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• A fraction of outliers should be excluded
to determine the concentration trend.

• Outliers can be described by skewed dis-
tributions.

• The distributions for outliers above or
below the trend line may be different.

• Themodified Nash-Sutcliffe efficiency is a
sensitive goodness-of-fit statistic.
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CO2 and CH4 outliers may have a noticeable impact on the trend of both gases. Nine years ofmeasurements since 2010
recorded at a rural site in northern Spain were used to investigate these outliers. Their influence on the trend was pre-
sented and two limits were established. Nomore than 23.5% of outliers should be excluded from the measurement se-
ries in order to obtain representative trends, which were 2.349 ± 0.012 ppm year−1 for CO2 and 0.00879 ±
0.00004 ppm year−1 for CH4. Two types of outliers were distinguished. Those above the trend line and the rest
below the trend line. Outliers were described by skewed distributions where the Weibull distribution figures promi-
nently inmost cases. A qualitative procedure was presented to exclude the worst fits, although five statistics were con-
sidered to select the bestfit. In this case, themodifiedNash-Sutcliffe efficiency is prominent. Finally, three symmetrical
distributions were added to fit the observations when outliers are excluded, with the Gaussian and beta distributions
providing the best fits. As a result, certain skewed functions, such as the lognormal distribution, whose use is frequent
for air pollutants, could be questioned in certain applications.
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1. Introduction

Outliers appear inmeasurement series with unequal frequency. The rea-
sons for this may vary substantially. Scattered outliers of high CO2 and CH4

values recorded at rural sites were linked with local sources and/or partic-
ular weather conditions, such as temperature inversions and low wind
B.V. This is an open access ar
ticle u
speed, whereas low concentration events may be determined by wind di-
rection or local sinks (Belikov et al., 2019; Yang et al., 2019). At urban
sites, these outliers are more prominent than in rural environments due to
pollution sources (Yang et al., 2021).

Observation selection is necessary for specific applications. For in-
stance, datamust be filtered when the aim is to determine background con-
centrations or large-scale features where certain local influences such as
ecosystem emissions or nearby traffic must be isolated (Wang et al.,
2020). In the same line, Fang et al. (2016b) excluded high CO2 concentra-
tion night-time episodes, linked with biospheric respiration in a poorly
nder the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mixed atmosphere, and local sources or sinks associated with wind speeds
lower than 1.5 m s−1, from regional events.

Following Ben-Gal (2005), procedures for outlier detection may be di-
vided between parametric and non-parametric methods. Parametric
methods either consider a known data distribution or are based on calcula-
tions of unknown distribution parameters (van Zoest et al., 2018). In con-
trast, within non-parametric methods, those which are distance-based
stand out since they are suitable for large databases (Kontaki et al.,
2011). In some cases, the average value is locally computed in a given
neighbourhood, and outliers are observations that differ significantly
from this average. In this situation, one additional problem is the definition
of neighbourhood (Carrilho et al., 2018). When a distance is required, a
threshold, which considers the standard deviation of observations, must
be established (Martínez et al., 2014).

Procedures used to treat atmospheric concentrations do not usually in-
clude distribution function fitting (Fang et al., 2014; Kilkki et al., 2015).
However, some examples demonstrate the usefulness of such analyses.
Karaca et al. (2005) used ten distribution functions to study particulatemat-
ter in the municipality of Istanbul. Air quality in Delhi for SO2, NO2, and
particulate matter was studied by Sharma et al. (2013), and the statistical
analysis included 12 distribution functions to identify and estimate the
best-fit distribution. A generalised form of the Gumbel distribution was in-
troduced by Korkmaz (2015) and applied to air pollution data to demon-
strate its modeling potential. Statistics such as skewness and kurtosis as
well as the generalised extreme value distribution were used by Battista
et al. (2016) to investigate air pollution in Rome, Italy. Martins et al.
(2017) used the generalised extreme value and the generalised Pareto dis-
tributions to analyse air pollution in the two largest urban areas in Brazil.
Finally, the contrast between CO2 concentrations in Seoul city centre,
South Korea, and amountain in its surroundings was described by the prob-
ability density function, which was quite flat in winter, but more peaked in
summer (Park et al., 2021).
Fig. 1. Image courtesy of © ign.es showing the
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CO2 and CH4 evolutions are measured in various environments due to
their link to climate change. This objective is achieved by station networks
such as stations under the Global AtmosphereWatch (GAW) programme of
the World Meteorological Organization (WMO) (WDCGG, 2021), or by the
cooperative air sampling network of the Global Monitoring Laboratory
(NOAA, 2021). These networks focus on measurements to determine
trend evolution and its accompanying cycles. However, particular analyses
are carried out at polluted sites, which are considered sources of both gases
(Lian et al., 2021; Nyasulu et al., 2021), when transport plays a key role
(Jain et al., 2021), or at certain sites of specific interest (Kurbatova et al.,
2020).

The measurement site considered in the current analysis is a place
where the evolution of both gases has already been investigated
(Fernández-Duque et al., 2020; Pérez et al., 2020). However, the database
used in this paperwas increased vis-à-vis that employed in previous studies.
The first objective is to study outlier influence on the CO2 and CH4 trend
measured at this rural site. Consequently, this trend is calculated and com-
pared with values determined in various environments. The influence of
the number of observations on the trend of both gases has been calculated
by Pérez et al. (2019). However, outlier influence remains unexplored.
Moreover, compared to time series analysis (Bianchi et al., 2020), which
could be seen as quite complex, the procedure for isolating outliers
presented in this study is relatively easy, since it is based on linear
regressions.

The second objective is to describe these outliers by some distribution
functions. Since the studies cited above focus on skewed distributions,
some distributions of this type will be used. In order to simplify the calcula-
tion procedure, iterative calculationmethods were excluded. For this objec-
tive, the key point is that distributions are only used for outliers and not for
all observations. A second key point lies in the statistics used to establish the
goodness of the fit. This paper considers statistics that have scarcely been
investigated to date.
measurement site and its surrounding area.

Image of Fig. 1


Fig. 2. Schematic representation of the outlier determination method.
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This analysis assumes that the observations present a defined trend and
noticeable outliers are a fraction of observations that follow a skewed distri-
bution. Consequently, fairly regular observations, where outliers are
marginal or are clusters of values, fall outside the scope of this study.

In the materials and methods section, the measurement site is de-
scribed, followed by the procedure employed to isolate outliers and the dis-
tribution functions used together with the goodness-of-fit statistics. The
results section presents the trends under different outlier percentages, and
the selection of specific percentages is investigated. Moreover, the fits of
ten skewed distributions are presented as a function of outlier percentage
in order to compare the values of the goodness-of-fit statistic. Finally, a sim-
ilar treatment is applied to observations excluding outliers by adding some
symmetrical distributions to the skewed ones previously used.

2. Materials and methods

2.1. Observations

Dry concentrations of CO2 and CH4 were measured over nine years,
commencing in October 2010, at the Low Atmosphere Research Centre
(CIBA station, 41° 48′ 50” N, 4° 55′ 59” W, 852 m a.s.l., Fig. 1). The site is
nearly flat and the vegetation is formed by scrublands surrounded by
rainfed crops and sparse trees. The climate of the site determines both the
vegetation and its annual evolution. Following the Köppen classification,
the climate is Cfb, i.e. temperate without a dry season andwith a temperate
summer. The nearest urban site is the city of Valladolid (around 300,000 in-
habitants), located some 25 km SE of the measurement site.

Observations were obtained from a Picarro G1301 analyser where three
levels were considered; at heights of 1.8 m, 3.7 m, and 8.3 m. However,
only half-hourly averages of measurements at the lowest level were used
in this analysis.

Calibrations were periodically performed with three NOAA standards,
which were 452.56 ppm, 399.27 ppm and 348.55 ppm for CO2, and
1.9904 ppm, 1.8420 ppm and 1.6310 ppm for CH4, i.e. above, around
and below ambient concentrations. However, due to a technical problem,
there were two distinct measurement periods; the first until 19 July 2017,
and the second from 6 December 2017. The corresponding equations for
correcting the measurements were:

CCO2C ¼ 1:00355 CCO2−0:18482

CCH4C ¼ 0:99264 CCH4 þ 0:01092

)
for the first period:

CCO2C ¼ 1:00572 CCO2−1:17899

CCH4C ¼ 0:99017 CCH4 þ 0:00884

)
for the second period:

(1)

In these equations, subscript C corresponds to the corrected concentra-
tion.

2.2. Procedure for obtaining outliers

Outliers are determined by an iterative procedure where the starting
point is a straight line calculated with initial observations. Once the first
outlier from this line is determined, it is excluded from the observations
and the procedure continues with the remaining observations (Fig. 2),
i.e., a new straight line is calculated, the second outlier is determined and
then excluded, and so on. Absolute values of outlier residuals against
their corresponding linear fits were calculated and their medians were
also obtained. Since outliers may be located above the trend line or below
this line, their residuals were denoted as top and bottom, respectively. An
exponential expression was also used for outlier selection. Some robust sta-
tistics were calculated. The median was used as a location indicator, the in-
terquartile range indicates measurement spread, symmetry is calculated by
the Yule-Kendall index, and flatness is expressed by the robust kurtosis,
which is the quotient between the interquartile range and the double dis-
tance between the 9th and 1st deciles.
3

2.3. Distribution fitting

Thirteen distribution functions presented in Table 1 were employed.
Ten of them were skewed and three were symmetrically distributed.

Theoretical and experimental cumulative distribution functions were
calculated with programs in Fortran developed by the authors and the
goodness of fit was determined with five efficiency statistics (Krause
et al., 2005), which are presented in Table 2, where O refers to observed
values and C to calculated values.

3. Results

3.1. Trend calculation

Fig. 3(a, b) presents the results for both - lineal and exponential - fits fol-
lowing the percentage of outliers suppressed. Two values were considered

Image of Fig. 2


Table 1
Distribution functions used to fit the outlier residuals (only the skewed ones), and the central residuals (all the functions)⁎.

Type Distribution Probability density function Parameter calculation

Skewed Beta a
f xð Þ ¼ Γ αþβð Þ

Γ αð ÞΓ βð Þ
h i

xα−1 1−xð Þβ−1;0≤ x ≤ 1;α, β> 0 α ¼ x2 1−xð Þ
s2 −x;β ¼ α 1−xð Þ

x ;x ¼ y−a
b−a ;

s2x ¼ s2y
b−að Þ2

Exponential b f(x) = θ exp (−θ x); x > 0; θ > 0 θ ¼ 1=x
Frechet c

f xð Þ ¼ λ
s

s
x

� �λþ1 exp − s
x

� �λn o
;x ≥ 0;σ, λ> 0 − ln [− ln {F(x)}] = − λ ln s + λ ln (x)

Gamma a
f xð Þ ¼ x=βð Þα−1 exp −x=βð Þ

β Γ αð Þ ;x, α, β> 0

D ¼ ln xð Þ− 1
n ∑

n

i¼1
ln xið Þ;α ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D

3

r
4D

;

β ¼ x=α
Gumbel a f xð Þ ¼ 1

β exp − exp − x−ζð Þ
β

h i
− x−ζð Þ

β

n o
β ¼ x

ffiffi
6

p
π ;ζ ¼ x−γβ;γ ¼ 0:57721

Lindley b
f xð Þ ¼ θ2

θþ1 1þ xð Þe−θx ;x> 0, θ> 0 θ ¼ − x−1ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−1ð Þ2þ8x

p
2x

Lognormal d f xð Þ ¼ 1
xs

ffiffiffiffi
2π

p exp − ln x−μð Þ2
2s2

� �
μ ¼ ln x; s = slnx

Triangular d

f xð Þ ¼
2 x−að Þ

b−að Þ c−að Þ½ � , if a≤ x ≤ c

2 b−xð Þ
b−að Þ b−cð Þ½ � :if c ≤ x ≤ b

8>><
>>:

c ¼ 3x−a−b

Wald d
f xð Þ ¼

ffiffiffiffiffiffiffiffi
λ

2πx3

q
exp −λ x−μð Þ2

2μ2x

� �
μ ¼ x, λ ¼ μ3

σ2

Weibull e f xð Þ ¼ α
β

� �
x
β

� �α−1
exp − x

β

� �αh i
;x, α, β> 0 ln(− ln (1 − F(x))) = α ln (x) − α ln (β)

Symmetrical Gaussian d
f xð Þ ¼ 1

s
ffiffiffiffi
2π

p exp − x−μð Þ2
2s2

� �
μ ¼ x

Laplace d
f xð Þ ¼ 1

2b exp − x−aj j
b

� �
a ¼ x, b ¼

ffiffiffiffi
σ2
2

q
Logistic d

f xð Þ ¼ exp x−að Þ=b½ �
b 1þ exp x−að Þ=b½ �f g2 a ¼ x, b ¼ ffiffiffi

3
p

s=π

⁎x is the average and s the standard deviation.
a (Wilks, 2019).
b (Ghitany et al., 2008).
c (Bury, 1999).
d (Forbes et al., 2011).
e (Akdaǧ and Dinler, 2009).
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for the exponentialfit since trends are different for the beginning and end of
the measurement period. A first section including around 4% of outliers is
associated with a noticeable change in the trend. The second outlier border
may be better defined for CO2 than for CH4. The outlier frontier proposed
was around 23.5% of all the outliers. This interval between both limits is
featured by a slow decrease in the CO2 trend and is followed by a relatively
steady trend. However, the CH4 trend increased in this interval and was
followed by a slight decrease and a subsequent increase. The trend values
calculated with the linear fit for this outlier percentage are 2.349 ±
0.012 ppm year−1 for CO2, and 0.00879 ± 0.00004 ppm year−1 for CH4.
Fig. 3(c) shows the coefficient of determination, r2, for the linear fit as a
function of the outlier percentage. It is slightly better for CH4 than for
CO2. Moreover, the increase is noticeable at low percentages for CH4, re-
vealing the few outliers that have a pronounced impact on the trend.

Since the trend for the linearfit is around the average of the trend values
for the exponentialfit, the linearfit was used in the rest of the current study.
Fig. 4 presents the medians of absolute values of residuals for both groups
Table 2
Efficiency statistics used in this study.

Name Equation

Coefficient of determination
r2 ¼ ∑n

i¼1 Oi−Oð Þ Ci−Cð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi−Oð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Ci−Cð Þ2

q
0
@

1
A

2

Willmott index of agreement d ¼ 1− ∑n
i¼1 Oi−Cið Þ2

∑N
i¼1 Ci−Oj jþ Oi−Oj jð Þ2

Modified index of agreement dmod ¼ 1− ∑n
i¼1 Oi−Cij j

∑N
i¼1 Ci−Oj jþ Oi−Oj jð Þ

Nash-Sutcliffe efficiency E ¼ 1− ∑n
i¼1 Oi−Cið Þ2

∑n
i¼1 Oi−Oð Þ2

Modified Nash-Sutcliffe efficiency Emod ¼ 1−∑n
i¼1 Oi−Cij j

∑n
i¼1 Oi−Oj j

4

together with their outlier percentages. A noticeable drop in the median
is observed for the first outliers. However, once this initial drop is passed,
the decrease in the outlier residual median with the outlier percentage is
slight. This result indicates that the number of conspicuous outliers is
low. Moreover, a higher number of outliers is obtained above the trend
line and their concentrations are higher.

Fig. 5 presents the box-plot for the three types of observations when out-
liers account for 23.5% of data. In this figure, themedian is the line in the box
representing the interquartile range. Whiskers extend from the 10th to the
90th percentile and isolated dots correspond to the 5th and the 95th percen-
tiles. Differences between pairs of groupmeans are statistically significant fol-
lowing Fisher's least significant difference method. Observation dispersion is
similar for central and bottom CO2 values and for the three CH4 groups.

Concentrations of absolute values of CO2 and CH4 residuals are quite
dissimilar. However, they may be scaled in an interval between 0 and 1
to make them comparable. The second frontier, 23.5% of all outliers, was
selected tomake additional calculations of these scaled values. Table 3 pre-
sents some robust statistics. The dispersion of CO2 scaled residuals is sim-
ilar for both residual types. However, a noticeable contrast is obtained
for CH4, since the dispersion of the top residuals is low, but higher for
the bottom residuals. Finally, the robust kurtosis is similar to that of a
Gaussian distribution, 0.262, for the bottom residuals. However, it is
lower for the top residuals, revealing that the top residuals present
peaked distributions.

These features may be observed in Fig. 6, where the cumulative distri-
bution function (CDF) of scaled residuals is presented. The four curves are
featured by a sharp increase in CDF values, although these are smoother
for the CH4 bottom concentrations. This rapid increase is attributed to the
high agglomeration of observations and is followed by a slow rise due to
the relatively few large observations. The concave downward shape is asso-
ciated with positively skewed data (Wilks, 2019), and the range between
bottom and top scaled residuals is greater for CH4 than for CO2.



Fig. 3. CO2 (a) and CH4 (b) trends following the percentage of outliers supressed
with linear and exponential fits. Initial and final refer to the trends calculated at
the beginning and end of the measurement period, respectively, with the
exponential fit. (c) r2 values for the linear fit. Vertical lines correspond to the
frontiers suggested.

Fig. 4. Medians of the absolute values of residuals in the linear fit and the outlier
percentages following the percentage of all outliers. Vertical grey lines correspond
to the 4% and 23.5% borders.

Fig. 5. Box-plot of observations when outliers are 23.5%. Three types of data are
established, i.e. values linked with top and bottom residuals and the rest, which
are the central observations.
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3.2. Distribution fitting

The absolute value of residuals was considered for the second frontier,
23.5%, of all the outliers. Ten skewed distribution functions were used
whose experimental, F1, and theoretical CDF, F2, were compared in
Fig. 7. The better the agreement the closer the corresponding line is to
the diagonal. This plot provides a qualitative representation of the goodness
of fit, since the fits of CH4 top outliers for the beta, Gumbel, and triangular
functions must be discarded. However, selecting the best satisfactory agree-
ment may prove difficult since some representations look similar. Although
every one of these fits could be chosen, a precise choice can be made with
the numerical efficiency criteria presented in Table 2. Fig. 8 presents the
values of these efficiency criteria. The high values of r2 contrast with the
low values of the modified expression of the index of agreement and the
5

lowest values of the modified Nash-Sutcliffe efficiency, which was the
most sensitive statistic among those used in this paper. These results deter-
mined that the modified Nash-Sutcliffe efficiency was chosen as the refer-
ence estimator in the rest of this study. The range covered was narrow for
the CH4 bottom residuals and wide for the CH4 top residuals. This figure in-
dicates that similar results were obtained for the exponential and Lindley

Image of Fig. 3
Image of Fig. 4
Image of Fig. 5


Table 3
Robust statistics calculated for the scaled absolute values of residuals for the 23.5%
of outliers.

Residual Median Interquartile range Yule-Kendall index Robust kurtosis

CO2 Top 0.038 0.070 0.340 0.226
CO2 Bottom 0.069 0.094 0.189 0.266
CH4 Top 0.007 0.012 0.341 0.174
CH4 Bottom 0.121 0.177 0.229 0.263
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distributions applied to the CH4 residuals. Moreover, the function that pro-
vides the best agreement is that with the highest value of the modified
Nash-Sutcliffe efficiency.

Since the distribution fitting was made for a specific percentage of all
the outliers (23.5%), the response of residuals to skewed distributions
must be investigated in a wide range of outlier percentage. Fig. 9 presents
such a response. Efficiencies are similar for every distribution function for
high outlier percentages, whereas major changes are observed for low per-
centages. Values are gradually distributed for CO2 top residuals and the best
fit is for theWeibull distribution. The best result for the CH4 top residuals is
reached with the lognormal distribution, although the Wald distribution
provides similar values at around 11% of outliers. Moreover, values of the
Weibull distribution are similar to those of the lognormal distribution at
high outlier percentages. Efficiencies for the bottom outliers appear
mixed. Beta, Weibull and gamma distributions provide satisfactory fits in
a wide range of percentages (the Linley distribution must also be consid-
ered for CO2) whereas the Frechet distribution stands out due to its low
values.

3.3. Central value fitting

Skewed distributions used to fit the absolute value of residuals for out-
liers were also used to fit the residuals of central values when outliers are
excluded. Table 4 presents some robust statistics for location, spread, sym-
metry and flatness for central residuals when removing 23.5% of outliers.
Themedian is almost zero, the Yule-Kendall index reveals that the distribu-
tion is nearly symmetrical and the robust kurtosis is close to that for a
Gaussian distribution, which is 0.262. Taking into account these values,
three symmetrical distributions are included; the Gaussian, Laplace, and lo-
gistic distributions. The results of these fits calculated by the modified
Nash-Sutcliffe efficiency are presented in Fig. 10. Lower outlier percentages
are featured by noticeable changes of the statistic used. Low values of the
statistic were obtained for the triangular function at low outlier percent-
ages. Most of the distributions provided statistic values of above 0.8 in a
wide interval of outlier percentage. Satisfactory fits were observed for the
Gaussian distribution, although only in a narrow interval of outlier
Fig. 6. Cumulative distribution function of scaled residuals.

6

percentage. When this percentage increases, the best fits were reached by
the beta distribution, which was flexible enough to successfully describe
both skewed and symmetric distributions. In contrast, the exponential func-
tion was the least suitable to fit these residuals, together with the Lindley
function for CH4. The values of the poor fits are lower than those presented
in Fig. 9, revealing that certain skeweddistributions are unsuitable for these
data.

4. Discussion

4.1. Trend evolution

Belikov et al. (2019) analysed CO2 and CH4 evolution at nine sites in Si-
beria using a model developed by Harvey and Peters (1990), later used by
Taylor and Letham (2018), and which considers three contributions. The
first is a trend function that models no periodic changes. The second refers
to periodic seasonal processes, and the third contribution is related with ir-
regular, undetermined transformations. Several equations were used to ex-
plain the concentration trend. The most complex equation considers a
fourth order polynomial (Inoue et al., 2006). Artuso et al. (2009) used an
exponential function to describe the CO2 trend at Lampedusa, Italy. How-
ever, the linear fit is the simplest and most frequent approximation to de-
scribe CO2 and CH4 time evolution, proving to be successful in varied
environments, such as Finland (Aalto et al., 2002), central Siberia
(Timokhina et al., 2015), the Netherlands (Vermeulen et al., 2011), or
northeast China (Wu et al., 2012).

WMO (2020) presented atmospheric CH4 in the period 1984–2020
where four intervals may be established. The first extended until 1992
with a noticeable increase that slowed down until 1999. Concentrations
then remained nearly steady until 2007, when a new period of increases
was noticed. CO2 evolution may be divided into several periods with con-
stant increases, although the interval from 1995 to 2011 stands out,
followed by a second period up to the present day. Consequently, the evo-
lution may be considered almost linear during the period analysed in the
current paper. The linear fit of concentrations was successfully used by
Pérez et al. (2020) to investigate concentration trend and annual cycle at
the site over a six-year period.

The trend values calculated in this paper are in agreement with those
presented in Table 5 for various sites, where some places in China figure
prominently due to the high CO2 values, which are above 3 ppm year−1,
contrasting with the 1.3 ppm year−1 in Antarctica. Similarly, the CH4

trend in this study was close to that measured at Cabaw, the Netherlands,
and is situated between the low value found in Norway and the high
value obtained in Hungary. Table 5 also presents the measurement proce-
dure. Since the methods are different, the comparison between the outlier
number and the influence of these outliers on the trend obtained by these
procedures is a matter that is still open to study.

4.2. Outliers

Observations are frequently included in some studies by both scatter or
line plots, with the number of outliers and their contribution to all the mea-
surements not usually being the objective of the research. However, these
graphs illustrate specific features linked with the site where observations
were obtained. For instance, CO2 outliers are extremely infrequent in
Minamitorishima, a remote island in the western North Pacific (Wada
et al., 2007). A different pattern is formed by noticeable outliers during
the night linked with the stable stratification of the nocturnal boundary
layer accompanied by low values during the day, caused by photosynthesis
and dilution in the expanding mixing layer. Such is the case of Fraserdale,
Canada (Higuchi et al., 2003) or Rishiri, Japan (Zhu and Yoshikawa-
Inoue, 2015). Another pattern is observed in Sammaltunturi, Finland,
above the Arctic Circle, where a noticeable contrast between summer and
winter is obtained (Lohila et al., 2015). The high concentrations are usually
the main outliers, such as at Cape Point, South Africa (Labuschagne et al.,
2018). Air transport from polluted sites, such as cities, may be a noticeable

Image of Fig. 6


Fig. 7. Representation of the theoretical cumulative distribution function, F2, against the cumulative experimental distribution function, F1, for the absolute values of
residuals of the linear fit.
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source of outliers at remote sites that could be considered reference places
of background air, such as Jungfraujoch, Switzerland (Affolter et al., 2021).
However, extremely low concentrations may be a relevant feature in some
places such as Takayama, in central Japan (Murayama et al., 2003).

Outlier description has sometimes been presented qualitatively. Wei
et al. (2020) studied the relationship between air pollutants and meteoro-
logical conditions in Shanghai, China and considered some violin plots
where concentrations are occasionally distributed symmetrically, for exam-
ple, CO2 on a clean day. However, asymmetrical distributions prevailed
7

with tails on the right. In fact, the shape of the distribution function was
that of a symmetrical distribution without most of the left tail.

Previous analyses at the site revealed that outliers have a twofold origin:
the first is the stability of the low atmosphere during the night (Sánchez
et al., 2010), and the second is the Valladolid urban plume (Pérez et al.,
2012). This study explores certain features of these outliers in greater
depth, such as the asymmetric shape of their distribution, the contrast be-
tween the outliers below and above the trend line, and the contrast between
the outliers of both gases.

Image of Fig. 7


Fig. 8. Efficiency criteria used in the current study.
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4.3. Concentration distribution

CO2 concentration skewness has already been investigated (Pérez et al.,
2014). Skewed distributions have been employed to describe these
Fig. 9. The modified Nash-Sutcliffe efficiency for the
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concentrations (Pérez et al., 2013). Recently, Pérez et al. (2021) fitted
both greenhouse gas concentrations to seven skewed distributions follow-
ing nine wind speed intervals. The current study expands this research,
since 10 skewed distributions are used for outliers, with this outlier fit
outlier fitting with varied skewed distributions.

Image of Fig. 8
Image of Fig. 9


Table 4
Robust statistics for residuals of central values once 23.5% of outliers were re-
moved.

Gas Median
(ppm)

Interquartile
range
(ppm)

Yule-Kendall
index

Robust
kurtosis

CO2 0.01 7.17 −0.0018 0.2662
CH4 0 0.0231 −0.0025 0.2713

Fig. 10. The modified Nash-Sutcliffe efficiency for the central residual fitting with vari
excluded.

Table 5
Trends determined at different sites.

Gas Reference Site Tren

CO2 Aalto et al. (2002) Pallas, Finland 2.5
Artuso et al. (2009) Lampedusa, Italy 1.9
Cundari et al. (1995) Mt. Cimone, Italy 1.66
Fang et al. (2016a) Shangdianzi, China 2.7–
Guo et al. (2020) Mt. Waliguan, China 2.45
Hernández-Paniagua et al. (2015) Egham, UK 2.45

Mace Head, Ireland 1.9
Inoue et al. (2006) Tsukuba, Japan 2
Jain et al. (2005) Maitri, Antarctica 1.3
Jain et al. (2021) Gadanki, India 2.5
Labuschagne et al. (2018) Cape Point, South Africa 1.65
Liu et al. (2015) Different sites in the Northern Hemisphere 2.04
McClure et al. (2016) Mt. Bachelor, Oregon 1.48
Tans et al. (1989) Point Barrow, Alaska 1.44
Timokhina et al. (2015) Central Siberia, Russia 2.02
Vermeulen et al. (2011) Cabaw, The Netherlands 2
Wu et al. (2012) Northeast China 1.7
Zhang et al. (2008) Seven sites in China 1.7–

CH4 Fang et al. (2016a) Shangdianzi, China 0.00
Guo et al. (2020) Mt. Waliguan, China 0.00
Haszpra et al. (2011) Hegyhátsál, Hungary 0.01
Jain et al. (2021) Gadanki, India 0.01
Nisbet et al. (2014) Globally averaged 0.00
Pedersen et al. (2005) Mt. Zeppelin, Norway 0.00
Vermeulen et al. (2011) Cabaw, The Netherlands 0.00
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being a specific contribution of this paper. In particular, this study presents
twooutlier types thatmust be treated separately and indicates that theWeibull
distribution stands out as a function that could be considered by air pollution
control agencies to analyse concentration limits for air quality. Moreover,
three symmetrical distributions are also used for non-outlier observations.

Krause et al. (2005) presented five efficiency criteria to compare simu-
lated and observed variables. These criteriawere used by Pérez et al. (2021)
to contrast experimental and theoretical cumulative distribution functions.
The current analysis considers the same criteria and, in agreement with the
previous study, the modified Nash-Sutcliffe efficiency proved to be the best
ed distributions (Gaussian, Laplace, and logistic are symmetrical) when outliers are

d (ppm year−1) Period Measurement procedure

1996–2000 Infrared analyser
1992–2007 Infrared analyser
1979–1991 Infrared analyser

3.8 2009–2013 Cavity ring-down spectroscopy
2010–2016 Cavity ring-down spectroscopy
2000–2012 Infrared analyser and cavity ring-down spectroscopy
2000–2011
1992–2003 Infrared analyser
2002–2003 Gas chromatography
2016–2019 Cavity ring-down spectroscopy

–2.80 1993–2016 Gas chromatography and cavity ring-down spectroscopy
1997–2006
2012–2014 Cavity ring-down spectroscopy
1983–1985 Infrared analyser
2006–2013 Infrared analyser and cavity ring-down spectroscopy
2005–2009 Infrared analyser
2003–2010 Infrared analyser

3.6 2003–2006 Infrared analyser
6–0.010 2009–2013 Cavity ring-down spectroscopy
82 2010–2016 Cavity ring-down spectroscopy
7 2007–2009 Gas chromatography
11 2016–2019 Cavity ring-down spectroscopy
6 2007–2013
334–0.00363 1998–2004 Gas chromatography
74 2005–2010 Gas chromatography

Image of Fig. 10
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estimator for establishing the fit between observations and theoretical
values. Consequently, using this statistic should be recommended in analy-
ses that deal with comparisons of values.

5. Conclusions

CO2 and CH4 concentrations recorded at a rural site in northern Spain
over nine years presented a linear evolution. Outlier analysis revealed that
4% of them make a noticeable contribution to the trend. An outlier limit of
23.5% was suggested to obtain a representative trend, which was 2.349 ±
0.012 ppm year−1 for CO2 and 0.00879 ± 0.00004 ppm year−1 for CH4.

Most outliers were obtained for observations above the trend line and
their concentrations were higher than those below the trend. However, a
surprising response was obtained for scaled outliers. In particular, CH4 dis-
tribution presented contrasting shapes for scaled outliers above the trend
line, where saturation is reached quickly, and below the trend line, where
saturation is reached slowly.

The qualitative fit between experimental and theoretical cumulative
distribution functions for ten skewed distributions used with outliers at
the 23.5% limit evidenced the functions that may be discarded, such as
theGumbel, for outliers above the trend line. However, quantitative estima-
tors are required to select the range of the best fit. The modified Nash-
Sutcliffe efficiency was the most sensitive statistic for this objective. The
fits for outliers above the trend were the worst, especially for CH4.

The skewed distribution functions determined a noticeable range of the
modified Nash-Sutcliffe efficiency values. Among these functions, the
Weibull distribution stands out due to its satisfactory agreement.

For central values, the Gaussian distribution stands out when the num-
ber of outliers excluded is low and it is replaced by the beta distribution
with a high number of outliers excluded.

Once outliers have been isolated and described by distribution func-
tions, the next step is to establish the reasons that determine these outliers.
For higher concentrations, they may be due to transport from sources or
meteorological factors, such as boundary layer depth. However, determin-
ing which reasons cause low concentrations must be investigated. More-
over, this study may be the starting point for more detailed analyses
where additional variables are involved, such as wind speed or wind direc-
tion. By way of an illustration, outliers and trends may be analysed bywind
sectors or by wind speed intervals to explore the contrast between polluted
and clean air masses. These research lines remain open with regard to se-
curing a better insight into the evolution of the two gases.

CRediT authorship contribution statement

Isidro A. Pérez: Conceptualization, Formal analysis, Writing – original
draft. M. Ángeles García: Data curation, Writing – review & editing. M.
Luisa Sánchez: Funding acquisition. Nuria Pardo: Resources.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

This research was funded by the Ministry of Economy and Competitive-
ness and ERDF funds, project numbers CGL-2009-11979 and CGL2014-
53948-P.

References

Aalto, T., Hatakka, J., Paatero, I., Tuovinen, J.P., Aurela, M., Laurila, T., Holmén, K., Trivett,
N., Viisanen, Y., 2002. Tropospheric carbon dioxide concentrations at a northern boreal
site in Finland: basic variations and source areas. Tellus B 54, 110–126. https://doi.
org/10.1034/j.1600-0889.2002.00297.x.
10
Affolter, S., Schibig, M., Berhanu, T., Bukowiecki, N., Steinbacher, M., Nyfeler, P., Hervo, M.,
Lauper, J., Leuenberger, M., 2021. Assessing local CO2 contamination revealed by two
near-by high altitude records at Jungfraujoch, Switzerland. Environ. Res. Lett. 16,
044037. https://doi.org/10.1088/1748-9326/abe74a.

Akdaǧ, S.A., Dinler, A., 2009. A new method to estimate Weibull parameters for wind energy
applications. Energy Conv. Manag. 50, 1761–1766. https://doi.org/10.1016/j.
enconman.2009.03.020.

Artuso, F., Chamard, P., Piacentino, S., Sferlazzo, D.M., De Silvestri, L., di Sarra, A., Meloni, D.,
Monteleone, F., 2009. Influence of transport and trends in atmospheric CO2 at Lampe-
dusa. Atmos. Environ. 43, 3044–3051. https://doi.org/10.1016/j.atmosenv.2009.03.
027.

Battista, G., Pagliaroli, T., Mauri, L., Basilicata, C., De Lieto Vollaro, R., 2016. Assessment of
the air pollution level in the city of Rome (Italy). Sustainability 8 (838). https://doi.
org/10.3390/su8090838.

Belikov, D., Arshinov, M., Belan, B., Davydov, D., Fofonov, A., Sasakawa, M., Machida, T.,
2019. Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmo-
spheric CO2 and CH4 at tower network in Siberia from 2005 to 2016. Atmosphere 10,
689. https://doi.org/10.3390/atmos10110689.

Ben-Gal, I., 2005. Outlier detection. In: Maimon, O., Rockach, L. (Eds.), Data Mining and
Knowledge Discovery Handbook. Kluwer Academic Publishers, Netherlands,
pp. 131–146.

Bianchi, S., Plastino, W., di Sarra, A.G., Piacentino, S., Sferlazzo, D., 2020. Carbon dioxide
time series analysis: A new methodological approach for event screening categorization.
In: Cannarsa, P., Mansutti, D., Provenzale, A. (Eds.), Mathematical Approach to Climate
Change and its Impacts. 38. Springer, pp. 201–209. https://doi.org/10.1007/978-3-
030-38669-6_7.

Bury, K., 1999. Statistical distributions in engineering. Cambridge University Press, Cam-
bridge, UK, pp. 294–310.

Carrilho, A.C., Galo, M., Dos Santos, R.C., 2018. Statistical outlier detection method for air-
borne LiDAR data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 42–1, 87–92.
https://doi.org/10.5194/isprs-archives-XLII-1-87-2018.

Cundari, V., Colombo, T., Ciattaglia, L., 1995. Thirteen years of atmospheric carbon dioxide
measurements at Mt. Cimone station, Italy. Nuovo Cim. C 18 (1), 33–47. https://doi.
org/10.1007/BF02561457.

Fang, S., Tans, P.P., Steinbacher, M., Zhou, L., Luan, T., Li, Z., 2016b. Observation of atmo-
spheric CO2 and CO at Shangri-La station: Results from the only regional station located
at southwestern China. Tellus B 68, 28506. https://doi.org/10.3402/tellusb.v68.28506.

Fang, S.X., Zhou, L.X., Tans, P.P., Ciais, P., Steinbacher, M., Xu, L., Luan, T., 2014. In situ mea-
surement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem.
Phys. 14, 2541–2554. https://doi.org/10.5194/acp-14-2541-2014.

Fang, S.X., Tans, P.P., Dong, F., Zhou, H., Luan, T., 2016a. Characteristics of atmospheric CO2

and CH4 at the Shangdianzi regional background station in China. Atmos. Environ. 131,
1–8. https://doi.org/10.1016/j.atmosenv.2016.01.044.

Fernández-Duque, B., Pérez, I.A., García, M.A., Pardo, N., Sánchez, M.L., 2020. Local regres-
sions for decomposing CO2 and CH4 time-series in a semi-arid ecosystem. Atmos. Pollut.
Res. 11, 213–223. https://doi.org/10.1016/j.apr.2019.10.012.

Forbes, C., Evans, M., Hastings, N., Peacock, B., 2011. Statistical Distributions. Fourth edition.
John Wiley & Sons, New Jersey https://doi.org/10.1002/9780470627242.

Ghitany, M.E., Atieh, B., Nadarajah, S., 2008. Lindley distribution and its application. Math.
Comput. Simulat. 78, 493–506. https://doi.org/10.1016/j.matcom.2007.06.007.

Guo, M., Fang, S., Liu, S., Liang, M., Wu, H., Yang, L., Li, Z., Liu, P., Zhang, F., 2020. Compar-
ison of atmospheric CO2, CH4, and CO at two stations in the Tibetan Plateau of China.
Earth Space Sci. 7, e2019EA001051. https://doi.org/10.1029/2019EA001051.

Harvey, A.C., Peters, S., 1990. Estimation procedures for structural time series models.
J. Forecast. 9, 89–108. https://doi.org/10.1002/for.3980090203.

Haszpra, L., Barcza, Z., Szilágyi, I., Dlugokencky, E., Tans, P., 2011. Trends and temporal var-
iations of major greenhouse gases at a rural site in central Europe. In: Haszpra, L. (Ed.),
Atmospheric Greenhouse Gases: The Hungarian Perspective. Springer, pp. 29–47.

Hernández-Paniagua, I.Y., Lowry, D., Clemitshaw, K.C., Fisher, R.E., France, J.L., Lanoisellé,
M., Ramonet, M., Nisbet, E.G., 2015. Diurnal, seasonal, and annual trends in atmospheric
CO2 at southwest London during 2000-2012: Wind sector analysis and comparison with
Mace Head, Ireland. Atmos. Environ. 105, 138–147. https://doi.org/10.1016/j.
atmosenv.2015.01.021.

Higuchi, K., Worthy, D., Chan, D., Shashkov, A., 2003. Regional source/sink impact on
the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal
forest site in Canada. Tellus B 55, 115–125. https://doi.org/10.1034/j.1600-0889.
2003.00062.x.

Inoue, H.Y., Matsueda, H., Igarashi, Y., Sawa, Y., Wada, A., Nemoto, K., Sartorius, H., Schlosser,
C., 2006. Seasonal and long-term variations in atmospheric CO2 and 85Kr in Tsukuba, Cen-
tral Japan. J. Meteorol. Soc. Jpn. 84, 959–968. https://doi.org/10.2151/jmsj.84.959.

Jain, S.L., Ghude, S.D., Kumar, A., Arya, B.C., Kulkarni, P.S., 2005. Continuous observations of
surface air concentration of carbon dioxide and methane at Maitri, Antarctica. Curr. Sci.
88, 1941–1948.

Jain, C.D., Singh, V., Akhil Raj, S.T., Madhavan, B.L., Ratnam, M.V., 2021. Local emis-
sion and long-range transport impacts on the CO, CO2, and CH4 concentrations at
a tropical rural site. Atmos. Environ. 254, 118397. https://doi.org/10.1016/j.
atmosenv.2021.118397.

Karaca, F., Alagha, O., Ertürk, F., 2005. Statistical characterization of atmospheric PM10 and
PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere
59, 1183–1190. https://doi.org/10.1016/j.chemosphere.2004.11.062.

Kilkki, J., Aalto, T., Hatakka, J., Portin, H., Laurila, T., 2015. Atmospheric CO2 observations at
Finnish urban and rural sites. Boreal Environ. Res. 20, 227–242.

Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y., 2011. Contin-
uous monitoring of distance-based outliers over data streams. IEEE 27th International
Conference on Data Engineering, Art. No. 5767923, pp. 135–146 https://doi.org/10.
1109/ICDE.2011.5767923.

https://doi.org/10.1034/j.1600-0889.2002.00297.x
https://doi.org/10.1034/j.1600-0889.2002.00297.x
https://doi.org/10.1088/1748-9326/abe74a
https://doi.org/10.1016/j.enconman.2009.03.020
https://doi.org/10.1016/j.enconman.2009.03.020
https://doi.org/10.1016/j.atmosenv.2009.03.027
https://doi.org/10.1016/j.atmosenv.2009.03.027
https://doi.org/10.3390/su8090838
https://doi.org/10.3390/su8090838
https://doi.org/10.3390/atmos10110689
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141531294437
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141531294437
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141531294437
https://doi.org/10.1007/978-3-030-38669-6_7
https://doi.org/10.1007/978-3-030-38669-6_7
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141531400373
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141531400373
https://doi.org/10.5194/isprs-archives-XLII-1-87-2018
https://doi.org/10.1007/BF02561457
https://doi.org/10.1007/BF02561457
https://doi.org/10.3402/tellusb.v68.28506
https://doi.org/10.5194/acp-14-2541-2014
https://doi.org/10.1016/j.atmosenv.2016.01.044
https://doi.org/10.1016/j.apr.2019.10.012
https://doi.org/10.1002/9780470627242
https://doi.org/10.1016/j.matcom.2007.06.007
https://doi.org/10.1029/2019EA001051
https://doi.org/10.1002/for.3980090203
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141532523956
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141532523956
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141532523956
https://doi.org/10.1016/j.atmosenv.2015.01.021
https://doi.org/10.1016/j.atmosenv.2015.01.021
https://doi.org/10.1034/j.1600-0889.2003.00062.x
https://doi.org/10.1034/j.1600-0889.2003.00062.x
https://doi.org/10.2151/jmsj.84.959
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533339560
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533339560
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533339560
https://doi.org/10.1016/j.atmosenv.2021.118397
https://doi.org/10.1016/j.atmosenv.2021.118397
https://doi.org/10.1016/j.chemosphere.2004.11.062
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533575486
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533575486
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141533575486
https://doi.org/10.1109/ICDE.2011.5767923
https://doi.org/10.1109/ICDE.2011.5767923


I.A. Pérez et al. Science of the Total Environment 819 (2022) 153129
Korkmaz, M.Ç., 2015. Two-sided generalized Gumbel distribution with application to air pol-
lution data. Int. J. Stat. Distrib. Appl. 1, 19–26. https://doi.org/10.11648/j.ijsd.
20150101.14.

Krause, P., Boyle, D.P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrolog-
ical model assessment. Adv. Geosci. 5, 89–97. https://doi.org/10.5194/adgeo-5-89-
2005.

Kurbatova, J.A., Aleshnovskij, V.S., Kuricheva, O.A., Avilov, V.K., Bezrukova, A.V., Gazaryan,
V.A., Chulichkov, A.I., Shapkina, N.E., 2020. Seasonal and interannual variability of CO2

above the moist tropical forest of southern Vietnam. IOP Conf. Ser. Earth Environ. Sci.
606, 012027. https://doi.org/10.1088/1755-1315/606/1/012027.

Labuschagne, C., Kuyper, B., Brunke, E.-G., Mokolo, T., van der Spuy, D., Martin, L.,
Mbambalala, E., Parker, B., Khan, M.A.H., Davies-Coleman, M.T., Shallcross, D.E.,
Joubert, W., 2018. A review of four decades of atmospheric trace gas measurements at
cape point, South Africa. Trans. Roy. Soc. S. Afr. 73, 113–132. https://doi.org/10.
1080/0035919X.2018.1477854.

Lian, J., Bréon, F.-M., Broquet, G., Lauvaux, T., Zheng, B., Ramonet, M., Xueref-Remy, I.,
Kotthaus, S., Haeffelin, M., Ciais, P., 2021. Sensitivity to the sources of uncertainties in
the modeling of atmospheric CO2 concentration within and in the vicinity of Paris.
Atmos. Chem. Phys. 21, 10707–10726. https://doi.org/10.5194/acp-21-10707-2021.

Liu, M., Wu, J., Zhu, X., He, H., Jia, W., Xiang, W., 2015. Evolution and variation of atmo-
spheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy co-
variance measurements. Atmos. Environ. 114, 75–82. https://doi.org/10.1016/j.
atmosenv.2015.05.026.

Lohila, A., Penttilä, T., Jortikka, S., Aalto, T., Anttila, P., Asmi, E., Aurela, M., Hatakka, J.,
Hellén, H., Henttonen, H., Hänninen, P., Kilkki, J., Kyllönen, K., Laurila, T., Lepistö, A.,
Lihavainen, H., Makkonen, U., Paatero, J., Rask, M., Sutinen, R., Tuovinen, J.P.,
Vuorenmaa, J., Viisanen, Y., 2015. Preface to the special issue on integrated research of
atmosphere, ecosystems and environment at Pallas. Boreal Environ. Res. 20, 431–454.

Martínez, J., Saavedra, Á., García-Nieto, P.J., Piñeiro, J.I., Iglesias, C., Taboada, J., Sancho, J.,
Pastor, J., 2014. Air quality parameters outliers detection using functional data analysis
in the Langreo urban area (Northern Spain). Appl. Math. Comput. 241, 1–10. https://
doi.org/10.1016/j.amc.2014.05.004.

Martins, L.D., Wikuats, C.F.H., Capucim, M.N., de Almeida, D.S., da Costa, S.C., Albuquerque,
T., Barreto Carvalho, V.S., de Freitas, E.D., de Fátima Andrade, M., Martins, J.A., 2017.
Extreme value analysis of air pollution data and their comparison between two large
urban regions of South America. Weather Clim. Extremes 18, 44–54. https://doi.org/
10.1016/j.wace.2017.10.004.

McClure, C.D., Jaffe, D.A., Gao, H., 2016. Carbon dioxide in the free troposphere and bound-
ary layer at the Mt. Bachelor observatory. Aerosol Air Qual. Res. 16, 717–728. https://
doi.org/10.4209/aaqr.2015.05.0323.

Murayama, S., Saigusa, N., Chan, D., Yamamoto, S., Kondo, H., Eguchi, Y., 2003. Temporal
variations of atmospheric CO2 concentration in a temperate deciduous forest in Central
Japan. Tellus B 55, 232–243. https://doi.org/10.1034/j.1600-0889.2003.00061.x.

Nisbet, E.G., Dlugokencky, E.J., Bousquet, P., 2014. Methane on the rise – again. Science 343,
493–495. https://doi.org/10.1126/science.1247828.

NOAA, 2021. https://gml.noaa.gov/ccgg/flask.html. (Accessed 10 July 2021).
Nyasulu, M., Haque, M.M., Kumar, K.R., Banda, N., Ayugi, B., Uddin, M.J., 2021. Temporal

patterns of remote-sensed tropospheric carbon dioxide and methane over an urban site
in Malawi, Southeast Africa: implications for climate effects. Atmos. Pollut. Res. 12,
125–135. https://doi.org/10.1016/j.apr.2021.02.005.

Park, C., Jeong, S., Park, H., Woo, J.-H., Sim, S., Kim, J., Son, J., Park, H., Shin, Y., Shin, J.H.,
Kwon, S.M., Lee, W.Y., 2021. Challenges in monitoring atmospheric CO2 concentrations
in Seoul using low-cost sensors. Asia-Pac. J. Atmos. Sci. 57, 547–553. https://doi.org/10.
1007/s13143-020-00213-2.

Pedersen, I.-T., Holmén, K., Hermansen, O., 2005. Atmospheric methane at Zeppelin Station
in ny-Ålesund: presentation and analysis of in situ measurements. J. Environ. Monit. 7,
488–492. https://doi.org/10.1039/b416934d.

Pérez, I.A., Sánchez, M.L., García, M.Á., Pardo, N., 2012. Analysis and fit of surface CO2 con-
centrations at a rural site. Environ. Sci. Pollut. Res. 19, 3015–3027. https://doi.org/10.
1007/s11356-012-0813-4.

Pérez, I.A., Sánchez, M.L., García, M.A., Pardo, N., 2013. Carbon dioxide at an unpolluted site
analysed with the smoothing kernel method and skewed distributions. Sci. Total Environ.
456–457, 239–245. https://doi.org/10.1016/j.scitotenv.2013.03.075.

Pérez, I.A., Sánchez, M.L., García, M.A., Ozores, M., Pardo, N., 2014. Analysis of carbon diox-
ide concentration skewness at a rural site. Sci. Total Environ. 476–477, 158–164. https://
doi.org/10.1016/j.scitotenv.2014.01.019.
11
Pérez, I.A., Sánchez, M.L., García, M.A., Pardo, N., Fernández-Duque, B., 2019. Influence of
dataset density on CO2 and CH4 trend calculation. Air Qual. Atmos. Health 12,
613–625. https://doi.org/10.1007/s11869-019-00681-0.

Pérez, I.A., Sánchez, M.L., García, M.A., Pardo, N., Fernández-Duque, B., 2020. Statistical
analysis of the CO2 and CH4 annual cycle on the northern plateau of the Iberian Penin-
sula. Atmosphere 11, 769. https://doi.org/10.3390/ATMOS11070769.

Pérez, I.A., García, M.A., Sánchez, M.L., Pardo, N., 2021. Influence of wind speed on CO2 and
CH4 concentrations at a rural site. Int. J. Environ. Res. Public Health 18, 8397. https://
doi.org/10.3390/ijerph18168397.

Sánchez, M.L., Pérez, I.A., García, M.A., 2010. Study of CO2 variability at different temporal
scales recorded in a rural Spanish site. Agric. For. Meteorol. 150, 1168–1173. https://
doi.org/10.1016/j.agrformet.2010.04.018.

Sharma, P., Sharma, P., Jain, S., Kumar, P., 2013. An integrated statistical approach for eval-
uating the exceedence of criteria pollutants in the ambient air of megacity Delhi. Atmos.
Environ. 70, 7–17. https://doi.org/10.1016/j.atmosenv.2013.01.004.

Tans, P.P., Thoning, K.W., Elliott, W.P., Conway, T.J., 1989. Background atmospheric CO2

patterns from weekly flask samples at Barrow, Alaska: Optimal signal recovery and
error estimates. NOAA Tech. Mem. ERL ARL-173, pp. 112–123.

Taylor, S.J., Letham, B., 2018. Forecasting at scale. Am. Stat. 72, 37–45. https://doi.org/10.
1080/00031305.2017.1380080.

Timokhina, A.V., Prokushkin, A.S., Onuchin, A.A., Panov, A.V., Kofman, G.B., Verkhovets,
S.V., Heimann, M., 2015. Long-term trend in CO2 concentration in the surface atmo-
sphere over Central Siberia. Russ. Meteorol. Hydrol. 40, 186–190. https://doi.org/10.
3103/S106837391503005X.

Vermeulen, A.T., Hensen, A., Popa, M.E., Van Den Bulk, W.C.M., Jongejan, P.A.C., 2011.
Greenhouse gas observations from Cabauw Tall Tower (1992–2010). Atmos. Meas.
Tech. 4, 617–644. https://doi.org/10.5194/amt-4-617-2011.

Wada, A., Sawa, Y., Matsueda, H., Taguchi, S., Murayama, S., Okubo, S., Tsutsumi, Y., 2007.
Influence of continental air mass transport on atmospheric CO2 in the western North Pa-
cific. J. Geophys. Res.-Atmos. 112, D07311. https://doi.org/10.1029/2006JD007552.

Wang, S., Zhu, L., Yan, S., Li, Y., Wang, W., Gao, X., Ma, Z., Liu, P., Liang, M., 2020. Atmo-
spheric CO2 data filtering method and characteristics of the mole fractions at Wutaishan
station in Shanxi of China. Aerosol Air Qual. Res. 20, 2953–2962. https://doi.org/10.
4209/aaqr.2020.01.0026.

WDCGG, 2021. https://gaw.kishou.go.jp/. (Accessed 10 July 2021).
Wei, C., Wang, M., Fu, Q., Dai, C., Huang, R., Bao, Q., 2020. Temporal characteristics of green-

house gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollut-
ants and meteorological conditions. Atmos. Res. 235, 104759. https://doi.org/10.1016/j.
atmosres.2019.104759.

Wilks, D.S., 2019. Statistical methods in the atmospheric sciences. Fourth edition. Elsevier,
Amsterdam.

WMO, 2020. WMO Greenhouse Gas Bulletin, No. 16. https://library.wmo.int/index.php?
id=21795&lvl=notice_display#.YV9A09pBwuU. (Accessed 10 July 2021).

Wu, J., Guan, D., Yuan, F., Yang, H., Wang, A., Jin, C., 2012. Evolution of atmospheric carbon
dioxide concentration at different temporal scales recorded in a tall forest. Atmos. Envi-
ron. 61, 9–14. https://doi.org/10.1016/j.atmosenv.2012.07.013.

Yang, Y., Wang, T., Wang, P., Zhou, M., Yao, B., 2019. In-situ measurement of CO2 at the
Xinglong regional background station over North China. Atmos. Ocean. Sci. Lett. 12,
385–391. https://doi.org/10.1080/16742834.2019.1644949.

Yang, Y., Zhou, M., Wang, T., Yao, B., Han, P., Ji, D., Zhou, W., Sun, Y., Wang, G., Wang, P.,
2021. Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe,
and Xinglong in North China. Atmos. Chem. Phys. 21, 11741–11757. https://doi.org/10.
5194/acp-21-11741-2021.

Zhang, D., Tang, J., Shi, G., Nakazawa, T., Aoki, S., Sugawara, S., Wen, M., Morimoto, S.,
Patra, P.K., Hayasaka, T., Saeki, T., 2008. Temporal and spatial variations of the atmo-
spheric CO2 concentration in China. Geophys. Res. Lett. 35, L03801. https://doi.org/
10.1029/2007GL032531.

Zhu, C., Yoshikawa-Inoue, H., 2015. Seven years of observational atmospheric CO2 at a mar-
itime site in northernmost Japan and its implications. Sci. Total Environ. 524–525,
331–337. https://doi.org/10.1016/j.scitotenv.2015.04.044.

van Zoest, V.M., Stein, A., Hoek, G., 2018. Outlier detection in urban air quality sensor net-
works. Water Air Soil Pollut. 229, 111. https://doi.org/10.1007/s11270-018-3756-7.

https://doi.org/10.11648/j.ijsd.20150101.14
https://doi.org/10.11648/j.ijsd.20150101.14
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1088/1755-1315/606/1/012027
https://doi.org/10.1080/0035919X.2018.1477854
https://doi.org/10.1080/0035919X.2018.1477854
https://doi.org/10.5194/acp-21-10707-2021
https://doi.org/10.1016/j.atmosenv.2015.05.026
https://doi.org/10.1016/j.atmosenv.2015.05.026
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141534354566
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141534354566
https://doi.org/10.1016/j.amc.2014.05.004
https://doi.org/10.1016/j.amc.2014.05.004
https://doi.org/10.1016/j.wace.2017.10.004
https://doi.org/10.1016/j.wace.2017.10.004
https://doi.org/10.4209/aaqr.2015.05.0323
https://doi.org/10.4209/aaqr.2015.05.0323
https://doi.org/10.1034/j.1600-0889.2003.00061.x
https://doi.org/10.1126/science.1247828
https://gml.noaa.gov/ccgg/flask.html
https://doi.org/10.1016/j.apr.2021.02.005
https://doi.org/10.1007/s13143-020-00213-2
https://doi.org/10.1007/s13143-020-00213-2
https://doi.org/10.1039/b416934d
https://doi.org/10.1007/s11356-012-0813-4
https://doi.org/10.1007/s11356-012-0813-4
https://doi.org/10.1016/j.scitotenv.2013.03.075
https://doi.org/10.1016/j.scitotenv.2014.01.019
https://doi.org/10.1016/j.scitotenv.2014.01.019
https://doi.org/10.1007/s11869-019-00681-0
https://doi.org/10.3390/ATMOS11070769
https://doi.org/10.3390/ijerph18168397
https://doi.org/10.3390/ijerph18168397
https://doi.org/10.1016/j.agrformet.2010.04.018
https://doi.org/10.1016/j.agrformet.2010.04.018
https://doi.org/10.1016/j.atmosenv.2013.01.004
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141535240645
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141535240645
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141535240645
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.3103/S106837391503005X
https://doi.org/10.3103/S106837391503005X
https://doi.org/10.5194/amt-4-617-2011
https://doi.org/10.1029/2006JD007552
https://doi.org/10.4209/aaqr.2020.01.0026
https://doi.org/10.4209/aaqr.2020.01.0026
https://gaw.kishou.go.jp/
https://doi.org/10.1016/j.atmosres.2019.104759
https://doi.org/10.1016/j.atmosres.2019.104759
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141535500138
http://refhub.elsevier.com/S0048-9697(22)00219-4/rf202201141535500138
https://library.wmo.int/index.php?id=21795&amp;lvl=notice_display#.YV9A09pBwuU
https://library.wmo.int/index.php?id=21795&amp;lvl=notice_display#.YV9A09pBwuU
https://doi.org/10.1016/j.atmosenv.2012.07.013
https://doi.org/10.1080/16742834.2019.1644949
https://doi.org/10.5194/acp-21-11741-2021
https://doi.org/10.5194/acp-21-11741-2021
https://doi.org/10.1029/2007GL032531
https://doi.org/10.1029/2007GL032531
https://doi.org/10.1016/j.scitotenv.2015.04.044
https://doi.org/10.1007/s11270-018-3756-7

	Trend analysis and outlier distribution of CO2 and CH4: A case study at a rural site in northern Spain
	1. Introduction
	2. Materials and methods
	2.1. Observations
	2.2. Procedure for obtaining outliers
	2.3. Distribution fitting

	3. Results
	3.1. Trend calculation
	3.2. Distribution fitting
	3.3. Central value fitting

	4. Discussion
	4.1. Trend evolution
	4.2. Outliers
	4.3. Concentration distribution

	5. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References




