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Abstract: Heterogeneous and patchy landscapes where vegetation and abiotic factors vary at small
spatial scale (fine-grained landscapes) represent a challenge for habitat diversity mapping using
remote sensing imagery. In this context, techniques of spectral mixture analysis may have an
advantage over traditional methods of land cover classification because they allow to decompose the
spectral signature of a mixed pixel into several endmembers and their respective abundances. In
this work, we present the application of Multiple Endmember Spectral Mixture Analysis (MESMA)
to quantify habitat diversity and assess the compositional turnover at different spatial scales in the
fine-grained landscapes of the Cantabrian Mountains (northwestern Iberian Peninsula). A Landsat-
8 OLI scene and high-resolution orthophotographs (25 cm) were used to build a region-specific
spectral library of the main types of habitats in this region (arboreal vegetation; shrubby vegetation;
herbaceous vegetation; rocks—soil and water bodies). We optimized the spectral library with the
Iterative Endmember Selection (IES) method and we applied MESMA to unmix the Landsat scene
into five fraction images representing the five defined habitats (root mean square error, RMSE < 0.025
in 99.45% of the pixels). The fraction images were validated by linear regressions using 250 reference
plots from the orthophotographs and then used to calculate habitat diversity at the pixel (x-diversity:
30 x 30 m), landscape (y-diversity: 1 x 1 km) and regional (e-diversity: 110 x 33 km) scales and the
compositional turnover (f3- and 6-diversity) according to Simpson’s diversity index. Richness and
evenness were also computed. Results showed that fraction images were highly related to reference
data (R2 > 0.73 and RMSE < 0.18). In general, our findings indicated that habitat diversity was
highly dependent on the spatial scale, with values for the Simpson index ranging from 0.20 £ 0.22
for a-diversity to 0.60 £ 0.09 for y-diversity and 0.72 £ 0.11 for e-diversity. Accordingly, we found
-diversity to be higher than &-diversity. This work contributes to advance in the estimation of
ecological diversity in complex landscapes, showing the potential of MESMA to quantify habitat
diversity in a comprehensive way using Landsat imagery.

Keywords: spectral unmixing; Landsat; Iberian Peninsula; alpha diversity; beta diversity; gamma
diversity; delta diversity; epsilon diversity
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1. Introduction

A central point of natural sciences research is to identify, describe and understand
biodiversity patterns for conservation purposes and natural resource management. The
concept of biodiversity or biological diversity has changed rapidly during recent decades
from a species diversity approach to a more comprehensible approach by also considering
different hierarchical levels such as genes, populations, communities, ecosystems and
landscapes, as well as their interactions [1,2]. Consequently, to evaluate all aspects of
biological diversity is practically impossible, being necessary to focus on indicators that
provide relevant, although relative, information [2]. Among them, habitats, which are
defined as the type of site where an organism or population naturally occurs, are of high
interest because they can be used as a proxy of diversity in different hierarchical levels. In
this sense, the habitat heterogeneity hypothesis [3] states that increases in habitat diversity
leads to increases in the variety of ways to exploit resources, thus increasing the complexity
of ecosystems, species diversity [4,5] and, consequently, genetic diversity [6]. However,
several studies suggest that the fulfillment of this hypothesis depends on the spatial scale
of analysis and the target community [7,8].

It is generally assumed that biological diversity at any hierarchical level comprises two
components: richness, which is defined as the number of different elements, and evenness,
which indicates the equitability in the abundance distribution among different elements [2].
This concept has been integrated in several diversity indices based on the information theory
that were originally proposed to measure the amount of disorder in a system. Among them,
the Shannon [9] and Simpson [10] indices are the most widespread [11-13]. However, the
Simpson index has a more intuitive interpretation, as it represents the probability that any
two elements selected at random would be of different types, which unavoidably depends on
richness and evenness [11].

Many authors have proposed a multiscale approach to analyze diversity because of
its potential scale dependency [8,14,15], which has been demonstrated in several habitat
diversity studies (e.g., [16,17]). In this sense, Whittaker [18] proposed the analysis of in-
ventory diversity and compositional turnover (differentiation diversity) at different scales.
Among the inventory diversity metrics, he defined (i) the x-diversity, or diversity at the
plot level, with appropriate areas being between 100 m? and 1 ha for terrestrial plants [19];
(i) the y-diversity, or diversity at the landscape level, appropriate areas being of 1 km? or
greater [19]; and (iii) the e-diversity, or diversity at the regional scale. Among the composi-
tional turnover metrics, Whittaker [18] defined the -diversity as the difference in diversity
between plot and landscape scales and the 6-diversity, or geographical differentiation, as
the difference between the landscape and the regional scales.

Imagery from different satellites at relatively high and moderate spatial resolution, such
as Landsat, Sentinel-2 and MODIS, has been commonly used to map habitat types [20-22]
as well as habitat diversity at the landscape level [13,23,24]. In general, habitat mapping
using remote sensing methods has been addressed with hard classifications, where each
pixel is assigned to one unique type of habitat [25]. Among the most common are those
classifications based on K-mean, ISODATA, maximum likelihood, decision trees, artificial
neural networks or support vector machine algorithms [25]. However, hard classifications at
the spatial resolution of Landsat, Sentinel or MODIS imagery (20 to 500 m) do not allow to
obtain realistic spatial models in fragmented landscapes with predominance of small patches
(i.e., fine-grained landscapes), where each image pixel can be a mixture of habitats or micro-
habitats [25,26]. In this context, spectral unmixing, also known as spectral mixture analysis
(SMA), is a key technique to address this challenge since it considers the spectrum of a single
pixel as a weighted combination of constituent spectra (endmembers), the weight being the
endmember fractions [27]. Thus, spectral unmixing provides fraction images allowing each
pixel to have several and partial class memberships, which can be exploited in biodiversity
studies by calculating diversity metrics even at the pixel level (o-diversity).

Multiple Endmember Spectral Mixture Analysis (MESMA) is an advanced method of
linear SMA that calculates component fractions within a pixel [28]. As an improvement over
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basic linear SMA models, MESMA assumes that an image is composed of a large number of
spectrally distinct endmembers, but individual pixels can be composed of a limited subset
of these components [27,28]. Accordingly, MESMA allows a large number of endmembers
to be used across a scene, but each pixel is analyzed and modeled independently with
different numbers and types of endmembers [28-30], avoiding the overfitting caused by the
use of many endmembers and, also, the large residuals that would cause the lack of specific
endmembers in the analysis [31]. Previous research has focused on applying MESMA to
map natural [28,29,32-35] and anthropized [31,36-39] landscapes, with the accuracy of
MESMA fraction images largely varying depending on the land cover class [37,39]. In
general, these studies have shown the capacity of MESMA to generate a number of land
cover fraction images ranging from three [28,29,33,34] to five [31,32,39], which could be
applied to the analysis of habitat diversity. However, to date, we have not found studies
exploring the potentiality of MESMA for ecological applications such as biodiversity
assessments.

Given the current challenges in habitat diversity monitoring and the potential benefits
of spectral unmixing techniques, our study aims to use, for the first time, MESMA to
accomplish a comprehensive analysis of habitat diversity in fine-grained landscapes, using
the Cantabrian Mountains (northwest Iberian Peninsula) as a study case. Specifically, we
aim (i) to analyze the potentiality of MESMA to model the fractional cover of the main
types of habitat and (ii) to characterize habitat diversity at different scales, from the pixel
level to the regional scale (x-, y- and e-diversity), as well as the compositional turnover
(B- and b-diversity).

2. Materials and Methods

The methodology followed in this study is structured in five blocks (Figure 1): (i)
selection of the study site, (ii) data sources and preparatory steps, (iii) MESMA procedure,
(iv) accuracy assessment of MESMA fraction images and (v) habitat diversity analysis.

2.1. Study Site

The study site is a framework of 110 x 33 km sited in the Cantabrian Mountains
(Figure 2a,b), which are located in the northwest of the Iberian Peninsula, between the
Eurosiberian and Mediterranean biogeographical regions. They exhibit a high elevation
gradient (from sea level up to 2650 m), a mean annual precipitation from 700 to 2200 mm
and a mean annual temperature from 4 to 14 °C [40] in a distance of less than 30 km, causing
a high biodiversity and the existence of several endemic species [41]. The main vegetation
types in the valleys are cultivated and grazed meadows and riparian forests. In the uplands,
there are beech (Fagus sylvatica L.), oak (Quercus pyrenaica Willd., Q. petraea (Matt.), Liebl,,
Q. robur L. and Q. ilex L.) and birch (Betula spp.) deciduous forests, pine plantations (Pinus
sylvestris L, P. nigra Arn. and P. radiata D. Don) as well as heathlands and shrublands
dominated by Ericaceae, Fabaceae and Cistaceae plant species. Forests and shrublands are
often interspersed with pastures and grasslands. The tops of the mountains are usually
dominated by rocks, scree and natural grasslands, with variable cover of shrublands.
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Figure 1. Methodology flowchart. IES: Iterative Endmember Selection. MESMA: Multiple Endmember Spectral Mixture
Analysis. R2: coefficient of determination; RMSE: root mean square error.

The Cantabrian Mountains were considered appropriate for this study for several
reasons: (i) their landscapes (which include mountain massifs, intra-montane valleys
and bocage landscapes) show a high complexity as they consist of fine-grained mosaics
of natural and semi-natural habitats [42,43]. This fact encourages the use of unmixing
methods for habitat mapping when using satellite multispectral imagery of coarser grain
size than landscape (see Figure 2c—e to visually understand the inconvenience of assigning
a 30-m pixel to a single habitat class). (ii) This region sustains a high diversity of species and
ecosystems [44] and has many habitats that are considered as a conservation priority by the
European Union (Council Directive 92/43/EEC) [45], which motivates the advancement
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of habitat mapping and monitoring methods relevant for conservation actions. (iii) The
Cantabrian Mountains can be considered as a natural field laboratory to study habitat
diversity and its relationships with rural abandonment and land use change, as they have
experienced an intense change during recent decades [46,47].
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Figure 2. Location of the study site in western Europe (a) and orthophoto of the study site (b). The points in the orthophoto
of the study area indicate the location of the 250 validation plots and the predominant habitat type in each plot. The three
panels on the bottom (c—e) show the complexity of the landscape in the Cantabrian Mountains and the inconvenience of
classifying one Landsat pixel of 30 x 30 m (net) into a single habitat type, as several habitat types usually coexist at this
spatial resolution.

2.2. Data Sources and Preparatory Steps
2.2.1. Landsat Imagery

A cloud-free Landsat-8 OLI scene for the study area (Landsat path 203/row 30) from 11
August 2017, was selected and downloaded from the U.S. Geological Survey (USGS) server [48].
Specifically, we used a Landsat collection 1 Level-2 scene (LC082030302017081101T1-5C2020082
6092241), which is radiometrically and geometrically corrected, georeferenced to a Universal
Transversal Mercator (UTM) projection and corrected for atmospheric effects with the Land
Surface Reflectance Code (LaSRC) [49]. Thus, this product contains the following subset of
Landsat reflective bands in land surface reflectance:

Band 1: ultra-blue, 0.43-0.45-um wavelength

Band 2: blue, 0.45-0.51-um wavelength

Band 3: green, 0.53-0.59-um wavelength

Band 4: red, 0.64-0.67-um wavelength

Band 5: near-infrared, 0.85-0.88-um wavelength

Band 6: shortwave infrared 1, 1.57-1.65-pm wavelength
Band 7: shortwave infrared 2, 2.11-2.29-pm wavelength

Landsat-8 OLI collection 1 Level-2 surface reflectance scenes are provided by the
USGS systematically scaled to 10,000. However, anomalous values (<0 or >10,000) are
usual. In view of this issue, we removed all values <0 and >10,000 from the Landsat scene,
resulting in reflectance values between 1 and 9999.
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2.2.2. Reference Data

In this study, we used orthophotographs at very high spatial resolution (25 cm) as
reference data to identify the main types of habitat, delineate pure habitats and assess the
accuracy of Landsat-8-derived products. Specifically, we used the digital orthophotographs
taken by the Spanish National Center of Geographic Information in July 2017, through the
Spanish National Program for Aerial Orthophoto [50]. This is the latest series currently
available (1 December 2020) and the flight date coincides with that of the Landsat-8 image
used in this study.

Five types of habitat were differentiated for this study (arboreal vegetation; shrubby
vegetation; herbaceous vegetation; rocks and bare soil and water bodies) according to
previous work in the Cantabrian Mountains [41] and to a visual inspection of the orthopho-
tographs at a scale of 1:1000.

For accuracy assessment purposes, we established 250 plots of 30 x 30 m spatially
coincident with Landsat pixels. We followed a stratified random design, assigning a set of
50 plots to each habitat type in the orthophotographs (Figure 2b). Then, we used the or-
thophotos, to quantify the percentage cover correspondent to each habitat type in each plot.
To improve the efficiency and accuracy of this process, plots were divided into 100 square
cells of 3 x 3 m using the Polygon Divider plugin [51] in the QGIS 3.14 geographic infor-
mation system software [52]. Then, each cell was visually classified into a unique habitat
type and the proportion of cells corresponding to each class was calculated. In this way;,
we assigned information of the fractional cover of all types of habitat in each 30 x 30-m
reference plot.

2.3. MESMA Procedure
2.3.1. Spectral Library: Candidate and Optimal Endmembers

The first step to perform MESMA was to build a spectral library with candidate
endmembers for each of the five classes contemplated to unmix the Landsat-8 scene
(arboreal vegetation; shrubby vegetation; herbaceous vegetation; rocks and bare soil and
water bodies). Candidate endmember spectra can be obtained from spectral libraries
(reference endmembers), which are built using field and laboratory measurements or
radiative transfer models, or from the scenes used in the study (image endmembers) [27].
In this work, we have used the last approach, because image endmembers have the
advantages of (i) being easily obtained; (ii) they can be collected at the same scale as the
image data, capturing the multiple scattering environment of canopies [36]; and (iii) spectra
are influenced by the same imagery corrections as the scene used in the study [53].

Image endmembers for each habitat type were extracted from the pre-processed
Landsat-8 surface reflectance scene using 250 polygons, meeting the following criteria:
(i) polygon size was fixed to 60 x 60 m to ensure that four Landsat-8 pixels fall within
each polygon; (ii) the polygon and the surrounding area (30-m buffer) were dominated
by a single habitat type (>75%), according to the orthophoto; (iii) plots were distanced at
least 60 m from validation plots to ensure independence between endmember data and
validation data; and (iv) polygons were distributed with equitability among the different
types of habitat (50 plots per habitat, with 200 pixels per habitat and a total of 1000 pixels).
Accordingly, we extracted 1000 candidate image endmembers (200 endmembers for each
habitat type) using the Create Library tool from the Spectral Library plugin [54], which is
implemented in QGIS [52].

Once the candidate endmembers are selected, it is critical to optimize the spectral
library by defining a high-quality set of image endmembers. This process contributes to
reduce the computational costs and to increase the accuracy of MESMA [31,53,55]. There
are several techniques for pruning spectral libraries according to the relative value of each
individual endmember. In this study, we used Iterative Endmember Selection (IES) [32],
which is an automated method that finds the set of endmembers that produce the highest
Cohen’s kappa value by iteratively adding or removing endmembers. Firstly, the algorithm
compares all possible pairs of endmembers, retaining the two endmembers that reach
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the highest kappa value for classifying all the spectral library using MESMA. Then, the
algorithm automatically checks the ability of additional endmembers to increase kappa,
and the process is repeated until the kappa value does not increase any more. Thus, IES not
only considers within-class variability, as many endmember selection methods do [55], but
also confusion between classes. For the IES procedure, we set the minimum and maximum
allowable endmember fractional constrains to 0.00 and 1.00, respectively, and the root mean
square error (RMSE) value was constrained to 0.025. The spectral library processed in this
way is referred as IES library for the remainder of this document. The spectral library was
optimized using the IES tool from the Spectral Library plugin [54], which is implemented in
QGIS [52] and based on VIPER Tools 2.0 developed by the VIPER Lab at UC Santa Barbara.

2.3.2. Spectral Unmixing: Obtention of Fraction Images and Shade Normalization

The IES library was used to map the fractional abundance of each habitat type in each
pixel of the Landsat-8 scene using MESMA. In view of the composition and the fine-grain
landscape of the study site (Figure 2), we assumed that every pixel in the Landsat-8 scene
can be modeled by a linear combination of one to five types of habitat and a shade fraction
that is typically present in all pixels. Accordingly, MESMA was applied, analyzing all the
potential combinations for each pixel; i.e., two-endmember models (one habitat type +
shade), three-endmember models (two types of habitat + shade), four-endmember models
(three types of habitat + shade), five-endmember models (four types of habitat + shade)
and six-endmember models (five types of habitat + shade). The shade endmember was
defined as photometric shade, setting reflectance values to zero. We set the minimum and
maximum allowable endmember fractional values to 0.00 and 1.00, respectively, because
values outside this range cannot be achieved in the field. We constrained the maximum
allowable shade fraction to 0.80 according to [36,56,57] recommendations. The performance
of all endmember models that meet all the above criteria was evaluated by the RMSE and
the model with the lowest RMSE was selected for each pixel and recorded. Hence, we
generated three output products: (i) an image with the models given in the form of the
endmember number of the spectral library, (ii) an RMSE image and (iii) the fraction images
of each habitat type and shade. Finally, the output fraction images were shade normalized
to obtain the relative abundance of non-shade endmembers (types of habitat) for each
pixel. MESMAs and shade normalization were carried out with the MESMA and Shade
normalization tools, respectively, from the MESMA plugin [58], which is implemented in
QGIS [52] and based on VIPER Tools 2.0 developed by the VIPER Lab at UC Santa Barbara.

2.4. Accuracy Assessment of MESMA Fraction Images

We used 250 reference plots (see Section 2.2.2) with values of the fractional cover
of each habitat type to assess the performance of the sub-pixel fraction estimates from
MESMA. Specifically, using the reference plot centroids, we sampled the raster values
(fractional covers) using the Point Sampling Tool [59] in QGIS [52], and then, we used them
to perform bivariate linear regressions between each shade-normalized MESMA fraction
(predictor variable) and the reference data (response variable), from which we calculated
the significance of the correlations (P), the coefficient of determination (R?) and the RMSE.
Linear regressions were performed using R software [60].

2.5. Diversity Analysis

After ensuring the accuracy of all shade-normalized MESMA fraction images (mini-
mum requirements of R? > 0.70 and RMSE < 0.20), they were used to map habitat richness,
evenness and diversity at different spatial scales (x-diversity: 30 x 30 m, y-diversity:
1 x 1 km, e-diversity: 110 x 33 km) as well as to calculate the mean values and standard
deviations for the entire study area.

Habitat richness was calculated as the number of different types of habitat. According
to the number of habitat types considered in this work, the maximum allowable richness
is 5.
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Habitat evenness was calculated using Simpson’s Evenness Index (Equation (1)) [10,12].
This index is unitless and approaches 0 as the distribution of area among the different habitat
types becomes increasingly uneven, whereas it approaches 1 when proportional abundances

are the same. X
m
_ 1Y B

E= : )
=)
where E is Simpson’s Evenness Index; P; is the proportion occupied by habitat type (class) 7 at
the working scale and m is the number of habitat types present at the working scale.
Habitat diversity was calculated using Simpson’s Diversity Index (Equation (2)) [10].
This index approaches 0 when there is a low richness and the distribution among the
different habitat types becomes increasingly uneven, and it approaches 1 when there is a

high richness and the proportional abundances are the same. The maximum allowable
value for this index in this study, where the maximum richness is 5, is 0.80.

m
D=1-Y P? @
i=1

where D is Simpson’s Diversity Index; P; is the proportion occupied by habitat type (class)
i at the working scale and m is the number of habitat types present at the working scale.

Geo-processing to obtain richness, evenness (E) and diversity (D) products at 30 x 30 m
was carried out by applying the corresponding functions (richness, Equations (1) and (2)) to
the fraction images from MESMA in the Raster Calculator tool in QGIS [52]. To obtain the
richness, Eand D at 1 x 1 km and 110 x 33 km, we computed all fraction images at these
spatial resolutions by averaging the values from the original fraction images (30 x 30-m
spatial resolution) in each 1 x 1-km cell and in the entire study area (110 x 33 km),
respectively. This process was accomplished using the Zonal Statistics tool overa 1 x 1-km
grid and 110 x 33-km polygon, respectively, in QGIS [52].

Moreover, we used Simpson’s Diversity Index at different scales to calculate the (3-
diversity (turnover between y- and a-diversity) (Equation (3)) and 8-diversity (turnover
between ¢- and y-diversity) (Equation (4)).

B diversity = Dy — Da 3)

b diversity = De — Dvy 4)

where Da is Simpson’s Diversity Index calculated at the pixel level (30 x 30 m), D7 is
Simpson’s Diversity Index calculated at 1 x 1 km and De is the Simpson Diversity Index
for the entire study region (110 x 33 km). Geo-processing to obtain 3- and o-diversity
products was carried out by implementing Equation (3) and Equation (4) in the Raster
Calculator tool in QGIS [52].

3. Results
3.1. MESMA Results and Accuracy Assessment
3.1.1. Optimal Endmembers

In the IES procedure applied to obtain a set of optimal endmembers (IES library), kappa
values increased from 0.17 when using one candidate endmember to 0.78 when using five
candidate endmembers (one endmember from each habitat type). The maximum within-
library kappa peaked at 0.95, using 31 endmembers. Thus, the final IES library consisted of
31 endmembers (Figure 3), which were unequally distributed among habitat classes: arboreal
vegetation—four spectra; shrubby vegetation—10 spectra; herbaceous vegetation—seven
spectra; rock and bare soil—nine spectra; water—one spectrum. The maximum reflectance
of arboreal and shrubby vegetation endmembers was detected in the near-infrared region
(B5), and for herbaceous vegetation, in both the near-infrared and shortwave-infrared regions
(B5 and B6). The spectral signatures of rock and bare soil endmembers differed because they
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showed higher reflectance values than vegetation endmembers for the ultra-blue, blue, green
and red (B1 to B4) and the highest reflectance in the shortwave-infrared region (B6). On the
contrary, the water spectrum showed low reflectance values for all bands, with the reflectance

in the green region (B3) being the highest.
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Figure 3. Spectra included in the final endmember library for the five types of habitat (arboreal vegetation: four spectra;
shrubby vegetation: 10 spectra; herbaceous vegetation: seven spectra; rock and bare soil: nine spectra; water: one spectrum).

3.1.2. Spectral Unmixing

The comparison of all potential combinations of the spectra included in the IES library
in all possible class models with MESMA signified the analysis of the performance of 8799
models in each Landsat pixel. Specifically, 31 one-endmember models (one habitat type +
shade), 357 three-endmember models (two habitat types + shade), 1849 four-endmember
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models (three habitat types + shade), 4042 five-endmember models (four habitat types +
shade) and 2520 six-endmember models (five habitat types + shade) were analyzed for
each pixel.

MESMA modeled 99.45% of the pixels with an RMSE < 0.025, whereas 99.61% of
pixels were modeled with an RMSE < 0.05. Moreover, the MESMA results after shade-
normalization demonstrated that almost one half of the pixels in the study area were
successfully modeled as a mixture of two habitats (Table 1). Specifically, 51.79% of pixels
were modeled using a single endmember from one habitat type, whereas 48.18% of pixels
were modeled by endmembers from two types of habitat, the most frequent mixtures being
arboreal and shrubby vegetation and arboreal and herbaceous vegetation (Table A1). Only
0.02% of pixels required the use of endmembers from three types of habitat to be modeled
with the lowest RMSE, and they correspond mainly to the mixture of arboreal vegetation,
herbaceous vegetation and rock-bare soil (Table Al).

Table 1. Number and relative abundance of pixels of the study area with the presence of each habitat
type, and class models for each level of complexity (one-, two- and three-endmember models). The
table also shows the cover in percentage (mean + standard deviation of each habitat type in the
study area). Results were calculated from the MESMA fraction images after shade normalization.
See Table Al for further information.

Pixels (n) Pixels (%) Cover (Mean =+ SD)
Classes
Arboreal vegetation 1,639,730 39.98 23.96 + 33.59
Shrubby vegetation 1,792,223 43.70 31.49 £ 39.86
Herbaceous vegetation 1,767,967 43.11 33.93 4 42.50
Rock and bare soil 856,272 20.88 10.05 £+ 24.51
Water 22,736 0.55 0.53 £ 7.16
Class models
One-habitat type model 2,123,946 51.79
Two-habitat type model 1,975,994 48.18
Three-habitat type model 998 0.02
Total 4,100,938 100

Focusing on the types of habitats, MESMA modeled arboreal vegetation fractions in
39.40% of pixels, shrubby and herbaceous vegetation fractions in approximately 43% of
pixels and rock and bare soil classes in 20.88% of pixels. Water fractions were present in
0.55% of pixels. Moreover, shade-normalized MESMA fraction images allowed to calculate
the mean cover of each habitat type (Table 1). In this sense, we found that the study
area was dominated by herbaceous, shrubby and arboreal vegetation (33.93%, 31.49% and
23.96%, respectively), whereas rocks and bare soil (10.05%) and water bodies (0.53%) were
less abundant.

3.1.3. Accuracy Assessment of MESMA Fraction Images

The relationships between reference and modeled fractions of the five types of habitat
were statistically significant in all cases (p < 0.001). Besides, MESMA fraction images
showed R2 values > 0.73 and RMSE < 0.18 when predicting the fractional cover of the five
types of habitat (Figure 4). Analyzing each habitat type, the highest predictive accuracy
was for water bodies (R? = 0.99; RMSE = 0.04). Rocks and bare soil also were modeled with
a high accuracy (R? = 0.90; RMSE = 0.11). Linear relationships with herbaceous vegetation
showed R? = 0.78 and RMSE = 0.15; relationships with shrubby and arboreal vegetation
cover showed R? = 0.73 and RMSE of 0.17 and 0.18, respectively.
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3.2. Habitat Diversity

Values of habitat richness, evenness and diversity in the Cantabrian Mountains were
scale-dependent (Table 2). Habitat richness increased from the pixel level at 30 x 30 m
(mean o-richness = 1.48) to the landscape scale at 1 x 1 km (mean y-richness = 4.15),
with the maximum value being found at regional scale (e-richness = 5). Similarly, habitat
evenness, measured as the Simpson Evenness Index, increased from the pixel level (mean
a-evenness = 0.40) to the landscape spatial scale (y-evenness = 0.80), with the maximum
equitability among habitat classes being found at the regional scale (e-evenness = 0.90).
The mean values of the Simpson Diversity Index also increased with the sampled area,
particularly from the pixel (x-diversity = 0.20) to the landscape scale (y-diversity = 0.60).
The habitat diversity at the regional scale (e-diversity) was 0.72.

Table 2. Mean values of «-, y- and e-diversity metrics (habitat richness, habitat evenness and habitat
diversity), as well as 3- and 5-diversity values in the study site.

Diversity Metric Spatial Scale (km?) Value (Mean + SD)
o-richness 0.0009 1.48 £0.50
y-richness 1 415 4+ 0.36
e-richness 3630 5.00 + 0.00

x-evenness * 0.0009 040 £043*
y-evenness 1 0.80 £ 0.12
e-evenness 3630 0.90 £+ 0.00
a-diversity 0.0009 0.20 + 0.22
v-diversity 1 0.60 & 0.09
e-diversity 3630 0.72 + 0.00
B-diversity 0.0009 0.40 + 0.23
d-diversity 1 0.11 + 0.09

* The area with a-richness = 1 (indeterminate form in evenness according to Equation (2)) was fixed to 0.

In relation to the compositional turnover, the largest differences in habitat diversity
were found when upscaling from the pixel to the landscape scale (3-diversity = 0.40).
Habitat diversity slightly changed at resolutions coarser than 1 x 1 km (8-diversity = 0.11).

Figure 5 shows the spatial patterns of habitat richness, evenness and diversity in
the study area. At the pixel level, x-richness varied between one or two in most of the
study area (Figure 5a), with the highest values spatially matching to forests, which are
often combined with other types of habitat (See Figure A1l in the Appendix A). On the
contrary, at landscape scale, four and five types of habitat predominated (Figure 5a), with
the highest y-richness in areas occupied by water bodies (reservoirs, lakes and rivers),
which are scarcer and less spatially connected than the rest of habitats (Figure Al). In
relation to habitat evenness (Figure 5b), it was directly related to habitat richness at the
pixel level, whereas at landscape scale, we found the lowest evenness values in lowlands
dominated by grasslands and meadows (Figure Al). Habitat diversity (Figure 5c) showed
spatial heterogeneity at both pixel and landscape levels. In this sense, the spatial patterns
of «-diversity were coincident with those of a-richness and evenness, whereas the spatial
patterns y-diversity were more related to y-evenness than to y-richness.

The spatial patterns of the compositional turnover (Figure 6) indicate that the diversity,
in most of the study area, increased when upscaling from the pixel to the landscape level
(97.88% of the study area showed a 3-diversity > 0) as well as from the landscape to the
regional level (96.00% of the study area showed a 6-diversity > 0). However, increases were
much larger at fine spatial resolutions, with 3-diversity values being close to 0 in most of
the study area.
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4. Discussion

Our results showed the capacity of MESMA to model the main types of habitat present
in the study region (arboreal vegetation, shrubby vegetation, herbaceous vegetation, rocks
and bare soil and water bodies) as well as the suitability of fraction images obtained from
MESMA to perform a thorough analysis of habitat diversity and compositional turnover in
the fine-grained landscapes of the Cantabrian Mountains.

Although many studies have applied MESMA to differentiate photosynthetic vegeta-
tion, non-photosynthetic vegetation and soil [36,61], and impervious elements [57], and
to map the fractional abundance of vegetation types [32] and even the fractional cover of
bio-physical variables in disturbed areas [31,53], this is the first work in which MESMA
is applied to analyze habitat diversity. The appropriateness and potentiality of MESMA
for determining habitat fractions and habitat diversity in fine-grained landscapes, such
as those of the Cantabrian Mountains, can be justified by the three following reasons
supported by our findings. (i) Firstly, the need of 31 endmembers to build an optimized
image-specific spectral library reflects that the use of multiple endmembers is needed
for accurate mapping. This indicates that this challenge would not have been accurately
addressed by simple SMA, where the maximum number of endmembers would be con-
strained to the number of habitat types plus shade [27,53]. Moreover, in relation to this
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issue, we underline the relevance of an appropriate selection of endmembers, which must
be linearly independent, representative of the spectra and spatially generalizable [29], and
we point out that the classification accuracy reached in our optimized spectral library
(kappa = 0.95) using the iterative endmember selection method was better than that re-
ported in the reviewed literature [32,37,62,63]. (ii) Secondly, the MESMA results revealed
that the spectra of almost the half of the 30 x 30-m pixels in the study area were modeled us-
ing two endmembers from different type of habitats, whereas the other half were modeled
using a single endmember. The need of multiple endmembers to accurately model spectra
has been found in other studies [28,36,61,64] when characterizing dominant surface types
and indicates that habitat mapping as well as habitat diversity analysis in fine-grained
landscapes should be addressed either by spectral unmixing methods such as MESMA
or using imagery at a higher spatial resolution, such as UAV-derived imagery or satellite
imagery at very high spatial resolution. (iii) Lastly, we found that the subpixel abundance
estimates obtained from MESMA were highly accurate—results showing very low errors
(RMSE values between 0.04 and 0.18) and high coefficients of determination (R? between
0.73 and 0.99) for the fractions of the five target habitats. These results are in concordance
with those obtained in previous studies that used multispectral and hyperspectral data to
quantify the fractional cover of soil and vegetation types in other regions with different
fine-grained landscape patterns [65-68], such as orchards [67,69], cultivated lands and
urban areas, where impervious surfaces are interspersed with gardens and other habitat
types [36,37,65,66]. This suggests the potential appropriateness of MESMA for habitat
mapping and, consequently, habitat diversity analysis in other regions, although this fact
should be confirmed by further research.

Hence, our results show the use of MESMA to characterize habitat diversity and
compositional turnover in the fine-grained landscapes of the Cantabrian Mountains. The
analysis at the different scales proposed by Whittaker [18] revealed a high scale-dependency
of habitat diversity, with increases being particularly intense from the pixel (Simpson’s
Diversity Index = 0.20) to the landscape (Simpson’s Diversity Index = 0.60) level. Values
of habitat diversity at the regional scale were even higher (Simpson’s Diversity Index
increased = 0.72) but close to those obtained at the landscape scale. Accordingly, 3-diversity
was higher than é-diversity. The scale-dependency of habitat diversity has been previously
reported [14-17] and confirms the appropriateness of a multi-scale analysis in this type of
landscape. Moreover, our results indicated that the spatial patterns of habitat diversity
were parallel to the spatial patterns of richness at the pixel level (x-diversity), whereas
they were more similar to the spatial patterns of evenness at the landscape (y-diversity)
and regional (e-diversity) levels because, in general, most habitat types were present when
working at scales above 1 km?. These results indicate that landscapes and regions sustain
a higher biodiversity and should be considered by land managers and policy makers to
spatially define priority areas for conservation purposes.

Our work provides a useful basis for habitat diversity mapping in fine-grained land-
scapes when using moderate spatial resolution imagery. It opens the possibility of con-
ducting habitat diversity assessments across time, taking advantage of the availability
of Landsat scenes since the 1970s [70] and the possibility of building multi-temporal li-
braries [71]. Likewise, this study presents a suitable method to address habitat diversity
analysis in those landscapes where two types of habitat coexist at the pixel level, and we
encourage validation of this methodology in other landscapes and regions across the globe,
particularly in areas where more than two component mixtures are common. Future re-
search to make advancements in the remote sensing discipline can address the potentiality
of non-linear spectral unmixing methods for habitat diversity mapping in complex regions,
as this method can account for both the effects of multiple scattering and endmember vari-
ability [27] and, therefore, contributes to improve the accuracy of fraction images [72,73].
Moreover, higher spectral resolution imagery can also contribute to increase the spectral
separability among endmembers, which is essential for accurate unmixing in both linear
and non-linear approaches [73].
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5. Conclusions

Habitat diversity mapping in fine-grained territories is an important challenge that
can be resolved either by using imagery of high spatial resolution or applying spectral
unmixing methods to moderate spatial resolution imagery, such as Landsat scenes.

Multiple Endmember Spectral Mixture Analysis (MESMA) is useful for quantifying
the fractional cover of the main habitat types present in the Cantabrian Mountains in a
per-pixel basis. Thereafter, fractional cover images can be used to calculate habitat diversity
at the pixel, landscape and regional levels (x-, y- and e-diversity) and are suitable for
analyzing the compositional turnover (3- and $-diversity).

Habitat diversity in the Cantabrian Mountains is scale-dependent, and therefore,
diversity analysis should be performed at different spatial scales. Habitat diversity strongly
increased with area from the pixel (x-diversity) to the landscape level (y-diversity), with
B-diversity being higher than §-diversity. Moreover, we found that the spatial patterns of
diversity were closely related to the spatial patterns of evenness at the landscape level.
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Appendix A
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Figure A1. Shade-normalized MESMA fraction images of the five types of habitat (arboreal vegetation, shrubby vegetation,
herbaceous vegetation, rocks and bare soil and water). The digital elevation model (DEM) of the study site is also shown in

the panel.

Table A1l. Number and relative abundance of pixels of the study for each combination of habitat
types. Results were calculated from the MESMA fraction images after shade normalization.

Pixels (1) Pixels (%)
Class models
Arboreal vegetation 293,772 7.16
Shrubby vegetation 725,083 17.68
Herbaceous vegetation 892,727 21.77
Rock (and bare soil) 191,955 4.68
Water 20,409 0.50
Arboreal and herbaceous 438,983 10.70
Arboreal, herbaceous and rock 867 0.02
Arboreal, herbaceous and water 1 0.00
Arboreal and rock 136,413 3.33
Arboreal, rock and water 99 0.00
Arboreal and shrubby 769,141 18.76
Arboreal and water 454 0.01
Herbaceous and rock 331,387 8.08
Herbaceous, rock and shrubby 21 0.00
Herbaceous, rock and water 10 0.00
Herbaceous and shrubby 103,727 2.53
Herbaceous and water 244 0.01
Rock and shrubby 194,126 4.73
Rock and water 1394 0.03
Shrubby and water 125 0.00
Total 4,100,938 100
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