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Abstract: This work proposes a quantile regression neural network based on a novel constrained
weighted quantile loss (CWQLoss) and its application to probabilistic short and medium-term
electric-load forecasting of special interest for smart grids operations. The method allows any point
forecast neural network based on a multivariate multi-output regression model to be expanded to
become a quantile regression model. CWQLoss extends the pinball loss to more than one quantile
by creating a weighted average for all predictions in the forecast window and across all quantiles.
The pinball loss for each quantile is evaluated separately. The proposed method imposes additional
constraints on the quantile values and their associated weights. It is shown that these restrictions are
important to have a stable and efficient model. Quantile weights are learned end-to-end by gradient
descent along with the network weights. The proposed model achieves two objectives: (a) produce
probabilistic (quantile and interval) forecasts with an associated probability for the predicted target
values. (b) generate point forecasts by adopting the forecast for the median (0.5 quantiles). We
provide specific metrics for point and probabilistic forecasts to evaluate the results considering both
objectives. A comprehensive comparison is performed between a selection of classic and advanced
forecasting models with the proposed quantile forecasting model. We consider different scenarios for
the duration of the forecast window (1 h, 1-day, 1-week, and 1-month), with the proposed model
achieving the best results in almost all scenarios. Additionally, we show that the proposed method
obtains the best results when an additive ensemble neural network is used as the base model. The
experimental results are drawn from real loads of a medium-sized city in Spain.

Keywords: short and medium-term electric-load forecasting; quantile forecasting; deep learning;
machine learning; deep learning additive ensemble model

1. Introduction

Electric-load forecasting aims to predict future values of electricity consumption in
a specific time horizon. Load forecasting is vitally important to utilities in many areas,
such as maintenance, operations, planning and reliability, and, especially for modern
infrastructures, e.g., smart grids [1]. Depending on the time horizon, we have short-term
(range of hours to a week), medium-term (from a week to a year), and long-term (more
than a year) forecasts. Depending on the expected outputs, a point forecast provides a
single forecast value as the most likely estimated value of the future load. Alternatively,
a density forecast provides an estimate of the future load probability distribution either
point-wise (assigning probabilities to point-forecasts) or interval-wise (quantile forecasts for
predefined probabilities). The first approach to density forecasting is based on extracting
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probabilities from a set of forecasts [2], and the second is based on quantile regression
models [3].

Achieving accurate load forecasts is difficult due to the noisy and nonlinear nature of
the underlying physical model. Forecasts in this area have been historically treated with
time-series statistical analysis methods, e.g., autoregressive integrated moving average
(ARIMA) [4], with a clear trend towards the use of machine learning techniques [5], and
with emphasis on the application of generic neural network (NN) models [6] and especially
deep learning (DL) models [7,8].

Load forecasting is based on a previous aggregation of load values in discrete time
intervals (time-slots), which can be seconds, minutes, hours. A forecast can be only for
the value in the following time slot or for several consecutive time-slot values (multistep
forecast). Similarly, the forecast can be based on a different number of previous values
(predictors). These predictors are formed with a sliding-window process applied to all past
values. The length of the sliding window determines the number of predictors. Finally, the
information to consider from the previous time-slots (predictors) can be extended to the
load values and additional information, such as date/time or weather data (multivariate
forecast). Including this additional (exogenous) information as new features imposes
difficulties on statistical analysis methods since only a few can cope with multivariate
forecasts [9]. This creates additional opportunities for machine learning and deep learn-
ing (ML/DL) techniques that easily handle vector-valued predictors. Considering all of
these alternatives as additional parameters turns the forecast problem into a challenging
multivariate multi-output regression problem. This work explores the influence of these
critical parameters when doing time-series forecasting: sliding-window length, multistep
ahead forecast length, and number/nature of features used to characterize the information
used as predictors. The influence of these parameters is combined with the different nature
exposed by the forecasting models.

In this work, we propose a novel quantile forecasting neural network (QFNN) model.
The model is intended for multivariate multistep forecasts, i.e., vector-valued predictors
(multivariate) and multistep forecasts (multi-output or multiple forecasts). A quantile
forecast for a target variable creates a prediction with an associated probability that the
actual values will be smaller than the predicted value (the quantile). A quantile forecast
model allows quantile and prediction interval (PI) forecasts. The latter considers a pair
of upper and lower quantiles. A neural network can produce quantile forecasts when
using a quantile loss [10]. There are several options for the quantile loss as variants of
the pinball loss [11,12]. When multiple quantile forecasts are produced, the quantile loss
will average individual quantile losses. In this work, we propose a novel quantile loss
that includes a constrained weighted average of the contributions to the loss made by the
different quantiles in a multi-quantile forecast.

The proposed constrained weighted quantile loss (CWQLoss) extends the pinball loss
to more than one quantile by creating a weighted average for all multistep forecasts (in the
forecast horizon) and across all quantiles. The pinball loss for each quantile is weighted
separately. The proposed method imposes additional constraints on the quantile values
and their associated weights. The imposed restrictions consist of guaranteeing symmetric
quantile values around the median with their associated weights having identical values
for symmetric positions around the central weight (associated with the median). These
restrictions are critical for a stable and efficient forecast model, as shown by experimental
results (Section 4). The quantile weights are configured as learnable parameters of the NN
similar to the other network weights, allowing all model parameters to be trained in a
comprehensive end-to-end manner.

The resulting QFNN with the proposed CWQLoss (CWQFNN) is arranged as an
extension to any NN that produces a point forecast by adding an additional layer that
transforms the point forecast into multi-quantile forecasts. Therefore, the proposed model
consists of (a) a point-forecast NN architecture that serves as a base model, (b) an additional
layer composed of several fully connected linear layers (one for each generated quantile),
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(c) an end-to-end training of the resulting NN using the CWQLoss. The only requirement
for a base model is to be trainable end-to-end by gradient descent and support the addition
of a final layer in both the training and prediction stages. Thus, we have considered as base
models several configurations of 1D and 2D convolutional neural networks (CNN) [13,14],
long short-term memory (LSTM) [15] networks and their combination, as well as several
additive ensembles (AE) deep learning models especially suitable for time-series forecast-
ing [9,16]. We do not include sequence-to-sequence (Seq2seq) models as a base model since
the forward pass for the training, and test stages are different with added complexity for
the proposed extension.

In this work, we apply the CWQFNN architecture to short and medium-term load
forecast (SMTLF), considering forecast horizons of 1 h, 1-day, 1-week and 1-month, with
different numbers of predictors (Section 3.1) and with an aggregation time-slot of 1 h. We
obtain the experimental results by applying the different models to a real dataset of power
consumption from a Spanish utility for the province capital of Soria (Spain). This dataset
has been extensively studied previously [17].

We provide a comprehensive comparison between CWQFNN and a significant num-
ber of state-of-the-art (SOTA) data-driven forecasting models, some of them widely applied
to time-series forecasting and others novel or rarely applied to SMTLF, such as (a) classic ma-
chine learning (ML) models, e.g., linear regression and random forest [18–21], (b) multilayer
perceptron [5], (c) deep learning models based on separate CNN and recurrent neural net-
works (RNN) [19,20], (d) dynamic mode decomposition (DMD) [22–24], (e) deep learning
(DL) models based on specific combinations of CNN and RNN [25,26], (f) sequence-to-
sequence (Seq2seq) models with and without soft attention [27–29], and (g) deep learning
additive ensemble models especially targeted for time-series forecasting [9].

We have not considered time-series statistical analysis methods (e.g., ARIMA . . . )
because they produce a model for each specific sequence of past values, i.e., the training of
the model is based on a specific input sequence, which is problematic when the objective
is to have a unique model that can be used to forecast any time-series from a training
dataset. Furthermore, the extension of these models to vector autoregression or multivariate
scenarios produces very complex models (e.g., VARIMA, VARMAX...). These types of
models are called local models [6], while our interest is in global models that consist of a
single model applied to the entire population of time series in our dataset. This situation
is different from classic ML models, e.g., linear regression and random forest, which are
global models, but produce a single output, requiring to have as many models as output
values (forecast horizon length).

Considering the difficulties in evaluating the prediction performance associated with
point and quantile load forecast, we have obtained six metrics to assess the performance of
point forecasts and ten metrics for quantile forecasts. The point-forecast metrics provided
are median absolute error (MAD), relative root-mean-square error (RRMSE) and symmetric
mean absolute percentage error (sMAPE). We also provide the evolution of these metrics
under different parameter values, such as the time-ahead forecast interval and the sliding-
window length. The probabilistic forecast metrics considered are quantile score (QS),
Winkler score (WS), sharpness and absolute average coverage error (AACE) for two central
prediction intervals (PI) with probabilities of 98% and 50%.

It is worth noting the excellent results of the additive ensemble (AE) deep learning
models [9,16,30] and how they excel in average results and in longer-term (most difficult)
forecasts. The good behavior of deep ensembles has lately attracted considerable attention
from different points of view. The best results of a deep ensemble are related to a better
exploration in the solution space due to the independent random initialization of each
element of the ensemble [31], in line with other studies that connect the importance of a
rich set of random initializations with the behavior of deep learning models [32]. Deep
ensembles can also improve uncertainty estimates for samples outside the expected data
distribution [33]. This work contributes to providing additional results that confirm the
good behavior of deep ensembles under an additional perspective provided by quantile
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forecasting. In previous works [9,30], AE has been applied to time-series forecasts with
a panel data structure (a list of entities, each with an associated time-series). In contrast,
this work applies it to a time-series for a single entity (a single utility) with different
requirements for data preparation and the validation/testing process.

The main advantages of this work over related solutions based on quantile loss are:
(a) Compared to loss-unweighted approaches, CWQLoss obtains the best point and quan-
tile forecast results than unweighted quantile loss (Section 4). Additionally, the crossover
rate with CWQLoss is much smaller than with the unweighted loss. Crossover occurs
when a quantile forecast for a quantile with an associated lower probability is greater
than the forecast for an upper probability quantile, and its rate is the estimated proba-
bility of this happening in any forecast. To achieve a low crossover rate, CWQLoss does
not require the use of complex base models or intricate loss functions; meanwhile, solu-
tions based on the unweighted quantile loss need to add strict monotonicity constraints
on the network weights plus additional model parameters as in [34] or to add complex-
ity to the quantile loss function by including crossover errors as a regularization term
as in [35]. (b) Compared to loss-weighted approaches, weighted quantile regression has
been applied previously, but with quantile-weights assigned manually as in [34] or not
included as part of the model parameters in neural networks as in [36,37] and, none of
them proposes constrained values or are learned end-to-end by gradient descent. We show
that quantile forecasts improve with a weighted quantile loss (Section 4) and particularly
when the quantile-weights are constrained and are learned end-to-end along with the rest
of the network weights. (c) Compared to generic quantile regression models, composite
quantile regression (CQR) models are known to be robust, but complex and computa-
tionally demanding [38–40]. CWQLoss produces robust CQR architectures with minimal
increase in base model complexity and an efficient iterative optimization method using
gradient descent.

The CWQFNN architecture achieves two objectives: (a) produce probabilistic (quan-
tile and interval) forecasts with an associated probability for the predicted target values;
(b) generate point forecasts by adopting the forecast for the median (0.5 quantiles). We
provide specific metrics for point and probabilistic forecasts to evaluate the results consid-
ering both objectives. As shown in Section 4, the proposed architecture generates excellent
prediction results for different base NN models with few extra requirements in terms of
computation time and added complexity. The model presents the best point-forecast results
for long-term forecasts and excellent quantile-forecast results using probabilistic metrics.

The motivation of the work is to propose a novel technique that is useful for point-
forecasts, which are important for the operations and planning of utilities, and contribute
to the availability of probabilistic forecasts as a valuable tool to identify new applications,
such as (a) detection of anomalous consumption patterns due to excessive deviations from
prediction intervals, which can be used as alarms for security or fraud situations and,
(b) what-if simulations for non-standard load scenarios and their consequences. Legacy
electrical grids are evolving to so-called smart grids, where different parts of the grid
are being modernized thanks to information and communication technologies (ICT) and
IoT (Internet of things). Despite its many advantages, one of its main risks is related to
cybersecurity and fraud attacks [41], and any initiative to help in this area could be valuable.

The contributions of this work are: (a) propose a novel QFNN architecture that
includes a new quantile loss that allows extending a regression NN, acting as a base model,
to become a quantile forecasting model; (b) provide a new weighted quantile loss that is
based on specific constraints easily incorporated into the network model, allowing and
end-to-end training of all model parameters by gradient descent; (c) propose an architecture
(CWQFNN) that does not require transforming the base model [34] or adding complex
extensions to the loss function [35] to ensure efficient quantile forecasts with a small
crossover rate; (d) present a thorough analysis and comparison between CWQFNN and
a significant number of alternative methods with a special emphasis on novel methods,
e.g., additive ensemble deep learning, DMD, Seq2seq and combinations of CNN/RNN
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models; (e) show the excellent performance results obtained by CWQFNN in general and
its particular good combination with an additive ensemble (AE) deep learning base model;
(f) apply all the models to a previously well-studied dataset of real electricity consumption,
allowing comparisons to be made on a single dataset in a homogeneous and structured way,
which allows comparing results and drawing conclusions on a common basis; (g) include
the influence of important parameters in the study, i.e., sliding-window length, k-step
ahead forecast length, and a number of features associated with the time-slots; (h) present
the best groups of models according to different forecast objectives; (i) apply for the first
time to SMTLF, as far as we know, an AE deep learning model [9] and extend it to the
particular needs of SMTLF.

The paper is organized as follows: Section 2 summarizes previous works. Section 3
describes the dataset and models employed. Section 4 details the results, and Section 5
presents the conclusions.

2. Related Works

We will present related works considering the applied methods and global review
studies. The presentation will focus more on adopted methods and processes than on
performance metric comparison since the diversity of datasets, the difference in load magni-
tudes, the differences in the implementation of the metrics and the various test/validation
procedures make it very difficult to perform a homogeneous comparison of results. We will
focus on related works corresponding to the alternative models used to compare the results
obtained by CWQFNN, as well as works related to quantile forecasting applied to SMTLF:

a. Review works: The work in [5] presents a comprehensive review of the techniques
used to forecast electricity demand, analyzing the different types of forecasts, param-
eters affected, techniques used, together with a literature review and a taxonomy
of the main variables involved in the problem. The work in [19] presents a detailed
review of recent literature and techniques applied for building energy consumption
modeling and forecasting.

b. Quantile forecasting applied to SMTLF: The work in [10] presents theoretical bases
on the effectiveness of the pinball loss function to achieve quantile estimations. A
comparison of quantile regression techniques for weather forecasting is provided
in [42] with a recommendation to use ensemble models. A gradient descent algorithm
for quantile regression is proposed in [12]. The work proposes a special function to
smooth the pinball loss. The technique is extended to a boosted quantile regression
algorithm, and the results are obtained with simulated datasets. There are several
works presenting probabilistic forecasting neural networks for load forecasting.
In [43], a smoothed quantile loss with a CNN network is used to build a multi-
quantile forecast estimator. The pinball loss is smoothed with a log-cosh function.
The model is applied to residence load forecasting. A similar model is proposed
in [44] with an NN based on ResNet with skip connections. The pinball loss is
not smoothed. The work analyzes the impact of the network depth and the skip
connections. The dataset used is the open-source GEFcom2014. In the same line of
work, [45] obtains quantile forecasts with an NN based on an LSTM network. A
Huber smooth function is applied to the pinball loss. The work presents results for
residential and small businesses load forecasting using a public data set. The same
smooth pinball loss proposed in [12] is used in [11] for quantile forecast of energy
consumption using the GEFcom2014 dataset. To reduce quantile crossover, they
propose a special weight initialization of the neural network. In [35] the quantile loss
is regularized with an additional term to take into account the crossover quantile
errors. The dataset used is also GEFcom2014. All the previously mentioned works
apply variants of the quantile forecasting model, including neural networks, but
none propose a constrained weighted quantile loss fully incorporated as learnable
parameters in the network architecture and capable of extending any point-forecast
NN into a quantile forecast model.
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c. Dynamic mode decomposition (DMD) applied to SMTLF: Considering related
works corresponding to the alternative models used as comparison models for the
CWQFNN (Section 4), there is a growing current interest in the application of dynam-
ical systems analysis tools based on reduced-order models and, in particular, in the
use of dynamic mode decomposition to SMTLF. The work in [24] provides a DMD
study applied to electric load data from a utility operator in Queensland, Australia.
They show better performance results using DMD vs. time-series autoregressive
models. The forecasting is made for the following day using the data from the previ-
ous 4 days as predictors, presenting the best result for mean absolute percentage error
(MAPE) for one-day ahead forecasting of 2.13. A similar application of DMD is done
in [46] but applying DMD to predict forecast errors followed by an extreme value
constraint method to further correct the forecasts. The algorithm is applied to actual
load demand data from the grid in Tianjin, China, and the results obtained with
DMD are compared with a series of additional techniques (autoregressive moving
average, neural networks, support vector machines, extreme learning machines...).
According to the authors, the proposed method shows greater accuracy and stability
than alternative ones, with a best average root-mean-squared error (RMSE) of 476.17.
In [47], the authors employ an empirical mode decomposition technique to extract
different modes from the load signal and apply an independent deep belief network
for each mode prediction, with a subsequent aggregation of results (ensemble) to
obtain the final load forecast.

d. Classic machine learning models applied to SMTLF: A substantial number of
works have presented several classic machine learning models for SMTLF. A feed-
forward neural network (FF-NN) is used in [48] to forecast the electricity consump-
tion for residential buildings for the next 24 h. Results are compared with other
models, including GTB and RF, selecting the best model at each forecast iteration.
The best average result for the different test iterations is obtained for the neural
network (NN) with an RMSE of 2.48. The work in [49] presents a theoretical re-
view of the most commonly used ML methods for short-term load forecast (STLF),
including NN and support vector for regression. Time-series statistical analysis
models for SMTLF are discussed in detail in [4] with forecasts at an hour interval
applied to load data from the Electric Reliability Council of Texas (ERCOT). The
present results are applying ARIMA and seasonal autoregressive integrated moving
average (SARIMA) models achieving an average MAPE between 4.36% to 12.41%.
More classic ensemble techniques for forecasting electricity consumption in office
buildings are investigated in [50], comparing gradient tree boosting (GTB), random
forests (RF) and a specifically adapted Adaboost model that presents the best results.

e. Sequence to sequence (Seq2seq) models applied to SMTLF: Seq2seq architectures
that originated in the field of natural language processing (NLP) have been applied
in recent works to STLF. Authors in [51] apply different Seq2seq architectures, com-
paring them with other DL models based on recurrent and convolutional layers.
The models are applied to two different datasets (scenarios), one for an Individual
household electric power consumption data set (IHEPC) and the other for the GEF-
Com2014 public dataset. The best results (RMSE between 17.2 and 0.75 depending
on the scenario) are obtained with convolutional and recurrent architectures and
deep neural networks with dense layers. Considering average results, the Seq2seq
models do not provide the best results. The conclusions obtained in this work
are consistent with the results obtained by the present study. A similar study is
presented in [52], where research is conducted comparing a Seq2seq model (with
and without attention) with alternative DL models based exclusively on different
types of recurrent networks, such as long short-term memory networks (LSTM)
and gated recurrent unit (GRU). In this case, the Seq2seq model presents the best
results for short-term forecasting, also following the results obtained in the present
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work. A generic Seq2seq with a specific attention mechanism is proposed in [53] for
multivariate time-series forecasting.

f. Deep learning models applied to SMTLF: The work in [54] introduces a deep learn-
ing architecture based on an ensemble of convolutional blocks acting on segregated
subsets of the input data. The model is applied for day-ahead forecasting of individ-
ual residential loads with data obtained from a smart metering electricity customer
behavior trial (CBTs) in Ireland. The work focuses on achieving low training time
and high accuracy, the proposed model being the best in both aspects with a mean
absolute error (MAE) of 0.3469. Authors in [55] present an analysis of the influence
of the number of layers, activation functions and optimization methods using neural
networks to predict the Hellenic energy consumption. The work in [56] incorporates
a wavelet denoising algorithm to a neural network for the short-term load forecast
of the Bulgarian power system grid, showing that wavelet denoising improves the
load signal quality and overall forecast performance.

g. Models applied to the same dataset: Using the same dataset proposed for this
work, [17] presents an NN model that works on a 24 h day-ahead forecasting of
electric loads previously aggregated into clusters by consumption patterns. The
patterns are obtained with a self-organizing map (SOM) followed by a k-means
clustering algorithm.

h. Application to cybersecurity: The impact of cybersecurity attacks on smart grids is
well-known [57], these attacks can be addressed with intrusion detection tools, but
there is a growing interest in identifying these attacks using indicators of indirect
effects, such as deviations from normal consumption or customer revenues. In these
alternative approaches, the application of accurate forecasting models is crucial. The
detection of abnormalities in load consumption patterns to identify energy theft
or other types of attacks is studied in [58], based on a hierarchical clustering and
decision trees classification. A similar approach is presented in [59], which also uses
a decision tree algorithm without prior clustering.

i. Fuzzy methods with probabilistic forecasts: Several works explore using fuzzy
methods concerning probabilistic forecasts, either as alternative methods [60] or as
prediction evaluation methods [61], as well as recent advances in fuzzy methods [62,63].

3. Materials and Methods

In this section, we provide details of the dataset used for the experiments and the
forecasting models considered for this work. The electricity consumption dataset and the
proposed models are presented in Sections 3.1 and 3.2, respectively.

3.1. Selected Dataset

The dataset used for this work corresponds to real data from a Spanish utility and is
formed by historical electricity consumption over three years, from the province capital of
Soria (Castilla y Leon, Spain). The logged consumptions vary in the range between 7 to
39 MW, which is much lower than observed in large and aggregated environments, and
with a load curve sharing similar features to that of a microgrid [17].

Consumption data have been aggregated in time-slots of one hour, adding other addi-
tional variables related to date/time and weather as additional features. The total number
of hours of aggregate consumption is 26,302 h. The date/time features considered month,
time, day of the week and weekend indicators. The weather features considered are mean
and standard deviations for atmospheric pressure, wind speed, wind direction (degrees),
humidity and solar radiation. All date/time features have been treated as categorical
variables and have been one-hot encoded. Weather features are continuous features. All
continuous features, including the electricity load, have been scaled in the range [0–1].
After coding and scaling data, we have obtained four different sets of features: (a) 1 feature,
which corresponds to the electricity load; (b) 45 features, corresponding to the date/time
(day of week, weekend, hour, month) and load features; (c) 57 features, corresponding
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to the date/time, weather and load features; and (d) 76 features, corresponding to the
date/time and load features plus the one-hot encoded day of the month. Experiments per-
formed with different feature sets have been reported separately in Section 4. The number
of features associated with different feature sets is referred to by the symbol f (Figure 1).
To get a manageable number of results, we have used only the feature sets with f equal to 1
and 45. The weather features, when applied, did not provide a noticeable improvement and
could hinder the possibility of transferring the results to other datasets since weather data
cannot always be obtained or could be different from those used in this work. Similarly, the
inclusion of the day of the month did not provide improvements in different experiments.
It was not considered since, in addition, a greater number of features produces additional
difficulties in training the models without adding additional advantages in this case.
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Training TestValidation

24, 168 or 720 past-time
time-slots (predictors)

24 time-ahead 
time-slots (forecast) 

...
Stride

p k

Data structure used for 
training, validation or testing 

Time-slots Scalar value 

Vector of values
OR

Time-slot 
(predictor)

f  = 1

f  = 45, 58, 77

Scalar value 

Time-slot 
(forecast)

Figure 1. Structure of the dataset used for training and evaluation of the forecasting models. The original dataset is divided
into training/validation/test sets. A sliding window is applied across the entire dataset to create the data structures used
for training/validation/test. Different values of p (number of time-slot predictors) and k (number of time-slot forecast) can
be set depending on the model configuration.

To prepare the dataset to be used by the different models, it is necessary to segregate
it into an array of data structures used during training, validation, and test. Figure 1
presents the process to create these data structures, which are formed by a sequence of
data associated with the time-slots used as predictors and the number of time-slots to be
predicted. Associated with the time-slots used as predictors, we use the different feature
sets described above. The predicted values always correspond to the electricity load
(a scalar). The data structures (Figure 1) are created by applying a sliding window to the
entire data set ordered in time. The stride applied to the advance of the sliding window is
presented in Figure 1 and has been considered with a value of 1 for all the experiments.
The symbol p (Figure 1) will refer to the number of time-slots used as predictors (sliding
window length), and the symbol k (Figure 1) will refer to the number of predicted time-
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slots (k-step ahead forecast length). Once these data structures are created, we separate
them into two initial groups used as training and test data. Separation is carried out
along the time variable, with the first 80% of the data as training data and the last 20% as
test data. Furthermore, for all DL, Seq2seq and ensemble models, the training data are
additionally subdivided into 20% validation data and the remainder as final training data.
The validation data are used to assess model performance during training.

Depending on the number assigned to f , p and k (Figure 1), a different dataset will be
created from the original data. The range of values assigned to f, p and k are: (a) k will be 24
(1-day forecast horizon), 168 (1-week horizon) or 720 (1-month horizon), (b) f will be 1 or 45
and, (c) p will be 24 (using the previous day of data -24 h), 168 (previous week of data-168 h)
or 720 (previous month of data-720 h). Each combination of these values ( f , p, k) will be
assigned to different groups of results in Section 4 and Appendix A (Figures A1–A3).

Figure 2 presents the distribution of electrical power consumption reported in the
dataset. We observe a bimodal distribution with a total average value of 21,478.2 kilowatts
(kW) and a standard deviation of 5949.5 kW. The two modal values are presented around
15,000 and 25,000 kW, with a value range between 7370 kW and 39,550 kW. Figure 2 provides
the histogram, density, and boxplot for the distribution of load values to be predicted.
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Figure 3 provides an additional view of load values over time for the entire dataset
(spanning 3 years). We can see that the values have a clear annual periodicity. The values
also have a strong daily and weekly periodicity.

3.2. Models Description

In this section, we present the different models used in our research, describing
their main characteristics and pointing out useful references. Our main interest will be
to describe in detail the proposed CWQFNN architecture. The other models serve as
alternatives for comparing results and will be briefly described with references to the
original works. We have grouped the models for similarity and to facilitate the subsequent
presentation of the results (Section 4). The groups considered are the following:

Classic machine learning models: Machine learning models are widely used in STLF,
with most models already tested in some aspects of STLF. In this study, we have focused
on two models: linear regression and random forest. These models combine their good
performance and robust behavior without requiring exhaustive hyperparameters tuning.

Dynamic mode decomposition (DMD) models: These models are novel applications
of linear transformations that attempt to approximate the latent non-linear model of a
system by a best linear approximation [23]. They have been used very effectively in various
fields (fluid dynamics, finance, etc.) for system identification and forecasting [22,64]. In
addition to providing good regression estimators, they also give information about the
fundamental behavior of the underlying system. The methods made available by DMD are
a recent focus of interest in STLF [24].
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Seq2seq models: The sequence-to-sequence models were initially used in NLP, but
their applicability has spread to almost any time-series forecasting problem. Until now,
these models have been little applied to STLF, and their results have been good for very
short-term forecasts [52].

Deep learning models: As already mentioned, deep learning models are currently
the main trend in STLF. We have applied various configurations of convolutional neural
networks (CNN) and long short-term memory (LSTM) networks, a type of recurrent neural
network (RNN). The combination of CNN and LSTM networks has provided some of the
best results, following the results obtained in other works applying the same configurations
to other fields (network traffic analysis, the video quality of experience, etc.) [25,26].

Additive ensemble neural network models: It is well-known that aggregating the
capabilities of various estimators can increase their effectiveness in reducing errors and
avoiding overfitting. There are several aggregation strategies, and boosting is one of the
most important obtaining state-of-the-art estimators. Bringing together boosting and deep
learning has shown very good results in other classification/regression problems [9,16].
The additive ensemble models considered in this work will follow the gaNet architecture [9],
a deep learning boosting ensemble model specifically intended for time-series forecasting.

Quantile forecasting neural network (QFNN) models: In this group, we will present
in detail the CWQFNN architecture based on the constrained weighted quantile loss
(CWQLoss) that generates multi-quantile forecasts. The CWQLoss allows extending a
regression NN, acting as a base model, to become a quantile forecasting model.

Assuming that we have a time-series of vector-valued predictors
{

xt−p, .., xt
}

of length
p that ends at a generic time t. As presented in Section 3.1, a vector-valued predictor at any
specific time contains features about the 1 h interval starting at that time. These features
are the elements of the vector, that is, for one predictor xt: xt =

(
vt,j
) f

j=1, f is the number
of features (components) of the vector-valued predictor xt, and vt,j is the j feature of the
predictor. The features included in the vector contain, as a minimum, the electric load
for that 1 h interval. Additional features are day/hour identifiers or weather statistics for
the 1 h period. These additional features can be included or not depending on different
training configurations.

With these predictors, the goal is to provide a multivariate multiple regression model
(forecast model) [65] that generates a time-series forecast with scalar values of length k
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starting at time t + 1. These scalar values correspond to the load forecast (target variable)
for times [t + 1, .., t + k]. The parameters f , p and k have an impact on the forecast and are
considered separately in the results of the models given in Section 4.

A point forecast corresponds to a single forecast associated with the conditional
expected value of the target variable conditioned on the predictor’s value. Instead of
the mean (expected value), other reference statistics can be considered for the target
variable, such as the median or other quantile associated with the probability distribution
of the target variable. In our case, a quantile forecast (probabilistic forecast) for a time t
and quantile’s probability q must provide k forecast values for times t + 1 to t + k with
probability q of having their ground-truth values smaller than the forecast values, i.e., a
quantile forecast for q = 0.75 should have its ground-truth value smaller than the forecast
with probability 0.75. Quantile forecasting allows you to create confidence intervals (CI)
when two quantiles are used to define a central prediction interval (PI) with a probability
that the actual values are in it. The probability assigned to the CI is the difference between
the defining quantiles. For example, the quantile forecasts for quantiles 0.1 and 0.9 will
define a PI with an associated probability of 0.8, i.e., 80% of the actual values are expected
to be in this PI.

The models presented in this section are divided into two categories: (a) point-forecast
models shown in Figures 4–8, and (b) quantile-forecast models shown in Figure 9.

Figure 4 shows the reference to the generic regression algorithm needed to transform
the input sequence of p predictors into the output forecast sequence of length k. This
generic structure will be the framework used by all point-forecast models used in this work.
Figure 5 presents the framework for the classic ML and DMD models. Figure 6 presents
the DL architectures used in this study. Figure 7 presents the details for the Seq2seq
model with and without attention. Figure 8 presents the details for the additive ensemble
architectures [9], which are deep learning ensemble configurations based on gradient
boosting principles and particularly suitable for time-series forecasting. Figures 4–8 present
a schematic view of the models, emphasizing the inputs received and the generated outputs.
We can observe how the input formats depend on the type of model. The ML and DMD
models expect a sequence of scalar values (longitudinal data) as input; the way to transform
the input data for these models is to flatten the vectors over all time-steps. The DL models
can receive vector-valued inputs, i.e., both LSTM [52] and 1D/2D CNN [51] models can
receive a vector-valued sequence (with length p) where each timestep is represented by a
vector of values. When the first layer of the DL model is an FC layer, the input must be
formatted as a vector (flattened), and when the first layer is a 2D-convolutional (2D-conv)
layer, the data must be formatted as a matrix by packing the predictors (in columns) for
all past time-steps (in rows). The input format of the additive ensemble model (Figure 7)
depends on the architecture of the learning blocks; these learning blocks may or may not
be identical, and their architecture may be any of the architectures shown in Figure 6.
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Figure 4. General architecture for the multivariate-multiple regression model used as the reference
for all models.
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Figure 6. General architecture of the deep-learning (DL) models, including 1D convolutional (1D-conv), 2D convolutional
(2D-conv), long short-term memory (LSTM) and fully connected (FC) layers.
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Figure 7. General architecture of the Seq2seq and Seq2seq+ attention models. The architecture is formed by two blocks:
encoder and decoder. The encoder creates a latent representation for the inputs, and the decoder creates the output in
an iterative process from the encoder’s output and the previously made forecast. The attention mechanism allows the
decoder’s output to be weighted with the most similar intermediate outputs of the encoder.
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Figure 8. General architecture of the additive ensemble (AE) deep learning model. The final output
is generated by the output aggregation of several DL blocks applied to the same inputs. The blocks
can have identical structures (even sharing weights) or independent structures (each one different).
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Figure 9. Architecture of the CWQFNN model. It is a generic architecture to extend the regression models shown in
Figures 6 and 8 (named as the base model). A deep learning (DL) or additive ensemble (AE) model serves as the base model,
followed by an extension formed by a series of fully connected (FC) parallel layers. This extension replaces point forecasts
with probabilistic forecasts (quantile forecasts). As a minimum, the forecast for the median value (0.5 quantiles) is always
included and used as the final point forecast. The rest of the quantiles are constrained to have symmetric probabilities
around the median, e.g., {0.01, 0.25, 0.5, 0.75, 0.99}. A new loss is defined: constrained weighted quantile loss (CWQLoss),
where each quantile prediction is individually weighted also using symmetry-constrained weights (Equation (2)).
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The classic ML models used in this work: linear regression (LR) and random forest
(RF) [19], are two well-known models, robust and not prone to overfitting and easy to train.
These models present excellent training and prediction times and good forecasting metrics
for very short-term forecasts (Section 4). However, they show much larger operational times
for very large p and f values, which causes that the inputs to the ML models (a flattened
vector) to be extremely large, leading to memory allocation problems and indirectly greater
computational times. Both LR and RF handle single-output forecasts, which means that
we need an independent estimator for each of the k-step ahead forecasts, in our case 24,
168 or 720 estimators. Each of these estimators also requires independent training. It is
interesting that even with an independent estimator per output, for long-term forecasts,
other multi-output models can produce better results for these distant forecasts (Section
4). The capacity of this alternative model to account for possible correlations between
the different outputs can explain this behavior since, in the case of the ML models, each
estimator has no knowledge about the other outputs.

Dynamic mode decomposition (DMD) [23] is a linear reduced-order model (ROMs)
that provides low-rank approximations of complex dynamical systems. It is a data-driven
model that, in addition to making predictions about the future system behavior, is also
capable of discovering the temporal modes of the system (frequencies of oscillation with
its growth or decay rate) by extracting the main eigenvalues and eigenvectors of the
linear mapping that transforms a snapshot of the output sequence of the system into itself
advanced one time-step. It is a method that has received attention in recent times and is
discussed compared to DL models.

The DL models considered follow four configurations, depicted in Figure 6: (a) simple
multilayer perceptron with several fully connected (FC) layers, (b) recurrent networks
formed by one LSTM layer or two stacked LSTM layers plus a final FC layer, (c) networks
formed by a combination of one to three 1D-convolutional (1D-conv) layers (common for
time-series) followed by one or two LSTM layers and a final FC layer, (d) combinations
of 2D-convolutional (2D-conv) layers followed by LSTM layers and a final FC layer. The
last two configurations have shown very good classification and regression performance in
other fields [25,26] and other time-series forecasting problems [9]. For the 2D-conv layers, it
is necessary to transform the input sequence of vectors into a matrix that is interpreted as a
pseudo-image, following the approach in [26]. Contrary to the good performance of this ap-
proach in other fields, in this case, the results obtained by the architecture: 2D-CNN+LSTM
have not been as good as expected (Section 4 and Appendix A (Figures A1–A3)).

The output from the LSTM layers is a multidimensional array (2 dimensional) that
needs to be flattened before serving as input to an FC layer (Figure 6). Similarly, the outputs
from the 1D and 2D-conv layers (also multidimensional arrays) need to be transformed
(tensor reshape) to the input dimensions expected by an LSTM layer. The activation
function for all layers has been ReLU except for the last layer with a linear activation. The
cost function used has been the mean squared error.

Sequence-to-sequence models (Seq2seq) [28] were originally intended for the classifi-
cation and forecasting of time series with discrete and complex categorical predictors (text,
words, etc.). Its use has become widespread in many different fields where the objective is
to make a multi-output forecast based on an embedded (latent) data representation of all
past information along with an iterative process that combines this latent representation
with individual forecasts for each time-step ahead (Figure 7). Seq2seq models are made
up of two blocks: an encoder and a decoder. The encoder has the mission of construct-
ing the latent representation by producing a vector (embedding) that summarizes all the
information contained in the input sequence. The decoder takes the vector embedding
and performs the iterative process of producing forecasts one-by-one, using the forecast
produced in the previous step as input for the forecast in the next step. The layers used in
both the encoder and decoder blocks are similar and based on recurrent layers, in our case,
LSTM layers. There is also the possibility of incorporating other additional layers before
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and after the recurrent layers, such as CNN layers, to perform representation learning of
the input sequences and fully connected layers as final layers.

Seq2seq models can incorporate an attention mechanism [27,29] that consists of an
additional layer that implements a similarity comparison between an initial forecast (zt)
and information related to past history (vt) (p previous values used as predictors). The
similarity operation can be smooth and differentiable (soft attention) or not differentiable
(hard attention). We have used soft attention based on a softmax applied to the dot product
of the initial forecast with all the intermediate results produced by the p values used
as predictors. The diagram in Figure 7 shows how the attention mechanism works by
applying a distance function to past history and incorporating that distance in the later
stages of the forecast.

As already noted, we have not considered statistical time-series analysis methods (e.g.,
ARIMA) because they produce forecasts based on a specific sequence of predictors, i.e.,
model training is based on a specific input sequence and not in an entire dataset of training
sequences, and is problematic when the goal is to have a single model that can be used to
forecast any time-series from a given dataset.

The DL ensemble model used in this work follows the additive ensemble architecture
in [9] that presents the gaNet model based on creating an estimator by aggregating blocks
formed by small DL networks (Figure 8). All blocks are arranged in sequence, all sharing
the same input. The output from the first block is aggregated to the output from the
following blocks until the final output is produced. The aggregation process begins with
a fixed value (usually an average of the expected results). The aggregation function
used is the sum, but other functions, such as the mean or maximum value, can also be
used. It is important to note that all blocks are trained together end-to-end using gradient
descent. The gaNet architecture has already been extended to be used for regression [9]
and classification [30] for IoT traffic analysis and forecasting. This is the first application
of this architecture to SMTLF. It is formed by the aggregation of small building blocks
integrated by a few CNN and/or RNN layers. This architecture can be considered as
a simpler implementation of gradient boosting ideas with a single end-to-end training
(instead of stage-wise), and where the DL building blocks are taking the role of decision
stumps, which are the basic blocks of classic gradient boosting models. Alternatively, it
can also be seen as connected to stacked models [66] and residual networks [67], with
all short-cuts (layer jumps of residual networks) sharing the same inputs. In the basic
gaNet model, all blocks have the same layer configuration (architecture), and all blocks
in the sequence are similar but not identical, as random initialization of their weights and
end-to-end training will induce different weights in each of the blocks. There are also
variants on this basic configuration by allowing different block architectures and other
training options. In [9], the gaNet model is presented in detail with several variants (types),
considering if the blocks are all identical or not, if they share their weights or if the loss
function is a unique function or is formed by adding the loss functions of the intermediate
outputs. Considering all the gaNet variants, we have chosen the two most generic that we
have named as: ‘additive ensemble-identical blocks’ and ‘additive ensemble-independent
blocks’. An ‘additive ensemble-identical blocks’ model is made up of identical blocks
where each block is formed by small DL networks consisting of 1D-CNN, LSTM and FC
layers. We have also differentiated a subgroup of models where all the blocks share their
weights. In this case we have blocks not only with identical architecture, but with identical
weights. It is interesting to investigate this specific subgroup because they are models
with very few weights that can be important to avoid overfitting. These models have a
suffix (WS) at the end of their description (Section 4). An “additive ensemble-independent
blocks” model has blocks separated into groups where each group can have a different
architecture with all blocks in the same groups sharing the same architecture. For this
model, we indicate separately the number of repetitions of identical blocks per group
(Section 4). There is freedom in the number of groups and blocks per group.
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The new proposed model (CWQFNN) is a generic deep learning model shown in
Figure 9. It extends the regression models presented in Figures 6 and 8 to provide quantile
forecasts. The time-series of vector-valued features used as predictors are the entry point for
any of the forecasting regression models shown in Figures 6 and 8. The output from these
models (a forecast of length k)

{
ŷj
}k

j=1 is delivered to an additional and final layer consist-
ing of several simple FC layers with linear activations, one for each of the quantile forecasts.

This final layer produces M quantile forecasts
{

ŷ
qj
i

}j=1...M

i=1...k
each with a forecast horizon of

length k. The extra complexity added by this last layer is minimum. Each of these final
quantile forecast layers has identical input and output dimensions (k). The loss function
for the model in Figure 9 is shown in Equation (2). Assuming that we obtain the quantile
forecast for all quantiles with associated probabilities in a set Q. The number of elements
in the set Q is represented as |Q|, where |Q| = M = 2m + 1, for a certain m ≥ 0.Then, we
produce an odd number of quantile forecasts (M is an odd number), where the forecast
for the median (0.5 quantiles) is always included. This median forecast is adopted as our
point forecast in the results presented in Section 4.1. Therefore, the CWQFNN architecture
produces two types of forecasts: (a) M quantile forecasts with an associated probability for
the predicted target values, and (b) a point forecast by adopting the forecast for the median
(0.5 quantiles) as the point forecast. Our goal is to create an architecture that performs well
in both types of forecasts.

We define a new loss based on the pinball loss (Equation (1)). Pinball loss is defined as
the maximum of the difference between the ground-truth target value (y) and its predicted
value (ŷ) multiplied by either the quantile (q) value (a probability) or 1 minus that value.
The new loss (CWQLoss) is defined in Equation (2). It extends the pinball loss as an average
for all quantiles (1 . . . M) and all predictions in the forecast window (1 . . . k). As defined in
Equation (2), the CWQLoss (t) is a loss for a specific time-sequence of samples of length p
that ends at time t that intends to evaluate the quantile forecast errors for a forecast time
horizon of length k and for M quantiles (Figure 9):

PinBallLoss = max[(q− 1)(y− ŷ), q(y− ŷ)] (1)

CWQLoss (t) =
1

k·(2m + 1)

2m

∑
j=0

k

∑
i=1

µj·max
[(

qj − 1
)(

yt+i − ŷ
qj
t+i

)
, qj

(
yt+i − ŷ

qj
t+i

)]
(2)

MSELoss (t) =
1
k

k

∑
i=1

(yt+i − ŷt+i)
2 (3)

The CWQLoss includes a learnable weight (µj) for each quantile prediction (Equation (2)).
These weights are called quantile weights and are learned end-to-end by gradient descent
along with the rest of the network weights. Quantile weights can be learned with or without
additional restrictions imposed on their values. In case of restrictions, the quantile weights
are also learned end-to-end similarly to the nonconstrained case, but their values are con-
strained in the following way (Section 4.3 shows the beneficial impact of these restrictions):
(a) An odd number of quantile forecasts with the middle quantile being always the median,
that is, the set Q of quantile’s probabilities satisfies the following restrictions: Q =

{
qj
}2m

j=0
with qi > qj for i > j, and qm = 0.5. (b) The elements in Q are mirror-symmetrical around
the median (qm), that is: qj = 1− q2m−j. (c) The learnable weights (µj) are mirror identical
around the middle weight (µm), that is: µj = µ2m−j. (d) The learnable weights (µj) are nor-
malized, such that ∑ µj = 1. This normalization is done with a softmax activation function
(Figure 9). Imposing these constraints is important to obtain a working model, both to have
an accurate point forecast and to have adequate quantile forecasts. In particular, the last
constraint is necessary to stabilize the learning phase and facilitate proper convergence
of the learning algorithm. Experimental results (Section 4) show that not imposing this
constraint results in a high crossover of the quantile forecasts and difficulties for the con-
vergence of the loss function. Quantile forecast crossover occurs when a quantile forecast
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for a quantile with an associated lower probability is greater than the forecast for an upper
probability quantile. An interesting observation is that, after training, the weights (µj)
always have the same pattern with a larger value for the middle weight (µm) and smaller
and similar values for the other weights (µj 6=m). Interestingly, in the effort to reduce the
quantile loss (CWQLoss), the gradient descent minimization algorithm always reinforces
the value of the weight associated with the median quantile forecast.

In Figure 9, the entries to the CWQLoss are: (a) the ground-truth targets, which are
part of the training dataset ({yt+i}i=1...k), (b) the M quantiles forecast produced by the

model (
{

ŷ
qj
t+i

}j=0...2m

i=1...k
), (c) the set of quantile probabilities (Q), which is a hyperparameter of

the model and, (d) the loss constrained weights (
{

µj
}m

j=0), which are included as trainable
variables in the computational graph of the model, using a deep learning framework [68],
thus allowing to be trained end-to-end by gradient descent simultaneously with the rest of
the network weights. It is interesting to note that it was unnecessary to create a smooth
version of the pinball loss as defined in Equation (1), also mentioned in [44]. The definition
of the pinball loss in Equation (1) is similar to other loss or activation functions that include
a maximum operator, e.g., ReLU, max-margin (linear SVM). These functions also do not
require a smoothing process for proper gradient descent operation. In fact, applying Huber
or log-cosh smoothing to Equation (1) produces an undesirable effect of quantile collapse
towards the median.

It is important to note that the training of the CWQFNN model is performed end-to-
end from scratch for the entire network (the base model and the 2m + 1 final FC layers).
The process for selecting the base model can be based on its point forecast performance, but
once the base model is selected, it is included in the CWQFNN architecture with randomly
initialized weights. Therefore, the CWQFNN model is a unique single-shot trained model
and not a two-stage trained model where the base model is pre-trained in a previous
training stage.

In this work, all the models for quantile forecasting (CWQFNN architecture with
different base models) use the loss function in Equation (2) and the other models based on
neural networks that perform only point forecasts (models in Figures 6–8) use the mean
square error (MSE) loss function (Equation (3)).

In Section 4.3, the impact of the constraints on quantile-weights is discussed, present-
ing what the usual values taken by the quantile-weights after training are. The importance
of these weights in the quality of the forecasts is also evaluated.

The NN that produces the point forecasts in Figure 9 is called the base model. The
selection of the base model has an impact on prediction performance, and when the base
model is an additive ensemble NN, we achieve the best performance (Section 4). The
only requirement for a base model is to be trainable end-to-end by gradient descent and
support the addition of a final layer in both the training and prediction stages. Any of
the models included in Figures 6 and 8 can serve as a base model. We do not consider
sequence-to-sequence (Seq2seq) models as a base model since the forward pass for the
training, and test stages are different, which creates added complexity for the proposed
extension of M final layers. This is the same reason why the Seq2seq model is not included
as a learning block in AE architectures.

As a summary, the steps to implementing the algorithm to train a CWQFNN architec-
ture are:

1. Obtain the training and validation sets using a sliding window method (Figure 1);
2. Select a base model (Figures 5–8);

3. Select the quantile probabilities used in the forecasts (i.e., Q =
{

qj
}2m

j=0) (Figure 9)

4. Apply the selected base model within the CWQFNN architecture (Figure 9);
5. The output of the CWQFNN model will be 2m + 1 (i.e., |Q|) quantile forecasts for

each of the k time-ahead predictions, along with the learned quantile weights (
{

µj
}m

j=0)
applied in the CWQLoss (Equation (2)).
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We implemented all the neural network models (CWQFNN, deep learning, Seq2seq,
attention and additive ensemble) in python using Tensorflow/Keras [68]. For all other mod-
els, we used the scikit-learn python package [69]. All computations have been performed
on a commercial PC (i7–4720-HQ, 16 GB RAM).

To tune the network weights, we have used mini-batch gradient descent with early-
stopping as an implicit regularization mechanism and the best solution search. We have
applied early stopping using the validation set to choose the best configuration. Early
stopping is based on computing the validation loss (in our case, CWQLoss) at the end of
each epoch. If the validation loss at the end of a certain number of previous epochs does
not obtain any reduction, the training process stops, and the weights corresponding to the
best validation loss are used as final weights. The waiting period (number of previous
epochs used to compare any decrease in the validation loss) is called the patience value.
As a summary of the training parameters for the neural networks in this work: (a) We have
used Adam as the optimization method. The parameters used are α (learning rate): 0.001,
β1: 0.9, β2: 0.999 and ε: 1 × 10−8, which are the default values proposed in [70]. (b) We
have used mini-batch gradient descent with a batch size of 10, using 150 epochs for training
with early stopping and 10 epochs as patience value.

It may also be of interest to investigate the evolution of the loss function (CWQLoss)
during training. Figure 10 shows this evolution for a CWQFNN architecture with a base
model consisting of an additive ensemble with 5 blocks and 4 fully connected layers per
block. We can see how the training converges quite smoothly after 20–30 epochs with some
initial noise. This behavior has been observed in most models, with some models being
more difficult to train, such as the Seq2seq and the larger ensemble models.
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4. Results

In this section, we present in detail the point forecast performance metrics obtained
by all the models considered for this research and the probabilistic forecast metrics for
CWQFNN with different base models. An additional aim is to present (under homogeneous
evaluation criteria) the results obtained by classic forecasting methods together with new
or less used methods, e.g., deep learning ensembles, DMD, deep learning models with
combinations of CNN and LSTM layers and the proposed CWQFNN architecture.

The analysis of results is based on the following models: (a) classic ML (random
forest and linear regression) [18–21]; (b) dynamic mode decomposition (DMD) [22–24];
(c) Seq2seq models [27–29]; (d) deep learning models based on recurrent and convolu-
tional layers [19,20]; (e) additive ensemble deep learning models [9]; and (f) CWQFNN
architectures. As mentioned in Section 3.2, all models based on the CWQFNN architecture
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use the loss function: CWQLoss (Equation (2)) (Figure 9), and the other models, based on
neural networks (models in Figures 6–8), use the mean square error (MSE) loss function
(Equation (3)). These latter models only perform point forecasts based on the MSE loss,
while the CWQFNN models perform two types of forecast: (a) probabilistic forecast (based
on CWQLoss) and (b) point forecast by adopting the forecast for the median (0.5 quantiles)
as the point forecast. In all these cases, the optimization of the loss function is performed
with gradient descent. The classic ML and DMD models employ specific optimization
methods that are not based on gradient descent.

All the results presented are based on the dataset described in Section 3.1 using
exclusively the test sets described in that section. Since the load values were scaled in the
range [0–1], we have inversely scaled the predicted values to calculate all point forecast
metrics. This is important because the original range of values of the predicted magnitude
is [7370–39550] with an average value of 21,478.2, which means that the metrics that refer
to absolute errors (not rates) are tremendously impacted depending on the scale factor. For
probabilistic forecast metrics, we have opted to calculate them with scaled outputs. The
probabilistic metrics related to quantile probabilities focus on the estimated error that the
output signal remains within a certain cutoff value and that estimate is not altered by the
scale (e.g., absolute average coverage error). Additionally, probabilistic metrics related to
the width of central prediction intervals (e.g., sharpness, Winkler scores) when normalized
are more easily interpreted as a proportion within a normalized set of output values.

All the models are applied to a multivariate multi-output regression problem with
a k-step ahead forecasting horizon of 24, 168 or 720 load values (24, 168 or 720 h ahead)
using different numbers of past time-slots (24, 168 and 720) that corresponds to consider
as predictors the past day, week or month (in hours). Additionally, we have studied the
results considering different feature lengths for each predictor: a single scalar value (the
past electric load) or a vector of values (the past predicted load plus date/time variables
with a one-hot encoding as categorical values). Considering the terminology proposed in
Section 3.1, we use the symbols k for the number of forecast values, p for the number of
predictor time-slots and f for the length of features used as predictors.

All results for the CWQFNN architecture have been obtained with different base
models, but all share the same set Q of quantile’s probabilities and all applying the quantile
weights constraints presented in Section 3.2. The set Q used is: Q = [0.01,0.25,0.5,0.75,0.99]
for all CWQFNN models.

4.1. Point Forecasts

To perform the comparison between models, we have used several point forecast
metrics: median absolute error (MAD), relative root mean square error (RRMSE) and
symmetric mean absolute percentage error (sMAPE). The definition of the point forecast
performance metrics are herewith presented, where Y corresponds to the ground-truth
values, Ŷ are the predicted values, Y is the mean values of Y, Yi is each particular ground-
truth value, Ŷi is each particular predicted value, and N is the number of samples in the
test set (Section 3.1):

MAD = Median
(∣∣Y− Ŷ

∣∣) (4)

RRMSE =

√
∑N

i=1
(
Yi − Ŷi

)2√
∑N

i=1( Yi )
2

(5)

sMAPE =
100
N

N

∑
i=1

2

∣∣Yi − Ŷi
∣∣

|Yi|+
∣∣Ŷi
∣∣ % (6)

The metrics in Equations (4)–(6) provide a separate value for each of the k predictions
in the forecast horizon. The forecast metrics for some selected time-ahead predictions
(e.g., 1 h, 1-day, 1-week, 1-month) are given separately in the following tables of results
together with an average for all the k predictions in the forecast horizon (Figures 11–13).
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All these metrics have values greater than zero with no upper limit, except sMAPE, which
has an upper limit of 200%. In all cases, the smaller the value, the better the result. The
metrics MAD, sMAPE and RRMSE, are error metrics. They are always positive, with a
value of zero corresponding to the best result. The RRMSE and SMAPE will be considered
important since they calculate the ratio between the prediction error and a value related to
the actual quantity to be predicted.
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Additive Ensemble-
Independent blocks

1 168 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 772.9 5.693 0.080 458.0 2.988 0.037 861.1 6.666 0.098 90.918 0.099

1 168 24 1 LSTM + 1 FC 887.4 6.556 0.094 641.3 4.229 0.053 881.0 7.802 0.118 39.509 0.065
1 168 24 6 FC 835.7 6.181 0.090 644.4 4.265 0.052 978.0 7.443 0.108 2.479 0.004
1 168 24 (3 FC)*5 628.3 4.857 0.075 430.5 2.749 0.033 902.7 6.630 0.095 13.048 0.006
1 168 24 (4 FC)*5 649.1 5.051 0.079 439.9 2.915 0.036 864.1 6.615 0.099 8.901 0.006
1 168 24 (1 LSTM + 1 FC)*5 739.6 5.706 0.083 448.7 3.022 0.038 778.3 6.802 0.101 80.342 0.169

Additive Ensemble-
Independent blocks

1 168 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 666.5 5.152 0.079 412.5 2.721 0.034 711.0 5.950 0.095 86.938 0.110
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Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
(min)

1 168 168 Random Forest 1150.5 9.237 0.135 863.3 7.469 0.116 1333.3 10.215 0.146 12.665 0.141
1 168 168 Linear Regression 2431.2 15.685 0.195 1915.9 14.151 0.177 1212.0 9.403 0.136 0.080 0.001

DMD 1 720 168 NA 1972.6 12.661 0.155 1842.4 11.663 0.143 2297.4 14.589 0.179 0.072 0.929
Seq2Seq + Attention 45 24 168 2 LSTM + 1 FC 1794.3 13.115 0.189 1432.8 10.802 0.153 2047.2 14.816 0.219 68.539 0.894

1 168 168 1 LSTM + 1 FC 1370.6 9.541 0.126 1204.4 8.550 0.113 1341.9 9.783 0.134 51.438 0.060
1 168 168 6 FC 1546.5 10.578 0.138 1292.2 9.054 0.118 1560.4 10.717 0.142 3.072 0.003
1 720 168 2 1D-CNN + 1 LSTM + 1 FC 1445.8 9.707 0.125 1297.0 8.672 0.113 1494.9 10.314 0.138 13.687 0.035
1 168 168 (3 FC)*5 1123.6 8.513 0.122 897.3 6.909 0.103 1270.9 9.581 0.133 3.406 0.004
1 168 168 (4 FC)*5 1155.7 8.577 0.121 1009.0 7.340 0.102 1290.1 9.439 0.131 3.962 0.004
1 168 168 (1 LSTM + 1 FC)*5 1115.7 8.502 0.121 869.0 7.031 0.105 1261.0 9.360 0.133 54.967 0.125

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1237.7 8.892 0.123 917.3 6.970 0.102 1216.7 9.268 0.134 92.921 0.117

1 168 168 1 LSTM + 1 FC 1256.7 9.200 0.126 1093.7 7.879 0.107 1307.4 9.641 0.136 65.470 0.071
1 168 168 6 FC 1358.1 9.909 0.135 1188.2 8.792 0.118 1437.7 10.283 0.140 7.679 0.004
1 168 168 (3 FC)*5 1031.1 8.127 0.122 824.3 6.559 0.103 1154.8 9.041 0.133 15.246 0.008
1 168 168 (4 FC)*5 992.0 7.980 0.120 804.1 6.542 0.103 1162.8 9.057 0.130 21.175 0.009
1 168 168 (1 LSTM + 1 FC)*5 1019.0 8.127 0.121 746.7 6.428 0.102 1155.5 8.873 0.129 85.876 0.170

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1140.7 8.675 0.125 954.9 7.143 0.105 1104.9 8.834 0.132 96.451 0.115
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Figure 11. Point forecast performance metrics for a forecast time horizon of 24 h (k = 24) for the first (T-0) and last (T-23)
hour forecast and average forecast over the 24 h (1 day) time horizon. Results for a selection of best models for each group
of models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively.
The best two values per column are highlighted in bold.
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Training
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Figure 12. Point forecast performance metrics for a forecast time horizon of 168 h (k = 168) for the 23rd (T-23) and last
(T-167) hour forecast and average forecast over the 168-h (1 week) time horizon. Results for a selection of best models for
each group of models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results,
respectively. The best two values per column are highlighted in bold.

Tables in Figures 11–13 provide the main point forecast results for the most representa-
tive models of each model type (Section 3.2). Tables also include the training and prediction
times using the training and test sets of the selected dataset (Section 3.1). The complete
set of results for all model configurations are included in Figure A1 (Appendix A) for a
forecast time horizon of 24 h (k = 24). From the results in Figure A1 are extracted the most
important results presented in Figure 11. The models selected in Figure 11 have been used
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in Figures 12 and 13 for forecast time horizons (k) of 168 and 720, respectively. Tables are
color-coded (column-wise) with a green–red palette corresponding to best-worst results. In
addition, the best two values per column are highlighted in bold.
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cast performance metrics for a forecast time horizon of 720 h (𝑘 = 720) for the 167th (T-167) 
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the test set) in minutes. Figures 11–13 present the forecast metrics obtained under different 
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3.1. 

In addition to providing the point forecast metrics for all models for 𝑘 = 24, Appen-
dix A A provides supplemental details for Figures 12 and 13 by giving the forecast metrics 
at additional intermediate time-slots, thus Figure A2 (Appendix A) extends Figure 12 with 
an additional forecast at T-0 (first hour), and similarly Figure A3 (Appendix A) extends 
Figure 13 with two additional forecasts at T-0 (1 h) and T-23 (1-day). 

In all tables in Figures 11–13, the description of the models includes the number and 
type of layers used: CNN, LSTM, and fully connected layers (FC), forming a sequence 
separated by the + sign, e.g., 2 LSTM + 1FC indicates a model with two LSTM layers fol-
lowed by one FC layer. The additive ensemble (AE) models have been divided into AE-
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Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training
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(min)

1 168 720 Random Forest 1477.8 11.384 0.160 1273.3 9.942 0.142 1861.1 13.169 0.176 39.874 0.443
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Figure 13. Point forecast performance metrics for a forecast time horizon of 720 h (k = 720) for the 167th (T-167) and last
(T-719) hour forecast and average forecast over the 720-h (1 month) time horizon. Results for a selection of best models for
each group of models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results,
respectively. The best two values per column are highlighted in bold.

Figure 11 provides point forecast performance metrics for a forecast time horizon of
24 h (k = 24) for the first (T-0) and last (T-23) hour forecast and average forecast over the
24 h (1 day) time horizon. Figure 12 provides point forecast performance metrics for a
forecast time horizon of 168 h (k = 168) for the 23rd (T-23) and last (T-167) hour forecast and
average forecast over the 168-h (1 week) time horizon. Figure 13 provides point forecast
performance metrics for a forecast time horizon of 720 h (k = 720) for the 167th (T-167)
and last (T-719) hour forecast and average forecast over the 720-h (1 month) time horizon.
Tables include the time required to perform training of the models and prediction (using
the test set) in minutes. Figures 11–13 present the forecast metrics obtained under different
scenarios (Section 3.2) and considering different combinations of values for the parameters
f , p and k. The range of values for these parameters are the ones explained in Section 3.1.

In addition to providing the point forecast metrics for all models for k = 24, Appendix A
A provides supplemental details for Figures 12 and 13 by giving the forecast metrics at
additional intermediate time-slots, thus Figure A2 (Appendix A) extends Figure 12 with
an additional forecast at T-0 (first hour), and similarly Figure A3 (Appendix A) extends
Figure 13 with two additional forecasts at T-0 (1 h) and T-23 (1-day).

In all tables in Figures 11–13, the description of the models includes the number and
type of layers used: CNN, LSTM, and fully connected layers (FC), forming a sequence
separated by the + sign, e.g., 2 LSTM + 1FC indicates a model with two LSTM layers
followed by one FC layer. The additive ensemble (AE) models have been divided into AE-
identical blocks and AE-independent blocks (Section 3.2). The description of AE-identical
blocks is formed by repeating blocks where the configuration of each repeating block is
included in parenthesis with an asterisk and a number to the right of the asterisk that
indicates the number of repetitions of the block, e.g., (4 FC) * 5 indicates a model with
five identical blocks each composed of four FC layers. When blocks share weights, it
is represented by the string WS at the end of the description. The description of AE-
independent blocks is formed by different blocks with a possibly different architecture and
different types of inputs per block. In those cases where there are different types of input
per block, we have marked that in tables by several values of f separated by a backslash
(\). The different blocks in an AE-independent blocks architecture are represented as a
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sequence of repeating blocks separated by a + sign, e.g., (1 LSTM + 3 FC)*2 + (4 FC)*5
indicates a model with two different blocks where the first is repeated two times and is
composed by one LSTM and three FC layers, and the second is repeated five times and is
composed by four FC layers.

All results for the CWQFNN architecture have been obtained with different base
models, but all share the same set Q of quantile’s probabilities and all apply the quantile
weights constraints presented in Section 3.2. The set Q used is: Q = [0.01,0.25,0.5,0.75,0.99]
for all CWQFNN models. Section 4.3 presents in detail the impact of changing the number
of quantiles and, more important, the constraints imposed on the quantile weights. The
results are more or less independent of the number of quantiles as far as this number is
neither very high nor very low (e.g., only the median), but the impact of the imposed
restrictions is really important and, without constraints, the point forecast metrics are
extremely poor.

Results in Figures 11–13 provide the following interesting conclusions:

(a). DMD models do not provide the best results under any configuration.
(b). Classic ML models (linear regression) provide the best results for very short-term

forecasts considering the maximum forecast time horizon in each scenario. For
example, linear regression provides best results at T-0 for a forecast time-horizon of
24 h, the same happens for a time horizon of 168 h (Figure A2 in Appendix A), and
is among the best result models for T-0, T-23 and T-167 for a time horizon of 720 h
(Figure A3 in Appendix A). It is important to note that the ML models do not produce
a multi-output prediction. Therefore, it is necessary to create a specific predictor for
each predicted value. This is the reason for the good behavior of these models in
short-term forecasts. The interesting point is that for long-term forecasts, a single DL,
AE, or CWQFNN model can produce better forecasts than many ML models, each
trained on a specific expected output. A possible explanation for this behavior is that
the further the forecast is in time, the relationship between predictors and outputs is
less linear, and the correlation between outputs is more relevant.

(c). Seq2seq+ attention gives better results than Seq2seq. They present excellent results
for very short-term forecasts and poor results for average and longer-term forecasts.
Seq2seq models only have results for a value of f equal to 45. For a value of f equal
to 1, the network had difficulties converging, and the results were poor (Figure A1 in
Appendix A). The combination of CNN and LSTM layers provides poor results for
Seq2seq models, while pure recurring networks with one or two LSTM layers provide
the best results.

(d). DL models provide good average performance metrics. The best models are simple
combinations of LSTM and FC layers (e.g., 1 LSTM + 1 FC), sequences of a few
FC layers (e.g., 6 FC), and simple combinations of 1D-CNN and LSTM layers (e.g.,
2 1D-CNN+ 1 LSTM + 1 FC). The architectures with 2D-CNN layers provide poor
results.

(e). Additive ensemble (AE) deep learning models are excellent performance architec-
tures for long-term forecasting and average results. There is not much difference in
performance between the AE architecture with Identical and Independent blocks,
but considering its greater simplicity, we can justify that the Identical blocks archi-
tecture is the one that offers the best results. AE models perform best with blocks
composed of a few FC layers repeated a small number of times (e.g., (3 FC)*5) and
simple combinations of LSTM and FC layers also repeated a small number of times
(e.g., (1 LSTM + 1 FC)*5). The good behavior of the AE deep learning models is
related to a better exploration in the solution space due to the independent random
initialization of each block in the ensemble [36,37]. This explanation better justifies
the good behavior that the ability of AE models to reduce overfitting given that all
the regularization techniques used (drop-out, batch normalization, weight sharing)
do not provide any performance improvement (Figure A1 in Appendix A), which
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indicates that the focus of this problem should not be on overfitting but on obtaining
a sufficiently rich network structure that adjusts to the characteristics of the data.

(f). CWQFNN architectures present the best results for average and long-term forecasting
for almost all point forecast metrics. To achieve these results, the best base model is
an AE-Identical blocks architecture with a small number of repeating blocks formed
by a few FC layers (e.g., (3 FC)*5 or (4 FC)*5). The good behavior of this architecture
is maintained for all forecast time horizons (k = 24, 168, 720).

The median forecast of a CWQFNN architecture with a specific base model produces
better results than the same stand-alone base model, i.e., not forming part of a CWQFNN
architecture. It is important to analyze the possible reasons why a model that produces
good prediction results improves by being part of a CWQFNN architecture as a base model.
It is worth noting that this improvement is highly dependent on applying the correct
weights to each of the pinball losses associated with each quantile (Section 4.3).

To ensure that the results obtained for the CWQFNN architecture are better (from a
statistical point of view) than those obtained by not using it, we have applied the Wilcoxon
paired one-sided rank-sum test for the comparison of performance metrics between the
CWQFNN architecture with the base model: (3 FC)*5 (Figures 11–13) and the rest of
non-quantile forecast models (ML, DMD, Seq2seq, DL and AE) for the MAD, sMAPE and
RRMSE metrics. Figure 14 presents the results for applying the hypothesis test considering
different forecast time horizon scenarios (k = 24,168 and 720). The p-value indicates if the
results allow (or not) to reject the null hypothesis that is associated with a non-significant
difference in the results. The test used is one-side to specifically check if the group of
alternative models has a higher or equal ranked mean than the best model. From the
results in Figure 14, using a significance level (α) of 1%, we conclude that the point forecast
metrics obtained with the best CWQFNN model are significantly better than the alternative
non-quantile models.
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Figure 14. Results of the Wilcoxon rank-sum test to check the significance of the better results
obtained by CWQFNN vs. non-quantile forecast models.

4.2. Probabilistic Forecasts

Several probabilistic forecast metrics [71] will be used to evaluate the performance
of quantile forecasts: Quantile score (QS), Crossover rate score (CORS), absolute average
coverage error (AACE), Winkler score (WS) [72] and sharpness. The metrics AACE, WS
and sharpness, are provided for two central prediction intervals (PI) with associated
probabilities (1− α)×100% of 50% and 98%.

The definition of these metrics is as follows, where (a) N is the number of samples
in the tests set (Section 3.1); (b) (1− α) is the probability associated with a PI; (c) α is the
probability outside a PI; (d) Lα

t,s and Uα
t,s are the lower and upper quantile forecast for a

(1− α)% PI for the sample at time t for the s-time ahead prediction. Lα
t,s corresponds to

the quantile forecast for the quantile (α/2) and Uα
t,s corresponds to the quantile forecast

for the quantile (1− α/2); (e) δα
t,s is the forecasted PI width, i.e., δα

t,s = Uα
t,s − Lα

t,s. (f) The PI
nominal confidence (PINC) is by definition equal to (1− α); (g) ŷqi

t+s is the quantile forecast
for the quantile of probability qi of the sample at time t for the s-time ahead prediction,
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where qi is a monotonically increasing list of probabilities indexed by i, i.e., qi > qj for
i > j.

The QS metric (Equation (8)) is an average metric for all samples in the test set of an
unweighted version of the CWQLoss (Equation (7)):

Unweighted_CWQLoss (t) =
1

k·(2m + 1)

2m

∑
j=0

k

∑
i=1

max
[(

qj − 1
)(

yt+i − ŷ
qj
t+i

)
, qj

(
yt+i − ŷ

qj
t+i

)]
(7)

Quantile Score (QS) =
1
N

N

∑
i=1

Unweighted_CWQLoss (i) (8)

The Winkler score metric (Equation (10)) is an average of penalized forecasted PI
widths. No penalty is applied if the real value is within the forecasted PI; otherwise, we
add a penalty equal to the ratio of the distance from the forecast value to the upper or
lower PI boundary (the one closest to the forecast value) and α/2. An error in a wide PI
interval (small α) is more penalized:

WS (t, s, α) =


δα

t,s Lα
t,s ≤ yt+s ≤ Uα

t,s
δα

t,s + 2
(

Lα
t,s − yt+s

)
/α yt+s < Lα

t,s
δα

t,s + 2
(
yt+s −Uα

t,s
)
/α yt+s > Uα

t,s

(9)

WS (α) =
1

N·k
N

∑
i=1

k

∑
j=1

WS (i, j, α) (10)

The sharpness metric (Equation (11)) is an average of the forecasted PI widths:

Sharpness (α) =
1

N·k
N

∑
i=1

k

∑
j=1

δα
i,j (11)

The AACE metric (Equation (14)) is an estimate of the difference between the expected
and actual PI nominal confidence value. It indicates the error between the expected
proportion of points within a PI, i.e., (1− α) and the empirical value:

Coverage Indicator (t, s, α) = COInd(t, s, α) =

{
1 Lα

t,s ≤ yt+s ≤ Uα
t,s

0 Not
(

Lα
t,s ≤ yt+s ≤ Uα

t,s
) (12)

PI Coverage Probability (α) = PICP(α) =
1

N·k
N

∑
i=1

k

∑
j=1

COInd(i, j, α) (13)

AACE(α) = |PICP(α)− PINC(α)| = |PICP(α)− (1− α)| (14)

The CORS metric (Equation (16)) is the probability that a crossover will occur between
any of the quantile forecasts made for all quantiles, all test samples, and all k-ahead forecast
values. This crossover metric is stricter than alternative crossover metrics that only consider
crossovers between quantile forecasts at the boundaries of a PI interval. The metric defined
in Equation (15) considers crossover for any quantile pair. The crossover indicator function
will mark any noncompliance if the quantile forecasts for consecutive quantile probabilities
do not follow a strictly increasing sequence:

CrossOver Indicator(t, s) = CRInd(t, s) =

{
1 i f ŷqi

t+s > ŷ
qj
t+s f or some i < j

0 i f ŷqi
t+s < ŷ

qj
t+s f or all i < j

(15)

CORS =
1

N·k
N

∑
i=1

k

∑
j=1

CRInd(i, j) (16)
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All the above probabilistic metrics are error metrics where a lower value indicates
a better result. The QS metric has unbounded positive values. WS and sharpness have
unbounded values, but negative values are only applicable to difunctional models with
high crossover. CORS and AACE have values in the range [0–1]. Some of the probabilistic
metrics are interval metrics associated with a PI (WS, AACE and sharpness) that consider
only a particular interval produced by a pair of quantile forecasts corresponding to the
upper and lower limits of the PI; while others are quantile metrics (QS and CORS) that
consider all the quantiles produced by the model.

The probabilistic forecast metrics for the CWQFNN models are given in Figure 15 for
the metrics: QS, CORS, AACE, WS and sharpness. The metrics AACE, WS and sharpness,
are provided for two central prediction intervals (PI) with associated probabilities (1− α)%
of 50% and 98%. Three forecast time horizons are considered (k = 24,168 and 720). All
results are for: f = 1 and p = 168 (Section 3.1). The best results for the different probabilistic
forecast metrics are more or less concentrated on the base models with additive ensemble-
identical blocks (3 FC)*5 and (4 FC)*5, but are more evenly distributed among all models
than the best results for the point forecast metrics, which are clearly concentrated on these
two models. The metrics indicate excellent results with a probability of crossover between
0.07% and 0.12%, a sharpness at 98% PI between 0.25 and 0.4 for a [0–1] range of output
values, and an AACE (error between expected and actual PI nominal confidence value) at
98% PI between 0.01% and 2.26%. In all cases, quantile forecast metrics worsen with higher
forecast time horizons (k), as expected.
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Figure 15. Probabilistic forecast performance metrics for the CWQFNN architecture with different DL and AE base models
for different forecast time horizons (k). Considering the metrics: quantile score (QS), crossover rate score (CORS), absolute
average coverage error (AACE), Winkler score (WS) and sharpness. AACE, WS and sharpness are provided for two central
prediction intervals with associated probabilities of 50% and 98%. Table is color-coded (column-wise) with a green–red
palette corresponding to best-worst results, respectively. The best two values per column are highlighted in bold. The
assignment of color/bold has been carried out separately for each of the three blocks in the figure (k = 24, 168 and 720).

To provide a visual indication of the quality of the probabilistic forecasts at different
forecast time horizons, Figure 16 shows a comparison between real (ground-truth) load
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signals and their forecasts as we increase the forecast time horizon. The different diagrams
are 24/168/720 h time windows taken at random points in the test set. Four load signals
are shown: Ground-truth load (dotted blue line), 0.99 quantile forecast (green line), median
(blue line) and 0.01 quantile forecast (red line). The 0.99 and 0.01 quantile forecasts serve as
the boundary values for a central PI of 98% probability. All charts share the same model:
CWQFNN-[(4 FC)*5] ( f = 1, p = 168)). The median forecast is taken as the point forecast of
the model. The point forecast signal is close to the real one most of the time and always
within the central PI of 98% probability. In almost all cases, the point forecast signal follows
the real one and produces a smoothed version of it.
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Figure 16. Load forecasts (kilowatts) for different forecast time horizons: 24 (upper), 168 (middle) and 720 h (lower chart),
showing four signals: ground-truth load (dotted line), 0.99 quantile forecast (green line), median (blue line) and 0.01 quantile
forecast (red line) (model: CWQFNN-[(4 FC)*5] ( f = 1, p = 168)).

4.3. Impact of Quantile-Weights Restrictions

Figure 17 provides the point and quantile forecast performance metrics for a CWQFNN
architecture with the same base model (model: CWQFNN-[(3 FC)*5] ( f = 1, p = 168, k = 24)),
but considering different values for the number of quantiles (Q), and the inclusion or not
of restrictions on the quantile weights (µj in Equation (2)).
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Figure 17. Point and quantile forecast performance metrics for CWQFNN with the same base model, but considering
different values for the following configuration parameters: (a) number and value of quantiles, (b) type of quantile-weights
with possible values of constrained quantile-weights (constrained), nonconstrained quantile-weights (free), and no quantile-
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In case of no restrictions, the quantile weights are learned end-to-end along with the
rest of the network weights without any restrictions (marked as free in Figure 17). In case of
restrictions, the quantile weights are also learned end-to-end similarly to the previous case,
but their values are constrained to being mirror identical around the middleweight and
with the quantile probabilities being mirror symmetrical around the median (Section 3.2)
(marked as constrained in Figure 17). The results are more or less independent of the
number of quantiles as far as this number is neither very high nor very low (e.g., only
the median). However, the impact of the constraints is really significant, and without
constraints, the point forecast metrics are extremely bad. Without constraints, the crossover
rate (CORS) is extremely high, and all PI metrics (AACE, WS and sharpness) have very
bad values. Finally, the results for the configuration without quantile weights are given at
the end of the table (marked as none in Figure 17); in this case, we can observe how the
point forecasts are worse than the configurations, including the restricted weights, while
the probabilistic metrics are also worse, but not so impacted.

It is interesting to examine the final values (after training) of the quantile weights with
and without constraints. In the case of constrained weights, some typical values for the
weights are µ = [0.106, 0.120, 0.548, 0.120, 0.106]; that is, the weight corresponding to the
median is higher than the rest of the weights, which are smaller (but not negligible) and of
similar value. While a typical list of weights (after training) for the unconstrained case is
µ = [1.00, 2.70 × 10−12, 3.12 × 10−13, 1.14 × 10−12, 3.23 × 10−12]; that is, the optimization
process focuses only on optimizing one of the quantiles, missing the real objective of the
algorithm of training a single model to have multiple-quantile forecasts.

As a summary, Figure 17 compares the results obtained by a CWQFNN with the same
base model while changing the number of quantiles and the type of constraints on the
quantile weights.

4.4. Time Evolution of Point and Probabilistic Forecasts

It is interesting to analyze the evolution of the point and probabilistic forecast metrics
for each time slot in a series of future forecasts (Figure 18). This evolution depends on
the forecasting model, ranging from almost linear to exponential and-with-and without
intermediate/final plateaus. In all cases, the metric values have a noisy, monotonically in-
creasing (worst) behavior. Figure 18 shows the sMAPE, and RRMSE point-forecast metrics
(left charts) and the Winkler score probabilistic forecast metrics for a PI with probabilities
98% and 50% (right charts) for successive predicted time-slots for the CWQFNN architec-
ture with base model [(4 FC)*5] ( f = 1, p = 168). It is interesting how the time evolution
patterns between point and probabilistic metrics share similarities. It is important to note
that the point forecast for the CWQFNN models is made by taking the quantile forecast for
the 0.5 quantiles, explaining the similarities found.
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kler score at 98% and 50%) (right charts) for successive 1 h time intervals for different forecast time horizons (k = 24,168,720)
for the CWQFNN architecture with base model [(4 FC)*5] ( f = 1, p = 168).

Figure 19 shows a comparison of the evolution of two point-forecast metrics (sMAPE
and RRMSE) for successive 1 h time intervals in a forecast time horizon of 24 h between
a stand-alone AE model (solid blue line) and the same model as part of a CWQFNN
architecture (dotted red line). We observe how the metrics for the CWQFNN architecture
are almost always smaller than its non-quantile forecast counterpart, and additionally, the
time evolution is more linear and gradual.
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Figure 19. Comparison of the evolution of two point-forecast metrics (sMAPE and RRMSE) for
successive 1 h time intervals in a forecast time horizon of 24 h for the same additive ensemble model
([(4 FC)*5] ( f = 1, p = 168)) when incorporated into a CWQFNN architecture as its base model (dotted
red line) vs. as a stand-alone AE model (solid blue line).

4.5. Influence of the Sliding-Window Length

A different evolution of the forecast metrics can be studied by changing the parameter
p (length of the sliding window in hours) or the number of previous time-steps used as
predictors. Figure 20 presents this evolution for all the performance metrics with a sliding
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window length ranging from 24 to 1440 h, i.e., from 1 day to 60 previous days. In Figure 20,
each 1 week (168 h) interval is marked with a vertical red line. We can see how an increase
in performance is obtained by increasing the value of p up to a value of 168 (1 week of
sliding window length), after which the increase is much smaller and even decreases with
a p value greater than 720 (4 weeks). The ascending and descending periodic metric values
in each weekly interval are also interesting. The results in Figure 20 can explain the reason
why most of the best models are achieved with a p value between 168 and 720, except for
the Seq2seq models for which there is a balance between the greater information contained
in longer predictor sequences and the difficulty in training a longer time-series, even using
an LSTM.
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5. Discussion

The main contribution of this research is to propose a novel quantile neural network
architecture (CWQFNN) with a new quantile loss. This new quantile loss imposes a
constrained weighted version of the pinball loss, providing several advantages as demon-
strated by the results (Section 4). In Figure 17, we can see how models with no restrictions
on the quantile weights (free weights) obtain extremely poor results, while models with
restricted weights obtain the best results. A possible explanatory resource for this behavior
can be found in the results obtained in multitask learning [73] as a way to improve the
performance prediction for classification/regression and the fact that the CWQLoss implic-
itly applies to multitask learning approach. It is also interesting the connection between
multitasking and multiobjective learning provided in [74] with a proposal for an upper
bound for the multitask loss that can be optimized by gradient descent with constrained
weights per task, but this connection needs further investigation.

Interestingly, the median forecast of a CWQFNN architecture with a specific base
model provides better results than the same base model as a stand-alone model. It is
important to analyze the possible reasons why a model that produces good prediction
results improves by being part of a CWQFNN architecture as a base model. This improve-
ment is highly dependent on applying the correct weights to each of the pinball losses
associated with each quantile (Section 4.3). Therefore, it seems again that adding weights to
the pinball loss improves results, but it is equally important to provide a certain structure
to those weights to guarantee the improvement. In addition, we observe in Figure 19
how the error metrics for the CWQFNN architecture are almost always smaller than its
non-quantile forecast counterpart and additionally, the time evolution is more linear and
gradual. This may justify CWQFNN’s better average performance and better performance
in long-term forecasts.
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In Figures 11–14, we see the point forecast results for CWQFNN compared with alter-
native models. CWQFNN presents the best results for average and long-term forecasting
for almost all point forecast metrics. These results are obtained with a CWQFNN architec-
ture with a base model consisting of an additive ensemble-identical blocks architecture
with a small number of repeating blocks formed by a few FC layers (e.g., (3 FC)*5 or
(4 FC)*5). The good behavior of this architecture is maintained for all forecast time horizons
(k = 24, 168, 720). Likewise, the best results for the different probabilistic forecast metrics
(Figure 15) are more or less concentrated on the same base models (additive ensemble-
identical blocks-(3 FC)*5 and (4 FC)*5) but are more evenly distributed among all models
than the best results for the point forecast metrics, which are clearly concentrated on these
two models.

It is important to mention the good behavior of the additive ensemble deep learning
models, which produce many of the best results for stand-alone models and most of the
best results when being part of a CWQFNN architecture. This behavior is obtained both in
point and probabilistic forecast scenarios.

In summary, we can conclude that the proposed architecture is a promising model
for probabilistic time-series forecasting. The added complexity introduced by the new loss
function (CWQLoss) is largely compensated by the improved performance achieved in
point and probabilistic forecasts.

6. Conclusions

This work presents a novel quantile forecasting architecture (CWQFNN) that extends
a point forecast NN by transforming it into a multi-quantile forecasting model. The
underlying NN is called the base model and must be end-to-end trainable by gradient
descent and support the addition of a final layer in both the training and prediction stages.
The CWQFNN architecture also proposes a novel quantile loss (CWQLoss) based on the
pinball loss. CWQLoss incorporates specifically defined constrained weights associated
with each quantile. The constrained parameters are learned along with the rest of the
network weights by gradient descent. We show the importance of the added weights and
the defined constraints for the new quantile loss.

The proposed architecture provides excellent point and quantile forecast performance
metrics and is applied to short and medium-term load forecasting (SMTLF) on a dataset
of real power consumption from a medium-sized city in Spain. An extensive analysis of
results is provided, comparing the results obtained by CWQFNN against an extensive
list of alternative classic and state-of-the-art machine learning forecasting models and
considering the influence of important model parameters.

The proposed architecture (CWQFNN) does not require transforming the base model
or adding complex extensions to the loss function to ensure efficient quantile forecasts with
a small crossover rate. The experimental results allow us to conclude that the CWQFNN
architecture presents the best forecast performance metrics for average and long-term
forecasting and achieves its best performance when the base model is an additive ensemble
deep learning model.

As the future line of research related to the present work, we plan to further inves-
tigate the connections between the performance improvement obtained by applying the
CWQLoss, which implicitly applies a multitask learning approach [73], with the direc-
tion taken by works that address the multitask learning as a multiobjective optimization
problem [74,75] as a potential resource to explain the behavior shown by the CWQFNN
architecture and the impact of, including the constrained weights into the pinball loss.
A possible extension to this investigation could be to apply a multiobjective loss [74] to
quantile forecasting in SMTLF.
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Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
(min)

1 24 24 Random Forest 888.997 7.517 0.105 380.367 2.720 0.035 1213.000 9.851 0.135 1.228 0.014
1 24 24 Linear Regression 1547.165 11.594 0.148 496.965 3.465 0.045 1865.220 13.950 0.175 0.007 0.000
1 168 24 Random Forest 780.076 6.704 0.104 454.167 3.108 0.041 846.667 7.363 0.113 9.665 0.107
1 168 24 Linear Regression 827.069 6.436 0.094 328.074 2.212 0.028 915.448 7.402 0.110 0.050 0.001

45 24 24 Random Forest 857.248 7.414 0.107 398.190 2.807 0.037 1046.000 9.057 0.132 9.488 0.105
45 24 24 Linear Regression 1260.488 8.862 0.115 415.454 2.938 0.039 1502.460 10.664 0.138 0.902 0.010
45 168 24 Random Forest 788.848 6.717 0.103 443.333 3.105 0.041 843.333 7.322 0.112 92.524 1.028
45 168 24 Linear Regression 892.743 6.941 0.100 321.530 2.261 0.030 1041.730 8.138 0.118 73.650 0.818
57 24 24 Random Forest 1262.787 9.449 0.125 471.500 3.344 0.044 1651.000 11.548 0.147 12.607 0.140
57 24 24 Linear Regression 1553.077 17.290 4.284 x 108 438.427 10.554 2.307 x 108 2073.080 19.923 2.284 x 107 0.975 0.011
57 168 24 Random Forest 1181.500 9.111 0.123 534.286 3.796 0.050 1486.330 10.746 0.144 116.134 1.290
57 168 24 Linear Regression 3277.524 55.296 1.518 x 1010 1006.060 46.901 2.823 x 109 4236.920 58.719 9.370 x 109 135.634 1.507
1 24 24 NA 2611.729 16.414 0.199 1515.750 10.128 0.125 3023.900 18.565 0.222 0.005 0.070
1 168 24 NA 2062.046 13.301 0.158 1918.350 11.931 0.138 2272.070 14.338 0.173 0.053 0.560
1 720 24 NA 1803.667 11.425 0.140 1698.130 10.755 0.131 1838.360 11.696 0.143 0.065 0.864

45 24 24 1 LSTM + 1 FC 1261.533 8.959 0.115 353.310 2.435 0.031 1810.190 12.219 0.152 14.369 0.048
45 24 24 2 LSTM + 1 FC 969.900 8.691 0.129 352.313 2.451 0.032 1372.310 11.807 0.172 63.148 0.071
45 24 24 2 1D-CNN + 1 LSTM + 1 FC 4358.755 26.988 0.315 940.253 6.416 0.072 4783.100 29.515 0.343 16.880 0.068
45 168 24 1 LSTM + 1 FC 1174.794 9.199 0.129 356.657 2.438 0.031 1687.850 12.898 0.179 82.606 0.076
45 168 24 2 LSTM + 1 FC 1176.942 8.801 0.117 371.395 2.434 0.030 1613.890 11.749 0.157 84.025 0.134
45 168 24 2 1D-CNN + 1 LSTM + 1 FC 4106.574 22.049 0.251 1034.070 6.348 0.082 4572.940 24.233 0.272 35.034 0.102
45 720 24 1 LSTM + 1 FC 1154.667 9.360 0.131 359.520 2.489 0.032 1628.180 12.635 0.176 100.725 0.229
45 720 24 2 LSTM + 1 FC 1077.895 8.392 0.114 375.322 2.533 0.031 1422.830 10.804 0.147 160.340 0.368
45 720 24 2 1D-CNN + 1 LSTM + 1 FC 3208.744 20.318 0.255 1907.590 10.902 0.135 3466.550 21.663 0.268 115.625 0.297
45 24 24 1 LSTM + 1 FC 1172.564 9.083 0.130 373.978 2.599 0.033 1620.020 12.321 0.175 13.582 0.067
45 24 24 2 LSTM + 1 FC 987.682 8.367 0.123 351.076 2.370 0.030 1409.810 11.478 0.165 17.083 0.067
45 24 24 2 1D-CNN + 1 LSTM + 1 FC 10988.330 70.258 0.592 10183.400 64.212 0.562 11235.500 71.692 0.599 12.383 0.067
45 168 24 1 LSTM + 1 FC 1214.520 9.651 0.135 388.147 2.715 0.034 1646.550 12.650 0.173 24.848 0.087
45 168 24 2 LSTM + 1 FC 1045.930 8.422 0.119 360.357 2.485 0.031 1409.420 11.113 0.155 87.210 0.123
45 168 24 2 1D-CNN + 1 LSTM + 1 FC 4245.961 25.720 0.286 1128.250 7.504 0.095 6020.170 35.150 0.372 49.909 0.102
45 720 24 1 LSTM + 1 FC 1849.342 12.680 0.180 371.855 2.554 0.033 2761.720 17.796 0.255 184.945 0.232
45 720 24 2 LSTM + 1 FC 1331.039 9.991 0.135 379.260 2.537 0.031 1856.930 13.798 0.186 167.660 0.334
45 720 24 2 1D-CNN + 1 LSTM + 1 FC 3370.661 19.586 0.239 1862.560 11.152 0.134 3724.700 21.361 0.261 109.441 0.248

Seq2Seq + 
Attention

Average Point-Forecast Metrics
Point-Forecast Metrics T-0 

(1 hour ahead)
Point-Forecast Metrics T-23 

(1 day ahead)

Classic ML

DMD

Seq2Seq

Figure A1. Cont.



Sensors 2021, 21, 2979 32 of 37
Sensors 2021, 21, x FOR PEER REVIEW 34 of 39 
 

 

 

 

1 24 24 1 LSTM + 1 FC 1232.053 8.766 0.112 659.488 4.357 0.052 1578.480 11.066 0.144 3.812 0.009
1 24 24 2 LSTM + 1 FC 1219.053 8.542 0.109 633.025 4.179 0.050 1508.360 10.673 0.136 4.826 0.016
1 24 24 2 1D-CNN + 1 FC 1271.664 8.837 0.112 716.211 4.634 0.053 1486.690 11.404 0.151 1.684 0.005
1 24 24 2 1D-CNN (MaxPooling) + 1 FC 1376.059 9.555 0.120 810.805 5.091 0.059 1813.450 12.277 0.154 1.564 0.006
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1 168 24 2 1D-CNN (MaxPooling) + 1 FC 1256.469 8.396 0.107 1329.720 8.313 0.098 1739.250 10.991 0.135 2.336 0.013
1 168 24 2 1D-CNN + 1 LSTM + 1 FC 997.596 6.938 0.092 741.907 4.629 0.054 1039.730 7.788 0.107 4.332 0.015
1 168 24 2 1D-CNN + 2 LSTM + 1 FC 911.842 6.424 0.085 683.804 4.334 0.051 1050.290 7.682 0.105 8.075 0.021
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1 720 24 1 LSTM + 1 FC 1199.170 8.013 0.102 956.227 6.017 0.070 1267.430 8.755 0.115 34.154 0.210
1 720 24 2 LSTM + 1 FC 1319.133 8.810 0.110 1170.710 7.439 0.088 1601.100 10.355 0.126 35.682 0.347
1 720 24 2 1D-CNN + 1 FC 3255.801 18.106 0.206 3484.340 19.295 0.216 3504.340 19.486 0.221 6.670 0.040
1 720 24 2 1D-CNN (MaxPooling) + 1 FC 4484.210 24.139 0.270 4475.000 24.129 0.270 4470.000 24.123 0.270 5.667 0.029
1 720 24 2 1D-CNN + 1 LSTM + 1 FC 836.626 5.873 0.080 655.652 4.060 0.047 946.607 6.874 0.098 9.040 0.034
1 720 24 3 1D-CNN + 1 LSTM + 1 FC 878.022 6.236 0.084 650.433 4.196 0.051 966.181 7.359 0.102 16.328 0.046
1 720 24 2 1D-CNN + 2 LSTM + 1 FC 884.398 6.148 0.084 692.840 4.429 0.053 1022.450 7.240 0.102 17.393 0.039
1 720 24 6 FC 944.873 6.456 0.088 873.352 5.572 0.068 1081.640 7.549 0.101 0.774 0.004

45 24 24 1 LSTM + 1 FC 1170.769 8.506 0.115 722.674 4.843 0.057 1435.540 10.555 0.147 4.765 0.008
45 24 24 2 LSTM + 1 FC 1121.281 9.056 0.128 693.648 4.713 0.058 1419.380 11.388 0.163 19.256 0.015
45 24 24 2 2D-CNN + 1 FC 4494.439 24.165 0.270 4482.640 24.150 0.270 4506.770 24.196 0.271 7.766 0.023
45 24 24 2 1D-CNN + 1 FC 1284.198 8.846 0.113 993.480 6.393 0.073 1485.850 10.508 0.138 3.201 0.004
45 24 24 2 1D-CNN (MaxPooling) + 1 FC 1336.591 9.130 0.115 1012.110 6.580 0.077 1568.930 10.954 0.141 3.788 0.004
45 24 24 2 1D-CNN + 1 LSTM + 1 FC 1016.409 7.627 0.103 715.447 4.813 0.059 1187.440 9.227 0.127 19.558 0.007
45 24 24 2 1D-CNN + 2 LSTM + 1 FC 1087.609 8.264 0.111 856.637 5.610 0.067 1330.000 9.959 0.134 12.020 0.015
45 24 24 6 FC 1302.281 9.567 0.130 1025.750 6.462 0.075 1505.510 10.948 0.148 1.753 0.002
45 168 24 1 LSTM + 1 FC 1170.736 8.856 0.122 962.432 6.263 0.073 1304.960 10.384 0.147 18.308 0.046
45 168 24 2 LSTM + 1 FC 1166.842 9.153 0.129 941.459 6.341 0.079 1400.660 10.934 0.152 31.858 0.067
45 168 24 2 1D-CNN + 1 FC 2181.523 13.216 0.160 2106.520 12.685 0.148 2236.940 13.824 0.170 1.921 0.013
45 168 24 2 1D-CNN (MaxPooling) + 1 FC 2812.888 16.236 0.192 3217.060 18.473 0.212 3695.880 20.018 0.231 4.178 0.016
45 168 24 2 1D-CNN + 1 LSTM + 1 FC 995.204 7.527 0.107 744.572 4.931 0.059 1158.330 9.245 0.136 8.235 0.018
45 168 24 2 1D-CNN + 2 LSTM + 1 FC 882.438 6.677 0.094 645.366 4.371 0.052 1009.040 7.936 0.115 15.313 0.022
45 168 24 6 FC 1547.811 10.577 0.137 1585.730 10.165 0.124 1933.520 12.493 0.158 0.898 0.006
45 720 24 1 LSTM + 1 FC 1081.745 8.054 0.114 776.716 5.275 0.065 1179.600 9.115 0.137 56.410 0.221
45 720 24 2 LSTM + 1 FC 1130.502 8.668 0.124 911.109 6.037 0.076 1205.490 9.879 0.148 69.946 0.370
45 720 24 2 1D-CNN + 1 FC 4485.805 24.145 0.270 4503.510 24.193 0.271 4500.310 24.221 0.272 8.410 0.045
45 720 24 2 1D-CNN (MaxPooling) + 1 FC 4485.059 24.125 0.270 4490.740 24.162 0.270 4508.740 24.182 0.271 15.823 0.050
45 720 24 2 1D-CNN + 1 LSTM + 1 FC 1014.433 7.493 0.104 743.704 5.063 0.060 1157.180 8.563 0.119 21.860 0.067
45 720 24 3 1D-CNN + 1 LSTM + 1 FC 1116.282 8.066 0.111 849.127 5.880 0.073 1268.270 9.242 0.127 17.143 0.090
45 720 24 2 1D-CNN + 2 LSTM + 1 FC 1206.945 8.619 0.117 1093.810 7.417 0.094 1236.690 9.080 0.125 23.993 0.062
45 720 24 6 FC 1757.002 11.437 0.145 1778.060 11.910 0.153 2037.690 12.870 0.159 3.164 0.026

DL Achitectures

1 24 24 (3 FC)*5 1062.048 7.713 0.101 612.438 3.831 0.044 1312.890 9.912 0.133 1.820 0.002
1 24 24 (4 FC)*5 1011.963 7.497 0.099 607.314 3.873 0.044 1374.300 9.845 0.130 2.278 0.002
1 24 24 (1 LSTM + 1 FC)*10 1165.964 8.228 0.104 482.023 3.207 0.038 1656.750 11.255 0.140 58.649 0.057
1 24 24 (1 LSTM + 1 FC)*10 + dropout(0.3) 3837.545 21.377 0.229 4773.920 26.092 0.233 3570.560 19.315 0.218 34.108 0.043
1 24 24 (2 LSTM + 1 FC)*3 1110.134 7.979 0.105 590.566 3.812 0.045 1487.290 10.323 0.133 21.165 0.023

45 24 24 (3 FC)*5 1321.093 9.581 0.128 891.213 5.877 0.070 1689.660 11.865 0.155 1.504 0.003
45 24 24 (4 FC)*5 1258.297 9.953 0.134 841.574 5.688 0.069 1436.930 11.818 0.161 2.896 0.003
45 24 24 (1 LSTM + 1 FC)*10 1039.372 8.600 0.120 499.090 3.278 0.040 1256.560 10.642 0.152 57.917 0.049
45 24 24 (1 LSTM + 1 FC)*10 + dropout(0.3) 2337.064 14.138 0.173 2143.680 13.000 0.154 2532.520 14.884 0.178 22.944 0.046
45 24 24 (2 LSTM + 1 FC)*3 1190.725 9.174 0.123 818.225 5.124 0.059 1417.540 11.457 0.156 16.675 0.025
1 168 24 (3 FC)*5 787.703 5.741 0.082 506.783 3.245 0.039 904.087 6.752 0.098 2.413 0.003
1 168 24 (4 FC)*5 771.248 5.724 0.083 523.973 3.449 0.042 890.135 6.784 0.099 1.733 0.003
1 168 24 (1 LSTM + 1 FC)*5 867.528 6.329 0.088 569.119 3.478 0.041 867.175 6.876 0.104 57.717 0.124
1 168 24 (2 LSTM + 1 FC)*3 960.165 6.812 0.090 631.457 3.973 0.047 981.685 7.584 0.105 22.735 0.132

45 168 24 (3 FC)*5 1290.104 8.879 0.116 1159.250 7.582 0.090 1543.660 10.291 0.132 13.312 0.012
45 168 24 (4 FC)*5 1248.944 8.886 0.120 1046.310 6.857 0.086 1492.130 10.386 0.136 11.200 0.009
45 168 24 (1 LSTM + 1 FC)*5 1182.993 8.895 0.119 728.023 4.823 0.057 1403.850 10.618 0.145 50.960 0.146
45 168 24 (2 LSTM + 1 FC)*3 1011.498 7.780 0.110 763.734 4.910 0.060 1175.720 9.246 0.130 49.340 0.146
1 24 24 (3 FC)*5 -WS 1351.302 9.065 0.112 717.801 4.454 0.051 1575.110 10.889 0.138 1.107 0.002
1 24 24 (4 FC)*5 - WS 1220.134 8.511 0.109 647.634 4.191 0.049 1377.020 10.281 0.137 2.021 0.002
1 168 24 (3 FC)*5 -WS 1026.078 7.233 0.097 1043.790 7.115 0.083 1441.410 9.649 0.124 1.121 0.002
1 168 24 (4 FC)*5 -WS 941.708 6.560 0.091 668.698 4.389 0.053 999.418 7.439 0.109 3.031 0.003

45 24 24 (3 FC)*5 -WS 1715.316 11.094 0.136 1354.680 9.121 0.111 1931.850 12.496 0.155 1.452 0.003
45 24 24 (4 FC)*5 -WS 1552.859 10.558 0.135 1154.400 7.453 0.087 1766.980 12.378 0.163 1.185 0.003
45 168 24 (3 FC)*5 -WS 4521.823 24.272 0.272 4540.000 24.361 0.274 4523.780 24.281 0.272 2.432 0.009
45 168 24 (4 FC)*5 -WS 1581.337 10.344 0.129 1418.700 9.487 0.119 1870.990 12.453 0.154 4.301 0.009

Additive Ensemble-
Identical blocks

Figure A1. Cont.
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Figure A1. Point forecast performance metrics for the average, first (T-0) and last (T-23) predicted time-slots using all 
models. This table is limited to a forecast time horizon of 24 h (𝑘 = 24). The average is obtained along the 24 predicted 
values (𝑘 = 24). Different number of predictors (𝑝) and network architectures are considered for several values per pre-
dictor (𝑓). Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively. 
The best two values per column are highlighted in bold. Sections 3.2 and 4 provide how to interpret the description of the 
models and their groups. The last two columns provide the training and test times for all models. This table shows the 
complete set of models used to compare results for 𝑘 = 24. The results presented in Section 4 are the most representative 
results obtained in this table. The models considered most representative for 𝑘 = 24 are those considered to compare the 
models for 𝑘 = 168 and 720. 

1 24 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 1033.636 7.827 0.105 615.943 3.685 0.043 1300.240 10.044 0.135 13.403 0.013
45 24 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 1083.010 8.660 0.118 562.949 3.779 0.046 1252.390 10.744 0.154 14.514 0.013

1/45/57 24 24

(1 LSTM(A) + 2 FC)*1 + 
(1 LSTM(D) + 2 FC)*1 + 
(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

990.557 8.446 0.122 433.834 2.889 0.036 1237.030 10.908 0.155 30.576 0.017

1/45/57 24 24
(1 LSTM(A) + 2 FC)*1 + 
(1 LSTM(D) + 2 FC)*1 + 
(1 LSTM(L) + 2 FC)*1 

1071.501 8.617 0.121 528.402 3.432 0.042 1231.680 11.091 0.157 27.577 0.029

1/45/57 24 24

(1 LSTM(A) + 2 FC)*2 + 
(1 LSTM(D) + 2 FC)*2 + 
(1 LSTM(L) + 2 FC)*2 + 

(4 FC)*2

1058.925 8.352 0.114 448.776 2.921 0.035 1330.330 10.726 0.150 33.828 0.029

1/45/57 24 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*1 + 
(2 1D-CNN(D) +1 LSTM + 2 FC)*1 + 
(2 1D-CNN(L) +1 LSTM+  2 FC)*1 + 

(4 FC)*1

1167.951 8.326 0.106 746.188 4.804 0.059 1312.210 10.068 0.136 9.082 0.013

1/45/57 24 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*2 + 
(2 1D-CNN(D) +1 LSTM + 2 FC)*2 + 
(2 1D-CNN(L) +1 LSTM+  2 FC)*2 + 

(4 FC)*2

1160.399 8.335 0.107 1187.490 6.873 0.077 1348.750 10.125 0.135 27.541 0.023

1 168 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 772.850 5.693 0.080 457.966 2.988 0.037 861.057 6.666 0.098 90.918 0.099
45 168 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 961.903 7.338 0.102 611.393 4.127 0.051 1168.880 8.896 0.124 72.698 0.059

1/45/57 168 24

(1 LSTM(A) + 2 FC)*1 + 
(1 LSTM(D) + 2 FC)*1 + 
(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

916.853 7.002 0.098 498.229 3.286 0.040 1107.200 8.560 0.120 37.157 0.062

1/45/57 168 24
(1 LSTM(A) + 2 FC)*1 + 
(1 LSTM(D) + 2 FC)*1 + 
(1 LSTM(L) + 2 FC)*1 

1002.636 7.451 0.102 612.161 4.088 0.050 1154.110 8.747 0.122 36.073 0.060

1/45/57 168 24

(1 LSTM(A) + 2 FC)*2 + 
(1 LSTM(D) + 2 FC)*2 + 
(1 LSTM(L) + 2 FC)*2 + 

(4 FC)*2

1003.409 7.206 0.096 561.889 3.513 0.042 1140.240 8.755 0.120 78.647 0.098

1/45/57 168 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*1 + 
(2 1D-CNN(D) +1 LSTM + 2 FC)*1 + 
(2 1D-CNN(L) +1 LSTM+  2 FC)*1 + 

(4 FC)*1

1070.146 7.547 0.097 720.416 4.489 0.053 1205.140 8.593 0.113 24.410 0.071

1/45/57 168 24

(2 1D-CNN(A) +1 LSTM + 2 FC)*2 + 
(2 1D-CNN(D) +1 LSTM + 2 FC)*2 + 
(2 1D-CNN(L) +1 LSTM+  2 FC)*2 + 

(4 FC)*2

1149.609 7.869 0.099 654.900 4.270 0.049 1406.060 9.724 0.123 34.370 0.115

1 720 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 983.289 6.584 0.088 699.707 4.202 0.050 939.826 6.849 0.098 42.145 0.597

1/45/57 720 24

(1 LSTM(A) + 2 FC)*1 + 
(1 LSTM(D) + 2 FC)*1 + 
(1 LSTM(L) + 2 FC)*1 + 

(4 FC)*1

1033.243 7.295 0.096 507.495 3.311 0.038 1236.790 9.182 0.120 107.037 0.711

Additive Ensemble-
Independent blocks

1 168 24 1 LSTM + 1 FC 887.364 6.556 0.094 641.250 4.229 0.053 881.030 7.802 0.118 39.509 0.065
1 168 24 2 LSTM + 1 FC 858.766 6.267 0.091 673.624 4.362 0.054 866.179 6.844 0.101 62.836 0.067
1 168 24 6 FC 835.671 6.181 0.090 644.390 4.265 0.052 977.974 7.443 0.108 2.479 0.004
1 720 24 2 1D-CNN + 1 LSTM + 1 FC 970.656 6.626 0.092 765.601 4.832 0.058 1074.260 7.435 0.103 7.923 0.031
1 168 24 (3 FC)*5 628.270 4.857 0.075 430.504 2.749 0.033 902.692 6.630 0.095 13.048 0.006

1 168 24 (4 FC)*5 649.117 5.051 0.079 439.874 2.915 0.036 864.140 6.615 0.099 8.901 0.006

1 168 24 (1 LSTM + 1 FC)*5 739.593 5.706 0.083 448.691 3.022 0.038 778.346 6.802 0.101 80.342 0.169

1 168 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 666.509 5.152 0.079 412.507 2.721 0.034 710.994 5.950 0.095 86.938 0.110

1 720 24 (1 LSTM + 2 FC)*2 + (4 FC)*2 793.898 5.686 0.081 423.903 2.896 0.037 765.596 6.030 0.091 87.739 0.176

CWQFNN
DL Achitectures

CWQFNN
Additive Ensemble-

Identical blocks

CWQFNN
Additive Ensemble-
Independent blocks

Figure A1. Point forecast performance metrics for the average, first (T-0) and last (T-23) predicted time-slots using all
models. This table is limited to a forecast time horizon of 24 h (k = 24). The average is obtained along the 24 predicted values
(k = 24). Different number of predictors (p) and network architectures are considered for several values per predictor ( f ).
Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively. The best two
values per column are highlighted in bold. Sections 3.2 and 4 provide how to interpret the description of the models and
their groups. The last two columns provide the training and test times for all models. This table shows the complete set of
models used to compare results for k = 24. The results presented in Section 4 are the most representative results obtained in
this table. The models considered most representative for k = 24 are those considered to compare the models for k = 168
and 720.
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forecast over a 168-h (1 week) forecast time horizon (𝑘 = 168). Results for a selection of best models for each group of 
models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively. 
The best two values per column are highlighted in bold. The last two columns provide the training and test times for all 
models. 

 
Figure A3. Point forecast performance metrics for the first (T-0), 23rd (T-23), 167th (T-167) and last (T-719) hour forecast 
and average forecast over a 720-h (1 month) forecast time horizon (𝑘 = 720). Results for a selection of best models for each 
group of models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respec-
tively. The best two values per column are highlighted in bold. The last two columns provide the training and test times 
for all models. 

References 
1. Hammad, M.A.; Jereb, B.; Rosi, B.; Dragan, D. Methods and Models for Electric Load Forecasting: A Comprehensive Review. 

Logist. Sustain. Transp. 2020, 11, 51–76, doi:10.2478/jlst-2020-0004. 
2. Mohammed, A.A.; Aung, Z. Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation. Energies 

2016, 9, 1017, doi:10.3390/en9121017. 
3. Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521845731. 
4. Nguyen, H.; Hansen, C.K. Short-term electricity load forecasting with Time Series Analysis. In Proceedings of the 2017 IEEE 

International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 214–221, 
doi:10.1109/ICPHM.2017.7998331. 

5. Hernández, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A Survey on Electric Power 
Demand Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings. IEEE Commun. Surv. Tutor. 2014, 16, 1460–
1495, doi:10.1109/SURV.2014.032014.00094. 

6. Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, B.; Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider, M.; Salinas, D.; 
Stella, L.; et al. Neural forecasting: Introduction and literature overview. arXiv 2020, arXiv:2004.10240. 

7. Lim, B.; Zohren, S. Time Series Forecasting With Deep Learning: A Survey. arXiv 2020, arXiv:2004.13408. 
8. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. 

Manag. 2019, 198, 111799, doi:10.1016/j.enconman.2019.111799. 

Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
(min)

1 168 168 Random Forest 1150.5 9.237 0.135 440.0 3.095 0.041 863.3 7.469 0.116 1333.3 10.215 0.146 12.665 0.141
1 168 168 Linear Regression 2431.2 15.685 0.195 495.0 3.475 0.045 1915.9 14.151 0.177 1212.0 9.403 0.136 0.080 0.001

DMD 1 720 168 NA 1972.6 12.661 0.155 1698.1 10.755 0.131 1842.4 11.663 0.143 2297.4 14.589 0.179 0.072 0.929
Seq2Seq + 
Attention

45 24 168 2 LSTM + 1 FC 1794.3 13.115 0.189 500.9 3.159 0.037 1432.8 10.802 0.153 2047.2 14.816 0.219 68.539 0.894

1 168 168 1 LSTM + 1 FC 1370.6 9.541 0.126 1093.4 6.933 0.081 1204.4 8.550 0.113 1341.9 9.783 0.134 51.438 0.060
1 168 168 6 FC 1546.5 10.578 0.138 1086.7 7.025 0.081 1292.2 9.054 0.118 1560.4 10.717 0.142 3.072 0.003
1 720 168 2 1D-CNN + 1 LSTM + 1 FC 1445.8 9.707 0.125 1246.6 8.024 0.097 1297.0 8.672 0.113 1494.9 10.314 0.138 13.687 0.035
1 168 168 (3 FC)*5 1123.6 8.513 0.122 708.7 4.667 0.058 897.3 6.909 0.103 1270.9 9.581 0.133 3.406 0.004
1 168 168 (4 FC)*5 1155.7 8.577 0.121 762.7 5.051 0.061 1009.0 7.340 0.102 1290.1 9.439 0.131 3.962 0.004
1 168 168 (1 LSTM + 1 FC)*5 1115.7 8.502 0.121 565.7 3.546 0.043 869.0 7.031 0.105 1261.0 9.360 0.133 54.967 0.125

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1237.7 8.892 0.123 775.9 4.752 0.055 917.3 6.970 0.102 1216.7 9.268 0.134 92.921 0.117

1 168 168 1 LSTM + 1 FC 1256.7 9.200 0.126 939.1 6.283 0.078 1093.7 7.879 0.107 1307.4 9.641 0.136 65.470 0.071
1 168 168 6 FC 1358.1 9.909 0.135 927.0 6.597 0.080 1188.2 8.792 0.118 1437.7 10.283 0.140 7.679 0.004
1 168 168 (3 FC)*5 1031.1 8.127 0.122 651.7 4.454 0.057 824.3 6.559 0.103 1154.8 9.041 0.133 15.246 0.008
1 168 168 (4 FC)*5 992.0 7.980 0.120 638.8 4.402 0.053 804.1 6.542 0.103 1162.8 9.057 0.130 21.175 0.009
1 168 168 (1 LSTM + 1 FC)*5 1019.0 8.127 0.121 622.5 3.888 0.046 746.7 6.428 0.102 1155.5 8.873 0.129 85.876 0.170

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1140.7 8.675 0.125 633.9 4.018 0.048 954.9 7.143 0.105 1104.9 8.834 0.132 96.451 0.115

DL Architectures

Additive Ensemble-
Identical blocks
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Average Forecast Metrics
Forecast Metrics T-0 

(1 hour ahead)
Forecast Metrics T-23 

(1 day ahead)
Forecast Metrics T-167 

(1 week ahead)

Classic ML

Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
(min)

1 168 720 Random Forest 1477.8 11.384 0.160 443.3 3.139 0.041 786.7 6.762 0.100 1273.3 9.942 0.142 1861.1 13.169 0.176 39.874 0.443
1 168 720 Linear Regression 1608.5 11.392 0.151 323.6 2.203 0.028 901.5 7.036 0.100 1140.7 9.023 0.130 2071.5 13.929 0.178 3.645 0.040

DMD 1 720 720 NA 2753.1 18.248 0.219 1698.1 10.755 0.131 1842.4 11.663 0.143 2268.9 14.472 0.178 3279.5 23.605 0.289 0.072 1.001
Seq2Seq + Attention 45 24 720 2 LSTM + 1 FC 1848.1 14.257 0.197 539.3 3.554 0.043 1800.4 12.653 0.162 2005.4 15.325 0.208 1924.8 14.072 0.195 74.701 1.981

1 168 720 1 LSTM + 1 FC 1738.3 11.990 0.156 1022.9 6.832 0.083 1232.1 8.848 0.117 1359.5 9.902 0.135 1871.8 13.365 0.176 60.806 0.088
1 168 720 6 FC 2100.8 13.626 0.169 1661.9 10.414 0.120 1705.2 11.314 0.137 1966.8 13.035 0.161 2352.8 15.124 0.187 3.316 0.004
1 720 720 2 1D-CNN + 1 LSTM + 1 FC 1562.7 10.697 0.136 1373.1 8.969 0.109 1331.7 9.105 0.114 1553.2 10.591 0.133 1721.3 11.604 0.149 15.045 0.047
1 168 720 (3 FC)*5 1697.8 11.572 0.151 797.6 5.324 0.066 1010.4 7.513 0.101 1539.0 10.396 0.139 1800.9 12.717 0.167 3.641 0.006
1 168 720 (4 FC)*5 1541.4 10.950 0.146 800.7 5.395 0.067 946.1 7.009 0.096 1277.1 9.378 0.130 1787.7 12.532 0.165 4.219 0.007
1 168 720 (1 LSTM + 1 FC)*5 1797.4 12.173 0.156 1004.4 6.371 0.071 1487.6 10.127 0.124 1281.0 9.379 0.130 2075.6 13.627 0.174 60.021 0.169

Additive Ensemble-
Independent blocks

1 168 720
(1 LSTM + 2 FC)*2 + (4 FC)*2

1688.4 11.616 0.152 938.5 5.930 0.068 1046.1 7.403 0.096 1257.5 9.406 0.130 1858.2 13.047 0.170 105.968 0.121

1 168 720 1 LSTM + 1 FC 1743.7 12.202 0.160 1182.6 7.787 0.095 1528.8 10.238 0.131 1391.9 10.137 0.137 2032.3 13.872 0.181 71.737 0.117
1 168 720 6 FC 2064.7 13.335 0.168 2168.0 12.169 0.139 1993.7 12.009 0.144 2067.6 13.002 0.162 2505.1 15.323 0.188 9.752 0.009
1 168 720 (3 FC)*5 1329.8 10.203 0.142 1088.8 6.598 0.076 982.9 7.168 0.101 1150.1 8.960 0.131 1613.1 11.891 0.160 21.893 0.013
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Figure A2. Point forecast performance metrics for the first (T-0), 23rd (T-23) and last (T-167) hour forecast and average
forecast over a 168-h (1 week) forecast time horizon (k = 168). Results for a selection of best models for each group of models.
Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively. The best two
values per column are highlighted in bold. The last two columns provide the training and test times for all models.
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Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
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1 168 168 Random Forest 1150.5 9.237 0.135 440.0 3.095 0.041 863.3 7.469 0.116 1333.3 10.215 0.146 12.665 0.141
1 168 168 Linear Regression 2431.2 15.685 0.195 495.0 3.475 0.045 1915.9 14.151 0.177 1212.0 9.403 0.136 0.080 0.001

DMD 1 720 168 NA 1972.6 12.661 0.155 1698.1 10.755 0.131 1842.4 11.663 0.143 2297.4 14.589 0.179 0.072 0.929
Seq2Seq + 
Attention

45 24 168 2 LSTM + 1 FC 1794.3 13.115 0.189 500.9 3.159 0.037 1432.8 10.802 0.153 2047.2 14.816 0.219 68.539 0.894

1 168 168 1 LSTM + 1 FC 1370.6 9.541 0.126 1093.4 6.933 0.081 1204.4 8.550 0.113 1341.9 9.783 0.134 51.438 0.060
1 168 168 6 FC 1546.5 10.578 0.138 1086.7 7.025 0.081 1292.2 9.054 0.118 1560.4 10.717 0.142 3.072 0.003
1 720 168 2 1D-CNN + 1 LSTM + 1 FC 1445.8 9.707 0.125 1246.6 8.024 0.097 1297.0 8.672 0.113 1494.9 10.314 0.138 13.687 0.035
1 168 168 (3 FC)*5 1123.6 8.513 0.122 708.7 4.667 0.058 897.3 6.909 0.103 1270.9 9.581 0.133 3.406 0.004
1 168 168 (4 FC)*5 1155.7 8.577 0.121 762.7 5.051 0.061 1009.0 7.340 0.102 1290.1 9.439 0.131 3.962 0.004
1 168 168 (1 LSTM + 1 FC)*5 1115.7 8.502 0.121 565.7 3.546 0.043 869.0 7.031 0.105 1261.0 9.360 0.133 54.967 0.125

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1237.7 8.892 0.123 775.9 4.752 0.055 917.3 6.970 0.102 1216.7 9.268 0.134 92.921 0.117

1 168 168 1 LSTM + 1 FC 1256.7 9.200 0.126 939.1 6.283 0.078 1093.7 7.879 0.107 1307.4 9.641 0.136 65.470 0.071
1 168 168 6 FC 1358.1 9.909 0.135 927.0 6.597 0.080 1188.2 8.792 0.118 1437.7 10.283 0.140 7.679 0.004
1 168 168 (3 FC)*5 1031.1 8.127 0.122 651.7 4.454 0.057 824.3 6.559 0.103 1154.8 9.041 0.133 15.246 0.008
1 168 168 (4 FC)*5 992.0 7.980 0.120 638.8 4.402 0.053 804.1 6.542 0.103 1162.8 9.057 0.130 21.175 0.009
1 168 168 (1 LSTM + 1 FC)*5 1019.0 8.127 0.121 622.5 3.888 0.046 746.7 6.428 0.102 1155.5 8.873 0.129 85.876 0.170

Additive Ensemble-
Independent blocks

1 168 168 (1 LSTM + 2 FC)*2 + (4 FC)*2 1140.7 8.675 0.125 633.9 4.018 0.048 954.9 7.143 0.105 1104.9 8.834 0.132 96.451 0.115
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Class f p k Model MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE MAD sMAPE RRMSE
Training

Time 
(min)

Test
Time 
(min)

1 168 720 Random Forest 1477.8 11.384 0.160 443.3 3.139 0.041 786.7 6.762 0.100 1273.3 9.942 0.142 1861.1 13.169 0.176 39.874 0.443
1 168 720 Linear Regression 1608.5 11.392 0.151 323.6 2.203 0.028 901.5 7.036 0.100 1140.7 9.023 0.130 2071.5 13.929 0.178 3.645 0.040

DMD 1 720 720 NA 2753.1 18.248 0.219 1698.1 10.755 0.131 1842.4 11.663 0.143 2268.9 14.472 0.178 3279.5 23.605 0.289 0.072 1.001
Seq2Seq + Attention 45 24 720 2 LSTM + 1 FC 1848.1 14.257 0.197 539.3 3.554 0.043 1800.4 12.653 0.162 2005.4 15.325 0.208 1924.8 14.072 0.195 74.701 1.981
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1 168 720 6 FC 2064.7 13.335 0.168 2168.0 12.169 0.139 1993.7 12.009 0.144 2067.6 13.002 0.162 2505.1 15.323 0.188 9.752 0.009
1 168 720 (3 FC)*5 1329.8 10.203 0.142 1088.8 6.598 0.076 982.9 7.168 0.101 1150.1 8.960 0.131 1613.1 11.891 0.160 21.893 0.013
1 168 720 (4 FC)*5 1358.7 10.356 0.144 668.9 4.692 0.060 1195.9 8.259 0.103 1175.5 9.059 0.129 1695.7 12.220 0.164 25.125 0.015
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Figure A3. Point forecast performance metrics for the first (T-0), 23rd (T-23), 167th (T-167) and last (T-719) hour forecast and
average forecast over a 720-h (1 month) forecast time horizon (k = 720). Results for a selection of best models for each group
of models. Table is color-coded (column-wise) with a green–red palette corresponding to best-worst results, respectively.
The best two values per column are highlighted in bold. The last two columns provide the training and test times for
all models.
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