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FOREWORD 

According to the Spanish national (R.D. 99/2011, BOE 35/2011) and regional (BOCYL 

243/2012) regulations, this doctoral thesis consists of a series of original research 

papers. Details for identification of these publications are listed below. 

An extended introduction is included in this dissertation for contextualization and linkage 

of the original research publications, and to help understanding the relevance of the 

findings. A brief description of the main methods provides an overview of the range of 

techniques applied, and it is not intended to give exhaustive details of the work done, 

which is properly related in specific chapters (publications). Likewise, the compilation 

of specific objectives, summary of results and discussion, provide just a synthesized 

version of the entire work related in the publications. 
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ABSTRACT 

Forests play a dynamic role in the terrestrial carbon (C) budget, by means of the 

biomass stock and C fluxes involved in photosynthesis and respiration. Remote sensing in 

combination with data analysis constitute a practical means for evaluation of forest 

implications in the carbon cycle, providing spatially explicit estimations of the amount, 

quality, and spatio-temporal dynamics of biomass and C stocks. Medium and high spatial 

resolution optical data from satellite-borne sensors were employed, supported by field 

measures, to investigate the carbon role of Mediterranean pines in the Central Range of 

Spain during a 25 year period (1984-2009). The location, extent, and distribution of pine 

forests were characterized, and spatial changes occurred in three sub-periods were 

evaluated. Capitalizing on temporal series of spectral data from Landsat sensors, novel 

techniques for processing and data analysis were developed to identify successional 

processes at the landscape level, and to characterize carbon stocking condition locally, 

enabling simultaneous characterization of trends and patterns of change. High spatial 

resolution data captured by the commercial satellite QuickBird-2 were employed to model 

structural attributes at the stand level, and to explore forest structural diversity. 

Aboveground biomass (AGB) was calculated retrospectively at specific dates (1990 and 

2000) with modelled temporal trajectories of spectral indices, and maps were produced 

with 30 m spatial resolution depicting biomass, biomass change, and measures of 

uncertainty, from which carbon budgets were calculated. 

Results indicate that the area occupied by pines in the Central Range of Spain fluctuated 

during period 1984-2009, with a final net increase of 40%. A global activation of carbon 

pools was observed, being the area intermittently covered by pines strongly involved in 

processes of C exchange, while the permanent pines had a near to neutral net C character. 

The temporal character of local carbon fluxes was identified and summarized by date, 

showing that in 2000 there was a maximum of 33% of the area in a process of net C 

accumulation. A widespread trend to accumulate biomass was confirmed, with 18% of 

initial biomass accrued by the pine stable area between 1990 and 2000. On average, these 

pines accumulated 0.65 t ha-1 y-1 of carbon in the form of AGB between 1990 and 2000, 

equivalent to 2.38 t ha-1 y-1 fixation of CO2. 

Remote sensing supports and enhances the value of forest inventories based on sample 

plots for assessment of biomass and C budgets, complementing rather than substituting 
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essential field work. Access to archived historical and contemporary images of high and 

consistent quality provides opportunities to develop methods for unveiling information 

related to the development of forest ecosystems that would otherwise remain incomplete or 

unknown. In addition to international archives of medium spatial resolution images 

providing data free of cost, like the US Geological Survey and the European Space 

Agency, the Spanish Plan Nacional de Observación del Territorio acquires national 

coverage of high spatial resolution imagery annually, that constitutes an opportunity to 

support the evaluation of the national forest resources for planning and decision making. 

Keywords: aboveground biomass, carbon dynamics, remote sensing, forest structure, 

structural diversity, spectro-temporal trajectory, successional process, modelling, 

Mediterranean pines, Spain. 
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RESUMEN 

Los bosques realizan una función dinámica en el balance de carbono (C) terrestre, a 

través de las reservas de biomasa y los flujos de C asociados a la respiración y fotosíntesis. 

La teledetección, combinada con técnicas de análisis de datos, constituye un medio 

práctico para evaluar el papel de los bosques en el ciclo de carbono, proporcionando 

estimaciones de la cantidad, calidad, y evolución de la biomasa y reservas de carbono. El 

objetivo de este trabajo fue el desarrollo y aplicación de técnicas para valorar la función de 

los pinares del Sistema Central español durante 25 años (1984-2009) en el contexto del 

carbono. Para ello se utilizaron datos ópticos de media y alta resolución espacial obtenidos 

con sensores remotos, junto con datos de inventario medidos en campo. Se identificó la 

localización, extensión, y distribución de los pinares, evaluando los cambios ocurridos en 

tres subperiodos. Gracias a las series temporales de datos Landsat se desarrollaron técnicas 

novedosas de procesamiento y análisis de datos para identificar procesos de sucesión 

forestal a escala de paisaje y para describir el carácter local de los almacenes de carbono, 

facilitando la caracterización simultánea de los patrones y las tendencias de cambio. 

Utilizando imágenes de alta resolución espacial obtenidas por el satélite QuickBird-2 se 

desarrollaron modelos de estructura forestal a escala de rodal y se exploró la diversidad 

estructural. Se calculó la biomasa aérea de forma retrospectiva para los años 1990 y 2000, 

incorporando trayectorias espectrales como variables dinámicas en los modelos de 

estimación. Finalmente se desarrolló cartografía ráster (resolución 30 m) de biomasa aérea 

y cambio de biomasa, junto a valores de la incertidumbre asociada. A partir de estos mapas 

se calcularon valores totales de acumulación y flujo de carbono. 

Los resultados indican que el área ocupada por pinares en el Sistema Central español 

fluctuó durante el periodo 1984-2009, con un incremento final neto del 40%. Se observó 

una activación generalizada de los almacenes de carbono, estando el área con cobertura 

intermitente de pinar fuertemente involucrada en procesos de intercambio de C, mientras el 

área con cobertura estable tuvo un comportamiento neto casi neutro. El carácter de los 

flujos locales de carbono resumido por fechas demostró que en 2000 más de un tercio de la 

superficie considerada estaba acumulando carbono de forma neta. Se confirmó una 

tendencia global de acumulación de biomasa: entre 1990 y 2000 el área de pinar 

permanente acumuló el equivalente al 18% de su biomasa inicial. Como media, la biomasa 
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aérea de estos pinares almacenó 0.65 t ha-1 a-1 de carbono entre 1990 y 2000, equivalente a 

la fijación de 2.38 t ha-1 a-1 de CO2. 

La teledetección complementa y realza el valor de los inventarios forestales basados en el 

muestreo de parcelas para la estimación de biomasa forestal y reservas de C. El acceso a 

archivos de imágenes históricas y contemporáneas ofrece la oportunidad de utilizar 

cuantiosos datos y desarrollar métodos que ayudan a generar información relacionada con 

el desarrollo forestal, de otra manera inexistente o incompleta. Además de los archivos de 

imágenes de media resolución espacial del US Geological Survey (USGS) y la Agencia 

Espacial Europea (ESA), libres de coste económico, la adquisición por parte del Plan 

Nacional de Observación del Territorio (PNOT) de una cobertura anual con imágenes de 

alta resolución espacial, constituye una oportunidad de respaldar la estimación de los 

recursos forestales nacionales para la planificación y los procesos de decisión. 

Palabras clave: biomasa forestal aérea, carbono, teledetección, estructura forestal, 

diversidad estructural, trayectoria espectro temporal, proceso evolutivo, modelización, 

pinares mediterráneos, España. 
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1. INTRODUCTION 

1.1. The global Carbon context 

Concern about widespread instability of ecosystems, presumably affected by changes 

in atmospheric composition and gas circulation, has increased since the last decades of the 

20th century. Common distress has triggered the advance of a large-scale scientific 

framework, aiming to understand climate oscillations and to identify the factors involved. 

The cyclic flow and the balance of atmospheric gases, carbon dioxide, nitrous oxide, 

ozone, and methane, have been recognized of particular relevance. 

Forests play an important role in the terrestrial carbon budget (FAO, 2010; IPCC, 2007), 

with an estimated annual net carbon uptake equivalent to 26% of the current human fossil 

emissions (Pan et al., 2011). As part of the photosynthesis, trees and shrubs absorb carbon 

dioxide (CO2) from the atmosphere and fix carbon by accumulation in the form of 

biomass. A fraction of the in-taken carbon is outsourced in the continuous respiratory 

process, and all can be released in the processes of combustion (Körner et al., 2003) or 

decomposition (Krankina and Harmon, 1995). The net balance of respiration and primary 

production determines the overall quality of a forest as a carbon sink or carbon source 

(Law et al., 1999) and it is intimately related to age and development stage, health 

condition, and structural characteristics (Brown, 2002; Goward et al., 2008). 

The uptake of CO2 by land sinks is not currently quantified with adequate accuracy 

(LeQuéré et al., 2009). Significant uncertainties in carbon (C) budgets exist related to 

imprecise estimates of biomass location and biomass change (Houghton, 2005). 

Furthermore, for prediction of future carbon scenarios, the gap of knowledge about 

prospective efficiency of natural sinks constitutes an important hitch (LeQuéré et al., 

2012). The subsistence of uncertainties in C budgets motivates international collaboration 

and establishment of multidisciplinary working programs, which aim to obtain harmonized 

assessments of the global C balance. The Global Carbon Project (GCP) was established in 

2001 to set up a framework for international coordinated research and observation, aiming 

to develop a complete picture of the global C cycle, including biophysical and human 

interactions. Additionally, and complementary to the GCP, the Integrated Global Carbon 

Observations (IGCO) system coordinates networks of systematic in situ and remote 

measurements of C fluxes, pools, and processes. IGCO’s goals are: to provide long-term 
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observations required to improve understanding of the present state and future performance 

of the global C cycle, and to monitor and assess the effectiveness of carbon sequestration 

and/or emission reduction activities on global atmospheric CO2 levels, including 

attribution of sources and sinks by region and sector. Collaborators of the GCP such as 

CarboEurope, the North American Carbon Plan, or the Australian National Carbon 

Accounting Project, provide regional contributions with scientific understanding of 

sources, sinks, and changes in carbon stocks. 

At regional and local scales, knowledge of forest C dynamics is relevant for marketing and 

management decisions, and for calibration of larger scale estimations. Modelling and 

estimation of forest carbon dynamics at medium scale is in continuous development, with 

work done in all terrestrial forested biomes (Table 1). Field data from national forest 

inventories constitute a main source of information for regional reports (e.g. Mäkipää et 

al., 2008; Liski et al., 2006) and remotely sensed data sources have become irreplaceable 

for this purpose (Lu, 2006). 

Table 1. Examples of estimation and mapping of C dynamics and stocks at regional scale 

in different biomes. 

Biome Work Area location Goal 

Boreal 
Chen et al., 2000 Canada C dynamics 

Liski et al., 2003 Eurasia, America C stocks 

Temperate 
Fang et al., 2001 China C dynamics 

Goward et al., 2008 USA C stocks 

Tropical 
Asner, 2009 Brazil C dynamics 

Baccini et al., 2008 Africa C stocks 

At the landscape level, the net exchange of carbon in a forest ecosystem is strongly 

controlled by the spatial distribution of stand age, structure, and condition (Goward et al., 

2008). Integrating the dynamics of all stands with spatial data reporting on structure, age, 

and their distribution is necessary for the assessment of carbon budgets (Song and 

Woodcock, 2003). Unfortunately, the general lack of accurate spatial data regarding forest 

biomass is one of the most persistent uncertainties concerning C budgets (Harrel et al., 

1995). Intense research is currently ongoing to mitigate this lack of information (e.g. 

Powell et al., 2010; Sales et al., 2007). 
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1.2. Spanish forests role in the Carbon context 

The Spanish forests currently cover 18.5 million ha, and perform an annual C uptake 

equivalent to 24% of the country fossil emissions (Montero and Serrada, 2013). As 

signatory country of the Kyoto Protocol, Spain is committed to provide data to establish 

the level of C stocks in 1990 and to enable an estimation of changes in carbon stocks in 

subsequent years (UNFCCC, 1997). For the post-Kyoto era, advanced carbon estimation 

methodologies are recommended to provide accurate, transparent, and reliable data to 

serve as a basis for market tools and international carbon policymaking (Zhang et al., 

2012). 

Variations in the Spanish forests C pools in relation to land use change are typically 

associated with reforestation of agricultural land. Carbon stocks in stable forest areas are 

modified by fire events, harvesting, recruitment, natural growth, and improvement of forest 

quality (MMA, 2002). Measurements acquired by the Spanish National Forest Inventory 

are currently the main source of data for calculation and evaluation of forest C balances at 

national level (MMA, 2002; González-Alonso, 2006) and regionally (e.g. Herrero and 

Bravo, 2012).  

1.3. Reporting on forest resources 

Forest stakeholders are obliged to report locally, nationally, and internationally about 

the state and condition of ecosystem resources, in order to meet management requirements 

and conservation commitments (Wulder et al., 2008a). The extent and distribution of forest 

stands, the biomass content, carbon sources, sinks and balances, species diversity, and 

changing dynamics, are typical features requiring characterization (Tomppo et al., 2010). 

Sustainable management is based on informed decisions about assets, and requires periodic 

evaluation for updating of the coverage, structure, and condition of forests resources 

(McDonald and Lane, 2004; Siry et al., 2005). 

As regards to conservation, signatory countries of the United Nations Framework 

Convention on Climate Change (UNFCCC) are committed to regularly update an 

inventory of CO2 and other greenhouse gas emissions using comparable methods 

(Houghton et al., 1997). Party countries ratifying the Kyoto Protocol (1997), Spain 

amongst them, are required to reduce their 1990 level of human induced carbon emissions, 
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with an option to trade part of this reduction with the conservation and enhancement of 

forestry resources through activities such as afforestation and reforestation (Patenaude et 

al., 2005). Forests have therefore to be monitored to account for any gains and losses in 

extent, and for changes in structure and condition that might impact carbon accounting. 

Additionally, international carbon credit trading schemes are in development, (Gibbs et al., 

2007) and require accurate carbon stock estimation. Other international treaties, like the 

Biodiversity Convention or the World Heritage Convention, oblige countries to report 

regularly on changes in forest characteristics such as total forest area, woody biomass, or 

diversity of tree species (Andersson et al., 2009). Assessment of these changes for 

reporting at the national or regional level necessitates reliable and cost effective methods 

for spatially explicit monitoring over large areas (Krankina et al., 2004). 

1.4. Land cover and land cover change (LCLCC) 

Land cover is fundamental information for management of resources at medium to 

large scale (Smith, 2008). Identification of land cover type is the first step in any C 

assessment program (Andersson et al., 2009). The extent and spatial distribution of forests 

are naturally modified by disturbance agents such as fire, windstorm, or flood (Foster et 

al., 1998), and also by human-induced activities such as harvesting or plantation (Hannah 

et al., 1994). Land cover changes derived from afforestation or deforestation may turn the 

character of an area from net carbon source to net carbon sink or vice versa, and therefore 

they are significant events in the C budget (Houghton, 1999; Houghton et al., 2012). 

To assess changes of land cover at medium and large scale, satellite remotely sensed data 

is a long-standing source of information with demonstrated capability (Coppin et al., 

2004). When used synergistically with other sources of data, remote sensing technology is 

adequate to evaluate changes in land cover use, as required by the Kyoto Protocol (KP) 

(Patenaude et al., 2005). Since only the human induced land cover change episodes report 

to the KP, these changes require verification with contemporary data (Rosenqvist et al., 

2003). A host of sensors onboard satellite platforms are well suited for detection of land 

cover types, providing consistent and repeatable measurements at an appropriate scale 

(Verbesselt et al., 2010). Optical sensors like SPOT VEGETATION and MODIS have 

been widely used for this purpose (Homer et al., 2001; Guindon and Edmonds, 2002; 

Potapov et al., 2008; Wulder et al., 2008b). The Landsat program has been during decades 

12 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

the gold-standard for land cover classification (Cohen and Goward, 2004) and change 

detection (Wulder et al., 2008c), thanks to a suitable combination of spatial resolution (30 

m), revisit period (16 days), and wide spatial coverage (185 km by 185 km). With a long 

history of near continuous imagery acquisition of the Earth’s surface starting in 1972 

(Leimgruber et al., 2005), Landsat archival imagery is adequate for the establishment of a 

1990 baseline as required by the KP, and for monitoring change with calibrated imagery. 

Ongoing operational land cover change detection programs at national level have a main 

focus on forest change, and rely on Landsat imagery with support of data from other 

programs (Hansen and Loveland, 2012). Table 2 offers an overview of relevant 

international programs dedicated to LCLCC detection. 
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Table 2. Overview of international programs dedicated to land cover and land cover 

change detection. 

Product 
Description 

Area Producer Images 
CLC2000 
CLC90-2000 
(CORINE Land Cover) 

Map of land cover in 29 countries and changes (at least 5 ha) 
between 1990 and 2000 
Europe EEA and JRC Landsat 

PRODES 
(Program for Deforestation 
Assessment in the Brazilian Legal 
Amazonia) 

Deforestation maps and annual statistics of the Legal Amazon 

Brazil INPE Landsat 

LCCP 
(Land Cover Change Project) 

Monitors vegetation with a backdating strategy to initial date 
1972 
Australia NCAS Landsat 

NLCD 2006 
(National Land Cover Database) 

Land cover map and map of change at national scale with high 
temporal (5 years) resolution representing change since 2001 
USA USGS Landsat 

EOSD 
(Earth Observation for Sustainable 
Development of Forests) 

Forest land cover map 

Canada NRCAN Landsat 

GLC2000 
(Global Land Cover) 

Global land cover database produced by coordinating 30 
research partners 

Global JRC 
SPOT 
VEGETATION 

FAO Africover 
Regional land cover map 
Africa GOFC-GOLD Landsat 

FAO Asiacover 
Regional land cover map 
Asia GOFC-GOLD ALOS-AVNIR 

Note. CORINE: Coordination of Information on the Environment; EEA: European Environment 
Agency; JRC: Joint Research Centre; INPE: National Institute for Space Research; NCAS: 
National Carbon Accounting System; USGS (United States Geological Survey); NRCAN: Natural 
Resources Canada; SPOT: Satellite Pour l’Observation de la Terre; GOFC-GOLD: Global 
Observation of Forest and Land Cover Dynamics; ALOS-AVNIR: Advanced Land Observation 
Satellite-Advanced Visible and Near Infrared 

Regional maps produced with independent classification schemes are difficult to compare. 

To enable objective international comparison of land cover state and changes, FAO 

developed a standard classification scheme, the Land Cover Classification System (LCCS) 

(Di Gregorio and Jansen, 2000) that is being used by a growing number of international 

projects (e.g. GLC, 2000) (Bartholomé and Belward, 2005). Moreover, a number of 
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countries have translated their existing land cover legends to align with the LCCS system 

(Latham, 2008). 

For assessment of land cover change with digital image processing, a variety of techniques 

have been developed (Singh, 1989; Coops et al., 2006) and classified in scientific literature 

reviews according to different criteria (Coppin, 2004; Lu et al., 2004; Hussain et al., 2013). 

Common approaches for assessment of land cover change include: image algebra (Jensen 

and Toll, 1982), regression or correlation (Jha and Unni, 1994), statistical techniques 

(White et al., 2011), post classification comparison (Lyons et al., 2012), and the combined 

analysis of data in a GIS (Petit and Lambin, 2001). Change can be spatially evaluated with 

pixel or object based approaches, either kind of methods with particular strengths (Hussain 

et al., 2013). Successful implementation of any of these techniques requires identification 

of real change and discrimination of change artefacts due to seasonality, sun illumination, 

sensor orientation, and other confounding circumstances (Lu et al., 2004). 

1.5. Forest structure and forest biomass 

Forest structure refers to the vertical and horizontal arrangement of canopies (Coops 

et al., 2007), that is, the distribution of heights and spacing of trees. Several variables are 

useful to characterize forest structure: individual tree measures of height, diameter, and 

crown size, collective attributes like number of trees and spacing, and statistical averages 

or indicators of variability. Some structural parameters can be directly measured in ground 

plots (e.g. diameter) for inventory, other parameters can be modelled from direct 

measurements (e.g. volume). By means of wall-to-wall remotely sensed observations and 

statistical methods, structural parameters may be estimated over large areas (Tomppo et 

al., 2002; McRoberts and Tomppo, 2007). 

Forest biomass is the organic matter weight of the above ground (i.e. stem, branches, and 

leaves) and below ground (i.e. radical system) portions of trees and shrubs (Montero et al., 

2005). Structure and above ground biomass (AGB) are essential features for the 

assessment of forest productivity (Soenen et al., 2010), for modelling fire risks (Narayan et 

al., 2007), determining carbon budgets (Kurz and Apps, 1999), and selecting management 

options (Zianis et al., 2005). 

Monitoring changes in the amount and spatial distribution of forest biomass and carbon 

stocks is required for the sustainable management of forest resources (Tan et al., 2007; 
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Herrero and Bravo, 2012) and necessary to get some understanding of the forest carbon 

budget. Measures of biomass can be readily transformed into values of C content through 

species-specific or general conversion factors, being the relation of 0.5 carbon to biomass 

(Kollmann, 1959; Penman et al., 2003) widely used. Consequently, maps of forest biomass 

and biomass change enable spatially explicit estimates of forest carbon storage and fluxes 

(Blackard et al., 2008).  

Biomass and carbon temporal dynamics in forests are naturally ruled by successional 

processes (Pregitzer and Euskirchen, 2004) and structural stage (Harmon et al., 1990). 

Forest regeneration results in sequestration of C into the ecosystem, with young and 

vigorously growing trees incorporating biomass in above and below ground fractions. As 

regenerating stands approach maturity, the size of the vegetation C pool may eventually 

reach its maximum stock level, with the age at which a forest becomes a net carbon sink 

varying according to forest type, site productivity, and other factors (Birdsey et al., 2006; 

Goward et al., 2008). Management systems organizing the structure and age distribution of 

forest stands through space and time, and disturbances that modify the natural forest 

successional course are crucial factors affecting forest biomass and carbon dynamics. 

Quantifying the variability of forest biomass over large spatial extents and long periods of 

time is essential for accurate carbon accounting (Goetz et al., 2009; Houghton, 2005). 

1.6. Methods for measuring forest biomass and carbon content 

Currently the main existent methods for accurate assessment of wood volume, 

biomass, and carbon content in forests rely on sample plots measurements (Brown, 2002). 

Basic attributes measured directly on trees, such as height and diameter at breast height, 

can be readily converted to AGB through allometric regression equations (for individual 

trees), or through biomass expansion factors (for stand-like areas). As many other 

countries, the Spanish National Forest Inventory (NFI) has an established systematic 

network of permanent plots re-measured periodically (Bravo et al., 2002). The NFI 

provides reliable information on stocks, and also on growing rates, gains and losses, to 

estimate stock changes at national level as recommended by the IPCC (2003) (Mäkipää et 

al., 2010). Species specific allometric equations for coniferous and broadleaved native 

species have been developed by Montero et al. (2005) and by Ruiz-Peinado et al. (2011). 

These equations were derived with data measured in local forests, facilitate assessment of 

16 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

most Spanish tree species, and represent a base for extending plot measures to larger 

spatial units. 

Forest inventories are typically designed based on statistical sampling to enable large area 

knowledge of the variables of interest, in particular to facilitate assessment of biomass and 

C resources. However, spatially explicit estimates of AGB over large areas that are derived 

from traditional field based forest inventories may be incomplete (Du et al., 2011) and 

limited by the sampling intensity (Wulder et al., 2008b). Carbon accounting approaches 

requiring periodical reporting might also be limited by the temporal frequency of 

measurements (Powell et al., 2010). 

1.7. Remote sensing of forest biomass and carbon content  

Remote sensing technologies constitute an effective instrument to evaluate 

biophysical properties of terrestrial ecosystems, in particular forest structure and biomass. 

Remote sensing has become the primary data source for biomass estimation (Lu, 2006), 

providing repeat measurements with synoptic view of extensive areas, in digital format and 

with affordable costs (Bettinger and Hayashi, 2006). Satellite observations contribute to 

measuring and monitoring carbon stocks by routinely classifying land cover types, 

extending in situ measurements over larger areas, informing ecosystem models, and 

through direct relationships between biophysical attributes of vegetation and remotely 

sensed observations (Goetz and Dubayah, 2011). 

Medium spatial resolution (MSR) imagery (10 - 100 m pixel size) is well suited for 

characterization of regional ecosystems. The Landsat series of satellites have provided 

profuse base data in support of ecological assessments, for mapping forested areas, and for 

estimating wood volume (Trotter et al., 1997; Kajisa et al., 2007), biomass (Zheng et al., 

2004; Luther et al., 2006) and carbon stocks (Foody et al., 1996; Turner et al., 2004). 

Other satellites with similar spectral, spatial, and revisiting characteristics exist (Stoney, 

2008) or are expected to be soon in operation (e.g. Sentinel-2) that may provide data to 

cover potential gaps in the Landsat acquisition (Wulder et al., 2011). High spatial 

resolution (HSR) imagery (< 5 m pixel size) is increasingly available to public use, 

following the launch of commercial satellites: IKONOS (1999), QuickBird-2 (2001), and 

GeoEye-1 (2008). The range of applications utilizing HSR imagery grows constantly and 
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includes estimation of forest structural parameters (Hirata, 2008; Mora et al., 2010, 2013) 

and biomass assessment (Greenberg et al., 2005; Proisy et al., 2007). 

For estimation of biomass, remotely sensed data can be used with different approaches 

(Wulder et al., 2008b), based on the assumption of a strong statistical relationship between 

above ground biomass and the spectral response as captured by the sensor (Lu, 2006). 

Relations can be established directly between ground biomass and spectral response, or 

indirectly through other estimated attributes such as Leaf Area Index or crown closure. 

Statistical strategies for establishment of the most reliable relationships include multiple 

regression, imputation, neural networks, or decision trees. The adequacy of a particular 

model depends on data availability, desired precision, transparency, and site-specific 

characteristics (Labrecque et al., 2006). Plot based National Forest Inventories are 

frequently the source of data for calibration of models (Gallaun et al., 2010), meeting the 

requirements recommended for modelling: data are representative of all conditions present, 

and are acquired according to consistent specifications (Duane et al., 2010). 

Optical sensors have a recognized and extensively reported limitation in the estimation of 

some forest biophysical parameters, namely the saturation of measured reflectance at high 

values of biomass or other estimated variables (Turner et al., 1999; Duncanson et al., 

2010). Expected to alleviate to some extent the saturation problem of previous sensors 

(Wulder et al., 2011), the radiometry of the optical sensor onboard Landsat 8 (launched 

11th February 2013), has been improved (data quantized to 12 bit instead of 8 bit) (Irons et 

al., 2012). Landsat provides a favourable spatial resolution, revisit period, radiometric 

resolution, and four decades of continuous Earth Observation (EO). Until more promising 

techniques become operational, Landsat sensors and others alike remain the most useful 

means for regional estimations of forest attributes. 

The development of new technologies to map forest structure and biomass is a priority for 

remote sensing agencies (Hese et al., 2005; Lefsky, 2010). A range of satellite missions 

have been planned in the last decades with main goal estimation of biomass and biomass 

change. NASA’s projected mission DESDynI (Deformation Ecosystem Structure and 

Dynamics of the Ice) (Hall et al., 2011) was intended to include InSAR (Interferometric 

Synthetic Aperture Radar) and LiDAR (Light detection and ranging) equipment. 

Unfortunately, this promising mission was cancelled before birth (Goetz, 2011) due to 

redistribution of funding. BIOMASS is an ESA projected mission conceived to include P-
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band polarimetric SAR equipment with interferometric capability (Le Toan et al., 2011). 

The advantage of radar technology is the transparency to atmospheric moisture, 

particularly important in tropical and boreal systems, whereas LiDAR has demonstrated to 

be highly sensitive to biomass change (Lefsky et al., 2002).  

As part of the Global Monitoring for Environment and Security (GMES) programme, a 

series of Sentinel satellites will commence operational phase in 2014 (Aschbacher and 

Milagro-Pérez, 2012) providing continuity to SPOT and Landsat-type data. The Sentinel-2 

is the optical high-resolution mission for GMES operational services (Drusch et al., 2012). 

With global coverage, high revisit period (5 days) enabled by dual satellite constellation 

and a set of narrow bands (12 bit quantization) dedicated to characterization of vegetation, 

Sentinel-2 will be a good source of data for forestry characterization and monitoring of 

change. Sentinel data policy is still undefined, but expected to be to allow anybody 

(individuals and institutions from any part of the World) access to data of some processing 

level (Aschbacher and Milagro-Pérez, 2012). 

Synergistic use of data from passive and active sensors (e.g. LiDAR, radar) has shown 

promising for improvement of biomass estimations. Combining Landsat with GLAS 

(Geospatial Laser Altimeter System) data has shown successful to calculate biomass in 

British Columbia (Duncanson et al., 2010) and forest height in Mississippi (Li et al., 2011) 

while extending LiDAR estimates of forest parameters with Landsat imagery is becoming 

frequent at the regional level (Maselli et al., 2011). In spite of the remarkable opportunities 

offered by remote sensing technology and a continuous improvement of the space (i.e. 

satellite, sensor) and ground (i.e. processing, distribution) segments, the estimation of AGB 

is also restricted by uncertainties in the models, requiring further development and 

refinement (Zhang et al., 2012). Nevertheless, remote sensing is the only feasible means 

for national level assessments of AGB and carbon, and a growing number of countries are 

incorporating remote sensing technologies in their National Carbon Accounting Systems 

(e.g. Indonesia, Australia, USA). 
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1.8. Remote sensing opportunities in Spain 

As part of the Spanish Plan Nacional de Observación Terrestre (PNOT), the Plan 

Nacional de Teledetección (PNT) is committed to acquiring complete national coverage of 

high spatial resolution satellite imagery annually (Arozarena, 2008). The acquisition phase 

started in 2008 (Villa et al., 2009), capitalizing on archival data to backdate the database to 

2005 coverage. Initial coverage consists of SPOT 5 HRG XS + P 2.5 m data, and other 

sensors are being considered for future acquisitions (IGN, 2009). Access to this data source 

represents a unique opportunity to incorporate HSR into Spanish forest inventories as an 

operational and low cost data source to meet a range of information needs. The data is to 

be collected with a primary focus on land-use land-cover change assessment (Villa et al., 

2009), but has capacity to generate information for forest monitoring and reporting. 

Additionally, the PNOT acquires and pre-process abundant medium spatial resolution 

imagery from the historical Landsat archive, making them available for research, and low 

spatial resolution data from the AQUA/TERRA MODIS and ENVISAT MERIS sensors. 

Furthermore, the Plan Nacional de Ortofotografía Aérea (PNOA) compiles LiDAR data 

(0.5 pulses per square meter) over the entire national territory since 2009, from which 

digital elevation products of high resolution are derived. LiDAR and aerial photography 

are very supportive material for forestry applications (Suárez et al., 2005; Wulder et al., 

2008d). The PNT provides opportunities for future work that might be informed by the 

methods and results of the work developed in this doctoral thesis. 
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2. AIMS AND OVERVIEW 

This thesis focuses on the employment of satellite optical remotely sensed data of 

medium and high spatial resolution, in combination with field measures, to estimate the 

content and to assess changes of forest biomass and carbon fluxes over two and a half 

decades (1984-2009) in pines of the Central Range of Spain. Novel techniques for data 

processing and analysis are developed and tested in a dynamic forest area in Canada prior 

to application in the target area. The location, extent, and distribution of pine forests are 

characterized, and changes occurred during 25 years are evaluated. Capitalizing on 

temporal series of spectral data, techniques are developed to identify forest successional 

processes at the landscape level, and to characterize carbon stocking condition locally. In 

addition to the characterization of trends and patterns of change through temporal 

derivatives of medium spatial resolution spectral trajectories, an original application of 

spatial statistics enables explanation of the spatial and temporal association of successional 

processes. Forest structure is characterized at the stand level, and structural diversity 

explored with high spatial resolution data captured by the QuickBird-2 satellite. 

Aboveground biomass (AGB) is calculated retrospectively at specific dates (1990 and 

2000) with modelled temporal trajectories of spectral vegetation indices. Maps are 

produced at 30 m spatial resolution depicting AGB and change of AGB, providing 

spatially detailed information and measures of the uncertainty associated, from which 

carbon budgets are calculated. 

2.1. Goal and main objective 

The goal is to develop and test novel methods for estimation and monitoring of forest 

biomass and carbon stock dynamics in pines of the Central Range of Spain, combining 

optical remotely sensed data with field inventory data.  

A specific objective is to obtain estimated values of above ground biomass and carbon 

stored in pine areas of the Central Range of Spain, assessing changes that have occurred in 

a twenty-five year period (1984-2009). 
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2.2. Thesis structure, specific goals and objectives 

This doctoral thesis is structured into five chapters, each one holding a self-contained 

investigation published or under review in peer reviewed international journals. Each 

chapter focuses on different aspects of remote sensing technologies dedicated to the 

assessment of forest AGB and AGB dynamics: land-cover and land-cover change, 

distribution and association of state and processes of change over the landscape, forest 

structure, structural diversity, biomass modelling and mapping. A schematic overview of 

the main topics covered by each chapter is shown in Figure 1. Table 3 synthesizes the 

goals and objectives of each chapter. 

The main methods applied in this work, main results, some discussion, and conclusions (in 

English and Spanish) are synthesized and presented prior to the main five chapters that 

correspond with peer reviewed publications. Each publication is preceded by a summary in 

Spanish. 

 

 

Figure 1. Schematic overview of topics covered in the thesis.
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Table 3. Summary of the goals, specific objectives, and outline of each chapter. 

 Goal Specific objectives 
Overview 

C
ha

pt
er

 I 

To investigate the capacity of spectral 
trajectories generated from a 35-year 
time-series of Landsat images for 
description and analysis of spatially and 
temporally diffuse change in a dynamic 
forest environment 

• To characterize forest landscape change using 
Tasseled Cap Transformation derived indices 

• To incorporate spatial and temporal properties 
into a hierarchical segmentation process to 
capture forest landscape-level change 

• To analyze the spatial and temporal correlation 
of landscape change and processes through 
time 

A temporal series (35 years) of calibrated and radiometrically normalized Landsat images helps 
charactering landscape changes in a very dynamic forest region of Alberta, Canada. Drastic and 
subtle processes are described through a new metric originated from the Tasseled Cap 
Transformation (TCT) Greenness and Brightness components, the Tasseled Cap Angle (TCA) 
and its derivative, the Process Indicator (PI). Simultaneous description of landscape process 
and pattern is enabled 

C
ha

pt
er

 II
 

To characterize changes in area, 
distribution, and carbon stocking 
processes of pines in the Central Range of 
Spain during a period of twenty-five years 
(1984-2009) with a medium spatial 
resolution time series of images from the 
Landsat program 

• To assess changes in extent of a Mediterranean 
forest with a multilevel object oriented 
methodology 

• To identify with spatial precision the 
distribution of pines in the Central Range of 
Spain and variations occurring in three sub-
periods 

• To characterize carbon stocking areas with the 
TCA, assessing trends of change over the 
period 1984-2009 

Evaluates the distribution of pine forests in the Central Range of Spain during two and a half 
decades (1984-2009), mapping areas permanently covered by pines and areas of change. The 
state of development, that is, the closure or density condition is characterized and evaluated at 
various key times with the Tasseled Cap Angle (TCA) and changes are assessed with the TCA 
derivative, the Process Indicator (PI). The use of these newly derived indices, (TCA and PI) 
enables a combined analysis of forest state and stocking process 

C
ha

pt
er

 II
I 

To explore the potential of high spatial 
resolution (HSR) imagery to characterize 
forest structure in Mediterranean pines in 
the Central Range of Spain. Motivated by 
this purpose the capacity of QuickBird-2 
imagery to model the quadratic mean 
diameter, basal area, and number of trees 
per unit area at the stand level (as direct 
estimators of volume and biomass) is 
evaluated 

• To model the relation between structural 
parameters (quadratic mean diameter, basal 
area, and number of stems per hectare) 
measured via field sampling and a set of 
spectral and spatial variables derived from 
QuickBird-2 multispectral and panchromatic 
imagery 

• To test and verify the ability of Classification 
and Regression Trees (CART) as the statistical 
technique for modelling structural parameters 

• To identify the image derived variables with 
the greatest informative capacity in the 
modelling of structural parameters, assessing in 
particular the inclusion of image textural 
metrics in the models 
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Investigates the local relationships of variables derived from HSR images with forest structural 
parameters such as quadratic mean diameter, basal area, and number of trees per unit area, as 
descriptors of stand density and direct estimators of volume and biomass. Statistical models 
based on dichotomous relations of images’ spectral and spatial features predict forest structural 
attributes 

C
ha

pt
er

 IV
 

To assess the potential of high spatial 
resolution (HSR) imagery to characterize 
forest structural diversity in 
Mediterranean pines of the Spanish 
Central Range 

• To determine and quantify the relationships 
between forest structural diversity measured at 
the plot level and data captured by a satellite-
borne sensor in the form of visible and NIR 
spectral reflectance as well as spatial 
combinations of panchromatic reflectance 
values, as related by texture metrics 

• To identify the relative relevance of reflectance 
measures versus texture metrics in 
characterizing the forest structural diversity 

• To assess how the spectral diversity-structural 
diversity relationship varies under different 
conditions of forest density, that is, determine if 
different relations occur in open versus closed 
forest conditions 

Explores the capacity of HSR data to assess the structural diversity in forest stands of various 
crown closure conditions. The structural diversity is characterized at the plot level with a linear 
combination of internal variability of height, bole diameter, and crown diameter measured on 
the field. At similar spatial level the spectral and textural variability of multispectral and 
panchromatic imagery are evaluated. The strongest relations between a combination of image 
variables and a combination of field variables are identified with canonical correlation analysis. 
The relative importance of spectral and textural attributes in these relations is assessed as a 
function of stand density 

C
ha

pt
er

 V
 

To estimate and map historical AGB (at 
specific dates in time), as well as a decade 
of change in AGB, by combining the 
precision of field measures from a 
network of NFI plots with the wall-to-wall 
spatial coverage provided by remotely 
sensed data 

• To explore the relationship between live AGB 
derived from NFI ground plot measurements 
and vegetation spectral indices derived from 
Landsat data 

• To model past AGB with historical spectral 
data, including single-date data and multi-
temporal trajectories, providing a baseline for 
comparison with more recent estimations 

• To map historical AGB at two dates coincident 
with NFI rotations (1990 and 2000) and 
evaluate the distribution of change in view of 
the uncertainties associated with the process of 
modelling and mapping 

Develops novel methods for spatially explicit assessment of historical biomass and biomass 
change, based on the linkage between NFI data and archival Landsat imagery. Mathematical 
transformations of the data system formed by spectral indices and two rounds of NFI data 
enable derivation of dynamic variables associated to successional processes that happen to be 
good predictors of biomass. A baseline AGB1990 is produced 
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3. DATA AND METHODS 

3.1. Study area 

The Central Range of Spain is a mountain chain located in the middle of the Iberian 

Peninsula, separating the North and South plateaus, and with a main SW to NE direction 

(Figure 2). Its maximum height is reached at Pico Almanzor (Ávila) with 2592 m. As the 

Spanish plateaus lay at very different elevation, the Central Range base height is 900 m on 

the north face and 400 m on the south face. This height difference has direct weather 

implications, with generalized milder conditions on southern locations. Rainfall and 

temperature are very variable: many places on northern expositions receive 1000 mm y-1 of 

water, frequently in the form of snow, and average temperatures in some places remain 

below zero. Soils are predominantly acidic, with abundant granites, gneiss, and shales 

(Gandullo, 1976; Aparicio and García Cacho, 1984). 

 

Figure 2. Location of the area of interest in the middle of the Iberian Peninsula. 
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Dominant vegetation communities are distributed mainly as a function of altitude. On the 

lower heights evergreen Holm oaks (Quercus ilex L.), sometimes combined with pines and 

juniperus, dominate the landscape. Marcescent Pyrenean oaks (Quercus pyrenaica Willd.) 

occupy areas in the mid heights, and mountain pines are the dominant tree species over 

1600 m. Natural and planted pines (P. sylvestris L., P. pinaster Ait., P. nigra Arnold) are 

the most extended tree species, climbing to elevations of 2000 m, beyond which shrubs 

(Cytisus sp., Genista sp., Erica sp., Echinospartum sp.) and high altitude meadows are the 

prevalent vegetation (Rivas-Martínez, 1963). 

The area of interest for the work reported in this dissertation covers approximately one 

million hectares in the Central Range of Spain, occupying part of the Ávila, Segovia, 

Madrid, Guadalajara and Toledo provinces. It is centred at latitude 40º 37’ 56’’ N and 

longitude –4º 6’ 47’’ E. Some forests in this region have been subject to a management 

plan for more than a century, and although punctual socioeconomic circumstances 

sometimes precluded perfect application (Bravo et al., 2010) forest structure has been 

modified by silvicultural treatments. 

3.2. Data 

The work reported in this doctoral thesis was supported by data measured on the 

ground and data sensed remotely. Measures from plot based field inventories served as 

reference for derivation of statistical models of structure, diversity, and biomass, and in the 

stages that required accuracy assessment of estimated values. Satellite remotely sensed 

data was the base for identification and characterization of areas of interest (extent and 

distribution), for up-scaling modelled parameters to the entire area, and to evaluate trends 

and patterns of change, as well as absolute values of biomass and carbon content. Ancillary 

data used include aerial photography at various dates and vector cartography. 

Field inventory data 

Field data from plot-based inventories such as the NFI and local management plans 

were used at various stages of this research, being of particular value in the accuracy 

assessment during the confidence building stages. Standard forest variables like tree 

species, number of trees per plot, and diameter at breast height are measured in field 

inventories, which are typically updated on a decadal basis. 
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National Forest Inventory data 

National Forest Inventories are meant to provide information on forest resources at 

the national level. At the beginning of the 20th century some NFIs introduced statistical 

sampling as a means for basing their assessments (Tomppo et al., 2010), improving 

calculations of volume stocks and forest growth. In Spain, the first global inventory was 

motivated by the need of statistical data at the regional and national levels for policy 

making, and by the requirement of estimates of forest areas and forest growing stock to 

guide the establishment of new enterprises (Alberdi Asensio et al., 2010). The NFI1 was 

conducted between 1965 and 1974, covered the entire national area, and employed 

provinces (with ~106 ha on average) as the assessment units. The methods applied were 

supported by aerial photography to determine forest/non-forest areas, and a sample of 

spatially stratified non-permanent ground plots in which tree variables were measured. 

Subsequent NFI rotations established a network of permanent plots over a systematic 1x1 

km grid, with four concentric circular subplots of radius 5, 10, 15, and 25 m where trees of 

different diameter at breast height (dbh) are measured (Bravo et al., 2002). NFI2 was 

performed between 1986 and 1995, with spatial stratification of plots based on land-use 

cartography, which had been created for agricultural use. To support NFI3 (1997-2007) 

digital cartography was generated (Vallejo, 2005), and starting 2005 this NFI rotation 

incorporated new measures for estimation of biodiversity (e.g. presence of threatened 

species, volume of dead wood, soil parameters). Currently the fourth rotation of the NFI is 

in course and expected to conclude in 2018. The NFI4 uses forest dedicated cartography of 

scale 1:25000 and has consolidated the measurement of biodiversity variables. Application 

of improved volume and growth equations is under investigation. To control the quality of 

the inventory measurements, 5% of the plots are completely re-measured by a checking 

crew soon after the regular measurement campaign. 

Data from five provincial databases (Madrid, Segovia, Toledo, Guadalajara, and Ávila) 

acquired by NFI2 and NFI3 were used in this work. 
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Management inventory data 

In forest sites dedicated to production of timber, resin, pine nut or other extractive 

resources, surveys or inventories are conducted periodically, for evaluation of forest 

condition and assessment of resources. These inventories are based on interpretation of 

aerial photography or on ground sample plots, systematically distributed over a stratified 

grid of variable size that depends on forest condition. Plots are typically smaller than NFI 

plots but located in a denser network. Attributes measured on the ground include diameter 

at breast height (dbh), tree height, number of trees, and other features to characterize the 

forest locally. Advanced technologies providing 3D data from ground measures, like 

hemispheric photography with the ForeStereo (Montes et al., 2008) and Terrestrial Laser 

Scanner (Maas et al., 2008) offer a range of opportunities to obtain comprehensive 

information with some data processing back in the office. From aerial platforms, LiDAR 

technology is progressively being incorporated into operational inventories (Hyppa et al., 

2012) as it is efficient in estimation of forest parameters at the stand level (Næsset, 1997), 

for delineation of stands (Eysn et al., 2012), and for extraction of accurate elevation 

models (Fricker et al., 2012). Lately, a number of management instructions in Spanish 

forests require using these technologies for inventory. Data from two managed sites, Valle 

de Iruelas (Ávila) and Pinar de Valsaín (Segovia), were used in the work presented in this 

dissertation, as reference data for modelling structural parameters and structural diversity. 

Satellite data 

Satellite Earth Observation (EO) programs dedicated to observe the Earth landscape 

started in 1960 with the launch of meteorological satellite TIROS-1 (Lauer et al., 1997). A 

host of satellites have been launched and have orbited the Earth ever since, and forecast is 

to see more in the future. Sensors onboard satellite platforms are identified as passive, if 

they capture objects’ reflectance of the sun radiation (e.g. optical sensor), or active, when 

the sensor captures its own radiation as reflected by other object (e.g. LiDAR and radar). 

According to the pixel size or spatial resolution, (i.e. the minimum spatial unit on the 

ground for which distinctive data acquisition is possible) (Jensen, 2005), sensors are 

grouped into low- to very high- spatial resolution (Wulder et al., 2008d) (Table 4). 

Tradeoffs between sensor resolutions (spatial, temporal, spectral, and radiometric) are key 

for adequacy to applications (Lefsky and Cohen, 2003).  
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Table 4. Examples of EO satellites and sensors of low-, medium-, high- and very high- spatial 

resolution 

Group Satellite (Sensor) Spatial resolution (m)  Swath (km) 
Very high (< 1 m) GeoEye-1 1.65 (MS) 0.41 (Pan) 15.2 

High (1-10 m) 
QuickBird-2 2.44 (MS) 0.68 (Pan) 16.5 
Orbview-3 4 (MS) 1(Pan) 8 
IKONOS-2 4 (MS) 1(Pan) 13.8 

Medium (10-100 m) 

Landsat 

MSS 30-60 (MS/SWIR) 

185 

TM 30 (MS, SWIR) 

ETM+ 30 (MS, SWIR) 30 
(Pan) 

OLI 30 (MS, SWIR) 
15(Pan) 

SPOT 
2 (HVR) 20 (MS) 10 (Pan) 

60 4 (HVIR) 20 
5 (HRG) 10 (MS) 20 (SWIR) 

IRS (ResourceSat-1) 23.5 140 
Terra (ASTER) 15 (MS) 30 (SWIR) 60 

EO-1 (Hyperion) 30 (MS) 7.5 
CBERS-1 and -2 20 113 

Low (> 100 m) 
Terra (MODIS) 250-1000 2300 
SPOT 5 (VGT) 1000 2250 

NOAA-19 (AVHRR/3) 1100 2600 
Note. MS: Multispectral; Pan: panchromatic; SWIR: shortwave infrared 

The high temporal frequency and large image swaths of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) 

make them adequate data sources for regional to global monitoring and mapping of broad 

land cover patterns (Potter et al., 2005), for monitoring change over large areas (Potter et 

al., 2003), and for rapid response action. Free economic cost and easy access to high 

quality processed data support operational programs like Active Fire Mapping Project 

(AFMP), which reports daily on fire activity in the USA and Canada, or DEFER project, 

which offers monthly reports of tropical deforestation. AVHRR and MODIS programs 

have provided daily records since 1981 and 2000, respectively, making them suitable for 

medium term assessment of global transformations. High and very high spatial resolution 

images (< 1-10 m pixel size) permit identification of small objects on the ground, like large 

individual trees, and even related dimensions for estimation of forest structure (Wulder et 

al., 2004a). Some commercial satellites offering this kind of data are steerable, enabling a 
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short return period of 1-5 days. Small image footprints (image size per acquisition) and 

high data costs preclude more regular use in the civilian world. 

Medium spatial resolution (MSR) images are adequate for characterization of landscapes, 

and to monitor change events at the scale of human impacts. MSR is well suited for 

characterization of forest condition (Cohen and Goward, 2004), and to monitor forest 

change at the stand level (Wulder et al., 2008d). Typical MSR images are captured with a 

wide swath, providing synoptic views for regional studies, and with an adequate range of 

visible and infrared wavelengths for accurate characterization of land covers. Recent 

policies making imagery easily accessible (e.g. Brazilian INPE, USGS, ESA) positions this 

type of data as the most used and reliable for regional works. 

Landsat program 

The Landsat program was the first to launch an Earth-observing satellite with the 

express intent to study and monitor our planet’s landmasses (Lauer et al., 1997). Back in 

1972 when Landsat 1 was launched, it was called Earth Resources Technology Satellite 

(ERTS). With seven satellites successfully launched (Figure 3), the program has acquired 

imagery covering all but the highest polar latitudes during more than forty years, 

contributing to the longest and most geographically comprehensive record of the Earth's 

surface ever assembled (Wulder et al., 2012a). Technical characteristics of all segments 

(spacecraft, sensors, ground station, and data transfer) have evolved over the years, 

improving the spectral, spatial, temporal, and radiometric resolution of the data, refining 

the instruments’ calibration (Irons and Masek, 2006), and establishing an optimized plan 

called Long Term Acquisition Plan for acquisition of global imagery (Arvidson et al., 

2006). Landsat 8 was launched in February 2013, assuring the continuity of monitoring 

programs. Further operational missions (Landsat 9 and 10) are intended to follow 

(Loveland and Dwyer, 2012) and will provide continuity of comparable measures. 

The sequence of Landsat satellites, operational period and the office in charge of 

management are presented in Figure 3. The spectral, radiometric, and spatial characteristics 

of the optical components of sensors onboard all Landsat satellites (Multi Spectral 

Scanner, Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land 

Imager) are presented in Table 5. 
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Table 5. Spectral, spatial, and radiometric characteristics of Landsat sensors (thermal components 

of TM and ETM+ are not included). MSS: Multispectral Scanner; TM: Thematic Mapper; ETM+: 

Enhanced Thematic Mapper Plus. OLI: Operational Land Imager. 

 MSS TM ETM+ OLI 

 #Band 
Width 
(μm) 

GSD 
(m) 

#Band 
Width 
(μm) 

GSD 
(m) 

#Band 
Width 
(μm) 

GSD 
(m) 

#Band 
Width 
(μm) 

GSD 
(m) 

Visible 

         1 0.43-0.45 30 
   1 0.45-0.52 30 1 0.45-0.52 30 2 0.45-0.51 30 

4 (1) 0.5-0.6 68x83 2 0.52-0.60 30 2 0.52-0.60 30 3 0.52-0.60 30 
5 (2) 0.6-0.7 68x83 3 0.63-0.69 30 3 0.63-0.69 30 4 0.63-0.68 30 

NIR 
6 (3) 0.7-0.8 68x83 4 0.76-0.90 30 4 0.76-0.90 30 5 0.84-0.88 30 
7 (4) 0.8-1.1 68x83          

SWIR 
   5 1.55-1.75 30 5 1.55-1.75 30 6 1.56-1.66 30 
   7 2.08-2.35 30 7 2.09-2.35 30 7 2.10-2.30 30 

Pan       8 0.50-0.68 30 8 0.50-0.68 15 
SWIR          9 1.36-1.39 30 

             

 

 

Figure 3. History of Landsat satellites and sensors. Adapted from: 

http://landsat.gsfc.nasa.gov/about/landsat7.html. RBV: Return Beam Vidicon, MSS: Multispectral 

Scanner; TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus. 
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Currently managed by the US Geological Survey (USGS) and the National Aeronautics 

and Space Administration (NASA), the Landsat program has a network of international co-

operators well distributed over all continents. These co-operators, with established ground 

stations, contribute to the downlink services and enable scientific and technical 

collaboration. The European Space Agency (ESA), one of the Landsat international co-

operators, holds two million Landsat images, presently available for research under 

licence, but expected to be transferred to the USGS archive and made available to the 

public with the USGS standard level of processing. The USGS Landsat archive has more 

than four million images1 freely available through a website portal since 2008 (Woodcock 

et al., 2008). Images of any part of the Globe are subject to a standard high level of 

processing, including radiometric calibration, geometrically precise location and 

registration (better than 0.44 pixels root mean square error in x and y directions), and 

surface reflectance products that facilitate applications’ use.  

Landsat images are identified by the Worldwide Reference System (WRS) that parcels the 

Globe into 185 x 185 km scenes indexed by paths (north-south) and rows (east-west). This 

research is focused on a single Landsat scene (WRS-2 Path 201, Row 032) as it 

encompasses the most extensive continuous pine stands of the Spanish Central Range. 

QuickBird-2 satellite 

Some commercial satellites carrying high spatial resolution sensors have been 

launched in the last fifteen years – IKONOS in 1999, QuickBird-2 in 2001, Orbview-3 in 

2003, RapidEye in 2008– and are currently orbiting the Earth. QuickBird-2 is operated by 

Digital Globe and provides data in five spectral bands (Table 6). It has the capacity to be 

oriented and to capture images off nadir, enabling a temporal revisit of 2–6 days depending 

on latitude. The pixel size of QuickBird-2 images is ~2.4 m for the multispectral bands and 

~0.68 m for the panchromatic band (Table 6). QuickBird-2 is unique among other satellites 

in this class as it has the largest image footprint and most on-board storage capacity. 

 

 

Table 6. Characteristics of the QuickBird-2 imagery. Adapted from 
www.satimagingcorp.com 

1 http://www.landsat.usgs.gov 
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Launch 18 October 2001 
Altitude 450 km 
Speed 25560 km/h 
Period 93.5 min 
Return period 1-3.5 days 
Equator 10:30 a.m. 
Radiometric resolution 11 bits 

Bands (µm) 

Pan 0.45-0.90 
Blue 0.45-0.52  
Green 0.52-0.60 
Red 0.63-0.69  
NIR 0.76-0.90  

 

HSR imagery provides the opportunity for precise exploration of forest parameters, 

reducing estimation errors to an acceptable level for operational applications (Kayitakire et 

al., 2006). Very high spatial resolution imagery facilitates for instance the detection of 

individual tree characteristics, providing improved estimates of forest attributes (Wulder, 

1998). Nevertheless, dearth of established methods for processing and the complex 

interactions between sun-sensor-surface geometry and forest structural characteristics 

(Wulder et al., 2008d), particularly in complex topographies, make the use of these data 

challenging (Falkowski et al., 2009a).  

Ancillary data: cartography, aerial photography, digital elevation model 

The Mapa Forestal Español (MFE50) is the digital version of Ruiz de la Torre forest 

map of Spain for the year 2000. In the construction of this map the source of data consisted 

of aerial photography and field notes. Polygons interpreted on photography were 

transferred to the 1:50000 National Topographic Map and the paper map version was later 

digitized. This GIS database encompasses 68 attributes to characterize vegetation units. 

Among relevant attributes for identification of pine forest areas are dominant species and 

crown cover (that is, the proportion of area covered by the horizontal projection of the 

canopy, in percentage). The MFE50 is used in this work for assessment of accuracy during 

confidence building stages. 

Aerial photography scale 1:10000 provided by Castile and Leon government was used in 

support of accuracy assessment and checking stages. Historical and online aerial 

photography was supportive in visual evaluation of the accuracy of changing trends 

derived from satellite spectral series. 

Digital elevation models (DEM) were used to support spatial registration of satellite 

imagery: a 25 m DEM was used for orthocorrection of Landsat images, and a DEM 
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derived from 1:10000 cartography (www.sitcyl.org) was used in processing stages of HSR 

satellite imagery. 

3.3. Management of data from field inventories  

Plots from the National Forest Inventory (NFI) were selected with BasIFor 2.0 

(Bravo et al., 2005), software dedicated to handle the NFI provincial databases for 

research, management, and planning (Bravo et al., 2002). BasIFor 2.0 enables selection of 

data based on location, species, or structural parameters, calculates volumes and growth, 

and facilitates NFI2 and NFI3 data comparison. BasIFor 2.0 has an option to export results 

in standard format, compatible for numerical analysis in common software. Spatial 

location of data is facilitated by identification of plot coordinates. 

Plots measured in the most recent inventories for planning of two pilot sites were 

considered. To synchronize field measures with HSR satellite imagery, some data 

measured on the ground were updated with species specific growth models as proposed in 

the NFI methodology. Geographical Information System (GIS) tools assisted in location 

and geo-processing for analysis of inventory data. 

Forest structural variables were derived by application of standard formulas to field 

measurements. Structural diversity attributes were evaluated at the plot level as the median 

absolute deviation (MAD) of diameter, height, and crown diameter from regional average 

values. The MAD metrics are always positive and their values are directly related with 

structural diversity, i.e. plots with higher values of MAD are structurally more diverse. 

3.4. Biomass calculation with allometric equations 

Live AGB was calculated with the species specific allometric equations of Montero 

et al. (2005) and Ruiz-Peinado et al. (2011) for trees with dbh ≥ 7.5 cm. These equations 

account the dry biomass fraction of stem, roots, and branches of various dimensions, but 

we did not consider the root portion in our analysis. Expansion factors accounting for the 

size of concentric NFI plots were applied, to scale measured attributes to standard spatial 

units. Absolute and relative change of AGB between the NFI2 and NFI3 was calculated at 

the plot level. 
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Equations developed by Montero et al. (2005) require just measures of tree diameter as 

inputs, and are available for a large number of species. Models by Ruiz-Peinado et al. 

(2011) incorporate measures of tree diameter and height. These equations were derived 

subject to an additive property: the sum of all biomass fractions (i.e. stem, branches, and 

roots) equals the total biomass of the tree. 

3.5. Satellite data processing 

Remotely sensed data from satellite platforms are usually delivered by data providers 

after basic processing, and require further treatment for incorporation into project flows to 

generate information. However, recent technological improvements facilitate standard 

processing and enable providers to offer data in high quality processing stage, sometimes 

ready for user applications. Typical image preparation techniques include geometric and 

radiometric adjustments. Figure 4 provides an overview of the main processing stages 

applied in this work, and a brief description of the processes performed follows. Specific 

processing applied at each stage is reported in individual chapters. 

 

Figure 4. Overview of image processing flow with some specific methods applied in this 

work. DN: Digital Number; TOA: Top of Atmosphere; COST: Cosine Theta; IR-MAD: 

Iterative Re-Weighted Multivariate Alteration Detection. 
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Selection of images 

For monitoring and analysis of change a number of acquisitions of each scene 

covering the area of interest are necessary, although the exact number, assuming 

availability, is a trade-off between processing effort and detail of results. Trends of change 

become reliable when examining frequent images with comparable characteristics: 

atmospheric condition, sun elevation, sensor orientation, and vegetation phenology. 

Anniversary images are desirable for monitoring forest ecosystems (Wulder and Franklin, 

2002) and the acquisition of a historical time series of multiple Landsat images relatively 

cloud-free can be a complicated task (Homer et al., 2004). In the study area, in order to 

capture stable phenological conditions and to avoid the presence of snow in high altitudes, 

summer images were preferred. The spectral suitability of images on the edge of season 

(early or late summer images) required thorough checking through the processing stages to 

detect and avoid possible phenology artefacts. The selection of MSR images consisted of 

nine Landsat TM and two ETM+ (Scan Line Corrector on) images. To ensure a more 

complete time series, the tolerance for a small amount of cloud cover in the images was 

increased, but still, a yearly time series of images was not possible to obtain, and the time 

step was not constant. There is a gap in images in the 1990s corresponding to the private 

sector distribution era (Tolomeo et al., 2009) that had to be considered in interpretation of 

results, as longer intervals between images may reduce detection accuracy for subtle 

changes (Wilson and Sader, 2002; Jin and Sader, 2005). 

In the near future, the Sentinel-2 satellites of the European Space Agency (ESA) will 

collect data similar to the Landsat series of satellites, augmented by refinements to spatial, 

spectral, radiometric, and temporal resolutions (Drusch et al., 2012). Notably, Sentinel-2 is 

planned to be a two sensor constellation, off-setting two satellites in the same orbit to 

shorten the revisit and increase the opportunity to obtain cloud free imagery. A large 

imaging footprint will also aid the collection of data for desired time periods and free of 

clouds, complementing Landsat acquisitions for monitoring projects. 

Archived HSR images from QuickBird-2, covering the pilot areas for the study of forest 

structure and diversity, and acquired during the summer with adequate technical 

characteristics, were available from the supplier at standard price. 
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Fourteen Landsat images (MSS, TM and ETM+) were employed for our study in Alberta 

(Canada) (Chapter I) in which novel techniques were developed and changes on the forest 

landscape were analysed and described (Gómez et al., 2011a). 

Geometric correction 

Remotely sensed raw images contain geometric distortions specific to the acquisition 

system, mainly related to sensor orientation and viewing angle, sun elevation, and 

atmospheric effects. Every system geometric distortions require a particular correction 

approach prior to analysis or integration with other spatial data. Systematic distortions 

introduced by the instrumentation (e.g. skew caused by Earth rotation effects, variation in 

ground resolution cell size due to the scanning system) are corrected at ground receiving 

stations or image distributors, but distortions related to specific acquisition time and 

location (e.g. topographic relief) require correction by the user. 

Geometric correction with 3D parametric mathematical models supported by a DEM is 

superior to other methods (Toutin, 2004). In this work Landsat and QuickBird-2 images 

were orthocorrected with DEMs of 25 m and 2 m resolution respectively, and adjusted 

with ground control points manually identified over the images. To integrate all images 

into a geospatial database enabling simultaneous use, geometric registration to reference 

cartography is necessary. All images were co-registered to the UTM 30N (datum WGS84) 

coordinate system. 

Image rectification involves a geometric operation to compute the cell coordinates in the 

original image, and a radiometric operation to compute the intensity value on the “map 

image” cell (geometrically corrected) as a function of the intensity values of original image 

cells (Toutin, 2004). This operation is performed by a resampling kernel applied to the 

original image cells. Nearest neighbour resampling does not alter the radiometry of the 

original image but introduces some geometric error and the visual quality is altered. As an 

alternative a specific interpolation or deconvolution algorithm using the digital numbers of 

the surrounding cells can be applied: bilinear interpolation does not alter the geometry but 

produces a smoothing effect, while cubic convolution does not smooth but enhances and 

generates some contrast in the image. Trade-offs of these options requires consideration in 

deciding processing alternatives. 
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Radiometric calibration 

Radiometric image processing is aimed to transform raw data (i.e. radiant energy 

coded by intensity and spectral character) as captured by the sensor into at surface 

reflectance suitable for applications (Figure 4). Radiometric processing includes sensor 

radiometric calibration, surface reflectance retrieval based on atmospheric corrections, 

image normalization to provide radiometric consistency across multiple scenes and/or 

dates, and specialized corrections for surface terrain induced variations (Peddle et al., 

2003). A robust radiometric calibration of images is essential in change detection 

applications (Lu et al., 2004; Coppin et al., 2004), and it is crucial if images are to be 

related with biophysical phenomena (Gong and Xu, 2003) like forest structure, health, 

biomass, or successional development. This task becomes especially challenging when 

various sensors are included in the analysis (Roder et al., 2005). 

The radiometry of satellite sensors is evaluated periodically to account for changes 

produced after pre-launch calibration. Onboard systems, pseudo-invariant targets and 

cross-sensor approaches are used for calibration, and coefficients to transform digital 

numbers into radiance and at sensor (top of atmosphere-TOA) reflectance are provided in 

user manuals (Chander et al., 2009). The reduction in scene-to-scene variability is an 

advantage of reflectance over radiance, due to the removal of the cosine effect of different 

solar zenith angles, the compensation for different values of the exoatmospheric solar 

irradiance, and the correction for variation in the Earth-Sun distance between different data 

acquisition dates. 

To account for atmospheric effects (i.e. haze) when transforming at sensor reflectance to 

surface reflectance, absolute correction with models based on radiative transfer theory (e.g. 

6S-second simulation of a satellite signal in the solar spectrum) require frequently 

unavailable atmospheric data. Image-based correction approaches based on the dark-object 

theory provide a reliable alternative solution. Assuming the radiance of a dark object (e.g. 

water body, shadow) is near to zero, its value of reflectance as captured by the sensor is 

credited to atmospheric effects and subtracted from all pixels in each spectral band. The 

cosine-Theta (COST) model (Chávez, 1988) is an improved dark-object subtraction 

technique that, based on a relative scattering model, identifies wavelength dependent haze 

values correlated with each other, and maintains a correct relationship between spectral 
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bands. We applied the COST model for correction of atmospheric effects in Landsat and 

QuickBird-2 images, obtaining the minimum value of reflectance from imaged water 

bodies. 

Image normalization is the adjustment of the radiometric properties of one image to match 

that of another. Normalization is important in forest applications that involve multiple 

images acquired over large areas or at different times (e.g. inventory, change detection). 

For analysis of spectral trajectories, a relative calibration or radiometric normalization of a 

sequence of images with the Iterative Re-Weighted Multivariate Alteration Detection (IR-

MAD) process (Canty et al., 2004) had been recommended (Schroeder et al., 2006) and 

was used in this work. Image normalization transforms images to a common radiometric 

scale, minimizing sun and sensor view angles, as well as atmospheric differences among 

images. The process of normalization reduces the amount of artefacts due to illumination 

or atmospheric variations, enabling more reliable detection of true change (Song et al., 

2001). 

3.6. Vegetation indices 

A vegetation index is a dimensionless, radiation based measurement that indicates 

relative abundance and activity of green vegetation (Jensen, 2005) by isolating its 

contribution from other materials (Asner et al., 2003). Vegetation indices are simple, 

reduce data dimensionality, and can easily be applied to different scenes. Vegetation 

indices take advantage of the unique spectral signature of vegetation, characterized by a 

large difference in reflectance between the visible (high absorption) and near-infrared 

(reflectance). Typical indices use the ratio or difference of NIR (near infrared) and VIS 

(visible) reflectance, and most commonly are defined with VIS in the red region of the 

visible spectrum (630-690 nm). 

Vegetation indices are frequently used in forestry applications, capitalizing on a strong 

relationship with structural attributes like Leaf Area Index (LAI) and canopy cover, to 

estimate, map, and monitor forest health, biomass content, and landscape disturbances (i.e. 

fire, windstorms). When used for discrimination of land cover and characterization of 

vegetative condition, vegetation indices must normalize effects such as sun angle or 

atmospheric effects for consistent comparisons in time and space. 
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Normalized Difference Vegetation Index 

One of the most widely used vegetation indices is the Normalized Difference 

Vegetation Index (NDVI) developed by Rouse et al. (1973). NDVI is defined as (eq. 1) 

rednir

rednirNDVI
ρρ
ρρ

+
−

=         (eq. 1) 

where nirρ  and redρ  are the reflective values in the NIR and red bands for each pixel. 

NDVI values vary between 0 and 1 and are directly related to the vigour of vegetation. 

NDVI is extensively used to monitor seasonal and annual global changes in vegetation 

communities, and as a component of particular models. NDVI has demonstrated useful for 

evaluation of forest biomass and structure (Piao et al., 2005; Dong et al., 2003). Chuvieco 

(2002) noted as a weakness of the NDVI its inability to discriminate between areas with 

different proportion of vegetation/soil: an area with vigorous canopy and scarce density 

can show the same NDVI value as other area with higher density but less vitality. 

NDVI values were calculated on the series of Landsat images and on QuickBird-2 images. 

Figure 5 illustrates the usefulness of this index to discriminate vegetation from other land 

cover classes. 

 
Figure 5. Left: Landsat NDVI image of part of the study area. Dark regions are water 

bodies, roads and bare soil; bright regions are forest. Middle: same region, visualization 

R/G/B: 3/4/1; Right: Spectral signatures of some cover classes. 
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Tasseled Cap Transformation and derived indices 

The Tasseled Cap Transformation (TCT) (Kauth and Thomas, 1976; Crist and 

Cicone, 1984; Crist, 1985; Huang et al., 2002) is a linear transform for reduction of the 

Landsat spectral space that was initially developed by Kauth and Thomas (1976) for 

understanding of crop spectral behaviour. The TCT has been broadly employed in forestry 

studies of structure (Hansen et al., 2001; Cohen et al., 2001), condition (Wulder et al., 

2006, Healey et al., 2006), successional state (Peterson and Nilson, 1993; Helmer et al., 

2000) and change detection (Lea et al., 2004; Jin and Sader, 2005) in a range of forest 

environments. 

The first three components of the TCT were named Wetness, Greenness, and Brightness, in 

relation with their physical interpretation, and have received special attention for forest 

applications. The Tasseled Cap Brightness (TCB) and Tasseled Cap Greenness (TCG) 

components form the vegetation plane (Crist and Cicone, 1984), where the spectral 

behaviour of forest stands provides insights into forest cover densities and forest 

development stages. By combination of TCG and TCB values in the vegetation plane, the 

Tasseled Cap Angle (TCA) and Tasseled Cap Distance (TCD) condense in single values 

information related to forest structure and successional stages that can be related to 

biomass and diversity. The TCA is defined as the angle formed by TCG and TCB (eq. 2), 

whereas the Tasseled Cap Distance is the distance to the origin of the vegetation plane (eq. 

3) (Figure 6). TCA and TCD were tested for the first time in temperate forests of Oregon 

(USA): Powell et al. (2010) related these indices with AGB and Duane et al. (2010) with 

forest structure. TCA was used by Gómez et al. (2011a) for analysis of temperate forests of 

Canada (this dissertation), and combined with TCD by Gómez et al. (2012a) in 

Mediterranean pines of Spain (this dissertation) in relation with structure and biomass. 
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Figure 6. Vegetation plane of the Tasseled Cap Transformation. Tasseled Cap Angle 

(TCA) and Tasseled Cap Distance (TCD) are represented. 

 

)arctan( TCBTCGTCA =        (eq. 2) 

22 TCBTCGTCD +=         (eq. 3) 

 

3.7. Image texture 

Image texture was defined by Haralick and Bryant (1976) as “the pattern of spatial 

distributions of grey-tone”, and describes the relationship between elements of surface 

cover (Wulder et al., 1998). Image texture is one of the most valuable criteria in visual 

interpretation. The estimation of forest stand parameters with digital data is sometimes 

improved with a combination of spectral and spatial information (Lu, 2006) such as 

texture. Consequently a host of texture measures have been utilized to predict structural 

parameters in various environments (Franklin et al., 2001; Devereux et al., 2004; Couteron 

et al., 2005) and has shown particular utility in complex structures such as tropical forests 

for above ground biomass estimation (Lu et al., 2002; Lu and Batistella, 2005). 

For evaluation of image texture various methods (e.g. variograms, Fourier transform, 

fractal dimension) have become relatively fast and simple with computer algorithms (Han 
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Bell, 2007). One approach for texture analysis (used in this work) can be based on 

measures derived from the Grey Level Coocurrence Matrix (GLCM) (Haralick et al., 1973; 

Caridade et al., 2008). The GLCM is a tabulation of how often different combinations of 

pixel grey levels occur in an image (Hall-Beyer, 2007) at a specific distance and 

orientation (within a particular processing kernel, or analysis window). Texture measures 

calculated from the GLCM (e.g. homogeneity, entropy) consider the relationship between 

neighbouring pixels, and are known as second order or coocurrence texture measures, as 

opposed to first order texture measures simply calculated from the original image values 

(e.g. variance, standard deviation). Since texture analysis is a multi-scale phenomenon 

(Ahearn, 1988), choosing the right window size to capture meaningful local variance 

without generalizing unrelated features (Kayitakire et al., 2006) is one of its key challenges 

(Ferro and Warner, 2002). Among the range of texture variables that can be derived from 

the GLCM, Homogeneity, Contrast, and Entropy (eq. 4-6) showed high values of 

correlation with structural parameters in pre-analysis investigations in the study area. Some 

examples of forest areas with different visual texture are depicted in Figure 7. 
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where jiP, is the ),( ji th entry of the normalized GLCM matrix, N is the number of rows 
and columns in the image. 
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Figure 7. Examples of forest areas with different visual texture, associated with forest 

structure, as depicted in HSR images. Top: panchromatic visualization; bottom: 

multispectral visualization. 

3.8. Image segmentation for object oriented analysis 

Digital images provide data coded into square picture elements (pixels) which 

seldom correspond with objects of interest on the ground. Target objects larger than one 

pixel can be identified on the image by a process of aggregation based on a rule of 

similarity. Following this rationale, image segmentation consists in the partition of the 

image into homogeneous spatial units (Devereux et al., 2004) based on one or more 

attributes. With the image segmented into meaningful objects with distinctive attributes, 

visualization and analysis of spatially correlated properties is facilitated. 

There is no unique way of partitioning the landscape (Burnett and Blaschke, 2003) for 

ecological analysis and no single spatial scale is optimal for characterizing the multiple 

options in which the image can be divided (Hay et al., 2005). Defining semantic rules to 

relate multi-level landscape divisions of organization is a big challenge (Burnett and 

Blaschke, 2003) and three is the minimum number of levels recommended for analytical 

studies of landscape (O’Neill, 1986). 

Through the application of automated algorithms, the criteria for homogeneity can be 

defined by the user, based on parameters such as tone or spatial pattern. Image objects or 

segments composed of various pixels provide supplementary features for image analysis, 

44 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

not available in pixel based analysis, such as local statistical relations of digital numbers 

(Chubey et al., 2006), shape, size or context. That is, once segments are produced, objects 

(e.g., trees or groups of trees) or spatially constrained summaries of the digital numbers 

within the segment may be used to provide representative segment-level information 

(Palace et al., 2008). In forest environments, the segments can often be considered as 

analogous to the manually delineated stands found in forest inventories (Hay et al., 2005). 

Definiens Cognition Network Technology® is software dedicated to image segmentation, 

with strong capacity to incorporate contextual information. In the process of image 

segmentation the size of resulting objects is determined by the scale parameter and by the 

landscape characteristics; for instance, a given scale value would produce larger objects in 

a homogeneous landscape and smaller objects in irregular areas. Other settings guiding the 

segmentation routine include complementary criteria of colour-shape and smoothness-

compactness. The homogeneity criterion is based on weighted selected bands, which can 

include spectral or thematic layers. Definiens Cognition Network Technology® was 

employed for segmentation of Landsat and QuickBird-2 images at various stages of 

processing and analysis in this work. Specific segmentation parameters are reported in 

corresponding chapters. 

3.9. Spectro-temporal trajectory 

A spectro-temporal trajectory is the sequence of spectral values corresponding to a 

single pixel (or object when averaged) on temporally consecutive co-located images. The 

preferred time step of values (i.e. the time lapse between image repetitions) depends on 

applications: while frequent data would benefit the monitoring of a fast changing 

phenomenon, it could be a source of noise in identification of slow changing processes. 

However, the frequency of image captures is limited by the sensor and platform 

operational characteristics. When the spectral attribute is associated with a biophysical 

property, the temporal trajectory may provide information of that property evolution 

through time. Spectro-temporal trajectories of low spatial resolution have been used for 

some time, but the use of medium spatial resolution temporal trajectories has only recently 

become doable, as result of the open access data policies (Wulder et al., 2012a). 
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Spectral trajectories of calibrated and normalized imagery inform at least on trends of 

change (Powell et al., 2010), and when analyzed thoroughly they can provide information 

of the target object physical changes (Pflugmacher et al., 2012). Methods for extraction of 

information from spectral trajectories of medium spatial resolution, like polynomial 

characterization of spectral curves (Goodwin et al., 2010) or identification of distinctive 

trajectory segments (Kennedy et al., 2010) are still on the infancy of development, and are 

a promising field of research. 

3.10. Data analysis techniques for exploration, characterization, and 

modelling 

Statistics and techniques for data analysis were fundamental tools in most stages of 

this work, for exploration and description of datasets, in determining relations among data, 

and for modelling. A brief description of the main statistical and data analysis methods 

employed follows, oriented to the specific application made in this work. 

Classification and regression trees (CART) 

One option to identify relations between variables in multivariate data sets is the use 

of decision tree data analysis (Chubey et al., 2006) also known as Classification And 

Regression Trees (CART). Regression trees identify relationships between a single 

continuous response (dependent variable) and multiple, continuous and/or discrete, 

explanatory (independent) variables, through a binary recursive partitioning process, where 

the data are split repeatedly into increasingly homogeneous groups (nodes), using 

combinations of variables (rules) that best distinguish the variation of the response 

variable. Tree models do not make assumptions regarding the distribution of the input data 

(Pal and Mather, 2003; Baccini et al., 2008); plus, they are able to capture non-linear 

relationships between variables and are robust to errors in the input and results. Tree 

modelling is a nonparametric method which basic theory is reported in Breiman et al. 

(1984). 

CART approaches have frequently been used in the environmental remote sensing 

community for classification and mapping (Brown de Colstoun et al., 2003; McDermid 

and Smith, 2008; Ke et al., 2010) for modelling (Andrew and Ustin, 2009; Im and Jensen, 

2005; Lozano et al., 2008), for forest characterization (Falkowski et al., 2009b) and in 
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particular in the estimation of forest structural parameters with HSR satellite imagery 

(Chubey et al., 2006; Goetz et al., 2003; Mora et al., 2010). 

CART was employed in Chapter III to model structural parameters and in Chapter V to 

model biomass retrospectively. 

Canonical correlation analysis 

Canonical correlation analysis (CCA) is defined as “a multivariate statistical model 

that facilitates the study of interrelationships among sets of multiple dependent and 

multiple independent variables” (Hair et al., 1998). Forest structure is difficult to 

characterize using a single variable (Lefsky et al., 2005) requiring multiple attributes for 

description (e.g. height, canopy cover). Hence, CCA is particularly suited to explore 

relationships between forest structure and multiple spectral variables. 

CCA generates the canonical variates, representing the optimal linear combinations of 

dependent and independent variables, and the canonical correlation, representing the 

relationship between canonical variates. During the analysis each group of variables is 

linearly combined into a variate; one is identified as the dependent variate, the other as the 

independent. The dependency roles are interchangeable and thereby are easier to interpret. 

The strength of the relationship between the dependent and independent variables is 

quantified by the canonical correlation coefficient. Canonical functions maximize the 

correlation between the linear composites (variates), and canonical weights, the 

coefficients of each variable in the canonical functions, represent the partial correlations of 

the variables with the respective canonical function. Although the canonical weights enable 

an understanding of the composition of each canonical function, they can be unstable and 

are therefore not typically used to interpret the canonical variates (Hair et al., 1998). To 

facilitate comparison between canonical weights, they are transformed into standardized 

variables (i.e., with a mean of 0 and a standard deviation of 1) and are used to calculate 

canonical scores for the canonical variates. Canonical loadings measure the simple linear 

correlation between an original observed variable in the dependent or independent set and 

the set's canonical variate: canonical loadings indicate the variance that the variable shares 

with its canonical variate. Variables that are highly correlated with a canonical variate have 

more in common with the variate and should therefore be given more importance in the 

variate's interpretation. Finally, a measure of redundancy may be calculated that informs on 
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the amount of variance in a set of input variables (dependent or independent) that is 

explained by the other canonical variate. For example, a measure of redundancy for the 

dependent variate represents the amount of variance in the dependent variables that is 

explained by the independent variate. As canonical functions may have statistical 

significance even though they lack practical significance (Hair et al., 1998), the canonical 

functions to be interpreted require being determined with criteria such as the level of 

statistical significance of the canonical function, the practical significance of the canonical 

correlation, and the redundancy measures for each variate. 

For assessment of the CCA validity, a reliable option is to run the analysis repeatedly, by 

removing individual independent variables, and assess the stability of the canonical 

loadings, the overall canonical correlations, and the redundancy measures. The 

applicability of CCA in remote sensing is demonstrated and described in detail by Cohen et 

al. (2003). CCA has been successfully applied by Lefsky et al. (2005) to compare the 

relationships between LiDAR-measured canopy structure and coincident field 

measurements of forest structure, and by White et al. (2010) to explore the relationship 

between spectral diversity and forest canopy structural diversity. 

CCA was employed in Chapter IV for characterization of the strength and quality of the 

relationship between structural diversity measures and image diversity measures. 

Geostatistics: kriging interpolation and variogram 

Geostatistics focus on spatial and spatio-temporal datasets, and provides means for 

extrapolation of measured values to unmeasured points and areas, facilitating the 

derivation of thematic layers for integration with other data (Chica-Olmo, 2005). 

Geostatistical methods are more appropriate for generating estimates of the distribution of 

forest properties than the use of simple average or statistical models that ignore spatial 

correlation (Sales et al., 2007). 

Kriging is a spatial interpolation method that yields the best possible estimation of the 

spatial variable of interest at every unmeasured point (Curran and Atkinson, 1998). The 

error committed at each point in the estimation is minimized and known (Clark, 2001). 

Kriging facilitates mapping of forest variables of interest measured in ground plots (e.g. 

inventory attributes) into raster layers. Moreover, block kriging enables estimation of the 

relative standard error (i.e., the standard error of the kriged surface relative to the mean 
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attribute value at the polygon level). Since sampling is complete and the spatial correlation 

of plot values is accounted for, inside polygon average values are more accurate than 

standard means. 

Variogram is by definition the expected squared difference between two data values 

separated by a given distance vector. The variogram calculated with digital image values is 

a useful tool to characterize forest structure, relating range and sill with forest stands 

characteristics (e.g. Cohen and Spies, 1990; Merino de Miguel et al., 2010). The range of 

the variogram indicates the distance beyond which sample values (e.g. pixel values) are no 

longer correlated (Johansen et al., 2007) and it is indicative of the elements forming the 

texture present within the scene. The range is frequently associated with the most 

dominant elements in the scene, be it single tree crowns in open forests, or the canopy of 

groups of trees in close environments. It is a measure of variability and increases as 

samples become more dissimilar (Gringarten and Deutsch, 2001). The semivariogram 

approach (Johansen et al., 2007; Nijland et al., 2009) is used in image analysis to identify 

the size of the relevant scene objects, and to determine an adequate window size for texture 

analysis (Franklin et al., 1996). Homogeneous forests require smaller windows for analysis 

and characterization than heterogeneous ones, which might also benefit from a series of 

different size windows. 

The variogram approach was employed in Chapter III and Chapter IV for identification 

of the most adequate textural window sizes. Kriging was applied in Chapter III for 

interpolation of field measured plot data. 

Moran Index for analysis of spatio-temporal correlation 

Moran’s Index (Moran, 1948) is one of the most commonly used statistical measures 

for spatial autocorrelation (Anselin, 1992), and it can be expressed as (eq. 7): 
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Where xi is the variable of interest x measured at location i, N the number of observations, 

μ the mean of the variable, and wij are the elements of the spatial weights matrix, which 

expresses the membership of observations in the neighbourhood set for each location 

(Anselin, 1992). For easiness of interpretation, a standardized z-value is reported instead of 
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the index itself; z-value is calculated by subtracting the expected value for the statistic, and 

dividing the result by the standard deviation (eq. 8). When interpreted as a global measure, 

positive z-values point to positive spatial correlation and negative z-values point to 

negative spatial correlation; a zero value indicates there is no spatial association in the 

dataset. Moran’s I can be interpreted as a spatially weighted form of Pearson’s correlation 

coefficient (Goovaerts et al., 2005) and its significance is assessed against a null 

hypothesis of no correlation with a permutation procedure (Anselin, 2003). 
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For visual exploration and interpretation of the global Moran’s I, the Moran scatterplot is a 

useful tool (Anselin, 1993). All observations are plotted on the horizontal axis versus 

corresponding spatial lags (neighbours’ weighted averaged values) (Anselin, 1992) on the 

vertical axis. The slope of the regressive line is an estimate of the index, and points in each 

quadrant of the scatterplot can readily be interpreted: values in the upper right and lower 

left quadrants represent positive spatial association (Anselin, 1993). For the upper right the 

association is between values above the mean, for the lower left quadrant the association is 

between values below the mean. The relative density of these quadrants provides an 

indication of the extent to which the global measure of spatial association is determined by 

patterns of association between high or low values. The lower right and upper left 

quadrants identify spatial outliers. 

For analysis of local associations or clusters, and for identification of local outliers, i.e., 

observations out of the local pattern, a Local Indicator of Spatial Analysis (LISA) 

(Anselin, 1995) is more adequate. A LISA is any statistical measure (e.g. local Moran’s I) 

that gives an indication of the significant spatial clustering of similar values around each 

observation, conditioned to sum proportionally to a global indicator of spatial association 

when all observations are added (Anselin, 1995). Maps of clusters (LISA cluster map) 

identifying and classifying (high-high, low-low, high-low and low-high) locations with 

significant association and significance maps can be visualized together, with the option to 

assess the sensitivity of results to multiple comparisons (Anselin et al., 2006). 

LISA analysis of univariate data permits detection of spatial patterns of correlation at a 

single date. Furthermore, the option of bivariate LISA analysis facilitates temporal analysis 
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of the spatial correlation, detecting if there is any association between the variable 

measured at a reference time and the same variable measured in the neighbourhood at a 

different time (Anselin, 2003). 

Moran Index was applied in Chapter I for characterization of the spatial correlation of 

state and process of change over the landscape, and for temporal analysis of spatial 

associations of state and processes of change. 

Wavelet transformations for analysis of remotely sensed data 

Wavelet is a function that oscillates around zero, and that is localized in a finite 

width interval (Meyers et al., 1993). As a tool for analysis of data, Wavelet Transform 

(WT) techniques facilitate the characterization of non-stationary processes (Meyers et al., 

1993), that is, processes of change dependent on the scale of variation. The most 

distinctive property of WT is the capacity to provide local information of the target series 

F(x) and at a range of selected scales (Lindsay et al., 1996). Basically, a WT decomposes 

an original series of data F(x) into a set of functions by convolving F(x) with a family of 

wavelets, which are derived by scaling and translation of a mother or basis function G(x). 

As result of the WT a number of functions are produced, one approximation (Ai) and one 

detail (Di) function per scale or level. The original series can always be reconstructed from 

its decomposed elements: at any level of decomposition (i) the original series F(x) equals 

that level approximation Ai plus the sum of all lower level details (ΣDj) (j= 1…i-1). 

For interpretation approximation functions inform trends of change whilst detail functions 

account for high frequency related with noise (Percival et al., 2004) and are associated 

with changes in averages at each given scale. A measure of variance or energy associated 

with each function helps identifying which are the most relevant levels of the WT 

decomposition (Lindsay et al., 1996).  

Wavelet transforms have been used in the remote sensing community for image blending 

(Garguet-Duport et al., 1996; Zhou et al., 1998), for detection of haze (Du et al., 2002), 

spectral unmixing of hyperspectral data (Li, 2004), post-classification change detection 

(Raja et al., 2013) and feature extraction (Simhadri et al., 1998; Fukuda and Hirosawa, 

1999; Niedermeier et al., 2000). In relation to vegetation dynamics Sakamoto et al. (2005) 

developed a method for detection of crop phenology. Percival et al. (2004) proposed the 

usefulness of the multi-resolution analysis (MRA) applied to vegetation time series, with 
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which Martínez and Gilabert (2009) identified seasonal and long term trend changes of 

various land covers in Spain. Freitas and Shimabukuro (2008) applied MRA to spectral 

fractions of MODIS bands for analysis of land cover change in Brazil, identifying the 

location and time of disturbance events. 

Wavelet transforms were applied in Chapter V for identification of the relationship 

between vegetation spectral indices and aboveground biomass values as calculated from 

field measures, and to help identification of modelled local patterns of spectral trajectories. 

Dynamic time warping 

Dynamic Time Warping (DTW) is a flexible algorithm for alignment of vectors (e.g., 

time series) (Giorgino, 2009) that compares and evaluates the difference between series of 

values. DTW is more sensitive than the Euclidean distance to distortion in the time axis 

(Ratanamahatana and Keogh, 2005) allowing certain stretch or compression defined by 

user criteria, such as delays in a curve maxima or minima, and has ability to handle 

sequences of different lengths (Ratanamahatana and Keogh, 2005). DTW has been applied 

in a variety of fields, including word recognition (Velichko and Zagoruiko, 1970), 

biometrics (Faundez-Zanuy, 2007) and gene expression profiles (Aach and Church, 2001). 

The rationale supporting DTW is that given two series of data, local stretching or 

compressing makes one resemble the other as much as possible, and the optimal alignment 

is obtained by minimization of a dissimilarity function. DTW provides a distance measure 

and the warping function which optimally deforms one of the two input series onto the 

other (Giorgino, 2009). A variety of DTW algorithms differ in the input feature space, the 

local distance assumed (e.g. Euclidean, Manhattan), and the presence of local and global 

constraints on the alignment (e.g. monotonicity) to ensure reasonable warps. 

Dynamic Time Warping was used in Chapter V to identify similarities in time series of 

spectral values. 
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4. RESULTS 

Technical approaches were specifically designed and implemented for the first time 

in this research. The performance and main outcomes of those novel techniques are 

mentioned here, and the most important results are summarized. Detailed results are 

described in each chapter. 

CHAPTER I: Characterizing the state and processes of change in a dynamic forest 

environment using hierarchical spatio-temporal segmentation. 

 
• The Tasseled Cap Angle (TCA) spectral index was related with the vegetation-non 

vegetation proportion in a forest ecosystem, and showed proficient to describe the 

landscape state over time. TCA provides a bridge to link information from the entire 

series of Landsat sensors. The temporal derivative of the TCA trajectory, the Process 

Indicator (PI), managed to describe processes of forest change, including rate and 

directionality, of drastic and of subtle character.  

• The TCA and PI condense information from the visible and near-infrared wavelengths, 

and constitute an instrument for characterizing the state and processes of change from 

lengthy time series of medium spatial resolution imagery. The Lagrange polynomial 

interpolation and its derivative provided a mechanism to deal with the irregular and 

incomplete character of the temporal series of imagery available. 

• Spatial and temporal distribution of state condition and processes of change were 

characterized with the Moran Index, identifying patterns and local associations of state 

and processes at the landscape level. Thirty five years of spectral trajectories 

summarized by homogeneous image objects facilitated the analysis of the landscape 

change. 

• The area chosen to test these novel tools, located in Alberta, Canada, was in a constant 

state of change, and maintained a high average proportion of vegetation to non-

vegetation during period 1973-2008. The amount of total landscape modified per decade 

increased from 18% and 14% in the 1970s and 1980s respectively, to more than 30% 

and 33% in the 1990s and 2000s. On average, the proportion of vegetation to non-

vegetation was increasing prior to 1981, decreasing between 1981 and 1997, and 
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increasing post-1997. There was a high degree of spatial correlation amongst processes 

of change, with a maximum Moran’s I of 0.79 in 1973; landscape change became more 

spatially disperse and widespread after 1981. Temporal correlation of processes of 

change was observed locally, with the period 1990-1995 having the most persistent 

change. 

 

CHAPTER II: Characterizing 25 years of change in the area, distribution, and 

carbon stock of Mediterranean pines in Central Spain. 

 
• The location and area covered by Mediterranean pines in the Spanish Central Range 

fluctuated between 1984 and 2009. The analysis of the area considered revealed a net 

increase of 40%, from 1211 to 1698 square kilometres, and a variable rate of change 

over the twenty five year period. 

• The distribution of pine dominated areas indicates an intermittent coverage of 945 km2 

actively implicated in processes of carbon exchange and a more stable carbon stock in 

the 765 km2 area permanently covered with pines. 

• A strong relation between TCA values and density variables measured in plots 

dominated by pine species, (Pearson’s correlation of 0.89), supported the rationale of 

the carbon stocking processes: in the absence of disturbance or evident removals, 

biomass accrual or depletions occurring naturally can be related to the carbon stock 

existent.  

• Spectral variations detected in a series of calibrated and normalized Landsat images 

served to describe trends of change in carbon stocks, identifying sources and sinks. 

Between 1984 and 2009, there has been a clear trend of activation of the carbon pools, 

with a variable rate of change.  

• In 2000 more than 33% of the entire area, a maximum during the 1984-2009 period, 

was in a process of net carbon stocking, but there was an apparent posterior decline in 

the global stocking. At the end of the analysis period, 20% of the potential pine area is 

increasing its carbon stock and 40% of this area is experiencing a decrease. 
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CHAPTER III: Modeling forest structural parameters in the Mediterranean pines of 

central Spain using QuickBird-2 imagery and classification and regression tree 

analysis (CART). 

 
• Models of quadratic mean diameter (QMD) created with spectral and textural variables 

derived from the commercial satellite QuickBird-2 images (pixel sized 2.4 m 

multispectral, 0.68 m panchromatic) were accurate (R2 = 0.8; RMSE = 0.13 m) and with 

an average error of 17%. Average error of basal area (BA) models was 22% (RMSE = 

5.79 m2 ha-1). When the measured number of trees per unit area (N) was categorized, as 

per frequent forest management practices, CART models correctly classified 70% of the 

stands, with all other stands classified in an adjacent class. 

• The pattern of residuals generated in models indicates that the accuracy of the attributes 

estimated is expected to be better when canopy cover is more open and attribute values 

are at the lower end of the range present.  

• The outcomes of this work indicated that attributes derived from HSR imagery captured 

from space-borne platforms have capacity to inform on local structural parameters of 

Mediterranean pines. 

 

CHAPTER IV: Forest structural diversity characterization in Mediterranean pines 

of central Spain with QuickBird-2 imagery and canonical correlation analysis. 

 
• Combining multiple aspects of tree conditions at a stand level, forest structural diversity 

was characterized at the plot level (N = 1022) as a linear combination of the median of 

absolute differences (MAD) of individual trees’ bole diameter, height, and crown 

diameter, from the local median equivalents. Ground measured forest diversity showed 

robust relations with multispectral reflectance variations in the visible and NIR 

wavelengths (2.4 m spatial resolution), as well as image co-ocurrence texture metrics 

from the panchromatic imagery (0.68 m spatial resolution), generated at various 

window sizes.  

55 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

• Canonical correlation analysis aided identifying combinations of reflectance and texture 

metrics generated from circular 0.3 ha areas most highly related with forest structural 

diversity (R~0.89).  

• Reflectance diversity was found to be more important than co-occurrence texture 

features in describing forest structural diversity when forest structure was limited 

(R~0.47 versus R~0.39), whereas texture was more informative to the model when the 

forest structural diversity was high (R~0.88 versus R~0.63) – relating more complex 

forest conditions.  

• While diameter variability was the most relevant parameter in building the forest 

structure diversity variate, contrast and homogeneity were the image variables most 

strongly correlated with forest structural diversity. 

 

CHAPTER V: Historical forest biomass dynamics modelled with Landsat spectral 

trajectories. 

 
• Spectral trajectories modelled from a 25-year period of Landsat images and supported 

with ground data from the National Forest Inventory, successfully predicted 

aboveground biomass retrospectively at specific dates (1990 and 2000).  

• Patterns of change found in Normalized Difference Vegetation Index values were 

associated and related well to classes of past AGB. The Tasseled Cap Angle index was 

found to be strongly related with forest density, although the related patterns of change 

had little relation with variability in historic AGB. 25-year patterns provided more 

accurate information than 15-year patterns, but a combination of both explained better 

the historical AGB variability.  

• Binary models (CART) of biomass built at the pixel level were successfully scaled to 

the object level, with 95% of objects characterized by dynamic variables (temporal 

spectral trajectories) fitting rules to the final nodes of the decision tree.  

• Maps of biomass dynamics in the period 1990-2000 were produced with 70% accuracy, 

providing a reliable source of historical spatial information.  
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• In an area permanently covered with pines during period 1984-2009, the aboveground 

biomass increased 18% between 1990 and 2000 with an irregular spatial distribution of 

the change. On average, the AGB of these pines accumulated 0.65 t ha-1 y-1 of C in the 

decade 1990-2000, equivalent to a 2.38 t ha-1 y-1 fixation of CO2.  
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58 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

5. DISCUSSION 

Assessment of forest aboveground biomass and its dynamics over time at the 

landscape level involves evaluation of diverse and related aspects. The location, extent and 

distribution of the forest area, as well as any changes over time require identification; the 

forest quality, that is, its structure and diversity, has to be described; ongoing successional 

processes and trends of change characterized; models derived from available data and 

extended to the entire area, and maps accounting uncertainties created for informed 

interpretation by users. Remote sensing technology is well suited to support these activities 

and has become the primary data source for biomass estimation (Lu, 2006) in medium to 

large areas. Synoptic, repetitive and consistent observations of the landscape provide 

information in a range of electromagnetic wavelengths associated with forest traits at 

affordable cost (Bettinger and Hayashi, 2006) to assist in the process of regional and global 

forest biomass assessment and monitoring. 

The work performed in this doctoral thesis covered a range of topics necessary for the 

assessment of forest biomass at the landscape level. Novel methods were developed 

building on the most recent research literature, which in turn contributed to the advance of 

scientific knowledge on the field. Remarkably, analysis and interpretation of medium 

spatial resolution temporal spectral trajectories and associated temporal derivatives for 

description of landscape change and forest carbon dynamics, application of hierarchical 

spectro-temporal segmentation for combined interpretation of the state and processes of 

change across the landscape, and modelling patterns of spectral trajectories associated with 

past biomass values are original techniques designed and applied here for the first time. 

Interpretation of temporal spectral trajectories for assessment of landscape processes has 

only recently become possible. Methods for analysis of spectral time series are being 

developed, leveraged by the free access to high quality archived imagery and by improved 

computing capacity (Wulder et al., 2012a). Pixel level processing is intuitive and 

prevalent, but ecological processes rarely conform to single pixels. The extension of 

processing methods developed in the temporal realm at the pixel level into patch 

aggregation methods remains a conceptual difficulty (Kennedy et al., 2014). In particular, 

defining objects that remain meaningful over time is a fundamental challenge (Chen et al., 

2012): a homogenous entity identified at initial stages of the period of analysis might be 
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only partially changed over time, losing its initial integrity for interpretation. Methods 

considering temporal linkages (Hofmann and Blaschke, 2012) are being developed to cope 

with this kind of limitations in object-based analysis of change. In this context, the nested 

hierarchy of spatial units (Gómez et al., 2011a) constitutes an optional framework for 

analysis and interpretation of landscape dynamics. The approach is based on a double way 

(top-down and bottom-up) (Hay et al., 2001) transfer of contextual information between 

various spatial levels, where the larger spatial objects encompass the smaller ones and each 

level is defined with a different similarity condition. The criteria and order for definition of 

meaningful units in a hierarchical multi-scale segmentation is important for interpretation 

and analysis (Gómez et al., 2011a). 

Temporal segmentation was coined and applied for the first time by Desclée et al. (2006), 

partitioning a two-date image stack into spatial objects. These objects incorporated 

temporal information that facilitated identification of change or no-change by statistical 

comparison of averaged spectral signatures. This temporal segmentation technique has 

been enhanced by inclusion of more imagery into the stack (Bontemps et al., 2008, 2012) 

and has been applied followed by other types of analysis (Conchedda et al., 2008; 

Duveiller et al., 2008) for evaluation of landscape change. The hierarchical spectro-

temporal segmentation approach developed in this thesis capitalizes on the compilation of 

temporal series of spectral values related with forest condition (state) and processes of 

change, to define homogeneous forest units. Rather than single date spectral or textural 

image values, the criteria of similarity for definition of three nested levels of spatial units 

were forest state and process of change (as related by spectral vegetation indices) at 

specific dates, facilitating the analysis of the landscape at various spatial scales. The 

hierarchical spectro-temporal segmentation is a flexible approach that allows diverse 

criteria of similarity in relation with the analysis perspective. 

Inference of forest condition from traits of past spectral trajectories is a current and 

promising field of research (e.g. Pflugmacher et al., 2012; Ahmed et al., 2013). A new 

temporal segmentation concept has emerged (Kennedy et al., 2010) with methods designed 

for application to dense time series of images (one image per year), whereby pixel-level 

temporal trajectories are segmented into fragments representative of processes of forest 

change. Some features of these temporal spectral fragments (e.g. onset, duration) have 

demonstrated powerful for prediction of current forest structural attributes (Pflugmacher et 
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al., 2012). In areas where annual data of enough quality are not available, data modelling 

contributes to overcome difficulties related with the incompleteness and irregularity of the 

spectral series, and to enable interpretation of continuous change. Our approach shows that 

under certain conditions, an entire spectral trajectory (of certain duration) enables the 

inference of forest past attributes. Patterns of temporal spectral trajectories of medium 

spatial resolution were considered as dynamic variables to model values of past biomass 

(at specific dates) in a Mediterranean environment. In this area, sudden perturbations had 

not been the rule during the period of analysis, and semi-natural succession could be 

assumed. Past values of biomass constitute a valuable baseline, necessary as reference in 

scenarios of change (Krankina et al., 2004). 

Non-parametric techniques (e.g. neural networks, decision trees) improve the accuracy and 

precision of more traditional methods (e.g. multivariate regression) in models of forest 

structural attributes based on optical imagery, particularly when the linear relationship 

between field and spectral data is relatively weak (Chirici et al., 2008). Non-parametric 

methods facilitate identification of non-linear relations and inclusion of numerous 

predictors into the models (Aertsen et al., 2010). Furthermore, decision trees are easily 

applied and interpreted. Notwithstanding notable improvements in modelling algorithms, 

optical data is a limited source to inform forest condition, constrained by the inability to 

provide below canopy structural information. Although Lidar technology has lately 

bloomed in forestry research and operational applications (Wulder et al., 2013), with direct 

measures of the canopy height enabling derivation of other variables of interest (e.g. 

volume, biomass), its use is unfeasible or economically unaffordable for large area wall-to-

wall applications. Optical data is supportive in combined modelling approaches (Ke et al., 

2010; Chen and Hay, 2011), providing complete coverage complemented by a sample 

based Lidar dataset (Wulder et al., 2012b). Lidar data captured over the study area (Villa et 

al., 2009), not available at the time of the study, might complement and improve some of 

the results obtained in this work. For applications based on historical data, Landsat is 

definitely the only reliable data source. 
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5.1. Location, extent, distribution, and change of pine forests 

The area and distribution of pines in the Central Range of Spain varied during the 

twenty-five year period studied (1984-2009). The characteristic spectral signature shown 

by pines and a multilevel object-based classification of geometrically coincident and 

radiometrically calibrated historical images acquired at regular intervals, enabled reliable 

identification of changes over time. Land use in the Central Range of Spain is governed by 

national and regional administrations, and land use changes do not proliferate. Moreover, 

pines have been managed in a sustainable manner for several decades (Bravo et al., 2010), 

with extractions of light intensity and assurance of regeneration by natural methods or 

plantation; clear cutting is not a local forest practice. To detect the expected small 

variations of the pine dominated area, the approach applied was based on objects with 

contextual information (Johansen et al., 2010) and included the Tasseled Cap Angle (TCA) 

among the input features to aid in sorting stand density. Thanks to the multilevel character 

of the land cover classification approach implemented (Gómez et al., 2012a), simultaneous 

detection of larger stands with the required characteristics (species and density) and 

smaller objects in patchy areas was possible. This technique is of particular interest to 

distinguish small changes in distribution that would otherwise blur into larger objects or be 

rejected as a speckle effect in a pixel-based classification. Results indicate that the pine 

dominated area in the Central Range increased 40% from initial to final date; there was an 

area permanently covered with pines and a large extent only temporarily occupied during 

these decades. 

One of the difficulties when comparing the Spanish National Forest Inventory (NFI) data 

for assessment of change is the declared disparity of base cartography used in each NFI 

repetition (Vallejo, 2005). With a historical series of good quality images available, 

retrospective studies of change become feasible and offer increased precision. In this work 

images acquired at time intervals similar to NFI repetitions (10 years) were classified, and 

results are in agreement with other works based on field data comparison (i.e. indicating a 

trend of increment in forest area). The spatially detailed information provided and the 

capacity to readily incorporate data at intermediate dates for more detailed reports are key 

strengths of methods based on remotely sensed data. The classification accuracy, assessed 

with independent reference information (Congalton and Green, 1999), was > 90% in the 
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present work. The accuracy of the multiple dates’ classifications relied on the exhaustive 

process of radiometric normalization, since class signatures were transferred from samples 

acquired in reference image. 

Further discussion and deeper insights can be found in Chapter II. 

5.2. Landscape processes and spatio-temporal associations 

Forest landscapes are dynamic ecosystems with different processes of change 

ongoing at any given time, which affect the quality and quantity of biomass and carbon 

stocks. Although a variety of remote sensing techniques have the capacity to detect stand 

replacing events, the detection of subtle alterations that result in only minor spectral 

changes remains a challenge (Goodwin et al., 2010) as different phenology and 

illumination of images induce detection of false change. To detect and assess forest cover 

condition the Tasseled Cap Angle (TCA) is a valuable tool, reporting the proportion of 

vegetation to non-vegetation (occupation state) in a defined area. A temporal series of 

spatially coincident and radiometrically normalized images providing TCA temporal 

trajectories for individual locations (pixel or object) enables the assessment of change in 

the proportion of vegetation to non-vegetation. The temporal derivative of the TCA series, 

the Process Indicator (PI), informs rate and directionality of ongoing processes, providing 

informative values at individual dates. These coupled indices, TCA and PI, condense 

information from the visible and NIR wavelengths, and facilitate comparison of data from 

all Landsat sensors, enabling the study of forest landscape change with a lengthy series of 

historical satellite images dating from 1972 to present. Temporal derivatives had been used 

in temporally dense series of low spatial resolution images, and were implemented in our 

study for the first time on a series of Landsat images, encouraged by a long series of 

images subject to robust radiometric normalization and the flexible polynomial 

approximation of Lagrange (Gómez et al., 2011a). 

With disrupting artefacts suppressed, the PI would be able to account for a wide variety of 

change types, providing information of slight or substantial modifications that is made 

available by a temporal series of three or more normalized images: low positive values of 

PI indicate a slow increment in the occupation state due to natural growth, while low 

negative values of PI point to natural processes of decay, such as aging or disease, or 

human induced modifications such as partial harvest or thinning. More notable and fast 

63 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

changes in the occupation state, like a disturbance with reduction of vegetation or a 

process of vegetation emergence are indicated with high negative or positive PI values, 

respectively. The capacity to relate both positive and negative changes is a powerful aspect 

of the PI, unveiling insights relating both forest (vegetation) gain and loss. 

Analyzing a temporal series of images supports the assessment of trends and rates of 

change that otherwise might be missed with only a bi-temporal change detection approach 

(Lunetta et al., 2004). The adequate interpretation of tendencies is conditioned by the time 

interval between consecutive images, and the scarcity of data for any one period may 

preclude a complete understanding of the landscape change. A decadal interval might be 

sufficient for preparing a summary of conditions and for planning silvicultural treatments 

and wood extractions, but more frequent information is required for monitoring of forest 

health and biomass. Jin and Sader (2005) recommend a period of three to five years for 

interpretation of condition and change in a forest area, but the ideal number of images and 

acquisition timing is site dependent (Wilson and Sader, 2002) and often restricted by image 

availability. In a very dynamic forest landscape in Canada, where we tested this technique 

of analysis for the first time, a quasi-quinquennial interval was considered for evaluation of 

change processes (PI) and a decadal interval for summary of change in the landscape state 

(TCA) obtaining sound and useful outcomes. 

As long as temporal factors are considered, the interpretation of TCA and PI may be 

combined to provide insights on the processes of change that are active in a forest 

landscape: varying rates of cover change could have different effects on dense or open 

forests and could trigger different phenomena. A simultaneous view of occupation states 

defining the landscape pattern and current processes of change could help understanding 

the relation between pattern and process, a recursive question difficult to solve in 

landscape ecology (Turner, 1989; Walsh et al., 2009). The combined interpretation acts to 

facilitate analysis of successional patterns, and the contextual temporal information given 

by the TCA enables proper interpretation of change that may be confounded with 

traditional techniques (Masek et al., 2008). The TCA provides information of vegetation 

proportion and the PI gives an instantaneous picture of the process of change; together with 

some ecological knowledge, forest seral stages may be identified (i.e., young stand 

growing, young stand with disease, mature stand in decay, recovery from disturbance, or 
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other situation). It must be noted that in order to enable accurate understanding of a 

trajectory of change, some knowledge of the local ecology is always required. 

The spatial scale is a key parameter for assessment of ecological processes. To provide 

meaningful reporting units and to investigate the spatial and temporal correlation of 

occupation state and ongoing processes, we defined objects analogous to forest stands, 

implementing an object oriented approach. A data driven method was implemented in the 

definition of spatial units, based on homogeneity of areas at the initial and final dates of the 

period under investigation (1973-2008). The transmission of significant contextual 

information was assured by the establishment of a hierarchy of spatial levels: larger objects 

defined by initial state (TCA) similarity and smaller objects defined by final state 

similarity are connected through an intermediate spatial level defined by similar processes 

of change, as depicted by the entire trajectory of PI. 

Spatial and temporal correlation is a complex and scale dependent phenomenon that is 

expected in natural environments. In the time period analyzed, some relations and patterns 

were unveiled for occupation state and change processes in the target area. The spatial 

correlation of occupation state was always positive, with objects of similar state clustering 

together; change processes were positively correlated at the global spatial level, but the 

tendency was towards lower association over time, creating a mosaic of ongoing processes. 

Further discussion and deeper insights can be found in Chapter I and Chapter II 

5.3. Carbon stocking processes 

The rationale of the combined TCA and PI, obtained from a time series of Landsat 

images, to describe state and processes of change was applied in pines of the Spanish 

Central Range, capitalizing on the local relation of these spectral indices with forest 

variables. The TCA is strongly correlated with stand density in the study area, and its 

temporal derivative, the PI, characterizes rates and directionality of change, enabling 

description of processes. Biomass accrual occurs naturally in the absence of disturbance, 

unless there is depletion in cases where removals are evident, and carbon equivalents 

generally follow the same logic. Analyzing and interpreting the spectral dynamics of pines, 

results show that the carbon stocking pools of the study area have been activated in the 
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second half of the analysis period (1984-2009), when larger areas show faster rates of 

carbon stocking rise and carbon stocking fall. 

The TCA index is relatively new, but the relation of Greenness to Brightness components 

of the TCT for characterizing forest density classes and successional stages has been used 

before in various forest environments. TCA and PI, as resulting from the TCT, are scene 

dependent (Crist and Cicone, 1984). Since the TCA is strongly related with forest density 

in the study area, with three or more consecutive images the PI enables characterization of 

relative rates of change in forest density and carbon stocks. Possible artefacts induced by 

annual phenology dissimilarities are minimized by a rigorous process of image 

normalization. Trends in carbon stocking were analyzed for the area potentially covered by 

pine during the entire period, and rates of change were assessed, comparing outcomes from 

the areas permanently or intermittently covered with pines. There was a global trend 

towards activation of carbon pools, and the intermittent area showed higher variability of 

processes, whereas the area of permanent pine had a near to neutral carbon pooling 

character. A combined interpretation of the TCA and the PI can provide simultaneous view 

of forest density and ongoing relative carbon stocking processes. 

The PI continuous scale of values provides versatility in change detection capacity and 

enables the characterization of rapid (high PI values) and slow (low PI values) rates of 

change. Subtle changes in forest density can be detected, which is of particular interest in 

the Mediterranean area, where the majority of forests are subject to some drought and 

consequently are relatively slow growing when compared with other temperate areas 

(Merlo and Croitoru, 2005). In managed forests, partial harvest or thinning operations 

might be detected (low negative PI value) and later recovery of density tracked (positive PI 

value). If the silvicultural goal is to maintain a constant value of basal area, a time series of 

PI values would remain close to zero. Historic trends of relative carbon stocking can be 

assessed, and the effect of management practices monitored with detailed spatial 

information. A PI based approach is especially informative for locations characterized by 

subtle, non stand-replacing disturbances. 

Further discussion and deeper insights can be found in Chapter II. 
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5.4. Forest structure and structural diversity 

Forest structure and variability provide information of standing biomass and carbon 

content. Structural parameters such as quadratic mean diameter (QMD), basal area (BA), 

and number of trees per unit area (N) are crucial data for estimation of biomass and for 

carbon account. These parameters are typically measured on the ground in a limited sample 

of plots, frequently restricted to managed forests. Estimation of structural parameters and 

variability over large areas for comprehensive assessment of biomass can only be achieved 

by modelling, and requires adequate input data. Furthermore, the necessity to account and 

evaluate forest biodiversity imposed by international commitments, obliges quantification 

of structural diversity (Gordillo et al., 2001) and makes appealing the exploration of 

remote sensing as an optional means for this purpose (e.g. Alberdi Asensio et al., 2009). 

High spatial resolution QuickBird-2 imagery (2.4 m multispectral and 0.68 m 

panchromatic) was tested as source of data for modelling structural parameters (Gómez et 

al., 2012b) and as potential surrogate of field measures for evaluation of forest structural 

diversity (Gómez et al., 2011b). Reflectance and texture metrics were considered in both 

efforts. In modelling structural parameters the results showed reasonable accuracy (R2 = 

0.8) and precision (estimation relative error ~17%) for the QMD model and robust models 

(R > 0.7) for BA and N but with higher estimation relative error (22-31%). A strong 

relationship between field-derived and image-derived diversity features was found at the 

plot level when an appropriate range of variation was considered, indicating the potential 

of remote sensing and image processing as an approach for characterization of forest 

structural diversity over wide areas. 

Although management plans were initiated in Spanish forests more than a hundred years 

ago (Bernués, 2008), less than 20% of the treed forest area in Spain is currently governed 

by a management plan under formal implementation (MMA, 2009). The high cost of field 

inventories is frequently noted as a reason for this unfavourable proportion, limiting 

surveys to forests with high potential to produce economic revenue. However, with the 

increasing concern over environmental issues, current forest inventories are aimed at 

informing a variety of long-term objectives including biodiversity, carbon accounting, 

habitat protection, and sustainable timber production (Wulder et al., 2004b). Remote 

sensing can contribute to the ability to produce timely, cost efficient inventory estimates 
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via image segmentation for stand delineation (Leckie et al., 2003; Pascual et al., 2008) and 

statistical modelling for assessment of attributes with acceptable precision (McRoberts and 

Tomppo, 2007). If adequately trained, segmentation algorithms have the ability to semi-

automatically divide images into structurally homogeneous areas only requiring human 

revision (Wulder et al., 2008e), that can be used as strata to optimize the field sampling 

design (Lamonaca et al., 2008) and allow the reduction of sample collection needs. In 

other words, the complete spatial coverage of remotely sensed images allows thinning the 

dense network of sample plots required for an adequate assessment of varying conditions 

(Maselli, 2004) typically found in Mediterranean environments. Remote sensing is not 

seen to fully supplant the need for field measures, but to spatially and temporally augment 

such measures, with regular and consistent data acquisitions; in particular, HSR satellite 

sensors emerged a few years ago as promising data sources for forest inventory (Culvenor, 

2003; Falkowski et al., 2009a) providing consistent and frequent imagery. Our studies 

demonstrate that in Mediterranean pines of Spain, QuickBird-2 or similar imagery 

combined with modelling techniques would be useful and affordable for assisting in the 

assessment of structure and diversity of forest areas with a variety of objectives (e.g., 

recreation, carbon storage), though caution is required to deal with inherent modelling 

uncertainties. 

Among the strengths of HSR imagery is the high geometric fidelity (Aguilar et al., 2008) 

and the possibility to identify individual elements such as trees or groups of trees. Textural 

and spectral signatures provide information that is complementary (Lu et al., 2002), for 

estimation of forest parameters (Lu and Batistella, 2005) and evaluation of structural 

diversity. Image texture is influenced by several biophysical parameters including crown 

diameter, distance between trees, tree positioning, Leaf Area Index (LAI), and tree height, 

and has demonstrated to improve structural models in a variety of environments (e.g. 

Wulder et al., 1998; Chubey et al., 2006) being particularly useful in complex structures 

(Lu and Batistella, 2005). The importance of the window size for evaluation of texture 

measures has been stressed (Ferro and Warner, 2002; Kayitakire et al., 2006) and the 

variogram approach is recommended as an appropriate method to guide window size 

selection (Franklin et al., 1996). A common variogram range value was found in our two 

study sites (with open and closed canopy conditions), which is coincident with the median 

value of crown diameter present; additional range values were found, as a function of the 
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local structural diversity. The absence of shadows in the imagery allowed identification of 

individual trees as dominant textural objects on the ground (Kayitakire et al., 2006). 

Alternately, for monitoring programs with various dates of imagery and more than one 

scene, off-nadir view angles and differing solar and atmospheric conditions should be 

considered (Wulder et al., 2008f) as they may pose analysis difficulties. The limited use of 

texture parameters previously indicated as due to a lack of software tools (Bruniquel-Pinel 

and Gastellu-Etchegorry, 1998) is progressively being overcome, but other considerations 

remain, such as viewing and illumination configurations, spectral domain, and spatial 

resolution. However, image texture analysis has demonstrated utility for characterizing 

habitat structure (St-Louis et al., 2006) and to identify areas of high diversity with 

conservation priority. 

Combining complex data of different nature and origin requires a careful choice of tools 

for processing and analysis. Classification And Regression Trees (CART) models are 

easily interpreted and applied, with few statistical requirements imposed that make it an 

appropriate method of estimation in forest environments. Data employed in support of 

modelling efforts also require conscious use to allow consideration of all sources of 

uncertainty: for instance employing data from field inventories of managed stands has an 

intrinsic limitation related to the dearth of measurements of small trees, possibly related to 

a bias of the data considered as truth, and could lead to underestimation trends in models. 

Accurate spatial location of field plots and high quality geometric processing of the 

remotely sensed data are important factors to develop strong empirical models, particularly 

in Mediterranean forests with complex topography (Salvador and Pons, 1998) which often 

results in high spatial heterogeneity (Neumann and Starlinger, 2001). The amount of data 

used for calibration has an impact on the accuracy of models, tending to increase with 

increasing calibration sample size (Ferro and Warner, 2002). Mora et al. (2010) in Yukon 

(Canada) demonstrated that a smaller calibration dataset (30% of the sample) could 

perform adequately if there were difficulties to obtain reference information, making 

CART methods even more appealing tools for inventory. With a simple structure, that is, 

low number of rules and final nodes, CART constitute a practical and parsimonious tool to 

classify stands for management or planning.  

Diameter and basal area are the attributes most frequently used in studies of structural 

diversity (Solomon and Gove, 1999; Varga et al., 2005; Motz et al., 2010) and forest 
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structure per se (Goodburn and Lorimer, 1998; Rouvinen and Kuuluvainen, 2005; Rubin et 

al., 2006). Field measured variables (dbh, height, and crown diameter) were included in 

characterization of structure diversity for ease of measurement (McElhinny et al., 2005) 

and as identified by Río et al. (2003) among the most important aspects of forest structure. 

Dbh was found to be the attribute indicating variation in forest structure at the plot level 

that had the highest relevance. Height showed slight importance but is still relevant to the 

model, as shown in the sensitivity analysis. Height variation is difficult to detect with 

optical sensors (Mora et al., 2010), which are better suited for mapping horizontal structure 

(Hyde et al., 2006). Although shadows and gap fraction are sometimes useful (Shettigara 

and Sumerling, 1998; Leboeuf et al., 2007), the images used in our investigation, captured 

with high elevation angles (> 60 degrees), did not include significant shadows. Including 

LiDAR measured heights in the modelling process may improve the study results, as 

fusion of high spatial resolution and LiDAR data is an approach yielding good results (St-

Onge et al., 2008; Ke et al., 2010; Chen and Hay, 2011). 

Furthermore, the scale of analysis is an important factor when measuring or characterizing 

diversity (Lähde et al., 1999), and was determined in our case by the availability of field 

data. The detailed plot-level measures available made for a logical informational link 

between the field and image-based data sources with both of a comparable scale. At this 

scale of analysis (alpha diversity) the study showed there is potential for characterization 

of structural diversity from the space. Lamonaca et al. (2008) reached similar conclusions 

in a study that applied an object oriented approach for characterization of the structure 

diversity in Mediterranean environments at the stand level. Pasher and King (2010) 

modelled and mapped forest structural diversity in temperate hardwood forests of Quebec 

(Canada) with airborne derived data, highlighting the convenience of satellite derived data 

for mapping of larger areas. 

Interestingly, we found that the relation between the variability in image derived variables 

and forest structural diversity was stronger when considering various crown closure 

conditions pooled together, that is, open and dense forest sites’ data analyzed jointly, than 

when considering either individual scenario alone. In our scenarios of relatively low 

structural diversity, considering close or open canopy conditions individually, the variation 

in reflectance of the visible and NIR was more explicative of the structural diversity than 

variations in texture measures evaluated with finer spatial resolution panchromatic data. 
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Similarly, Rocchini et al. (2010) highlight the relevance of spectral resolution versus 

spatial resolution for evaluation of species diversity, supported by a series of studies in 

different environments that buttress this idea. 

As demonstrated in our studies, HSR imagery from optical sensors, integrated with field 

measures provides a useful approach to investigate and characterize forest structure and 

structural diversity in Mediterranean pine forests. The acquisition of periodic HSR 

coverage of the entire Spanish territory by the Plan Nacional de Teledetección (PNT) poses 

an unprecedented opportunity to use remote sensing for assessment of the structure and 

diversity of Spanish forests that managers should strongly consider. 

Further discussion and deeper insights can be found in Chapter III and Chapter IV 

5.5. Historical biomass modelling, mapping, and dynamics 

As a baseline for comparison with more recent estimates, an assessment of past 

aboveground biomass (AGB) with spatial detail is of value to support monitoring and 

reporting commitments. Historical forest AGB was modelled, evaluated, and mapped, 

combining a set of NFI plots representative of the forest conditions present and spectral 

data captured by Landsat sensors over a period of 25 years (1984-2009). In this area, 

characterized by absence of major perturbations and moderate human intervention during 

succession stages, dynamic variables of change (i.e. predictors combining data captured at 

various dates), showed higher predictive capacity than static variables to explain the 

variability of AGB retrospectively. 

Spectral response related to forest structure (Cohen et al., 1995) develops progressively 

with successional state (Peterson and Nilson, 1993). Under equal environmental conditions 

and absent disturbance, forest stands develop similarly and are expected to show similar 

temporal spectral trajectories, although slight deviations from a pattern may exist. 

However, although forest attributes have been modelled accurately with spectral variables, 

forest change remains elusive for direct modelling: spectral differences alone have 

demonstrated inadequate for the purpose (Healey et al., 2006), and trends of spectral 

trajectories do not necessarily have a direct relation with the increase or decrease of 

biomass (Campbell et al., 2012). 
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Previous attempts to model biomass in the Central Range of Spain with single date optical 

data were limited, characterized by moderate fitting correlation (R = 0.7) and mean error of 

0.78 (Gómez, 2006). Also in the same area, Vázquez de la Cueva (2008) found structural 

parameters (canopy crown closure, stand height, stem density, and basal area) 

insufficiently explained by the multispectral predictors selected to derive empirical models; 

however, the Tasseled Cap Wetness had a stronger relation with forest density than NDVI 

or other TM/ETM+ bands. Interestingly, in the present work the TCA was found 

significant as static variable, while patterns associated with NDVI were relevant as process 

variables. The Tasseled Cap Distance (TCD), more related to age and associated structural 

complexity than other Tasseled Cap related indices in coniferous forests of Oregon, USA 

(Duane et al., 2010), was also found linked to forest diversity in these Mediterranean pines, 

despite a low correlation between AGB and parameters of structural diversity. In view of 

local difficulties to directly model forest attributes with Landsat data, mathematical 

transformations based on 2D wavelet algorithms were applied to a data-system created 

with information from two rounds of field measures and eight repetitions of calibrated 

spectral data. This technique helped filtering fundamental relations from environmental 

and endogenous noise. Dynamic variables (i.e. variables with an inherent temporal 

component) associated with patterns of change, including rate and shape, characterized 

ground plots, and together with static variables served to model AGB and calculate AGB 

dynamics. This approach significantly improved previous results, but no single predictor 

was able to accurately classify biomass. 

Frequency and regularity of measurements can be critical in providing an accurate 

understanding of ecological processes. Gaps in a series of measures and irregular data 

frequencies leave intervals of uncertainty in explaining continuous processes that might be 

notable in ecosystems prone to rapid changes related to disturbance (Jin and Sader, 2005). 

Successional patterns are more predictable in undisturbed forests than in areas with 

unexpected perturbations (Schroeder et al., 2007; Vogelmann et al., 2009) and the rate of 

spectral variation is typically greater in immature stands when compared to more mature 

stands in similar environments. Wavelet transform analysis is particularly suited to detect 

anomalies in series of data (Mallat and Hwang, 1992) and does not require periodic 

sampling (Daubechies et al., 1999), conferring this approach versatility for analysis of data 

in a wide range of environments. The limited number of seasonally appropriate, cloud-free 

72 
 



Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

images available at the time of this study is not necessarily indicative of the full Landsat 

archive, which the USGS is currently consolidating with unique images held by 

International Cooperators (Loveland and Dwyer, 2012). As of writing, the European Space 

Agency has yet to provide Landsat data through the free and open access model 

demonstrated by the USGS. Reportedly there are plans to share these European images 

with the USGS, which when implemented, will improve the density of images available 

over Spain. 

The temporal configuration (i.e. the duration, starting point, and position relative to the 

target date) of the dynamic variables presumably affects the capacity to predict structural 

and successional forest attributes, as suggest different results in modelling AGB in 1990 

and 2000. AGB1990 corresponds with the initial stages of a trajectory to resemble one of a 

series of temporal patterns, with possible deviations or delays of key features. Deviation of 

forest stands from standard expectations of development is often related to site index 

differences, canopy cover and density, or species characteristics, factors requiring attention 

when deriving, applying, and interpreting model results. Alternatively, AGB2000 

corresponds with an intermediate position of the available spectral trajectories, with which 

processes are not aligned. The duration of spectral trajectory necessary to identify 

significant temporal patterns in AGB is presumably variable and site dependent. Liu et al. 

(2008) demonstrated that a series of images covering a longer period predicts forest age 

more accurately, but in some cases a shorter time series of imagery may suffice. In our 

work, a combination of 25-year and 15-year trajectories was the best option for estimating 

retrospective AGB. Longer-term patterns may potentially explain the variability of AGB 

more precisely, but they may also introduce irregularities outside the time lapse between 

data used for calibration of the trajectory models; on the other hand, shorter-term patterns 

are more explicit and less prone to variations out of the reference period. Further work is 

necessary to clarify the distinctive effect that duration and relative location of spectral 

trajectories produce when employed as dynamic variables. Another set of ground plot 

measures (NFI4 ca. 2010) in the study area is expected to be released shortly, with 

available spectral data completing the temporal series to that date and beyond. Hence the 

duration, starting point, and temporal character (retrospective, prospective or inclusive) of 

the trajectory will be available for further exploration. 
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The uncertainty remaining in maps of AGB dynamics originates from possible imprecision 

in modelling, but also from the various stages in the overall approach, including location of 

plots, field measures, allometric equations, image capture, and image processing (Lu et al., 

2012). To minimize the impact of these factors, a representative sample acquired to 

consistent specifications, such as NFI plots, is recommended for modelling (Duane et al., 

2010), and necessary to obtain a comprehensive domain of trajectory patterns for accurate 

identification by the similarity algorithm. Confusion was identified in the final map of 

change with an inclusive approach of all error sources, but from plot based model to final 

maps, some aspects could be subject to individual testing, such as the equivalence of pixel 

and object trajectory or the vector to raster transformation. 

Our estimates of AGB dynamics between 1990 and 2000 are in agreement with 

complementary regional studies. For instance, pines in the Central Range were found to be 

more dense and mature in year 2000 than during the previous decade, and – as could be 

expected – accounted a net increment of biomass and carbon stock. On average, our 

estimation was that the AGB of these pines accumulated 0.65 t ha-1 y-1 of C in the decade 

1990-2000. Analyzing inputs and outputs recorded by NFI measures, Herrero and Bravo 

(2012) corroborated a net carbon sinking character between NFI2 and NFI3 rotations, with 

AGB allocated in pines of 85 t ha-1, while Montero et al. (2004) estimated an annual 

increment of 0.9 t ha-1 of pine biomass between 1993 and 2003.  

Modelled spectral trajectories have been useful for characterizing mountain pine beetle 

infestations (Goodwin et al., 2010) and for prediction of forest change (Zhu et al., 2012). 

Directly linked to field derived measurements, the information provided by Landsat 

spectral trajectories has proven useful to improve estimation of current biomass and other 

structural attributes, particularly in ecosystems with stand replacing disturbances 

(Pflugmacher et al., 2012). The identification of temporal patterns in the trajectory of 

vegetation indices (i.e. dynamic variables) was found in this work to provide useful 

information to model and explain historical biomass variability. 

Further discussion and deeper insights can be found in Chapter V. 
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CONCLUSIONS 

Overall 

Pine forests in the Central Range of Spain constitute a spatially and temporally 
dynamic stock of biomass that plays a significant role in the regional carbon budget. For 
assessment of forest above ground biomass (AGB) and carbon (C) resources, remote 
sensing supports and enhances the value of the National Forest Inventory (NFI), 
complementing rather than substituting essential field work. Access to archived historical 
and contemporary images of high and consistent quality, provides the opportunity to build 
up methods for unveiling information related to the development of forest ecosystems that 
would otherwise remain incomplete or unknown. 

Particular 

1. The location, extent, and distribution of forest resources in central Spain can be 
effectively and accurately evaluated with optical images of medium spatial 
resolution obtained with sensors onboard satellite platforms. The historical Landsat 
archive enables the characterization of past conditions, and the assessment of four 
decades of change in forest resources. The area covered by Mediterranean pines in 
the Spanish Central Range fluctuated between 1984 and 2009, with a net increase 
of 40% and a variable rate of change over the period. The distribution of pine 
dominated areas indicates an area of intermittent coverage actively implicated in 
processes of carbon exchange and a more stable carbon stock in the area 
permanently covered with pines. 

2. High spatial resolution data obtained remotely and available from commercial 
sources provide useful information for characterization of forest structural 
parameters, and for assessment of structural diversity. Spectral variables from the 
visible and near infrared spectrum range, and spatial variables in the form of image 
texture support this process, showing variable relevance as a function of canopy 
closure: homogeneous areas are better characterized by spectral measures while 
texture variables are more relevant in structurally complex areas. In Spain, the Plan 
Nacional de Observación del Territorio (PNOT) acquires national coverage of high 
spatial resolution (2.5 m) imagery annually, providing an opportunity to support the 
evaluation of forest resources for planning and decision making. 

3. The forest area in the Spanish Central Range considered in this work was a net C 
sink over the period 1984-2009, with dynamic temporal and spatial distribution of 
sources and sinks. Between 1984 and 2009, there has been a clear trend of 
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activation of carbon pools, with a variable rate of change. In 2000 more than a third 
(567 km2) of the entire area, a maximum in the 1984-2009 period, was in a net 
process of carbon stocking. 

4. In the area permanently covered with pines during period 1984-2009, the AGB 
increased 18% between 1990 and 2000, with an irregular spatial distribution of the 
change. On average, the AGB of these pines accumulated 0.65 t ha-1y-1 of C in the 
decade 1990-2000, equivalent to a 2.38 t ha-1 y-1 fixation of CO2. 

5. Temporal series of calibrated and co-registered medium spatial resolution imagery 
provide information associated with forest successional processes and, when 
supported with spatial statistics, enable identification of spatial and temporal 
relations between patterns and processes at the landscape level. Reliable 
comparisons of information along temporal series of data are based on accurate 
calibration of imagery and on the application of spectral measures that provide 
consistent information across sensors. Vegetation indices derived from the 
Greenness and Brightness components of the Tasseled Cap Transformation, the 
Tasseled Cap Angle and the Process Indicator, were shown to be good measures to 
bridge information between all Landsat sensors. 

6. Information provided by series of temporal spectral data captured remotely can be 
related to patterns of forest succession. Spectral trajectories inform about stability 
or change, and about trends in structural and sanitary condition. Temporal traits of 
spectral trajectories showed capacity to inform on forest condition at a given point 
in time. Although the processing, modelling, and interpretation are in the early 
stages of development, spectral trajectories are a promising source of information 
for the study of ecological processes and the assessment of retrospective and 
present ecosystem attributes. 

7. The results of this work corroborate that remote sensing supports and enhances the 
value of NFI data for the assessment of forest AGB and C balances. Remote 
sensing does not substitute field work, but rather highlights the importance of field 
data to support modelling and spatial extension of models to larger areas of interest. 

8. The spatial identification of sources and sinks of carbon, as well as changing trends 
over time provided by the analysis of remotely sensed data, are valuable 
contributions for the global issue of carbon budgeting reports, and for evaluation of 
management strategies. However, remote observations are not the sole answer to 
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resolving uncertainty in carbon budgets, and field measures are essential for 
calibration and validation of estimates. 

9. Image processing combined with mathematical transformations showed capacity to 
unveil relationships between temporal spectral trajectories and forest properties. 
Dynamic spectral features related to successional processes, such as pattern and 
rate of change, had capacity to explain past and present biophysical conditions. 
Dynamic variables showed to be more relevant than static variables in the 
retrospective estimation of AGB in Mediterranean pines of central Spain, in order 
to establish a historical baseline that would enable reporting of change. 

10. The applications demonstrated in this work show that for assistance in the 
fulfilment of the Kyoto Protocol commitments, remote sensing can effectively help 
assessing land cover and change; establishing a biomass and carbon baseline in 
1990, and estimating carbon stocks and changes with acceptable uncertainty; and 
identifying the spatial distribution of successional processes. 
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CONCLUSIONES 

Generales 

Los pinares del Sistema Central español constituyen un almacén permanente y 
dinámico de biomasa y juegan un papel relevante en el balance regional de emisión y 
fijación de carbono (C). La teledetección es una herramienta de apoyo que complementa el 
valor del Inventario Forestal Nacional (IFN) en la evaluación de las existencias de biomasa 
forestal y los sumideros de carbono asociados, pero no sustituye el trabajo de campo. El 
acceso a los archivos de imágenes contemporáneas e históricas de calidad coherente, 
ofrece la oportunidad de utilizar cuantiosos datos y desarrollar métodos que ayuden a 
obtener información relacionada con el desarrollo de los ecosistemas forestales, de otra 
forma incompleta o inexistente. 

Particulares 

1. La localización, extensión, y distribución de los recursos forestales en el centro de 
España se puede evaluar de forma precisa y efectiva mediante imágenes ópticas de 
resolución espacial media obtenidas mediante sensores remotos en órbita espacial. 
El archivo histórico de Landsat permite caracterizar situaciones pasadas y evaluar 
más de cuarenta años de evolución de los recursos forestales. La extensión de los 
pinares mediterráneos del Sistema Central español fluctuó entre 1984 y 2009, con 
un incremento neto del 40% y una tasa de cambio variable a lo largo de este 
tiempo. Al estudiar la distribución del área con predominio de pinar se observa una 
zona de cobertura permanente, con reserva estable de carbono, además de otras 
zonas con cobertura intermitente y responsables principales de los flujos de 
carbono. 

2. Imágenes de alta resolución espacial proporcionan información útil para la 
caracterización de la estructura forestal y la evaluación de su diversidad estructural. 
Los valores espectrales de la zona visible e infrarroja del espectro 
electromagnético, y las variables espaciales en forma de textura local de la imagen, 
tienen distinta relevancia en esta caracterización, en función del tipo de cobertura: 
zonas homogéneas son caracterizadas mejor mediante variables espectrales, 
mientras las variables de textura aportan mayor información en regiones de 
estructura compleja. España, a través del Plan Nacional de Observación del 
Territorio (PNOT) adquiriere una cobertura anual de imágenes de alta resolución 
espacial (2.5 m) sobre todo el territorio nacional. La existencia de estos datos 
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supone un apoyo para la evaluación periódica de existencias forestales, factor 
crítico en procesos de decisión y planificación territorial. 

3. La superficie forestal objeto de este trabajo constituyó un sumidero neto de C 
durante el periodo 1984-2009. Localmente, las fuentes y sumideros de C alternaron 
su función dominante, ofreciendo en conjunto una distribución espacial y temporal 
dinámica. Entre 1984 y 2009 tuvo lugar una tendencia generalizada de activación 
de los flujos de C, con tasa de cambio variable en función del momento y 
localización. El año 2000 registró el máximo de superficie actuando como 
sumidero, con más de un tercio (567 km2) del área considerada fijando C de forma 
neta. 

4. La zona con cobertura permanente de pinar durante el periodo 1984-2009, 
incrementó en un 18% su biomasa aérea total entre 1990 y 2000. La distribución 
espacial de los cambios de biomasa se produjo de forma irregular. Como promedio, 
la biomasa aérea de estos pinares acumuló 0.65 t ha-1 a-1 de C en el decenio 1990-
2000, equivalente a la fijación de 2.38 t ha-1 a-1 de CO2. 

5. Series temporales de imágenes de media resolución espacial proporcionan 
información asociada a procesos de sucesión forestal. Mediante técnicas 
estadísticas, los datos espectrales permiten identificar la distribución, y las 
relaciones espaciales y temporales entre los procesos que ocurren a escala de 
paisaje, identificando patrones espaciales y tendencias temporales. La fiabilidad de 
esta información, que se obtiene por comparación de datos captados a lo largo del 
tiempo, se basa en técnicas rigurosas de calibrado de imágenes y en la utilización 
de medidas espectrales coherentes entre sensores. Los índices de vegetación 
derivados de las componentes Verdor y Brillo de la Transformación Tasseled Cap, 
TCA y PI, han demostrado ser buenas medidas para actuar de vínculo y enlace 
entre sensores de Landsat, y por tanto son indicadores fiables de la evolución de 
variables biofísicas que correlacionan con ellos. 

6. La información proporcionada por secuencias temporales de datos espectrales es 
indicativa de procesos de estabilidad o cambio en las masas forestales. Esos 
procesos están ligados a estados evolutivos y a tendencias en el estado sanitario o 
estructural. Así mismo, como portadoras de información temporal, representan 
modelos de evolución que se pueden asociar a características biofísicas en 
momentos puntuales. Aunque el procesamiento e interpretación de las trayectorias 
espectrales de media resolución espacial está en fases iniciales de desarrollo, este 
campo promete ser una fuente valiosa de información para el estudio de procesos 
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ecológicos y para la evaluación retrospectiva (y actual) de características de los 
ecosistemas. 

7. Los resultados de este trabajo corroboran la utilidad de la teledetección como 
respaldo del IFN, realzando su utilidad para la evaluación de la biomasa forestal 
aérea y los balances de carbono. La teledetección no es sustitutiva del trabajo de 
campo, sino que pone de relevancia la importancia que este tiene como base de 
información y validación de los modelos estadísticos, y en la aplicación espacial de 
los modelos a toda el área de interés. 

8. La identificación espacial de las fuentes y sumideros de C, así como de los cambios 
de tendencia en la fijación neta a lo largo del tiempo que proporciona el análisis de 
datos de teledetección, son una valiosa contribución para la generación de informes 
de emisiones de carbono, y para la evaluación de estrategias de planificación 
territorial. Los datos de satélite no son por si mismos una solución que permita 
despejar la incertidumbre asociada a los ciclos de carbono. Los datos de campo son 
esenciales para calibrar y validar las estimaciones de biomasa y carbono que se 
derivan de observaciones remotas. 

9. Mediante procesamiento de imágenes y transformaciones matemáticas de datos se 
descubrieron relaciones subyacentes entre las trayectorias espectrales y ciertas 
propiedades forestales. Variables dinámicas derivadas de series espectro-
temporales y asociadas a procesos de sucesión forestal, tales como el patrón y la 
tasa de cambio, han demostrado capacidad predictiva en modelos de parámetros 
forestales. Las variables dinámicas fueron más efectivas que las estáticas en la 
estimación retrospectiva de biomasa aérea en pinares mediterráneos del Sistema 
Central español, estableciendo una referencia histórica que permite hacer 
comparaciones con valores posteriores. 

10. Las aplicaciones demostradas en este trabajo demuestran que la teledetección es 
una herramienta de ayuda al cumplimiento de los compromisos del Protocolo de 
Kioto. En concreto es útil para la evaluación de la cobertura del suelo, así como de 
su conversión; para el establecimiento de una referencia en las existencias de 
biomasa y carbono con grado de incertidumbre aceptable; y para la identificación 
espacial de procesos de sucesión forestal. 
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CHAPTER I 

Cristina Gómez, Joanne C. White, Michael A. Wulder. 2011. Characterizing the state 
and processes of change in a dynamic forest environment using hierarchical spatio-
temporal segmentation. Remote Sensing of Environment, 115, 1665-1679 

RESUMEN 

Caracterización del estado y procesos de cambio en zona forestal dinámica mediante 
segmentación espacio-temporal 

 

Los cambios de naturaleza discreta en masas forestales, como abundancia, distribución y 
productividad, se detectan fácilmente mediante técnicas de teledetección. Sin embargo las 
transformaciones de naturaleza continua, como crecimiento y procesos de sucesión, son 
más difíciles de evaluar. En este trabajo se exploró la capacidad de las trayectorias 
espectrales generadas con una serie temporal de 35 años (1973-2008) de imágenes Landsat 
para caracterizar los procesos de cambio en una zona forestal muy dinámica del noroeste 
de Alberta, Canadá. Para caracterizar los procesos de cambio espacialmente difusos y 
temporalmente imprecisos se aplicó un método de segmentación de imágenes espacio-
temporal y jerárquico. Tras un proceso de calibrado y normalización radiométrica de las 
imágenes Landsat, las componentes Verdor y Brillo de la Transformación Tasseled Cap 
(TTC) se combinaron formando el índice Tasseled Cap Angle (TCA). TCA es una medida 
de la proporción de vegetación a no vegetación (estado de ocupación), y su derivada 
temporal, el Indicador de Procesos (PI) es una medida de cambio en esa proporción a lo 
largo del tiempo. Ambos índices condensan en un único valor información de las 
longitudes de onda del visible e infrarrojo cercano, y facilitan el análisis de series 
temporales de paisaje forestal, pudiendo incorporar información de todos los sensores 
Landsat. 

Combinando la secuencia original de TCA y su derivada temporal, se realizó el proceso de 
segmentación de imagen en tres niveles jerárquicos. Los niveles superior e inferior definen 
objetos homogéneos al inicio y fin del periodo de estudio respectivamente, mientras el 
nivel intermedio identifica  trayectorias espectrales similares. Se describió la evolución a lo 
largo del tiempo de los valores TCA y PI. Las asociaciones espaciales y temporales de los 
procesos de cambio se evaluaron estadísticamente con el índice I de Moran.  

El paisaje forestal experimentó multitud de transformaciones de tipo variado: desde 
perturbaciones drásticas con sustitución completa de la cubierta forestal a crecimiento 
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progresivo y procesos de sucesión. Los resultados indican que la región está en continua 
transformación y mantiene una proporción elevada de vegetación a no vegetación. La 
proporción total de paisaje modificado en cada decenio analizado aumentó de 18% y 14% 
en los años 1970s y 1980s respectivamente, a valores superiores al 30% y 33% en los años 
1990s y 2000s. En promedio, la proporción de vegetación a no vegetación aumentaba con 
anterioridad a 1981, disminuía entre 1981 y 1997, y se incrementaba de nuevo tras 1997. 
Se detectó un alto nivel de autocorrelación espacial en los procesos de cambio, con valores 
máximos del índice I de Moran 0.79 en 1973. A partir de 1981 las transformaciones del 
paisaje se hicieron más dispersas. También se observó correlación temporal localizada de 
los procesos de cambio, siendo el periodo 1990-1995 el de cambios más persistentes.  
 
Palabras clave: Landsat, trayectoria espectral, Tasseled Cap Angle, TCA, Indicador de 
Procesos, PI, bosque, cambio, segmentación jerárquica espacio-temporal, seguimiento, 
modelo de paisaje, procesos del paisaje 
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Discrete changes in forest abundance, distribution, and productivity are readily detectable using a number of

remotely sensed data sources; however, continuous changes such as growth and succession processes are

more difficult to monitor. In this research we explore the potential of spectral trajectories generated from a

35-year (1973–2008) time-series of Landsat imagery to characterize change processes in a dynamic forest

environment in northwestern Alberta, Canada. We propose a method of hierarchical spatio-temporal

segmentation that enables the characterization of change processes that are spatially diffuse and temporally

imprecise. Calibrated imagery from Landsat sensors are radiometrically normalized and two metrics derived

from the Tasseled Cap Transformation components, greenness and brightness, are used to generate the

Tasseled Cap Angle (TCA). The TCA is a measure of the proportion of vegetation to non-vegetation (the

occupation state), and its derivative, the Process Indicator (PI), is a measure of change in this proportion

through time. These indices condense information from the visible and near-infrared wavelengths, and

facilitate lengthy time series analysis of forest landscape change using data from all Landsat sensors.

A combination of the original TCA and its derivative sequence are input to a three level hierarchical

segmentation process with the highest and lowest levels defining homogeneous objects at the initial and final

date, and the intermediate level identifying trajectories with similar change processes. The development

through time of the TCA and PI are described, and the spatial and temporal associations of processes are

statistically assessed using the Moran's Index.

A full range of change types were identified on the landscape, from stand replacing disturbances to more

subtle growth and succession processes. Results indicate that the study area is in a constant state of change,

and maintains a high average proportion of vegetation to non-vegetation. The amount of total landscape

modified per decade increased from 18% and 14% in the 1970s and 1980s respectively, to more than 30% and

33% in the 1990s and 2000s. On average, the proportion of vegetation to non-vegetation was increasing prior

to 1981, decreasing between 1981 and 1997, and increasing post-1997. There was a high degree of spatial

autocorrelation amongst change processes, with a maximum Moran's I of 0.79 in 1973; landscape change

became more spatially disperse and widespread after 1981. Temporal correlation of change processes was

observed locally, with the period 1990–1995 having the most persistent change.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.

1. Introduction

Forests are naturally dynamic ecosystems in continuous change

with a key role in water (Van Dijk and Bruijnzeel, 2001) and carbon

cycles (Muukkonen & Heiskanen, 2007), and in wildlife habitat

quality (Nadkarni et al., 2004). Ecological benefits provided by forests

depend on the stage of development, health condition, spatial

distribution, and structural characteristics (Numa et al., 2009; Spies

et al., 1994; Wulder et al., 2008a). The ecological and economic

services delivered by forests are markedly altered after disturbances

such as fire or harvest, and are more steadily modified when subtle

growth, natural succession, or decay occur.

Insights into patterns, rates, and trends of landscape changes are

necessary to understand forest dynamics, enable preservation, and

assess the effectiveness of management approaches (Hayes & Cohen,

2007; Huang et al., 2009a). Remotely sensed data have become a

major information source for change detection (Lu et al., 2004) and

are possibly the only feasible and cost-effective option for extensive

areas (Lunetta et al., 2004). The Landsat series of satellites, the first of

whichwas launched in 1972, provides a lengthy temporal sequence of

images, and is unique among Earth observing satellites with imagery

systematically collected to ensure global coverage, processed to an

end-user applications ready state, and available via the Internet

without cost. The spatial resolution (30 m), revisit cycle (16 days),
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and spatial extent (185 km×185 km) of Landsat data are well suited

to characterizing forest change (Wulder et al., 2008b).

Our goal is to explore the capacity of spectral trajectories

generated from a 35-year time-series of Landsat images for explora-

tion and analysis of spatially and temporally diffuse change in a

dynamic forest environment. For this purpose we develop a

hierarchical spatio-temporal segmentation method that combines

information at various spatial and temporal resolutions; the persis-

tence of relations between objects at the multilevel scale is assured by

its hierarchical character. Specific objectives of this study are:

1. To characterize forest landscape change using an index generated

from the Tasseled Cap Transformation components Greenness and

Brightness, as well as the first derivative of this index. This index

characterizes the proportion of vegetation to non-vegetation in a

pixel and uses spectral channels that enable bridging across all

Landsat sensors.

2. To incorporate both spatial and temporal properties into a

hierarchical segmentation process to capture landscape-level

change and incorporate spatial information regarding these change

units through time.

3. To analyze the spatial and temporal correlations of changes through

time over an area with changing amounts, rates, and related spatial

distributions of disturbance in a study area important from both

ecological (habitat) and economic perspectives.

2. Background

2.1. Disturbances and subtle change

Abundant research effort has focused on the assessment of

disturbances in large area monitoring programs. Stand replacing

disturbances, such as clearcuts and wildfires that drastically modify

the landscape and require a lengthy period of time to recover their

initial state, can be detected with confidence using remotely sensed

data (Coops et al., 2006), particularly Landsat data. For example, Cohen

et al. (1998) applied and compared various methods for mapping

clearcuts in Western Oregon, achieving results with greater than 90%

accuracy. In the same region, Cohen et al. (2002) characterized the rate

and distribution of stand replacing disturbance over a 23-year period

withMSS and TM images, finding public landmore affected by natural

disturbance, while private land was more intensely harvested. Healey

et al. (2005) compared the ability of four Tasseled Cap (TC) structures

in detecting harvest disturbance; a newly developed Disturbance

Index (DI) was the best performer in areas with slower succession

rates. The DIwas later used byMasek et al. (2008) to compile a 10-year

record of forest disturbances in North America, reporting omission

errors of 30–60% and commission errors of 20–30%.

Less studied is the characterization of subtle, slow, continuous

change related to partial harvest and natural regeneration or decay

processes, which have less obvious effects on the landscape (Coops et

al., 2006). Forest successional stages have been described (Cohen et

al., 1995; Helmer et al., 2000; Jakubauskas, 1996), but studying the

transitions between development stages is less common: Peterson

and Nilson (1993) described trajectories of reflectance change in

secondary succession of mono-specific birch and pine stands in

Estonia; Schroeder et al. (2007) characterized patterns of recovery

post-harvest in Western Oregon, and Vogelmann et al. (2009)

characterized forest decline and mortality caused by persistent insect

defoliation from 1988 to 2006 in New Mexico.

2.2. Time series of images and spectral trajectory

Two images acquired at different dates may be sufficient for

identifying landscape change (Coppin & Bauer, 1996); however, the

use of more than two image dates is recognized as a superior

technique when the objective is to characterize the rate of change (as

opposed to just the presence or absence of change) (Goodwin et al.,

2008). A time series of remotely sensed images enables the

identification of a greater range of processes (Gillanders et al., 2008)

as well as the characterization of temporal patterns. Dense time-series

are particularly useful for detecting change in very dynamic forests

with a fast recovery rate (Huang et al., 2009b; Lunetta et al., 2004).

Interpretation of a sequence of images, or temporal trajectory, makes

it possible to characterize vegetation dynamics on different temporal

scales (Bontemps et al., 2008). With the extensive Landsat image

archive of the USGS being made freely available to the public

(Woodcock et al., 2008) it has become possible to obtain a

considerable number of images for long-term monitoring of ecosys-

tems and for trajectory analysis approaches (Linke et al., 2009).

2.3. Object analysis approach for change detection

Object-based analysis has increased in the Earth Observation

community in the last decade (Blaschke, 2010; Hay et al., 2005) as an

alternative to pixel based analysis. Among the strengths of object-

based analysis for change detection are the reduction of misregistra-

tion and shadowing effects (Johansen et al., 2010) and the inclusion of

contextual information.

The spatial resolution of the imagery selected is crucial in the

definition of objects analogous to forest stands. Landsat medium

spatial resolution is well suited to the detection of change in forest

environments at the stand level. The study of change with an object

approach, and particularly the definition of objects can be done in a

number of ways: if using various images, the segments can first be

defined on a reference image and compared later in other dates (Hall

& Hay, 2003); alternatively, objects could be defined by a pre-existing

GIS layer as in Walter (2004); a third approach is the simultaneous

segmentation of various dates of images (Bontemps et al., 2008;

Desclée et al., 2006).

3. Methods

3.1. Study area

The study area covers 13,818 km2 of the Foothills boreal forest

region (Rowe, 1972) on the eastern side of the Rocky Mountains,

Alberta, Canada (Fig. 1). It is a transition zone between boreal and

sub-alpine forest regions with lodgepole pine (Pinus contortaDougl.ex

Loudon), trembling aspen (Populus tremuloides Michx), and balsam

poplar (Populus balsamifera L.) as prevalent pioneer tree species

appearing after catastrophic events. Other species normally found in

older stands are white spruce (Picea glauca (Moench) Voss) and black

spruce (Picea mariana (Mill.) BSP) and less frequently white birch

(Betula papyrifera Marsh.), tamarack (Larix laricina (Du Roi) K. Kock),

balsam fir (Abies balsamea (L.)) and alpine fir (Abies lasiocarpa (Hook.)

Nutt.). Elevation ranges from 600 to 2500 m.

The area is rich in live and fossilized natural resources (Alberta

Sustainable Resource Development, 2009) and provides important

habitat for grizzly bear (Ursus arctos L.) (Nielsen et al., 2004) and

woodland caribou (Rangifer tarandus caribou Gmelin). Industrial

extraction activities such as oil and gas, mining, and forest harvesting

have been ongoing since the 1950s (Andison, 1998), with an

increased intensity in recent decades (Schneider et al., 2003).

3.2. Data

We used a time sequence of fourteen images (Table 1) acquired

between 1973 and 2008 by the Landsat series of satelliteswith various

sensors: the Multi-Spectral Scanner (MSS), the Thematic Mapper

(TM), and the Enhanced Thematic Mapper Plus (ETM+). All images

were selected within the summer and early fall seasons for
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consistency in forest phenological condition (Wulder et al., 2004).

Images were obtained from the United States Geological Survey

(USGS), the Global Land Cover Facility (GLCF), and the Canada Centre

for Remote Sensing (CCRS) archives.

3.3. Image preprocessing

Preprocessing of a sequence of images for change detection has

two critical stages: spatial registration to assure positional coinci-

dence of features, and radiometric calibration and normalization to

ensure that changes in spectral reflectance correspond to actual

change events. Failure to correctly perform either of these two could

trigger significant errors in the analysis and lead to misinterpretation

of change events (Lu et al., 2004).

All but two of the images were acquired in an orthocorrected

format. The two images received in raw format were geometrically

corrected using Toutin's model (PCI Geomatica) and registered to the

1995 TM base image using 250 Ground Control Points (GCPs) and the

thin plate spline algorithm. All of the MSS images were resampled

from their original 57 m spatial resolution to 30 m. Finally, an image-

to-image registration was used to co-register all of the images to the

base image with a RMS error of less than 30 m (1 pixel).

Robust radiometric preprocessing is essential for monitoring

landscape change (Lu et al., 2004) and for linking images with

biophysical phenomena (Gong & Xu, 2003); it is particularly

challenging if images from various sensors are included in the analysis

(Roder et al., 2005). We used the approach of Han et al. (2007) to

convert digital numbers to Top of Atmosphere (TOA) radiance with

coefficients recommended by Chander et al. (2009). Greenness and

Brightness components of the Tasseled Cap Transformation (TCT)

(Crist & Cicone, 1984; Huang et al., 2002; Kauth & Thomas, 1976)were

calculated and normalized to the reference image Greenness and

Brightness, as in Powell et al. (2008). For relative radiometric

normalization we applied IR-MAD (Iteratively Reweighted Multivar-

iate Alteration Detection) (Canty et al., 2004) as recommended by

Schroeder et al. (2006) for temporal spectral trajectories. This

automatic process is based on the invariance property of MAD

transformation and performs an orthogonal linear regression (Canty &

Nielsen, 2008) of the target image pixels on to the reference image

pixels; the process is invariant to linear transformations (Canty et al.,

2004; Nielsen et al., 1998). The reference was a Landsat-5 TM image

free of clouds and haze, dated 1995, in the middle of the series. The

process of normalization reduces the amount of artifacts due to

illumination or atmospheric variations, enabling more reliable

detection of true change (Song et al., 2001).

3.4. Tasseled Cap Angle (TCA)

The Tasseled Cap Transformation (TCT) (Crist, 1985; Crist &

Cicone, 1984; Huang et al., 2002; Kauth & Thomas, 1976) is a linear

transform of the original Landsat spectral space that has been broadly

employed in forestry applications (Cohen & Goward, 2004). It has

served to characterize forest structure (Cohen et al., 2002; Hansen et

al., 2001), condition (Healey et al., 2006; Wulder et al., 2006),

successional state (Helmer et al., 2000; Peterson & Nilson, 1993), and

also for change detection (Jin & Sader, 2005; Lea et al., 2004). The first

two orthogonal components of the TCT, Brightness (B) and Greenness

(G) define the vegetation plane (Crist & Cicone, 1984) (Fig. 2a) and are

a practical bridge betweenMSS and TM-ETM+ imagery (Powell et al.,

2008).

The study of forest stands' spectral behavior in the vegetation plane

provides insights into forest cover densities (Cohen et al., 1995; 1998)

Fig. 1. Location of the study area. The inset displays a combination of Tasseled Cap Angle (TCA) layers of years 2001 (red), 2002 (green), 2004 (blue); areas of clouds and altitude over

1700 m are masked out.

Table 1

Landsat time-series of imagery used in the study.

Landsat/sensor Path/row Date

(dd/mm/yyyy)

Sun elevation

(degrees)

Source

1/MSS 50/22 16/09/1973 36.21 GLCF

2/MSS 50/22 27/09/1976 30.40 CCRS

2/MSS 50/22 25/07/1978 49.00 GLCF

2/MSS 50/22 14/08/1981 46.10 CCRS

5/TM 46/22 06/09/1990 37.38 USGS

5/TM 46/22 23/07/1991 50.25 USGS

5/TM 46/22 04/09/1995 36.99 USGS

5/TM 46/22 25/09/1997 32.21 CCRS

7/ETM+ 46/22 25/09/2000 32.82 USGS

7/ETM+ 46/22 28/09/2001 31.70 USGS

7/ETM+ 46/22 15/09/2002 36.48 USGS

5/TM 46/22 11/08/2004 47.31 CCRS

5/TM 46/22 30/06/2006 55.86 USGS

5/TM 46/22 06/08/2008 48.80 USGS

CCRS: Canadian Centre for Remote Sensing.

GLCF: Global Land Cover Facility.

USGS: United States Geological Survey.
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and forest development stages (Peterson & Nilson, 1993; Price &

Jakubauskas, 1998). The B component is by definition a positive value,

whereas G depends on the contrast between the visible and near-

infrared bands (Table 2), with exposed soil having negative values

(Gillanders et al., 2008) and vegetated areas having positive values.

The Tasseled Cap Angle (TCA), defined as the angle formed by G

and B in the vegetation plane (Eq. 1), condenses in a single value the

information of the relation G/B (Fig. 2a) and represents essentially the

proportion of vegetation to non-vegetation. A range of studies in

coniferous forests have confirmed higher values of G and lower values

of B in dense cover classes when compared to open stands or clearcuts

(Cohen et al., 1995; Price & Jakubauskas, 1998). Accordingly, dense

forest stands show higher TCA values than more open stands or bare

soil (Fig. 2a). We evaluated the TCA in the study area, assessing values

over a set of 5000 stand replacement disturbance events dated

between 1972 and 2008, finding TCA in recent clearcuts significantly

lower than in any other cover stage of the forest and a clear increasing

tendency with time-since-disturbance (Fig. 2b).

TCA = arctan G= Bð Þ ð1Þ

The range of values of the TCA is scene dependent, as are the TCT

components (Crist & Cicone, 1984). An absolute assessment of forest

density with the TCA would require local calibration with field data.

On the contrary, evaluating relative changes of TCA does not require

calibration: increments or reductions in the proportion of vegetation

to non vegetation results in a concomitant change of TCA values.

The TCA images for each date were combined into a single, multi-

band image file, hereafter called TCA image for further analysis. To

describe the forest landscape cover with the TCA we define the

occupation state characterizing categories of proportion of vegetation

to non-vegetation: areas more densely occupied by vegetation have

higher values of TCA than areas with less dense vegetation; the bare

soil situation, with zero proportion of vegetation is illustrated with

negative values of the TCA.

3.5. Image masks

To reduce the detection of false changes, we excluded areas with

elevations greater than 1700 m, water bodies, clouds and cloud

shadows prior to analysis. High elevation areas were identified with a

digital elevation model, water bodies were identified with 1:50,000

National Hydrology Network data; clouds and cloud shadows were

identified using a semi-automatic approach for each image. The area

remaining for analysis, after all masks were applied to the TCA image,

was approximately 12,740 km2.

3.6. Process indicator (PI): the TCA derivative

The spectral profile of the TCA image at each pixel characterizes the

evolution or trajectory of its TCA value over time. Each pixel trajectory

was approximated with a Lagrange second order polynomial

(Appendix A), which enables interpolation with uneven intervals

among occurrences.

The interpolated TCA image was derived with respect to time

(years), producing a new cube with the same number of bands as the

TCA image, hereafter called Process Indicator (PI) image, where each

pixel's spectral profile is the derivative of its corresponding input

image's profile (Fig. 3). Values of this new image represent the rate of

TCA change over time, and unlike image difference methods, this

technique assigns a value to each input date. The PI profile is the

derivative of a smoothed curve, and is appropriate for detecting

continuous subtle changes such as natural succession and decay, and

progressive decadence due to disease or insect attack, which are

difficult to assess with traditional change detection techniques (Coops

et al., 2006).

3.7. Hierarchical spatio-temporal segmentation

Image segmentation is the partitioning of an image into homoge-

neous spatial units (Devereux et al., 2004) based on one or more

attributes to facilitate visualization and analysis of spatially correlated

properties; basic subdivisions contain information about raster

attributes, shape, and position. Hierarchical spatio-temporal segmenta-

tion is a technique for exploration and analysis of changing properties

Fig. 2. (a) Tasseled Cap Transformation Brightness and Greenness components form the vegetation plane (Crist & Cicone, 1984). The TCA is the arc tangent formed by Greenness and

Brightness. Forest stands with a higher proportion of vegetation–non vegetation show higher values of TCA, bare soil shows negative TCA. (b) TCA average values of disturbed areas

in the study area in the last 35 years; recent clearcuts show negative TCA value.

Table 2

Coefficients used for calculation of TCT indices.

Sensor Component R G B NIR SWIR1 SWIR2

MSS Brightness 0.433 0.632 0.586 0.264 N/A N/A

Greenness −0.290 −0.562 0.600 0.491 N/A N/A

TM Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863

Greenness −0.2848 −0.2435 −0.5436 0.7243 0.0840 −0.1800

ETM+ Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Greenness −0.3344 −0.3544 −0.4556 0.6966 −0.0242 −0.2630
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of the landscape at various spatial and temporal scales: an image is

divided in a hierarchy of levels, each one inheriting or passing on the

boundaries of its objects to the subsequent level. The attributes of the

spatial units, e.g. the spectral trajectory can be analyzed. The

underlying assumption is that forest change processes are spatially

and temporally correlated at certain scales.

There is no unique and singular solution to how an image

partitions the landscape (Burnett & Blaschke, 2003) for ecological

analysis and no single spatial scale is optimal for characterizing the

multiple options in which the image can be divided (Hay et al., 2005).

Attempting to interpret processes with a multi-scale segmentation

requires the definition of semantic rules to relate lower level

landscape units to higher levels of organization (Burnett & Blaschke,

2003). Three is the minimum number of levels recommended for

landscape analysis (O'Neill et al., 1986).

The current landscape in the study area is highly fragmented as a

result of natural factors and human activities (Andison, 1998), and

spatial units at the same occupation state are smaller than a few

decades ago. We define two levels of segmentation based on initial

(1973) and final (2008) TCA values (L3 and L1 respectively). The

smaller objects in L1 made up larger homogeneous spatial units at the

beginning of the period considered; each of them has evolved

following a different process path. An intermediate process level (L2)

defined by the PI trajectory (change process) links both state levels

(Fig. 4).

We introduce a mixed top-down/bottom-up approach whereby

information at higher levels of the segmentation hierarchy (top:

larger objects) is used to derive information at lower levels of the

segmentation hierarchy (bottom: smaller objects) and vice versa (Hay

et al., 2001). The order followed in the definition of objects in a

hierarchical multi-scale segmentation of the landscape incorporating

state and processes is important for interpretation and analysis. At the

state levels L1 and L3, intra-object TCA variability is smaller that inter-

object variability. The intermediate process level L2 acts as a bridge

between the actual conditions (2008 TCA) and the initial state (1973

TCA), its segments have had a similar changing path (PI trajectory)

during the study period (1973–2008). Adjacent objects in level 2

followed a significantly different evolution path, and there is more

variability in the process path between objects than within objects

(Definiens, 2005).

The process of segmentation is performed with Definiens

Cognition Network Technology® (Baatz & Schäpe, 2000; Definiens,

2005). L1 is defined with scale parameter 10, color–shape 0.7–0.3,

smoothness–compactness 0.5–0.5 (Wulder & Seemann, 2003); the

Fig. 3. TCA (1973–2008) and PI (1976–2006) trajectories of a L1 object. The PI is calculated as the derivative of the TCA curve (interpolated with a second order Lagrange polynomial).

PI values correspond to each date.
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scale is 20 for L2 and 50 for L3. In defining the process level all PI layers

are equally weighted.

3.8. Spatio-temporal correlation of forest occupation states and forest

change processes

Once objects were defined, we sought to describe how occupation

states and change processes were arranged across the study area

within single years, andwhether the condition of an object in one year

was related to its condition and its neighborhoods' in a subsequent

year. Thus, we required spatial statistics that could be calculated both

at a local scale and a global scale, and could include both intra- and

inter-year effects. We employed the Moran's Index (Moran, 1948)

statistic (Appendix B) implemented in GeoDa™ which is a free

software dedicated to spatial data analysis (Anselin et al., 2006).

Moran's I can be interpreted as a spatially weighted form of

Pearson's correlation coefficient (Goovaerts et al., 2005): positive and

negative z-values point to positive and negative spatial correlation of

objects' values respectively, and a zero value indicates there is no

spatial association in the dataset. The Moran scatterplot facilitates

visual exploration and interpretation of the global value of Moran's I

(Anselin, 1993) (Fig. 5): the distribution of the cloud of points

(observation versus spatial lag (neighbor's weighted averaged

values)) reflects the pattern of spatial association, and the slope of

the regression line is an estimation of the global Moran's I.

For explicitly spatial description, local associations (clusters) and

outliers can be identified and analyzed with a Local Indicator of Spatial

Analysis (LISA) (Anselin, 1995). In this study we implemented the

local Moran's I for detection of local patterns of forest occupation state

and forest change processes, and created maps of clusters (LISA cluster

map) that identify and classify (high–high, low–low, high–low and

low–high) locations with significant association.

Spatial and temporal correlations of objects' TCA and PI values

were assessed independently as a variable evaluated at multiple

dates. LISA analysis of univariate data enables detection of spatial

patterns of correlation at a single date. Furthermore, the option of

bivariate LISA analysis facilitates temporal analysis of the spatial

correlation, detecting if there is any association between the variable

measured at a reference time and the same variable measured in the

neighborhood at a different time (Anselin, 2003). In all our spatial

analysis we defined the neighborhoods with the first order Queen's

contiguity measure, i.e. each object's neighborhood consists of all

other segments sharing some boundary with it.

4. Results

4.1. Hierarchical spatio-temporal segmentation

The hierarchical spatio-temporal segmentation yielded a number

of objects at each level of segmentation with the average size per

object shown in Table 3. There are 4.46 L2 objects per each L3 object

on average, and 3.27 L1 objects in each L2 object on average. The

average size of the smaller objects (L1) is approximately 40 ha.

Most of the statistical summaries and results shown in the

following sections concern L1 objects; results at other levels of

segmentation show similar trends.

4.2. Landscape occupation state—TCA

Considering theentire studyarea, themeanvalueof theobjects' TCA is

consistently greater than 190 over the whole period of analysis, and

describes a landscape with a high proportion of vegetation to non-

vegetation. Between1997 and2001, themeanTCAwas at its lowest,with

theminimummeanTCAoccurring in1997 (minimumaverageTCAvalue,

Table 4, Fig. 6)—the coincidence of three consecutive late season images

in this period encourages a cautious interpretation. After 2001, TCA

values trend upwards, indicating a global average increase in the

proportion of vegetation to non-vegetation.

The standard deviation of the TCA (Fig. 6, Table 4) indicates that

the lowest dispersion in objects' TCA values occurred before 1990—

images from the MSS era, with 6-bit rather than the 8-bit radiometric

Fig. 4. Hierarchical spatio-temporal segmentation process. Bottom level 1 of

homogeneous actual occupation state objects serves as base for the creation of top

level 3 representing homogeneous occupation state objects at initial date. Objects of the

intermediate process level are limited in size and boundaries by both occupation state

levels.

Fig. 5. Moran's I scatterplot. The slope of the regression line is an estimation of the

global Moran's I. Relative density of points in the correlation quadrants indicates how

the global measure of spatial association is determined by association between high

and/or low values.

Table 3

Characteristics of hierarchical spatio-temporal segments.

Level Similarity Attribute for

definition

Mean size

(ha)

Number

objects

L3 Initial occupation state 1973 TCA 634.4 2021

L2 Change process trajectory 1973–2008 PI 141.9 9032

L1 Final occupation state 2008 TCA 43.1 29544
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resolution of later Landsat sensors encourages cautious interpreta-

tion; since that time, the standard deviation has been higher, with a

maximum in year 2001, which was the ceiling of diversity of

occupation states at L1. As we would expect, from a high cover state,

increased variance implies reduced cover, with non-vegetation

locations (stand replacing disturbances) intermingled with forest

stands at various stages of coverage and growth.

The histograms of TCA distribution at all dates are similar, with a

maximum occurring between values 220 and 240, but some

differences are apparent (Fig. 6). Of particular note is the variation,

by year, of negative TCA values, indicative of non-vegetated areas, and

of the high positive TCA objects that have a high proportion of

vegetation or are densely occupied. To gain better insights of these

changes, the range of TCA values over the scene was split in four

categories, with a criterion based on the statistical distribution (the

mean TCA, considering all dates, ±one standard deviation (i.e. 140,

310), and zero). Groups were labeled as Negative (TCA below zero,

corresponding to non-vegetated objects), Low, Medium, and High,

having an increasing proportion of vegetation to non-vegetation.

Objects were classified in these four groups and their progression

through TCA categories analyzed at quasi-decadal intervals: from

1973 to 1981; 1981–1990; 1990–2000 and 2000–2008. Objects for

which the TCA value changed category from initial to final date in each

decade were counted (Fig. 7).

In the 1970s, 17.8% of all L1 objects (5273) changed the occupation

state enough to switch TCA category. Among these, 47% evolved from

medium tohighand31% from low tomedium: therewasa clearnet change

towards higher densities and abundant interchange in the high and

medium groups—areas with high coverage and also common change

events inducing average TCA variations. In the 1980s, 13.8% of all L1

objects (4083) changed their occupation state sufficiently to switch TCA

category. The high tomedium and vice versa changeswere againmarked,

Table 4

Statistics of TCA and PI values at L1 level.

TCA 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008

Mean 227.13 229.99 241.33 244.05 231.83 232.73 226.40 195.23 204.64 201.81 235.93 240.01 237.69 244.56

Std deviation 74.21 59.55 66.24 66.02 80.78 84.46 87.18 91.88 95.05 95.73 83.23 80.19 81.59 78.90

Kurtosis 5.57 2.14 5.55 6.30 4.58 10.03 8.62 10.74 15.34 13.48 7.43 7.96 8.30 8.89

Skewness −1.21 −0.58 −0.86 −0.93 −1.21 −1.92 −1.99 −2.45 −2.98 −2.66 −1.67 −1.77 −1.75 −1.90

Min. −463.92 −83.08 −450.94 −491.11 −322.71 −646.56 −505.43 −566.48 −735.87 −701.26 −457.65 −499.27 −539.34 −502.49

Max. 432.41 432.66 399.30 417.55 438.03 407.07 441.63 446.87 454.64 447.31 447.03 413.21 399.25 405.40

PI 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006

Mean 7.10 7.03 −4.75 −5.66 −2.71 −18.75 −10.88 3.29 15.64 19.10 0.88 2.27

Std deviation 20.30 26.14 18.88 21.38 16.28 34.41 25.15 17.90 25.31 30.58 17.32 12.93

Kurtosis 7.65 1.26 8.97 12.10 11.91 1.58 8.55 11.51 2.64 4.83 6.22 14.94

Skewness 1.05 0.06 −1.07 −2.30 −1.21 −0.58 −1.21 −0.70 1.00 0.73 −0.12 −0.20

Min. −338.31 −227.89 −217.41 −320.04 −235.86 −310.10 −420.88 −369.72 −109.03 −213.48 −128.77 −126.84

Max. 189.68 134.98 314.38 97.04 108.96 164.26 202.64 144.69 284.95 378.67 185.01 214.39

Fig. 6. Mean±1 standard deviation of TCA values of L1 objects (other object levels show similar trends) (left). Histograms of TCA and PI distribution (right).
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with a net 11% change from high to medium. Medium to low changes

accounted 29% of all changing objects; the overall change was towards

loweringdensity. In the1990s, 30.4%of all L1 objects (8989) switched the

occupation state sufficiently to move TCA category, relating a transition

over the landscape towards lower canopy cover densities:more thanhalf

of the changes in TCA category (56%) occurred from the high group to the

medium group, followed by transition frommedium to low (22%).

The last period analyzed, 2000–2008, experienced the highest rate

of TCA category switches: 9972 L1 objects (33.7% of the total) swapped

occupation state group. Among these, 60% exchanged from medium to

high, 22% from low to medium, and 9% moved from high to medium.

Despite the frequency of transformations produced in this time period,

the global average occupation state was maintained (Fig. 6).

We considered all mathematical options of transition amongst

these TCA categories; in reality, however, frequent swaps at the

spatial scale considered only occurred between adjacent groups,

reflecting that changes of occupation state at the landscape level occur

in a progressive manner. Transitions such as high to negative, high to

low, or negative to high were infrequent or nonexistent in the study

area at the time and spatial scale considered; such drastic changes

would reveal alterations in occupation state produced by typical stand

replacing disturbances such as fire, windthrow, or an accumulation of

forest harvesting.

Summarizing change by decade is a useful approach, but

sometimes a more detailed temporal examination is necessary for

detecting trends. The total number of objects in each TCA category

(Fig. 7 left inset) reveals changing tendencies and aids in under-

standing fluctuations in the global average (Fig. 6). TCA medium

category objects are significantly more common than any other group

between 1973 and 2008, oscillating between 67% and 84% of the total

number of objects. The diminution of high objects between 1997 and

2001 is noteworthy and mathematically explains the decrease in the

TCA global average (Fig. 6). Negative and low categories of TCA are the

least common objects for all dates, with a slight increment in low

objects between 1997 and 2000; but late season images used to study

this period (1997–2000) could somehow have conditioned lower

values of the TCA.

4.3. Landscape change processes—PI

The average PI value describes the global state of change at the

landscape level; assessing this average at consecutive dates (Fig. 6)

permits examination of trends in the study area. Prior to 1981, low

positive values of the PI indicate a slow increasing rate in the

proportion of vegetation to non-vegetation: the landscape is in an

average state of forest growth. From 1981 to 1997, the average PI

values are negative, indicating a decline in the proportion of

vegetation to non-vegetation mainly caused by forest harvesting

and, to a lesser extent, other disturbances; in the 2000s PI values are

again positive (Table 4, Fig. 6). The standard deviation of PI values

(Table 4, Fig. 6) is relatively high for the entire period indicating that

this forest landscape is very dynamic and that there is a great variety

of change processes occurring simultaneously.

Although the variation in the interval between image dates was

considered when computing the PI values, the dearth of image data in

the 1980s limits the analysis of trends. Further, the effect of late

season imagery on PI values has to be considered in the interpretation

of changes. Despite these facts, a general decline in the occupation

state (negative PI average) is observed in the 1980s and 1990s

(Table 4, Fig. 6) and a time of frequent and diverse changes reflected

by the high values of the PI standard deviation.

For most image dates, the distribution of polygons with different

change processes (PI values) is unimodal (Fig. 6), with the majority of

objects having a mean PI value close to zero (i.e., stable). The sample

was divided in groups of PI values for exploration of changing

patterns. With no ground truth to determine splitting thresholds, we

used statistical criteria. The stable group, with PI close to zero, is a

relevant group, representing areas with no change in the proportion

Fig. 7. Changing objects between TCA categories in each of the last four decades. Evolution of total number of objects in different TCA groups at level 1 (top left inset) (other levels of

segmentation show similar trend).

1672 C. Gómez et al. / Remote Sensing of Environment 115 (2011) 1665–1679



of vegetation to non-vegetation. The slow increase and slow decrease

groups were defined approximately by the values of the mean±two

standard deviations of PI at all dates (i.e., 60 and −70). The fast

increase and fast decrease groups include the remaining extreme

values (Fig. 6).

Objects in the fast decrease group (i.e., being highly disturbed), are

the smallest group in all time periods (Fig. 8): there is a small

proportion of the landscape with a rapid net loss of vegetation.

Similarly, objects in the fast increase group (i.e., in a state of rapid

emergence or occupation) are also relatively infrequent. In contrast,

the slow increment PI objects (i.e., growing stands) are normally the

most frequent, with the exception of 1995 and 1997, when slow

decrease (i.e., decay by aging, disease, or partial harvest) was more

common.

4.4. Spatial autocorrelation of forest occupation states and forest change

processes

Global values of Moran's I show there is a consistent positive and

high spatial autocorrelation of forest occupation states (TCA values)

during the period from 1973 to 2008 (Table 5), with an average value

of 0.643 at the L1 level of segmentation, and slightly lower for larger

levels (results not shown). Change processes (PI values) are also

positively and highly spatially correlated, with an average global

Moran's I of 0.636 (Table 5). Whilst Moran's I values of TCA do not

follow a clear trend, Moran's I values for PI generally decrease through

time (Fig. 9): similar change processes were spatially more concen-

trated at the beginning of the period of analysis, and have

progressively lost spatial association, turning the landscape into a

mosaic of change processes with smaller but more spread disturbance

events and subsequent recovery. Observation of Fig. 9 suggests there

is no apparent correspondence between global spatial associations of

TCA and PI values over time, state and process seem to have a different

pattern.

Exploration of the Moran's scatterplot informs about patterns of

spatial autocorrelation, in particular if associations are between values

over or below the average. As an example, the 1997 scatterplot of

occupation states (TCA) (Fig. 9, 1) illustrates that spatial associations

at this date are produced between a large range of values below the

average (Fig. 9, panel 1, notation A). Spatial associations are also

produced between values over, but close to the average (Fig. 9, panel

1, notation B). In this case a few points in the upper left and lower

right quadrants depict spatial outliers with a markedly different

occupation state compared to those neighboring; for instance these

areas relate to changed areas (island polygons) amid unchanged

forest areas (or the converse, unchanged islands amidst change).

The pattern of spatial association shown by theMoran's scatterplot

of change processes (PI values) in 1973 is different, the distribution of

points in both quadrants of positive correlation is similar (Fig. 9, 2):

there is spatial association between values below and over the

average, i.e., processes of change are spatially associated, whether

they are related with growth, disturbance or stabilization.

The temporal correlation of occupation states (TCA) and change

processes (PI) is explored by studying the bivariate (temporal)Moran's

I. The spatial association of the target variable at two consecutive dates

is evaluated (Table 5) to investigate the impact of particular

occurrences on its neighborhood over time; care with different time

intervals is necessary for interpretation. Results show a global positive

correlation of TCA at all time intervals (similar occupation states are

spatially associated at consecutive dates, which seems very natural in

the absence of disturbance), with aminimumof 0.352 in period 1976–

1978 and a maximum of 0.656 in period 1978–1981. Bivariate

(temporal) global Moran's I of PI is in most cases positive (Table 5)

and not very large; a maximum of 0.494 occurs in period 2000–2001

and a minimum of −0.032 in period 1997–2000. The pattern of

Moran's scatterplot of TCA (2000–2001 as an example in Fig. 9, 3) is

similar to the univariate case, with TCA values dispersed in the low–

low quadrant and few outliers. In the PI example (1978–1981), the

temporalMoran's scatterplot is an agglomeration of points around zero,

different to the univariate case: while the univariate picture shows

clustering of similar change processes, there is not a clear pattern of

association in the bivariate case (Fig. 9, 4) and areas at varying change

processes of growth or decay at consecutive dates are intermingled.

Local analysis with a map of clusters can provide spatially explicit

information on clustering (Fig. 10) informing and characterizing local

associations; it is a useful tool for visual interpretation. The examples

in Fig. 10 illustrate the association type of change processes (PI) in the

study area for the period investigated (1973–2008). Red polygons

denote association of values greater than average (high–high), blue

polygons association of values less than average (low–low); purple

polygons are high–low outliers (with a value greater than the mean at

the initial date, and surrounded by polygons with values less than the

mean at the second date) and green denotes low–high outliers (with a

value less than the mean at the initial date, and surrounded by

polygons with values greater than the mean at the second date).

Polygons of the same type grouped together indicate larger

homogeneous areas with respect to the variable analyzed, as occurs

in 1995–1997, whereas small groups of clusters or isolated patches

indicate amore heterogeneous landscape, as is the case in 1978–1981.

Despite the low values of global Moran's I for temporal PI

correlation (Table 5), local analysis and examination of the cluster

maps reveal that there is a substantial number of change process

clusters of all categories.

Fig. 8. Evolution of change process (PI) categories of level 1 objects.
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The varying time intervals between available image data makes

inferenceof trends in temporal association less reliable; aperiodic series of

images would facilitate a thorough temporal study. To investigate a

possible trend, we calculated global and local correlations at quasi-

quinquennial intervals: 1976–1981, 1981–1990, 1990–1995, 1995–2000,

and 2000–2006, and analyzed total amounts of each category of local

clusters (Table 6, Fig. 10). Given the location (latitude and alpine

transition) combined with local forest productivity levels influencing

successional processes, five to ten years is an adequate period to capture

andportray the forest standdynamics occurring; however, to detectmore

frequent changes, a complete series of annual images would be required.

The highest number of significant (pb0.001) spatial clusters occur in

the central periods, 1995–2000 and 2000–2005 (Fig. 11, Table 6), a time

with persistent change. It is between 1981 and 1990 when more

Table 5

Values of Moran's Index of univariate (spatial) and bivariate (temporal) TCA and PI. All correlations with p-valueb0.001.

Spatial 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008

TCA 0.6740 0.5397 0.6959 0.6709 0.6804 0.6813 0.6625 0.6083 0.5087 0.5983 0.6601 0.6723 0.6848 0.6657

PI 0.7940 0.6365 0.7275 0.6095 0.6690 0.6422 0.6880 0.6521 0.6311 0.6860 0.6070 0.5086 0.5691 0.5336

Temporal 73–76 76–78 78–81 81–90 90–91 91–95 95–97 97–00 00–01 01–02 02–04 04–06 06–08

TCA 0.3959 0.3523 0.6557 0.6003 0.6522 0.6290 0.5112 0.5637 0.5744 0.5284 0.6235 0.6448 0.6512

PI 0.1170 0.2259 0.0434 0.4209 0.1729 0.3140 0.4668 −0.0321 0.2301 0.4940 0.2360 0.1307 0.0397

Fig. 9. TCA and PI spatial global Moran's I trends (top). Spatial (univariate: 1, 2) and temporal (bivariate: 3, 4) Moran's I scatterplots of TCA and PI (bottom).
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positive spatial associations of change processes happens; interestingly,

in this longer time lapse spatio-temporal associations are equally

distributed between processes over the average (regrowth) and below

the average (disturbance and decay) change process. A close look at the

original images reveals that clearcutting practices and subsequent

regrowth were more concentrated in fewer areas than during more

recent dates. The time interval is an important parameter to control in

the analysis of temporal correlation of change processes for accurate and

reliable reports and conclusions, and although global values of

correlation do not give exhaustive information, local analysis can give

important and detailed spatial information.

5. Discussion

The Tasseled Cap derived indices employed in this work are

valuable tools for the capture and assessment of forest cover condition

and change. The Tasseled Cap Angle reports the proportion of

vegetation to non-vegetation (occupation state) in a defined area

and its derivative, the Process Indicator informs the current process of

change. These indices condense information from the visible and NIR

wavelengths, and facilitate comparison of data from all of the Landsat

Fig. 10. LISA maps of temporal association PI clusters; only significant polygons (pb0.01) are colored.

Table 6

Number of significant PI (pb0.01) clusters for quasi-quinquennial intervals.

Cluster 1976–1981 1981–1990 1990–1995 1995–2000 2000–2006

High–high 612 1559 1448 890 1192

Low–low 501 1239 885 561 370

Total positive 1113 2798 2333 1451 1562

High–low 1273 349 1788 2411 1205

Low–high 1015 306 2023 2393 1280

Total outliers 2288 655 3811 4804 2485

Total 3401 3453 6144 6255 4047
Fig. 11. Evolution of significant clusters per quasi-quinquennial period.

1675C. Gómez et al. / Remote Sensing of Environment 115 (2011) 1665–1679



sensors, enabling the study of forest landscape change with a lengthy

series of historical satellite images dating from 1973 to 2008. Results

of our study indicate that the landscape change was more spatially

clustered prior to 1981, but that change becamemorewidespread and

dispersed in later years. Certain periods had a more intense change, as

indicated by their temporal spatial correlation.

Forest landscapes, particularly managed forest landscapes, are

dynamic ecosystems with a number of different change processes

ongoing at any given time. Although a variety of remote sensing

techniques have the capacity to detect stand replacing events, the

detection of subtle alterations that result in only minor spectral

changes remains a challenge (Goodwin et al., 2010) as different

phenology and illumination of images induce detection of false

change. With disrupting artifacts suppressed, the PI would be able to

account for a wide variety of change types, providing information of

slight or substantial modifications that is leveraged by a temporal

series of three or more normalized images: low positive values of PI

indicate a slow increment in the occupation state due to natural

growth, while low negative values of PI point to natural processes of

decay, such as aging or disease, or human induced modifications such

as partial harvest or thinning (Table 7). More notable and fast changes

in the occupation state, like a disturbance with reduction of vegetation

or a process of vegetation emergence are indicated with high negative

or positive values, respectively. The capacity to relate both positive

and negative changes is a powerful aspect of the PI, enabling insights

relating to both forest (vegetation) gain and loss.

The TCA and PI, as derived from the TCT, are relative to the scene

considered and would require a process of normalization to enable

comparisons between different sites. If field data are not available, a

study of relative change is the best option for the examination of

trends. The availability of ground data for calibrating these indices

could enable them to work as a look up table for other attributes, such

as cover percentage, seral stage, or biomass content, facilitating forest

monitoring efforts (e.g., Powell et al., 2010).

Analyzing a temporal series of images supports the assessment of

trends and rates of change that otherwise might bemissedwith only a

bi-temporal change detection approach (Lunetta et al., 2004). The

adequate interpretation of tendencies is conditioned by the time

interval between consecutive images, and the scarcity of data for any

one period may preclude a complete understanding of the landscape

change. A decadal interval might be sufficient for preparing a

summary of conditions and for planning silvicultural treatments and

wood extractions, but more frequent information is required for

monitoring of forest health and biomass. Jin and Sader (2005)

recommend a period of three to five years for interpretation of

condition and change in a forest area, but the ideal number of images

and acquisition timing is site dependent (Wilson & Sader, 2002) and

often restricted by image availability. We used a quasi-quinquennial

interval for evaluation of change processes (PI) and a decadal interval

for summary of change in the landscape state (TCA) obtaining sound

and useful outcomes.

As long as temporal factors are considered, the interpretation of

TCA and PI may be combined to provide insights on the change

processes that are active in a forest landscape: varying rates of cover

change could have different effects on dense or open forests and could

trigger different phenomena. A simultaneous view of occupation states

defining the landscape pattern and current change processes could

help understanding the relation between pattern and process, a

recursive question difficult to solve in landscape ecology (Turner,

1989; Walsh et al., 2009).

Although there is no confirmed link between these indices and

ecological succession stages, the combined interpretation acts to

facilitate analysis of succession patterns. The contextual temporal

information given by the TCA enables proper interpretation of change

that may be confounded with traditional techniques (Masek et al.,

2008). The TCA provides information of vegetation proportion and the

PI gives an instantaneous picture of the change process; together with

some ecological knowledge, forest seral stages may be identified (i.e.,

young stand growing, young stand with disease, mature stand in

decay, recovery from disturbance, or other situation). It must be noted

that in order to enable accurate understanding of a trajectory of

change, some knowledge of the local ecology is always required.

Fig. 12 depicts possible interpretation of consecutive change processes

for a homogeneous area.

The object oriented approach implemented to help in the analysis

of change at the landscape level provides meaningful reporting units,

that is, objects analogous to forest stands. The spatial scale is a key

parameter for assessment of ecological processes; we opted for a data

driven method in the definition of spatial units, based on homoge-

neity of areas at the initial and final dates of the period (1973 and

2008). Establishing the hierarchy on the variables of interest, the

transmission of significant information between levels is assured:

initial and final state levels are connected through an intermediate

level of processes accounting for the entire trajectory of change.

Different intermediate levels could be defined for specific applica-

tions. For example, a forest healthmonitoring studymay be interested

in the progress of defined segments since the time of infection, and

subtle changes could be detected from that point on. We reported the

state and change of forest landscape with objects of a mean size of

approximately 40 ha, with a common initial state and intermediate

history of change; however, the method allows any sized object to be

used, enabling the selection of the most appropriate size given the

ecological processes operating in the area.

Spatial and temporal autocorrelation is a complex and scale

dependent phenomenon that is expected in natural environments. In

the time period analyzed, some relations and patterns were unveiled

for occupation state and change processes. The spatial correlation of

occupation state was always positive; change processes were also

positively correlated at the global spatial level and with a decreasing

tendency over time. Temporal spatial autocorrelation of change

processes was found in local aggregations, necessitating further

analysis with local measure to understand the local variability.

6. Conclusion

The study of environmental long term historical change is facilitated

with the free access to the United States Geological Survey Landsat data

archive. Extensive areas can now be monitored retrospectively with

techniques that incorporate multi-temporal information in a spatially

explicit manner, and which are capable of seamlessly integrating data

fromavariety of sensors. An indexderived fromthewell knownTCT, the

Tasseled Cap Angle, and its derivative, the Process Indicator, have

demonstrated the potential for characterizing the change in state and

process in a dynamic forest area, enabling detection of subtle changes as

well as more obvious stand-replacing disturbances. Combined, the

interpretation of the TCA and its derivative, the PI, provides a

simultaneous view of the occupation state and the change processes

that are operating in a forest landscape, thereby enabling some

understanding of the elusive relationships between landscape pattern

and process—a recursive question of landscape ecology. A hierarchical

Table 7

Interpretation of TCA and PI values.

Value TCA

Occupation state

PI

Change process

Positive High High proportion Veg–nonVeg Emergence

Low Low proportion Veg–nonVeg Growth

Zero Greenness=0 Stable

Negative Low Non-vegetated Decrease (natural decay

or partial harvest)

High Non-vegetated Disturbance
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segmentation process incorporating spatial and temporal properties

provides flexibility in the establishment of the scale of analysis. Spatial

statistics applied to multipixel objects enable assessment of spatial and

temporal correlation of change events at the landscape level. Applica-

tions that require temporally detailed and spatially explicit information,

such as forest succession studies, forest health monitoring, habitat

models, and biomass or carbon accounting programs, will benefit from

the use of these tools that provide dynamic information of the forest

state and processes. Further work to link TCA and PI values with better

known scales of forest variables is recommended to facilitate

interpretation.
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Appendix A. Lagrange interpolation of the TCA

The Lagrange interpolating polynomial of the TCA profile at each

pixel is given by:

f2 tð Þ = ∑

2

i=0
Li tð Þf tið Þ ðA1Þ

where f2(t) stands for the 2nd order polynomial that approximates

the function TCA= f(t) given at 3 data points as (t0,TCA0), (t1,TCA1),

(t2,TCA2), and the Lagrangian weights are:

Li tð Þ = ∏

n

j=0

j≠i

t−tj
ti−tj

: ðA2Þ

The polynomial formula for the interpolated TCA at each pixel is

therefore:

TCA tð Þ=
t−t1
t0−t1

� �
t−t2
t0−t2

� �
TCA t0ð Þ+

t−t0
t1−t0

� �
t−t2
t1−t2

� �
TCA t1ð Þ

+
t−t0
t2−t0

� �
t−t1
t2−t1

� �
TCA t2ð Þt0≤t≤t2:

ðA3Þ

The PI or derivative of this polynomial can be expressed as:

PI tð Þ =
2t−t1−t2

t0−t1ð Þ t0−t2ð Þ
TCA t0ð Þ +

2t−t0−t2
t1−t0ð Þ t1−t2ð Þ

TCA t1ð Þ

+
2t−t0−t1

t2−t0ð Þ t2−t1ð Þ
TCA t2ð Þ; t0≤t≤t2:

ðA4Þ

Appendix B. Moran's Index

Moran's Index can be expressed as:

I =
N

∑i∑jwij

�
∑i∑jwij xi−μð Þ xj−μ

� �
∑i xi−μð Þ2

ðA5Þ

where xi is the variable of interest x measured at location i, N the

number of observations, μ the mean of the variable, and wij are the

elements of the spatial weights matrix, which express the membership

of observations in the neighborhood set for each location (Anselin,

1992).

A standardized z-value is reported for ease of interpretation.

zi =
Ii−E Ii

� �
ffiffiffiffiffiffiffiffiffiffi
V Iið Þ

p : ðA6Þ

Fig. 12. Relative TCA values of various occupation states of the coniferous forest in the study area and PI values of changing processes.
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Assessment of biomass and carbon dynamics in pine forests of the Spanish Central Range: 
a remote sensing approach 

 

CHAPTER II 

Cristina Gómez, Michael A. Wulder, Joanne C. White, Fernando Montes, José A. Delgado, 
2012. Characterizing 25 years of change in the area, distribution, and carbon stock of 
Mediterranean pines in Central Spain. International Journal of Remote Sensing, 33(17), 
5546-5573 

RESUMEN 

Caracterización de 25 años de cambio en la extensión, distribución, y almacenamiento 
de carbono en pinares mediterráneos del Sistema Central español

 

Los pinares mediterráneos sufren cambios continuos bajo la influencia de factores 
naturales y humanos. La teledetección ofrece los medios necesarios para describir y 
caracterizar simultáneamente los cambios producidos en áreas extensas. En este trabajo se 
utilizó una serie temporal de imágenes Landsat para describir 25 años (1984-2009) de 
evolución en los pinares del Sistema Central español. Para identificar las variaciones en 
extensión y distribución de las masas arbóreas a escala de paisaje se utilizaron técnicas 
basadas en unidades espaciales, mediante segmentación de imágenes. 

En ausencia de perturbaciones importantes, la incorporación de biomasa en masas 
forestales o su disminución en caso de existir extracciones, se relacionan directamente con 
variaciones en el carbono almacenado. De esta manera los cambios espectrales detectados 
mediante imágenes y asociados a variaciones de biomasa, pueden describir también 
procesos de almacenamiento de carbono. Para identificar la localización y las variaciones 
en extensión y distribución de los pinares, se utilizaron las bandas 3, 4, and 5 de Landsat y 
el índice Tasseled Cap Angle (TCA) derivado de las componentes verdor y brillo de la 
transformación Tasseled Cap (TCT). Para la tipificación de los procesos de 
almacenamiento o fuga de carbono, se utilizó el Indicador de procesos (PI), valor en cada 
momento de la derivada temporal de TCA, capaz de informar sobre la direccionalidad y la 
tasa de cambio. Los resultados mostraron un incremento del 40% en superficie de los 
pinares entre 1984 y 2009, de 1211 a 1698 kilómetros cuadrados. El incremento en 
superficie se produjo durante este periodo de forma irregular en el espacio y tiempo. La 
distribución de los pinares también varió, estando 765 km2 ocupados permanentemente y 
945 km2 solo de forma transitoria o intermitente. Continuando con la lógica propuesta de 
los procesos de acumulación de carbono, se encontró que al final del periodo de análisis el 
20% del área potencialmente ocupada por pinar aumentaba de forma neta el carbono 
fijado, mientras que el 40% experimentaba disminución neta.  
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Mediterranean pines are subject to continuous change under the influence of natu-
ral and human factors. Remotely sensed data provide a means to characterize these
changes over large areas. In this study we used a time series of Landsat imagery
to capture 25 years (1984–2009) of change in the pine-dominated forests of the
Central Range in Spain. Object-based image analysis methods were used to identify
landscape-level changes in the area and the distribution of forests. We also propose
that in the absence of disturbance, biomass accrual is occurring (or depletion in
cases where removal is evident) and may be related to changes to the carbon stock;
we describe the detected spectral changes in terms of biomass changes as the carbon
stocking process. The primary inputs for the identification of changes in the area
and distribution of pine stands were Landsat bands 3, 4 and 5 and the Tasseled Cap
Angle (TCA) – a metric derived from the greenness and brightness components of
the Tasseled Cap Transformation (TCT). In the identification of carbon stocking

processes the temporal derivative of the TCA, the Process Indicator (PI), was used
to inform on the rate and directionality of the change present. Our results show
that the total area of pine forest has increased by 40%, from 1211 km2 to 1698 km2,
during this period, with a variable rate of change. The distribution of pine-domi-
nated forest has changed as well: there is an area of 765 km2 permanently covered
with pines and 945 km2 found to be temporarily occupied. Following the logic of
carbon stocking processes, our findings show that at the end of the analysis period,
20% of the potential pine area is increasing its carbon stock and 40% of this area is
experiencing a decrease.

1. Introduction

Forests have been described as the most important land carbon sinks (Le Quéré et al.
2009) and therefore play a relevant role in the global carbon budget (Bravo et al. 2008).
The global carbon balance is markedly altered by the extent of forests, as well as
the biomass content per surface unit (Houghton 2005). The character of forests as
a sink or source of carbon dioxide is determined by the ratio of respiration to net
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primary production (Law et al. 1999), and this relation is strongly influenced by the
stand successional stage (Odum 1969) and health condition (Brown 2002). Net ecosys-
tem carbon balances are complex and multifaceted, resulting in evaluation difficulties
(Schulze et al. 2000). To reduce complexity, a simple rule for above-ground forest com-
ponents is that mature stands are more stable stocks of carbon and growing stands
are net sinks of carbon (Goetz et al. 2006), but the age at which a forest becomes
a net carbon sink varies according to forest type, site productivity and other factors
(Goward et al. 2008). However, while carbon-capturing ability is difficult to determine,
the stocking magnitude of a forest stand is undoubtedly proportional to the biomass
it stores (Masera et al. 2003, Houghton 2007).
A map of the dynamics of distribution, biomass content and succession stages of

forests through time is an invaluable tool for spatially explicit assessment of forest
carbon stocks, sinks and sources (Powell et al. 2010). Together with a timeline of
change events, the effectiveness of management approaches can be evaluated (Hayes
and Cohen 2007, Huang et al. 2009). Medium spatial resolution remotely sensed
data (i.e. 10–100 m pixel) is well suited to characterize forest change (Wulder et al.
2008b) and is the only feasible, cost-effective option for extensive areas (Lunetta et al.
2004). Since 1972, the United States Geological Survey (USGS) has been archiving
Landsat images. In 2008 the USGS opened the archive to unfettered public access
to analysis-ready images (Woodcock et al. 2008), removing access and cost limitations
and creating amyriad opportunities for characterizing both spatial and temporal land-
scape processes (Goodwin et al. 2008, Olsson 2009, Verbesselt et al. 2010, Potapov
et al. 2011).
In this work we aim to characterize the changes in area, distribution and carbon

stocking processes of pines in the Central Range of Spain over a period of 25 years
(1984–2009) with a medium spatial resolution time series of images from the Landsat
programme. We apply a multilevel object oriented methodology for identification and
classification of pine-dominated areas, and analyse trends in carbon stocking processes
at the stand level with an index derived from the Tasseled Cap Transformation (TCT).
The specific objectives of the study are:

1. to assess changes in the extent of a Mediterranean forest, where natural change
is relatively slow and human-induced change has historically been controlled,
with a multilevel object-oriented methodology;

2. to identify with spatial precision the distribution of pines in the Central Range
of Spain and variations occurring in three sub-periods during the last 25 years
(1984–2009); and

3. to characterize carbon stocking areas with an index derived from the TCT,
assessing trends of change over a 25 year period (1984–2009).

2. Background

2.1 Mediterranean pine forests

Mediterranean forests and woodlands cover 73 million ha, approximately 8.5% of
the Mediterranean basin region (EFI 2009), and have a notable richness in species
diversity (Myers et al. 2000). In Mediterranean ecosystems, pine forests generate non-
wood products (Calama and Montero 2007) and serve important ecological functions
including water regulation, erosion control and provision of recreational opportunities
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and wildlife habitat (Merlo and Croitoru 2005). Pine forests have a significant carbon
sink capacity that could help signatory countries of the Kyoto protocol achieve their
targets for the reduction of greenhouse gas emissions (Myneni et al. 2001).

2.2 Monitoring change in Mediterranean forests

In Spain, similar to otherMediterranean countries, a National Forest Inventory (NFI)
provides periodical detailed data for the assessment of biomass and carbon pools
through sampling and reporting supported by statistics (MMA 2008). The NFI’s
10 year re-measurement cycle enables comparison of data over time, but, similar to
other sample-based NFIs, has some known limitations, including the discrete char-
acter of the sampling, which obliges extrapolation of data (Salvador and Pons 1998),
and the use of different basic cartography in subsequent updates of the NFI database
(Villaescusa et al. 2001). Also, a decade can be too long an interval in areas under-
going rapid change that need up-to-date information and more frequent reporting on
change events (FAO 2010). Some researchers have explored the potential of remotely
sensed data in quantifying change in Mediterranean environments (table 1), especially
integrating both forest disturbance and recovery; to the best of our knowledge no one
has developed a method for the characterization of carbon stock change focused on
this unique ecosystem.

2.3 Retrospective analysis of change

Monitoring change over large areas, and particularly historical change, is only feasible
with satellite data (Nielsen et al. 1998, Townsend et al. 2009). Satellite imagery pro-
vides consistent and repeatable measurements at an appropriate spatial scale (Kennedy
et al. 2007) for regional land-cover assessment. The repetitive data acquisition, syn-
optic view and digital format suitable for computer processing have made remotely
sensed imagery the major data source for change detection during the last few decades
(Wulder et al. 2008b). Medium spatial resolution satellite sensors such as those of the
Landsat series (Multi Spectral Scanner (MSS), ThematicMapper (TM) and Enhanced
Thematic Mapper Plus (ETM+)) are well suited to capture forest cover and change
at the stand level in support of research and reporting, relating both natural and
anthropogenic drivers of change (Achard et al. 2007, Olander et al. 2008, White et al.
2011).
Now that almost four decades of Landsat images have been made freely available to

the public (Woodcock et al. 2008), an unprecedented opportunity for change research
has emerged. The study of a time series of images (i.e. more than two images) has two
main advantages over the use of traditional two-date change detection approaches:
the first is the ability to study long-term trends in spectral response (Vogelmann et al.

2009) while controlling the variability associated with solar angle, atmospheric effects
(Wulder et al. 2008a) and phenology (Sonnenschein et al. 2011). The second advantage
is the opportunity to determine rates of change (Gillanders et al. 2008a).
Extensive research is currently directed at assessing historical change in boreal

and temperate forests with increasingly sophisticated image-processing algorithms
(e.g. Huang et al. 2009, Olsson 2009, Kennedy et al. 2010, Powell et al. 2010) that
take advantage of the temporal information leveraged by a dense series of calibrated
images. Determining long-term change in Mediterranean forests using an image
trajectory approach remains to be explored further.
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3. Methods

3.1 Study area

The area of interest covers approximately 1 million ha in the Central Range of Spain,
occupying part of the Ávila, Segovia, Madrid, Guadalajara and Toledo provinces. It is
centred at latitude 40◦ 37′ 56′′ N and longitude –4◦ 6′ 47′′ E. Pines (Pinus sylvestris L.,
Pinus pinaster Ait., Pinus nigra Arn.) are the dominant tree species, except in the most
western area where broadleaf species (Quercus pyrenaica Willd.) dominate. Forests
extend to elevations of 2000 m, beyond which shrubs (Cytisus sp., Genista sp., Erica
sp., Echinospartum sp.) are the prevalent vegetation (Rivas-Martínez 1963).

3.2 Satellite images

With the recent public access to the Landsat archive (Woodcock et al. 2008) it is
now possible to freely download over the Internet (glovis.usgs.gov) a time series of
images for almost any area of the Earth (Wulder et al. 2011). As an additional
source of data, the Spanish Instituto Geográfico Nacional (IGN) has been compil-
ing and pre-processing abundant Landsat imagery since 2008 as part of the Plan
Nacional de Teledetección (PNT) and making it available for research (Villa et al.
2009).
Still, the acquisition of a historical time series of multiple adjacent Landsat images

(relatively cloud-free) is a complicated task (Homer et al. 2004). We focused our
research on a single Landsat scene (WRS-2 Path 201, Row 032) (figure 1) as it encom-
passes the most extensive continuous pine stands of the Central Range. Anniversary
images were selected when possible (table 2), as recommended for monitoring stud-
ies (Wulder and Franklin 2002). In order to capture stable phenological conditions
and to avoid the presence of snow in high altitudes, summer images were selected.
The spectral suitability of early summer images (years 2000, 2001 and 2005) was thor-
oughly checked through the processing stages to detect and avoid possible phenology
artefacts.
Our time series consisted of nine Landsat TM and two ETM+ (Scan Line Corrector

(SLC) on) images. To ensure a more complete time series, we increased our tolerance
to a small amount of cloud cover in the images, but still, a yearly time series of images
was not possible to obtain and the time step is not constant; there is a gap in the
sequence of images in the 1990s corresponding to the private sector distribution era
(Tolomeo et al. 2009). Longer intervals between images may reduce detection accuracy
for subtle changes (Wilson and Sader 2002, Jin and Sader 2005).

3.3 Auxiliary data

The Mapa Forestal Español (MFE50) is the digital version of the Ruiz de la Torre
forest map of Spain for the year 2000. In the construction of this map, the source of
data consisted of aerial photography and field notes. Polygons interpreted on the aerial
photographs were transferred to the 1:50 000 National Topographic Map (MTN) and
this original paper map version was later digitized. This GIS database encompasses
68 attributes to characterize vegetation units. Some relevant attributes for the identifi-
cation of pine forest areas are dominant species and crown cover (that is, the proportion
of area covered by the horizontal projection of the canopy (as a percentage)).
Field data from plot-based inventories such as the NFI and other local manage-

ment plans were used at various stages of the research, being of particular value in
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Mediterranean Sea
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Figure 1. Location of the study area.

Table 2. List of Landsat images used in the study.

Landsat/sensor Source Date Sun elevation (◦)

5/TM EarthExplorer 18 August 1984 52.89
5/TM EarthExplorer 11 August 1987 54.11
4/TM EarthExplorer 11 August 1990 54.38
4/TM EarthExplorer 14 August 1991 51.68
7/ETM+ EarthExplorer 22 August 2000 54.87
7/ETM+ EarthExplorer 6 June 2001 64.24
5/TM EarthExplorer 17 June 2002 62.20
5/TM EarthExplorer 7 August 2003 56.50
5/TM Aurensis 25 August 2004 53.15
5/TM Junta de Castilla y León 24 May 2005 62.80
5/TM EarthExplorer 23 August 2009 54.48

Notes: TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus.
Reference image for radiometric normalization (22 August 2000) is highlighted.

accuracy assessment during the confidence-building stage. Standard forest variables
such as species, number of trees per plot and diameter at breast height are measured
and updated on a decadal basis.
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3.4 Pre-processing

All images were orthocorrected with a 30 m digital elevation model (DEM) derived
from 1:10 000 digital cartography (sitcyl.org) and co-registered to the UTM 30N
(datum WGS84) coordinate system with root mean square errors (RMSEs) of less
than half a pixel. Twenty-five ground control points were manually identified in the
images and used for adjustment.
A robust radiometric correction is essential in change detection applications

(Coppin et al. 2004, Lu et al. 2004) and when image values are related to biophys-
ical phenomena (Gong and Xu 2003). It is particularly challenging if images from
various sensors are included in the analysis (Roder et al. 2005). We applied a relative
radiometric normalization to the sequence of images; the reference image was selected
in the middle of the time series for its good quality and absence of haze (table 1).
Digital Numbers (DNs) were converted to top of atmosphere (TOA) reflectance fol-
lowing instructions and recommended coefficients from Chander et al. (2009), which
give the recommended calibration for each Landsat sensor (including changes occur-
ring over the lifetime of a given sensor). Atmospheric effects on the reference image
were corrected with the cosine-Theta (COST) model (Chávez 1988). All other images
were normalized to the reference image with the Iterative Reweighted Multivariate
Alteration Detection (IR-MAD) process (Canty et al. 2004) – an automatic ordination
algorithm recommended for spectral trajectory analysis (Schroeder et al. 2006). Image
normalization transforms images to a common radiometric scale, minimizing Sun,
sensor and view angles, as well as atmospheric differences among images. The process
of normalization reduces the amount of artefacts due to illumination or atmospheric
variations, enabling a more reliable detection of true change (Song et al. 2001).

3.5 Tasseled Cap Transformation and Tasseled Cap Angle

The Tasseled Cap Transformation (TCT) (Kauth and Thomas 1976, Crist and Cicone
1984, Crist 1985, Huang et al. 2002) has been broadly employed in forestry stud-
ies of structure (Cohen et al. 2001, Hansen et al. 2001), condition (Healey et al.
2006, Wulder et al. 2006), successional state (Peterson and Nilson 1993, Helmer et al.
2000) and change detection (Lea et al. 2004, Jin and Sader 2005) in various forest
environments.
The TM brightness (B) component is by definition (Crist and Cicone 1984) a pos-

itive value, whereas the greenness (G) component depends on the contrast between
visible and near-infrared bands (table 3), with exposed soil having negative values
(Price and Jakubauskas 1998, Gillanders et al. 2008b) and vegetated areas pos-
itive values. G and B components define the vegetation plane (Crist and Cicone
1984) (figure 2). Studying the spectral behaviour of forest stands in the vegetation

plane provides insights into forest cover densities and forest development stages
(table 4).
A range of studies in coniferous forests has confirmed higher values of G and lower

values of B in dense forest cover classes when compared with open stands or clearcuts
(Cohen et al. 1995, Healey et al. 2005). The Tasseled Cap Angle (TCA) index, defined
as the angle formed by G and B in the vegetation plane (equation (1)) and first used by
Powell et al. (2010) for modelling biomass in coniferous and mixed forests of Arizona
andMinnesota (USA), condenses the G/B information to a single value (Gómez et al.
2011): dense forest stands exhibit higher values of TCA than open stands or bare soil
(figure 2).
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Table 3. Coefficients used for calculation of Thematic Mapper TCT indices.

Sensor Component Red Green Blue NIR SWIR1 SWIR2

TM Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863
Greenness −0.2848 −0.2435 −0.5436 0.7243 0.0840 −0.1800

ETM+ Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596
Greenness −0.3344 −0.3544 −0.4556 0.6966 −0.0242 −0.2630

Vegetation plane

Tasseled Cap

Brightness

TCA

TCA

Tasseled Cap

Greenness

Less dense More dense

Figure 2. Vegetation plane formed by TCT greenness and brightness components. The TCA
is the angle formed by these components: TCA = arctan (G/B).

TCA = arctan
(
G

B

)
. (1)

Considering these notions, we explored the relationship of the TCA to forest density
variables at the stand level in the Mediterranean pines of the study area. Data from
plot-based field inventories were krigged to 30 m spatial resolution and regressed with
values of the TCA at the stand level. The entire range of basal area (BA) representative
of the study area was included in the correlation analysis. To support later analyses, we
find that, as expected, the TCA and BA are linearly related, with a high and positive
value of correlation (coefficient of determination, R2

= 0.80).
We calculated the angle between normalized G and B components (equation (1))

for our time series of images. As derived from the TCT, the TCA range of values
is scene dependent (Crist and Cicone 1984). Based on the strong relation between
TCA and density variables in the study area we posit that analysing the TCA values
over a time series of images provides information on relative changes in the den-
sity of forest stands: the TCA is stable if there is no change in density (constant
BA); an increment in BA (e.g. natural regeneration or plantation stand maturity
or increase of crown closure) results in a concomitant increase in the TCA and
conversely, when the BA diminishes (e.g. after a partial harvest or thinning opera-
tion, or after a disturbance such as a fire), the TCA value decreases (figure 3). The
eleven TCA layers were combined in a single image, noted hereafter as the TCA
image.
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Figure 3. Process Indicator (PI) and carbon stocking processes.

3.6 The Process Indicator

Each pixel TCA profile was approximated with a Lagrange second-order polynomial
(which enables interpolation with uneven intervals among occurrences), and its deriva-
tive with respect to time (years) was calculated. The result is a multiband spectral
image with the same number of bands as the original TCA image, which we define
as the Process Indicator (PI) image (Gómez et al. 2011). The PI image illustrates
at each pixel the rate of TCA change over time. As the TCA provides information
about the relative forest density at each date, the PI similarly gives information on
the rate of change in forest density at each time. For example, a high positive value
of PI indicates a relatively fast rise of TCA (e.g. a stand rapidly augments density
by rapid growth or quickly develops towards crown closure); a high negative value
of PI indicates a relatively fast drop of TCA value (and stand density) (e.g. after a
stand-replacing disturbance or a strong thinning). Moderate values of PI refer to slow
and slight changes in TCA value, such as a lowered density after a partial harvest
(negative PI) or increasing density with slow natural growth or development (posi-
tive PI). Relative changes in carbon pools associated with changes in forest density
can be similarly assessed (figure 3). PI values are direct indicators of processes of
change and constitute a practical tool to monitor temporal relative changes; for an
estimation of absolute values of change, a thorough calibration of the index would be
required.
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3.7 Classification of pine-dominated areas and change over time

To identify pine-dominated areas and assess changes in extent and distribution over
the period 1984–2009, we implemented a methodology supported by a supervised clas-
sification based on objects. Four images that divide the period into three epochs of
approximately similar duration (i.e. 1984–1990, 1990–2000 and 2000–2009) were inde-
pendently classified. Input data for classification were normalized bands 3, 4 and 5 of
the Landsat image, and the TCA layer, which incorporates information on vegetation
density. Each of the four images was individually segmented into three hierarchical lev-
els (scale parameter 1, 2 and 5; colour-shape 0.9–0.1; smoothness 0.5) with Definiens
Cognition Network Technology® (Baatz and Schäpe 2000, Definiens 2005). Only one
class (pine) was to be retained but we considered a seven class scheme to reduce the
error in change detection (Fuller et al. 2003). The image dated 2000 was classified first
and its accuracy assessed with reference data from the MFE (Mapa Forestal Español)
and NFI. The nearest neighbour classification algorithm used in classifying the other
three images was trained with the spectral signatures of samples acquired for the refer-
ence classification (i.e. year 2000 image); in so doing, the robustness of the radiometric
normalization assured comparable results. Objects classified as pine in any of the three
hierarchical levels (scale 1, 2 and 5) were merged and the resulting areas at each date
(i.e. 1984, 1990, 2000 and 2009) were compared in a GIS for an assessment of change.

3.8 Assessment of carbon stocks

We defined the maximum potential pine area (MPPA) for the period 1984–2009 as
the overall union of pine areas at any of the four dates considered. The MPPA rep-
resents the maximum extent occupied by pines at any time during this period, and it
encompasses a region persistently occupied by pines (permanent) and other areas that
have only been intermittently covered with pines during the last 25 years (intermittent)
(figure 4).
Segmenting the landscape into homogeneous spatial units facilitates visualization

and analysis of its properties. There is no unique way of partitioning the landscape for
ecological analysis (Burnett and Blaschke 2003) and no single spatial scale is optimal

Pine
All dates

1984

1990

2000

2009

MPPA

Pine

Permanent

Intermittent

Figure 4. Schematic definition of the MPPA, permanent and intermittent areas.
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for characterizing the multiple options into which it can be divided (Hay et al. 2005).
We chose the TCA 2000 image, completely free of clouds, for delineation of reference
units for analysis (also in keeping with the classification reference image used). The
parameters applied for definition of spatial units with homogeneous forest density at
this date (year 2000) were scale 10, colour 0.9 and smoothness 0.5. Internal variation
of the TCA (and forest density) in these segments is lower than the difference with
their neighbours (Definiens 2005). Objects affected by small cloudy patches or cloud
shadows in any of the images were excluded from analysis.
Relative rates of change of the TCA (surrogate of forest stand density) and con-

comitant relative rates of change of carbon stock associated with each segment were
examined with its Process Indicator value at each date. Trends and rates of change of
carbon stocks were analysed and statistically assessed.

4. Results

4.1 Change in area and distribution

The applied method enabled the assessment of the area and distribution of pines
in the Central Range and also the description of changes that occurred over the
25 year period from 1984 to 2009 with spatially explicit detail. For an exhaustive
account of changes in the area occupied by pines in each sub-period (i.e. 1984–1990,
1990–2000 and 2000–2009), the following concepts are used.

• Stable: area classified as pine on the initial and final date of the analysis period.
• Increment: area classified as pine on the final date but was a different land-cover

class on the initial date of the analysis period.
• Reduction: area classified as pine on the initial date and not on the final date of

the analysis period.
• Net change: Increment – Reduction (>0 or <0).
• Changed: Increment + Reduction. Area subject to change.
• Potential area: Stable + Changed. Area occupied by pine on initial and/or final

date of the analysis period.

From the initial date (1984) to the final date (2009) there has been a 40% incre-
ment in the area dominated by pine species, a result confirmed by the NFI updates
(NFI2 and NFI3) (González-Alonso et al. 2006) and mainly attributed to agricul-
tural land abandonment. During the first sub-period (1984–1990), there was abundant
transformation: an extent equivalent to 57% of the original pine area changed, pro-
ducing a net increment similar to 36% of the original extent. In the second sub-period
(1990–2000) the amount of area changed was less notable, equivalent to 33% of the
extent of pine on the initial date (1990) and with a net loss of 17% of the pine-
dominated area. This decade maintained the most extensive stable area of the three
sub-periods. In the course of the last sub-period (2000–2009) the Increment was
3.6 times the Reduction of the pine area, resulting in a net change equivalent to 25% of
the area occupied by pines in 2000. All results are summarized in table 5 and mapped
in figure 5.
Pines cover a discontinuous area in the Central Range, frequently broken up by

topographic features and human activities such as agriculture or urban development.
Three regions or units can be distinguished in the study area: a central region of almost
continuous and permanent pine coverage (B in figure 5); a southern relatively large
region with discontinuous spatial and temporal pine coverage (A in figure 5); and a
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Table 5. Pine area and changes during three sub-periods.

Year
Pine

area (ha) Period

Increment
∗(% of
initial)

Reduction
∗(% of
initial)

Net
change
∗(% of
initial)

Changed
∗(% of
initial)

Potential
∗(% of
initial)

Stable
∗(% of
initial)

1984 121 144
1984–1990 56 496 12 858 43 638 69 354 177 365 108 011

(46.6) (10.6) (36.0) (57.2) (146.4) (89.2)
1990 164 622 1990–2000 12 502 41 306 −28 804 53 808 177 023 123 215

(7.6) (25.1) (−17.5) (32.7) (107.5) (74.8)

2000 135 980 2000–2009 47 149 13 001 34 148 60 150 182 757 122 607

2009 169 825

(34.7) (9.6) (25.1) (44.2) (134.4) (90.2)

Overall total stable 91 349
Overall total potential 197 144

Note: ∗Equivalent to the area on initial date of the sub-period.

smaller region (C in figure 5) with a high proportion of permanent pine coverage. As a
general rule, changes in the distribution of pines have occurred at the boundaries of
permanently covered areas in all three regions (figure 5). Increments in the pine area,
probably motivated by natural colonization or by plantation of agriculture abandoned
lands were common in the three regions during the period 1984–1990, mostly located
in region C during the intermediate period (1990–2000) and particularly frequent in
region A during the period 2000–2009. On the other side, reductions of the pine area
were more frequent in region C during the initial period, distributed across regions
A and B during the intermediate stage and similarly distributed across regions A and
C in the last period (2000–2009). Clear cutting is a forestry technique in disuse in
the Central Range and all wood extractions are now of low intensity; however, a few
stand-replacing disturbances due to fire have been identified.

4.2 Classification accuracy assessment

A thematic accuracy assessment aims to provide information on the validity of the
results and it can only be as good as the reference data used (Foody 2009). We assessed
the accuracy of the pine class in the year 2000, for which field data were available. Our
confidence that other classifications have similar validity is based on the robustness of
the radiometric calibration and normalization applied and the transference of spectral
signatures. The process of accuracy assessment was specifically designed for this appli-
cation; it includes the steps described by Congalton and Plourde (2001) and provides
information of the classification reliability.
After visual inspection and approval of the map, field plot data of the NFI3 (dated

2000) were referenced for specific analysis of the omission error incurred, i.e. pine areas
on the ground that our image classification did not capture. Ninety-two per cent of the
pine-dominated NFI3 plots (730 plots) fell inside pine classified segments; some of the
remaining NFI3 pine-dominated plots had very low coverage fraction (below 20%),
a criterion for exclusion from our pine class. Consequently, seventeen plots (2% in
number) were in error by omission. To assess the magnitude of the commission error

(i.e. areas classified as pine that were not considered as such by the reference data),
a surface approach was implemented. Because assessing the accuracy of objects with
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Period 1984–1990

Period 1990–2000

Period 2000–2009

Pine area
Stable
Increment

Reduction

30150 60 km

Pine area
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Increment

Reduction

30150 60 km

Pine area
Stable
Increment

Reduction

30

N

N

N

150 60 km

B

CA

32%

7%

9%

30%

26%

7%

67%

61%

61% Image: Landsat TM 201/032 (11 August 1990)

Band 3

Image: Landsat TM 201/032 (22 August 2000)

Band 3

Image: Landsat TM 201/032 (23 August 2009)

Band 3

Figure 5. Maps of stable and changed area in the three periods (1984–1990, 1990–2000 and
2000–2009). Green is the area that remains as pine during the period, red shows the reduced
pine area and yellow shows the increased pine area. The study area (top left inset) is divided
in three sections (A, B and C) to facilitate the description of change over the three periods of
interest.
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punctual field measures is especially difficult in a non-homogeneous landscape, we
used theMFE for assessment of the commission error. When a level 5 pine segment was
outside anMFE pine polygon, it was deemed erroneous: this occurred in 181 cases (an
area representing 1.8% of the total classified pine area). The MFE had been derived
using generalization criteria that make it not sufficiently adequate for assessment of
our lower levels of segmentation and classification.

4.3 Trends in landscape carbon stocking

After segmenting the MPPA and vetting cloud and cloud shade-affected segments,
5042 objects remained for analysis, representing the extent and percentages shown in
table 6.
Change in carbon stock was evaluated over the MPPA. The global average PI indi-

cates the average performance of these forests as carbon pools; studying how the
average PI changes over time permits inference of carbon stock trends. A low aver-
age PI during the 25 year period, in the range −15 to 15, reveals the overall carbon
neutral quality of these pine forests: on average the rate of change of carbon stocks
is slow. The highest PI average occurred in 2000 (average PI 12.91) and the lowest PI
average in 2002 (average PI –11.91, figure 6(a)). Prior to 1990 the mean PI is relatively
low and remains steady; from 1991 to 2000 the PI tended to increase, but our scarcity
of data during this time period precludes detailed description. In the last decade there
is a tendency towards lower PI averages, with transitional fluctuations (figure 6(a));
in this time period higher values of the PI standard deviation denote the increasing
complexity of landscape carbon pools.
It is worth emphasizing that the PI is an indicator of processes and not of states;

it does not enable estimation of absolute carbon stocks, but indicates relative rates of

Table 6. Characteristics of the maximum potential pine area (MPPA) segments
after vetting and removing cloud affected objects.

No. of objects Area (ha) Average size (ha) Area percentage (%)

Permanent 1981 76 545 38.6 44.7
Intermittent 3061 94 570 30.9 55.3
Potential 5042 171 116 33.9 100.0
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change in carbon stocks: a positive PI value indicates that the forest is in a process of
augmenting its carbon storage (e.g. density increment by natural growth); a negative
PI value indicates that the forest is in a process of reducing its carbon storage (e.g.
diminution of density in a thinning operation).
Changes over time of the PI average follow a similar trend in areas of permanent

and intermittent pine coverage (figure 6(b)). Maximum and minimum PI values are
coincident in time: year 2000 is the maximum PI – i.e. the maximum average rate of
positive change (fast rise of carbon stocks); year 2002 is the minimum PI – i.e. the
minimum average rate of negative change (fast drop of carbon stocks). However, fluc-
tuations of the PI average are notably more accentuated in the intermittent area. The
PI standard deviations and range of values are lower in permanent than in intermittent

areas (table 7), corroborating the more stable character of the persistent pines.

4.4 Assessment of carbon pooling areas

Assessment of the trends of change in carbon stocks was feasible by exploring density-
homogeneous landscape units. The PI values of homogeneous elements defined in
2000 with the TCA (forest density proxy) are normally distributed, with a mean value
very close to zero on all dates (figure 7) and standard deviation around 40 (table 7).
As expected, the distribution is narrow on initial dates, with a low variance of PI; the
variance increases steadily before 1991 and more notably later. The global stability
of the landscape carbon stocks decreases progressively (figure 7) during the period of
analysis: areas with relatively steady carbon stocks (i.e. not modifying forest density)
at initial dates develop towards higher carbon stocks (e.g. density increment) or lower
(e.g. density drop) carbon stocks.
To facilitate interpretation of these results and to produce more detailed informa-

tion on the spatial distribution of carbon pooling changes over time, we established five
categories of PI values, based on the statistical distribution present (figure 7, table 8).
The carbon stock of objects in the neutral group is not in a process of change; the slow
drop and slow rise groups are in a slow process of changing their carbon stock towards
lower or higher levels, respectively, and the fast rise and fast drop groups are in a rel-
atively rapid process of changing their carbon stock towards higher or lower levels,
respectively. The scene-specific character of the PI values produces results relative to
the area; comparison with results in other areas would require a thorough calibration
of values.
All segments were classified at each date in one of these five categories (table 8); the

number of objects and the area in each of the carbon pooling groups at each date was
assessed. On average there was 64% of the area in a neutral carbon pooling process
over the entire period (figure 8(a), table 9). The maximum area in this process group

Table 7. Statistics of the overall PI values (all dates considered).

Potential Permanent Intermittent

Mean 1.065 1.018 1.096
Standard deviation 40.920 37.596 42.935
Kurtosis 15.912 9.533 17.938
Skewness −0.09700 0.29412 −0.26743
Minimum −794.60 −495.49 −794.60
Maximum 784.77 473.84 784.77
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Figure 7. Distribution of MPPA 2000 objects’ PI values at different dates.

Table 8. Classification of PI values in carbon stocking classes.
Groups are defined based on statistical distribution criteria.

PI
Carbon stocking

process Simplified class

<−60 Fast drop Drop
−60 to −20 Slow drop
−20 to 20 Stable Neutral
20–60 Slow rise Rise
>60 Fast rise

occurred in 1987 (96% of total area) and the minimum in 2005 (40% of total area). The
neutral area followed a consistent lowering trend over time (figure 8(b)). On average,
only 2% of the potential area was in fast rise and a similar 2% of the area was in
fast drop carbon stocking processes during the period (table 9). Slow rise and slow

drop carbon stocking processes represent equivalent areas along this period, with an
overall average of 17% and 15%, respectively (table 9).
Because the fast rise and fast drop categories made up very small proportions, we

considered amore simplified classification in further description: rise, neutral and drop
are the three categories considered (table 8).Neutral is the area maintaining the carbon
stock without significant change, and as mentioned before, it was diminishing over
time to balance an increasing activation of carbon pools (figure 8(b)): larger areas
were progressively entering processes of rising or dropping carbon stock.
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Table 9. Area proportion (%) of carbon stocking groups.

Process 1987 1990 1991 2000 2001 2002 2003 2004 2005 Average

Fast rise 0.06 0.21 0.50 9.11 1.62 0.29 0.50 2.13 4.04 2.05
Slow rise 2.31 8.19 12.96 24.05 23.44 12.84 18.00 15.10 15.87 14.75
Rise 2.37 8.40 13.47 33.16 25.06 13.13 18.50 17.23 19.91 16.80
Neutral 96.37 82.91 72.39 44.36 62.08 57.43 60.03 62.62 40.05 64.25
Slow drop 1.24 8.48 13.64 19.51 12.63 26.65 18.66 18.80 32.58 16.91
Fast drop 0.02 0.22 0.50 2.97 0.23 2.79 2.81 1.35 7.46 2.04
Drop 1.27 8.70 14.14 22.48 12.86 29.44 21.47 20.15 40.04 18.95
Net active
(‘rise’
minus
‘drop’)

1.10 −0.30 −0.67 10.68 12.20 −16.31 −2.97 −2.92 −20.13 −2.15

Before 2000, more than 70% of the MPPA area was neutral and after that it fluc-
tuated between 40% and 64%. The area in a process of rising carbon stock reached
a minimum proportion in 1987 (2%) and a maximum proportion in 2000 (33%). The
area in a process of dropping carbon stock reached a maximum proportion in 2005
(40%) and a minimum in 1987 (2%). The area fractions in different categories of
carbon stocking process at various dates are shown in figure 8(c).

4.5 Intermittent and permanent area carbon pooling

In order to determine whether the area permanently covered with pine and the area
only intermittently covered follow similar carbon pooling trends during the time stud-
ied, these areas were analysed separately. We found that the neutral area – stands in
which carbon stock is not changing appreciably – follow a linear decreasing trend in
both areas, although it was more pronounced in the intermittent area (figure 9(a)).
The permanent area has a more equitable distribution of areas in the process of
rising and dropping carbon stocks, with distributions only out of the 30:70 range
on two occasions (2003 and 2005, figure 9(b)). The intermittent area shows a rela-
tively equitable distribution of areas in the process of rising and dropping carbon
stock, except in the initial years of the last decade, when distributions reached the
80:20 range.
Observing the enlargement of area ongoing processes of rising or dropping carbon

stock, it is clear that a carbon pooling activation has occurred in the last 25 years.
Designated as an active area in figure 10, the changing area shapes a trend comple-
mentary to neutral (figure 9(a)). Rising and dropping areas have been compensated for,
driving the net area chrono-line very close to zero (figure 10). Contributions of the
permanent and intermittent regions are shown.

Discussion

Variations in the area and distribution of pines occurred during the last 25 year period
in the Central Range of Spain were assessed with a multilevel object-based classifi-
cation of normalized images acquired at regular intervals. Further, the time series of
Landsat images and two spectral indices derived from the TCT enabled description
and analysis of changes in carbon stocking pools. The TCA is strongly correlated with
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Figure 9. Evolution of carbon stocking areas. (a) The neutral carbon stocking area shows a
clear tendency to diminish; (b) rise and drop in permanent and intermittent areas. Percentage
proportions of rise and drop are indicated next to the bars.

Figure 10. Carbon stocking net area. (net = abs((rise) – (drop))).
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forest stand density in the study area, and its derivative, the PI, characterizes rates
of changing processes. Results indicate that the pine-dominated area in the Central
Range has increased by 40% from the initial to the final date; there is an area perma-
nently covered with pines and a large extent only temporarily occupied during these
decades. Carbon stocking pools have been activated in the second half of the analysis
period, when larger areas show faster rates of rise and fall of carbon stocking.
Land use in the study area is governed by national and regional administrations,

and land-use changes do not proliferate. Moreover, pines in the Central Range have
been managed in a sustainable manner for several decades (Bravo et al. 2010), with
extractions of light intensity and assurance of regeneration by natural methods or
plantation; clear cutting is not a local forest management practice. We expected small
variations of pine area during the 25 year period of analysis, except in sporadic fire
disturbed areas. The approach applied for land-cover classification is based on objects
with contextual information (Johansen et al. 2010) and includes the TCA among the
input features to aid in sorting stand density. Thanks to the multilevel character of
each date classification, simultaneous detection of larger stands with the required char-
acteristics (species and density) and undersized objects in patchy areas was possible;
this technique is of particular interest in distinguishing smaller changes in distribution
that would otherwise blur into larger objects or be rejected as a speckle effect in a
pixel-based classification.
Class signatures from samples in the reference image (date 2000) were used to

classify other images (date 1984, 1990, 2009) assuring identical classification crite-
ria. For assessment of classification accuracy, the independent reference information
required (Congalton and Green 1999) was only available for one date; we relied on
the exhaustive process of radiometric normalization and assumed similar accuracy
in other classifications (accuracy >90%). One of the difficulties when comparing the
Spanish NFI data for assessment of change is the declared disparity of base cartog-
raphy used in each repetition (Vallejo 2005). With a historical series of good quality
images available, retrospective studies of change become feasible and offer increased
precision. In this work we classified images acquired at time intervals similar to NFI
repetitions (10 years), and our results are in agreement with other studies based on
field data comparison (i.e. indicating a trend of increment in forest area). The spatially
detailed information provided and the capacity to readily incorporate data at inter-
mediate dates for more detailed reports are some key strengths of methods based on
remotely sensed data.
Obtaining reference independent information with sufficient temporal frequency for

validation of change maps is complicated (Lu et al. 2004, Cohen et al. 2010). Visual
validation of changes was possible in the eastern area (Madrid province) where online
historical aerial photography is available (http://gestiona.madrid.org) at varying time
steps. We could readily corroborate the spatial location of change events, but the exact
time of occurrence was more complicated, especially when the time step of our series
of images differed markedly from the reference data; subtle changes could only be
visually compared. The decadal frequency of typical field data is insufficient for the
validation of frequent change maps. Further, more work is needed in developing meth-
ods for the evaluation of historical change accuracy; some strategies incorporating
high spatial resolution images are emerging, like the TimeSync tool from Cohen et al.
(2010), which incorporates images from Google Earth. Although this is an invalu-
able source of data, Google Earth images are only available for a short historic period
and its global coverage is not complete with a sufficiently dense frequency, making
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design-based methods (Thomas et al. 2011) the most feasible option for our situation
in Central Spain.
The TCA index is relatively new, but the relation of greenness to brightness compo-

nents of the TCT for characterizing forest density classes and successional stages has
been used before in various forest environments. In our study area the TCA is strongly
related to forest density; with three or more consecutive images the PI enables the char-
acterization of relative rates of change in forest density and carbon stocks. TCA and
its derivative, the PI, resulting from the TCT, are scene dependent (Crist and Cicone
1984). Possible artefacts induced by annual phenology dissimilarities are minimized
by a rigorous process of normalization. We analysed trends in carbon stocking for the
MPPA (area potentially covered by pine during the whole period) and assessed rates
of change, comparing the area permanently covered with pines and the area intermit-
tently covered. There is a trend towards activation of carbon pools, but the intermittent

area shows a higher variability of processes and the area of permanent pine confers a
more neutral carbon pooling character. We focused our analysis on change processes,
but a combined interpretation of the TCA and its derivative, the PI, can provide a
simultaneous view of forest density and change processes going on, thereby enabling
some understanding of the elusive relationships between landscape patterns and pro-
cesses – a recursive question of landscape ecology. Further work to calibrate the TCA
values with quantitative density estimations is recommended to permit a simultaneous
characterization of patterns and processes.
The PI continuous scale of values provides versatility in change detection capacity

and enables the characterization of rapid (high PI values) and slow (low PI values)
rates of change. With an adequate time interval between images, subtle changes in for-
est density can be detected; this is of particular interest in the Mediterranean area,
where the majority of forests are subject to some drought and are relatively slow
growing compared with other temperate areas (Merlo and Croitoru 2005). In man-
aged forests, partial harvest or thinning operations might be detected (low negative PI
value) and later recovery of density tracked (positive PI value). If the silvicultural goal
is to maintain a constant value of BA, a time series of PI values would remain close to
zero. Assessment of the absolute values of carbon sinks and sources remains an ongo-
ing question (Houghton 2003) but historic trends of relative carbon stock changes can
be assessed, and the effect of management practices monitored with detailed spatial
information. A PI-based approach is especially informative for locations characterized
by subtle, non-stand-replacing disturbances.

Conclusions

The availability of a long time series of Landsat images offers an opportunity for
retrospective historical studies of forest change. Temporally dynamic models relat-
ing spectral properties and forest structural condition facilitates the evaluation of
changing trends. A relatively new index derived from the TCT, the TCA has sup-
ported the assessment of change in the area and distribution of Mediterranean pines
in Central Spain for a 25 year period. Although absolute values of carbon fluxes
were not assessed, characterization of changing trends in relative carbon stock was
assessed with the Process Indicator (PI), the TCA derivative, and further characterized
by sub-periods of time, with subtle change detection also enabled and demonstrated.
The spatial definition of sources and sinks as well as changing trends over time are
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a valuable contribution for the global issue of carbon budgeting reports and for
evaluation of management strategies.
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Forest Structural Parameters in the Mediterranean Pines of Central Spain using 
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RESUMEN 

Modelización de parámetros estructurales en los pinares mediterráneos del Sistema 
Central español mediante imágenes QuickBird-2 y CART

 

El diámetro cuadrático medio, el área basal y el número de pies por hectárea son parámetros 
descriptivos de la estructura forestal, relevantes en el cálculo de volúmenes maderables y en 
la estimación de biomasa, y son por tanto medidas clave en los inventarios forestales. La 
información que proporciona el inventario forestal es indispensable para llevar a cabo una 
gestión sostenible de las masas forestales, así como para el conteo de carbono acumulado y 
para el desarrollo de cualquier estrategia de planificación regional. El tratamiento de 
imágenes obtenidas mediante teledetección se utiliza cada vez más para complementar los 
métodos tradicionales de medida y estimación de la estructura forestal, especialmente sobre 
grandes extensiones, y para evaluar cambios a lo largo del tiempo. Con frecuencia se estima 
de manera empírica las características forestales mediante imágenes de teledetección, a pesar 
de ciertas limitaciones conocidas y que son especialmente notables en zonas complejas como 
los bosques mediterráneos. En este trabajo se investigó la capacidad de las imágenes de alta 
resolución espacial (< 5m) y algunas técnicas relacionadas para modelizar parámetros de 
estructura a escala de rodal (n = 490) en pinares mediterráneos del centro de España. Las 
imágenes utilizadas son multiespectrales y pancromáticas, de resolución espacial 2.4 m y 
0.68 m, recogidas por el satélite comercial QuickBird-2. A partir de estas imágenes se 
extrajo información espectral (del visible e infrarrojo cercano) y espacial (textura de imagen) 
que se utilizó en la modelización. La técnica estadística elegida para desarrollar los modelos 
de los parámetros estructurales es Classification and Regression Tree Analysis (CART). El 
diámetro cuadrático medio se pudo modelizar con precisión (R2 = 0.8; RMSE = 0.13 m) 
dando un error medio del 17% mientras que el error medio en los modelos de área 
basimétrica fue del 22% (RMSE = 5.79 m2 ha-1). En cuanto a la densidad, aplicando 
categorías como suele hacerse en la gestión forestal, los modelos CART clasificaron 
correctamente el 70% de los rodales, con el resto en una categoría adyacente. En la 
estimación de parámetros forestales mediante teledetección, se suele obtener mayor 
precisión en zonas de cobertura media y en el rango inferior que estos parámetros muestran 
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en la zona de estudio. Esta circunstancia quedó aquí corroborada por la estructura de los 
residuos de los modelos. Los resultados demuestran la capacidad de algunas propiedades 
de las imágenes de alta resolución tomadas desde satélite para informar sobre la estructura 
local de los pinares mediterráneos. El Plan Nacional de Teledetección español (PNT) 
comenzó recientemente la recogida de coberturas anuales de alta resolución sobre todo el 
territorio nacional, ofreciendo una oportunidad única para la estimación de la estructura 
forestal. Gracias a la frecuencia de los datos pueden detectarse las pérdidas o 
incorporaciones de árboles y refinar la estimación de los parámetros estructurales. Además, 
las imágenes de alta resolución y los productos derivados pueden utilizarse para producir 
sinergias, sin necesidad de entrar en competencia, con métodos de inventario tradicionales 
para la provisión de datos durante los ciclos de inventario y para detectar posibles 
perturbaciones.  

Palabras clave: estructura forestal; alta resolución espacial; segmentación de imágenes; 
CART; seguimiento forestal 
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Abstract: Forest structural parameters such as quadratic mean diameter, basal area, and 
number of trees per unit area are important for the assessment of wood volume and biomass 
and represent key forest inventory attributes. Forest inventory information is required to 
support sustainable management, carbon accounting, and policy development activities. 
Digital image processing of remotely sensed imagery is increasingly utilized to assist 
traditional, more manual, methods in the estimation of forest structural attributes over 
extensive areas, also enabling evaluation of change over time. Empirical attribute estimation 
with remotely sensed data is frequently employed, yet with known limitations, especially 
over complex environments such as Mediterranean forests. In this study, the capacity of high 
spatial resolution (HSR) imagery and related techniques to model structural parameters at the 
stand level (n = 490) in Mediterranean pines in Central Spain is tested using data from the 
commercial satellite QuickBird-2. Spectral and spatial information derived from 
multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively) 
served to model structural parameters. Classification and Regression Tree Analysis
(CART) was selected for the modeling of attributes. Accurate models were produced of 
quadratic mean diameter (QMD) (R2 = 0.8; RMSE = 0.13 m) with an average error of 17% 
while basal area (BA) models produced an average error of 22% (RMSE = 5.79 m2/ha).
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When the measured number of trees per unit area (N) was categorized, as per frequent 
forest management practices, CART models correctly classified 70% of the stands, with all 
other stands classified in an adjacent class. The accuracy of the attributes estimated here is 
expected to be better when canopy cover is more open and attribute values are at the lower 
end of the range present, as related in the pattern of the residuals found in this study. Our 
findings indicate that attributes derived from HSR imagery captured from space-borne 
platforms have capacity to inform on local structural parameters of Mediterranean pines. 
The nascent program for annual national coverages of HSR imagery over Spain offers 
unique opportunities for forest structural attribute estimation; whereby, depletions can be 
readily captured and successive annual collections of data can support or enable refinement 
of attributes. Further, HSR imagery and associated attribute estimation techniques can be 
used in conjunction, not necessarily in competition to, more traditional forest inventory 
with synergies available through provision of data within an inventory cycle and the 
capture of forest disturbance or depletions.  

Keywords: forest structure; high spatial resolution; image segmentation; CART; 
monitoring

1. Introduction 

Sustainable management of Mediterranean pine forests requires detailed and up-to-date information 
regarding structural parameters [1]. Wood volume and biomass content in forest stands, calculated 
with structural indicators such as mean height and quadratic mean diameter, are basic data for 
administration of resources. Moreover, increasingly important and emerging environmental concerns 
related to habitat protection, carbon accounting, and biodiversity, make reliable knowledge of forest 
resources a requirement for national and international reporting [2]. 

In Spain, as in many other countries, accurate information of structural parameters is usually 
obtained via direct measurements by crews on the ground of systematically sampled field inventories, 
based upon a network of plots located on a regular grid [3] that is also subject to prior stratification. 
Field surveys are often costly and typically not spatially exhaustive. Field surveys are also often 
collected over a given re-measurement period, which can preclude adequate updating of information 
for periodic reports, and are of questionable validity over dynamic or non-merchantable forests. 
Despite these concerns, ground based inventories provide reliable and detailed information for 
development of models such as yield tables per species and given location. It is the difficulties in 
portraying these plot based measures spatially that for many applications limit the utility of this 
information to address more broad forest monitoring and reporting objectives [4], especially in 
heterogeneous forests. 

Satellite imagery has been shown to support forest inventories of extensive areas by providing 
timely observation, increasing the accuracy of area estimates, producing wall-to-wall thematic maps, 
and providing inventory estimates with acceptable bias and precision [5]. The spatially detailed 
information provided by high spatial resolution (HSR) imagery makes it an appropriate data source to 
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aid in accurate estimation of structural parameters, and following suitable methods facilitates the 
characterization of subtle changes in forest structure through time [6]. 

The goal of this research is to explore the potential of HSR imagery to characterize forest structure 
in Mediterranean pines in the Central Range of Spain. Motivated by this purpose we examine the 
capacity of QuickBird-2 imagery to model the quadratic mean diameter, basal area, and number of 
trees per unit area at the stand level (as direct estimators of volume and biomass). Our specific 
objectives are: 

To model the relation between structural parameters (quadratic mean diameter, basal area, and 
number of stems per hectare) measured via field sampling and a set of spectral and spatial 
variables derived from HSR multispectral and panchromatic imagery. 
To test and verify the ability of Classification and Regression Trees (CART) as the statistical 
technique for modeling structural parameters. 
To identify the image derived variables with the greatest informative capacity in the modeling 
of structural parameters, assessing in particular the inclusion of image textural metrics in 
the models. 

2. Background 

Space-borne optical remote sensing is a reliable source of information for assessment of forest 
characteristics over wide areas [7]. The synoptic view and the regular acquisition cycle of image data, 
combined with the burgeoning selection of techniques available for attribute estimation, make 
remotely sensed data an appropriate and valuable source of data for assessment of forest condition and 
detection of change—offering information to augment costly and time consuming field campaigns for 
inventory update and re-measurement [8]. 

2.1. High Spatial Resolution (HSR) Imagery

Spatial resolution is an important consideration when using remote sensing for forest 
characterization [9]. Currently the spatial resolution of systems frequently used for vegetation 
characterization range from coarse (e.g., 1 km of the Advanced Very High Resolution Radiometer) to 
very high (e.g., 0.4 m of the GeoEye-1 sensor). The adequacy of remotely sensed data for a specific 
purpose (e.g., attribute level: tree, stand, landscape, region) is conditioned by its spatial resolution, 
which is also inversely related to the extent covered by the image [10], also known as the 
image footprint. 

Medium spatial resolution data with pixels sized 10–100 m (e.g., Landsat Thematic Mapper (30 m), 
ASTER (15 m)) are appropriate for characterization of forest condition [11] and monitoring of 
conditions and change at the forest stand level [12]. Certainly a key to the applications and monitoring 
success of Landsat is the ability to capture conditions and dynamics that relate human interaction with 
terrestrial ecosystems. However, more detailed spatial data available since the launch of various 
commercial satellites (e.g., IKONOS in 1999, Orbview-3 in 2003) provide the opportunity for more 
precise depiction of forest parameters and are poised to reduce estimation errors of forest attributes to 
an acceptable level for operational applications [13]. HSR imagery facilitates, for instance, the 
detection of individual tree characteristics [14], providing improved estimates of forest structural 
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attributes [7]. Panchromatic imagery, with fine spatial resolution (< 1 m) is particularly well suited for 
analysis of spatial relations through image texture measures [15,16]. Texture measures enable the 
combination of spatial detail of panchromatic imagery with unique spectral information conferred by 
multispectral imagery serving to leverage complementary information [17] that can be employed 
separately or with a pan-sharpening approach [18,19]. Spectral measures may be understood to inform 
on vegetation status, type, and condition with textural measures informing on vegetation structure. 

Still, the dearth of established methods for image processing and the complex interactions between 
sun-sensor-surface geometry and forest structural characteristics [20], particularly in complex 
topographies, persist in making the use of HSR data challenging [6]. HSR imagery acquired using 
space-borne platforms allows for data collection over remote areas, with predictable georadiometic 
qualities, and information content analogous to mid-scale aerial photography—commonly used for 
forest inventory purposes. Lidar (Light detection and ranging) technology has a demonstrated capacity 
to characterize forest structure [21–24] albeit with high costs persisting to limit operational, wide-area 
applications [25]. Although lidar, with a capacity to collect highly detailed information regarding 
forest attributes, shows promise as a means to collect plot-like data for training attribute estimation 
algorithms applied to HSR imagery. 

2.2. HSR Related to Forest Structure 

The research literature is replete with studies relating forest structural parameters estimated from 
HSR satellite data (Table 1). Frequent techniques to obtain information from HSR images include 
crown isolation [26,27], shadow analysis [18,28], texture analysis [13,29,30], and geostatistical
approaches [31–33]. The capacity to characterize forest structural attributes typically decreases as 
crown closure increases [6], with an asymptotic relationship predictably emerging for vertically 
distributed attributes of forest structure [34]. 

Table 1. Studies employing satellite HSR imagery for estimation of forest structural parameters. 

Study Attribute 
Environment Sensor Statistical Analysis 

Best Result 
Location Data (spa. res., m) Parameter 

[29] Age class 

Sooke River watershed IKONOS ANOVA Homogeneity in 
large window 
sizes performs 
better than 
variance 

British Columbia 
(Canada) 

Pan (0.82) Texture measures 

[26] Stem density 
Conifer plantation IKONOS Delineation

83% accuracy 
Ontario (Canada) Pan (0.87) Tree crown delineation 

[35] 
Diameter 
Crown area 
Stem density 

Lake Tanoe Basin IKONOS Linear regression R = 0.67 
R = 0.77 
R = 0.87 

California (USA) Pan-sharpened (1) Crown shadow 

[13] 

Circumference 
Height
Stand density 
Age 
Basal area 

Even aged Norway 
spruce forest 

IKONOS-2 Linear regression 
R2 = 0.82 
R2 = 0.76 
R2 = 0.82 
R2 = 0.81 
R2 = 0.35 

Hautes-Fagnes 
(Belgium) 

Pan (0.87) GLCM textural metrics 
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Table 1. Cont.

[36] Maximum height 

Conifers QuickBird Linear regression 

R2=0.66
Sierra Nevada 
mountains California 
(USA) 

MS (2) Reflectance 

[37] 
Height
Age 
Crown closure 

Mature forest in the 
foothills of the Rocky 
Mountains 

IKONOS Decision tree 
Accuracy 49% 
Accuracy 57% 
Accuracy 85% 

Alberta (Canada) MS (4) and Pan (1) Reflectance and texture 

[28] Biomass 
Boreal spruce forest QuickBird Linear regression 

R2 = 0.87 
Canada Pansharpened (0.6) Shadow fraction 

[31] Mean crown size 
Conifer and hardwood  IKONOS Linear regression 

R2 = 0.73 
RMSE = 0.10 North Carolina (USA) Pan (not reported) 

Variogram 
Image variance ratio 

[38] Biomass 
Mangrove IKONOS Linear regression 

R2 = 0.92 
French Guiana NIR (4) Pan (1) 

Fourier textural 
ordination indices 

[27] 
Stand density 
Stand volume 

Coniferous plantations 
in slopes  

QuickBird Modeling-allometry 
R = 0.82 density 
R = 0.78 volume Shikoku Iskland 

(Japan) 
Pan (0.61) Reflectance 

[39] 
Crown width 
Tree diameter 
Stem frequency 

Tropical forest IKONOS Allometric equations 
Crown within 3% 
of field measures Brazil Pan (1.00) Local extreme filter 

[18] Volume 
Open Juniperus forest QuickBird Linear regression 

R2 = 0.67 
R2 = 0.51 Turkey Pansharpened (0.61) 

Shadow area 
Crown area 

[32] Mean crown size 
Pine and poplar plant.  QuickBird Variogram 

Error: 2.52-42% Beijing and Shanxi, 
(China) 

Pan (0.61-0.67) Reflectance 

[16] Mean crown size 

Hardwoods
IKONOS and 
QuickBird

Linear regression 
R2 = 0.60 
regression
CD~variance ratio 
(RMSE = 0.82) 
R2 = 0.74 across 
site comparison 
R2 = 0.52 across 
sensors 

Ohio and North 
Carolina (USA) 

Pan (1) Pan (0.73) Image variance ratio 

[40] Mean stand height 
Boreal forest  QuickBird Regression tree R2 = 0.53 

RMSE=2.84 m Yukon, Canada Pan (0.68) Reflectance 

2.3. Status in the Use of Remote Sensing for Estimation of Forest Structure in Spain 

The Spanish Plan Nacional de Teledetección (PNT) is committed to acquiring complete national 
coverages of HSR satellite imagery annually [41] and to make data available for research at no cost. 
The acquisition phase started in 2008 [42], capitalizing upon archival data to backdate the database to 
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2005 coverage. Initial coverage consist of SPOT5-HRG XS+P (2.5 m) data, with other sensors being 
considered for future acquisitions [43]. Access to this data represents a unique opportunity to 
incorporate HSR into Spanish forest inventories as an operational and low cost data source to meet a 
range of information needs. The data is to be collected with a primary focus on land-use land-cover 
change assessment [42], but capacity to generate information for forest monitoring and reporting can 
also be generated. 

Encouraged by a readily available source of data there has recently been an increased interest by the 
Spanish research community in relation to remote sensing technologies and the potential application to 
forest environments, in particular the characterization of forest structure. Vázquez de la Cueva [44] 
explored relationships between forest structural attributes at the plot level (e.g., height, basal area, and 
crown canopy closure) and spectral information derived from Landsat Enhanced Thematic Mapper 
Plus (ETM+; 30 m pixel size) imagery combined with topographic data. The study considered three 
types of forest in Central Spain and applied a multivariate canonical ordination method. The author 
found a strong influence of vegetation type on the results, with a low percentage of variance explained 
precluding development of robust empirical models. Pascual et al. [45] used lidar data and a two stage 
object based methodology to characterize the structure of Pinus sylvestris L. stands in forests of 
Central Spain. Five structure types were defined based on height and density parameters. The median 
and standard deviation of height were found to be the most valuable for definition of structure types, 
with the approach developed being proposed for operational application suitable for inclusion in forest 
inventory procedures in support of forest management plans. Merino de Miguel et al. [33] investigated 
the strength of relations between dasometric parameters and textural variables in Pinus pinaster Ait. 
stands in Central Spain. The authors used geostatistical tools (i.e., variograms), calculated with 
orthophotography and IKONOS-2 imagery with original and degraded spatial resolutions. The authors 
found the strongest correlations when the variogram was calculated for spatial resolutions of 1 m and 
2 m. As such, opportunities to further explore the capacity of HSR imagery to estimate a range of 
forest structural parameters remain. 

3. Methods 

Below, and in Figure 1, we summarize the approach implemented and the data utilized in this 
research. Forest structural attributes (QMD, BA, and N) are derived from data measured on the field 
through a process of geostatistical interpolation. Spectral and spatial variables from HSR imagery 
direct the delineation of stand-like areas for summarizing data. Statistical models linking forest 
parameters and imagery data are built with CART and validated with numerical and graphical tools. 

3.1. Study Area and Field Data 

The study focuses on pines in the Central Range of Spain (Figure 2), an area mainly dominated by 
P. sylvestris L., P. pinaster Ait., and P. nigra Arn. species. Two sites representing different forest 
conditions were chosen for availability of field data. Pinar de Valsaín (hereafter Valsaín) is a 7,627 ha 
forest of Pinus sylvestris L. on the North facing slopes of Sierra de Guadarrama (Segovia). It is a 
multifunctional forest (timber production, recreation, and protection) with an established management 
plan since 1889 that has evolved from a rigid to a more flexible scheme over the subsequent decades. 
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Management actions and recreational activities have had an impact on the forest structure [46]. Valle de 
Iruelas (hereafter Iruelas) is a 5,483 ha forest of P. pinaster Ait., P. sylvestris L., and P. nigra Arn. in 
Sierra de Gredos (Ávila). It is also a multifunctional forest (wood, resin, and pasture production, 
recreation, and wildlife habitat). Although the first management plan was approved in 1886, historical 
circumstances prevented its implementation. The production of resin during the twentieth century 
favoured old growth development and a complex history of fires has also conditioned the forest structure. 

Figure 1. Schematic methodology followed in the study. 

Systematic surveys based on ground sample plots are conducted periodically over the study sites 
measuring attributes including density, diameter at breast height (dbh), and height. For this study, data 
is from 2005 for Iruelas and 1999 for Valsaín, with the latter updated to 2004 conditions using a 
locally appropriate growth model following procedures recommended by the Spanish National Forest 
Inventory. The quadratic mean diameter (QMD) and basal area (BA) were calculated at each inventory 
plot (Equations (1–2)) where the total number of trees per unit area (N) was also available; expansion 
factors were used to scale values to a given area [47]. BA and QMD are adequate attributes for volume 
modeling at the stand level. QMD was preferred over the arithmetic mean diameter as it has a stronger 
correlation to stand volume [48]. 

N
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Figure 2. Location of the study sites. Insets show QMD values as kriged from inventory 
plots in the treed areas of Valle de Iruelas and Pinar de Valsaín. Subset areas covered by 
834 plots in Valsaín and 661 plots in Iruelas were investigated in the study. 

Geostatistics provides a means for extrapolation of measured values to unmeasured points and 
areas, and facilitates the derivation of thematic layers for integration with other data [49]. Kriging is a 
spatial interpolation method that yields the best possible estimation of the spatial variable of interest at 
every unmeasured point [50] and the error committed in the estimation is minimized and known at 
each point [51]. In this study we mapped the forest variables of interest (QMD, BA, and N) measured 
in ground plots located over grids sided 150 m in Iruelas and 200 m in Valsaín into raster layers 
through a process of ordinary kriging. The relative standard error (i.e., the standard error of the kriged 
surface relative to the mean attribute value at the polygon level) was on average 15% for the QMD 
kriged layer and 25% for the BA and N layers, similar to the variability found for multiple plots found 
within the same polygon. More accurate averaging is facilitated, as sampling is complete and spatial 
correlation of plot values is accounted for. 

3.2. HSR Imagery

QuickBird-2 is an Earth Observation satellite launched by Digital Globe in 2001, providing data in 
five spectral bands (Table 2). It has the capacity to be oriented and to capture images off nadir enabling 
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a temporal revisit of 2–6 days depending on latitude [52]. The pixel size of QuickBird-2 images is 
2.4 m for the multispectral bands and 0.68 m for the panchromatic band (Table 2). 

Two QuickBird-2 images, supplied in a georeferenced form by the data provider were used in this 
study, each covering one of the study sites (Figure 2, Table 2). Images were orthorectified with a 
Digital Elevation Model (DEM) derived from a contour vector map 1:10,000 (www.sitcyl.jcyl.es) and 
registered to aerial photography with 0.25 m pixels (www.sitcyl.jcyl.es). The multispectral and 
panchromatic bands were orthorectified separately with root mean square errors (RMSE) of 0.69–0.72 m 
(multispectral bands) and 0.66–0.81 m (panchromatic band). Images were resampled with cubic 
convolution to 2.0 m (multispectral bands) and 0.6 m (panchromatic band) for alignment with the 
regionally appropriate coordinate grid (UTM 30N) and to facilitate integration with rasterized attributes. 
Atmospheric correction of the multispectral images was performed with the COST model [53] using 
water bodies as dark objects and the atmosphere-scattered path radiance L p estimated with a relative 
spectral scattering DOS model ( 4) under very clear atmospheric conditions [54]. 

Table 2. Characteristics of the satellite imagery used in the study.

QuickBird-2 Imagery 

Spatial resolution 
Multispectral 2.4 m 
Panchromatic 0.68 m 

Bands

Blue 0.45–0.52 m
Green 0.52–0.60 m
Red 0.63–0.69 m
NIR 0.76–0.90 m
Pan 0.45–0.90 m

Valsaín Iruelas
Date (dd/mm/yyyy) 19/05/2004 05/08/2005 
Sun elevation (°) 58.4 72.0 

3.3. Image Segmentation 

Image segmentation is the partitioning of images into uniform continuous spatial units [55]. 
Through the application of automated algorithms the criteria for homogeneity can be defined by the 
user, based on parameters such as tone or spatial pattern. Image objects or segments composed of 
various pixels provide supplementary features for image analysis, not available in pixel based analysis, 
such as local statistical relations of digital numbers [37], shape, size or context. That is, once segments 
are produced, objects (i.e., trees or groups of trees) or spatially constrained summaries of the digital 
numbers within the segment may be used to provide representative segment-level information [39]. In 
forest environments, the segments can often be considered as analogous to the manually delineated 
stands found in forest inventories [56]. 

Segmentation routines were applied to the QuickBird-2 images using Definiens Cognition Network 
Technology® [57,58]. In the process of image segmentation the size of resulting objects is determined 
by the scale parameter and by the landscape characteristics; for instance a given scale value would 



Remote Sens. 2012, 4                            144

produce larger objects in a homogeneous landscape and smaller objects in irregular areas. The scale 
parameter was 50 in Iruelas and 100 in Valsaín. Other settings guiding the segmentation routine 
include color-shape 0.8-0.2 and smoothness-compactness 0.5-0.5. The homogeneity criteria included 
the visible and NIR bands with similar weight, and an aspect layer derived from the DEM to incorporate 
topographic information as one of the possible structural driving factors [59] was weighted 0.1. 

3.4. Image Texture Metrics 

Image texture, defined by Haralick and Bryant [60] as “the pattern of spatial distributions of  
grey-tone”, describes the relationship between elements of surface cover [61] and is one of the 
most valuable criteria in visual interpretation. The estimation of forest stand parameters is 
sometimes improved with a combination of spectral and spatial information [62] such as texture. 
Consequently a host of texture measures have been utilized to predict structural parameters in various 
environments [13,29,55,63,64] and has shown particular utility in complex structures such as tropical 
forests for above ground biomass estimation [17,65]. 

Table 3. Attributes used for modeling. The mean and standard deviation of each of these 
attributes was de facto used in the decision trees. 

Predictor Variable Description 
Reflectance
   B1 (Blue) Reflectance band 1 
   B2 (Green) Reflectance band 2 
   B3 (Red) Reflectance band 3 
   B4 (NIR) Reflectance band 4 
Textural
   H_S Homogeneity Small window 
   Con_S Contrast Small window 
   E_S Entropy Small window 
   H_M Homogeneity Medium window 
   Con_M Contrast Medium window  
   E_M Entropy Medium window  
   H_L Homogeneity Large window 
   Con_L Contrast Large window
   E_L Entropy Large window
Topographic
   Aspect Orientation 

We applied an approach for texture analysis based on measures derived from the Grey Level 
Coocurrence Matrix (GLCM) [66,67]. The GLCM is a tabulation of how often different combinations 
of pixel grey levels occur in an image [68] at a specific distance and orientation (within a particular 
processing kernel, or analysis window). Texture analysis is a multiscale phenomenon [69] and 
choosing the right window size to capture meaningful local variance without generalizing unrelated 
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features [13] is one of its key challenges [70]. For selection of window sizes to calculate the GLCM 
texture measures we used the semivariogram approach [71,72]. Semivariograms were calculated for 
image subsets over five experimental structural plots in Valsaín [73] and ten structurally different areas 
in Iruelas, identified with a combined approach based on inventory data and visual interpretation to 
cover all distinctive structural conditions. The range in the variogram indicates the distance beyond 
which pixel values are no longer correlated [71] and is an indication of the elements forming the 
texture present within the scene. The range is frequently associated with the most dominant elements 
in the scene, be it single tree crowns in open forests, or the canopy of groups of trees in close 
environments. Once the variograms were calculated, the range values were manually identified at the lag 
distance, where the variograms first flattened, corresponding with window sizes on the QuickBird-2 
panchromatic band of 7 × 7, 9 × 9, and 13 × 13 pixels in Valsaín and 7 × 7, 13 × 13, and 23 × 23 pixels 
in Iruelas. We considered three GLCM texture variables, that is, Homogeneity, Contrast, and Entropy
for each size of window (Small, Medium, and Large) (Table 3) based on their high values of 
correlation with structural parameters observed and pre-analysis investigations (results not shown). 

3.5. Decision Tree 

One option to identify relations between variables in multivariate data sets resulting from object 
analysis is the use of decision tree data analysis [37] also known as Classification and Regression 
Trees (CART). Regression trees identify relationships between a single continuous response 
(dependent variable) and multiple, continuous and/or discrete, explanatory (independent) variables, 
through a binary recursive partitioning process, where the data are split repeatedly into increasingly 
homogeneous groups (nodes), using combinations of variables (rules) that best distinguish the 
variation of the response variable. Tree models do not make assumptions regarding the distribution of 
the input data [74,75]; plus, they are able to capture non linear relationships between variables and are 
robust to errors in the input and results. Tree modeling is a nonparametric method which basic theory 
is reported in Breiman et al. [76]. 

CART approaches have frequently been used in the environmental remote sensing community for 
classification and mapping [77–79] for modeling [80–82] and for forest characterization [83]. In the 
estimation of forest structural parameters with HSR satellite imagery, decision trees have been applied in 
diverse environments: Chubey et al. [37] used CART for analysis of percent species composition, crown 
closure, stand height, and age with IKONOS imagery based on analysis of objects in Alberta, Canada, 
obtaining the best estimations for species composition and crown closure. Goetz et al. [84] used 
IKONOS and shadow analysis to model and derive classified maps of canopy cover, with 97.3% overall 
accuracy, in Maryland, USA. Mora et al. [40] estimated mean height of forest stands in boreal coniferous 
forests in Yukon, Canada, obtaining a prediction accuracy of 53% and an RMSE of 2.84 m on stand 
height. All of the abovementioned approaches suggest local models for estimation of forest structural 
parameters as an alternative tool for alleviation of often costly and time consuming field inventories. 

3.6. Applied Decision Tree 

For development of decision tree models each segment was characterized with the mean and 
standard deviation of the reflectance and texture variables described above (Table 3), and the mean 
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values of the kriged forest structural parameters (QMD, BA, N) and topographic orientation. These 
sets of data were input for the CART analysis in Matlab®. 

Samples were randomly split into calibration (two thirds) and validation (one third) sets. The 
representativeness of the subsamples was tested with a Multi Response Permutation Procedure 
(MRPP) [85,86]. This non-parametric method tests the hypothesis of no difference between two or 
more data sets for a range of parameters (i.e., the metrics used as inputs to the regression tree). To fit 
the model a cross validation process with ten iterations was performed; to avoid over-fitting we 
considered the establishment of a minimum number of cases in terminal nodes and pruning with the 1 
SE rule [76]. 

4. Results

4.1. Stand-Like Areas Produced by Segmentation of the QuickBird-2 Imagery 

Objects smaller than 0.5 ha produced in the process of segmentation were eliminated. Furthermore, 
screening outliers of reflectance and texture variables (i.e., segments which values were three or more 
standard deviations from the mean) enabled identification of objects that did not appear representative 
of known local forest conditions, typically corresponding with shepherding areas with buildings 
present in Valsaín and objects dominated by bare soil in Iruelas. Thirty nine such unusual objects were 
removed as outliers for subsequent analysis. Finally the number of objects preserved for modeling was 
490, with an average area of 5.3 ha. Table 4 lists the statistical descriptors of the structural attributes 
(QMD, BA, N) and topographic parameter (aspect) at the stand-like level. Figure 3 illustrates the 
distribution of the structural parameters. 

Table 4. Statistical descriptors of structural (QMD, BA, N) and topographic (aspect) 
parameters of the stand-like objects obtained with the segmentation process and after 
removal of outliers. To fully capture the ecological meaning of the stand orientation and to 
avoid operational ambiguities we computed aspect values to be expressed as a non-polar 
complex number using the notation of Euler: Aspect = exp( i × ( /2)).

QMD(m) BA(m2/ha) N(n/ha) Aspect ( °)

Mean 0.5715 26.5344 323.2064 168.5636
Standard Error 0.0138 0.5044 6.4277 4.3050
Median 0.3918 26.5148 306.461 155.2855
Standard Deviation 0.3062 11.1671 142.2839 95.2968
Kurtosis 0.7460 0.6941 0.1987 1.2352
Skewness 0.7943 0.2266 0.6035 0.1926
Range 1.2407 53.8552 805.0587 337.2344
Minimum 0.2148 5.8128 39.1273 10.1746
Maximum 1.4555 59.6681 844.186 347.4090
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Figure 3. Distribution of the structural parameters (QMD, BA, N) in the stand-like 
polygons produced with the segmentation of the satellite images. Note that QMD graph 
bins are not all equal. 

4.2. Regression Trees 

Information regarding the calibration and validation subsamples is presented in Table 5. The MRPP 
test, performed including all stand level predictors, confirmed there were no significant differences 
between the calibration and validation datasets (p-value 0.77). 

Table 5. Number of samples used for calibration and validation of the CART models. 

Samples Stand-Like Segments 
Total 490 

Calibration 327 
Validation 163 

Fitting all regression tree models was statistically significant (p-value < 0.001) and with high values 
of correlation (Table 6) between structural parameters and image predictors. To assess the performance 
of the models we applied them to the independent set of validation data, analyzing values of the Root 
Mean Square Error (RMSE) and correlation coefficient (R2) (Table 6) and evaluating discrepancies 
between values measured on the field and values predicted by the regression tree models with the help 
of graphic tools (Figures 4 and 5). 

Applied to the validation sample the models show varying strength of the relation between the 
structural parameters and the image variables used as predictors. The QMD model correlation value is 
the highest, followed by the BA model and with the N model ranking last (Table 6). The RMSE 
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values, a means to measure the precision of the models, are moderate for QMD and BA, and relatively 
higher for N when a prediction of the exact number of trees is expected (Table 6). As practical 
decisions in forest management are often based on classes of attributes rather than exact values of 
structural parameters, we evaluated the performance of the CART model to classify values of N. The 
measured number of trees per unit area (N) was classified into density categories ranging from open 
(N < 150) to closed (N > 500) categories. The CART model classified 70% of the stand-like segments 
in the correct group, with all other segments classified in an adjacent class. The average relative error 
of the models was also evaluated as the percentage of RMSE respect to the average measured 
parameter (Table 6). 

Table 6. Fitting and performance results of the regression tree models for QMD, BA, and N. 

Structural
Parameter

Validation Fitting 
RMSE % Average Error R2 Rho p-value 

QMD 0.13 17 0.80 0.89 1.81 e-59 
BA 5.79 22 0.70 0.85 7.08 e-47 
N 98.86 31 0.46 0.71 1.80 e-26 

Scatter plots in Figure 4 illustrate the relation of observed values of QMD (a), BA (b) and N (c) 
versus the corresponding estimated values of the validation subsample (n = 163). The QMD model 
performs with very good accuracy for the smaller diameters, with points close to the 1:1 line, and more 
randomly spread to both sides for larger diameters. The BA model depicts a similar but less accurate 
pattern, while the N model shows increasing disagreement of observed to modeled values at the more 
dense stands. Noteworthy is a tendency of underestimation for parameters at high values (QMD  1.2, 
BA  50, and N  600), likely as an expression of the well known saturation of optical sensors at 
increasingly high biophysical parameter values [34,87]. This kind of error is important to note with 
reference to volume and biomass estimation, since larger trees contribute more to these estimates [88], 
but it is of minor importance in this particular area where few stands are over the thresholds mentioned 
above (Figure 3; Table 4). 

Figure 4. Plot of the observed structural parameters QMD (a), BA (b), and N (c), versus
estimated values for the validation subsample (n = 163). 

(a) (b)
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Figure 4. Cont.

A closer look at the residuals confirms the relative precision of the QMD model (Figure 5(a)); an 
assessment of relative errors revealed that the relative error committed is below 20% in 76% of the 
validation sample (n = 123). A comparison of 5 cm diametric classes between the estimated and 
observed data indicated an agreement in 53% of the stand-like segments, with 19% falling in the adjacent 
class. Furthermore, the random distribution of residuals in the most frequent classes (0.30–0.40) leads 
to an almost complete compensation of the average error. This optimistic result should be carefully 
considered, as averaged values over areas of different sizes could lead to miscalculations. The 
residuals in the BA model look randomly distributed (Figure 5(b)), but there is a higher number of 
underestimates (57% of the validation sample) and in these cases the absolute value of residuals is 
higher. In the N model 55% of the validation segments are underestimated; a tendency to underestimate 
lower values and overestimate higher densities is observed. 

Figure 5. Plot of the observed QMD, BA, and N versus the residuals of the models. 
(a): QMD, (b): BA, (c): N. 

(c)

(a)
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Figure 5. Cont.

To reduce over-fitting and to make the models practical and operationally viable we established a 
minimum number of cases in terminal nodes (n = 80). Furthermore, examining the terminal nodes 
average values and the improvement of intra-group variance they represent from father nodes (i.e.,
decreased variance) appropriate pruning levels were determined. With these premises the number of 
terminal nodes obtained was between seven (for the QMD and BA models) and eight (for the N model) 
(Figure 6; Table 7). 

The most relevant predicting variables determining decisions in the regression tree models are 
shown in Table 7. Noteworthy is the primacy of stdev B1 (standard deviation of blue reflectance) 
which enters all models in first place. All other reflectance bands (green, red and near-infrared) did 
also determine some branch rules (Figure 6). Among textural variables, contrast and entropy of various 
window sizes were the more relevant; homogeneity was not included in decision rules. A total of five 
or six variables were included in each of the models. 

(c)

(b)



Remote Sens. 2012, 4                            151

Figure 6. Example of a regression tree model of QMD. Hollow boxes represent branch 
rules; elements fulfilling the rule go to the left, the rest go to the right. Values of terminal 
nodes average QMD of elements in the group.

Table 7. Relevant predictors in regression trees of QMD, BA and N and number of terminal nodes. 

Structural Parameter Relevant Predictors  Terminal Nodes 

QMD 

Stdev B1 
Mean B3 
Mean Contrast Larger window 
Mean B4 
Standard deviation B4 

7

BA

Stdev B1 
Mean B3 
Mean B1 
Standard deviation B2 
Mean Entropy Small window 

7

N

Stdev B1 
Mean B1 
Standard deviation B4 
Mean Entropy Medium window 
Mean B2 
Mean B3 

8

5. Discussion 

Structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area 
of Mediterranean pines in Central Spain have been modeled with regression trees and with HSR 
reflectance and texture metrics from QuickBird-2 imagery as model inputs. Results, although limited 
by uncertainties in the reference data and processing techniques, show reasonable accuracy (R2 = 0.8) 
and precision (estimation relative error ~17%) for the QMD model and robust models (R > 0.7) for BA 
and N but with higher estimation relative error (22–31%). 
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Management plans were initiated in Spanish forests more than a hundred years ago [89]. Albeit the 
early start, only 19% of the treed forest area in Spain is currently governed by a management plan 
under formal implementation [90]. Often noted as a primary reason for this unfavorable proportion, is 
the high cost of field inventories, limiting surveys to forests with potential to produce economic 
revenue. However, with the increasing concern over environmental issues, current forest inventories 
are aimed at informing a variety of long-term objectives including biodiversity, carbon accounting, 
habitat protection and sustainable timber production [91]. Remote sensing can contribute to the ability 
to produce timely, cost efficient inventory estimates via image segmentation for stand delineation [45] 
and statistical modeling for assessment of attributes with acceptable precision [5]. HSR satellite 
sensors emerged a few years ago as promising data sources for forest inventory [6,92] providing 
consistent and frequent imagery. Our study demonstrates that in Mediterranean pines of Spain 
QuickBird-2 imagery and CART modeling would be useful and affordable for assisting in the 
assessment of forest areas with a variety of objectives (e.g., recreation, carbon storage), though caution 
is required to deal with inherent modeling uncertainties. Although remote sensing is not expected to 
replace completely field measurement any time in the near future [5] it would facilitate planning and 
management with realistic goals. 

Among the strengths of HSR imagery is the high geometric fidelity [93] and the possibility of 
identification of individual elements such as trees or groups of trees. The unique capabilities of the 
QuickBird-2 instrument are exploited here by including texture metrics in the modeling, as image 
texture is influenced by biophysical parameters like crown diameter, distance between trees, tree 
positioning, LAI, and tree height. The historic limited use of texture parameters is often indicated as 
related to a paucity of appropriate software tools [94] and is being progressively overcome. 
Alternately, for monitoring programs with various dates of imagery and more than one scene, off-nadir 
view angles and differing solar and atmospheric conditions should be considered [20] as they may pose 
analysis difficulties. 

Heterogeneous environments typically require a dense network of sample plots for an adequate 
assessment of varying conditions [95]; likewise, the capacity of a grid of inventory plots to capture the 
diversity of Mediterranean forests could be argued. With the complete coverage offered by remotely 
sensed data, selective sampling may become unnecessary, for instance if imputation techniques are 
applied. Furthermore, in applications where sampling is needed, segmentation of HSR images helps 
the design of sampling units by automatically and consistently defining homogeneous areas [96], 
otherwise delineated with human expert and costly effort. If adequately trained, segmentation algorithms 
have the ability to semi-automatically divide images into structurally homogeneous areas only 
requiring human revision [25], that can be used as strata to optimize the field sampling design [97] and 
also allowing the reduction of sample collection needs. 

Tree models are easily interpreted and applied, with few statistical requirements imposed that make 
it an appropriate method of estimation in forest environments. Employing data from managed stands’ 
field inventories in the support of modeling efforts has an intrinsic limitation related to the dearth of 
measurements of small trees; this circumstance is possibly related to a bias of the data considered as 
truth, and could partly excuse the underestimating trend of our models. All sources of uncertainty 
should be thoroughly considered for aiding the interpretation of modeling results. Our calibration 
dataset consisting of 327 stands is relatively large (66% of the sample) as the accuracy of decision tree 
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models tends to increase with increasing calibration sample size [70]. Mora et al. [40] in Yukon 
(Canada) demonstrated that a smaller calibration dataset (30% of the sample) could perform 
adequately if there were difficulties to obtain reference information, making this method an even more 
appealing tool for inventory. With a simple structure, that is, low number of rules and final nodes, 
CART constitute a practical and parsimonious tool for classification of stands for management or 
planning. The acquisition of periodic HSR coverage of the whole territory by the PNT poses an 
unprecedented opportunity to use remote sensing for assessment of the structure of Spanish forests that 
managers should strongly consider. 

6. Conclusions 

High spatial resolution (HSR) satellite imagery, such as QuickBird-2, has information content 
enabling the modeling of structural parameters for the pine forests of Central Spain. In this research the 
quadratic mean diameter (QMD), basal area (BA), and number of trees per hectare (N) of pines in the 
Central Range of Spain were modeled at the stand level with classification and regression trees 
(CART). Models were produced with average estimation errors suitable for planning purposes: 
predictions of QMD had an average error of 17% and BA an average error of 22%, while N was 
correctly classified in 70% of the cases. Although some refinement of the techniques applied here is 
possible to support operational activities, this study has demonstrated that following the selection of 
appropriate statistical tools combined with the periodic acquisition of HSR imagery by the Spanish 
Plan Nacional de Teledetección (PNT) could be of great value to the forest community as a low cost 
option to support planning activities. Additional stakeholders could also be accommodated and 
supplied with wide-area estimates of forest structural attributes following the methods suggested in this 
research. The capacity to revise the estimates with new plot data in subsequent years and to incorporate 
depletions using change detection procedures also points to additional utility and value that can be 
created from the national PNT image collections. 
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CHAPTER IV 

Cristina Gómez, Michael A. Wulder, Fernando Montes, José A. Delgado, 2011. Forest 
structural diversity characterization in Mediterranean pines of Central Spain with 
QuickBird-2 imagery and canonical correlation analysis. Canadian Journal of Remote 
Sensing, 37(6), 628-642. 

RESUMEN 

Diversidad estructural en pinares mediterráneos del Sistema Central español 
mediante imágenes QuickBird-2 y análisis de correlación canónica

 

El conocimiento de la variabilidad estructural proporciona información sobre la 
biodiversidad en los bosques, ya que estructuras forestales irregulares se asocian a una 
mayor complejidad de la vegetación. La caracterización de la diversidad estructural 
mediante teledetección contribuye al seguimiento de los ecosistemas, al desarrollo de 
estrategias de gestión y a la producción de informes. En este trabajo se investigó las 
relaciones entre la diversidad de estructura en pinares mediterráneos del Sistema Central 
español y las variables derivadas de imágenes de alta resolución espacial obtenidas con el 
satélite comercial QuickBird-2 (pixel de tamaño 2.4 m multiespectral y 0.68 m 
pancromática).  

Se caracterizó la diversidad estructural a escala de parcela (N = 1022) como combinación 
lineal de varias medidas de dispersión (MAD: desviación absoluta de la mediana) en 
relación a las medias equivalentes locales, considerando los diámetros de troncos 
individuales, alturas y diámetros de copa. Paralelamente se evaluaron las variaciones 
espectrales en las bandas del visible e infrarrojo cercano, así como varias medidas de 
textura extraídas de las imágenes pancromáticas y evaluadas con varios tamaños de 
ventana. Estas medidas espectrales y de textura se calcularon sobre áreas circulares de 0.3 
ha en correspondencia con las parcelas medidas sobre terreno. El análisis de correlación 
canónica ayudó en la identificación de las combinaciones de reflectancia y medidas de 
textura que mayor relación tienen con la diversidad estructural forestal (R~0.89). Se 
encontró que la diversidad de reflectancia tiene mayor capacidad que las medidas de 
textura para describir la diversidad estructural forestal cuando las masas son homogéneas 
(R~0.47 versus R~0.39), mientras que la textura cobra relevancia en el modelo cuando la 
estructura forestal es compleja (R~0.88 versus R~0.63). A pesar de que los resultados están 
definidos empíricamente por las condiciones locales y las características de adquisición de 
las imágenes, demuestran la capacidad de las imágenes de alta resolución espacial para la 
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descripción de la diversidad estructural en bosques del entorno Mediterráneo, un resultado 
de especial relevancia en España, donde el Plan Nacional de Teledetección ha comenzado 
la colección de una cobertura anual de imágenes de alta resolución espacial sobre todo el 
territorio nacional. 

Palabras clave: diversidad estructural forestal, pinares mediterráneos, QuickBird-2, 

textura, reflectancia, análisis de correlación canónica, seguimiento, informes 
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Forest structural diversity characterization in

Mediterranean pines of central Spain with

QuickBird-2 imagery and canonical correlation

analysis

Cristina Gómez, Michael A. Wulder, Fernando Montes, and José A. Delgado

Abstract. Variation in forest structure provides information on vegetation complexity and provides insights on

biodiversity. Characterizing forest structural diversity with remotely sensed data supports reporting, monitoring, and

policy development. We explored the relationship between forest structural diversity in Mediterranean pines of the

Spanish Central Range and variables derived from imagery captured with a commercial high spatial resolution satellite

(QuickBird-2; with pixels sided 2.4 m multispectral and 0.68 m panchromatic). To combine multiple aspects of tree

conditions at a stand level, ‘‘structural diversity’’ was characterized at the plot level (N � 1022) as a linear combination

of the median of absolute differences of individual trees’ bole diameter, height, and crown diameter measured on the

field from the local median equivalents. Spectral reflectance variations in the visible and near-infrared, as well as image

co-occurrence texture metrics from the panchromatic imagery at various window sizes were generated. All relationships

to image-derived values were assessed against circular 0.3 ha areas corresponding with the field measured plots.

Canonical correlation analysis aided in identification of combinations of reflectance and texture metrics most highly

related with forest structural diversity (R � 0.89). Reflectance diversity was found to be more important than

co-occurrence texture features in describing forest structural diversity when forest structure was limited (R � 0.47 vs.

R � 0.39), whereas texture was more informative to the model when the forest structural diversity was high

(R � 0.88 vs. R � 0.63), relating more complex forest conditions. Our results, although empirically defined by the local

conditions and image acquisition characteristics, demonstrated the potential in high spatial resolution imagery for

description of forest structural diversity in forests of the Mediterranean environment, especially important for Spain

where a national high spatial resolution image data base has been collected.

Résumé. La variation de la structure forestière fournit de l’information sur la complexité de la végétation et apporte un

éclairage quant à la biodiversité. La caractérisation de la diversité de la structure forestière à l’aide des données de

télédétection est un outil utile pour la communication des données, le suivi et le développement de politiques. On a exploré

la relation entre, d’une part, la diversité de la structure forestière dans les pins méditerranéens dans la cordillère centrale

de l’Espagne et, d’autre part, les variables dérivées des images acquises par un satellite commercial à haute résolution

spatiale (QuickBird-2 avec un espacement de pixels de 2,4 m en mode multispectral et de 0,68 m en mode

panchromatique). Pour combiner les multiples aspects des conditions des arbres au niveau du peuplement, la ‘‘diversité

structurale’’ a été caractérisée au niveau de la parcelle (N � 1022) comme étant une combinaison linéaire de la médiane

des différences absolues du diamètre des troncs, de la hauteur et du diamètre de la couronne des arbres individuels mesurés

sur le terrain à partir des équivalents de la médiane locale. On a ainsi généré des variations de la réflectance spectrale dans

le visible et le proche infrarouge de même que des mesures de cooccurrence de la texture à partir des images

panchromatiques pour diverses dimensions de fenêtre. Toutes les relations par rapport aux valeurs dérivées des images ont

été évaluées en fonction de parcelles circulaires de 0,3 ha de superficie correspondant aux parcelles mesurées sur le terrain.

Une analyse de corrélation canonique a permis d’identifier les combinaisons de mesures de réflectance et de texture les

plus reliées à la diversité de la structure forestière (R � 0,89). On a pu observer que la diversité de la réflectance était plus

importante que les caractéristiques de cooccurrence de la texture pour décrire la diversité structurale de la forêt lorsque la

structure de la forêt était limitée (R � 0,47 vs. R � 0,39), alors que la texture procurait plus d’information pour le modèle

lorsque la diversité structurale de la forêt était élevée (R � 0,88 vs. R � 0,63), montrant des conditions forestières plus

complexes. Nos résultats, bien qu’empiriquement définis par les conditions locales et les caractéristiques d’acquisition
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d’image, démontrent le potentiel des images à haute résolution spatiale pour la description de la diversité structurale de la

forêt dans les forêts en milieu méditerranéen, ce qui est particulièrement important dans le cas de l’Espagne où une base de

données nationale d’images à haute résolution a été élaborée.

[Traduit par la Rédaction]

Introduction

Forest structural diversity is important for sustainable

management (Rı́o et al., 2003) and for conservation of

biodiversity (Gil-Tena et al., 2010). Structurally complex

forests are found to better contribute to recreational uses

compared with plantations (Rydberg and Falck, 2000), and

they provide a wider range of habitat conditions as well

(Sullivan et al., 2001). The complexity in the arrangement

of forest elements is also associated with the resilience to

change, that is, the ability to adapt and respond to

disturbances and perturbations (Rozdilsky and Stone,

2001; Elmqvist et al., 2003; Garcı́a-López and Allué, 2011).

The structure of forest stands can be characterized by

the size, age, and species distribution in vegetation

layers, frequently focusing on the tree component (Poage

and Tappeiner, 2005). Measures of forest structure often

include vertically distributed features (e.g., dominant height,

number, and distribution of strata) and horizontal features

(e.g., crown size, gaps) (Spies and Franklin, 1991; Wulder

et al., 2004), as well as species richness (Maltamo et al.,

2005). The number and variation of relative abundance of

different attributes across forest stands defines the forest

complexity (McElhinny et al., 2005). When species richness

is low, tree size variables such as height, diameter, and crown

dimension may become the most important factors affecting

structural diversity (Neumann and Starlinger, 2001) and a

key aspect to assess stand biodiversity (Pommerineng, 2006).

A variety of indices have been developed to quantify tree

size diversity (e.g., Shannon index, Gini coefficient, Simpson

index) (McElhinny et al., 2005), requiring measurement of

certain parameters on the ground for evaluation (Lexerod

and Eid, 2006). Measures describing tree size diversity

within stands are important to assess economical, ecological

and social values of the forest (Lexerod and Eid, 2006).

For an accurate description of stand structure a combina-

tion of various measures or resultant indices is often

required (Rouvinen and Kuuluvainen, 2005). Furthermore,

mapping and monitoring tree size diversity over large areas,

and with a given temporal repetition for local and interna-

tional reporting purposes, requires affordable methods from

both economic and application perspectives. The synoptic

view, extensive coverage, and the consistency and frequency

of data acquisition, make remote sensing uniquely well

suited as a source of information for the periodic assessment

of forest structural diversity. Remote sensing provides data

collected in a consistent and systematic fashion representing

large areas at a known period in time (Wulder et al., 2004).

The remotely sensed data can be integrated with ground

data to extend and inform about local measures to represent

wide areas in a consistent, practical, and repeatable manner.

The goal of this research is to assess the potential of high

spatial resolution imagery to characterize forest structural

diversity in Mediterranean pines of the Spanish Central

Range with the following objectives: (i) to determine and

quantify the relationships between ‘‘forest structural

diversity’’ measured at the plot level and data captured by

a satellite-borne sensor in the form of visible and

near-infrared (NIR) spectral reflectance as well as spatial

combinations of panchromatic reflectance values, as related

by texture metrics; (ii) to identify the relative relevance of

reflectance measures versus texture metrics in characterizing

the forest structural diversity; and (iii) to assess how the

spectral diversity � structural diversity relationship varies

under different conditions of forest density, i.e., determine

if different relations occur in open versus closed forest

conditions.

Background

Remote sensing has been widely used to characterize

forest structure (St-Onge and Cavayas, 1995; Cho et al.,

2009; Wolter et al., 2009) and forest structural complexity

(Coops and Catling, 1997; Ozdemir et al., 2008; Pasher and

King, 2010) with data acquired from a variety of sensor

types representing a range of scales of information. Cohen

et al. (1995) applied the Tasseled Cap Transformation

components from medium spatial resolution Landsat

imagery (30 m pixel size) to map four structurally different

coniferous classes in Oregon, with an overall accuracy of

82%. White et al. (2010) characterized forest canopy

structural diversity in coastal temperate forests of Canada

with hyperspectral data from Hyperion EO-1 and canonical

correlation analysis. They found that age and height

diversity are the structural attributes most strongly related

to spectral diversity and concluded that in addition to

species, structural diversity should be considered for assess-

ment of biodiversity in coastal environments. Miura and

Jones (2010) demonstrated that LiDAR (Light Detection

and Ranging) is particularly valuable for description of

vertical structure. They developed a protocol for character-

ization of the structure of a dry Eucalypt forest landscape

using different laser pulse return properties from awaveform

LiDAR system. The classification scheme consisted of eight

structural categories and allowed the quantification of

gaps in different layers. Hyde et al. (2006) tested the synergy

of various types of sensors for estimation of structural

parameters at the stand and at the landscape level in a

range of forests environments in California. They concluded

that LiDAR with Landsat Enhanced Thematic Mapper

Plus (ETM� ) was the best combination of sensors produ-

cing the most accurate regression models between forest

structural parameters and remotely sensed metrics. The
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synoptic view and the range of techniques available for

analysis of data make remote sensing valuable for assisting

the assessment of forest structure conditions (Cohen and

Goward, 2004).

The availability of high spatial resolution imagery has

enabled the development and application of image analysis

techniques such as ‘‘crown isolation’’ (Gougeon and Leckie,

2006; Hirata, 2008), ‘‘shadow analysis’’ (Greenberg et al.,

2005; Leboeuf et al., 2007), ‘‘texture analysis’’ (Franklin

et al., 2001; Kayitakire et al., 2006) or ‘‘geostatistical’’

approaches (Song, 2007; Feng et al., 2010) that individually,

or combined, facilitate the study of forest structure and

structure complexity at local spatial scales. Panchromatic

imagery, with finer spatial resolution (B1 m pixel size) than

multispectral (MS) imagery is well suited for accurate

identification of individual tree characteristics (Colombo

et al., 2003), enabling the analysis of spatial relations

through image texture measures (Ouma et al., 2006; Song

et al., 2010). Combining the spatial detail of panchromatic

imagery and the unique spectral information conferred

by MS imagery leverages complementary information

(Lu et al., 2002) that can be employed separately or with a

pan-sharpening approach (Ozdemir 2008; Pu et al., 2011).

It has been frequently noted that as crown closure increases

the capacity to characterize forest structural attributes

decreases (Falkowski et al., 2009), with leaf area index

(LAI) as an example where an asymptote in LAI is typically

reached (e.g., LAI approx. 3�3.5, crown closure 60%). Based

upon this understanding of the limitation of optical imagery

and related analysis techniques, we posit that forest open-

ness (e.g., open, semi-open, or closed) may indicate which

technique is most appropriate for a particular site and that

some techniques might be transferable between sensors and

sites (Song et al., 2010).

In Mediterranean environments the study of forest

structure and complexity has received heightened attention

during recent years. Pascual et al. (2008) used LiDAR data

and a two-stage object-based methodology to characterize

the structure of Pinus sylvestris L. stands in forests of central

Spain. Five structure types were defined based on height and

density parameters. The median and standard deviation

of height were the most valuable variables for definition of

structure types. The approach applied was proposed for

operational application in the inventory procedure and

forest management plans. Vázquez de la Cueva (2008)

explored the existence of relations between forest structural

attributes at the plot level (e.g., height, density, basal area,

and crown canopy closure) and spectral information derived

from Landsat ETM� (30 m pixel size) imagery combined

with topographic data. The study considered three types of

forest in central Spain and applied a multivariate canonical

ordination method (redundancy analysis). There was a

strong influence of vegetation type on the results but the

low percentage of variance explained by the statistical

analysis precluded derivation of practical empirical models.

Merino de Miguel et al. (2010) explored the existence of

relations between dasometric parameters and textural vari-

ables in Pinus pinaster Ait. stands in central Spain. The

research applied geostatistical tools such as the variogram,

calculated with orthophotography and IKONOS-2 imagery

of original and degraded spatial resolution and found the

strongest correlations when the variogram was calculated for

spatial resolutions of 1 m and 2 m.

Lamonaca et al. (2008) explored forest structural complex-

ity of a beech forest in Italy with a multilevel classification of

QuickBird imagery. Applying field-based diversity indices of

tree size, spacing, and species assemblage, they quantified

structural heterogeneity amongst forest regions delineated by

segmentation and evaluated the relationships between spatial

heterogeneity in forest structure and segmented polygons.

Their results supported the premise that a mixture of macro

andmicro structural heterogeneity is present within the beech

forests investigated. Ozdemir et al. (2008) examined the

potential of ASTER imagery (15 m pixel size) to estimate tree

size diversity over forested landscapes in Turkey. With an

object-oriented approach they related texture measures with

diversity indices, finding the Gini coefficient more related

with image parameters than the Shannon index. To the best

of our knowledge there has not been any exploration of the

capacity of high spatial resolution (B5 m pixel size) imagery

to characterize forest structural diversity in Mediterranean

forests at the plot level.

Methods

Forest parameters measured in the field, analogous to

those made in support of forest management inventories,

were used to derive the structural diversity attributes. The

spectral and spatial measures were generated from Quick-

Bird-2 multispectral and panchromatic imagery. The rela-

tionship between the measures of forest structural diversity

at the plot level and reflectance-texture diversity were then

explored using Canonical Correlation Analysis (CCA) and

the outputs were interpreted based on the correlations

between the diversity measures and the canonical variates

(Figure 1).

Study area

The study focused on two pine forests in the Central

Range of Spain (Figure 2): Pinar de Valsaı́n (hereafter

Valsaı́n) and Valle de Iruelas (hereafter Iruelas), with

distinctive structural parameters derived from natural

circumstances (e.g., species composition, site condition,

disturbances) and human induced factors (e.g., silvicultural

treatments and production use) (Table 1).

Valsaı́n is a 7627 ha forest of Pinus sylvestris L. on the

north facing slopes of Sierra de Guadarrama (Segovia). It is

a multifunctional forest, dedicated to timber production,

recreational opportunities, and protection, with an estab-

lished management plan since 1889. The silvicultural system
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applied evolved from an initial uniform shelterwood system

in permanent blocks (rotation of 120 years and regeneration

period of 20 years) to a selective cuttings system until

1988, when a flexible management system was established

to allow for revisions to the established plan with reference

to the overall production objectives. Management actions

and recreational activities such as trail walking, which have

gained importance in recent decades and occur mainly at

lower elevations, have had an impact on the forest structure

(Montes et al., 2004).

Iruelas is a 5483 ha forest of P. pinaster Ait., P. sylvestris

L., and P. nigra Arn. in Sierra de Gredos (Ávila). It is also a

multifunctional forest producing wood, resin, and pastures

and providing recreation opportunities such as trail walking,

camping, and bird watching. Although the first management

plan was approved in 1886, historical circumstances pre-

vented an implementation directly following specification.

The production of resin during the twentieth century

favoured old growth development; a rich history of fires

has also conditioned the forest structure.

Forest structure diversity parameters

Forest structure is difficult to characterize using a single

variable (Lefsky et al., 2005) and requires information

relating both vertical and horizontal distribution of vegeta-

tion elements. Horizontal structure largely concerns the

spatial distribution and density of trees (St-Onge and

Cavayas, 1995) and is frequently described through the

diameter at breast height (DBH) or some derived statistics;

vertical structure refers to tree height distribution requiring

some height related parameter for description (Tappeiner II

et al., 2007).

Plot-based forest inventories are periodically conducted

for management in both study sites. Following local

management inventory practices circular plots of 11 m

radius, on average, are established over a regular grid with

GPS providing precise location, with attributes such as

DBH, height, crown diameter, and number of trees being

measured for all or a representative sample of trees in each

plot. The distribution of structural parameters of individual

trees follows an inverse J-shaped curve in Valsaı́n and

Iruelas at a global level, as typically occurs in sustainably

managed Mediterranean forests.

We derived ‘‘structure diversity attributes’’ from field

measured mensurational data (Table 1); the Median Abso-

lute Deviation (MAD) (Equation (1)) of the DBH (DMAD),

height (HMAD) and crown diameter (CMAD) was calculated

at the plot level for a total of 1022 plots (461 in Valsaı́n and

561 in Iruelas). MAD variables were normalized with a

Box�Cox algorithm (Box and Cox, 1982). The ‘‘MAD

metrics’’ are always positive and their values are directly

related with structural diversity, i.e., plots with higher values

of DMAD, HMAD, and CMAD are structurally more diverse

Figure 1. Schematic methodology followed in the study. The relationship between forest

structural diversity evaluated with data collected on the ground at the plot level and remotely

sensed data measures of diversity is evaluated with CCA.
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Table 1. Descriptive parameters of forest structural attributes measured on the ground.

Valsaı́n Iruelas Combined

DBH H C N DBH H C N DBH H C N

Mean 23.30 15.20 4.46 445.78 30.5 13.81 4.61 451.32 30.58 15.97 4.63 448.92

Standard error 0.09 0.03 0.01 13.42 0.11 0.32 0.01 16.07 0.11 0.23 0.01 10.79

Median 25 13.7 4.26 398.67 26.2 13.3 4.17 324.67 26.25 14.7 4.18 365.44

Standard deviation 14.56 6.09 1.75 289.25 15.13 5.57 1.69 395.27 15.24 6.68 1.70 353.04

Sample variance 212.01 37.15 3.09 83667 229.19 31.13 2.87 156243 232.51 44.64 2.90 124641

Range 122 44.2 13.30 1893 204.6 30.5 18.98 2532 209.6 44.5 19.30 2532

Minimum 10 5.8 0.92 33.22 15.0 4.5 2.71 32.46 10 4.5 0.92 32.46

Maximum 132 50 14.23 1926 219.6 35 21.69 2564 219.6 50 21.69 2564.0

Note: DBH, diameter at breast height (1.30 m); H, height; C, crown diameter; N, number of trees per ha.

Figure 2. Location of study sites in the Central Range of Spain. Valle de Iruelas is located in Ávila province; Pinar de Valsaı́n in Segovia

province.

Vol. 37, No. 6, December/décembre 2011
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(and therefore more complex) than plots with lower values.

A zero value is possible, while unlikely, if all trees measured

in a plot have exactly the same dimension. As a density

attribute, the number of trees per ha (N) would be expected

to be significant in the characterization of forest structure

diversity at the stand level, but at the scale of analysis (plot

level) there is no internal variation of this variable. We

included the number of trees per ha (N) as an absolute value

(no plot MAD could be calculated) in the initial stages of

analysis, but found no significance in the models.

MAD ¼ medianiðabs ðXi �medianjðXjÞÞÞ (1)

where Xi is the attribute (i.e., DBH, height, crown diameter)

of the ith element in each plot and Xj is the attribute of the

jth element of the complete sample.

High spatial resolution imagery

Imagery acquired by the QuickBird-2 satellite covering

the study sites was used. QuickBird-2 collects data in various

regions of the electromagnetic spectrum, with three bands in

the visible and one in the NIR (with 2.4 m � 2.4 m pixels);

an additional panchromatic band provides data with finer

spatial resolution (with 0.68 m � 0.68 m pixels; Table 2).

QuickBird-2, launched 18 October 2001, is a commercial

satellite and is unique among other satellites in this class as

it has the largest image footprint and most on-board storage

capacity.

Processing of imagery involved: atmospheric correction

of the multispectral images with the COST model (Chavez,

1996) using water bodies as dark objects and the atmo-

sphere-scattered path radiance Ll

p estimated with a relative

spectral scattering DOS model (l�4) under very clear

atmospheric conditions (Chavez, 1988). Separate orthorec-

tification of the multispectral (MS) and panchromatic (Pan)

bands with a digital elevation model derived from a contour

vector map 1:10 000 (www.sitcyl.jcyl.es) (Root Mean Square

Error of 0.69�0.72 m for the MS bands and 0.66�0.81 m

for the Pan bands); and registration to aerial photography

of 0.25 m pixel size (www.sitcyl.jcyl.es), with the full suite

of characteristics in Table 2.

Image metrics: reflectance and texture

diversity

Image texture is a valuable criterion for visual inter-

pretation, contains information about spatial and structur-

al arrangement of objects (Tso and Mather, 2001), and

provides context that may improve estimates of forest

structural parameters (Wulder et al., 1998). Image texture

is a means to interpret the spatial relationships between

digital numbers (Haralick et al., 1973) and to understand

how the variability in these values can inform on what is

being portrayed by the imagery. Single pixel measures often

inform on a portion of an object, with additional content

offered when considering neighbouring pixels. Texture

measures provide information regarding the simplicity or

complexity of neighbourhoods of pixels. For characteriza-

tion of forest structure, high resolution imagery texture

provides spatial information about density, distribution,

and spatial arrangement of trees (Ouma et al., 2006) and is

also related to the three-dimensional organization of tree

crowns (St-Onge and Cavayas, 1995; Bruniquel-Pinel and

Gastellu-Etchegorry, 1998). Greater variance in digital

numbers often implies a more complex forest environment,

whereas simple forest structure is associated with less image

variance (Cohen et al., 1990). In short, a relationship exists

between image spatial structure and the forest structure in

the scene (Wulder et al., 1998). One approach for

characterizing the spatial inter-relationships between image

digital numbers is the grey-level co-occurrence matrix

(GLCM) and associated indices that can be used to

describe the matrix (Haralick and Bryant, 1976). The

GLCM is a tabulation of how often different combinations

of pixel grey levels occur in an image (Hall-Beyer, 2007) at

a specific distance and orientation. For evaluation of image

texture we applied the approach of Haralick (Haralick and

Bryant, 1976), a method using statistical measures based

on the GLCM values (Caridade et al., 2008) that is also

known as a second order approach.

Exploratory research over a range of measurement

contexts (i.e., plot, stand) indicated that second order

texture metrics ‘‘homogeneity’’, ‘‘contrast’’, and ‘‘entropy’’

appeared as most appropriate of the GLCM texture metrics

for distinguishing forest stands of varying structure (differ-

ing height, age, number of trees per hectare, and DBH) for

the Mediterranean pine forests present. Homogeneity and

contrast are measures of the amount of local variation in the

image (Haralick et al., 1973) and are by definition

highly correlated (Equations (2�3)). Entropy is a measure

of orderliness (Hall-Beyer, 2007) (Equation (4)) or lack of

image structure.

Table 2. Characteristics of the satellite imagery used in the study.

QuickBird-2 imagery

Spatial resolution Multispectral 2.4 m

Panchromatic 0.68 m

Bands Blue 0.45�0.52 mm

Green 0.52�0.60 mm

Red 0.63�0.69 mm

NIR 0.76�0.90 mm

Pan 0.45�0.90 mm

Valsaı́n Iruelas

Date 19 May 2004 05 August 2005

Sun elevation (8) 58.4 72.0
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Homogeneity ¼
XN�1

i;j¼0

Pi;j

1þ ði � jÞ2
(2)

Contrast ¼
XN�1

i;j¼0

Pi;jði � jÞ
2

(3)

Entropy ¼
XN�1

i;j¼0

Pi;jð� lnPi;jÞ (4)

where Pi,j is the (i, j)th entry of the normalized GLCM

matrix, N is the number of rows and columns in the image.

Texture metrics evaluated at three different window

sizes were calculated over the panchromatic channel of the

QuickBird-2 imagery. For evaluation of texture metrics

we aimed to apply window sizes corresponding to the

mean dimension of the scene objects (Kayitakire et al.,

2006), that is, a distance equivalent to individual crown

diameters or groups of trees’ canopy size, in each of the sites

(Table 3). For this purpose we followed the semivariogram

approach (Johansen et al., 2007; Nijland et al., 2009)

whereby the ‘‘range’’ value of the semivariogram identifies

the size of the scene objects and therefore determines the

window size to use (Franklin et al., 1996). As expected, the

uneven structure in Iruelas indicated a need for larger and

different window sizes than in Valsaı́n, where the species

and silvicultural system applied have made the forest stands

more homogeneous (Figure 3). These findings are included

at this stage of the communication as the window sizes

produced are used to guide subsequent analyses.

To quantify the variation of the image metrics at the plot

level we used the MAD which, unlike the standard devia-

tion, is resistant to outliers (Chung et al., 2008); half the

values are closer to the median than the MAD and half

are further away. For each reflectance band (three in the

visible and one in the NIR) the MAD of pixel values was

calculated for each 0.3 ha circular area (approx. 616 pixels)

and the absolute difference with each equivalent global

MAD (calculated using all plots at each site) was evaluated.

A similar process was followed with co-occurrence texture

metrics over the panchromatic image (approx. 6640 pixels

per 0.3 ha circular area).

Canonical correlation analysis

While complex, quantifying structural diversity may be

approached through the application ofmultivariate statistical

analysis (McElhinny et al., 2005). The statistical analysis

Table 3. Texture metrics evaluated in the study sites.

Window Metric Valsaı́n Iruelas

Small Homogeneity 7 � 7 7 � 7

Contrast

Entropy

Medium Homogeneity 9 � 9 13 � 13

Contrast

Entropy

Large Homogeneity 13 � 13 23 � 23

Contrast

Entropy

Figure 3. Examples of areas with different forest structure and visual texture (top line: multispectral visualization (Red: NIR, Green: red,

Blue: green); bottom line: panchromatic visualization).
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required in this study will demonstrate if there is a relation,

and how strong it is, between the forest structural diversity

measured at the plot level as captured by the inventory

attributes and the spectral diversity measured by the reflec-

tance of the MS satellite-borne high spatial resolution sensor

and texture co-occurrence metrics evaluated with various

window sizes. We chose the CCA statistical approach as it

facilitates the study of interrelationships among sets of

multiple dependent and independent variables (Hair et al.,

2010). CCA places few restrictions on the data: normality,

that was tested with the Jarque-Bera test, and absence of

outliers that was checked through the Grubbs test (Grubbs,

1950). The ratio of sample size to number of variables was in

our casewell over the recommendedvalueof ten. InTable 4we

summarize the variables included in the statistical analysis.

CCA enables generation of two outcomes of interest:

the ‘‘canonical variates’’ representing the optimal linear

combinations of dependent and independent variables and

the ‘‘canonical correlation’’ representing the strength of

the relationship between them. All variables are linearly

combined by group (dependent and independent) into

‘‘variates’’; the dependence role is interchangeable and

used to facilitate interpretation.

A number of orthogonal (independent) ‘‘canonical func-

tions’’ are derived, maximizing the correlation between linear

composites. Each variable partial correlation with the respec-

tive canonical function is represented by its coefficient or

‘‘canonical weight’’, which enables understanding of the

function composition. However, frequent instability of these

coefficients advice the alternative use of ‘‘canonical loadings’’

after a process of variables standardization (Hair et al., 2010).

Therefore, canonical loadings measure the simple linear

correlation between an original observed variable in the

dependent or independent set and the set’s canonical variate,

intended to indicate the variance that the variable shares with

its canonical variate. Variables that are highly correlatedwith

a canonical variate havemore in commonwith the variate and

should therefore be given more importance in the variate’s

interpretation. Additionally, ameasure of ‘‘redundancy’’ may

be calculated that informs on the amount of variance in a set

of input variables (dependent or independent) that is ex-

plained by the other canonical variate. To determine which of

the canonical functions to interpret, a combined criterion

based on the statistical significance, the practical significance

of the canonical correlation and the redundancymeasures for

each variate should be applied (Hair et al., 2010). ‘‘Canonical

cross-loadings’’ measure the simple linear correlation be-

tween the original observed variables and the opposite set’s

canonical variate, i.e., they represent the relation between one

variable and the linear combination of variables on the other

side. These coefficients are useful to determine which

independent variables are explicative of the dependent set

combination and, in our case, which spectral or textural

metrics would better explain the forest structural diversity.

Results

The CCA yielded two results of interest: the canonical

variates, which represented the optimal linear combinations

of dependent (forest structural diversity) and independent

(image reflectance�texture diversity) variables and the

canonical correlation, representing the relationship between

variates. We describe and interpret some outcomes of the

analysis which were relevant to our study objectives.

Canonical correlations and relative

importance of reflectance and texture

metrics

The number of canonical functions CCA yields is limited

by the lower number of variables in either the dependent or

Table 4. Dependent and independent variables used as input into the canonical correlation analysis.

Dependent variables Independent variables

Reflectance

MAD of:

Blue

Green

Red

Near infrared

Texture

MAD (Median Absolute Deviation) of: MAD of:

Diameter (DMAD) Homogeneity small window

Height (HMAD) Homogeneity medium window

Crown diameter (CMAD) Homogeneity large window

Contrast small window

Contrast medium window

Contrast large window

Entropy small window

Entropy medium window

Entropy large window
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independent variate (Hair et al., 2010); in our case the

maximum number of functions was three, as this was the

number of original dependent variables considered

(DMAD, HMAD, CMAD). Our interest focused on determining

if there is a relation and how strong it is between variates.

Therefore, only the strongest relation in each case scenario

was retained for further analysis and discussion, even if

more than one function was statistically significant (Table

5). The statistical significance was tested with the x2 test.

In both Valsaı́n and Iruelas there was a moderate relation

between the dependent (forest structural diversity) and the

independent (reflectance�texture diversity) variates, with

similar values of correlation in both cases (0.50 in Valsaı́n

and 0.51 in Iruelas). To test the strength of the relationship

between forest structural diversity and the reflectance and

texture variables’ groups individually, we ran the analysis

independently with either set treated as independent.

This analysis showed that when including all variables in

the independent group there was a stronger relation than

including just one type of image variables (reflectance or

texture), which demonstrated the information associated

with spectral and textural signatures is complementary

(Lu et al., 2002; Colombo et al., 2003; Ouma et al., 2006).

Although they exhibited a relatively weak relationship, the

reflectance variables alone were more related in both sites

with structural diversity than the texture variables alone

(Table 5).

In a combined scenario, considering all plots from Valsaı́n

and Iruelas together, with ‘‘expectation’’ median values

evaluated together, we found a strong relation between

variates, with an R of 0.89 (Table 5). This scenario illustrates

a more heterogeneous forest where the range of forest

parameters is considerably higher than either the individual

sites (Table 1). In this case, texture diversity measures were

more able to explain forest structural diversity (R of 0.88 vs.

R of 0.63). Possibly the limited explanatory power of texture

variables in the individual sites was in part due to the limited

range of ground variables and consequent limited variation

in image texture outcomes.

Most significant variables

Canonical cross loadings were interpreted to assess how

the individual independent variables (measures of reflectance

and texture diversity) related linearlywith the forest structural

diversity or dependent variate. This procedure enabled

identification of those image metrics most contributing in

the characterization of structural diversity for the combined

case scenario (Valsaı́n and Iruelas plots analyzed together).

Contrast and homogeneity evaluated at different window

sizes were the variables most strongly correlated with forest

structural diversity (Figure 4). This result supported the

intuitive notion that visual changes in the image are related

with variability of tree sizes on the ground, as this variability

produced internal shadowing effects within the stand. As

contrast and homogeneity are by definition strongly corre-

lated metrics, similar cross-loading values were expected, and

the opposite sign that occurred at medium window sizes

remains unexplained. Variations in the reflectance bands

were positively correlated with structural diversity, with the

three visible bands found more strongly correlated than the

NIR band. The character of entropy is variable and not

completely clear, being negatively correlated with structural

diversity when measured at the small window size (that is,

7 pixels � 7 pixels, or 4.2 m � 4.2 m) and weakly correlated

when measured at the other window sizes. It should be noted

that at the smaller window sizes, single tree crowns may be

represented, resulting in texture measures with a high local

variance (with noncrown conditions represented in

neighboring locations). These findings support the use of

larger windows relating stand conditions, rather than

individual trees (objects). Varying behaviour of GLCM

metrics at different window sizes was previously reported

(Moskal, 1999) and detailed examination would be required

for complete understanding in local circumstances.

The linear correlation between the original variables

(DMAD, CMAD, HMAD) and the forest structure diversity

variate is measured by the canonical loadings. These coeffi-

cients showed diameter variability (DMAD) was the most

relevant parameter (loading 0.63) in building the forest

structure diversity variate, followed by crown diameter

variability (CMAD, loading 0.15), and leaving height varia-

bility (HMAD loading 0.10) in third position. The importance

of diameter variability for characterization of forest structural

complexity was an expected result, as diameter is a common

variable used for description of forest structure and its

variation is frequently used for computation of diversity

indices such as Simpson or Shannon (McElhinny et al., 2005).

Validation of the CCA in the combined case

scenario

To ensure that the results of the CCAwere not specific to

the sample data, the method was validated over a subsample

of 500 plots, proportionally and randomly selected from

Table 5. Canonical correlations of the first canonical function in

different scenarios (all statistically significant).

Site Independent group

R (canonical

correlation)

Valsaı́n Diversity (reflectance and texture) 0.505

Diversity reflectance 0.474

Diversity texture 0.389

Iruelas Diversity (reflectance and texture) 0.512

Diversity reflectance 0.460

Diversity texture 0.360

Combined Diversity (reflectance and texture) 0.890

Diversity reflectance 0.634

Diversity texture 0.882
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both sites (226 plots from Valsaı́n and 274 plots from

Iruelas). The validity of the CCA was assessed by conduct-

ing a sensitivity analysis in which the stability of the

redundancy index and the overall canonical correlations

was assessed applying the same procedure after removing

individual independent variables from the analysis (Hair

et al., 2010) (Figure 5). The similarity of the values of the

redundancy index and canonical correlation for all tested

situations indicated the stability of the CCA results; cross-

loadings were also found to be relatively stable.

Optical sensors have limited capacity to identify canopy

height and differences (Hudak et al., 2002), often relying on

the existence of image shadows or the calculation of gap

fraction to partially accomplish this task (see Mora et al.

(2010) for a summary of height estimation from optical

imagery). To test the relevance of HMAD in the model, it was

removed from the analysis and results were checked: the

canonical correlation decreased markedly and the redun-

dancy index was lower than all other situations, demonstrat-

ing the significance of HMAD contribution to the structural

dependent variate in this model. As expected more notable

reductions in redundancy index were found when DMAD or

CMAD were removed from the analysis.

Discussion and conclusion

Forest structural diversity defined in terms of field

inventory measures at the plot level has been related to

values of reflectance and texture diversity as captured by a

fine spatial resolution satellite-borne optical sensor in

Mediterranean pine forests of the Central Range in Spain.

Results showed a strong relationship between both sets of

diversity features (field derived and image derived) when

considered at the plot level and with an appropriate range of

variation, indicating the potential of remote sensing and

image processing as an approach for characterization of

forest structural diversity over wide areas.

Quantifying structural diversity on the ground is difficult

and costly, and its importance for biodiversity and produc-

tion (Lexerod and Leid, 2006) makes exploring remote

sensing as an optional means for this purpose. Remote

sensing is not seen to fully supplant the need for field

measures, but to spatially and temporally augment such

measures. The data acquisition regularity offered by satel-

lites and the consistency over space and time enables

repetitive estimations and monitoring. In this study we

included field measured variables (DBH, height, and crown

diameter) in structure diversity characterization for ease of

measurement (McElhinny et al., 2005) and, as identified by

Rı́o et al. (2003), among the most important aspects of

forest structure. Furthermore, the scale of analysis is also an

important factor when measuring or characterizing diversity

(Lähde et al., 1999). The availability of field data determined

the scale of our analysis, enabled by accessibility to high

spatial resolution imagery. The detailed plot-level measures

available made for a logical informational link between the

field and image-based data sources with both of a compar-

able scale. We worked with circular spatial units of 0.3 ha,

analogous to the inventory plots established and measured

on the ground. At this scale of analysis (alpha diversity) the

Figure 4. Cross loadings in the combined scenario. Homogeneity and contrast at various

window sizes were the variables with highest explicative capacity; visible reflectance was more

relevant to the model than NIR data.
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study showed there is potential for characterization of

structural diversity from the space. Lamonaca et al. (2008)

reached similar conclusions in a study that applied an object

oriented approach for characterization of the structure

diversity in Mediterranean environments at the stand level.

Pasher and King (2010) modelled and mapped forest

structural diversity in temperate hardwood forests of

Quebec (Canada) with airborne derived data, highlighting

the convenience of satellite derived data for mapping of

larger areas.

Interestingly, among our findings was the consideration of

the scenarios with various crown closure conditions pooled

together, that is, the data from open and dense forest sites

analyzed jointly. In this case the relation between the

variability in image-derived variables and forest structural

diversity was stronger (higher canonical correlation) than

considering either individual scenario alone. Previous works

with remotely sensed data in the study area (Merino et al.,

2010; Vázquez de la Cueva, 2008) found significant relations

between image and field variables but poor explanatory

power of statistical models. Further work is recommended

to determine if the limited success relating structural

measures with optical sensors’ data is due to the limited

local variation in structural parameters.

Diameter and basal area are the attributes most fre-

quently used in studies of structural diversity (Solomon and

Gove, 1999; Varga et al., 2005; Motz et al., 2010) and forest

structure per se (Goodburn and Lorimer, 1998; Rouvinen

and Kuuluvainen, 2005; Rubin et al., 2006). We found these

to be the attributes indicating variation in forest structure at

the plot level that had the highest relevance in the canonical

variates in all scenarios. Height showed slight importance in

the canonical relations between field-measured and image-

detected diversity but was still relevant to the model, as

shown in the sensitivity analysis. Height variation is difficult

to detect with optical sensors (Mora et al., 2010), which are

better suited for mapping horizontal structure (Hyde et al.,

2006). Although shadows and gap fraction are sometimes

useful (Shettigara and Sumerling, 1998; Leboeuf et al.,

2007), the images we used, captured with high elevation

angles (�60 degrees), did not include significant shadows.

Including LiDAR measured heights in the modelling process

may improve the study results, as fusion of high spatial

resolution and LiDAR data is an approach yielding good

results (St-Onge et al., 2008; Ke et al., 2010; Chen and

Hay, 2011).

In scenarios of relatively low structural diversity, when

we considered each of the study sites individually, the

variation in reflectance of the visible and NIR was more

explicative of the structural diversity than variations in

other texture measures evaluated with finer spatial resolu-

tion panchromatic data. Similarly, Rocchini et al. (2010)

highlighted the relevance of spectral resolution versus

spatial resolution for evaluation of species diversity,

Figure 5. Sensitivity analysis of CCA results. The stability of the results is indicated by minor changes in the

redundancy index and canonical correlations when individual variables were removed from the dependent variate.
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supported by a series of studies in different environments

that buttress this idea.

The information associated with spectral and textural

signatures is complementary (Lu et al., 2002) in estimation

of forest parameters (Lu and Batistella, 2005). Wulder et

al. (1998) observed an improvement of correlation between

LAI and image variables including texture in northern

deciduous and mixed wood forest in Canada using aerial

imagery. Chubey et al. (2006) studied structural parameters

of forests in Alberta, Canada, with Ikonos-2 imagery,

obtaining successful results when including reflectance and

texture variables. Other studies used textural parameters

only (Franklin et al., 2001; Couteron et al., 2005;

Kayitakire et al., 2006) for estimation of forest structure,

which was shown to be particularly useful in complex

structures such as tropical forests (Lu and Batistella, 2005).

Image texture is influenced by several biophysical para-

meters including crown diameter, distance between trees,

tree positioning, LAI, and tree height. The importance of

the window size for evaluation of texture measures has

been stressed (Ferro and Warner, 2002; Kayitakire et al.,

2006) and the variogram approach is recommended as an

appropriate method to guide window size selection (Frank-

lin et al., 1996). We found a common variogram range

value in both study sites (open and closed canopy

conditions) which is coincident with the median value of

crown diameter. The absence of shadows in the imagery

allowed the identification of individual trees as dominant

textural objects on the ground (Kayitakire et al., 2006).

The limited use of texture parameters, previously indicated

as due to a lack of software tools (Bruniquel-Pinel and

Gastellu-Etchegorry, 1998), is progressively being over-

come, but other considerations remain, such as viewing

and illumination configurations, spectral domain, and

spatial resolution. However, image texture analysis has

demonstrated utility for characterizing habitat structure

(St-Louis et al., 2006) and identifying areas of high

diversity with conservation priority.

Mediterranean forests are notorious for their complex

topography (Salvador and Pons, 1998) which often results in

high spatial heterogeneity (Neumann and Starlinger, 2001).

If field information is contrasted with image data, the

accurate spatial location of field plots and a high quality

geometric processing (e.g., low RMSE) of the remotely

sensed data are particularly important to develop strong

empirical models. As demonstrated in this study, high

spatial resolution imagery from optical sensors integrated

with field measures of forest structure provided a useful

approach to investigate and characterize forest structural

diversity in Mediterranean pine forests, particularly in Spain

where a national high spatial resolution image data base has

been initiated, with an annual revisit proposed. Details on

the nature of the database and access criteria through

Spanish Plan Nacional de Teledetección remain to be

determined and communicated.
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management records to characterize the effects of management on

the structural diversity of forests. Forest Ecology and Management,

Vol. 207, No. 1�2, pp. 279�293.

Mora, B., Wulder, M.A., and White, J.C. 2010. Segment-constrained

regression tree estimation of forest stand height from very high spatial

resolution panchromatic imagery over a boreal environment. Remote

Sensing of Environment, Vol. 114, No. 11, pp. 2474�2484. doi: 10.1016/j.

rse.2010.05.022.

Moskal, L.M. 1999. AVI multilayer forest classification using airborne

image texture metrics. Calgary, Canada: University of Calgary. MSc

Thesis, 147 pp.

Motz, K., Sterba, H., and Pommerening, A. 2010. Sampling measures

of tree diversity. Forest Ecology and Management, Vol. 260, No. 11,

pp. 1985�1996. doi: 10.1016/j.foreco.2010.08.046.

Neumann, M., and Starlinger, F. 2001. The significance of different indices

for stand structure and diversity in forests. Forest Ecology and

Management, Vol. 145, No. 1�2, pp. 91�106. doi: 10.1016/S0378-

1127(00)00577-6.

Nijland, W., Addink, E.A., De Jong, S.M., and Van der Meer, F.D.,

2009. Optimizing spatial image support for quantitative mapping

of natural vegetation. Remote Sensing of Environment, Vol. 113, No. 4,

pp. 771�780. doi: 10.1016/j.rse.2008.12.002.

Ouma, Y.O., Ngigi, T.G., and Tateishi, R. 2006. On the optimization and

selection of wavelet texture for feature extraction from high resolution

satellite imagery with application towards urban tree delineation.

International Journal of Remote Sensing, Vol. 27, No. 1, pp. 73�104.

doi: 10.1080/01431160500295885.

Ozdemir, I. 2008. Estimating stem volume by tree crown area and tree

shadow area extracted from pan-sharpened Quickbird imagery in open

Crimean juniper forests. International Journal of Remote Sensing, Vol.

29, No. 19, pp. 5643�5655.

Ozdemir, I., Norton, D.A., Ozkan, U.Y., Mert, A., and Senturk, O. 2008.

Estimation of tree size diversity using object oriented texture analysis

and ASTER imagery. Sensors, Vol. 8, pp. 4709�4724. doi: 10.3390/

s8084709.

Pascual, C., Garcı́a Abril, A., Garcı́a Montero, L.G., Martı́n Fernández, S.,

and Cohen, W.B. 2008. Object-based semi-automatic approach for forest

structure characterization using lidar data in heterogeneous Pinus

sylvestris stands. Forest Ecology and Management, Vol. 255, No. 11,

pp. 3677�3685. doi: 10.1016/j.foreco.2008.02.055.

Pasher, J., and King, D.J. 2010. Multivariate forest structure modeling

and mapping using high resolution airborne imagery and topo-

graphic information. Remote Sensing of Environment, Vol. 114, No. 8,

pp. 1718�1732. doi: 10.1016/j.rse.2010.03.005.

Poage, N.J., and Tappeiner, J.C. 2005. Tree species and size structure of

old-growth Douglas-fir forests in central western Oregon. Forest Ecology

and Management, Vol. 204, No. 2�3, pp. 329�343. doi: 10.1016/

j.foreco.2004.09.012.

Pommerineng, A. 2006. Evaluating structural indices by reversing forest

structural analysis. Forest Ecology and Management, Vol. 224, No. 3,

pp. 266�277. doi: 10.1016/j.foreco.2005.12.039.

Pu, R., Landry, S., and Yu, Q. 2011. Object-based urban detailed land

cover classification with high spatial resolution IKONOS imagery.

International Journal of Remote Sensing, Vol. 32, No. 12, pp. 3285�

3308. doi: 10.1080/01431161003745657.
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trajectories. ISPRS Journal of Photogrammetry and Sensing. 

RESUMEN 

Biomasa forestal estimada mediante modelos de trayectoria espectral Landsat

 

Para conocer el papel de los ecosistemas forestales en el balance de carbono a nivel local y 
global, es necesario estimar la biomasa aérea forestal y su evolución en el tiempo. La 
evaluación del cambio requiere establecer unos valores de referencia de forma retroactiva. 
En este estudio se utilizaron trayectorias espectro-temporales, con información intrínseca 
relacionada con los procesos de sucesión, para modelizar y cartografiar valores recientes e 
históricos de biomasa aérea en pinares mediterráneos del Sistema Central. Los valores de 
biomasa generados a partir de dos repeticiones (1990 y 2000) de medidas del inventario 
forestal nacional (IFN) español se tomaron como referencia y se relacionaron con datos 
espectrales estáticos y dinámicos medidos por los sensores Thematic Mapper (TM) y 
Enhanced Thematic Mapper Plus (ETM+) de Landsat en un período de 25 años (1984-
2009). Primero se investigó la relación entre biomasa e índices de vegetación mediante 
transformaciones wavelet unidimensionales, comprobando la fuerte influencia de la 
complejidad estructural en estas relaciones. Mediante transformaciones wavelet en dos 
dimensiones se identificaron trayectorias espectrales tipo para esta zona que se relacionan 
con características individuales de las parcelas del IFN mediante un algoritmo flexible de 
máxima similitud. Los índices espectrales de vegetación, las trayectorias espectrales y sus 
derivadas temporales (asociadas a procesos de sucesión forestal), se incluyen como 
variables independientes en un proceso de decisión binaria para modelizar, estimar, y 
cartografiar la biomasa y las reservas de carbono en toda el área considerada. Los 
resultados indican que las trayectorias tipo de variación de NDVI durante periodos cortos 
están relacionadas con clases de biomasa forestal. El índice TCA está fuertemente 
relacionado con la densidad forestal pero sus patrones de cambio tienen poca relación con 
la dinámica de biomasa en el pasado. Los modelos de biomasa obtenidos se extendieron a 
todo el área de estudio a través de pequeños segmentos espaciales (~2.5 ha) definidos 
mediante homogeneidad espectral. Se cartografiaron los cambios de biomasa durante el 
periodo 1990-2000 (70% de precisión al validar con los valores de cambio medidos en 
parcelas), revelando un incremento del 18% distribuido irregularmente sobre 814 km2 de 
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pinares. La acumulación media de carbono en biomasa aérea en estos pinares 
mediterráneos fue de 0.65 t·ha-1·a-1, equivalente a la fijación de 2.38 t·ha-1·a-1 de dióxido de 
carbono. 

Palabras clave: serie temporal; retrospectivo; biomasa aérea; Landsat; transformación 
wavelet, dynamic time warping, Inventario Forestal Nacional, España 
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Abstract 

Estimation of forest aboveground biomass (AGB) is informative of the role of forest 

ecosystems in local and global carbon budgets. There is a need to retrospectively estimate 

biomass in order to establish a historical baseline and enable reporting of change. In this 

research, we used temporal spectral trajectories to inform on forest successional 

development status in support of modelling and mapping of historic AGB for 

Mediterranean pines in central Spain. AGB generated with ground plot data from the 

Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 

2000), are linked with static and dynamic spectral data as captured by Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period 

(1984–2009). The importance of forest structural complexity on the relationship between 

AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. 

Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory 

patterns of forest stands that in turn, are associated with traits of individual NFI plots, 

using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral 

indices, temporal trajectories, and temporal derivatives associated with succession are used 

as input variables to non-parametric decision trees for modelling, estimation, and mapping 

of AGB and carbon sinks over the entire study area. Results indicate that patterns of 

change found in Normalized Difference Vegetation Index (NDVI) values are associated 

and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found 

to be strongly related with forest density, although the related patterns of change had little 

relation with variability in historic AGB. By scaling biomass models through small (~2.5 

ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 

1990–2000 are mapped (70% accuracy when validated with plot values of change), 

revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The 

accumulation of C calculated in AGB was on average 0.65 t ha-1 y-1, equivalent to a 

fixation of 2.38 t ha-1 y-1 of carbon dioxide. 

 

Keywords: remote sensing; time series; retrospective; above ground biomass; Landsat; 

wavelet transform, dynamic time warping, National Forest Inventory, Spain 
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1. Introduction 

Aboveground biomass (AGB) is a fundamental element of forest ecosystems. AGB is 

significant for its carbon storage capacity (Liski et al., 2000; Muukkonen and Heiskanen, 

2007), and as a potential source of timber and production of bio-energy (FAO, 2003; 

Smeets and Faaij, 2007). Biomass amount per surface unit indicates the condition and 

productivity of a forest (FAO, 2010; Hall et al., 2006) and it is associated with ecological 

benefits related to biodiversity. Assessing forest AGB and related dynamics with spatially 

explicit detail is important for sustainable forest management (Herrero and Bravo, 2012; 

Tan et al., 2007), ecological applications (Barlow and Peres, 2004; Lewis et al., 2004), 

carbon accounting (Barredo et al., 2012; Houghton, 2005), for providing information in 

support of carbon markets (Goetz et al., 2009; Wang et al., 2009), and for reporting 

commitments (Andersson et al., 2009; Kurz and Apps, 2006). 

Remote sensing has become the primary data source for large area biomass estimation (Lu, 

2006), providing spatial detail to capture ground variability (Wulder et al., 2008), and 

temporal repetition to account for change (Powell et al., 2010). As summarized by Kangas 

and Maltamo (2006), national forest inventories (NFI) supply precise information based on 

plot measurements (e.g. Finland, USA), frequently supported by aerial photography or 

satellite data (e.g. UK, Canada) that can be scaled and extended to unmeasured areas 

through direct modelling with passive or active remotely sensed data (Baccini et al., 2004; 

Blackard et al., 2008). Estimation and monitoring of AGB with remotely sensed data 

sources can be fast and relatively low cost, providing information for remote and 

inaccessible areas (Bortolot and Wynne, 2005). While error estimates are ultimately linked 

to the quality of the reference data (Baccini et al., 2007), improved processing algorithms 

and techniques for data analysis can enhance the accuracy of AGB estimates from 

remotely sensed data sources (Lu, 2006). The radiometric saturation of optical sensors at 

high levels of biomass is well known (Gemmell, 1995; Lu, 2005; Turner et al., 1999). 

Saturation is also a problem for radar instruments (Englhart et al., 2011; Mitchard et al., 

2009), with the degree of saturation dependent on wavelength, polarization, and vegetation 

structure (Lu, 2006). Airborne and spaceborne LiDAR can provide an important alternative 

source of forest structural information (Duncanson et al., 2010; Kwak et al., 2010; Næsset 

and Gobakken, 2008), and combinations of data from multiple sensors provide robust 

options for estimation of forest biomass (Sun et al., 2011; Yu et al., 2010). 
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Retrospective estimation of AGB to establish a historical baseline and enable change 

reporting is feasible with archival data, where the Landsat program provides the longest 

and most consistent repository of imagery, going back to 1972 (Wulder et al., 2012). The 

Landsat archive is also the only realistic source of data for mapping at the level of detail 

required by international treaties (e.g. Kyoto Protocol). Methods to map historical forest 

attributes may apply date invariant relationships (Healey et al., 2006; Powell et al., 2010) 

to past data using static measures (i.e. spectral predictors obtained at a given time). The 

relationship between contemporary spectral and reference data is extended to other dates of 

interest, relying on a robust process of relative radiometric normalization of imagery, for 

estimation of change. Incorporation of dynamic variables, that is, predictors combining 

data captured at various dates, for modelling AGB and its dynamics remains unexplored. 

In this work we estimate and map historical AGB in central Spain using temporally 

irregular trajectories of spectral indices from Landsat records, supported with information 

derived from NFI measurements. 

Our goal is to estimate and map historical AGB (at specified dates in time), as well as a 

decade of change in AGB, by combining the precision of field measures from a network of 

NFI plots with the wall-to-wall spatial coverage provided by remotely sensed data. We first 

explore the relationship between live AGB derived from NFI ground plot measurements 

and vegetation spectral indices derived from Landsat data. Second, we model past AGB 

with historical spectral data, including single-date data and multi-temporal trajectories, 

providing a baseline for comparison with more recent estimations. Lastly, we map 

historical AGB at two dates coincident with NFI rotations (1990 and 2000) and evaluate 

the distribution of change in view of the uncertainties associated with the process of 

modelling and mapping. 

1.1 Background 

Estimation of forest biomass with optical remotely sensed data is based on the assumption 

of a strong statistical relationship between AGB and the spectral response as captured by 

the sensor (Lu, 2006). Providing there are an adequate number of quality ground samples, 

direct modelling of AGB relies on the choice of a set of appropriate predictor variables and 

the development of suitable estimation models (Lu et al., 2012). The most frequently 

attempted model types are regression (González-Alonso et al., 2006; Rahman et al., 2005), 

imputation (Chirici et al., 2008; Fazakas et al., 1999), neural networks (Foody et al., 2001; 
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Jin and Liu, 1997) and decision trees (Blackard et al., 2008; Mutanga et al., 2012). The 

adequacy of a model depends on data availability, desired precision, transparency, and site-

specific characteristics (Labrecque et al., 2006). Amongst the suite of possible predictor 

variables of AGB, the calibrated reflectance of visible and near-infrared wavelengths 

without further processing is sometimes used, although vegetation indices (i.e. 

combinations of two or more spectral bands) are recommended for the capacity to reduce 

noise effects associated with canopy shadows (Gemmell, 1999), which can be relevant in 

sites of complex vegetation structure (Lu et al., 2004). 

Empirical relationships between forest AGB and spectral properties—as captured by 

optical sensors—have been intensively explored in a broad range of biomes and are site 

specific (e.g. Foody et al., 2003; Gemmell, 1998). Uncertainties in this empirical 

relationship may arise from sensor limitations (e.g. viewing angle, radiometric resolution), 

atmospheric effects (e.g. haze, cloud), vegetation phenology, and topographic 

characteristics (Gemmell, 1998), but also from intrinsic forest structure and variability 

(Gemmell, 1995; Lu et al., 2005). In Mediterranean forests, typically characterized by 

rugged locations and structural heterogeneity (Salvador and Pons, 1998), the relationship 

between AGB and spectral response has proven difficult to characterize (e.g. Maselli et al., 

2005; Vázquez de la Cueva, 2008). 

1.2 Incorporation of temporal information into modelling of forest attributes 

The majority of direct models incorporate data captured at a single point in time, which 

ideally is as close as possible to the timing of reference data collection on the ground. 

Multi-seasonal imagery has been shown to improve the accuracy of forest biomass 

estimation (Gasparri et al., 2010; Lefsky et al., 2001). Furthermore, the benefits of multi-

temporal data for estimation of successional processes (Song et al., 2002; Song et al., 

2007) and forest structure (Gemmell et al., 2001), both of which are intimately linked to 

AGB, have been acknowledged, with multiple images analyzed independently (Foody et 

al., 1996) or linked in a temporal trajectory (Liu et al., 2008). 

Open access data policies facilitating the use of image time series (Wulder et al., 2012) 

have prompted the emergence of new approaches to extract information from spatially 

coincident multi-date imagery (Table 1). Polynomial characterization of spectral curves 

(Goodwin et al., 2010) or identification of distinctive trajectory segments (Kennedy et al., 

2010) are alternative options to make use of the inherent temporal information of a series 
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of calibrated data for interpretation of ecological processes. We explore here an option to 

directly incorporate temporal information in predictor variables for estimation of AGB. 

The empirical models linking AGB measurements with Landsat spectral data facilitate 

mapping of forest biomass and change. 

Table 1. Forest studies capitalizing on information from Landsat imagery spectral 
trajectories. 

Study Ecosystem/ 
Location 

Goal 
Approach Spectral variable 

Liu et al., 2008 
Coniferous /  
Oregon (USA) 

Prediction of forest successional stages 

Modelling with progressive 
multi-date predictors 

TCB,TCG,TCW 

Huang et al., 2009 
Various National 
Forests /  
(USA) 

Validation of VCT performance in detection of forest 
change dynamics 
Interpretation of IFZ temporal 
profiles 

IFZ (Red, SWIR1, 
SWIR2) 

Goodwin et al., 2010 
Coniferous /  
British Columbia 
(Canada) 

Characterization of mountain pine beetle infestation 

Polynomial curve fitting model NDMI 

Kennedy et al., 2010 

Coniferous and 
broadleaved /  
Oregon and 
Washington (USA) 

Description of successional processes: disturbance and 
recovery 

Temporal segmentation and 
interpretation of segments 

NDVI, NBR, TCW 

Powell et al., 2010 

Coniferous and 
mixed /  
Arizona and 
Minnesota (USA) 

Assessment of AGB over two decades 

Trajectory of modelled AGB 
TCA, TCB, TCG, 
TCW, DI, 
Reflectances 

Gómez et al., 2012 

Mediterranean 
pines /  
(Spain) 

Assessment of 25 years of carbon fluxes 

Temporal derivative of spectral 
trajectory with interpretation of 
state and process 

TCA 

Pflugmacher et al., 2012 
Mixed-conifer 
forest /  
Oregon (USA) 

Estimation of current structural parameters (live and 
dead biomass) 
Model current parameters with 
disturbance and recovery features 
derived from spectral trajectories 

TCA, 
TCB,TCG,TCW 

Zhu et al., 2012 
Evergreen forest /  
Georgia and 
California (USA) 

Monitoring of forest disturbance 

Dense time series models 
phenology with trigonometric 
functions for detection of change 

DI 

DI: Disturbance Index; IFZ: Integrated Forest Z-score; NDMI: Normalized Difference 
Moisture Index; NDVI: Normalized Difference Vegetation Index; TCA: Tasseled Cap 
Angle; TCB: Tasseled Cap Brightness; TCG: Tasseled Cap Greenness; TCW: Tasseled 
Cap Wetness. 
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1.3 Wavelet transforms in remote sensing and forestry applications 

Wavelet transforms have been used in the remote sensing community for image blending 

(Garguet-Duport et al., 1996; Zhou et al., 1998), for detection of haze (Du et al., 2002), 

spectral unmixing of hyperspectral data (Li, 2004), post-classification change detection 

(Raja, 2013), and feature extraction (Fukuda and Hirosawa, 1999; Niedermeier et al., 

2000; Simhadri et al., 1998). In relation to vegetation dynamics, Sakamoto et al. (2005) 

developed a method for detection of crop phenology incorporating wavelet filters. Percival 

et al. (2004) proposed the usefulness of the multi-resolution analysis (MRA) applied to 

vegetation time series, with which Martínez and Gilabert (2009) identified seasonal and 

long term trend changes of various land covers in Spain. Freitas and Shimabukuro (2008) 

applied MRA to spectral fractions of MODIS bands for analysis of land cover change in 

Brazil, identifying the location and time of disturbance events. 

As a tool for analysis of data, wavelet transform techniques facilitate the characterization 

of non-stationary processes (Meyers et al., 1993), that is, processes of change dependent 

on the scale of variation. The most distinctive property of wavelet transforms is the 

capacity to provide local information of the target series F(x) and at a range of selected 

scales (Lindsay et al., 1996). This property derives directly from the wavelet definition as a 

function that oscillates around zero, and that is localized in a finite width interval (Meyers 

et al., 1993). Basically, a wavelet transform decomposes the original series F(x) into a set 

of functions by convolving F(x) with a family of wavelets, which are derived by scaling 

and translation of a mother or basis function G(x). As result of the wavelet transform a 

number of functions are produced, one approximation (Ai) and one detail (Di) function per 

scale or level. Another interesting property of the wavelet transform is that the original 

series can always be reconstructed from its decomposed elements: at any level of 

decomposition (i) the original series F(x) equals that level approximation Ai plus the sum 

of all lower level details (ΣDj) (j= 1…i-1). For the sake of interpretation, approximation 

functions inform trends of change whilst detail functions account for high frequency 

related with noise (Percival et al., 2004) and are associated with changes in averages at 

each given scale. A measure of variance or energy associated with each function helps 

identify which are the most relevant levels of the wavelet transform decomposition 

(Lindsay et al., 1996). Wavelet transforms are used in this work with a double purpose: 

exploratory analysis of the relationship between spectral indices and plot measured AGB, 

and smoothing of a system of data for derivation of dynamic spectral variables. 
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2. Methods 

2.1 Overview 

The relationship between AGB and spectral properties at the plot level was explored in a 

forest ecosystem of Mediterranean pines. Vegetation indices suitable for modelling AGB 

were identified. Dynamic spectral variables associated with forest successional 

development were defined through wavelet transformations of a data system formed by a 

set of spatially coincident field measures and corresponding calibrated spectral data 

captured over 25 years. The domain of the dynamic variables was identified as a number of 

modelled trajectories. To test the significance of the dynamic spectral variables in 

predicting AGB, a binary rule-based approach was applied to ground plots characterized 

by dynamic, as well as static variables, in order to identify the most relevant predictors. 

Cross-validation was used to determine the best binary model for AGB in 1990 and 2000; 

the best binary models were then applied to small spectrally homogenous ground units for 

mapping AGB and carbon dynamics over the entire study area. The resulting map of AGB 

change was validated with plot values of biomass change. Figure 1 provides an overview 

of the main methods applied in this work. 



 

Figure 1. Schematic representation of main methods followed in this study. Dynamic 
spectral variables are defined with a flow process based on 2D wavelet transforms, and the 
domain of each variable is identified as a number of modelled trajectories. Sample plots of

unknown AGB are attributed dynamic variables by maximum similarity to trajectory 
models. Statistical models of AGB at the plot level are derived with a binary
based on dynamic and static spectral variables. These models are applied to the en

to map estimated AGB dynamics between 1990 and 2000.

 

Schematic representation of main methods followed in this study. Dynamic 
spectral variables are defined with a flow process based on 2D wavelet transforms, and the 
domain of each variable is identified as a number of modelled trajectories. Sample plots of

unknown AGB are attributed dynamic variables by maximum similarity to trajectory 
models. Statistical models of AGB at the plot level are derived with a binary
based on dynamic and static spectral variables. These models are applied to the en

to map estimated AGB dynamics between 1990 and 2000.
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Schematic representation of main methods followed in this study. Dynamic 
spectral variables are defined with a flow process based on 2D wavelet transforms, and the 
domain of each variable is identified as a number of modelled trajectories. Sample plots of 

unknown AGB are attributed dynamic variables by maximum similarity to trajectory 
models. Statistical models of AGB at the plot level are derived with a binary-rule approach 
based on dynamic and static spectral variables. These models are applied to the entire area 

to map estimated AGB dynamics between 1990 and 2000. 
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2.2 Study area 

The study area is centred at latitude 40°37’56’’ N and longitude –4°6’47’’ E, in the Central 

Range of Spain, and occupies part of the Ávila, Segovia, Madrid, Guadalajara and Toledo 

provinces (Figure 2). It is a pine ecosystem with dominant tree species Pinus sylvestris L., 

Pinus pinaster Ait., and Pinus nigra Arn. Forests extend to elevations of 2000 m, beyond 

which shrubs (Cytisus sp., Genista sp., Erica sp., Echinospartum sp.) are the prevalent 

vegetation (Rivas-Martínez, 1963). Some of these Mediterranean pines have traditionally 

been managed for production of resin and timber, recreation, and protection, with the last 

two objectives having increasing importance. A range of structural conditions (e.g. mono-

specific and even aged, multi-species, multi-layer) have resulted from the various 

management practices that have been applied, including the non-management option (e.g. 

multi-aged, multi-story). Stand age classes are typically defined as 20-year intervals for the 

species in the entire area (Serrada, 2008). Silvicultural practices include pruning and 

thinning, with timber extraction implemented over time by progressive cuts of low 

intensity. 

 

Figure 2. Location of the study area in the Central Range of Spain. It is a 
Mediterranean ecosystem that has been permanently covered with pine forests during 

period 1984–2009. 
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2.3 Ground plot data and derived ground plot attributes 

Two rounds of the Spanish National Forest Inventory data (NFI2 ca. 1990 and NFI3 ca. 

2000) (Bravo et al., 2002), including per tree measures of diameter at breast height (D), 

total height (H), and per plot number of trees (N), were used for calculation of biomass in 

605 plots spread over an area permanently forested with pines over the period 1984–2009 

(Gómez et al., 2012). In this area NFI plots were de facto measured during the 1992–1994 

and 2000–2004 campaigns of the NFI2 and NFI3 respectively. Live AGB was calculated 

with the species specific allometric equations of Montero et al. (2005) and Ruiz-Peinado et 

al. (2011) for all trees with D ≥ 7.5 cm. These equations can determine the dry biomass 

fraction of stem, roots, and branches of various dimensions; however, we did not consider 

the root portion in our analysis, and focused on the AGB. Absolute and relative change of 

AGB between the rounds of NFI was calculated (Table 2). NFI2 intra- plot structural 

complexity was evaluated as in Gómez et al. (2011a) calculating the median absolute 

deviation (MAD) of measured D (DMAD) and H (HMAD) in each plot: increasing values of 

the MAD indicate higher structural complexity, and a zero MAD value is possible but 

unlikely to occur if all trees in a plot have exactly the same dimension. Thirty two plots 

subject to complete resource extraction between the two NFI rounds were disqualified in 

support of our assumption of near to natural successional conditions, leaving 573 plots for 

further analysis. 

Table 2. Statistics of the attributes related to biomass (t ha-1) and structural complexity 
evaluated at NFI plots. 

Attribute 
type 

Plot 
Attribute 

Description Mean 
Std. 
dev. 

Min. Max. 

Biomass 

AGB1990 Above ground biomass NFI2 (1990) 93.29 67.09 1.45 352.08 

AGB2000 Above ground biomass NFI3 (2000) 109.36 68.99 0 398.90 

∆AGB 
Increment of AGB between NFI2 and 

NFI3 

14.80 50.07 -236.86 242.38 

Rel1990 Increment of AGB relative to AGB1990 0.79 2.55 -1 28.41 

Rel2000 Increment of AGB relative to AGB2000 -0.03 1.33 -17.00 0.96 

Structural 

complexity 

DMAD Median absolute deviation of D (1990) 4.59 3.93 0 8.00 

HMAD Median absolute deviation of H (1990) 1.81 1.18 0 24.35 
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2.4 Landsat data and processing 

Eight Landsat TM and ETM+ images (path/row: 201/32) spanning 25 years (1984–2009) 

(Table 3) were processed following standard procedures that include atmospheric 

correction of a reference image (date 2000) with the COST method (Chávez, 1988), 

relative radiometric normalization of the whole series with IR-MAD (Canty et al., 2004), 

ortho-correction with a 30 m digital elevation model, and geometric co-registration (RMSE 

< 0.5 pixel), following a processing flow recommended for detection of vegetation 

dynamics (Vicente-Serrano et al., 2008). A set of near anniversary images at an advanced 

date in the growing season was selected to minimize phenological fluctuations. Spectral 

vegetation indices related with forest biomass and structure such as the Normalized 

Difference Vegetation Index (NDVI) (Dong et al., 2003; Piao et al., 2005), the Tasseled 

Cap Angle (TCA) (Gómez et al., 2012; Powell et al., 2010; Pflugmacher et al., 2012) and 

the Tasseled Cap Distance (TCD) (Duane et al., 2010; Powell et al., 2010) were derived 

from normalized Landsat reflectances. The temporal trajectory, namely the sequence of 

spectral values obtained from consecutive images of these spectral indices at averaged 5x5 

pixel windows centred at the 573 NFI plots were identified and saved for analysis. 

Table 3. Landsat imagery used in the study. Reference image for relative radiometric 
normalization (22/08/2000) is highlighted. 

Landsat / 
Sensor 

dd/mm/yyyy 
Sun elev. 

(o) 
5 / TM 18/08/1984 52.89 

5 / TM 11/08/1987 54.11 

4 / TM 11/08/1990 54.38 

4 / TM 14/08/1991 51.68 

7 / ETM+ 22/08/2000 54.87 

5 / TM 07/08/2003 56.50 

5 / TM 25/08/2004 53.15 

5 / TM 23/08/2009 54.48 
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2.5 Relationships between ground plot estimates of AGB and spectral vegetation 
indices 

To explore the relationship between plot AGB and vegetation spectral indices (NDVI, 

TCA, and TCD), temporal spectral trajectories were compiled into a block of trajectories 

ordered by increasing value of AGB (Figure 3). For instance, the NDVIblock consists of 573 

NDVI trajectories (one per 5x5 pixel window-plot), and similarly the TCAblock and the 

TCDblock consist of 573 TCA and 573 TCD trajectories respectively. Each data system 

provides information that can be interpreted in the temporal or the biomass directions. 

Examined in the AGB direction, the spectral series represent at each date (1984 to 2009) a 

function of increasing AGB. At dates corresponding with the NFI2 (1990) and the NFI3 

(2000), the values of the biomass function are known (calculated from field measures). 

The spectral blocks of original trajectories (before wavelet smoothing) are characterized by 

high variability in the temporal and biomass directions, derived from sensor and 

environmental factors. Smoothing the system of spectral trajectories with a one-

dimensional wavelet transform in the biomass direction reveals the essential underlying 

relationship AGB-spectral index. We run a discrete wavelet transformation through a 

family of Meyer wavelets, specifically adapted for sampled series (Daubechies, 1992; 

Lindsay et al., 1996) followed by multi-resolution analysis for interpretation. The 

multilevel wavelet transformation smoothes the spectral system by isolating high 

frequency noise from the lower frequency basic signal (Figure 3). The level of 

decomposition necessary to isolate base information is related to the number and frequency 

of samples, and it is linked to the family of wavelets used. We run an eight level 

decomposition and found level six, with highest measure of variance, the most useful for 

description and interpretation. Running the wavelet transform simultaneously over the 

complete spectral block (1984–2009) rather than a single date function provides 

information of local (AGB) and temporal discontinuities, irregularities or exceptions, as 

well as an easy means to visually interpret information (Freitas and Shimabukuro, 2008). 
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Figure 3. TCAblock for exploration of the relationship between the spectral index and plot AGB. 
The level 6 approximation of the smoothed system is represented. A positive relation AGB 
(TCA) is evident although broken at intervals by the influence of endogenous (structure) and 

exogenous (topography, sensor) factors, conferring the system its wavy aspect.
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In the following sections we describe the process followed for modelling and mapping 

historical AGB and AGB dynamics during period 1990–2000. Figure 1 provides a 

summary of all stages to aid the reader in following the methods presented. 

2.6 Derivation of dynamic spectral variables and trajectory models 

The temporal series of spectral values depict rich and complex information that typically 

require specifically developed methods to expose. In order to derive an assortment of 

dynamic variables, each relating inherent temporal dimensionality, original trajectories and 

temporal derivatives (Gómez et al., 2011b) of a set of plots measured on the ground were 

considered (N1=573). The sparse and irregular character of the series of spectral data 

available, with 8 samples in a 25 year interval (Table 3) required regularization by linear 

interpolation for completeness and easiness of interpretation. The state (original trajectory) 

and process (temporal derivative trajectory) of NDVIblock (573 NDVI trajectories) and 

TCAblock (573 TCA trajectories) were independently organized (ordered) by a biomass 

attribute (AGB1990, AGB2000, ∆AGB, Rel1990, or Rel2000) and subject to a 2D wavelet 

smoothing filter. In this way, 16 ordered and smoothed data systems (M1 to M16) were 

considered (Table 4) and identified as dynamic variables (Figure 1, box 1). For instance, 

M11–M16 describe the successional path of these forests, while M1–M10 describe the 

changing pace, as represented by NDVI and TCA values over time, always relative to this 

particular area. The wavelet transform scale was adjusted in each direction, with six levels 

in the biomass direction and two levels in the temporal direction. For each system (Table 

4) the domain of a dynamic variable is defined by semi-automatic identification of six to 

eight distinctive curve patterns (Figure 4, bottom). The independence of the smoothed 

systems and associated dynamic variables is assured by the individuality of the ordering 

criteria (Figure 4, top). 

The dynamic variables can be grouped as state or process variables (Table 4). State 

variables are made up by the temporal spectral trajectory, while process variables are 

associated with the temporal derivatives of those trajectories (Gómez et al., 2011b). 

Ideally, if endogenous factors (e.g. structural complexity) and exogenous factors (e.g. 

topography, sensor limitations) were controlled or suppressed, state variables could 

describe the evolution of forest biophysical parameters related with spectral indices, and 

process variables would represent the rate at which those processes of change occurred. In 
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reality, only approximations can be interpreted, as no single state or process variable is 

capable of completely explaining the biophysical development of forests.

Figure 4. Illustration of stages in the derivation of dynamic spectral varia
examples of independent and smoothed (2D wavelet) ordered data systems: M14 (NDVI 

state trajectories ordered by AGB
AGB2000); M11 (TCA state trajectories ordered by AGB
ordered by AGB1990). Bottom: examples of modelled NDVI process patterns obtained from 

the data system M10 (NDVI process trajectories ordered by AGB
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As an example, M5 (Table 4) is a process variable originated by the system of TCA 

derivative trajectories ordered by AGB2000 and smoothed in two directions (time and 

biomass). M5 domain consists of 8 patterns for period 1984–2009: in this area the TCA 

rate of change at the plot level follows one of 8 patterns, each one expected to be related to 

a different amount of AGB. To enable later comparison, model curves were normalized 

and scaled between zero and one. 

The effectiveness of spectral trajectories as predictor variables is likely to be related to 

duration and starting position, which in turn might be limited by data availability. 

Acknowledging the importance of these features we tested the performance of two versions 

of each variable. Hence, in addition to the complete 25-year (1984–2009) spectral 

trajectory available, a 15-year (1990–2004) version, spanning the time lapse between NFI2 

and NFI3 measurements, was considered. The initial point of the 15-year variables is 

coincident with NFI2 ground measurements. 

2.7 Attribution of dynamic spectral variables to unmeasured locations 

Intending to recognize the nature of the spectral trajectories with highest capacity to 

describe AGB, dynamic variables related with successional processes have been created in 

a process with controlled AGB parameters. The predictive capacity of these variables has 

to be tested over locations of unknown AGB. In order to assign values of each dynamic 

variable domain to any ground location of unmeasured AGB, its corresponding temporal 

spectral trajectory is included into a system of spectral trajectories. The system needs to be 

subject to mathematical transformations similar to the models: ordering and 2D wavelet 

smoothing (Figure 1, box 2). In this case, as AGB parameters are unknown, spectral 

indices (NDVI, TCA) and derivative values (PITCA, PINDVI) are employed as ordering 

features, as proxies to biomass and biomass changing properties (Table 4). We attempted a 

series of a priori reasonable proxies and created 14 spectral systems with spectral 

trajectories linked to ground plots. The process of attribution was based on identification of 

most similar pattern; with this purpose each system of curves was compared with the 

model counterparts. Since optimal proxies are not identified in advance, a priori various 

pairings are feasible: for instance system A1 curves (ordered by PITCA-1990—the value of 

TCA derivative at date 1990) were compared with models in M1 to M5 (five 

comparisons), system N11 curves (ordered by NDVI1990) were compared with models in 

M14 to M16 (three comparisons) and so on (Table 4). Fifty-eight combinations (18 state 
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and 40 process) were possible. The number of spectral trajectories (N2) necessary to 

develop a suitable system is not fixed, but should be enough to be fitted for the wavelet 

transform parameters. For the sake of verification, the same set of ground plots previously 

used to build the curve models (AGB known case) are now attributed (AGB unknown 

case). 

Table 4. Dynamic variables derived by transformation of spectral trajectories with a 2D 
wavelet smoothing of an ordered system. Fifty-eight combinations resulted from pairing 

sample systems (AGB unknown case) and model systems (AGB known case). 
  VARIABLE CONSTRUCTION ATTRIBUTION 

Group of 
dynamic 
variables 

Spectral 
index 

Model 
ordering 
attribute 

Variable 
identifier 
(# domain 
patterns) 

Independent 
ordering attribute 
(biomass feature 

proxy) 

System 
identifier 

State 
(Trajectory 
1984–2009) 

TCA  
AGB1990 M11 (6) TCA1990 A11 
AGB2000 M12 (8) TCA1984 A12 
∆AGB M13 (8) TCA2004 A13 

NDVI  
AGB1990 M14 (7) NDVI1990 N11 
AGB2000 M15 (7) NDVI1984 N12 
∆AGB M16 (7) NDVI2004 N13 

Process 
(Derivative 
1984–2009) 

TCA  

∆AGB M1 (7) PITCA-1990 A1 
Rel1990 M2 (7) mean PITCA-1990-2004 A2 
Rel2000 M3 (7) PITCA-1995 A3 

AGB1990 M4 (8) PITCA-2004 A4 
AGB2000 M5 (8)   

NDVI 

∆AGB M6 (7) PINDVI-1990 N1 
Rel1990 M7 (8) mean PINDVI-1990-2004 N2 
Rel2000 M8 (8) PINDVI-1995 N3 

AGB1990 M9 (8) PINDVI-2004 N4 
AGB2000 M10 (7)   

 

Trajectories are compared with the model curves of coupled systems, which are uniquely 

identified with a categorical value, and the most similar pattern is assumed and adopted at 

each plot. For example the 573 curves in system A1 are compared to seven model patterns 

in M1, each one acquiring the value of the most similar M1 pattern. Similarity was 

evaluated with the Dynamic Time Warping (DTW) (Giorgino, 2009), a flexible algorithm 

for alignment of vectors (e.g. time series). DTW compares and evaluates the difference 

between series of values, and it is more sensitive than the Euclidean distance to distortion 

in the time axis (Ratanamahatana and Keogh, 2005) allowing certain stretch or 

compression defined by user criteria, such as delays in a curve maxima or minima. At the 
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end of the attribution process each plot is characterized with 58 curve patterns, some of 

which might be relevant to describe its AGB, as linked to a particular successional path. 

2.8 Decision trees for modelling historical AGB 

With ground plots characterized by dynamic variables, we can test the ability of these 

variables to predict AGB by statistical modelling. Decision trees (Breiman et al., 1984), 

also known as CART, identify relationships between a single continuous response variable 

(AGB) and multiple explanatory variables of either continuous and/or discrete character, in 

our case a collection of static (NDVI and TCA at various dates) and dynamic variables 

(Table 5). A binary recursive partitioning process based on combinations of variables 

(rules) that best distinguish the variation of AGB enables identification of relevant 

independent predictors. This nonparametric method for categorization of samples into 

increasingly homogeneous groups (nodes) does not make assumptions regarding the 

distribution of the input data and is robust to errors in the input. Decision trees have been 

widely used for predicting complex, nonlinear relationships between forest attributes and 

remotely sensed images (e.g. Saatchi et al., 2007). 

Each plot was characterized with the biomass attributes (Table 2), the spectral indices at 

various dates (Figure 1, box 3), and its most similar patterns of dynamic variables in the 

25-year and 15-year versions (Table 5). These sets of data were input for the CART 

analysis in Matlab® (Figure 1, box 4). Samples were split into calibration (50%) and 

validation (50%) sets, assuring both sets covered the entire range of AGB (1 to 350 t ha-1). 

To fit the model, a cross-validation process with ten iterations was performed and to avoid 

over-fitting, we considered the establishment of a minimum number of cases in terminal 

nodes and pruning with the 1 standard error rule (Breiman et al., 1984). 

Table 5. Input variables to decision trees for modelling historical AGB in pines of 
central Spain. 

Character Nature Variables 

Static Spectral indices 
TCA 1984, 1990, 2000, 2004, 2009 
NDVI 1984, 1990, 2000, 2004, 2009 
TCD 1984, 1990, 2000, 2004, 2009 

Dynamic 
State patterns (18) 

TCA related trajectory 1984–2009 
NDVI related trajectory 1984–2009 

Process patterns (40) 
PITCA related trajectory 1984–2009 
PINDVI related trajectory 1984–2009 
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2.9 Mapping historical AGB dynamics and validation 

To map and assess the biomass and carbon content over the entire area, AGB models 

derived at the plot level (5x5 pixel window) were applied to spatial units defined on the 

Landsat image as small multi-pixel objects, within which the spectral trajectory is the 

average of the component pixels (Figure 1, box 5). As we aim to derive AGB maps for 

years 1990 and 2000, contemporaneous images were individually segmented with 

Definiens Cognition Network Technology® (Baatz and Schäpe, 2000; Definiens, 2005) 

(scale parameter 1.5; color-shape 0.9-0.1; smoothness 0.5; homogeneity based on Landsat 

bands 3, 4, and 5) into objects of 3.1 ha and 2.5 ha on average, in the same scale range of 

the 5x5 pixels window used for modelling. Objects were characterized with static and 

dynamic predictors and classified following the best decision tree model rules. Through 

this process each spatial object acquired an AGB (t ha-1) value and its related standard 

deviation as a measure of uncertainty. 

Among other advantages, pixel-based mapping facilitates comparisons and evaluation of 

change with direct algebraic calculations, and it offers the option to define aggregation 

units for particular applications. Pixel-based maps were derived from the object maps 

initially produced: each pixel was assigned the AGB (t ha-1) and uncertainty (E1990, E2000) 

values of the object it belongs to, and from these maps the AGB change (∆AGB) map was 

derived (Figure 1, box 6). The ∆AGB map consists of three layers: a main map evaluated 

by differences in pixel nominal values and two other layers depicting scenarios of 

maximum added uncertainty (eq. 1). 

∆AGB = (AGB2000 - AGB1990) ± (E1990 + E2000) eq. 1 

Detailed maps of carbon stock and carbon flux due to biomass change over the period 

1990–2000 can then be derived from the biomass maps using a 0.5 multiplier of AGB to 

carbon (Kollmann, 1959; Penman et al., 2003). As a standard, this biomass to carbon 

relation is widely used (e.g. Krankina et al., 2004; Houghton et al., 2007) and enables 

comparison and reporting of regional and global carbon stocks (e.g. Keith et al., 2009; 

Houghton, 2005). 

In order to validate the raster map of change, it was cross checked with the original values 

of plot ∆AGB distributed into six categories. To identify sources of confusion we used an 
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3.2 Relationship between ground plot estimates of AGB and spectral vegetation indices

Our exploration of the relationsh

wavelet transformations revealed an underlying strong connection, influenced by forest 

structural complexity (expressed by the diversity of ground plot measured diameters and 

heights) and affected by exogenous factors. 

transform decomposition had the 

variability in the original series and therefore has the highest explanatory power. 

first quartile of increasing AGB, 

almost coincident trend (Figure 6, left). The relationship of TCD with AGB is strongly 

influenced by forest structure, in particular by local 

(Figure 6, right) and it is not constant over time as 

levels of wavelet transform decomposition (level 7 and 8) curves flatten on the end 

corresponding with the plots with the largest amount of biomass, poi

saturation at high levels of biomass. We interpret the strong wavy effect observed in all 

curves, quasi coincident when corrected by structure, as an influence of forest cover and/or 

variation in terrain features (i.e. 

Figure 6. Approximation 6 of the Discrete Wavelet Transformation (DWT) decomposition of 
vegetation spectral indices (NDVI, TCA, TCD) as a function of AGB. Left: NDVI and TCA follow 

a similar non-linear trend with increasing AGB, whilst
relationship. Right: same as left but spectral indices are corrected with structural diversity factors 
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When analysing the sub-sample of 182 plots regularly distributed every ~1.7 t ha-1 over the 

range 1–310 t ha-1, the detail function of level five revealed some sections with maximal 

variation found at regular intervals, suggesting categories equivalent to ~50 t ha-1. Only the 

NDVIblock showed an apparent stability of these groups over time. 

3.3 Decision trees for modelling historical AGB  

In building the decision trees for modelling AGB, different combinations of predictor 

variables were tested (Table 6) and the relevance of each group of variables was evaluated. 

All fitted models were statistically significant (p-value < 0.001) but exhibited variable 

levels of correlation between AGB and the spectral predictors (Table 6). Models were 

applied to the independent set of data for validation and their performance was assessed 

with the Root Mean Square Error (RMSE), the correlation coefficient (R2), percentage 

average error (ME), and bias. 

Table 6. Summary of modelling results when including different sets of variables. 
NDVI process patterns are best predictors. The entire 25-year pattern variables yield more 
accurate and precise results than the 15-year pattern variables, but a combination of both 

yields best results. 
  Fitting Validation 
 Variable R R2 RMSE (t ha-1) % Mean error Bias 

AGB1990 

All  0.95 0.90 32.2 0.34 0.99 
25-year pattern 0.84 0.68 58.7 0.62 1.02 
15-year pattern 0.76 0.54 70.9 0.74 1.01 
NDVI pattern 0.94 0.89 32.2 0.36 0.99 
TCA pattern 0.29 - - - - 
State trajectory 0.22 - - - - 
Static indices 0.18 - - - - 

AGB2000 

All 0.73 0.53 71.6 0.65 0.96 
25-year pattern 0.65 0.40 79.1 0.72 0.93 
15-year pattern 0.58 0.26 87.9 0.80 0.95 
NDVI pattern 0.65 0.41 78.0 0.71 0.92 
TCA pattern 0.18 - - - - 
State trajectory 0.22 - - - - 
Static indices 0.17 - - - - 

Trees yielding better results (higher R2, and lower RMSE, ME, and bias) include decision 

rules based on process and state patterns. Moreover, the best fitted tree (R=0.95) combines 

25- and 15-year NDVI process variables (Figure 7). When validated, this model shows 

high R2 and a small bias towards under-predictions; with a RMSE of 32 t ha-1 it produces 

errors of 34% on average. Modelling options that include either 25- or 15-year patterns are 
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not optimal; however, the model based on the entire 25-year trajectory patterns yields 

better results. Static indices alone or together with state trajectories did not model biomass 

satisfactorily, they produced low correlations. Interestingly we found NDVI process 

patterns more relevant than the analogous TCA patterns in describing historical AGB, 

despite a similar relationship of either static index with biomass. 

Decision trees modelling AGB1990 have a common feature, a first split of plots with AGB > 

100 t ha-1 (31% of the sample) into one branch and plots with AGB < 100 t ha-1 (69% of 

the sample) into the other branch (Figure 7). Unless restricted by selective inclusion of 

predictors, the initial split is determined by a rule based on an NDVI process pattern: in 

other words, the rate of stand development is the most relevant factor for identifying plots 

with large amounts of AGB (which are presumably more mature) from low AGB (and 

frequently younger) plots. The criteria for further splitting the group of plots with more 

than 100 t ha-1 of biomass include process patterns associated with relative 

(∆AGB/AGB2000) and absolute change (∆AGB) of AGB. The group of low AGB plots (i.e. 

< 100 t ha-1) is further categorized by patterns associated with AGB1990 and AGB2000) 

(Table 4). Just one static index, the TCA1990, was present in an accurate classification of 

the ground plot biomass. Five out of the six terminal nodes in the best fitting tree are 

defined by 25-year patterns, highlighting the convenience of longer term information. In 

only one case was a TCA pattern of change used to split the largest branch in the decision 

tree. 

For interpretation of the dynamic predictors and to associate them with ecological change 

and forest succession, their relative value acquired by normalization and scaling requires 

consideration. For instance, the plots with the larger values of AGB in 1990 are related 

with a pattern characterized by a constant and relatively low speed of NDVI variation, 

positive over most of the period 1990–2004, (it appears constant and close to maximum in 

the scaled curve (model 3 in Figure 4, bottom)). This is in agreement with expectation 

from a relatively mature and healthy closed canopy stand. Other patterns of this predictor 

that identify plots with relatively low AGB represent a varying speed of change, with 

minimum and maximum at specific locations: for instance the plots with the lowest AGB 

are characterized by a pattern that goes from an absolute minimum speed of NDVI 

variation (PINDVI) in 1990 to an absolute maximum PINDVI after only a few years, followed 

by stabilization probably associated with the closing of the canopy. 
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with the history of spectral indices and a collection of past and prospective changing 

. Results of modelling 

value < 0.001) best fitting 

trees having a correlation with the sample of R=0.73. Models show a general tendency to 

=0.53). With high ME (70%) 

, the variables related 

with changing processes have stronger predictive power than those related with state, 

change to model development. Attempts to 

) change of biomass were 

unsuccessful, with no direct relation between these variables and the estimators considered. 
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3.4 Mapping historical AGB dynamics and validation 

In the process of mapping AGB1990, 26,406 objects resulted from segmentation of the 

contemporaneous Landsat image, 40.4 % of which (10,693) was classified by the decision 

tree branch of larger AGB values (> 100 t ha-1). Ninety-five percent of objects achieved 

terminal nodes of the decision tree, indicating consistency in the up-scaling from plot-level 

model to object-level classification: all combinations of the relevant spectral trajectories 

characterizing AGB at the plot level correspond with combinations of averaged spectral 

trajectories of spatial objects with the same AGB (t ha-1). 

The biomass allocated in the aboveground fraction of trees in year 1990 was on average 

77.6 t ha-1 (total in the area amounts 6295 × 103 t), and it was estimated to be 91.5 t ha-1 

(7415 × 103 t) ten years later (2000). The difference of calculated AGB represents an 

increment of 1.3 t ha-1 y-1 on average and the total increase in the area is equivalent to 560 

× 103 t of C. Considering individual objects imprecision, global values of AGB1990 and 

AGB2000 range between 5.5 and 7.1 × 106 t and between 3.4 and 11.3 × 106 t respectively, 

and as expected from the modelling results, the later date contributes notably more to the 

uncertainty of estimated change. By means of the multilayer raster maps we evaluated total 

change in the case scenarios of additive uncertainties derived from modelling and 

mapping, obtaining values of 2.9 t ha-1 y-1 loss and 8.5 t ha-1 y-1 gain on average. A detail of 

the multilayer maps of biomass change in Figure 8 shows the spatial distribution and 

variability that exists, information of crucial value for management. 



 

Figure 8. Top: detail of the object based biomass maps in 1990 (A) and 2000 (B). 
Bottom: detail of multilayer 

change. (C) optimistic result derived from uncertainty; (D) nominal change; (E) pessimistic 

Validating the raster map of change by cross checking with the original values of plot 

∆AGB distributed into six categories

errors are recorded in intermediate categories

values in the matrix point to a 

Overall, 70% of checked points

 

Top: detail of the object based biomass maps in 1990 (A) and 2000 (B). 
Bottom: detail of multilayer ∆AGB maps showing spatial distribution and variability of 

change. (C) optimistic result derived from uncertainty; (D) nominal change; (E) pessimistic 
result derived from uncertainty. 

the raster map of change by cross checking with the original values of plot 

AGB distributed into six categories, low producer’s (21–27%) and user’s (16

errors are recorded in intermediate categories (Table 7). However

values in the matrix point to a slight tendency to overestimate incremental biomass. 

of checked points were classified into the correct category of 
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Top: detail of the object based biomass maps in 1990 (A) and 2000 (B). 
AGB maps showing spatial distribution and variability of 

change. (C) optimistic result derived from uncertainty; (D) nominal change; (E) pessimistic 

the raster map of change by cross checking with the original values of plot 

and user’s (16–23%) 

owever, the distribution of 

tendency to overestimate incremental biomass. 

category of AGB change. 



28 

 

Table 7. Accuracy matrix of the raster map of biomass change categories. 
  Plot change (t ha-1) (reference)  

P
oi

nt
 ∆

A
G

B
 (

t h
a-1

)  <-100 
-100/-

50 -50/0 0-50 50/100 >100 
User’s 
metrics 

<-100 0 0 2 1 0 0 0 
-100/-50 3 1 10 33 8 0 0.25 

-50/0 3 2 11 28 9 0 0.77 
0-50 14 15 50 143 53 17 0.84 

50/100 3 7 16 61 8 5 0.74 
>100 2 3 8 26 8 1 0.19 

 Producer’s 
metrics 0.12 0.11 0.73 0.79 0.80 0.26 0.70 

 

4. Discussion 

Historical forest aboveground biomass was modelled, evaluated, and mapped in 

Mediterranean pines of Spain combining a set of NFI plots representative of the forest 

conditions present and spectral data captured by Landsat sensors over a period of 25 years 

(1984–2009). As a baseline for comparison with more recent estimates, an assessment of 

past AGB with spatial detail is of value to support monitoring and reporting commitments. 

In this area, characterized by absence of major perturbations and moderate human 

intervention during succession stages, dynamic variables of change (i.e. predictors 

combining data captured at various dates), showed higher predictive capacity than static 

variables to explain the variability of AGB retrospectively. 

Spectral response is related to forest structure (Cohen et al., 1995) and develops 

progressively with successional state (Peterson and Nilson, 1993). Under equal 

environmental conditions and absent disturbance, forest stands develop similarly and are 

expected to show similar temporal spectral trajectories, although slight deviations from a 

pattern may exist. However, although forest attributes have been modelled accurately with 

spectral variables, forest change remains elusive for direct modelling: spectral differences 

alone have demonstrated inadequate for the purpose (Healey et al., 2006), and trends of 

spectral trajectories do not necessarily have a direct relation with the increase or decrease 

of biomass (Campbell et al., 2012). 

Our previous attempts to model biomass in the Central Range of Spain with single date 

optical data were limited, characterized by moderate fitting correlation (R=0.7) and ME of 

0.78 (Gómez, 2006). Also in the same area, Vázquez de la Cueva (2008) found structural 
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parameters (canopy crown closure, stand height, stem density, and basal area) 

insufficiently explained by the multispectral predictors selected to derive empirical models; 

however, the Tasseled Cap Wetness had a stronger relation with forest density than NDVI 

or other TM/ETM+ bands. Interestingly, in this work we have found TCA significant as 

static variable, while patterns associated with NDVI were relevant as process variables. 

The TCD, more related to age and associated structural complexity than other Tasseled 

Cap-related indices in coniferous forests of Oregon, USA (Duane et al., 2010) was also 

found linked to forest complexity in these Mediterranean pines, despite a low correlation 

between AGB and parameters of structural complexity (Pearson’s R of 0.22, 0.24, with 

DMAD and HMAD respectively). In view of local difficulties to directly model forest 

attributes, we applied mathematical transformations based on 2D wavelet algorithms to a 

data-system created with information from two rounds of field measures and eight 

repetitions of calibrated spectral data, filtering fundamental relations from environmental 

and endogenous noise. Dynamic variables (i.e. variables with an inherent temporal 

component) associated with patterns of change, including rate and shape, characterized 

ground plots, and together with static variables served to model AGB and calculate AGB 

dynamics. This approach significantly improved previous results, but no single predictor 

was able to accurately classify biomass. 

Frequency and regularity of measurements can be critical in providing an accurate 

understanding of ecological processes. Gaps in a series of measures and irregular data 

frequencies leave intervals of uncertainty in explaining continuous processes that might be 

notable in ecosystems prone to rapid changes related to disturbance (Jin and Sader, 2005). 

Successional patterns are more predictable in undisturbed forests than in areas with 

unexpected perturbations (Schroeder et al., 2007; Vogelmann et al., 2009) and the rate of 

spectral variation is typically greater in immature stands when compared to more mature 

stands in similar environments. Wavelet transform analysis is particularly suited to detect 

anomalies in series of data (Mallat and Hwang, 1992) and does not require periodic 

sampling (Daubechies et al., 1999), conferring this approach versatility for analysis of data 

in a wide range of environments. The limited number of seasonally appropriate, cloud-free 

images available at the time of this study is not necessarily indicative of the full Landsat 

archive, which the USGS is currently consolidating with unique images held by 

International Cooperators (Loveland and Dwyer, 2012). As of writing, the European Space 

Agency has yet to provide Landsat data through the free and open access model 
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demonstrated by the USGS. Reportedly there are plans to share these European images 

with the USGS, which when implemented, will improve the density of images available 

over Europe. 

The temporal configuration (i.e. the duration, starting point, and position relative to the 

target date) of the dynamic variables (Figure 9) presumably affects the capacity to predict 

structural and successional forest attributes, as suggest different results in modelling AGB 

in 1990 and 2000. AGB1990 corresponds with the initial stages of a trajectory to resemble 

one of a series of temporal patterns, with possible deviations or delays of key features. 

Deviation of forest stands from standard expectations of development is often related to 

site index differences, canopy cover and density, or species characteristics, factors 

requiring attention when deriving, applying, and interpreting model results. Alternatively, 

AGB2000 corresponds with an intermediate position of the available spectral trajectories, 

with which processes are not aligned. The duration of spectral trajectory necessary to 

identify significant temporal patterns in AGB is presumably variable and site dependent. 

Liu et al. (2008) demonstrated that a series of images covering a longer period predicts 

forest age more accurately, but in some cases a shorter time series of imagery may suffice. 

In this work a combination of 25-year and 15-year trajectories was the best option for 

estimating retrospective AGB. Longer-term patterns may potentially explain the variability 

of AGB more precisely, but they may also introduce irregularities outside the time lapse 

between data used for calibration of the trajectory models; on the other hand, shorter-term 

patterns are more explicit and less prone to variations out of the reference period. Further 

work is necessary to clarify the distinctive effect that duration and relative location of 

spectral trajectories produce when employed as dynamic variables. Another set of ground 

plot measures (NFI4 ca. 2010) in this area is expected to be released shortly, with available 

spectral data completing the temporal series to that date and beyond (Figure 9). Hence the 

duration, starting point, and temporal character (retrospective, prospective or inclusive) of 

the trajectory will be available for further exploration. 



 

Figure 9. Schematic of options to investigate temporal configurations of dynamic 
predictor variables. Circles indicate dates to model; arrows indicate the end point of 

spectral trajectories. Retrospective case: the tr
date; prospective case: the trajectory interval is posterior to the modelled date; inclusive: 

previous and subsequent intervals of spectral trajectories are used to model and 

We chose Dynamic Time Warping (DTW) as a measure of series similarity for its 

documented optimal performance in fields like speech pattern recognition (Velichko and 

Zagoruyko, 1970) or clustering of gene expression profiles (Aach and Church, 2001), but 

the superiority of this measure over others in identification of patterns of forest spectral 

trajectories has not been widely demonstrated. Both the robustness of the DTW measure 

and the automation of pattern identification require further investigation.

The uncertainty reported 

modelling, but could also 

including location of plots, field measures, allometric equations, image capture, and image 

processing (Lu et al., 2012).

sample acquired to consistent specifications, such as

modelling (Duane et al.

trajectory patterns for accurate identification by the similarity algorithm. We identified 

confusion in the final map of change with an inclusi

Figure 9. Schematic of options to investigate temporal configurations of dynamic 
predictor variables. Circles indicate dates to model; arrows indicate the end point of 

spectral trajectories. Retrospective case: the trajectory interval is prior to the modelled 
date; prospective case: the trajectory interval is posterior to the modelled date; inclusive: 

previous and subsequent intervals of spectral trajectories are used to model and 
intermediate date attributes. 

 
e Dynamic Time Warping (DTW) as a measure of series similarity for its 
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Zagoruyko, 1970) or clustering of gene expression profiles (Aach and Church, 2001), but 

ority of this measure over others in identification of patterns of forest spectral 
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and the automation of pattern identification require further investigation.

reported in the final maps possibly originates from imprecision in 

also have originated at various stages of the overall approach, 

including location of plots, field measures, allometric equations, image capture, and image 

., 2012). To minimize the impact of these factors, a representative 
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confusion in the final map of change with an inclusive approach of all error sources, but 
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from plot based model to final maps, some aspects could be subject to individual testing, 

such as the equivalence of pixel and object trajectory or the vector to raster transformation. 

Estimates of AGB dynamics between 1990 and 2000 obtained in the current study are in 

agreement with complementary regional studies. For instance, pines in the Central Range 

were found to be more dense and mature in year 2000 than during the previous decade, and 

– as could be expected – accounted a net increment of biomass and carbon stock. 

Analyzing inputs and outputs recorded by NFI measures, Herrero and Bravo (2012) 

corroborated a net carbon sinking character between NFI2 and NFI3 rotations, with AGB 

allocated in pines of 85 t ha-1, while Montero et al. (2004) estimated an annual increment 

of 0.9 t ha-1 of pine biomass between 1993 and 2003. Gómez et al. (2012) reported a 

maximum rate of C stocking in this area for year 2000 with a later change of trend towards 

C loss during the 2000–2010 decade that forthcoming NFI4 measures may help 

corroborate. 

Information provided by Landsat spectral trajectories has been linked to field 

measurements, which has proven useful for improving the estimation of current biomass 

and other structural attributes, particularly in ecosystems with stand replacing disturbances 

(Pflugmacher et al., 2012). Furthermore, spectral trajectories have demonstrated utility for 

characterizing mountain pine beetle infestations (Goodwin et al., 2010) and for continuous 

monitoring of forest disturbance (Zhu et al., 2012). In this study, we have found that the 

identification of temporal patterns in the trajectory of vegetation indices (i.e. dynamic 

variables) provides useful information to model and explain historical biomass variability. 

 

5. Conclusion 

Remote sensing technology supports and enhances the value of national forest inventories 

for the assessment of biomass and carbon balance, and the Landsat archive in particular is 

a unique source of spectro-temporal data for modelling and mapping forest attributes. 

Mathematical transformations of original data are necessary to unveil underlying relations 

in complex environments, and to derive dynamic variables with explanatory capacity of 

past and present biophysical conditions. Dynamic process features such as pattern and rate 

of change were more relevant than static variables in the retrospective estimation of AGB 

in the Mediterranean pines of central Spain. Pines in these forests were found to have 
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accrued biomass over the decadal monitoring period, representing a net carbon sink. The 

approach presented herein allows for the retrospective estimation and mapping of AGB in 

order to establish a historical baseline and enable change reporting. 
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