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Abstract

The paper analyzes the structure and the inner long-term dynamics of the invariant compact sets for 
the skewproduct flow induced by a family of time-dependent ordinary differential equations of nonho-
mogeneous linear dissipative type. The main assumptions are made on the dissipative term and on the 
homogeneous linear term of the equations. The rich casuistic includes the uniform stability of the invariant 
compact sets, as well as the presence of Li-Yorke chaos and Auslander-Yorke chaos inside the attractor.
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1. Introduction

The mathematical literature collects many different notions of chaos, all of which share a 
common target: each definition takes into account different properties of the long-term behavior 
of the system under study, which, combined, imply the unpredictability of the dynamics due to 
divergence of initially nearby orbits. There are also many different approaches to the concept of 
stability for dynamical systems, but in this case the subjacent idea is clearer and more globally 
accepted: initially nearby orbits remain close. Hence it seems correct to say that, at least to some 
extent, chaos and stability are opposite terms.

This work concerns the long-term dynamics of a quite precise mathematical model for which 
both situations (chaos and uniform stability) are possible. Our dynamical system is generated by 
the solutions of the family of nonautonomous (in the sense of time-dependent) scalar dissipative 
ordinary differential equations

x′ = a(ω·t) x + b(ω·t) + g(ω·t, x) , ω ∈ �, (1.1)

where � is a compact metric space, σ : R × � → � , (t, ω) �→ σ(ω·t) =: ω·t defines a minimal 
flow on �, a, b : � → R are continuous functions, and g : � × R → R is a smooth dissipative 
term. The analysis is made under the assumptions 

∫
�

a(ω) dm ≤ 0 for any σ -ergodic measure on 
� and decreasing behavior of g with respect to the state variable x.

We will consider two cases. The first one occurs when the dissipation is negligible as long 
as the state remains in [r1, r2] (since g vanishes at the set � × [r1, r2] with r1 < r2) and, at the 
same time, the dissipation is active and dominant with respect to the linear term outside that 
set of states. Since the restriction of the equation to � × [r1, r2] is linear and nonhomogeneous, 
we say that (1.1) provides a nonautonomous nonhomogeneous linear dissipative model. This is 
the case more interesting for our analysis, since the casuistic is richer. The second case, which 
we will call purely dissipative, occurs when g vanishes exactly at the points of � × {r} (so that 
r1 = r2 = r), which in general makes simpler the structure of the attractor.

The family (1.1) generates the skewproduct flow

τ : U ⊆ R× � ×R→ � ×R , (t,ω, x0) �→ (ω·t, x(t,ω, x0)) ,

where Iω,x0 → R , t �→ x(t, ω, x0) is the maximal solution of the equation (2.1) corresponding 
to ω with x(0, ω, x0) = x0, and U is the open set 

⋃
(ω,x0)∈�×R Iω,x0 .

The analysis of a family of equations like (1.1), or, more generally, of the type x′ = f (ω·t, x), 
is a classical tool in the analysis of a single nonautonomous differential equation x′ = f0(t, x). 
Under some regularity conditions on f0 which the translated functions ft (s, x) := f0(t + s, x)

inherit, the hull of f0, given by the closure in the compact open topology on C(R2, R) of the 
set {ft | t ∈ R}, turns out to be a compact metric space �, and the time-translation R × � →
�, (t, ω) �→ ω·t := ωt defines a global continuous flow. By representing f (ω, x) := ω(0, x)

we obtain a family x′ = f (ω·t, x) (i.e., x′ = ω(t, x)) which includes the initial equation. The 
function f0 is time-recurrent if the flow on its hull � is minimal, as we assume in this paper. 
This is for instance the case if f0 is, roughly speaking, almost periodic in t uniformly in x; but 
a minimal hull may come from other types of functions. By being a bit more careful in the hull 
construction, we obtain a family of the type (1.1) if the starting point is x′ = a0(t) x + b0(t) +
g0(t, x). This collective formulation allows us to use techniques of topological dynamics and 
ergodic theory in the analysis of the long-term behavior of the orbits of the flow τ , which include 
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the graphs of the solutions of the initial equation. In this paper, we choose the (more general) 
approach of not to assume that � is the hull of an initial function.

The dissipative character of τ , due to the hypothesis on g, implies the existence of a global 
attractor A. Our main objective is the description of the structure and internal dynamics of the 
compact invariant subsets K ⊆ A. In some cases, the presence of chaos is precluded: there appear 
uniformly exponentially stable sets on which the dynamics reproduces that of (�, σ), or sets 
K which are uniformly (not exponentially) stable. But, in other cases (in the linear dissipative 
case), we find compact invariant subsets K ⊆ A on which the dynamics is highly complex, with 
the possible occurrence of different types of chaos. This phenomenon (which cannot occur if the 
functions a, b and g of (1.1) are autonomous or time-periodic) shows that unpredictability can 
be a natural and expected ingredient in the dynamics of simple nonautonomous mathematical 
models, which in general are better adapted to the real world than the autonomous ones.

Many of the notions of chaos on an invariant compact subset require a positive upper Lya-
punov exponent for the corresponding linearized system, in order to obtain an exponential rate of 
divergence of the forward orbits starting nearby in the phase space. This behavior is not possible 
under the assumptions we make on (1.1), which we will precise in Section 3. But some of the 
notions of chaos do not require this condition. In this paper, we describe some conditions on 
the function a of the linear part or the equations which imply, in one of the possible dynamical 
situations, the presence of Li-Yorke chaos and of Auslander-Yorke chaos in a “large part” of the 
attractor. These notions of chaos are compatible with null upper Lyapunov exponents of the com-
pact invariant sets on which the chaos appears. Roughly speaking, Li-Yorke chaos [25] appears 
on a compact invariant set when this set contains an uncountable subset of points such that any 
pair of them is Li-Yorke chaotic; i.e., it gives rise to two orbits which approach each other and 
separate from each other alternatively on infinitely many intervals of time becoming indistin-
guishable. The notion of Li-Yorke chaos was introduced in [25] in 1975 for transformations, and 
it is easily adapted to (semi)flows. The interested reader can find in [5], [2], [24], and the many 
references therein, some dynamical properties associated to Li-Yorke chaos and its relation with 
other notions of chaotic dynamics. Auslander-Yorke chaos [3] occurs on topologically transitive 
flows on compact metric spaces when the flow is sensitive with respect to initial conditions. The 
idea was trying to capture some representative properties of the notion of turbulence of fluids 
given by Ruelle and Takens in [33]. The abstract formulation of [3] makes this notion applicable 
to a much more general dynamical framework. Among the many works devoted to characterize 
this type of chaos and to analyze its dynamical consequences, as well as to establish connections 
and differences with other types of chaos, we mention [14] (which is central to our approach in 
this paper), [15], [27], and references therein.

In the rest of this introduction, we describe the structure of the paper, which is organized in 
two sections, as well as the main dynamical properties which we prove.

Section 2 is a long preliminary section, divided in seven parts. Its length is due in part to the 
many different concepts and already known properties needed for the statements and proofs of 
our main results. First, we recall basic and (more or less) standard notions on topological dynam-
ics, ergodic theory, skewproduct flows, stability, dissipativity and global attractors, exponential 
dichotomy, Lyapunov exponents, Sacker and Sell spectrum, hyperbolicity of minimal subsets. . .
And then we continue with the description of the less known nonempty set Rm of those maps 
a : � → R which will allow us to detect the presence of chaotic invariant subsets, and with the 
definitions and basic properties of Li-Yorke chaos (also in measure in the case of a skewproduct
flow) and of Auslander-Yorke chaos. The subindex m refers to a σ -invariant measure on which 
the definition of the set Rm depends.
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The structure of this preliminary section is better described at its first paragraphs. We point 
out here that, in addition to this large number of notions and already known properties, Section 2
includes the detailed proofs of three new results, fundamental to our purposes. The first one, 
Theorem 2.14, shows that the sets Rm are nonempty if the flow on � is non periodic, and contain 
functions with null Sacker and Sell spectrum. The second one, Theorem 2.16, refers to some extra 
properties of the maps a ∈Rm, which will allow us to emphasize that the Li-Yorke chaos which 
we detect is “quite more chaotic” than what the initial definition requires. We will explain this 
better in due time. The third result, Theorem 2.26, determines a series of compact subsets which 
are appropriate to detect the presence of Auslander-Yorke chaos, given by the supports of certain 
ergodic measures.

The main results of the paper are stated and proved in Section 3, which begins with the pre-
cise description of the conditions imposed on the dissipative term g of (1.1): different degrees 
of smoothness, vanishing set given by � × [r1, r2], dissipativity character, and (strictly or not) 
decreasing behavior outside � × [r1, r2]. The last condition is not needed in our first three re-
sults. Theorem 3.2 establishes the existence of a global attractor, which thanks to the minimality 
assumed of the base flow takes the shape

A =
⋃
ω∈�

({ω} × [αA(ω),βA(ω)]) ,

for two semicontinuous functions αA, βA : � → R with τ -invariant graphs. Theorem 3.3 ana-
lyzes the properties of two minimal sets, Mα and Mβ , associated to the covers of A (a tool for 
our main results), and Theorem 3.4 shows that the unique situation in which all the minimal sets 
have negative Lyapunov exponent is that of existence of a unique minimal set, which is given 
by the uniformly exponentially stable graph of a continuous function η : � → R, and which 
coincides with the attractor.

With the condition on the monotonicity of g in force from now on, we first analyze the dy-
namical situation arising when 

∫
�

a(ω) dm < 0 for every σ -ergodic measure m: Theorem 3.6
shows that the upper Lyapunov exponent of every minimal sets is negative, so that the situation 
is that of the end of the previous paragraph.

The rest of the paper analyzes the situation occurring when 
∫
�

a(ω) dm ≤ 0 for every σ -
ergodic measure m and there exists one, say m̃, with 

∫
�

a(ω) dm̃ = 0. Two global dynamical 
possibilities arise. The first one, which can only occur if r1 < r2, corresponds to the existence of 
infinitely many minimal sets. All of them are contained in � ×[r1, r2] and are given by the graphs 
of the functions ηc = c αA + (1 − c) βA for c ∈ [0, 1], which are continuous; and the union of all 
these minimal sets, which are uniformly stable, form the global attractor. Theorem 3.10 explores 
this situation. The second possibility, richer in casuistic, arises when Mα = Mβ is the unique 
τ -minimal set, which is not necessarily a copy of the base, and which may or may not coincide 
with the global attractor. In particular, the global attractor is a pinched set; that is, its section over 
the base reduces to a singleton for at least one element of �. These properties and some of their 
dynamical consequences are described in Theorem 3.11.

When, in addition, the family is linear dissipative and a ∈Rm, Li-Yorke chaos and Auslander-
Yorke chaos may appear, as we explain in Theorems 3.14 and 3.15. More precisely, if under these 
conditions the unique minimal set is contained in � ×[r1, r2] and at least of one of its covers is at 
a positive distance from � ×(R −[r1, r2]), then the attractor is “strongly” Li-Yorke chaotic, in the 
following sense: there exists a subset �LY ⊂ � with full measure m such that, for every ω ∈ �LY , 
any two points of {ω} × [αA(ω), βA(ω)] form a Li-Yorke chaotic pair. Moreover, making use of 
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the above mentioned Theorem 2.16, we explore the internal dynamics in A in order to confirm 
the physical observability of the Li-Yorke chaos, and hence its potential relevance in applications. 
More precisely, we will prove the positive density in R of two sets of times for m-almost point 
of the base: those at which the forward orbits associated to every Li-Yorke chaotic pairs (sharing 
the base point) are “clearly separated”, and those at which these orbits are “as close as desired”.

Finally, under the same hypotheses, we detect Auslander-Yorke chaos in infinitely many in-
variant compact subsets Sc ⊂ A for every c ∈ [0, 1] excepting, perhaps, a particular value c0. 
These (also pinched) sets are transitive: they admit a dense forward semiorbit. Besides this, the 
union S̃ of all these sets is a chain recurrent set, supporting an invariant measure ̃μ, composed by 
sensitive points, and with a dense subset of generic points. These properties can be understood 
as a weak version of the classical notion of chaos introduced by Devaney in [11]. In addition, 
S̃ fills an “important part” of A, which shows that also this chaotic phenomenon has physical 
relevance.

2. Preliminaries

This long preliminary section is organized in seven parts. The first four contain general re-
sults, required in Section 3 for the description of the global dynamics for the equations of the 
Introduction. The last three, less standard, present concepts, known properties, and new results 
which will be used to analyze the possible presence of chaotic behavior.

The basic concepts and properties of topological dynamics and measure theory, with special 
focus on skewproduct flows defined from a family of scalar nonautonomous ordinary differential 
equations, are summarized in the first two subsections, where we will also fix some notation. 
Good references for their contents are [28], [12], [34,35], [39], [26], [38], and references therein.

As explained in the Introduction, our main results are formulated under different assumptions 
on the linear homogenous component of the family of equations. In Subsection 2.3 we summarize 
the required notions and properties concerning exponential dichotomy, Sacker and Sell spectrum, 
and Lyapunov exponents, which can be found in [10] and [21]. Subsection 2.4 recalls some 
particular properties of minimal sets for a skewproduct flow in the scalar case, and includes, for 
the reader’s convenience, a proof of a classical result relating the uniform exponential stability 
of these minimal sets with the sign of their Lyapunov exponents.

In Subsection 2.5 we introduce a set of continuous functions which will provide us with an 
adequate framework to detect the presence of the two types of chaos mentioned in the Intro-
duction: Li-Yorke chaos, described in Subsection 2.6, and Auslander-Yorke chaos, described in 
Subsection 2.7. As we mentioned in the introduction, besides basic concepts and known proper-
ties, Subsections 2.5 and 2.7 present some new results which we will use in Section 3 but which 
are valid for a setting more general than that there considered. The contents of these results are 
explained in the corresponding subsections.

2.1. Basic concepts on flows

Let � be a complete metric space, and let dist� be the distance on �. A (real and continuous) 
flow on � is a continuous map σ : R ×� → �, (t, ω) �→ σ(t, ω) such that σ0 = Id and σs+t =
σt ◦ σs for each s, t ∈ R, where σt (ω) := σ(t, ω). The flow is local if the map σ is defined, 
continuous, and satisfies the previous properties on an open subset of R ×� containing {0} ×�.

Let U ⊆ R ×� be the domain of the map σ . The set {σt(ω) | (t, ω) ∈ U} is the σ -orbit (or 
simply orbit) of the point ω ∈ �. This orbit is globally defined if (t, ω) ∈ U for all t ∈ R. 
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Restricting the time to t ≥ 0 or t ≤ 0 provides the definition of forward or backward σ -
semiorbit. A Borel subset C ⊆ � is σ -invariant if it is composed by globally defined orbits; 
i.e., if σt (C) := {σ(t, ω) | ω ∈ C} is defined and agrees with C for every t ∈ R. A σ -invariant 
subset M ⊆ � is σ -minimal (or simply minimal) if it is compact and does not contain properly 
any other compact σ -invariant set; or, equivalently, if each one of the two semiorbits of anyone 
of its elements is dense in it. The flow (�, σ) is minimal if � itself is minimal. If the semior-
bit {σt (ω0) | t ≥ 0} is globally defined and relatively compact, then the omega limit set of ω0, 
which we represent by Oσ (ω0), is given by the points ω ∈ � such that ω = limn→∞ σtn(ω0)

for some sequence (tn) ↑ ∞. This set is nonempty, compact, connected and σ -invariant. By tak-
ing sequences (tm) ↓ −∞ we obtain the definition of the alpha limit set of ω0, with analogous 
properties.

Assume now that σ is globally defined. The flow is equicontinuous if given ε > 0 there exists 
δ > 0 such that supt∈R dist�(σt (ω1), σt (ω2)) < ε whenever dist�(ω1, ω2) < δ. If � is a compact 
metric space, equicontinuity is equivalent to almost periodicity (as proved in [12]). A flow (�, σ)

defined on a compact metric space � is chain recurrent if given ε > 0, t0 > 0, and points ω, ω̃ ∈
�, there exist points ω0 := ω, ω1, . . . , ωm := ω̃ of � and real numbers t1 > t0, . . . , tm−1 > t0
such that dist�(σti (ωi), ωi+1) < ε for i = 0, . . . , m −1. It is easy to check that minimality implies 
chain recurrence, and that if (�, σ) is chain recurrent then � is connected.

Let m be a Borel measure on �; i.e., a regular measure defined on the Borel sets (any measure 
appearing in this paper is of this type). The measure is concentrated on B ⊆ � if m(� −B) = 0. 
Its (topological) support, Suppm, is the complement of the biggest open set with null measure. 
In particular, it is contained in any closed set C on which the measure is concentrated; and if � is 
compact then Suppm is compact. The measure m is σ -invariant if m(σt (B)) = m(B) for every 
Borel subset B ⊆ � and every t ∈ R. In this case, Suppm is τ -invariant; and if � is minimal, then 
Suppm = �. Suppose that m is finite and normalized; i.e., that m(�) = 1. Then it is σ -ergodic
if it is σ -invariant and, in addition, m(B) = 0 or m(B) = 1 for every σ -invariant subset B ⊆ �. 
The sets of normalized σ -invariant and σ -ergodic measures are represented by Minv(�, σ) and 
Merg(�, σ). If � is compact, there exists at least an element in Merg(�, σ). Any equicontinuous 
minimal flow (�, σ) is uniquely ergodic, that is, Minv(�, σ) reduces to just one element: a σ -
ergodic measure.

Let � be a compact metric space. A Borel set B ⊆ � has full measure for a measure 
m ∈ Minv(�, σ) if m(B) = 1, and it has complete measure if m(B) = 1 for any m ∈Minv(�, σ). 
A point ω0 ∈ � is σ -generic if limt→∞(1/t) 

∫ t

0 f (σs(ω0)) ds exists for every f ∈ C(�, R). 
In this case, Riesz representation theorem provides a measure mω0 ∈ Minv(�, σ) such that 
limt→∞(1/t) 

∫ t

0 f (σs(ω0)) ds = ∫
�

f (ω) dmω0 for every f ∈ C(�, R). In addition, the sets �̃
of σ -generic points and the subset �̃e of those for which mω0 is σ -ergodic are σ -invariant and 
of complete measure. And given a measure m ∈ Minv(�, R) and a real function f ∈ L1(�, m), 
there exists a set �f ⊆ �̃e with m(�f ) = 1 such that f ∈ L1(�, mω0) for every ω0 ∈ �f and ∫
�

f (ω) dm = ∫
�f

( ∫
�

f (ω)dmω0

)
dm.

Throughout the paper, B�(ω0, δ) := {ω ∈ � | dist�(ω0, ω) ≤ δ}.

2.2. Scalar skewproduct flows associated to families of ODEs

Let (�, σ) be a global flow on a compact metric space, and consider the one-dimensional 
trivial bundle � × R, which is provided with the structure of a complete metric space by the 
distance dist�×R

(
(ω1, x1), (ω2, x2)

) := dist�(ω1, ω2) + |x1 − x2|. The sets � and R are the 
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base and the fiber of the bundle. The sections of a subset C ⊆ � ×R, over the base elements are 
represented as Cω := {x ∈R | (ω, x) ∈ C}.

From now on, and throughout the whole paper, we will represent

ω·t := σt (ω) = σ(t,ω) .

Let us consider the scalar family of equations

x′ = f (ω·t, x) (2.1)

for ω ∈ �, where f : R × � → R is assumed to be jointly continuous and locally Lipschitz with 
respect to the state variable x. We will use the notation (2.1)ω to refer to the equation of the 
family corresponding to the point ω, and proceed in an analogous way with the rest of families 
of equations appearing in the paper.

The family (2.1) allows us to define the map

τ : U ⊆ R× � ×R→ � ×R , (t,ω, x0) �→ (ω·t, x(t,ω, x0)) , (2.2)

where Iω,x0 → R , t �→ x(t, ω, x0) is the maximal solution of (2.1)ω with initial datum 
x(0, ω, x0) = x0, and U := ⋃

(ω,x0)∈�×R

(
Iω,x0 × {(ω, x0)}

)
, an open set. The uniqueness of 

solutions ensures that x(s + t, ω, x0) = x(s, ω·t, x(t, ω, x0)) whenever the right-hand term is de-
fined, and this property ensures that τ defines a (local or global) flow on � ×R. The properties 
assumed on f also ensure that x(t, ω, x0) varies continuously with respect to ω and x0, and 
hence τ is continuous on its domain. If, in addition, f is assumed to be C1 with respect to x0, 
so is the map (t, ω, x0) �→ x(t, ω, x0), as long as it is defined. The uniqueness of solutions also 
guarantees that τ is fiber-monotone; that is, if x1 < x2 then x(t, ω, x1) < x(t, ω, x2) for any t in 
the common interval of definition of both solutions.

The flow (� ×R, τ) is a type of skewproduct flow on � ×R projecting onto (�, σ). The flow 
(�, σ) is the base flow of (� × R, τ). In the linear homogeneous case f (ω, x) = a(ω) x, the 
flow τ is globally defined and linear; that is, the map R → R, x0 �→ x(t, ω, x0) is defined and 
linear for all (t, ω) ∈R × �.

A measurable map α : � → R is a τ -equilibrium if α(ω·t) = x(t, ω, α(ω)) for all t ∈ R
and ω ∈ �; a τ -subequilibrium if α(ω·t) ≤ x(t, ω, α(ω)) for all ω ∈ � and t ≥ 0; and a τ -
superequilibrium if α(ω·t) ≥ x(t, ω, α(ω)) for all ω ∈ � and t ≥ 0. There is a strong connection 
among sub or superequilibria and upper or lower solutions of the differential equations, which 
we will explain when required. A set K ⊂ � ×R is a copy of the base for τ if it is the graph of a 
continuous equilibrium α, in which case we write K= {α}.

We say that a τ -invariant compact set K ⊂ � ×R projecting over the whole base is uniformly 
stable at +∞ (on the fiber) if for any κ > 0 there exists some δ > 0 such that, if (ω, x̄0) ∈ K and 
(ω, x0) ∈ � × R satisfy |x̄0 − x0| < δ, then x(t, ω, x0) is defined for all t ≥ 0, and in addition 
|x(t, ω, x̄0) − x(t, ω, x0)| ≤ κ for t ≥ 0. Changing t ≥ 0 by t ≤ 0 provides the definition of 
uniformly stable at −∞ τ -invariant compact set.

A τ -invariant compact set K ⊂ � × R projecting over the whole base is uniformly exponen-
tially stable at +∞ (on the fiber) if there exist δ > 0, κ ≥ 1 and γ > 0 such that, if (ω, x̄0) ∈ K
and (ω, x0) ∈ � × R satisfy |x̄0 − x0| < δ, then x(t, ω, x0) is defined for all t ≥ 0, and in addi-
tion |x(t, ω, x̄0) − x(t, ω, x0)| ≤ κ e−γ t |x̄0 − x0| for t ≥ 0. Changing t ≥ 0 by t ≤ 0 provides the 
definition of uniformly exponentially stable at −∞ τ -invariant compact set.
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Remark 2.1. We want to insist in the fact that our definitions of (exponential or not) uniform 
stability for skew-product semiflows are not the classical ones for flows, since we do not consider 
possible variation on the base points: we just refer to variation on the fiber. For further purposes 
we also point out that, if (�, σ) is an equicontinuous flow on a compact metric space, then the 
whole space is uniformly stable at ±∞ in the classical sense.

The Hausdorff semidistance from C1 to C2, where C1, C2 ⊂ � ×R, is

dist(C1,C2) := sup
(ω1,x1)∈C1

(
inf

(ω2,x2)∈C2

(
dist�×R((ω1, x1), (ω2, x2))

))
.

A set B ⊂ � ×R is said to attract a set C ⊆ � under τ if τt (C) is defined for all t ≥ 0 and, in 
addition, limt→∞ dist(τt (C), B) = 0. The flow τ is bounded dissipative if there exists a bounded 
set B attracting all the bounded subsets of � × R under τ . And a set A ⊂ � × R is a global 
attractor for τ if it is compact, τ -invariant, and it attracts every bounded subset of � ×R under τ .

Finally, given a Borel measure ν on � ×R, the expression m(B) := ν(B ×R) for any Borel 
subset B ⊆ � defines a measure m on �. We say that ν projects on m. It is easy to check that m
is σ -invariant if ν is τ -invariant.

2.3. Sacker and Sell spectrum of a family of linear scalar equations

Let (�, σ) be a minimal flow on a compact metric space, and let us consider the family of 
linear differential equations

x′ = a(ω·t) x (2.3)

for ω ∈ �, where a : � → R is continuous.

Definition 2.2. The family (2.3) has exponential dichotomy over � if there exist κ ≥ 1 and γ > 0
such that either

exp

t∫
0

a(ω·l) dl ≤ κ e−γ t whenever ω ∈ � and t ≥ 0 (2.4)

or

exp

t∫
0

a(ω·l) dl ≤ κ eγ t whenever ω ∈ � and t ≤ 0 . (2.5)

Remarks 2.3. 1. Since the base flow (�, σ) is minimal, the exponential dichotomy of the family 
(2.3) over � is equivalent to the exponential dichotomy of any of its equations over R: see 
e.g. Theorem 2 and Section 3 of [34].

2. The family (2.3) has exponential dichotomy over � if and only if no one of its equations 
has a nontrivial bounded solution: see e.g. Theorem 1.61 of [20]. In other words, the property 
fails if and only if there exists ω̃ ∈ � such that supt∈R exp

( ∫ t
a(ω̃·s) ds

)
< ∞.
0

255



J. Campos, C. Núñez and R. Obaya Journal of Differential Equations 361 (2023) 248–287
Definition 2.4. The Sacker and Sell spectrum or dynamical spectrum of the linear family (2.3) is 
the set �a of λ ∈R such that the family x′ = (a(ω·t) −λ) x does not have exponential dichotomy 
over �.

Note that, in the autonomous case a(ω) ≡ a ∈ R, the set �a is given by {a}.

Definition 2.5. The lower Lyapunov exponent of the family (2.3) for (�, σ) is

γ i
� := inf

⎧⎨
⎩

∫
�

a(ω)dm | m ∈Minv(�,σ )

⎫⎬
⎭ ,

and the upper Lyapunov exponent of the family (2.3) for (�, σ) is

γ s
� := sup

⎧⎨
⎩

∫
�

a(ω)dm | m ∈ Minv(�,σ )

⎫⎬
⎭ .

For the reader’s convenience, we include a proof of the next well known result.

Theorem 2.6.

(i) There exist mi, ms ∈ Merg(�, σ) such that

γ i
� :=

∫
�

a(ω)dmi and γ s
� :=

∫
�

a(ω)dms .

(ii) The Sacker and Sell spectrum of the linear family (2.3) is �a = [ γ i
� , γ s

� ], and it may be a 
singleton.

Proof. The Sacker and Sell spectral theorem [36, Theorem 2] states that, in this scalar case, 
�a is given by a closed (perhaps degenerate) interval, say [λi, λs]. Theorem 2.3 of [21] shows 
that this interval contains 

∫
�

a(ω) dm for all m ∈ Minv(�, σ), as well as the existence of 
mi, ms ∈Merg(�, σ) such that λi := ∫

�
a(ω) dmi and λs = ∫

�
a(ω) dms . These properties show 

the assertions. �
Remark 2.7. It is clear 0 ∈ �a if and only if the family (2.3) does not have exponential dichotomy 
over �. In addition, Theorem 2.6 ensures that:

– �a ⊂ (−∞, 0) if and only if the upper Lyapunov exponent of the family (2.3) is negative; 
or, equivalently, if and only if 

∫
�

a(ω) dm < 0 for any m ∈Minv(�, σ).
– �a ⊂ (0, ∞) if and only if the lower Lyapunov exponent of the family (2.3) is positive; or, 

equivalently, if and only if 
∫

a(ω) dm > 0 for any m ∈Minv(�, σ).

�
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2.4. The minimal subsets of a scalar skewproduct flow induced by a family of scalar ODEs over 
a minimal base

As in the previous section, (�, σ) is a minimal continuous flow on a compact metric space, 
and this assumption on minimality is fundamental. We will recall in this subsection some prop-
erties of the minimal sets for the scalar skewproduct flow (� × R, τ) given by the expression 
(2.2); that is, given by the solutions of the family (2.1) over �. We will also define some types of 
sets which will be fundamental in the dynamical description of Section 3.

It is very easy to deduce from the minimality of the base flow that any copy of the base is 
τ -minimal, and that any compact τ -invariant set K ⊂ � ×R projects over the whole base �. If, 
for such a set K, there exists a point ω ∈ � such that Kω is a singleton, then K is a pinched set. 
A minimal pinched set is an almost automorphic extension of the base. It turns out that, for our 
scalar skewproduct flow, any minimal set M is an almost automorphic extension of the base. To 
briefly explain this fact, which is proved in Theorem 3.5 of [22], we observe that

M ⊆
⋃
ω∈�

({ω} × [αM(ω),βM(ω)]) (2.6)

where αM(ω) := inf{x ∈ R | (ω, x) ∈ M} and βM(ω) := sup{x ∈ R | (ω, x) ∈ M}. It is not 
hard to deduce from the compactness of M that αM and βM are lower and upper semicon-
tinuous; from its τ -invariance that they are τ -equilibria; and from its minimality that M =
closure�×R{(ω·t, αM(ω·t)) | t ∈ R} (resp. M = closure�×R{(ω·t, βM(ω·t)) | t ∈ R}) for any 
ω ∈ �, and hence that Mω = {αM(ω)} (resp. Mω = {βM(ω)}) at any point ω at which αM
(resp. βM) is continuous. Therefore, αM and βM have the same (σ -invariant and residual) set 
�M ⊆ � of continuity points, which are exactly the points at which both maps coincide; and 
Mω reduces to a singleton if and only if ω ∈ �M. The functions αM and βM are hence contin-
uous if and only if αM(ω) = βM(ω) for all ω ∈ �. In other words, Mω reduces to a point for 
all ω ∈ � if and only if M is a copy of the base: M = {η} for η = αM = βM, continuous.

Two different τ -minimal sets M and N are fiber-ordered, in the following sense: if there 
exist (ω0, x0) ∈ M and (ω0, y0) ∈ N such that x0 < y0, then x < y whenever (ω, x) ∈ M and 
(ω, y) ∈ N . To prove this fact, we take a common element ω̄ ∈ � such that Mω̄ = {x̄} and 
Nω̄ = {ȳ} and assume without restriction that x̄ < ȳ. Let us reason by contradiction assuming 
the existence of (ω, x) ∈ M and (ω, y) ∈ N with x > y. We look for (tn) such that (ω̄, x̄) =
limn→∞ τ(tn, ω, x) and a suitable subsequence (tk) such that there exists limk→∞ τ(tk, ω, y). 
Then, this limit is necessarily (ω̄, ȳ), and the fiber-monotonicity of τ ensures that x̄ ≥ ȳ, which 
is the sought-for contradiction.

Assume now that f is C1 with respect to its second argument. Given a τ -minimal set M, we 
can consider the linearized flow on M × R, given by the solutions of the family of variational 
equations

z′ = fx(τ (t,ω, x0)) z (2.7)

for (ω, x0) ∈ M, where fx := ∂f/∂x. A τ -minimal set M ⊂ � × R is hyperbolic if the family 
(2.7) has exponential dichotomy over M. This last definition is justified by the next result. For 
the reader’s convenience, we give a proof of this well-known fact, concerning hyperbolic minimal 
sets, which will be crucial in Section 3. The functions αM and βM are those associated to M
by (2.6). The uniform exponential stability properties are defined in Subsection 2.2.
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Proposition 2.8. Assume that the functions f, fx : � ×R → R are jointly continuous, let (� ×
R, τ) be the flow induced by the family (2.1), and let M ⊂ � ×R be a τ -minimal set. Then,

(i) the family (2.7) has exponential dichotomy over M given by condition (2.4) if and only 
if M is a uniformly exponentially stable at +∞ copy of the base: M = {αM} = {βM}. 
In addition, in this case, given (ω, x0) /∈ M, there exists ρ > 0 and t− < 0 such that 
|x(t, ω, x0) − αM(ω·t)| > ρ for t ≤ t− in the maximal interval of definition of x(t, ω, x0).

(ii) The family (2.7) has exponential dichotomy over M given by condition (2.5) if and only 
if M is a uniformly exponentially stable at −∞ copy of the base: M = {αM} = {βM}. 
In addition, in this case, given (ω, x0) /∈ M, there exists ρ > 0 and t+ > 0 such that 
|x(t, ω, x0) − αM(ω·t)| > ρ for t ≥ t+ in the maximal interval of definition of x(t, ω, x0).

Proof. (i) Let us fix (ω1, x1) ∈ M, and assume that the family (2.7) satisfies the correspond-
ing condition (2.4). The hypotheses on f ensure that f (ω1, x) − f (ω1, x1) = fx(ω1, x1)·(x −
x1) + r(ω, x), with limx→x1 |r(ω, x)|/|x − x1| = 0. Therefore, the change of variables y =
x − x(t, ω1, x1) takes the equation (2.1)ω1 to

y′ = fx(τ (t,ω1, x1)) y + r̃(ω1·t, y) , (2.8)

with limx→0 |̃r(ω1, y)|/|y| = 0. Let y(t, ω1, y0) represent the solution of (2.8) with y(0, ω1,

y0) = y0, so that y(t, ω1, y0) = x(t, ω1, y0 + x1) − x(t, ω1, x1). Then, condition (2.4) and the 
First Approximation Theorem (see [16, Theorem III.2.4] and its proof) provide δ > 0 such that

|y(t,ω1, y0)| ≤ κ e(−γ /2) t |y0| for any t ≥ 0 if |y0| ≤ δ . (2.9)

In addition, the constant δ can be chosen to satisfy (2.9) for any ω1 ∈ �.
We take any point (ω1, x2) ∈ M, and will check that x2 = x1. Recall that any minimal set 

is pinched. Therefore, we can choose ω̃ with Mω̃ = {̃x}. Then, limn→∞(ω1·(−tn), u(−tn, ω1,

x1)) = (ω̃, ̃x) for a sequence (tn) ↑ ∞. We take a subsequence (tk) such that limk→∞(ω1·(−tk),

x(−tk, ω1, x2)) exists, and observe that this limit must be (ω̃, ̃x), since it belongs to M. Hence, 
limk→∞ y(−tk, ω1, x2 − x1) = limk→∞(x(−tk, ω1, x2) − x(−tk, ω1, x1)) = x̃ − x̃ = 0. For k
large enough to ensure that |y(−tk, ω1, x2 − x1)| ≤ δ, (2.9) yields

|x2 − x1| = |y(tk,ω1·(−tk), y(−tk,ω1, x2 − x1))| ≤ κ e(−γ /2) tk δ .

Taking limit as k → ∞ allows us to ensure that x2 = x1, as asserted.
Hence, as explained at the beginning of this Subsection, we can write M = {η} for a contin-

uous function η : � →R. The continuous flow transformation (ω, x) �→ (ω, x − η(ω)) takes M
to the set � × {0}, which is a copy of the base for the flow induced by the family of equations 
y′ = fx(ω·t, η(ω·t)) y + r̃(ω·t, y) for ω ∈ �. It follows from (2.9) that � × {0} is uniformly ex-
ponentially stable, which ensures the analogous property for M and the initial flow τ . The “only 
if” part of the first assertion of (i) is proved.

Conversely, let us assume that M is an exponentially stable copy at +∞ copy of the base. 
Then, for all (ω, x) ∈ M, |(∂x/∂x0)(t, ω, x0)| = limh→0 |x(t, ω, x0 + h) − x(t, ω, x0)|/|h| ≤
κ e−γ t for certain constants κ ≥ 1 and γ > 0, and for all t ≥ 0. This implies that the family of 
equations (2.7), defined for (ω, x0) ∈ M, satisfies condition (2.4), and completes the proof of the 
equivalence stated in (i).
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Assume now that we are in the described situation, and let δ, κ and γ be the constants as-
sociated to the uniformly exponentially character at +∞ of M. To prove the last assertion in 
(i) we take x0 �= αM(ω) and assume for contradiction the existence of (tn) ↓ −∞ such that 
limn→∞ |x(tn, ω, x0) −αM(ω·tn)| = 0. Thus, for large enough n, |x(tn, ω, x0) −αM(ω·tn)| ≤ δ. 
But then |x0 − αM(ω)| = |x(−tn, ω·tn, x(tn, ω, x0)) − αM((ω·tn)·(−tn))| ≤ κ eγ tnδ. The con-
tradiction comes from the convergence to 0 of the right-hand term. The proof of (i) is complete.

(ii) The proofs are analogous if the exponential dichotomy is given by (2.5) or the uniform 
exponential stability occurs at −∞. �
Definition 2.9. The upper and lower Lyapunov exponents of a τ -minimal set M ⊂ � × R are 
the upper and lower Lyapunov exponents of the family of variational equations (2.7) over M.

As a consequence of this definition, Remark 2.3, Theorem 2.6(ii), and Proposition 2.8, we 
have:

Corollary 2.10. Assume that the functions f, fx : � × R → R are jointly continuous, and let 
(� × R, τ) be the flow induced by the family (2.1). If the upper Lyapunov exponent of the τ -
minimal set M is negative, then M is an exponentially stable at +∞ copy of the base. If its 
lower Lyapunov exponent is positive, then M is an exponentially stable at −∞ copy of the base. 
And, in both cases, M = {αM} = {βM}.

2.5. The set Rm(�)

We continue this section of preliminaries by describing a set of continuous maps a : � →
R which will play a crucial role in the description of the occurrence of Li-Yorke chaos and 
Auslander-Yorke chaos (defined in the next subsections) in one of the dynamical situations which 
we will consider in Section 3. Most of these properties are (basically) already known; but, to our 
knowledge, Theorem 2.16 presents a new property. The assumption of minimality of (�, σ) is in 
force.

Definition 2.11. A continuous function a : � → R admits a continuous primitive if there exists 
a continuous function ha : � → R such that ha(ω·t) − ha(ω) = ∫ t

0 a(ω·s) ds for all ω ∈ � and 
t ∈R.

Remark 2.12. Note that sup(t,ω)∈R×�

∣∣∣∫ t

0 a(ω·s) ds

∣∣∣ < ∞ if a admits a continuous primitive, 

and that Birkhoff’s ergodic theorem ensures that 
∫
�

a(ω) dm = 0 for any m ∈ Minv(�, σ). It is 
well-known that if (�, σ) is minimal (as in our case) then a admits a continuous primitive if and 

only if there exists ω̃ ∈ � with supt≥0

∣∣∣∫ t

0 a(ω̃·s) ds

∣∣∣ < ∞ or with supt≤0

∣∣∣∫ t

0 a(ω̃·s) ds

∣∣∣ < ∞: a 
proof is given in [22, Proposition A.1].

Definition 2.13. Given m ∈ Minv(�, σ), Rm(�) is the set of continuous functions a : � →
R satisfying 

∫
�

a(ω) dm = 0 which do not admit a continuous primitive and such that 
supt≤0

∫ t
a(ω·s) ds < ∞ for m-a.e. ω ∈ �.
0
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There are well known examples of quasi-periodic functions a0 : R → R giving rise to a hull �
and a map a in the set Rm(�) corresponding to the unique ergodic measure on �. For example, 
those described in [19] and in [31]. Our next result shows that it is nonempty whenever the flow 
is minimal and non periodic. The σ -ergodic measure mω0 associated to every σ -generic point in 
the set �̃e ⊆ � (of complete measure) is defined in Subsection 2.1.

Theorem 2.14. Assume that the flow (�, σ) is minimal and non periodic. Then,

(i) Rm(�) is nonempty for any m ∈Minv(�, σ), and it contains functions a with �a = {0}.
(ii) In fact, there exist functions a which belong to 

⋂
m∈Minv(�,σ ) Rm(�), with �a = {0}.

(iii) If a ∈ Rm(�) for a measure m ∈ Minv(�, σ), then there exists at least a measure m̃ ∈
Merg(�, σ) such that a ∈ Rm̃(�). More precisely, a ∈ Rmω0

(�) for m-almost all the mea-

sures mω0 ∈Merg(�, σ) with ω0 ∈ �̃e.

Proof. (i) Let us fix m ∈ Minv(�, R). We begin by proving an auxiliary result. Let us fix ω0 ∈ �, 
and let us take ε > 0. Then, there exists a continuous function bε : � → R with ‖bε‖� :=
supω∈� |bε(ω)| ≤ ε which admits a continuous primitive hbε : � → [0, 1] with hbε (ω0) = 1
and 

∫
�

hbε (ω) dm ≤ ε. In fact, we will construct bε and hbε . We take T ≥ 2/ε, and note that 
m({ω0·t | t ∈ [0, T ]}) = 0, since the flow is non periodic: otherwise we would obtain a σ -orbit 
with infinite measure, impossible. The regularity of m and Uryshon’s Lemma provide a contin-
uous function cε : � → [0, 1] such that cε(ω0·t) = 1 for t ∈ [0, T ] and with 

∫
�

cε(ω) dm ≤ ε. 

We define bε(ω) := (cε(ω·T ) − cε(ω))/T and hbε (ω) := (1/T ) 
∫ T

0 cε(ω·s) ds, and check that 
(hbε )

′(ω) := (d/dt) hbε (ω·t)|t=0 coincides with bε(ω). Clearly, ‖bε‖� ≤ 2/T ≤ ε. In addition, 
hbε ≥ 0, and hbε (ω0) = (1/T ) 

∫ T

0 cε(ω0·s) ds = 1. Finally, using the σ -invariance of m, we get

∫
�

hbε (ω)dm = 1

T

∫
�

T∫
0

cε(ω·s) ds dm = 1

T

T∫
0

∫
�

cε(ω·s) dmds

= 1

T

T∫
0

∫
�

cε(ω)dmds =
∫
�

cε(ω)dm ≤ ε ,

which completes the proof of our initial assertion.
This property allows us to construct a sequence (bn) of continuous functions with contin-

uous primitives (hbn) such that ‖bn‖� ≤ 1/2n (so that 
∑∞

n=1 ‖bn‖� ≤ 1), hbn(ω) ∈ [0, 1] for 
all ω ∈ �, 

∫
�

hbn(ω) dm ≤ 1/2n (so that 
∑∞

n=1

∫
�

hbn(ω) dm ≤ 1), and with hbn(ω0) = 1 for a 
previously fixed ω0 ∈ � and all n ∈ N . Let us call h̃(ω) := ∑∞

n=1 hbn(ω) ∈ [0, ∞]. Lebesgue’s 
monotone convergence theorem shows that 

∫
�

h̃(ω) dm = ∑∞
n=1

∫
�

hbn(ω) dm ≤ 1, and hence

�̃ := {ω ∈ � | h̃(ω) < ∞}

satisfies m(�̃) = 1. Note also that ω0 /∈ �̃. In addition, �̃ is σ -invariant: for every ω ∈ �, j ∈ N
and t ∈R,
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j∑
n=1

hbn(ω·t) =
j∑

n=1

hbn(ω) +
j∑

n=1

t∫
0

bn(ω·s) ds ≤
∞∑

n=1

hbn(ω) + |t |
∞∑

n=1

‖bn‖� .

Let us define a := − 
∑∞

n=1 bn, which is a continuous function on �. We will check that 
a ∈Rm(�) and that �a = {0}.

Note that the function ha defined by ha(ω) := − 
∑∞

n=1 hbn(ω) = −h̃(ω) for ω ∈ �̃ and 
ha(ω) := 0 for ω /∈ �̃ satisfies ha(ω̃·t) − ha(ω̃) = ∫ t

0 a(ω̃·s) ds for all ω̃ ∈ �̃, since hbn(ω̃·t) −
hbn(ω̃) = ∫ t

0 bn(ω̃·s) ds. Observe that supt≤0

∫ t

0 a(ω̃·s) ds = supt≤0(ha(ω̃·t) − ha(ω̃)) =
supt≤0(̃h(ω̃) − h̃a(ω̃·t)) ≤ h̃(ω̃) < ∞ for all ω̃ ∈ �̃. Let us check that inft≤0

∫ t

0 a(ω̃·s) ds = −∞
for all ω̃ ∈ �̃. We fix ω̃ ∈ �̃ and ω0 /∈ �̃ and look for (tk) ↓ −∞ such that ω0 = limk→∞ ω̃·(tk). 
For any j ∈N ,

tk∫
0

a(ω̃·s) ds =
∞∑

n=1

(hbn(ω̃) − hbn(ω̃·tk)) ≤
∞∑

n=1

hbn(ω̃) −
j∑

n=1

hbn(ω̃·tk) ,

and hence lim infk→∞
∫ tk

0 a(ω̃·s) ds ≤ ∑∞
n=1 hbn(ω̃) − ∑j

n=1 hbn(ω0) for all j ∈N . By letting j
increase, we check the assertion, which in turn precludes the existence of a continuous primitive 
for a. Altogether, a satisfies all the conditions of Definition 2.13, and hence a ∈Rm(�).

Finally, note that the map a is the uniform limit of the sequence (sj ), with sj := − 
∑j

n=1 bn. 
Each one of the functions sj has a continuous primitive, and hence 

∫
�

sj (ω) dm̃ = 0 for ev-
ery j ∈ N and m̃ ∈ Minv(�, σ) (see Remark 2.12). Therefore, 

∫
�

a(ω) dm̃ = 0 for every 
m̃ ∈ Minv(�, σ), and hence Theorem 2.6 shows that �a = {0}.

(ii) The idea is to repeat the process of (i), but taking functions (bn) such that 
∫
�

hbn(ω) dm ≤
1/(2n) for all m ∈ Minv(�, R). Therefore, we must change the initial step in the proof of (i) to 
show that, given ω0 ∈ � and ε > 0, there exists a continuous function bε : � →R with ‖bε‖� ≤
ε which admits a continuous primitive hbε : � → [0, 1] with hbε (ω0) = 1 and 

∫
�

hbε (ω) dm ≤ ε

for any m ∈ Minv(�, R). Let us call J := {ω0·t | t ∈ [0, T ]}, and look for a continuous function 
c : � → [0, 1] such that c(ω) = 1 for ω ∈ J and c(ω) < 1 for ω /∈ J . Then, the sequence (cn)

decreases pointwisely to the characteristic function of J , and hence Lebesgue’s monotone con-
vergence theorem ensures that limn→∞

∫
�

cn(ω) dm = 0 for all m ∈ Minv(�, σ). We consider 
the maps in : Minv(�, σ) → R , m �→ ∫

�
cn(ω) dm, which are continuous for the weak∗ topology 

of Minv(�, R). The space Minv(�, R) is compact and metrizable for this topology (see e.g. [39, 
Theorems 6.4 and 6.5]). The sequence (in) decreases to the function 0, and hence Dini’s theo-
rem ensures that 0 = limn→∞ in uniformly on Minv(�, R). Therefore, given ε > 0, there exists 
nε ∈ N such that 

∫
�

cnε (ω) dm ≤ ε for all m ∈ Minv(�, σ). We use cnε to construct bε and hbε , 
as at the beginning of the proof of (i), and repeat the rest of it to check (ii).

(iii) Let us call �a− := {ω ∈ � | supt≤0

∫ t

0 a(ω·s) ds < ∞}, with m(�a−) = 1. Let f be 
the characteristic function of �a−. As recalled at the end of Subsection 2.1, there exists a 
set �f ⊆ �̃e with m(�f ) = 1 such that m(�a−) = ∫

�
f (ω) dm = ∫

�f

( ∫
�

f (ω)dmω0

)
dm =∫

�f
mω0(�

a−) dm. This ensures that mω0(�
a−) = 1 for m-almost every ω0 ∈ �f . Let us take 

one of these points ω0. Then 
∫
�

a(ω) dmω0 ≥ 0: if, on the contrary, ã := ∫
�

a(ω) dmω0 < 0, 
then Birkhoff’s ergodic theorem ensures that ã = limt→−∞(1/t) 

∫ t

0 a(ω·s) ds for mω0 -almost 
every ω ∈ �, which in turn implies mω (�a−) = 0, impossible. Now we look for a subset 
0
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�a ⊆ �̃e with m(�a) = 1 such that 0 = ∫
�

a(ω) dm = ∫
�a

( ∫
�

a(ω)dmω0

)
dm, and conclude 

that 
∫
�

a(ω) dmω0 for m-almost every point. Therefore, a satisfies the conditions of Defini-
tion 2.13 for mω0 for m-almost every ω0 ∈ �̃e, as asserted. �

From now on, m ∈Merg(�, σ) is fixed.
The next result summarizes part of the dynamical consequences on the solutions of the family 

of linear scalar equation x′ = a(ω·t) x, which are x(t, ω, x0) = x0 exp
( ∫ t

0 a(ω·s) ds
)
.

Proposition 2.15. Let a : � → R be a continuous function with 
∫
�

a(ω) dm = 0. The following 
assertions are equivalent:

(1) a ∈ Rm(�).
(2) The subset �a ⊆ � of those points ω such that supt∈R

∫ t

0 a(ω·s) ds < ∞, inft≤0
∫ t

0 a(ω·
s) ds = −∞, and inft≥0

∫ t

0 a(ω·s) ds = −∞, is σ -invariant and satisfies m(�a) = 1.
(3) There exist an upper-semicontinuous function Ha : � → [0, 1] and a σ -invariant set �a ⊆ �

with m(�a) = 1 such that: ω ∈ �a if and only if Ha(ω) > 0; and, for all ω ∈ �, Ha(ω·t) =
Ha(ω) exp

( ∫ t

0 a(ω·s) ds
)

for all t ∈R, inft≤0 Ha(ω·t) = 0, and inft≥0 Ha(ω·t) = 0.

In addition, the function Ha of point (3) vanishes at its continuity points.

Proof. The proof of the equivalences repeats that of [29, Proposition 6.4]: the map

Ha(ω) = inf
t∈R

1

exp
( ∫ t

0 a(ω·s) ds
)

satisfies all the assertions of point (3).
Assume now that the semicontinuous function Ha satisfies the properties of (3) and, by con-

tradiction, that Ha(ω0) = ρ > 0 at a continuity point ω0. Then there is a nonempty open ball 
B := B�(ω0, δ) such that Ha(ω) > ρ/2 for any ω ∈ B. The minimality of the flow provides val-
ues of time t1 < . . . < tp such that � = σt1(B) ∪ . . . ∪ σtp (B), from where it follows easily that 
Ha is always positive and bounded from below. But this contradicts the last properties mentioned 
in (3). �

Observe that the previous result shows that the condition supt≤0
∫ t

0 a(ω·s) ds < ∞ for m-
a.e. ω ∈ � in Definition 2.13 can be replaced by supt∈R

∫ t

0 a(ω·s) ds < ∞ for m-a.e. ω ∈ �.
Note also that, if a ∈ Rm(�) and Ha and �a are the function and set of (2.15), then the 

difference between two solutions of the equation of x′ = a(ω·t) x for ω ∈ �a is

x(t,ω, x2) − x(t,ω, x1) = (x2 − x1) exp
( t∫

0

a(ω·s) ds
)

= (x2 − x1)
Ha(ω·t)
Ha(ω)

.

The next result shows that for almost every point ω ∈ �a , the set of positive values of time at 
which the forward semiorbits seem to coincide (or are “indistinguishable”) has positive lower 
density; and the same property holds for the set of positive values of time at which the semiorbits 
are “distinguishable”. These facts will be of relevance later, in the analysis of the type of Li-Yorke 
chaos that we will detect for certain nonhomogeneous linear dissipative scalar equations.
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Given a set C ⊂ [0, ∞), we define its lower density as

dl(C) = lim inf
t→∞

1

t
l([0, t] ∩ C) ,

where l is the Lebesgue measure on R. Let us take a ∈Rm(�), ω ∈ �a , ε ∈ (0, 1), define

Iε(ω) := {t ≥ 0 | Ha(ω·t)/Ha(ω) ≤ ε } ,

Dε(ω) := {t ≥ 0 | Ha(ω·t)/Ha(ω) ≥ 1 − ε } ,
(2.10)

and observe that these ones are the sets of values of time we referred to before.

Theorem 2.16. Assume that a ∈ Rm(�), and let �a be the set provided by Proposition 2.15. 
Then, for every ε ∈ (0, 1) there exists a subset �ε ⊆ �a with m(�ε) = 1 such that, for any 
ω ∈ �ε ,

(i) the set Iε(ω) has positive lower density and is relatively dense in R+.
(ii) The set Dε(ω) has positive lower density.

Proof. (i) Let us define Cn := {ω ∈ �a | Ha(ω) ≥ 1/n}. Since Cn ⊆ Cn+1 and �a = ⋃
n∈N Cn

(see point (3) of Proposition 2.15), we have limn→∞ m(Cn) = 1, and hence m(Cn) > 0 for n ≥ n0. 
We will work with a fixed n ≥ n0. We also fix ε ∈ (0, 1). Let us take a continuity point ω0
of Ha , so that Ha(ω0) = 0 (see again Proposition 2.15), and look for a nonempty open ball 
Bε := B�(ω0, δε) such that Ha(ω) ≤ ε/n if ω ∈ Bε . Note that if ω ∈ Cn and ω·s ∈ Bε then 
Ha(ω·s)/Ha(ω) ≤ ε; that is, s ∈ Iε(ω). Since Bε is open and (�, σ) is minimal, m(Bε) > 0. 
Birkhoff’s ergodic theorem ensures that, for m-almost every ω ∈ Cn,

0 < m(Bε) = lim
t→∞

1

t

t∫
0

χBε
(ω·s) ds = lim

t→∞
1

t
l({s ∈ [0, t] | ω·s ∈ Bε})

≤ lim inf
t→∞

1

t
l({s ∈ [0, t] | s ∈ Iε}) = lim inf

t→∞
1

t
l([0, t] ∩ Iε(ω)) = dl(Iε) .

This proves the assertion concerning the lower density for m-almost all the elements of Cn, and 
hence for m-almost all the points of �a .

To check that Iε(ω) is relatively dense in R, we deduce from the minimality of the base flow 
and the open character of Bε that there exist positive values of time t1 < · · · < tp such that � ⊂
σ−t1(Bε) ∪ . . . ∪ σ−tp (Bε). In particular, for any ω ∈ � there exists t ∈ [0, tp] such that ω·t ∈ Bε . 
We take ω ∈ �a . Given s ∈ R+, we look for t ∈ [0, tp] such that (ω·s)·t = ω·(s + t) ∈ Bε , which 
ensures that ̃s = s + t ∈ Iε(ω). This ensures that Iε(ω) is relatively dense in R+, and completes 
the proof of (i).

(ii) Let us define η := inf{k ∈ R | m({ω ∈ � | Ha(ω) ≥ k}) = 0} ≤ 1 and �0 := {ω ∈
� | Ha(ω) ≤ η}, and note that m(�0) = 1. We fix ε ∈ (0, 1), define �ε := {ω ∈ � | Ha(ω) >
(1 −ε) η}, and observe that the definition of η ensures that m(�ε) > 0. Now we take ω ∈ �a ∩�0, 
and note that the set {t ≥ 0 | ω·t ∈ �ε} is contained in Dε(ω), since Ha(ω·t)/Ha(ω) > (1 −
ε) η/Ha(ω) ≥ (1 − ε).
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Birkhoff’s ergodic theorem ensures that, for m-almost every ω ∈ �a ∩ �0 (that is, in a set �̃ε

with m(�̃ε) = 1),

0 < m(�ε) = lim
t→∞

1

t

t∫
0

χ�ε(ω·s) ds = lim
t→∞

1

t
l({s ∈ [0, t] | ω·s ∈ �ε})

≤ lim inf
t→∞

1

t
l({s ∈ [0, t] | s ∈Dε(ω)}) = lim inf

t→∞
1

t
l([0, t] ∩Dε(ω)) = dl(Dε(ω)) .

This proves (ii). �
Remark 2.17. The set Dε(ω) of the previous theorem is never relatively dense. To check 
this, we take ω ∈ �a and (tn) ↑ ∞ such that ω̃ := limn→∞ ω·tn = ω̃ is a continuity point 
for the semicontinuous function Ha , so that Ha(ω̃) = 0. Then, limn→∞ Ha(ω·(tn + t)) =
limn→∞ H(ω·tn) exp

( ∫ t

0 a(ω·(tn + s)) ds
) = 0 uniformly for t in any compact interval of R. 

Therefore, given ε ∈ (0, 1/2) and t∗ > 0, there exists n0 such that H(ω·(tn0 + t)) ≤ εH(ω) for 
all t ∈ [0, t∗], so that [tn0, tn0 + t∗] ∩Dε(ω) is empty. The assertion follows from the fact that t∗
is arbitrarily chosen.

2.6. Li-Yorke chaos

As already mentioned, in this paper we will deal with two types of chaos: Li-Yorke (now 
defined) and Auslander-Yorke (defined in Subsection 2.7). The minimality of the flow (�, σ) is 
not assumed in what follows.

Definition 2.18. Let (�, σ) be a continuous flow on a compact metric space. Let ω1, ω2 be 
two points of � whose forward σ -semiorbits are globally defined. The points ω1, ω2 form a 
positively distal pair for σ if lim inft→∞ dist�(σt (ω1), σt (ω2)) > 0, and a positively asymptotic 
pair if lim supt→∞ dist�(σt (ω1), σt (ω2)) = 0. The points ω1, ω2 form Li-Yorke pair for the flow 
if the pair is neither positively distal nor positively asymptotic. A set S ⊆ � such that every pair 
of different points of S form a Li-Yorke pair is called a scrambled set for the flow. The flow 
(�, σ) is Li-Yorke chaotic if there exists an uncountable scrambled set.

After the initial description of this type of chaos for a certain type of transformations in [25], 
there have appeared more exigent definitions, like that of Li-Yorke sensitivity in [2]. That is also 
the case of the next definition, particular for skewproduct flows.

Definition 2.19. Let (� × R, τ) be a skewproduct flow over a minimal base (�, σ), and let 
K ⊆ � ×R be a τ -invariant compact set. Then the restricted flow (K, τ) is Li-Yorke fiber-chaotic 
in measure with respect to m ∈ Merg(�, m) if there exists a set �0 ⊆ � with m(�0) = 1 such 
that K contains an uncountable scrambled set of Li-Yorke pairs with first component ω for each 
ω ∈ �0.

Remark 2.20. It is clear that, in the case of skewproduct flow (� × R, τ), a pair of points 
(ω, x1), (ω, x2) (with common first component) form: a positively distal pair if and only 
if lim inft→∞ |x(t, ω, x1) − x(t, ω, x2)| > 0; a positively asymptotic pair if and only if 
lim supt→∞ |x(t, ω, x1) − x(t, ω, x2)| = 0; and a Li-Yorke pair if these two conditions fail.
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We point out again that the notion of Li-Yorke fiber-chaos in measure makes only sense in the 
setting of skewproduct flows. The same happens with the notion of residually Li-Yorke chaotic 
flow, previously analyzed in [4] and [17]. Li-Yorke chaos for nonautonomous dynamical systems 
is also the object of analysis in [6], [7] and [29].

2.7. Auslander-Yorke chaos

As in Subsection 2.6, the minimality of the flow (�, σ) is not initially required (although we 
will assume it later to talk about skewproduct flows).

Definition 2.21. Let (�, σ) be a continuous flow on a compact metric space. The flow is 
topologically transitive if for any two open subsets U and V there exists t > 0 such that 
σt (U) ∩ V is nonempty. The flow is sensitive or ε-sensitive (with respect to initial conditions) 
if there exists ε > 0 such that for any ω1 ∈ � and δ > 0 there exists ω2 ∈ B�(ω1, δ) such that 
supt≥0 dist�(ω1·t, ω2·t) > ε. The flow is Auslander-Yorke chaotic if it is topologically transitive 
and sensitive.

Remarks 2.22. 1. Observe that this concept of chaos relies deeply on the set we are considering. 
More precisely, if the restriction of the flow to a σ -invariant compact set K � � is Li-Yorke 
chaotic, then so is the global flow. But this property is not true for Auslander-Yorke chaos, since 
neither the transitivity nor the sensitivity on K are inherited for the containing set �.

2. A point ω1 ∈ � is ε-sensitive for an ε > 0 if for any δ > 0 there exists ω2 ∈ B�(ω1, δ) such 
that supt≥0 dist�(ω1·t, ω2·t) > ε. The flow (�, σ) is sensitive if there exists a common ε > 0
such every ω ∈ � is ε-sensitive, and this definition is also valid for a flow on a complete metric 
space. A point is sensitive if it is ε-sensitive for some ε > 0. A non sensitive point is called 
Lyapunov stable.

3. In the case of a compact metric space �, topological transitivity and point transitivity 
are equivalent, as proved in e.g. [3, Lemma 3]. Point transitivity means the existence of a dense 
forward semiorbit, which in general is less restrictive. A compact set � with a point transitive and 
sensitive flow was called chaotic by Kaplan and Yorke [23]. An exhaustive analysis of the relation 
among topological transitivity, point transitivity, and many other a priori stronger conditions in 
more general topological spaces is done in [1, Theorem 1.4].

The next fundamental result is proved by Glasner and Weiss in [14, Theorem 1.3] for the case 
of a surjective continuous transformation, which provides a discrete-time semiflow; but its proof 
can be easily adapted to the case of a real flow (see also [15, Proposition 2.4]). Recall that, if 
� is a compact metric space, then the set Minv(�, σ) of σ -invariant measures is nonempty, and 
that topological transitivity and point transitivity are equivalent properties (see Remark 2.22.3): 
we will simply say transitivity. The definition of equicontinuous (or almost periodic) flow on a 
compact space is given in Subsection 2.1.

Theorem 2.23. Let (�, σ) be a continuous flow on a compact metric space. Assume that the flow 
is transitive, and that � is the support of a measure m ∈Minv(�, σ). Then,

(1) either the flow is minimal and equicontinuous,
(2) or it is Auslander-Yorke chaotic.
265



J. Campos, C. Núñez and R. Obaya Journal of Differential Equations 361 (2023) 248–287
That is, in the case of a transitive flow on a compact metric space, uniform stability and 
Auslander-Yorke chaos are indeed opposite terms (see Remark 2.1 and observe that the sensitiv-
ity of a flow precludes its stability).

Corollary 2.24. Let (�, σ) be a continuous flow on a compact metric space. If it is minimal, then 
it is either equicontinuous or Auslander-Yorke chaotic.

Recall that an equicontinuous minimal flow is uniquely ergodic, so that the ergodic uniqueness 
is also a property required to avoid the presence of Auslander-Yorke chaos. On the other hand, 
point transitivity is equivalent to the fact that � is the omega limit set of one of its points. In 
particular, an Auslander-Yorke chaotic flow is always chain recurrent: see Subsection 2.1 and 
[37, Section 8].

Let us now talk about Auslander-Yorke chaos for τ -invariant compact subsets of � × R, 
where (�, σ) is a minimal flow on a compact metric space and (� × R, τ) is the skewproduct 
flow projecting on (�, σ) induced by a family of the type (2.1) given by a continuous function 
f : � ×R which is locally Lipschitz with respect to the state variable x.

The papers [18] and [32] describe examples of families of linear equations x′ = a(ω·t) x +
b(ω·t) over an almost periodic (and hence equicontinuous) base flow (�, σ) for which there ex-
ists just one minimal set M, which in addition is not a copy of the base. Let us take r1 < r2 such 
that M ⊂ � ×[r1, r2], and define g(x) as (x − r1)

2 for x < r1, 0 for x ∈ [r1, r2], and −(x − r2)
2

for x > r2. Then the families x′ = a(ω·t) x + b(ω·t) + g(ω·t, x), which satisfy all the conditions 
which we will assume on Section 3, define a flow (� × R, τ) for which (obviously) M is a τ -
minimal set, and the restricted semiflow (M, τ) is Auslander-Yorke chaotic (see Remark 2.25.2 
below). In Section 3, Theorem 3.15, we will establish conditions under which Auslander-Yorke 
chaos appears for infinitely many τ -invariant compact sets. The proof of the result is strongly 
based on the next theorem. It describes a branch of τ -invariant compact sets for which the re-
stricted flows satisfy the initial hypotheses in Theorem 2.23, which makes them the suitable sets 
to detect the presence of Auslander-Yorke chaos. These sets are previously known to coincide 
with the support of a τ -ergodic measure.

Before stating Theorem 2.26, we explain some basic facts used in its proof.

Remarks 2.25. 1. Theorem 2.23 provides additional information in the context of such a scalar 
skewproduct flow (� ×R, τ), associated to the family (2.1). The target is to analyze the possible 
presence of Auslander-Yorke chaos for a given τ -invariant compact set K ⊂ � × R which is 
transitive and the support of a τ -invariant set. Recall that the base flow (�, σ) is always assumed 
to be minimal, and that any τ -invariant minimal set is an almost automorphic extension of the 
base: see Subsection 2.4. According to Theorem 2.23, the options for the restricted flow (K, τ)

are two: either it is an equicontinuous minimal flow, or it is Auslander-Yorke chaotic. Assume 
that we are in the first case. Then K (an almost automorphic extension of the base, since it is 
minimal) is necessarily an equicontinuous copy of the base: see e.g. [38, Theorem A or Part II]. 
Therefore, in this case, the base is necessarily equicontinuous.

2. In particular, the restricted flow to such a set K is Auslander-Yorke chaotic whenever either 
the base flow is not equicontinuous or K is not a copy of the base.

The omega limit set Oτ (ω, x) of a point (ω, x) ∈ � × R and the support Suppm of a τ -
invariant measure m are defined in Subsection 2.1, and the notion of τ -equilibrium appears in 
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Subsection 2.2. The properties required in the function η appearing in the next statement are 
satisfied, for instance, for the upper and lower cover of a τ -invariant compact set K⊂ � ×R.

Theorem 2.26. Let (�, σ) be a minimal flow on a compact metric space, and let (� × R, τ)

be the flow induced by the family of equations (2.1), where f : � × R is jointly continuous and 
locally Lipschitz with respect to the state variable x ∈R.

(i) Let M ⊂ � ×R be a minimal set. Then, either the base flow (�, σ) is equicontinuous and 
M is a copy of the base, or the restricted flow (M, τ) is Auslander-Yorke chaotic.

Let us fix m ∈Merg(�, σ) and let η : � → R be a bounded Borel function such that

– there exists a σ -invariant subset �η with m(�η) = 1 such that x(t, ω, η(ω)) = η(ω·t) for all 
t ∈R and ω ∈ �η,

– there exists a continuity point ωη of η,
– the graph of η is contained in a τ -invariant compact set A ⊂ � ×R.

Then,

(ii)
∫
A

h(ω,x)dμη :=
∫
�

h(ω,η(ω)) dm for h ∈ C(A, R) defines a regular Borel τ -ergodic 

measure μη concentrated on A.
(iii) Let us define Sη := Suppμη. Then, there exists �∗ ⊆ �η with m(�∗) = 1 such that 

(ω̄, η(ω̄)) ∈ Sη and

Sη = Oτ (ω̄, η(ω̄)) (2.11)

for all ω̄ ∈ �∗. In particular, Sη is a τ -invariant pinched compact set, the flow (Sη, τ) is 
transitive, and the set Xη ⊆ Sη of τ -generic points with forward τ -semiorbit dense in Sη

satisfies μη(Xη) = 1.
(iv) Either the base flow (�, σ) is equicontinuous and Sη is a copy of the base, or the restricted 

flow (Sη, τ) is Auslander-Yorke chaotic.

Proof. (i) According to Corollary 2.24, either (M, τ) is Auslander-Yorke chaotic or it is 
equicontinuous. As explained in Remark 2.25.1, in the second situation, M is a copy of the 
base and hence the base flow is equicontinuous.

(ii) This property is a classical result on measure theory, and an easy and nice exercise for the 
interested reader.

(iii) The τ -invariance and compactness of Sη are general properties which follow from the τ -
invariance of μη and the compactness of A: see Subsection 2.1. Let us check that Sη is a pinched 
set which contains a dense forward τ -semiorbit.

Lusin’s theorem and the regularity of m provide a compact set K ⊆ �η with m(K) > 0 such 
that the restriction η : K → R is continuous. Let us define the set

K∗ := {ω ∈K | m(B�(ω, δ) ∩K) > 0 for all δ > 0} ,
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which is obviously closed and hence compact. Our first goal is checking that m(K − K∗) = 0. 
Since m is regular, it is enough to prove that m(C) = 0 for any compact subset C ⊆ K − K∗. 
For any ω0 ∈ C there exists δω0 > 0 such that m(B�(ω0, δω0) ∩ K) = 0. The compactness of C
provides a finite number of points ω1, . . . , ωm such that C ⊆ B�(ω1, δω1) ∪ · · · ∪ B�(ωm, δωm). 
Hence, C = C∩K ⊆ (B�(ω1, δω1) ∩K) ∪· · ·∪ (B�(ωm, δωm) ∩K), which ensures that m(C) = 0, 
as asserted. Consequently, m(B�(ω, δ) ∩K∗) = m(B�(ω, δ) ∩K) > 0 for any ω ∈ K∗ and δ > 0.

The compact set K∗ is separable, so that we can find a countable and dense subset D :=
{ωm | m ≥ 1} ⊆ K∗. We call Km,k := B�(ωm, 1/k) ∩ K∗ and observe that m(Km,k) > 0 for all 
m, k ≥ 1, since ωm ∈ K∗. Therefore, Birkhoff’s ergodic theorem provides a σ -invariant subset 
�m,k ⊆ �η with m(�m,k) = 1 such that for any ω ∈ �m,k there exists a sequence (tn) ↑ ∞ with 
ω·tn ∈ Km,k for any n ≥ 1.

The set �∗ := ⋂
m≥1, k≥1 �m,k ⊆ �η is σ -invariant satisfies m(�∗) = 1. We fix ω̄ ∈ �∗ and 

will check that (2.11) holds and that (ω̄, η(ω̄)) ∈ Sη . Before that, observe that these properties 
ensure that

– the restricted flow (Sη, τ) is point transitive (and hence topologically transitive, see Re-
mark 2.22.3), since the forward τ -semiorbit of (ω̄, η(ω̄)) is dense in Sη;

– the set Sη is pinched, since its section over the continuity point ωη of the map η reduces to 
the singleton {η(ωη)};

– the set of points {(ω̄, η(ω̄)) | ω̄ ∈ �∗} has full measure μη. Hence μη(Xη) = 1 for the set 
Xη of statement (iii), since the set of generic points for (Sη, τ) has complete measure (see 
Subsection 2.1).

That is, the proof of (iii) will be complete once checked these two assertions.
We begin by observing that the definitions of K∗ and �∗ provide t > 0 such that ω̄·t ∈

K∗. Since ω̄ ∈ �∗ ⊆ �η, we have τ(t, ω̄, η(ω̄)) = (ω̄·t, η(ω̄·t)). Therefore, Oτ (ω̄, η(ω̄)) =
Oτ (ω̄·t, η(ω̄·t)), and (ω̄, η(ω̄)) ∈ Sη if and only if (ω̄·t, η(ω̄·t)) ∈ Sη. Consequently, it is enough 
to prove the two previous assertions for ω̄ ∈K∗, which we assume from now on.

We first prove that

(ω̃·t, η(ω̃·t)) ∈Oτ (ω̄, η(ω̄)) (2.12)

for all ω̃ ∈ K∗ and t ∈ R. To this end, we take ωm ∈ D and ε > 0, and look for k > 1/ε such 
that, if ω ∈ B�(ωm, 1/k) ∩ K∗, then |η(ωm) − η(ω)| < ε. We also look for (tn) ↑ ∞ such 
that ω̄·tn ∈ Km,k ⊆ B�(ωm, 1/k). Thus, dist�(ωm, ω̄·tn) < 1/k < ε and |η(ωm) − η(ω̄·tn)| < ε, 
which proves (2.12) for ω̃ = ωm ∈ D and t = 0. The property for all ω̃ ∈ K∗ and t = 0 follows 
from the density of D, the continuity of η : K∗ → R, and the closed character of the right set in 
(2.12). Once this is established, we combine K∗ ⊂ �η with the τ -invariance of the omega limit 
in order to deduce (2.12) for all ω̃ ∈ K∗ and t ∈ R.

We define K∞ := ⋃
t∈R σt (K∗). The definition of �∗ ensures that �∗ ⊆ K∞, and hence 

m(K∞) ≥ m(�∗) = 1. Note that (2.12) ensures that (ω, η(ω)) ∈Oτ (ω̄, η(ω̄)) whenever ω ∈ K∞. 
This property and the regularity of μη yield

μη(Oτ (ω̄, η(ω̄))) = inf

⎧⎨
⎩

∫
f (ω,x)dμη | f ∈ C(A, [0,1]) with f |Oτ (ω̄,η(ω̄)) ≡ 1

⎫⎬
⎭

A
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= inf

⎧⎨
⎩

∫
A

f (ω,η(ω)) dm | f ∈ C(A, [0,1]) with f |Oτ (ω̄,η(ω̄)) ≡ 1

⎫⎬
⎭ (2.13)

≥
∫
�

χ |K∞ (ω)dm = 1 .

(As usual, χ |B is the characteristic function of the set B.) Hence, μη(Oτ (ω̄, η((ω̄))) = 1, which 
ensures that Sη ⊆ Oτ (ω̄, η(ω̄)).

Let us now check that Oτ (ω̄, η(ω̄)) ⊆ Sη. We take (ω̃, ̃x) ∈ Oτ (ω̄, η(ω̄)) and an open neigh-
borhood U ⊂ � × R of (ω̃, ̃x), and will prove that μη(U ∩ A) > 0. Let us take t̄ > 0 such 
that (ω̄·t̄ , η(ω̄·t̄ )) ∈ U . Then (ω̄, η(ω̄)) ∈ V := τ−t̄ (U), which combined with the continuity of 
K∗ → � ×R , ω �→ (ω, η(ω)) ensures that there exists δ > 0 such that (ω, η(ω)) ∈ V whenever 
ω ∈ B(ω̄, δ) ∩ K∗. Since m(B(ω̄, δ) ∩ K∗) > 0, we conclude as in (2.13) that μη(V ∩ A) > 0, 
which combined with the τ -invariance of the measure ensures that μη(U ∩A) = μη(V ∩A) > 0. 
An easy contradiction argument shows that (ω̃, ̃x) ∈ Sμ, so that (2.11) is proved for the initially 
chosen point ω̄ ∈ K∗. In turn, (2.11) combined with (2.12) for ω̃ = ω̄ and t = 0 ensures that 
(ω̄, η(ω̄)) ∈ Sη . This completes the proof of the two assertions, and that of (iii).

(iv) According to Theorem 2.23, either (Sη, τ) is Auslander-Yorke chaotic or it is equicontin-
uous and minimal. Remark 2.25.1 completes the proof of (iv). �
3. Dynamics for nonhomogeneous linear dissipative equations

Let (�, σ) be a minimal flow on a compact metric space. (This minimality is an important req-
uisite throughout the whole section.) Let a, b : � → R be continuous functions. Let us consider 
the family of scalar nonautonomous equations

x′ = a(ω·t) x + b(ω·t) + g(ω·t, x) , ω ∈ � (3.1)

with nonhomogeneous linear part, under the following conditions on the function g : � ×R → R
(although not all of them will be always in force):

g1 There exists the partial derivative gx , and the functions g, gx : � ×R → R are continuous.
g2 There exist real numbers r1 ≤ r2 such that: g(ω, x) = 0 if r1 ≤ x ≤ r2, g(ω, x) > 0 if x < r1

and g(ω, x) < 0 if x > r2; and gx(ω, r1) = 0 for all ω ∈ � if r1 = r2.
g3 limx→±∞(g(ω, x)/x) = −∞ uniformly on �.
g4 gx(ω, x) ≤ 0 whenever x /∈ [r1, r2].
g̃4 gx(ω, x) < 0 whenever x /∈ [r1, r2].

The family (3.1) is said to be linear dissipative if r1 < r2, and purely dissipative if r1 = r2. 
Theorem 3.2 will justify the use of the term dissipative in both cases. In this paper, we are more 
interested in the linear dissipative case, where we can detect Li-Yorke chaos and Auslander-Yorke 
chaos. But it is quite easy to complete our analysis in order to include the purely dissipative case, 
just using at a certain point (in the proof of Theorem 3.11) one result of [30].

As explained in Subsection 2.2, the family (3.1) induces a local continuous flow (� ×R, τ), 
given by
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τ : U ⊆ R× � ×R→ � ×R , (t,ω, x0) �→ (ω·t, x(t,ω, x0)) ,

where t �→ x(t, ω, x0) is the maximal solution of (3.1)ω with x(0, ω, x0) = x0. In addition, the 
map x0 �→ x(t, ω, x0) is C1 if g1 holds.

The associated family of homogeneous linear equations

x′ = a(ω·t) x , (3.2)

for ω ∈ �, will play a fundamental role in the proofs of the results. Let us denote xl(t, ω, x0) :=
x0 exp

( ∫ t

0 a(ω·s) ds
)
, and let (� × R, τl) be the associated linear flow, so that τl(t, ω, x) =

(ω·t, xl(t, ω, x0)).
We will begin this section by some general results which require neither the assumption g4 on 

g nor any condition on the Sacker and Sell spectrum of the linear family (3.2). More precisely, 
we establish the existence of global attractor A, in Theorem 3.2, and analyze two minimal sets 
(which may coincide) determined by the upper and lower covers of A, in Theorem 3.3. Then we 
show, in Theorem 3.4, that if any τ -minimal set is uniformly exponentially stable at +∞, then 
there is just one of these sets, which coincides with the global attractor.

The condition g4 and the assumptions on �a will hence not be in force until Subsections 3.1
and 3.2, where we obtain a much more accurate description of the global dynamics.

Remarks 3.1. We will repeatedly use the next properties.
1. Let us choose ω ∈ � and assume that two maps t �→ α(ω·t) and t �→ β(ω·t) are glob-

ally defined solutions of the equation (3.1)ω with α(ω·t) ≤ β(ω·t) for any t ∈ R. Assume also 
that g satisfies g1 and g2, and that α(ω·t) ≤ r2 and β(ω·t) ≥ r1 for all t ∈ R. Then, the map 
t �→ β(ω·t) − α(ω·t) is a nonnegative lower solution of the linear equation (3.2)ω (that is, its 
derivative satisfies the differential inequality x′ ≤ a(ω·t) x). This assertion follows from property 
g2, which ensures that g(ω·t, β(ω·t)) ≤ 0 and g(ω·t, α(ω·t)) ≥ 0. A standard comparison argu-
ment shows that, in this case, β(ω·t) −α(ω·t) ≥ (β(ω) −α(ω)) exp

( ∫ t

0 a(ω·s) ds
)

for t ≤ 0 and 
β(ω·t) − α(ω·t) ≤ (β(ω) − α(ω)) exp

( ∫ t

0 a(ω·s) ds
)

for t ≥ 0. In particular, if any point ω ∈ �

satisfies the initial assumption, then the map � →R , ω �→ β(ω) − α(ω) is a τl-subequilibrium. 
We referred to this type of relation between lower (or upper) solutions and subequilibria (or 
superequilibria) in Subsection 2.2.

2. Note also that a similar result holds for t �→ c(β(ω·t) − α(ω·t)) if c > 0.
3. If, in addition, g satisfies g4 and c > 0, then t �→ c (β(ω·t) − α(ω·t)) is a nonnegative 

lower solution of x′ = a(ω·t) x independently of the area where their graph is contained, since 
c (g(ω·t, β(ω·t)) − g(ω·t, α(ω·t)) ≤ 0.

By repeating the arguments leading to [6, Theorem 16] (see also [8, Section 1.2]), one proves 
the following fundamental result:

Theorem 3.2. Assume that g satisfies g1 and g3, and let (� ×R, τ) be the flow induced by the 
family (3.1). Then,

(i) the flow τ is bounded dissipative and admits a global attractor

A =
⋃ ({ω} × [αA(ω),βA(ω)]) .
ω∈�
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In particular, any forward τ -semiorbit is globally defined and bounded. In addition, 
αA : � → R and βA : � → R are respectively lower and upper semicontinuous τ -
equilibria; and the sets of continuity points for the functions αA and βA are residual and 
σ -invariant.

(ii) In addition, these functions can be obtained as the limits

αA(ω) = lim
t→∞x(t,ω·(−t),−ρ0) ,

βA(ω) = lim
t→∞x(t,ω·(−t), ρ0) ,

where the constant ρ0 is large enough to guarantee that a(ω) x +b(ω) +g(ω, x) > 0 when-
ever x ≤ −ρ0 and a(ω) x + b(ω) + g(ω, x) < 0 whenever x ≥ ρ0.

(iii) A is the union of the all the τ -orbits which are globally defined and bounded.

In the description of the global dynamics there are two τ -minimal subsets (which may co-
incide) easily defined from A which play a fundamental role, and which we describe in the 
next result. As recalled in Subsection 2.4, given any τ -minimal set M: there exists a residual 
σ -invariant subset �M ⊆ � at whose points the functions αM and βM appearing in the de-
scription (2.6) of M are continuous and take the same value, so that in particular M is an almost 
automorphic extension of the base; and M is a copy of the base if and only if αM and βM
are continuous and coincide everywhere. The fiber-order relation between two τ -minimal sets, 
denoted as M ≤N or M < N , is also described in Subsection 2.4.

Theorem 3.3. Assume that g satisfies g1 and g3, let (� ×R, τ) be the flow induced by the family 
(3.1), and let A, αA and βA be provided by Theorem 3.2. Let �c be the residual set of common 
continuity points of the semicontinuous maps αA and βA. Let us take ω0 ∈ �c and define

Mα := closure�×R{(ω0·t, αA(ω0·t)) | t ∈ R} ,

Mβ := closure�×R{(ω0·t, βA(ω0·t)) | t ∈R} .

Then,

(i) Mα and Mβ are τ -minimal sets and, for any ω ∈ �c, the sections (Mα)ω and (Mβ)ω are 
respectively given by the singletons {αA(ω)} and {βA(ω)}. In addition, any τ -minimal set 
M satisfies Mα ≤M ≤ Mβ .

(ii) A is a pinched compact set if and only if there exists ω0 ∈ �c such that αA(ω0) = βA(ω0). 
In this case, �c = {ω ∈ � | αA(ω) = βA(ω)}.

Proof. (i) The τ -invariance Mα follows from (ω0·t, αA(ω0·t)) = τ(t, ω0, αA(ω0)); and Mα

is compact, since αA is a bounded function. Let us take any ω ∈ �c and (ω, x) ∈ Mα . Then, 
(ω, x) = limn→∞(ω0·tn, αA(ω0·tn)) for a sequence (tn), and the continuity of αA at ω ensures 
that x = αA(ω). This is, Mα

ω = {αA(ω)}, as asserted. To prove the minimality of Mα , we take 
a τ -minimal subset M ⊆ Mα , so that Mω0 = Mα

ω0
= {α(ω0)}. Hence, the definition of Mα

ensures that Mα ⊆ M, which shows that they coincide. The arguments are analogous for Mβ . 
Finally, since any τ -minimal set M is contained in A, we have αA(ω) ≤ x ≤ βA(ω) whenever 
ω ∈ � and (ω, x) ∈M. The last statement in (i) follows easily from here.
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(ii) Assume that Aω0 is a singleton for a certain point ω0 ∈ �, so that Aω0 = {αA(ω0)} =
{βA(ω0)}, and take a sequence (ωn) with limit ω0. Any subsequence (ωk) has, in turn, a sub-
sequence (ωj ) such that there exists limj→∞ αA(ωj ) = x. The semicontinuity of αA and βA
ensure that αA(ω0) ≤ x ≤ βA(ω0), and hence x = αA(ω0). This guarantees that αA is continu-
ous at ω0. The same argument shows that βA is continuous at ω0, so that ω0 ∈ �c. In particular, 
{ω ∈ � | αA(ω) = βA(ω)} ⊆ �c.

Since αA and βA are τ -equilibria, they agree at ω0·t for all t ∈R. Let us now take ω ∈ �c and 
a sequence (tn) with limω0·tn = ω. Then αA(ω) = limαA(ω0·tn) = limβA(ω0·tn) = βA(ω). 
This shows that �c ⊆ {ω ∈ � | αA(ω) = βA(ω)}, and completes the proof of (ii). �

Corollary 2.10 states that a τ -minimal set M is an exponentially stable at +∞ copy of the 
base (the graph of the continuous function αM = βM) if and only if its upper Lyapunov exponent 
is strictly negative. We can add some more information for families of equations of the type (3.1):

Theorem 3.4. Assume that g satisfies g1 and g3, and let (� ×R, τ) be the flow induced by the 
family of equations (3.1). Then, the following assertions are equivalent:

(1) Any τ -minimal set has strictly negative upper Lyapunov exponent.
(2) There exists a unique τ -minimal set whose upper Lyapunov exponent is strictly negative.

Assume that this is the case, let A, αA and βA be provided by Theorem 3.2, and let Mα and 
Mβ be provided by Theorem 3.3. Then, the attractor A is given for the unique τ -minimal set 
Mα = Mβ = {αA} = {βA}, and it attracts exponentially any τ -orbit as time increases.

Proof. Assume that (1) holds. Recall that the existence of a global attractor ensures that any 
solution is defined and bounded on a positive half-line (see Theorem 3.2(i)), which in turn ensures 
the existence of its omega limit set. Recall also that (1) ensures that any τ -minimal set M is a 
uniformly exponentially stable at +∞ copy of the base: M = {η} (see Corollary 2.10). Given 
one of these sets, we consider its basin of attraction,

BM := {(ω, x0) | lim
t→∞|x(t,ω, x0) − η(ω·t)| = 0} .

It is easy to check that BM is an open set, and that different τ -minimal sets give rise to dis-
joint basins of attraction. It is also easy to check that every point (ω, x) belongs to the basin of 
attraction of a τ -minimal set contained in its omega limit set. Therefore, we can write

� ×R =
⋃

M is τ -minimal

BM ,

which is a disjoint union of open sets. Since � ×R is connected, we conclude that there exists a 
unique τ -minimal set: (2) holds. The converse is trivial.

Therefore, Mα = Mβ , and is a copy of the base. It follows from the definitions of these 
sets that the functions αA, βA : � → R are continuous and equal, which obviously ensures that 
Mα = Mβ = A. The last assertion follows easily from the hyperbolicity of A and the fact that 
it is contained in the omega limit set of any τ -orbit. The proof is complete. �
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We complete this part of general results with a theorem which characterizes the set of common 
continuity points of αA and βA in some cases.

Theorem 3.5. Assume that g satisfies g1, g2 and g3, let (� × R, τ) be the flow induced by the 
family (3.1), let A, αA and βA be provided by Theorem 3.2, and let �c be the (nonempty) set 
defined in Theorem 3.3. Assume also that there exists a τ -minimal set M ⊆ � × [r1, r2]. Then,

(i) if there exists ω0 ∈ � with supt≤0

∫ t

0 a(ω0·s) ds = ∞, then ω0 ∈ �c, �c = {ω ∈ � | αA(ω) =
βA(ω)}, A is pinched, and M =Mα = Mβ is the unique τ -minimal set.

(ii) Let αM and βM be defined by (2.6), and assume that M ⊂ � ×[r1, r2) or M ⊂ � ×(r1, r2]. 
If there exists ω0 ∈ � with supt≤0

∫ t

0 a(ω0·s) ds < ∞, then αA(ω0) < βA(ω0) and M �A.

In particular, if A is pinched, and if M := Mα = Mβ is contained in either � × [r1, r2) or in 
� × (r1, r2], then �c = {ω ∈ � | αA(ω) = βA(ω)} = {ω ∈ � | supt≤0

∫ t

0 a(ω·s) ds = ∞}.

Proof. (i) It is enough to prove that αA(ω0) = βA(ω0): if so, A is pinched, and hence The-
orem 3.3(ii) proves the remaining assertion. The hypothesis M ⊆ � × [r1, r2] guarantees the 
that the conditions of Remark 3.1.1 are fulfilled, and hence βA(ω0·t) − αA(ω0·t) ≥ (βA(ω0) −
αA(ω0)) exp

( ∫ t

0 a(ω0·s) ds
)

for t ≤ 0 (see Remark 3.1.1). Since the left-hand term is bounded, 
it is necessarily αA(ω0) = βA(ω0).

(ii) We work in the case M ⊂ � × [r1, r2), being the proof analogous in the other case. 
Recall that exp

∫ t

0 a(ω0·s) ds = xl(t, ω0, 1), solution of (3.2)ω0 . Let us look for ε > 0 such that 
ε supt≤0 xl(t, ω0, 1) ≤ r2 − sup{βM(ω) | ω ∈ �}, and define z(t) := βM(ω0·t) + ε xl(t, ω0, 1). 
Then z(t) takes values in [r1, r2] for t ≤ 0 (due to M ⊂ � × [r1, r2] and to the choice of ε), and 
hence it solves (3.1)ω0 in (−∞, 0], where, consequently, it agrees with x(t, ω0, z(0)). Therefore 
this last solution of (3.1)ω0 is globally defined and bounded (see Theorem 3.2(i)), which ensures 
that (ω0, z(0)) ∈ A −M (see Theorem 3.2(iii)). This proves (ii).

The final statements of the theorem follow from (i), (ii), and Theorem 3.3(ii). �
3.1. The case sup�a < 0

In the next two subsections, we describe the τ -minimal sets and the possibility of occurrence 
of chaos for the family of equations (3.1), assuming condition g4 (or g̃4) in two cases which 
depend on the Sacker and Sell spectrum �a of (3.2) in two cases: sup�a < 0 and sup�a = 0. 
Remark 2.7 explains that the first situation is equivalent to the negative character of the upper of 
exponential dichotomy of the family (3.2) (which therefore has exponential dichotomy over �), 
and that the second one is equivalent to the null character of that upper Lyapunov exponent (so 
that the linear family does not have exponential dichotomy).

Let us begin with the case sup�a < 0. There is not much to say in this situation, in which the 
conditions assumed on a and g provide a very simple global dynamics:

Theorem 3.6. Assume that g satisfies g1, g2, g3 and g4, let (� ×R, τ) be the flow induced by the 
family (3.1), and let A be the global attractor for τ provided by Theorem 3.2. Assume also that 
sup�a < 0. Then, A is a uniformly exponentially stable at +∞ copy of the base which attracts 
exponentially any τ -orbit as time increases. In particular, A is the unique τ -minimal set.
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Proof. Recall that, if g1 holds, the upper Lyapunov of a τ -minimal set M is

γ s
M =

∫
M

(a(ω) + gx(ω,x)) dνs
M (3.3)

for a suitable τ -invariant measure νs
M on � ×R. Therefore,

γ s
M ≤

∫
�

a(ω)dms
M ≤ sup�a , (3.4)

where ms
M ∈ Minv(�, σ) is the σ -invariant measure onto which νs

M projects. The first inequal-
ity follows from (3.3), since conditions g2 and g4 ensure that gx ≤ 0; and the second one from 
Theorem 2.6. Therefore, γ s

M < 0 for any τ -minimal set M if sup�a < 0, and hence the asser-
tions follow from Theorem 3.4. �
3.2. The case sup�a = 0

This final part is devoted to prove that, as advanced in the Introduction, under the condi-
tions given by g1, g2, g3 and g̃4 on g, there are just two possible global dynamics for the flow 
(� ×R, τ) induced by (3.1) when sup�a = 0, and in one of them we are able to detect chaotic 
behavior.

We begin by describing a particularly simple condition under which sup�a = 0: the existence 
of a continuous primitive for a: see Definition 2.11. Observe that condition g3 is not assumed, 
since the stated properties hold independently of the existence of a global attractor.

Theorem 3.7. Assume that g satisfies g1 and g2 and that the map a admits a continuous primi-
tive. Let (� ×R, τ) be the flow induced by the family (3.1). Then, �a = {0} and, in addition,

(i) any possible τ -minimal set M contained in � × [r1, r2] is a copy of the base.
(ii) If g also satisfies g4, any τ -minimal set M is a copy of the base.

Proof. The fact that �a = {0} follows easily from Theorem 2.6 and Birkhoff’s ergodic theorem. 
Let ha : � → R be a continuous primitive of a, and Ha := eha . Then, for any ω ∈ � and t ∈ R, 
Ha(ω·t) = Ha(ω) exp

( ∫ t

0 a(ω·s) ds
)
. In other words, Ha(ω·t) = xl(t, ω, Ha(ω)), solution of 

x′ = a(ω·t) x. Note also that Ha is positive and bounded from below on �.
Let αM and βM be the maps appearing in the description (2.6) of M. The fundamental points 

in this proof have been explained in Remark 3.1: if M is contained in � ×[r1, r2] (as we assume 
in (i)), or if g4 holds (as in (ii)), then βM(ω·t) − αM(ω·t) ≤ xl(t, ω, βM(ω) − αM(ω)) for any 
ω ∈ � whenever t ≥ 0. Let us write βM(ω) − αM(ω) = k(ω) Ha(ω). Then,

k(ω·t)Ha(ω·t) = βM(ω·t) − αM(ω·t) ≤ xl(t,ω,βM(ω) − αM(ω))

= xl(t,ω, k(ω)Ha(ω)) = k(ω)Ha(ω·t)
whenever ω ∈ � and t ≥ 0. It follows easily that the continuous map t �→ k(ω·t) is decreas-
ing for any ω ∈ �. Now we fix any ω ∈ � and choose ω0 in the common set of continu-
ity points of αM and βM, so that αM(ω0) = βM(ω0). We look for (tn) ↓ −∞ such that 
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ω0 = limn→∞ ω·tn. Then, limn→∞(βM(ω·tn) − αM(ω·tn)) = βM(ω0) − αM(ω0) = 0, which 
since Ha is bounded from below ensures that limn→∞ k(ω·tn) = 0. Consequently, k(ω) = 0, 
which shows that αM(ω) = βM(ω). The proof is complete. �

In the rest of the results we do not assume the existence of a continuous primitive for a. On 
the contrary, we will see in Theorem 3.10 that this property is not a hypothesis but a consequence 
of the first one of the dynamical possibilities for the dynamics described in the Introduction. And 
the existence of continuous primitive will be precluded in the analysis of the possible occurrence 
of Li-Yorke chaos and Auslander-Yorke chaos in the second dynamical possibility (in Theo-
rems 3.14 and 3.15): one of our hypotheses there will be precisely the absence of continuous 
primitive of a.

The next result establishes general properties of the minimal sets. As in the previous one, 
condition g3 is not assumed, since the description of the attractor is postponed. In particular, we 
check that a τ -minimal set which is not a copy of the base, if it exists, is contained in � ×[r1, r2]
(and hence requires r1 < r2: such a minimal set cannot exist in the purely dissipative case if 
sup�a = 0).

Theorem 3.8. Assume that g satisfies g1, g2 and g̃4, and let (� ×R, τ) be the flow induced by 
the family (3.1). Assume also that sup�a = 0, let M be a τ -minimal set, let αM, βM : � → R
be the semicontinuous τ -equilibria associated to M by (2.6), and let �M be the set of their 
common continuity points. Then,

(i) there exists ω ∈ �M such that αM(ω) < r1 if and only if there exists (ω, x) ∈ M with 
x < r1. In this case, M is a uniformly exponentially stable at +∞ copy of the base: M =
{αM} = {βM}.

(ii) There exists ω ∈ �M such that βM(ω) > r2 if and only if there exists (ω, x) ∈ M with 
x > r2. In this case, M is a uniformly exponentially stable at +∞ copy of the base: M =
{αM} = {βM}.

Consequently, if M is not a copy of the base, then r1 < r2 and M ⊂ � × [r1, r2]. In addition,

(iii) M ⊆ � × [r1, r2] if its upper Lyapunov exponent is 0.
(iv) If M ⊆ � × [r1, r2] and either r1 < r2 or r1 = r2 and gx(ω, r1) = 0 for all ω ∈ �, then the 

upper Lyapunov exponent of M is 0.

Proof. We have seen in the proof of Theorem 3.6 that conditions g1, g2 and g4 guarantee (3.4), 
which in turn ensures that the upper Lyapunov exponent of any τ -minimal set M is γ s

M ≤ 0 if 
sup�a = 0, as we assume in this subsection. This fact will be used in what follows.

(i) Recall that M = closure�×R{(ω·t, αM(ω·t)) | t ∈ R}, where ω is any point in �M: see 
Subsection 2.4. The first assertion in (i) follows easily from here. Now we will prove that M has 
negative upper Lyapunov exponent γ s

M. Recall that the upper Lyapunov exponent is given by 
(3.3) for a suitable τ -invariant measure νs

M, whose support is, due to minimality, the whole of 
M. Let us take (ω0, x0) ∈ Mα with x0 < r1. Property g̃4 ensures that gx(ω0, x0) = −ρ < 0, so 
that g1 ensures the existence of an open set B of � ×R with B∩M non empty and on which gx

is less that −ρ/2. Since B is open and Suppνs
M = M, we have νs

M(B ∩ Mα) > 0. Using this 
fact and the property gx ≤ 0 everywhere, we obtain 

∫
M gx(ω, x) dνs

M ≤ ∫
B∩M gx(ω, x) dνs

M ≤
(−ρ/2) νs (B ∩ Mα) < 0, and hence γ s <

∫
a(ω) dmM, where mM ∈ Minv(�, σ) is the 
M M �
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measure onto which νs
M projects. Definition 2.5 and Theorem 2.6 show that sup�a = 0 yields ∫

�
a(ω) dmM ≤ 0, and hence γ s

M < 0. Corollary 2.10 shows that M is a uniformly exponen-
tially stable at +∞ copy of the base, which in turn ensures that αM is continuous and equal to 
βM, and that its graph is M.

(ii) The proof of this point is analogous, and the consequence of (i) and (ii) is clear.

(iii)&(iv) Properties (i) and (ii) prove point (iii). To prove (iv), we take a τ -minimal set M ⊆
� × [r1, r2]. Theorem 2.6 ensures the existence of ms ∈ Merg(�, σ) such that 

∫
�

a(ω) dms = 0. 
Let us define νs from ms by 

∫
�×R f (ω, x) dνs := ∫

�
f (ω, αM(ω)) dms for f : � × R → R

continuous. It is easy to check that νs is τ -invariant with νs(M) = 1 (i.e., νs ∈ Minv(M, τ)), 
and that it projects onto ms . Since, under the conditions in (iv) (see g2), gx ≡ 0 on � × [r1, r2], 
we have ∫

M

(a(ω) + gx(ω,x)) dνs =
∫
�

a(ω)dms = 0 ,

and, since γ s
M ≤ 0 for any τ -minimal set M, we deduce that γ s

M = 0. �
The next result plays a fundamental role in the analysis of the occurrence of Li-Yorke chaos 

in the second dynamical situation, carried-on in Theorem 3.14. It establishes conditions under 
which the attractor is m-almost contained in � × [r1, r2] (i.e., Aω ⊆ [r1, r2] for m-almost every 
ω ∈ �), where m ∈ Merg(�, σ) satisfies 

∫
�

a(ω) dm = 0. Recall once again that Theorem 2.6
guarantees the existence of such a measure when sup�a = 0. Now, for the sake of generality, 
we simply assume that 0 ∈ �a and that m exists. The result is valid for the linear dissipative and 
purely dissipative cases.

Theorem 3.9. Assume that g satisfies g1, g2 and g3, let (� × R, τ) be the flow induced by 
the family (3.1), and let A be the global attractor for τ provided by Theorem 3.2. Assume also 
that 0 ∈ �a and that a ∈ Rm(�), where m ∈ Merg(�, σ) satisfies 

∫
�

a(ω) dm = 0. And assume 
finally that there exists a minimal M ⊆ � × [r1, r2]. Then, the σ -invariant set

�l := {ω ∈ �a | r1 ≤ αA(ω·t) ≤ βA(ω·t) ≤ r2 for all t ∈ R} (3.5)

satisfies m(�l) = 1.

Proof. The ideas are taken from [6, Theorem 35] and [7, Theorem 5.8]. Note that it is enough to 
check that the two σ -invariant sets

�α := {ω ∈ � | there exists t ∈ R such that αA(ω·t) < r1} ,

�β := {ω ∈ � | there exists t ∈ R such that βA(ω·t) > r2}
have null measure. We will reason with �β , being the argument similar in the case of �α . 
Let us assume for contradiction that m(�β) > 0. This provides s > 0 such that �β,s := {ω ∈
� | there exists t ∈ R with βA(ω·t) > r2 + s} ⊆ �β has positive measure. We call �+

β,s := {ω ∈
� | there exists t > 0 with βA(ω·t) > r2 + s} ⊆ �β .

We use Lusin’s theorem to find a compact set K ⊂ �β,s with positive measure such that the 
restrictions of βA and αA to K are continuous. Note that αA(ω) �= βA(ω) whenever ω ∈ K, since 
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the hypothesis M ⊆ � × [r1, r2] and the definition of �β provide, for any ω ∈ �β , a time t ∈ R
such that αA(ω·t) ≤ r2 < βA(ω·t). We will use this property later. Birkhoff’s ergodic theorem 
ensures that for m-a.e. ω ∈ � there exists (tn) ↑ ∞ such that ω·tn ∈ K, and the regularity of 
the measure provides a new compact set C with positive measure with the previous property. 
Our next goal is proving that C ⊂ �+

β,s . First we check the existence of t̃ > 0 such that for 
any ω ∈ K there exists t ∈ [−̃t, ̃t] with βA(ω·t) > r2 + s. This follows easily from the equality 
βA(ω·t) = x(t, ω, βA(ω)), the continuity of βA|K and the compactness of K. Now we take 
ω ∈ C, look for tn > t̃ such that ω·tn ∈ K, and look for t ∈ [−̃t, ̃t] such that βA((ω·tn)·t) > r2 + s. 
Since (ω·tn)·t = ω·(tn + t) and tn + t > 0, we conclude that ω ∈ �+

β,s , as asserted.
Let us fix ω ∈ C and (tn) ↑ ∞ such that ω·tn ∈ K for all n ∈ N , and such that there exists 

ω̃ := limn→∞ ω·tn (so that ω̃ ∈ K). We will check that limn→∞ exp
( ∫ tn

0 a(ω·s) ds
) = ∞, or, 

equivalently, that limn→∞ xl(tn, ω, βA(ω) − αA(ω)) = ∞. Before that, observe that this fact 
contradicts Proposition 2.15(2), since m(C) > 0, and hence it completes the proof.

As established in Remark 3.1.2, the fact that M ⊆ � × [r1, r2] ensures that any c > 0 deter-
mines the lower solution t �→ c (βA(ω·t) − αA(ω·t)) for the linear equation z′ = a(ω·t) z, and 
hence that xl(tn, ω, βA(ω) − αA(ω)) ≥ βA(ω·tn) − αA(ω·tn) > infω∈K(βA(ω) − αA(ω)) > 0. 
(This is the point in which we use αA(ω) < βA(ω) for ω ∈ K.) Let us assume for contra-
diction that, for a suitable subsequence (tk), we have limk→∞ xl(tk, ω, βA(ω) − αA(ω)) =
c0 (βA(ω̃) − αA(ω̃)), finite, and hence c0 > 0. We take tω̃ such that βA(ω̃·tω̃) > r2 + s, so that 
(d/dt)(βA(ω̃·tω̃) − αA(ω̃·tω̃)) < a(ω̃·tω̃)(βA(ω̃·tω̃) − αA(ω̃·tω̃)). This ensures the existence of 
ε > 0 and t∗ > tω̃ such that (c0 + ε)(βA(ω̃·t∗) − αA(ω̃·t∗)) < xl(t∗, ̃ω, c0 (βA(ω̃) − αA(ω̃))). 
In turn, the last inequality and the definition of c0 provide a point tk0 of the sequence with 
(c0 + ε)(βA(ω·(tk0 + t∗)) − αA(ω·(tk0 + t∗))) < xl(t∗, ω·tk0, xl(tk0, ω, βA(ω) − αA(ω))) =
xl(t∗ + tk0, ω, βA(ω) −αA(ω)). Now, we write tk = t∗ + tk0 + sk with sk > 0 for large enough k. 
Then,

xl(tk,ω,βA(ω) − αA(ω))

= xl(sk,ω·(t∗ + tk0), xl(t∗ + tk0,ω,βA(ω) − αA(ω)))

> xl(sk,ω·(t∗ + tk0), (c0 + ε)(βA(ω·(tk0 + t∗)) − αA(ω·(tk0 + t∗))))

≥ (c0 + ε)(βA(ω·tk) − αA(ω·tk)) .

We have used again Remark 3.1.2 for the last inequality. Taking limits as k → ∞, we get c0 ≥
c0 + ε. This is the sought-for contradiction. The proof is complete. �

Let us finally describe the two dynamical possibilities in the case sup�a = 0, as well as the 
cases in which we can ensure the occurrence of Li-Yorke chaos and Auslander-Yorke chaos. 
The first possibility, now analyzed, occurs if and only if the maps αA and βA of Theorem 3.2
coincide at no point of �. The second one, which occurs when αA and βA coincide at (at least) 
one point of �, is studied in Theorem 3.11. And the situations in which we are able to detect 
Li-Yorke chaos and Auslander-Yorke chaos are described in Theorems 3.14 and 3.15, which fit 
in the second dynamical possibility.

Theorem 3.10. Assume that g satisfies g1, g2, g3 and g̃4, let (� ×R, τ) be the flow induced by 
the family (3.1), let A, αA and βA be provided by Theorem 3.2, and let �c, Mα and Mβ be 
defined in Theorem 3.3. Assume also that sup�a = 0, and that there exists ω0 ∈ �c such that 
αA(ω0) < βA(ω0). Then, Mα < Mβ . In addition,
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(i) r1 < r2: we are necessarily in the linear dissipative case.
(ii) The map a has a continuous primitive.

(iii) � = �c, Mα = {αA} and Mβ = {βA}.
(iv) Any τ -minimal set is the graph Mc of the continuous map cαA+ (1 − c)βA for a c ∈ [0, 1], 

and has zero upper Lyapunov exponent.
(v) A = ⋃

c∈[0,1] Mc ⊆ � ×[r1, r2], and hence the restriction of τ to A is linear and uniformly 
stable at ±∞.

Proof. The definitions of Mα and Mβ ensure that they are different, so that they are fiber-
ordered (see Subsection 2.4): Mα < Mβ . The main step of this proof is showing that both of 
them are contained in � × [r1, r2]. Let us assume for the moment being that this is the case, and 
let us see how to deduce all the assertions of the theorem.

The existence of two different minimal sets contained in � × [r1, r2] yields r1 < r2, which 
is property (i). Let us take ω ∈ �, (ω, xα) ∈ Mα and (ω, xβ) ∈ Mβ . Then the map t �→
x(t, ω, xβ) − x(t, ω, xα) solves x′ = a(ω·t) x, and it is bounded and also positively bounded 
from below. This implies that all the solutions of x′ = a(ω·t) x are bounded, for every ω ∈ �, 
and hence a has a continuous primitive: see Remark 2.12. This proves (ii). Theorem 3.7(i) shows 
that Mα and Mβ are copies of the base: the graphs of αA and βA, respectively. Therefore, (iii) 
holds. Now, let us take c ∈ [0, 1]. It is easy to check that t �→ c αA(ω·t) + (1 − c) βA(ω·t) =
βA(ω·t) + c (αA(ω·t) − βA(ω·t)) satisfies x′ = a(ω·t) x + b(ω·t). Since its graph remains in 
� ×[r1, r2], where g vanishes, we conclude that x(t, ω, c αA(ω) + (1 −c) βA(ω)) = cαA(ω·t) +
(1 − c)βA(ω·t). That is, the graph of c αA + (1 − c) βA is τ -invariant, and hence it determines 
a copy of the base: a τ -minimal set Mc. And there are no more τ -minimal sets, as Theorem 3.3
implies: any other one should be below Mα or above Mβ , impossible. Theorem 3.8(iii) shows 
that the upper Lyapunov exponent of Mc is 0, which completes the proof of (iv). Finally, the 
decomposition of A stated in (v) is an easy consequence of (iv) and the definition of Mα and 
Mβ ; the linearity follows from A ⊂ � × [r1, r2]; and the uniform stability at ±∞ of the set A
for the flow (A, τ) follows from the linearity.

So that the proof will be complete once we show that Mα, Mβ ⊂ � ×[r1, r2]. We work with 
Mβ , assuming for contradiction that this is not the case. It follows from Theorem 3.8(i)&(ii) 
that Mβ is a copy of the base; i.e., Mβ = {βA}. Then, there exists at least a τ -minimal set 
M contained in � × [r1, r2]: if not, and according to Theorem 3.8(i)&(ii), any τ -minimal set 
has strictly negative upper Lyapunov exponent; and hence Theorem 3.4 ensures that there exists 
only one τ -minimal set, which is not the case. Theorem 3.3(i) ensures that Mα ≤ M ≤ Mβ , 
so that βA ≥ r1. Therefore, since Mβ �⊂ � × [r1, r2], M < Mβ and there exists ω̄ ∈ � with 
βA(ω̄) > r2. We will make use of these facts a few lines below.

Now we will check that supt≥0 xl(t, ω, 1) = ∞ for any ω ∈ �. A similar argument has been 
used in the proof of Theorem 3.9. Let αM be the map appearing in the description (2.6) of the 
minimal set M ⊂ � × [r1, r2], and note that αM < βA. We take a point ω̃ ∈ � of continuity of 
αM (and, of course, of βA), and look for (tn) ↑ ∞ such that limn→∞ ω·tn = ω̃. Remark 3.1.3 
ensures that any c > 0 determines the lower solution t �→ c (βA(ω·t) − αM(ω·t)) of the linear 
equation z′ = a(ω·t) z, and hence that xl(tn, ω, βA(ω) − αM(ω)) ≥ βA(ω·tn) − αM(ω·tn) >
infω∈�(βA(ω) −αM(ω)) > 0. Let us assume (for contradiction) that limk→∞ xl(tk, ω, βA(ω) −
αM(ω)) = c0 (βA(ω̃) − αM(ω̃)) < ∞ for certain subsequence (tk), so that c0 > 0. Since βA
is continuous, βA(ω̄) > r2, and (�, σ) is minimal, we can find t0 > 0 such that βA(ω̃·t0) > r2. 
This property ensures that (d/dt)(βA(ω̃·t0) −αM(ω̃·t0)) < a(ω̃·t0)(βA(ω̃·t0) −αM(ω̃·t0)). The 
continuity of both maps through the σ -orbit of ω̃ ensures that (d/dt)(βA(ω̃·t) − αM(ω̃·t)) <
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a(ω̃·t0)(βA(ω̃·t) − αM(ω̃·t)) if t is close enough to t0. Therefore, there exists t∗ > t0 such that 
c0(βA(ω̃·t∗) − αM(ω̃·t∗)) < xl(t∗ − t0, ̃ω·t0, c0 (βA(ω̃·t0) − αM(ω̃·t0))). We take ε > 0 with

(c0 + ε)(βA(ω̃·t∗) − αM(ω̃·t∗))
< xl(t∗ − t0, ω̃·t0, c0 (βA(ω̃·t0) − αM(ω̃·t0)))
≤ xl(t∗ − t0, ω̃·t0, xl(t0, ω̃, c0 (βA(ω̃) − αM(ω̃))))

= xl(t∗, ω̃, c0 (βA(ω̃) − αM(ω̃))) .

The second inequality follows again from Remark 3.1.3. This strict inequality combined with 
ω̃ = limt→∞ ω·tn and with the definition of c0 allows us to take a point tk0 of the sequence with 
(c0 + ε)(βA(ω·(tk0 + t∗)) − αM(ω·(tk0 + t∗))) < xl(t∗, ω·tk0, xl(tk0 , ω, βA(ω) − αM(ω))) =
xl(t∗ + tk0 , ω, βA(ω) − αM(ω)). Now, we write tk = t∗ + tk0 + sk with sk > 0 for large enough 
k. Then,

xl(tk,ω,βA(ω) − αM(ω))

= xl(sk,ω·(t∗ + tk0), xl(t∗ + tk0,ω,βA(ω) − αM(ω)))

> xl(sk,ω·(t∗ + tk0), (c0 + ε)(βA(ω·(tk0 + t∗)) − αM(ω·(tk0 + t∗))))

≥ (c0 + ε)(βA(ω·tk) − αM(ω·tk)) .

We have used once more Remark 3.1.3 in the last inequality. Recall that βA − αM is con-
tinuous at ω̃. Taking limits as k → ∞ we get c0 ≥ c0 + ε, impossible. The conclusion is that 
limn→∞ xl(tn, ω, βA(ω) − αM(ω)) = ∞, and hence that limn→∞ xl(tn, ω, 1) = ∞, as asserted.

The previous contradiction shows that supt≥0 xl(t, ω, 1) = ∞ for all ω ∈ �. However, since 
0 ∈ �a , there exists at least a point ω̃ ∈ � such that supt∈R xl(t, ̃ω, 1) < ∞: see Remarks 2.7
and 2.3.2. This new contradiction shows that our initial assumption cannot hold. That is, Mβ

is contained in � × [r1, r2]. An analogous argument shows that also Mα is contained in � ×
[r1, r2]. �

The definitions of set of complete measure and of chain recurrent flow, appearing in the next 
statement, are given in Subsection 2.1.

Theorem 3.11. Assume that g satisfies g1, g2, g3 and g̃4, let (� × R, τ) be the flow induced 
by the family (3.1), let A, αA and βA be provided by Theorem 3.2, and let �c, Mα and Mβ

be defined in Theorem 3.3. Assume also that sup�a = 0, and that A is a pinched set. Then, 
�c = {ω ∈ � | αA(ω) = βA(ω)}, and M := Mα = Mβ is the unique τ -minimal set. In addition,

(i) M �⊂ � × [r1, r2] if and only if there exists ω ∈ �c such that αA(ω) < r1 or βA(ω) > r2. 
In this case, A =M is a uniformly exponentially stable at +∞ copy of the base: the graph 
of the continuous function αA = βA.

(ii) If M ⊆ � × [r1, r2], then its upper Lyapunov exponent is 0.
(iii) If M ⊆ � × [r1, r2] and the map a has a continuous primitive, then A = M = {αA} =

{βA}. In addition, in this case, inf{αA(ω) | ω ∈ �} = r1 and sup{αA(ω) | ω ∈ �} = r2.
(iv) If r1 = r2 =: r and M = {r}, then �c has complete measure.
279



J. Campos, C. Núñez and R. Obaya Journal of Differential Equations 361 (2023) 248–287
(v) If r1 < r2, and either M ⊂ � ×[r1, r2) or M ⊂ � × (r1, r2], then the map a does not admit 
a continuous primitive, M �A, and �c ��.

(vi) The restricted flow (A, τ) is chain recurrent.

Proof. The equality �c = {ω ∈ � | α(ω) = β(ω)} is proved in Theorem 3.3(ii). Hence, clearly, 
for all ω ∈ �c, the points (ω, αA(ω)) = (ω, βA(ω)) belong to any τ -minimal set, and this fact 
combined with the definition of Mα (see Theorem 3.3) ensures that M := Mα contains any 
τ -minimal set. Hence, it is the unique one.

(i)&(ii) These assertions follow immediately from Theorem 3.8.

(iii) We repeat step by step the proof of Theorem 3.7, working with the map βA − αA instead 
of βM − αM. The conclusion is that αA and βA are equal, so that they are continuous and 
determine the copy of the base A =M. The last assertion in (iii) is trivial if r1 = r2 and follows 
from (v) (which will be proved independently) if r1 < r2.

(iv) This assertion follows from (iii) if a has a continuous primitive: in this case, αA = βA ≡ r

and �c = �. Assume that this is not the case. Then, the change of variables y = x − r takes (3.1)
to the purely dissipative family y′ = a(ω·t) y + g(ω·t, y + r) with linear homogeneous part, for 
which � ×{0} is the unique minimal set and the attractor is 

⋃
ω∈�{ω} ×[αA(ω) − r, βA(ω) − r]. 

Following the arguments of [30, Theorem 5.10], we prove that the set of points ω at which 
αA(ω) − r = β(ω) − r = 0 has complete measure. In fact, [30] is devoted to scalar parabolic 
partial differential equations, but ours can be understood as one of that type; and also a symmetric 
condition is assumed there on g, but this condition does not imply differences in the arguments 
we refer to, which can be repeated for αA − r and for βA − r . Therefore, coming back to our 
initial family, we have that αA and βA coincide (and take the value r) on a set of complete 
measure which, as seen at the beginning of the proof, is �c.

(v) Since 0 ∈ �a , there exists ω̄ ∈ � such that supt∈R
∫ t

0 a(ω̄·s) ds < ∞: see Remarks 2.7
and 2.3.2. Theorem 3.5(ii) ensures that M � A and that αA(ω̄) < βA(ω̄), which ensures that 
�c ��. Theorem 3.5 also shows that �c = {ω ∈ � | supt≤0

∫ t

0 a(ω·s) ds = ∞}, which precludes 
the existence of continuous primitive for a (since �c is nonempty). This completes the proof of 
(v).

(vi) Let us fix two points (ω, x) and (ω̃, ̃x) in A, ε > 0, t0 > 0, and consider three cases which 
exhaust the possibilities.

If (ω̃, ̃x) ∈ M, then it belongs to the omega limit set of (ω1, x1) := τ(t0, ω, x), and hence there 
exists t1 > t0 such that dist�×R(τ (t1, ω1, x1), (ω̃, ̃x)) < ε. The definition of chain recurrence is 
fulfilled for the chain (ω0, x0) := (ω, x), (ω1, x1) and (ω2, x2) := (ω̃, ̃x) (and the times t0 and 
t1).

Assume that (ω, x) ∈ M. We call (ω1, x1) := τ(t0, ω, x) ∈ M, choose t1 > t0, and observe 
that τ(t1, ω1, x1) belongs to the alpha limit set of (ω̃, ̃x), since it belongs to M. We take t2 >

t0 such that dist�×R(τ (−t2, ̃ω, ̃x), τ(t1, ω1, x1)) < ε and call (ω2, x2) := τ(−t2, ̃ω, ̃x), so that 
τ(t2, ω2, x2) = (ω̃, ̃x). The definition of chain recurrence is fulfilled for the chain (ω0, x0) :=
(ω, x), (ω1, x1), (ω2, x2) and (ω3, x3) := (ω̃, ̃x) (and the times t0, t1, and t2).

Finally, if none of the points belongs to M, we construct the chain from (ω, x) to (ω̄, x̄)

through any point (ω̄, x̄) ∈ M. This completes the proofs of (vi) and of the theorem. �
Remark 3.12. In the purely dissipative case considered in point (iv), the set �c can be � (and 
hence the attractor agrees with {r}). This is the simplest situation. But it is also possible that 
�c � �, in which case the dynamics is much more complex An example of this is given by the 
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family obtained by the hull procedure (explained in the Introduction) from the equation x′ =
(1/2)(a(t) x − x3), where a(t) = ã(−t) for an almost periodic function ã : R → R with zero 
mean value and whose integral 

∫ t

0 ã(s) ds grows like tμ as t increases, for some 0 < μ < 1. The 
interested reader is referred to [7, Example 5.13] for the details, as well as for references in which 
functions ̃a with the required properties are constructed.

Remark 3.13. By reviewing the proof of Theorem 3.11(vi), we observe that the property is gen-
eral: any flow on a compact metric space admitting a unique minimal set is chain recurrent.

The framework of the next theorems, concerning the presence of chaos, is that of point (v) 
of the previous one. In particular, it requires the family (3.1) to be in the linear dissipative case 
(i.e., r1 < r2). The nonempty set Rm(�) is described in Subsection 2.5: Theorem 2.14 ensures 
the existence of functions a ∈ Rm(�) with �a = 0 for any m ∈ Minv(�, σ). Recall that when 
A is pinched, there exists just one τ -minimal set: see Theorem 3.11. The scope of the properties 
stated in these two results is analyzed after their proofs.

Theorem 3.14. Assume that g satisfies g1, g2, g3 and g̃4, let (� ×R, τ) be the flow induced by 
the family (3.1), let A, αA and βA be provided by Theorem 3.2, and let �c ⊆ � be the residual 
set provided by Theorem 3.3. Assume also that r1 < r2 and that

– A is a pinched set, and the only τ -minimal set M is contained either in � × [r1, r2) or in 
� × (r1, r2];

– sup�a = 0 and a ∈Rm(�) for a measure m ∈Merg(�, σ).

Then,

(i) m(�c) = 0, and the restricted flow (A, τ) is chain recurrent and Li-Yorke chaotic in measure 
with respect to m. More precisely, the σ -invariant set subset �LY ⊆ � of points ω such that 
the section Aω is a nondegenerate interval and the set {ω} × Aω is scrambled, satisfies 
�LY ⊆ � − �c and m(�LY ) = 1.

(ii) For every ε ∈ (0, 1) there exists a subset �ε ⊆ �LY with m(�ε) = 1 such that, for any 
ω ∈ �ε , the set

{t ≥ 0 | |x(t,ω, x2) − x(t,ω, x1)| ≤ ε |x2 − x1| if (ω, x1), (ω, x2) ∈A}

has positive lower density and is relatively dense in R+; and the set

{t ≥ 0 | |x(t,ω, x2) − x(t,ω, x1)| ≥ (1 − ε) |x2 − x1| if (ω, x1), (ω, x2) ∈A}

has positive lower density.

Proof. (i) The chain recurrence of (A, τ) is guaranteed by Theorem 3.11(vi). Let us take ω ∈
� − �c and a pair of points (ω, x1), (ω, x2) ∈ A with x1 �= x2, choose ω0 ∈ �c, recall that 
Aω0 = {x0}, and choose a suitable sequence (tn) such that limn→∞ ω·tn = ω0 and there exist the 
two limits x(tn, ω, x1) and x(tn, ω, x2). These limits must coincide with x0, so that any pair of 
points of A sharing the first component form a non positively distal pair.
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To look for non positively asymptotic pairs requires some more work. Recall that, if a ∈
Rm(�), then supt∈R exp

( ∫ t

0 a(ω̃·s) ds
)
< ∞ whenever ω belongs to a σ -invariant set �a ⊂ �

with m(�a) = 1: see Proposition 2.15. Theorem 3.5(ii) ensures that �a ⊆ � − �c, and hence
m(�c) = 0. Theorem 3.9 shows that also the σ -invariant set �l defined by (3.5) satisfies m(�l) =
1. It is clear that �l ⊆ �a , since the restriction of the flow to �l × R is linear. Let us take 
(ω, x1), (ω, x2) ∈ A with ω ∈ �l . Then, t �→ x(t, ω, x1) − x(t, ω, x2) solves x′ = a(ω·t) x, and 
hence

|x(t,ω, x1) − x(t,ω, x2)| = |xl(t,ω, x1 − x2)|

= |x1 − x2| exp

t∫
0

a(ω·s) ds = |x1 − x2| Ha(ω·t)
Ha(ω)

,
(3.6)

where Ha : � → [0, 1] is the bounded function associated to a by Proposition 2.15. Lusin’s 
theorem and the regularity of m provide a compact set K ⊂ �l with positive measure such that 
the restriction of Ha to K is continuous, and Birkhoff’s ergodic theorem provides a set �0 ⊆ �

with m(�0) = 1 such that, if ω ∈ �0, then there exists (tn) ↑ ∞ such that ω·tn ∈K for all n ∈N . 
In particular, �0 ⊆ �l , since �l is σ -invariant. Since Ha is globally bounded and strictly positive 
at the points of �a ⊇ �l (see again Proposition 2.15), and continuous on K ⊂ �l , we conclude 
that there exists κω > 0 such that, whenever ω ∈ �0 and x1, x2 are two different points of the 
nondegenerate interval Aω,

|x(tn,ω, x1) − x(tn,ω, x2)| ≥ κω |x1 − x2| > 0

for a sequence (tn) ↑ ∞. This shows that (ω, x1) and (ω, x2) form a non positively asymptotic 
pair.

Altogether, we have proved that the set Aω is a nondegenerate interval with {ω} ×Aω scram-
bled for m-almost all ω ∈ �. The σ -invariance of the set �LY ⊇ �0 formed by these points is a 
clear consequence of the definition of scrambled set, and this completes the proof of (i).

(ii) Equality (3.6) and the definitions (2.10) of the sets Iε(ω) and Uε(ω) associated to the 
function a show that, if ω ∈ �AY ∩ �l , then

t ∈ Iε(ω), (ω, x1), (ω, x2) ∈A ⇒ |x(t,ω, x1) − x(t,ω, x2)| ≤ ε |x1 − x2| ,
t ∈ Dε(ω), (ω, x1), (ω, x2) ∈A ⇒ |x(t,ω, x1) − x(t,ω, x2)| ≥ (1 − ε) |x1 − x2| .

Therefore, Theorem 2.16 proves (ii). �
Theorem 3.15. Assume the same hypotheses as in Theorem 3.14, and let �l be the σ -invariant 
set with m(�l) = 1 defined by (3.5). Let us define ηc = c αA + (1 − c) βA for c ∈ [0, 1]. Then,

(i)
∫
A

h(ω,x)dμc :=
∫
�

h(ω,ηc(ω)) dm for h ∈ C(A, R) defines a regular Borel τ -ergodic 

measure μc concentrated on A.

Let us define Sc := Suppμc for c ∈ [0, 1]. Then,
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(ii) there exists a σ -invariant set �AY ⊆ �l with m(�AY ) = 1 such that (ω̄, ηc(ω̄)) ∈ Sc and

Sc = Oτ (ω̄, ηc(ω̄)) (3.7)

for all ω̄ ∈ �AY and c ∈ [0, 1]. In particular, (Sc, τ) is a transitive flow on a pinched com-
pact set for any c ∈ [0, 1].

(iii) One of the following situations holds:
(1) M is a copy of the base, in which case there exists just a c0 ∈ [0, 1] such that M = Sc0 , 

and the restricted flow (Sc, τ) is Auslander-Yorke chaotic for any c ∈ [0, 1], c �= c0.
(2) M is not a copy of the base, in which case the restricted flow (Sc, τ) is Auslander-Yorke 

chaotic for any c ∈ [0, 1].
(iv) S̃ := ⋃

c∈[0,1] Sc is a compact τ -invariant subset of A, all its points are sensitive, the re-

stricted flow (S̃, τ) is chain recurrent, Aω = S̃ω for every ω ∈ �AY ∪ �c, S̃ := Supp η̃

for the measure η̃ ∈ Minv(A, τ) given by 
∫
A

h(ω,x)dμ̃ :=
1∫

0

∫
�

h(ω,ηc(ω)) dmdc for 

h ∈ C(A, R), and there exists a dense τ -invariant subset X̃ ⊆ S̃ of τ -generic points.

Proof. (i) Theorem 3.9 allows us to assert that

x(t,ω,ηc(ω)) = x(t,ω, c αA(ω) + (1 − c)βA(ω))

= xl(t,ω, c αA(ω) + (1 − c)βA(ω))

= c xl(t,ω,αA(ω)) + (1 − c) xl(t,ω,βA(ω))

= c αA(ω·t) + (1 − c)βA(ω·t) = ηc(ω·t)

for all t ∈R and ω ∈ �l . Therefore, ηc satisfies the conditions assumed in Theorem 2.26, whose 
point (ii) proves (i).

(ii) By reviewing the proof of Theorem 2.26(iii), we first check that we can take as starting 
point a compact set K ⊂ �l such that αA, βA : K → R are continuous, so that also ηc : K → R
is continuous for all c ∈ [0, 1]. Second, we observe that this property combined with the σ -
invariance of �l ensures that the set �AY := �∗ constructed from K turns out to be common 
for all c ∈ [0, 1], and is contained in �l . Therefore, the assertions in (ii) follow from Theo-
rem 2.26(iii).

(iii) Assume that M is a copy of the base. Let �LY be provided by Theorem 3.14. We fix 
ω̄ ∈ �LY ∩ �AY (which has measure 1, as (ii) and Theorem 3.14(i) ensure), and observe that 
αA(ω̄) < βA(ω̄). Hence, there exists a unique c0 ∈ [0, 1] such that Mω̄ = {ηc0(ω̄)}. Then, (3.7)
ensures that Sc0 = Oτ (ω̄, ηc0(ω̄)) ⊆ M, so that Sc0 = M. In addition, if c ∈ [0, 1] − {c0}, then 
(ω̄, ηc(ω̄)) ∈ Sc − M, and hence Sc �M: these sets Sc are not copies of the base. In the case 
that M is not a copy of the base, Sc ⊇ M is not a copy of the base for any c ∈ [0, 1]. According 
to Remark 2.25.2, the restricted flows (Sc, τ) are Auslander-Yorke chaotic whenever Sc is not a 
copy of the base. This proves the assertions in (iii). (Incidentally, note that, in the first situation, 
(Sc0 , τ) is also Auslander-Yorke chaotic unless the base flow (�, σ) is equicontinuous.)

(iv) Let us check that S̃ := ⋃
c∈[0,1] Sc is closed. We fix ω̄ ∈ �AY and take (ω0, x0) :=

limn→∞(ωnxn) with (ωn, xn) ∈ Scn = Oτ (ω̄, ηcn(ω̄)). Let us take a subsequence (cj ) of (cn)
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such that there exists c0 := limj→∞ cj . We will prove that (ω0, x0) ∈ Oτ (ω̄, ηc0(ω̄)). We 
call k := supω∈� |αA(ω) − βA(ω)| and note that supω∈� |ηcj

(ω) − ηc0(ω)| = k |cj − c0|. For 
each j ∈ N , we look for tj > 0 such that dist�×R

(
(ωj , xj ), (ω̄·tj , ηcj

(ω̄·tj ))
)

< 1/j . Then, 
dist�

(
ω0, ω̄·tj

) ≤ dist�
(
ω0, ωj

) + dist�
(
ωj , ω̄·tj

)
, with limit 0; and |x0 − ηc0(ω̄·tj )| ≤ |x0 −

ηcj
(ω̄·tj )| + |ηcj

(ω̄·tj ) − ηc0(ω̄·tj )| ≤ |x0 − ηcj
(ω̄·tj )| + k |cj − c0|, also with limit 0. That is, 

(ω0, x0) = limj→∞(ω̄·tj , ηc0(ω̄·tj )) ∈ Oτ (ω̄, ηc0(ω̄)) = Sc0 ⊆ S̃ .
Therefore, S̃ is closed, and hence, since S̃ ⊆ A, it is a compact pinched set. Observe that if we 

are in the situation (1) of point (iii), then S̃ = ⋃
c∈[0,1]−{c0} Sc , since Sc0 = M ⊂ Sc for any c ∈

[0, 1]. Therefore, all the points of S̃ are sensitive (see Remark 2.22.2). Clearly, S̃ is τ -invariant, 
since each set Sc is τ -invariant. Consequently, it is chain recurrent: see Remark 3.13. If ω ∈ �AY

then ηc(ω) ∈ S̃ω for any c ∈ [0, 1], and Aω = [αA(ω), βA(ω)] = [η0(ω), η1(ω)] ⊆ S̃ω ⊆ Aω, so 
that the sections coincide. If ω ∈ �c, then Aω is a singleton, and hence Aω = S̃ω also in this 
case.

Note now that 
∫
A

h(ω,x)dμ̃ =
1∫

0

∫
A

h(ω,x)dηc dc for h ∈ C(A, R). It is easy to deduce 

from this property that μ̃ is a τ -invariant (regular) measure, and from the regularity that μ̃(K) ≥∫ 1
0 μc(K) dc for any compact set K ⊂ A. In particular, μ̃(S̃) = 1, which in turn ensures that 

Supp μ̃ ⊆ S̃ . To check that Supp μ̃ ⊇ S̃ , we assume for contradiction that U := S̃ − Supp μ̃ is 
nonempty, choose (ω0, x0) ∈ U look for an open set V ⊂ � × R such that U = V ∩ S̃ , and 
take δ > 0 such that B�×R((ω0, x0), δ) ⊆ V . Now we look for c0 ∈ [0, 1] such that (ω0, x0) ∈
Sc0 , take ω̄ ∈ �AY , and look for t > 0 such that dist�×R

(
(ω0, x0), (ω̄·t, ηc0(ω̄·t))) < δ/2. Then, 

dist�×R
(
(ω0, x0), (ω̄·t, ηc(ω̄·t))) < δ/2 + |ηc0(ω̄·t) − ηc(ω̄·t)| < δ if c is close enough to c0, so 

that (ω0, x0) ∈ Uc := V ∩ Sc for these values of c. Therefore, μc(U) ≥ μc(Uc) > 0 for a set of 
values of c with positive Lebesgue measure, which ensures that μ(U) > 0, impossible.

It remains to prove that the subset of τ -generic points of S̃ is dense. Let us take an open 
set U of S̃ , so that μ̃(U) > 0. Since the set X̃ ⊆ S̃ of τ -generic points has complete measure, 
μ̃(X̃ ∩U) > 0, and hence there are generic points in U . Clearly the subset of generic points of ̃S
is τ -invariant. The proof is complete. �

Note that, unlike the set �LY of Theorem 3.14, the set �AY of Theorem 3.15 depends on the 
measure m of its statement.

Let us make a short analysis of the previous results. Regarding Li-Yorke chaos, we point 
out again that the set of Li-Yorke pairs that we detect is incomparably larger than what Defi-
nition 2.18 requires. More precisely, as Theorem 3.14(i) proves, for m-almost every point of �
we obtain a scrambled set which can be identified with a nondegenerate interval, incomparably 
larger than a simply uncountable set.

Moreover, Theorem 3.14(ii) shows that, for m-almost every point ω ∈ �, the set of positive 
values of time at which the forward τ -semiorbits of points in {ω} × Aω seem to coincide (or 
are “indistinguishable”) has positive density in R+; and the same property holds for the set of 
positive values of time at which the semiorbits are “distinguishable”.

Observe also that, under the hypotheses of Theorem 3.14, a function a ∈ C(�, R) may be-
long to the set Rm̃(�) for a measure m̃ ∈ Merg(�, σ) different from m. This is in fact the 
case whenever m̃({ω ∈ � | supt≤0

∫ t

0 a(ω·s) ds < ∞}) = 1, since this property combined with ∫
a(ω) dm̃ ≤ 0 (in turn guaranteed by Theorem 2.6) and Birkhoff’s ergodic theorem ensures that ∫
a(ω) dm̃ = 0. Therefore, for each one of these measures, m̃(�LY ) = 1, where �LY is the set 
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provided by Theorem 3.14. Similarly, if m̃ ∈ Minv(�, σ) and m̃({ω ∈ � | supt≤0

∫ t

0 a(ω·s) ds <

∞}) = 1, we have m̃(�LY ) = 1, as deduced from the decomposition of m̃ in σ -ergodic measures 
described in Subsection 2.1. In some cases, �LY is a set of complete measure: see Theo-
rem 2.14(ii).

These properties show the physical observability, both in time and state, of the type of Li-
Yorke chaos that we detect on the global attractor.

Coming now to the Auslander-Yorke chaos detected in almost all (or all) set Sc = Suppμc, 
Theorem 2.26(iii) shows that Sc contains a τ -invariant subset Xc with full measure μc composed 
of μc-generic points with dense forward τ -semiorbits. Since the orbit of a generic point is com-
posed by generic points, the orbit of each point of Xc provides a dense subset of Sc of generic 
points. The natural extension of periodic point for autonomous or time-periodic systems to non 
periodic ones is that of generic point. Hence, as indicated in [14], the type of chaos detected 
on the sets Sc extends the classical one of [11] (which requires transitivity, sensitivity, and the 
existence of a dense set of periodic points).

Besides this, as Theorem 3.15(iv) shows, the union S̃ of all these possibly Auslander-Chaotic 
sets (perhaps one of them is not) is composed by sensitive (not Lyapunov-stable: see Re-
mark 2.22.2) points; although it is not transitive, it is chain recurrent, which according to [13, 
Theorem A] (see also [9]) ensures that it is an abstract omega limit set (that is, (S̃, τ) is topologi-
cally conjugate to the restriction of a flow on a compact space to one of its omega limit sets); it is 
the support of a τ -invariant measure; and it has a dense subset of τ -generic points. One can also 
consider these facts enough to talk about a certain type of chaos on S , again opposed to the idea 
of stability, and again related to the idea of [11]. Finally, S̃ fills an “important part” of A. More 
precisely, S̃ω = Aω in a σ -invariant residual set of points with full measure m: the set �c ∪�AY . 
This property shows that also this chaotic phenomenon has physical relevance. Observe also that 
(S̃, τ) is Li-Yorke chaotic in measure, since for every ω in the set �LY ∩�AY (with full measure 
m), S̃ω = Aω, and hence {ω} × S̃ω is a scrambled set: see Theorems 3.14(i) and 3.15(iv).

Let us finally recall that there are functions in C(�, R) which satisfy the hypotheses re-
quired on a in Theorems 3.14 and 3.15 (namely, sup�a = 0 and a ∈ Rm(�) for a measure 
m ∈ Merg(�, σ)), and that the set of functions a satisfying these two conditions coincides with 
that of the functions a such that sup�a = 0 and a ∈ Rm(�) for a measure m ∈ Minv(�, σ). 
Theorem 2.14 proves these assertions.

We complete the paper with an easy extension of [15, Corollary 4.5], which refers to a 
quasiperiodically forced map f : S1×[a, b] → S1×[a, b] inducing the discrete semiflow (S1×
[a, b], φ) given by φ(n, ω, x) := f n(ω, x). The authors establish the sensitivity of (S1×[a, b], φ)

under certain conditions which the next result adapts to our setting.

Proposition 3.16. Assume that g satisfies g1, g2 and g3, let (� × R, τ) be the flow induced by 
the family (3.1), and let A, αA and βA be provided by Theorem 3.2. Assume also that A is 
pinched, and that the semicontinuous functions αA, βA : � → R are not continuous. Then, the 
flow (� ×R, τ) is sensitive.

Proof. The result is trivial if (�, σ) is sensitive. So, there is not restriction in assuming that 
this is not the case, which according to Corollary 2.24 and Definition 2.21 means that (�, σ) is 
equicontinuous.

Let ω̃ be a continuity point for βA. Given (ω0, x0) ∈ � × R with x0 ≥ βA(ω0), we look for 
(tn) ↑ ∞ with ̃ω = limn→∞ ω0·tn and such that there exists ̃x := limn→∞ x(tn, ω0, x0) ≥ βA(ω̃). 
Then (ω̃, ̃x) ∈ Oτ (ω0, x0) ⊆ A, and hence x̃ = βA(ω̃). This ensures that inft≥0 |x(t, ω0, x0) −
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βA(ω0·t)| = 0. The arguments of [15, Lemma 4.4], which can be adapted to our setting thanks to 
the equicontinuity of the base flow, provide εβA > 0 such that all the points (ω, x) above A, i.e., 
with x > βA(ω), are εβA -sensitive (see Remark 2.22.2). An analogous argument provides εαA >

0 such that all the points (ω, x) below x < αA(ω), are εαA -sensitive. Given ε := min(εαA , εβA), 
we define Tε ⊆ � × R as the set of points (ω, x) such that for any δ > 0 there exist two points 
(ω1, x1), (ω2, x2) ∈ B�×R((ω, x), δ) such that supt≥0 dist�×R(τ (t, ω1, x1), τ(t, ω2, x2)) > ε. It 
is easy to check that Tε is closed: if (ω, x) = limn→∞(ωn, xn) for a sequence (ωn, xn) ∈ Tε and 
δ > 0, we take n0 with (ωn0, xn0) ∈ B�×R((ω, x), δ/2) and apply the property defining Tε to 
(ωn0, xn0) and δ/2. Clearly, Tε contains all the ε-sensitive points. Therefore, (� ×R) −A ⊂ Tε , 
and hence (� ×R) −Tε ⊂ A. But the unique open set contained in a pinched set is the empty one, 
so that Tε = � ×R. The proof is completed by checking that any point in Tε is ε/2-sensitive. �

Observe that if the attractor A is a pinched set, then αA (or βA) is continuous if and only 
if the unique τ -minimal set M is given by its graph. Consequently, if the base flow (�, σ) is 
equicontinuous and if A is pinched, then the flow (� × R, τ) is sensitive at least in these two 
cases:

– M is not a copy of the base;
– r1 < r2, M ⊂ � × (r1, r2), and supt≤0

∫ t

0 a(ω0·s) ds < ∞ for a point ω0 ∈ �: as seen in the 
proof of Theorem 3.5(ii), in this case the points (ω, αA(ω)) and (ω, βA(ω)) do not belong 
to M whenever ω belongs to the nonempty set � − �c.
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