data availabiktsired precision, transparency, and site-
specific characteristics (Labrecqgeeal., 2006). Amongst the suite of possible predictor
variables of AGB, the calibrated reflectance ofibless and near-infrared wavelengths
without further processing is sometimes used, aljho vegetation indices (i.e.
combinations of two or more spectral bands) aremeuended for the capacity to reduce
noise effects associated with canopy shadows (Gdmb®99), which can be relevant in

sites of complex vegetation structure @ual., 2004).

Empirical relationships between forest AGB and #jaécproperties—as captured by
optical sensors—have been intensively explored Iomoad range of biomes and are site
specific (e.g. Foodyet al., 2003; Gemmell, 1998). Uncertainties in this emopl
relationship may arise from sensor limitations (@igwing angle, radiometric resolution),
atmospheric effects (e.g. haze, cloud), vegetatgimenology, and topographic
characteristics (Gemmell, 1998), but also fromimsic forest structure and variability
(Gemmell, 1995; Luet al., 2005). In Mediterranean forests, typically clotedzed by
rugged locations and structural heterogeneity @hdv and Pons, 1998), the relationship
between AGB and spectral response has provenuiftw characterize (e.g. Masedtial.,
2005; Vazquez de la Cueva, 2008).

1.2 Incorporation of temporal information into modelling of forest attributes
The majority of direct models incorporate data uegd at a single point in time, which

ideally is as close as possible to the timing dénence data collection on the ground.
Multi-seasonal imagery has been shown to improwe dbcuracy of forest biomass
estimation (Gasparst al., 2010; Lefskyet al., 2001). Furthermore, the benefits of multi-
temporal data for estimation of successional psEegSonget al., 2002; Songet al.,
2007) and forest structure (Gemmatllal., 2001), both of which are intimately linked to
AGB, have been acknowledged, with multiple imagealyzed independently (Foody
al., 1996) or linked in a temporal trajectory (lsual., 2008).

Open access data policies facilitating the usemzige time series (Wuldet al., 2012)
have prompted the emergence of new approachesttaceinformation from spatially
coincident multi-date imagery (Table 1). Polynomihlaracterization of spectral curves
(Goodwinet al., 2010) or identification of distinctive trajecyosegments (Kennedy al.,

2010) are alternative options to make use of therent temporal information of a series
5



of calibrated data for interpretation of ecologipabcesses. We explore here an option to

directly incorporate temporal information in prddicvariables for estimation of AGB.

The empirical models linking AGB measurements wiindsat spectral data facilitate

mapping of forest biomass and change.

Table 1. Forest studies capitalizing on informafimm Landsat imagery spectral
trajectories.

Stud Ecosystem/ Goal
y Location Approach | Spectral variable
Coniferous / Prediction of forest successional stages
Liu et al., 2008

Oregon (USA)

Modelling with progressive
multi-date predictors

TCB, TCG, TCW

Huanget al., 2009

Various National
Forests /
(USA)

Validation of VCT performance in detection of forest

change dynamics

Interpretation of IFZ temporal
profiles

IFZ (Red, SWIRL,
SWIR2)

Goodwinet al., 2010

Coniferous /
British Columbia
(Canada)

Characterization of mountain pine

beetle infestation

Polynomial curve fitting model

NDMI

Kennedyet al., 2010

Coniferous and
broadleaved /
Oregon and
Washington (USA)

Description of successional processes: disturbance and

recovery

Temporal segmentation and
interpretation of segments

NDVI, NBR, TCW

Powellet al., 2010

Coniferous and
mixed /

Arizona and
Minnesota (USA)

Assessment of AGB over two decades

Trajectory of modelled AGB

TCA, TCB, TCG,
TCW, DI,
Reflectances

GoOmezet al., 2012

Mediterranean
pines /
(Spain)

Assessment of 25 years of carbon fluxes

Temporal derivative of spectral
trajectory with interpretation of
state and process

TCA

Pflugmacheet al., 2012

Mixed-conifer
forest /

Estimation of current structural parameters (live and

dead biomass)

Model current parameters with

) TCA,
Oregon (USA) dlst_urbance and recovery featwe‘?CB,TCG,TCW
derived from spectral trajectories
Monitoring of forest disturbance
Evergreen forest / i i
Zhuetal., 2012 Georgia and Dense time series models
phenology with trigonometric DI

California (USA)

functions for detection of chang

a)

C

DI: Disturbance Index; IFZ: Integrated Forest Z+&¢coONDMI: Normalized Difference
Moisture Index; NDVI: Normalized Difference Vegetat Index; TCA: Tasseled Cap
Angle; TCB: Tasseled Cap Brightness; TCG: Tass€lag Greenness; TCW: Tasseled

Cap Wetness.



1.3 Wavelet transformsin remote sensing and forestry applications
Wavelet transforms have been used in the remosgeoommunity for image blending

(Garguet-Duportt al., 1996; Zhouwet al., 1998), for detection of haze (tial., 2002),
spectral unmixing of hyperspectral data (Li, 200dQst-classification change detection
(Raja, 2013), and feature extraction (Fukuda andbddwa, 1999; Niedermeiat al.,
2000; Simhadret al., 1998). In relation to vegetation dynamics, Sat&net al. (2005)
developed a method for detection of crop phenologgrporating wavelet filters. Percival
et al. (2004) proposed the usefulness of the multi-tggmi analysis (MRA) applied to
vegetation time series, with which Martinez anda@drt (2009) identified seasonal and
long term trend changes of various land coverspairs Freitas and Shimabukuro (2008)
applied MRA to spectral fractions of MODIS bands &malysis of land cover change in

Brazil, identifying the location and time of disb@nce events.

As a tool for analysis of data, wavelet transfoeohniques facilitate the characterization
of non-stationary processes (Meyetsal., 1993), that is, processes of change dependent
on the scale of variation. The most distinctive pemby of wavelet transforms is the
capacity to provide local information of the targeties F(x) and at a range of selected
scales (Lindsawgt al., 1996). This property derives directly from thawelet definition as a
function that oscillates around zero, and thabcalized in a finite width interval (Meyers
et al., 1993). Basically, a wavelet transform decompakesoriginal series F(x) into a set
of functions by convolving F(x) with gamily of wavelets, which are derived by scaling
and translation of another or basis function G(x). As result of the waveleinsform a
number of functions are produced, @pproximation (A;) and onealetail (D;) function per
scale or level. Another interesting property of thavelet transform is that the original
series can always be reconstructed from its deceaetpelements: at any level of
decomposition (i) the original series F(x) equalattlevel approximation #plus the sum

of all lower level details%D;j) (j= 1...i-1). For the sake of interpretatiospproximation
functions inform trends of change whildétail functions account for high frequency
related with noise (Perciva al., 2004) and are associated with changes in averaige
each given scale. A measure of variance or enesggcated with each function helps
identify which are the most relevant levels of tavelet transform decomposition
(Lindsayet al., 1996). Wavelet transforms are used in this weith a double purpose:
exploratory analysis of the relationship betweeecsjal indices and plot measured AGB,

and smoothing of a system of data for derivatiodysfamic spectral variables.



2. Methods

2.1 Overview
The relationship between AGB and spectral propesiethe plot level was explored in a

forest ecosystem of Mediterranean pines. Vegetatiditces suitable for modelling AGB
were identified. Dynamic spectral variables asdediawith forest successional
development were defined through wavelet transfaons of a data system formed by a
set of spatially coincident field measures and esponding calibrated spectral data
captured over 25 years. The domain of the dynawmui@bles was identified as a number of
modelled trajectories. To test the significance toé dynamic spectral variables in
predicting AGB, a binary rule-based approach wasieg to ground plots characterized
by dynamic, as well as static variables, in oraerdentify the most relevant predictors.
Cross-validation was used to determine the bestrypimodel for AGB in 1990 and 2000;
the best binary models were then applied to smpaittsally homogenous ground units for
mapping AGB and carbon dynamics over the entirdystuea. The resulting map of AGB
change was validated with plot values of biomasmgk. Figure 1 provides an overview

of the main methods applied in this work.
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Figure 1.Schematic representation of main methods followetthis study. Dynami
spectral variables are defined with a flow prodessed on 2D wavelet transforms, and
domain of each variable is identified as a numlienadelled trajectories. Sample plots

unknown AGB are attributed dynamic variables by mmasm similarity to trajecton
models. Statistical models of AGB at the plot lexed derived with a bina-rule approach
based on dynamic and static spectral variabless& hedels are applied to thetire area
to map estimated AGB dynamics between 1990 and.



2.2 Studyarea
The study area is centred at latitude 40°37°'56amd longitude —4°6’47” E, in the Central

Range of Spain, and occupies part of the Avila,08&g Madrid, Guadalajara and Toledo
provinces (Figure 2). It is a pine ecosystem witimthant tree specid@inus sylvestris L.,
Pinus pinaster Ait., and Pinus nigra Arn. Forests extend to elevations of 2000 m, bdyon
which shrubs Cytisus sp., Genista sp., Erica sp., Echinospartum sp.) are the prevalent
vegetation (Rivas-Martinez, 1963). Some of theseitderanean pines have traditionally
been managed for production of resin and timberegdion, and protection, with the last
two objectives having increasing importance. A mof structural conditions (e.g. mono-
specific and even aged, multi-species, multi-layegve resulted from the various
management practices that have been applied, ingude non-management option (e.g.
multi-aged, multi-story). Stand age classes are@jly defined as 20-year intervals for the
species in the entire area (Serrada, 2008). Situi@ practices include pruning and
thinning, with timber extraction implemented ovemé by progressive cuts of low

intensity.

eLZ MediterraneaIg

)
Sea%f‘

WRS2 Path/Row: 201 / 032

0 25 50 100Km
| ! | 1 |

/
0 500 1,003* 2,000Km
| ol |

{ L I 1 1 1 \/ \

Figure 2. Location of the study area in the CeriRahge of Spain. It is a
Mediterranean ecosystem that has been permanenttyexd with pine forests during
period 1984-2009.
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2.3 Ground plot data and derived ground plot attributes
Two rounds of the Spanish National Forest Inventtata (NFl2ca. 1990 and NFIZa.

2000) (Bravoet al., 2002), includingoer tree measures of diameter at breast height (D),
total height (H), angber plot number of trees (N), were used for calculatd biomass in
605 plots spread over an area permanently foregitbdpines over the period 1984-2009
(Goémezet al., 2012). In this area NFI plots wede facto measured during the 1992-1994
and 2000-2004 campaigns of the NFI2 and NFI3 reésde Live AGB was calculated
with the species specific allometric equations atéroet al. (2005) and Ruiz-Peinadb

al. (2011) for all trees with &> 7.5 cm. These equations can determine the drydsem
fraction of stem, roots, and branches of variousetisions; however, we did not consider
the root portion in our analysis, and focused anAlGB. Absolute and relative change of
AGB between the rounds of NFI was calculated (TahleNFI2 intra- plot structural
complexity was evaluated as in Gomeizal. (2011a) calculating the median absolute
deviation (MAD) of measured D @2p) and H (Huap) in each plot: increasing values of
the MAD indicate higher structural complexity, aadzero MAD value is possible but
unlikely to occur if all trees in a plot have eXxgdhe same dimension. Thirty two plots
subject to complete resource extraction betweertvbeNFI rounds were disqualified in
support of our assumption of near to natural swgonal conditions, leaving 573 plots for

further analysis.

Table 2. Statistics of the attributes related tinass (t hd) and structural complexity
evaluated at NFI plots.

Attribute Plot Std.

type Attribute

Description Mean Min.  Max.
dev.

AGB1g90 Above ground biomass NFI2 (1990) 93.29 67.09 1.4352.08
AGBo00 Above ground biomass NFI3 (2000) 109.36 68.99 0 8.99
Increment of AGB between NFI2 and 14.80 50.07 -236.86242.38

Biomass AAGB

NFI3
Religgo Increment of AGB relative to AGBy, 0.79 2.55 -1 28.41
Rebooo Increment of AGB relative to AGEBy, -0.03 1.33 -17.00 0.96
Structural DIVINS Median absolute deviation of D (1990) 4.59 3.93 0 8.00
complexity  Huap Median absolute deviation of H (1990) 1.81 1.18 0 24.35
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2.4 Landsat data and processing

Eight Landsat TM and ETM+ images (path/row: 201/8@anning 25 years (1984-2009)
(Table 3) were processed following standard promsiuthat include atmospheric
correction of a reference image (date 2000) with @OST method (Chavez, 1988),
relative radiometric normalization of the wholeiesrwith IR-MAD (Cantyet al., 2004),
ortho-correction with a 30 m digital elevation mbhdand geometric co-registration (RMSE
< 0.5 pixel), following a processing flow recommeddfor detection of vegetation
dynamics (Vicente-Serrara al., 2008). A set of near anniversary images at aarackd
date in the growing season was selected to minimpisnological fluctuations. Spectral
vegetation indices related with forest biomass atrdcture such as the Normalized
Difference Vegetation Index (NDVI) (Dong al., 2003; Piacet al., 2005), the Tasseled
Cap Angle (TCA) (Gomeet al., 2012; Powelkt al., 2010; Pflugmacheat al., 2012) and
the Tasseled Cap Distance (TCD) (Duahal., 2010; Powelkt al., 2010) were derived
from normalized Landsat reflectances. The temptegéctory, namely the sequence of
spectral values obtained from consecutive imagdbkesfe spectral indices at averaged 5x5

pixel windows centred at the 573 NFI plots werenidieed and saved for analysis.

Table 3. Landsat imagery used in the study. Reter@anage for relative radiometric
normalization (22/08/2000) is highlighted.

Landsat / dd/mm/ Sun elev.
Sensor yyyy @)

5/T™M 18/08/1984  52.89
5/T™M 11/08/1987  54.11
4/TM 11/08/1990  54.38
4/TM 14/08/1991  51.68
7/ETM+  22/08/2000 54.87
5/TM 07/08/2003  56.50
5/T™M 25/08/2004  53.15
5/T™M 23/08/2009  54.48
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2.5 Reationships between ground plot estimates of AGB and spectral vegetation

indices
To explore the relationship between plot AGB andetation spectral indices (NDVI,
TCA, and TCD), temporal spectral trajectories wesepiled into alock of trajectories
ordered by increasing value of AGB (Figure 3). Fstance, the ND\jJo« consists of 573
NDVI trajectories (one per 5x5 pixel window-plognd similarly the TChox and the
TCDypiock consist of 573 TCA and 573 TCD trajectories retipely. Each data system
provides information that can be interpreted in tbeporal or the biomass directions.
Examined in the AGB direction, the spectral sereggesent at each date (1984 to 2009) a
function of increasing AGB. At dates correspondwmith the NFI2 (1990) and the NFI3

(2000), the values of the biomass function are kn¢salculated from field measures).

The spectral blocks of original trajectories (befaravelet smoothing) are characterized by
high variability in the temporal and biomass dimegs, derived from sensor and
environmental factors. Smoothing the system of tspkdrajectories with a one-
dimensional wavelet transform in the biomass dioacteveals the essential underlying
relationship AGB-spectral index. We run a discretavelet transformation through a
family of Meyer wavelets, specifically adapted femmpled series (Daubechies, 1992;
Lindsay et al., 1996) followed by multi-resolution analysis famterpretation. The
multilevel wavelet transformation smoothes the #pécsystem by isolating high
frequency noise from the lower frequency basic aig(Figure 3). The level of
decomposition necessary to isolate base informaioslated to the number and frequency
of samples, and it is linked to the family of waatsl used. We run an eight level
decomposition and found level six, with highest suga of variance, the most useful for
description and interpretation. Running the waveétahsform simultaneously over the
complete spectral block (1984-2009) rather thanirgles date function provides
information of local (AGB) and temporal discontihies, irregularities or exceptions, as

well as an easy means to visually interpret infdrome(Freitas and Shimabukuro, 2008).
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Figure 3. TCA« for exploration of the relationship between thecsgze index and plot AGE
The level 6 approximation of the smoothed systerapsesented. A positive relation AG= F
(TCA) is evident although broken at intervals bg thfluence of endogenous (structure)
exogenous (topography, sensor) factors, confethagystem its wavy aspe

The influence of local structural complexity on tleationship AGI-spectral index wa
explored withblocks of spectral trajectoriepreviouslymodified by standardized values

MAD (plot Dyap and Huap). Constant structural complexiover the perioc1984—2009
was assumed for each plttereforc only one value of Rap and Hyap was calculated for
each plot (with NFI2 datagnd applied to the entire traject. The blocks’ samplini
interval is neither regular in the temporal nortie biomass direction,nd it enables
inference of qualitative information but has linditeapacity to infer quantitative relatio

For this reason, and with the aim to identify AGBtegoriesas areroutinely used ir
regional forest managemenihat could beunequivocally related with vegetation indic
we undertook a second exploratory analysis thaluded a su-sample of 182 plot

regularly distributed every ~1.7 t* over the range 1-310 t ha
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In the following sections we describe the proceskwed for modelling and mapping
historical AGB and AGB dynamics during period 192000. Figure 1 provides a
summary of all stages to aid the reader in follguime methods presented.

2.6 Derivation of dynamic spectral variables and trajectory models
The temporal series of spectral values depict aicth complex information that typically

require specifically developed methods to exposeorder to derive an assortment of
dynamic variables, each relating inherent temporal dimensionalitiginal trajectories and
temporal derivatives (Gome al., 2011b) of a set of plots measured on the grouvem
considered (N1=573). The sparse and irregular cterraf the series of spectral data
available, with 8 samples in a 25 year intervalo(€a3) required regularization by linear
interpolation for completeness and easiness offirg&ation. The state (original trajectory)
and process (temporal derivative trajectory) of NEdwk (573 NDVI trajectories) and
TCAuock (573 TCA trajectories) were independently orgashiferdered) by a biomass
attribute (AGBoggo, AGB2oos AAGB, Rehggg Or Rebpoog and subject to a 2D wavelet
smoothing filter. In this way, 16 ordered and srhedt data systems (M1 to M16) were
considered (Table 4) and identified as dynamicaes (Figure 1, box 1). For instance,
M11-M16 describe the successional path of thesester while M1-M10 describe the
changing pace, as represented by NDVI and TCA sabwer time, always relative to this
particular area. The wavelet transform scale wasséet in each direction, with six levels
in the biomass direction and two levels in the terapdirection. For each system (Table
4) the domain of a dynamic variable is defined bsnsautomatic identification of six to
eight distinctive curve patterns (Figure 4, bottorfhe independence of the smoothed
systems and associated dynamic variables is asbyrdélue individuality of the ordering

criteria (Figure 4, top).

The dynamic variables can be groupedstate or process variables (Table 4). State
variables are made up by the temporal spectradédi@jy, while process variables are
associated with the temporal derivatives of thasgettories (Gome=zt al., 2011b).

Ideally, if endogenous factors (e.g. structural ptamity) and exogenous factors (e.g.
topography, sensor limitations) were controlled suppressed, state variables could
describe the evolution of forest biophysical parearserelated with spectral indices, and

process variables would represent the rate at wthiobe processes of change occurred. In
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reality, only approximations can be interpretednassingle state or process variable

capable of completely explaining the biophysicalelepment of forest

M14 Independent systems Mo
NDVI trajectories . N‘DVI derivatives

Modelled trajectories: M10 scaled curves
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Figure 4. lllustration of stages in the derivatafrdynamic spectral vaibles. Top:
examples of independent and smoothed (2D waveléered data systems: M14 (ND
state trajectories ordered by Aig90); M10 (NDVI process trajectories ordered
AGB009; M11 (TCA state trajectories ordered by Aiggg); M4 (TCA process trajeories
ordered by AGBygg). Bottom: examples of modelled NDVI process patsesbtained fron
the data system M10 (NDVI process trajectories r@di®y AGExoo).
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As an example, M5 (Table 4) is a process variabigirated by the system of TCA
derivative trajectories ordered by AGl and smoothed in two directions (time and
biomass). M5 domain consists of 8 patterns forqaei984—-2009: in this area the TCA
rate of change at the plot level follows one ofa®grns, each one expected to be related to
a different amount of AGB. To enable later comparjsmodel curves were normalized

and scaled between zero and one.

The effectiveness of spectral trajectories as ptedivariables is likely to be related to
duration and starting position, which in turn mighé¢ limited by data availability.

Acknowledging the importance of these featureseagéetl the performance of two versions
of each variable. Hence, in addition to the congpl@b-year (1984-2009) spectral
trajectory available, a 15-year (1990-2004) versgpanning the time lapse between NFI2
and NFI3 measurements, was considered. The impbait of the 15-year variables is

coincident with NFI2 ground measurements.

2.7 Attribution of dynamic spectral variablesto unmeasured locations
Intending to recognize the nature of the spectr@kedtories with highest capacity to

describe AGB, dynamic variables related with susiocesl processes have been created in
a process with controlled AGB parameters. The pted capacity of these variables has
to be tested over locations of unknown AGB. In orieassign values of each dynamic
variable domain to any ground location of unmeasW&B, its corresponding temporal
spectral trajectory is included into a system acial trajectories. The system needs to be
subject to mathematical transformations similathi® models: ordering and 2D wavelet
smoothing (Figure 1, box 2). In this case, as AGBameters are unknown, spectral
indices (NDVI, TCA) and derivative values (A, Phovi) are employed as ordering
features, as proxies to biomass and biomass clpgoperties (Table 4). We attempted a
series ofa priori reasonable proxies and created 14 spectral syswths spectral
trajectories linked to ground plots. The procesattfbution was based on identification of
most similar pattern; with this purpose each systdnturves was compared with the
model counterparts. Since optimal proxies are dentified in advancea priori various
pairings are feasible: for instance system Al cairfgedered by Rta-1990—the value of
TCA derivative at date 1990) were compared with et®din M1 to M5 (five
comparisons), system N11 curves (ordered by NBRYIwere compared with models in
M14 to M16 (three comparisons) and so on (TableF#)y-eight combinations (18 state
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and 40 process) were possible. The number of spetthjectories (N2) necessary to
develop a suitable system is not fixed, but shdnddenough to be fitted for the wavelet
transform parameters. For the sake of verificatiba,same set of ground plots previously
used to build the curve models (AGB known case)rane attributed (AGB unknown

case).

Table 4. Dynamic variables derived by transformratd spectral trajectories with a 2D
wavelet smoothing of an ordered system. Fifty-egirhbinations resulted from pairing
sample systems (AGB unknown case) and model syg#&@B8 known case).

VARIABLE CONSTRUCTION ATTRIBUTION
Variable I ndependent
Group .Of Spectral M odgl identifier orderi ﬁz attribute System
dynamic . ordering : : : o
variables index attribute (# domain (biomassfeature  identifier
patterns) proxy)
AGB 199 M11 (6) TCA 99 All
TCA AGB o M12 (8) TCAgs Al2
T ;teag;ry AAGB M13 (8) TC Aoy Al13
1984.2009) AGB 10 M14 (7) NDV hog N11
NDVI AGB o M15 (7) NDVl;gg. N12
AAGB M16 (7) NDVbgcs N13
AAGB M1 (7) Plkca-199c Al
Rehggc M2 (7) mean Rta 199200 A2
TCA Rebooc M3 (7) Phca-199: A3
Process AG BlQQ( M4 (8) PI]'CA—20C4 A4
(Derivative AGB 200 MS (8)
1984—2009) AAGB M6 (7) Phbvi-199c N1
Rehogo M7 (8) mean Ribvi-199¢-200 N2
NDVI Rebooc M8 (8) Phpvi-199 N3
AGB g9 M9 (8) P hbvi-20ca N4
AGB 00c M10 (7)

Trajectories are compared with the model curvesoofpled systems, which are uniquely
identified with a categorical value, and the mastilar pattern is assumed and adopted at
each plot. For example the 573 curves in systenarglcompared to seven model patterns
in M1, each one acquiring the value of the mostilamM1 pattern. Similarity was
evaluated with the Dynamic Time Warping (DTW) (@mo, 2009), a flexible algorithm
for alignment of vectors (e.g. time series). DTWnpares and evaluates the difference
between series of values, and it is more sendiiaa the Euclidean distance to distortion
in the time axis (Ratanamahatana and Keogh, 200Bwiag certain stretch or

compression defined by user criteria, such as dalay curve maxima or minima. At the
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end of the attribution process each plot is charastd with 58 curve patterns, some of

which might be relevant to describe its AGB, akdith to a particular successional path.

2.8 Decision treesfor modelling historical AGB
With ground plots characterized by dynamic variabMe can test the ability of these

variables to predict AGB by statistical modellirigecision trees (Breimaet al., 1984),
also known as CART, identify relationships betweaesingle continuous response variable
(AGB) and multiple explanatory variables of eitlkentinuous and/or discrete character, in
our case a collection atatic (NDVI and TCA at various dates) amynamic variables
(Table 5). A binary recursive partitioning procdsssed on combinations of variables
(rules) that best distinguish the variation of AGIables identification of relevant
independent predictors. This nonparametric mettardcategorization of samples into
increasingly homogeneous groups (nodes) does nde nagsumptions regarding the
distribution of the input data and is robust taoesrin the input. Decision trees have been
widely used for predicting complex, nonlinear relaships between forest attributes and

remotely sensed images (e.g. Saatthl., 2007).

Each plot was characterized with the biomass atei (Table 2), the spectral indices at
various dates (Figure 1, box 3), and its most sinplatterns of dynamic variables in the
25-year and 15-year versions (Table 5). These ¢ettata were input for the CART
analysis in Matlab® (Figure 1, box 4). Samples wsepédt into calibration (50%) and
validation (50%) sets, assuring both sets coverecehtire range of AGB (1 to 350 tha
To fit the model, a cross-validation process wéh tterations was performed and to avoid
over-fitting, we considered the establishment ahiaimum number of cases in terminal

nodes and pruning with the 1 standard error rutei(Banet al., 1984).

Table 5. Input variables to decision trees for nlaaghistorical AGB in pines of
central Spain.

Character Nature Variables
TCA 1984, 1990, 2000, 2004, 2009
Satic Spectral indices NDVI 1984, 1990, 2000, 2004, 2009

TCD 1984, 1990, 2000, 2004, 2009
TCA related trajectory 1984—-2009
NDVI related trajectory 1984—2009
Plca related trajectory 1984—2009
Plnpvi related trajectory 1984—-2009

State patterns (18)

Dynamic
Process patterns (40)
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2.9 Mapping historical AGB dynamics and validation
To map and assess the biomass and carbon contenthey entire area, AGB models

derived at the plot level (5x5 pixel window) wenepéied to spatial units defined on the
Landsat image as small multi-pixel objects, witkwhich the spectral trajectory is the
average of the component pixels (Figure 1, boxAS)we aim to derive AGB maps for
years 1990 and 2000, contemporaneous images weligidumlly segmented with
Definiens Cognition Network Technology® (Baatz aBdhape, 2000; Definiens, 2005)
(scale parameter 1.5; color-shape 0.9-0.1; smosth@é; homogeneity based on Landsat
bands 3, 4, and 5) into objects of 3.1 ha and &.brhaverage, in the same scale range of
the 5x5 pixels window used for modelling. Objecter& characterized with static and
dynamic predictors and classified following the tbescision tree model rules. Through
this process each spatial object acquired an AGEd{ value and its related standard

deviation as a measure of uncertainty.

Among other advantages, pixel-based mapping fambt comparisons and evaluation of
change with direct algebraic calculations, andfiérs the option to define aggregation
units for particular applications. Pixel-based mayere derived from the object maps
initially produced: each pixel was assigned the A®Ba") and uncertainty (oo Exo00
values of the object it belongs to, and from thesg@s the AGB changdAAGB) map was
derived (Figure 1, box 6). ThH®AGB map consists of three layers: a main map etadua
by differences in pixel nominal values and two otl@yers depicting scenarios of

maximum added uncertainty (eq. 1).
AAGB = (AGBzooo- AGBlgg(b + (E]_ggo"' Ezooo) eq. 1

Detailed maps of carbon stock and carbon flux dudibmass change over the period
1990-2000 can then be derived from the biomass msipg a 0.5 multiplier of AGB to
carbon (Kollmann, 1959; Penmaa al., 2003). As a standard, this biomass to carbon
relation is widely used (e.g. Krankireh al., 2004; Houghtoret al., 2007) and enables
comparison and reporting of regional and globabearstocks (e.g. Keitlet al., 2009;
Houghton, 2005).

In order to validate the raster map of change ai$ wross checked with the original values

of plot AAGB distributed into six categories. To identifyusces of confusion we used an
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error matrix with an expanded diagonal, deemed watedfor this continuum classificatis

established with artificial hard class breaks (Gdtumn and Greer2009) (Table 7).

3. Results

3.1 Ground plot attributes derived from NFI measures

There were more eligible trees (D > 7.5 cm) for sueament in the NFIzca. 2000) than
in the previous rotation of the inventory in thisea (NFI2,ca. 1990). Increments a
particularly marked for the larger diameter classesulting in an expected increase
AGB during the period 19<2000. However, the distribution of AC (t ha'), as derived
from field measures in NFI plots (Figure 5) is daniat both dates, unimodal a
positively skewed, with a majority of plots arous@ t h:* and median values of 59 and

t ha' in NFI2 and NFI3 respectively. The indicators ofuctural complexity ar
distributed over very different scales, with a poily more relevant yap ranging from
0 to 24 while Hhap ranges between 0 and 8. We show in Figure 5 thelisons of
standardized values ofyiap and Hyap.
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Figure 5.Distribution of AGB at two rounds of NFca. 1990 ancca. 2000) and
standardized structural diversity indicatorsyap and Hyap) in 1990.
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3.2 Reationship between ground plot estimates of AGB and spectral vegetation indices
Our exploration of the relationip between vegetation spectral indices and AGBuiin

wavelet transformations revealed an underlyingngfroonnection, influenced by fore

structural complexity (expressed by the diversitygmund plot measured diameters

heights) and affected bykegenous factorsLevel six of the Meyer based discrete wav

transform decomposition had thighest varianceit contributes the most to the over

variability in the original series and thereforeshibe highest explanatory powAfter the

first quartile of increasing AGBNDVI and TCA gproximation functions follow a

almost coincident tren@Figure 6, left). The relationship of TCD with AGB strongly

influenced by forest structure, in particular bydbdiversity of diameter nd height

(Figure 6, right) and it is not constant over tiagwasobserved in the TCpock. At higher

levels of wavelet transforndecomposition (level 7 and 8) curves flatten on é&mal

corresponding with the plots with the largest amafmbiomass, pnting to radiometric

saturation at high levels of biomass. We interpiet strong wavy effect observed in

curves,quasi coincident when corrected by structure, as an enfte of forest cover and/

variation in terrain featurgge. elevation, slope, and orientation).

rs3
—TCA—TCD—NDVI-Linear (TCA) ---Linear (TCD) — -Linear (NDVI) | __ M
I L
AGB
Dap corrected P

L3
Standardized values
r2

—TCA —TCD —NDVI

—TCA —TCD —NDVI

AGB

Standardized values

Hyap corrected

Standardized values

Figure 6. Approximation 6 of the Discrete Waveleaffsformation (DWT) decomposition

vegetation spectral indices (NDVI, TCA, TCD) asiadtion of AGB. Left: NDVI and TCA follow

a similar nonlinear trend with increasing AGB, whi TCD evidences a different type

relationship. Right: same as left but spectraldadiare corrected with structural diversity fac
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When analysing the sub-sample of 182 plots regutiistributed every ~1.7 t Haover the
range 1-310 t hh the detail function of level five revealed soneet®ns with maximal
variation found at regular intervals, suggestinggaries equivalent to ~50 t haOnly the

NDVIpiock Showed an apparent stability of these groups tveer.

3.3 Decision treesfor modelling historical AGB
In building the decision trees for modelling AGBifferent combinations of predictor

variables were tested (Table 6) and the relevaheaah group of variables was evaluated.
All fitted models were statistically significanp-galue < 0.001) but exhibited variable
levels of correlation between AGB and the speghraldictors (Table 6). Models were
applied to the independent set of data for valmaand their performance was assessed
with the Root Mean Square Error (RMSE), the cotiatacoefficient (K), percentage

average error (ME), and bias.

Table 6. Summary of modelling results when inclgdiifferent sets of variables.
NDVI process patterns are best predictors. Thees@&-year pattern variables yield more
accurate and precise results than the 15-yearpateiables, but a combination of both

yields best results.

Fitting Validation
Variable R R° RMSE (tha') % Mean error Bias

All 0.95 0.90 32.2 0.34 0.99

25-year pattern 0.84 0.68 58.7 0.62 1.02

15-year pattern 0.76 054 70.9 0.74 1.01
AGB 1990 NDVI pattern 0.94 0.89 32.2 0.36 0.99

TCA pattern 0.29 - - - -

State trajectory 0.22 - - - -

Static indices 0.18 - - - -

All 0.73 0.53 71.6 0.65 0.96

25-year pattern 0.65 0.40 79.1 0.72 0.93

15-year pattern 0.58 0.26 87.9 0.80 0.95
AGB000 NDVI pattern 0.65 041 78.0 0.71 0.92

TCA pattern 0.18 - - - -

State trajectory 0.22 - - - -

Static indices 0.17 - - - -

Trees yielding better results (highef, Rnd lower RMSE, ME, and bias) include decision

rules based on process and state patterns. Morahedrest fitted tree (R=0.95) combines

25- and 15-year NDVI process variables (FigureWhen validated, this model shows

high R and a small bias towards under-predictions; wilRMSE of 32 t ha it produces

errors of 34% on average. Modelling options thatude either 25- or 15-year patterns are
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not optimal; however, the model based on the erittreyear trajectory patterns yields
better results. Static indices alone or togethén wiate trajectories did not model biomass
satisfactorily, they produced low correlations. ehaistingly we found NDVI process
patterns more relevant than the analogous TCA npatten describing historical AGB,

despite a similar relationship of either staticaravith biomass.

Decision trees modelling AGBy have a common feature, a first split of plots WvABB >
100 t h& (31% of the sample) into one branch and plots WiBB < 100 t hd (69% of
the sample) into the other branch (Figure 7). Unlestricted by selective inclusion of
predictors, the initial split is determined by derbbased on an NDVI process pattern: in
other words, the rate of stand development is thst melevant factor for identifying plots
with large amounts of AGB (which are presumably enarature) from low AGB (and
frequently younger) plots. The criteria for furthgplitting the group of plots with more
than 100 t ha of biomass include process patterns associatedh witlative
(AAGB/AGBg09 and absolute changaAGB) of AGB. The group of low AGB plots (i.e.
< 100 t h&) is further categorized by patterns associatedh WiGB;gg9o and AGBo)
(Table 4). Just one static index, the TG# was present in an accurate classification of
the ground plot biomass. Five out of the six teahinodes in the best fitting tree are
defined by 25-year patterns, highlighting the caoneece of longer term information. In
only one case was a TCA pattern of change useglitatse largest branch in the decision

tree.

For interpretation of the dynamic predictors anés$sociate them with ecological change
and forest succession, their relative value acduing normalization and scaling requires
consideration. For instance, the plots with thgdarvalues of AGB in 1990 are related
with a pattern characterized by a constant andivelg low speed of NDVI variation,
positive over most of the period 1990-2004, (itegyp constant and close to maximum in
the scaled curve (model 3 in Figure 4, bottom))isTik in agreement with expectation
from a relatively mature and healthy closed canstayd. Other patterns of this predictor
that identify plots with relatively low AGB reprasiea varying speed of change, with
minimum and maximum at specific locations: for argte the plots with the lowest AGB
are characterized by a pattern that goes from aolae minimum speed of NDVI
variation (Plpvi) in 1990 to an absolute maximumyR) after only a few years, followed

by stabilization probably associated with the algsof the canopy.
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We assessed the capacity of individual dynamicipred for classifying AGB and four
that patterns derived from spectral systems od by AGB are the most powerfl
Patterns based on AG§ and defining eight groups of biomadassified correctl 31%
of the plots, with 51% within +1 group (and 70% hitt +£2 groups

AGB <100t ha' AGB > 100t ha'

: 25-year pattern

. 15-year pattern
B staticindex

Figure 7. Schematic representation of an optimeisttn tree foiclassification of
AGB1990. The tree combines decision rules baseZb- and 15year patterns. A mai
division splits the sample into ground plots witGB > 100t h* and AGB < 100t ™.

With a similar procedure we classified plots aceugdto their biomass at a date
corresponding with the NFlica. 2000). In this case the biophysical attributenizdelled
with the history of spectral indices and a collectiof past and prospive changing
patterns testing a different temporal configurat (Figure 9) Results of modellin
AGBo00 are more restricted, with statistically significgp-value < 0.001) best fitting
trees having a correlation with the sample of R80Models show a general tendency
underestimate AGB, and have limited predictive fr (R>=0.53). With high ME (70%
these models are limited for estimation of biomiasthe areaStill, the variables related
with changing processes have stronger predictivgepdhan those related with ste
which reinforces the importance of trate ofchange to model development. Attempt:
model absolute NAGB) and relative (Ruges Reboog change of biomass we

unsuccessful, with no direct relation between thesmbles and the estimators conside
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3.4 Mapping historical AGB dynamics and validation
In the process of mapping AGE, 26,406 objects resulted from segmentation of the

contemporaneous Landsat image, 40.4 % of whicl6@B),was classified by the decision
tree branch of larger AGB values (> 100 t'haNinety-five percent of objects achieved
terminal nodes of the decision tree, indicatingststency in the up-scaling from plot-level
model to object-level classification: all combimets of the relevant spectral trajectories
characterizing AGB at the plot level correspondhwibmbinations of averaged spectral

trajectories of spatial objects with the same AGB&().

The biomass allocated in the aboveground fractiotmegs in year 1990 was on average
77.6 t h& (total in the area amounts 6295 X 1)) and it was estimated to be 91.5 t-ha
(7415 x 16 t) ten years later (2000). The difference of claimd AGB represents an
increment of 1.3 t hly™ on average and the total increase in the areguisa@ent to 560

x 10° t of C. Considering individual objects imprecisiagiobal values of AGBgo and
AGB,o00 range between 5.5 and 7.1 ¥ t@nd between 3.4 and 11.3 ¥ t@espectively,
and as expected from the modelling results, thex ldéte contributes notably more to the
uncertainty of estimated change. By means of thiélayer raster maps we evaluated total
change in the case scenarios of additive uncedainderived from modelling and
mapping, obtaining values of 2.9 tha loss and 8.5 t iy ™ gain on average. A detail of
the multilayer maps of biomass change in Figureh@as the spatial distribution and

variability that exists, information of crucial wa for management.
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Figure 8.Top: detail of the object based biomass maps i® 189 and 2000 (B)
Bottom: detail of multilayeAAGB maps showing spatial distribution and variapibf
change. (C) optimistic result derived from uncentgi (D) nominal change; (E) pessimis

result derived from uncertainty.

Validating the raster map of change by cross checking withotiginal values of plo
AAGB distributed into six categori, low producer's (21-27%gand user’s (1-23%)
errors are recorded in intermediate categ (Table 7). Hweve, the distribution of

values in the matrix point to slight tendency to overestimate incremental biom

Overall, 70%of checked poin were classified into the correcategory olAGB change.
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Table 7. Accuracy matrix of the raster map of biesmehange categories.
Plot change (t hY (reference)

-100/- User's

;.c; <-100 50 -50/0 0-50 50/100 >100| metrics
< <-100| O 0 2 1 0 0 0
~  -100/-50 3 1 10 8 0 0.25
<<.E’) -50/0f 3 2 11 0 0.77
< 0-50| 14 15 17 0.84
= 50/100| 3 7 5 0.74
aB >100 2 3 1 0.19

Producer’s

metrics 0.12 0.11 0.73 0.79 0.80 0.26 0.70

4. Discussion

Historical forest aboveground biomass was modelledaluated, and mapped in
Mediterranean pines of Spain combining a set of NIBts representative of the forest
conditions present and spectral data captured bydat sensors over a period of 25 years
(1984-2009). As a baseline for comparison with nrement estimates, an assessment of
past AGB with spatial detail is of value to suppoxinitoring and reporting commitments.
In this area, characterized by absence of majotugEtions and moderate human
intervention during succession stages, dynamicaks of change (i.e. predictors
combining data captured at various dates), shovigiteh predictive capacity than static

variables to explain the variability of AGB retresgpively.

Spectral response is related to forest structureh€@ et al., 1995) and develops
progressively with successional state (Peterson aiidon, 1993). Under equal
environmental conditions and absent disturbanaesftostands develop similarly and are
expected to show similar temporal spectral trajgeso although slight deviations from a
pattern may exist. However, although forest atteblthave been modelled accurately with
spectral variables, forest change remains elusivelifect modelling: spectral differences
alone have demonstrated inadequate for the purfptesaleyet al., 2006), and trends of
spectral trajectories do not necessarily have ectirelation with the increase or decrease
of biomass (Campbedt al., 2012).

Our previousattempts to model biomass in the Central RangepairSwith single date
optical data were limited, characterized by modefiting correlation (R=0.7) and ME of

0.78 (Gémez, 2006). Also in the same area, Vazgeda Cueva (2008) found structural
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parameters (canopy crown closure, stand heightm stensity, and basal area)
insufficiently explained by the multispectral preiirs selected to derive empirical models;
however, the Tasseled Cap Wetness had a strorlggomewith forest density than NDVI
or other TM/ETM+ bands. Interestingly, in this wonke have found TCA significant as
static variable, while patterns associated with NDxre relevant as process variables.
The TCD, more related to age and associated stalatomplexity than other Tasseled
Cap-related indices in coniferous forests of Oredd8A (Duaneet al., 2010) was also
found linked to forest complexity in these Meditgrean pines, despite a low correlation
between AGB and parameters of structural complefRgarson’s R of 0.22, 0.24, with
Dumap and Huap respectively). In view of local difficulties to réictly model forest
attributes, we applied mathematical transformatioased on 2D wavelet algorithms to a
data-system created with information from two raainof field measures and eight
repetitions of calibrated spectral data, filteriingpdamental relations from environmental
and endogenous noise. Dynamic variables (i.e. bi@sawith an inherent temporal
component) associated with patterns of changeudnuo rate and shape, characterized
ground plots, and together with static variablevest to model AGB and calculate AGB
dynamics. This approach significantly improved jpoeg results, but no single predictor

was able to accurately classify biomass.

Frequency and regularity of measurements can keatrin providing an accurate
understanding of ecological processes. Gaps inriassef measures and irregular data
frequencies leave intervals of uncertainty in exyitey continuous processes that might be
notable in ecosystems prone to rapid changes delatdisturbance (Jin and Sader, 2005).
Successional patterns are more predictable in twmdesd forests than in areas with
unexpected perturbations (Schroedeal., 2007; Vogelmanmt al., 2009) and the rate of
spectral variation is typically greater in immatwtands when compared to more mature
stands in similar environments. Wavelet transformalysis is particularly suited to detect
anomalies in series of data (Mallat and Hwang, 1992 does not require periodic
sampling (Daubechiext al., 1999), conferring this approach versatility &malysis of data
in a wide range of environments. The limited numiifeseasonally appropriate, cloud-free
images available at the time of this study is retassarily indicative of the full Landsat
archive, which the USGS is currently consolidatimgth unique images held by
International Cooperators (Loveland and Dwyer, 2042 of writing, the European Space

Agency has yet to provide Landsat data through ftlee and open access model
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demonstrated by the USGS. Reportedly there aresplarshare these European images
with the USGS, which when implemented, will improve density of images available

over Europe.

The temporal configuration (i.e. the duration, tat@r point, and position relative to the
target date) of the dynamic variables (Figure @spmably affects the capacity to predict
structural and successional forest attributesuggest different results in modelling AGB
in 1990 and 2000. AGRyo corresponds with the initial stages of a trajector resemble
one of a series of temporal patterns, with possilgeiations or delays of key features.
Deviation of forest stands from standard expeatatiof development is often related to
site index differences, canopy cover and density,species characteristics, factors
requiring attention when deriving, applying, antempreting model results. Alternatively,
AGB:o0o corresponds with an intermediate position of thailable spectral trajectories,
with which processes are not aligned. The duratbrspectral trajectory necessary to
identify significant temporal patterns in AGB isepumably variable and site dependent.
Liu et al. (2008) demonstrated that a series of images mwyer longer period predicts
forest age more accurately, but in some casesréeshione series of imagery may suffice.
In this work a combination of 25-year and 15-yeajectories was the best option for
estimating retrospective AGB. Longer-term pattanas potentially explain the variability
of AGB more precisely, but they may also introdircegularities outside the time lapse
between data used for calibration of the trajectondels; on the other hand, shorter-term
patterns are more explicit and less prone to vanatout of the reference period. Further
work is necessary to clarify the distinctive effeélsat duration and relative location of
spectral trajectories produce when employed asrdiynaariables. Another set of ground
plot measures (NFlda. 2010) in this area is expected to be releasedlghwith available
spectral data completing the temporal series tbdhte and beyond (Figure 9). Hence the
duration, starting point, and temporal charactetr§ispective, prospective or inclusive) of

the trajectory will be available for further exphtion.
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Figure 9. Schematic of options to investigate terapconfigurations of dynami
predictor variables. Circles indicate dates to nhaateows indicate the end point
spectral trajectories. Retrospective case: 1ajectory interval is prior to the modell
date; prospective case: the trajectory intervpbisterior to the modelled date; inclusi
previous and subsequent intervals of spectraldi@jies are used to model a

intermediate date attributes.

We chog Dynamic Time Warping (DTW) as a measure of sesmsilarity for its
documented optimal performance in fields like spepattern recognition (Velichko ai
Zagoruyko, 1970) or clustering of gene expressiafilps (Aach and Church, 2001), k
the supenrity of this measure over others in identificatiohpatterns of forest specti
trajectories has not been widely demonstrated. Bwthrobustness of the DTW meas

and the automation of pattern identification reguurther investigatiol

The uncertaintyreported in the final maps possiblyriginates from imprecision i
modelling, but couldalso have originated at various stages tbé overall approacl
including location of plots, field measures, alldrmeeequations, image capture, and im.
processing (Luet al., 2012) To minimize the impact of these factors, a repregeme
sample acquired to consistent specifications, sas NFI plots, is recommended f
modelling (Duaneet al., 2010), and necessary to obtain a comprehensive idoai:
trajectory patterns for accurate identification ttne similarity algorithm. We identifie

confusion in the final map of change with an intve approach of all error sources,
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from plot based model to final maps, some aspemitdde subject to individual testing,

such as the equivalence of pixel and object trajgair the vector to raster transformation.

Estimates of AGB dynamics between 1990 and 200Qimdxd in the current study are in
agreement with complementary regional studies.ifgiance, pines in the Central Range
were found to be more dense and mature in year 2@00during the previous decade, and
— as could be expected — accounted a net increwfemiomass and carbon stock.
Analyzing inputs and outputs recorded by NFI meesuiHerrero and Bravo (2012)
corroborated a net carbon sinking character betw#d@ and NFI3 rotations, with AGB
allocated in pines of 85 t hawhile Monteroet al. (2004) estimated an annual increment
of 0.9 t h& of pine biomass between 1993 and 2003. Gémed. (2012) reported a
maximum rate of C stocking in this area for yead@With a later change of trend towards
C loss during the 2000-2010 decade that forthcomifgl4d measures may help
corroborate.

Information provided by Landsat spectral traje@srihas been linked to field
measurements, which has proven useful for improtiegestimation of current biomass
and other structural attributes, particularly iln®estems with stand replacing disturbances
(Pflugmacheset al., 2012). Furthermore, spectral trajectories haamahstrated utility for
characterizing mountain pine beetle infestationsad@winet al., 2010) and for continuous
monitoring of forest disturbance (Zha al., 2012). In this study, we have found that the
identification of temporal patterns in the trajegtmf vegetation indices (i.e. dynamic

variables) provides useful information to model arglain historical biomass variability.

5. Conclusion

Remote sensing technology supports and enhanceslilie of national forest inventories
for the assessment of biomass and carbon balande¢hea Landsat archive in particular is
a unique source of spectro-temporal data for modelind mapping forest attributes.
Mathematical transformations of original data aeeassary to unveil underlying relations
in complex environments, and to derive dynamicaladds with explanatory capacity of
past and present biophysical conditions. Dynamicgss features such as pattern and rate
of change were more relevant than static variaiplese retrospective estimation of AGB
in the Mediterranean pines of central Spain. Pinethese forests were found to have
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accrued biomass over the decadal monitoring pereqatesenting a net carbon sink. The
approach presented herein allows for the retrog@eestimation and mapping of AGB in
order to establish a historical baseline and enatidege reporting.
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