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a b s t r a c t 

One Shot Learning includes all those techniques that make it possible to classify images using a single 

image per category. One of its possible applications is the identification of food products. For a grocery 

store, it is interesting to record a single image of each product and be able to recognise it again from 

other images, such as photos taken by customers. Within deep learning, Siamese neural networks are 

able to verify whether two images belong to the same category or not. In this paper, a new Siamese net- 

work training technique, called CP-CVV, is presented. It uses the combination of different models trained 

with different classes. The separation of validation classes has been done in such a way that each of the 

combined models is different in order to avoid overfitting with respect to the validation. Unlike normal 

training, the test images belong to classes that have not previously been used in training, allowing the 

model to work on new categories, of which only one image exists. Different backbones have been eval- 

uated in the Siamese composition, but also the integration of multiple models with different backbones. 

The results show that the model improves on previous works and allows the classification problem to be 

solved, an additional step towards the use of Siamese networks. To the best of our knowledge, there is 

no existing work that has proposed integrating Siamese neural networks using a class-based validation 

set separation technique so as to be better at generalising for unknown classes. Additionally, we have 

applied Cross-Validation-Voting with ConvNeXt to improve the existing classification results of a well- 

known Grocery Store Dataset. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

One of the biggest challenges in the field of computer vision is 

he classification of images of which there is only one per category. 

or example, in supermarkets, it is not easy to create a dataset that 

ncludes hundreds of images per product. Moreover, every time a 

ew product is added, it would be necessary to retrain the model 

ith the entire dataset. One Shot Learning (OSL) techniques aim 

o solve this type of problem, producing models that are able to 

lassify images with only one example per category. Among the 

echniques used to implement OSL, Siamese neural networks have 

een shown to be very effective. 

The normal training of a Siamese network is used to learn 

hether two images belong to the same category or not through 

omparison. In contrast to the traditional training of this type of 

odels, the training of Siamese neural networks can be carried 
∗ Corresponding author. 
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ut using different classes for training, validation and testing. This 

echnique allows the model to be trained using hundreds of im- 

ges of known classes and that knowledge is used for comparison 

ith images of unknown classes. Similarly, humans are better able 

o recognise people with known facial features because our brains 

ave been trained primarily with such patterns [1] . 

Training a Siamese neural network to detect whether two im- 

ges belong to unknown categories is ambitious, because such a 

odel has not been trained with data from such classes. One of 

he problems with these systems is the lack of generalisation. It is 

n this aspect where the models can benefit from the Cross Val- 

dation Voting (CVV) technique [2] , previously applied to improv- 

ng the classification results of normal Convolutional Neural Net- 

orks (CNN). In this paper, we show how the state-of-the-art con- 

olutional networks embedded in Siamese networks can be im- 

roved using a new class partitioning method, hereafter CP-CVV 

Class Partitioning based Cross Validation Voting). This method ap- 

lies class partitioning instead of data partitioning, selecting k val- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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dation groups with different classes in order to better generalise 

he model. 

The training of a Siamese network using different classes is in- 

errupted by early-stopping when the results of the validation set 

tart to deteriorate. The model is then evaluated against a test set, 

here the classes are different from those used during training 

nd validation. A problem with this training method is that the 

odel obtained by early-stopping could overfit against the valida- 

ion set (known as validation overfitting). The consequence of this 

s that the model does not respond well to new data, represent- 

ng a generalisation problem. In the CP-CVV method, as there are 

 validation sets formed by non-intersecting categories, different 

odels are trained to generalise to different situations. By pooling 

he models using voting techniques, an improvement in the gener- 

lisation is achieved. 

Although model integration techniques have been used with 

ome neural networks, to the best of our knowledge, there is no 

xisting work that has proposed an integration of Siamese neural 

etworks and, more specifically, a class-based validation set sep- 

ration technique to make the model better able to generalise to 

nknown classes. Integration methods usually use different mod- 

ls, and if they are of the same type, they use validation sets 

ith classes similar to those used in the training and other train- 

ng/validation sets. Our approach is completely novel, since we 

rain a model of the same type by performing the separation of 

he validation sets by classes. Moreover, we have performed the 

ests using state-of-the-art networks, such as ConvNeXt [3] . 

In addition to the experiments carried out to show the im- 

rovement in Siamese networks, the behaviour of ConvNeXt 

3] has been evaluated using CVV [2] , showing how it improves 

he classification results to date on the Grocery Store Dataset [4] . 

In our study, we focus on the OSL problem rather than the Few 

hot Learning problem (FSL), as it is a particularly interesting case 

ecause we often have only one image per category and it is not 

ossible to obtain more. In FSL, there is more than one image per 

ategory. 

The present paper is structured as follows: Section 2 explores 

he state-of-the-art of the technologies considered in this paper. 

ection 3 describes the procedure that has been carried out. In 

ection 4 , the different experiments and results obtained with the 

roposed method are reported. An overall discussion of the results 

btained is set out. Finally, Section 5 notes the advantages and lim- 

tations of the system presented and suggests future developments. 

. Overview of related work 

One Shot Learning represents a learning paradigm where only 

ne item per category is available during the classification process. 

or example, in the grocery sector, it is interesting to classify prod- 

cts by means of a vision system from a single image per product. 

urthermore, some OSL systems do not require the retraining of 

he model each time an image is added. For example, face recog- 

ition systems [5] usually work by using vectors obtained from the 

mages that are compared to search for the closest face. These sys- 

ems are not retrained with new people every time someone new 

s added to the database, as this would incur a high computational 

ost for each new person added. 

Different strategies have been developed to solve the OSL prob- 

em. Until the development of deep learning, many techniques 

sed probabilistic approaches. For example, in [6] , the probability 

hat an object belongs to a class was calculated by analysing im- 

ge features that had been useful in classifying objects of the same 

ype. Descriptor extractors based on characteristic points, such as 

IFT, SURF or ORB, also relied on matching the obtained points 

ith the points of known objects. These methods, however, do not 

eneralise well when there are significant differences in the ob- 
2 
ects. The authors of [7] used a hybrid approach for supermarket 

roduct classification that combined feature-based matching and 

eep learning. 

The generation of synthetic data has begun to be considered 

or retraining classification models. The traditional data augmenta- 

ion allows the number of images to be increased by simple trans- 

ormations (translations, rotations, illumination changes, deforma- 

ions, etc.). This technique is integrated with many data generators 

hat feed images into the training methods. More recently, the Gen- 

rative Adversarial Networks (GANs) [8] are able to generate syn- 

hetic images using deep networks. They need to learn how to gen- 

rate new unknown images from a generator trained with known 

mages and a discriminator forces the new images to be different 

rom previously known images. In [9] , the authors proposed a GAN 

rchitecture to augment the training set of grocery products. They 

erformed kNN recognition on a database consisting of a single 

eference image per product. However, one of the problems with 

his technique is that it usually requires retraining the model on 

he basis of new images that are added to the dataset. 

Siamese neural networks [10] compare the output features of 

wo networks, usually convolutional, to infer whether two images 

elong to the same category or not. The comparison is carried 

ut using the feature vectors obtained before the last classifica- 

ion layers. Each of these sub-networks, called backbones, shares 

he model and weights. Although such networks were first used 

y [11] in a signature verification work, it is only in recent years 

hat they have shown their potential. They have been used for a 

ariety of problems in vision, such as object tracking [12] , chromo- 

ome classification [13] , diagnosis of COVID-19 patients [14] , object 

egmentation [15] , face recognition [16] and even face spoofing de- 

ection [17] . 

FSL can be treated by algorithms that follow two different ap- 

roaches. On the one hand, in the inductive setting, training data 

re available but not test data. Inductive methods seek to gener- 

te a function or a model that returns the category of a test im- 

ge that has never been seen before. In the OSL problem, once 

he training of the model is done, an example of each category 

ould be available. Recent examples of this approach are Pro- 

otypical networks (ProtoNets) [18] , Attentional Constellation Nets 

19] PEMnE-NCM [20] or HCTransformers [21] . Our method also 

orresponds to an OSL inductive method in which we are com- 

letely unaware of the test set during training. In the transduc- 

ive setting, less restrictive than the inductive case, training and 

nlabelled test data are available. The methods can obtain extra 

nformation about the test data distribution to make better predic- 

ions. Many current methods are transductive because sometimes 

t is easy to obtain test samples even if labelling is complicated. 

ome transductive FSL methods are PT+MAP+SF+SOT [22] , PEMnE- 

MS [20] , the Illumination Augmentation + PT+MAP [23] , SIB [24] , 

-M-F [25] , BAVARDAGE [26] or EASY 3xResNet12 [27] . Some of 

hese methods can also work in inductive setting. 

Regarding the inductive methods, ProtoNets [18] learn a met- 

ic space in which classification can be carried out by calculating 

istances to prototype representations of each class. Compared to 

ecent approaches for low-data learning, they reflect a simpler in- 

uctive bias that is beneficial in this data-limited regime, and they 

chieve excellent results. ProtoNets can work with different prob- 

ems, from Zero Shot Learning, through OSL (one sample per class), 

o FSL (several samples per class). Attentional Constellation Nets 

19] perform cell feature clustering and encoding with a dense part 

epresentation. Then, they use an attention mechanism to model 

he relationships between the cell features. They combine different 

onstellation branches with convolutional feature maps to increase 

he awareness of object parts. PEMnE-BMS [20] uses a feature ex- 

ractor trained using a generic dataset. Then, the features are pre- 

rocessed using PEME (Power, Euclidian normalization, Mean sub- 
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raction, Euclidean normalization) to better align with a Gaussian 

istribution. Finally, they are directly fed to a Nearest Class Mean 

lassifier (PEMnE-NCM). The authors also presented a transductive 

etting where the features are processed through an optimal trans- 

ort inspired algorithm using self-distillation and Boosted Min- 

ize Sinkhorn (BMS). In HCTransformers [21] , the authors proposed 

ierarchically cascaded transformers that exploit intrinsic image 

tructures through spectral tokens pooling to reduce the ambiguity 

etween foreground content and background noise. In addition, the 

earnable parameters are optimized through latent attribute sur- 

ogates to benefit from the rich visual information in image-label 

airs. 

Regarding the transductive methods, the authors of BAVARDAGE 

26] proposed a new clustering method based on Bayesian Vari- 

tional inference, further improved by Adaptive Dimension Re- 

uction based on Probabilistic Linear Discriminant Analysis. They 

ought to take better account of uncertainty in estimation due to 

issing data, as well as better statistical properties of the clus- 

ers associated with each class. The authors of PT+MAP+SF+SOT 

22] defined a module called Self-Optimal-Transport (SOT), which 

llows the transformation of features in a nonparametric and dif- 

erentiable way and can capture high-level relationships between 

ata points. It can transform global feature information to make 

t more differentiable in case-specific problems such as cluster- 

ng, few-point learning, and person re-identification. In [23] , the 

uthors presented the Illumination Augmentation method. It uses 

 neural network architecture called Separating-Illumination Net- 

ork (Sill-Net) that learns to separate illumination features from 

mages. Then, the augmentation module takes the illumination fea- 

ures to augment the support samples. They aligned their method 

ith the pipeline of PT+MAP in a transductive way for the FSL 

roblem. SIB [24] uses the empirical Bayes formulation for multi- 

ask learning, leveraging the unlabelled query set in addition to 

he support set to generate a more powerful model for each task. 

he authors of EASY 3xResNet12 [27] created a model that works 

ith an ensemble of convolutional backbones to extract the fea- 

ures. These are concatenated, processed and evaluated in two set- 

ings: Nearest class mean classifier (NCM) if in inductive setting or 

 soft K-means algorithm in transductive. Finally, P-M-F [25] pre- 

rains a Vision Transformer with the unlabelled external data using 

elf-supervised loss. Then, it trains the model using simulated la- 

els with a ProtoNet loss. 

In relation to grocery products, the authors of [28] recently 

pplied a Siamese network to capture the relationships between 

conic and natural images in the Grocery Store Dataset [4] . They 

valuated several Siamese models with different CNNs, obtaining 

he best results with a DenseNet-169 backbone [29] . One of the 

roblems with this approach is that it uses iconic images, which 

ay not be faithful to a real photograph of a product. 

Grocery product recognition has many applications, such as 

onitoring food habits [30] . In recent years, several datasets have 

een created for grocery stores, such as the MVTec D2S dataset 

31] , the Retail Product Checkout dataset (RPC) [32] , or the Freiburg 

roceries dataset [33] . These datasets focus on the problem of ob- 

ect detection rather than classification. The Grocery Store Dataset 

4] contains images of grocery products, classified into fine and 

oarse categories. It contains 5125 images of 81 different types of 

ruit, vegetables and carton items (e.g., milk, juice or yoghurt). In 

ddition, there are 43 coarse classes, grouping some categories. The 

uthors separated the test set in order to properly compare dif- 

erent models and architectures. A classification baseline was also 

rovided, where the authors evaluated several models, obtaining a 

est accuracy of 85.0% using a DenseNet [34] with SVM. These re- 

ults were first surpassed by [35] , where a stacking model of two 

esNeXt-101 obtained 90.80% test accuracy; then by the authors of 

36] , who obtained 93.48% test accuracy using an ensemble of dif- 
3 
erent networks (ResNet-101, ResNet-152, DenseNet-121, DenseNet- 

69 and DenseNet-201); and finally by [2] , who obtained 94.41% 

est accuracy using a soft-voting CVV model based on 5 classifiers 

esNeXt-101, WideResNet-101 and EfficientNet-B7. 

In relation to the backbones used to compose our Siamese nets, 

e have evaluated several recent models, such as ResNeXt-101 

37] , Wide Residual Networks (WRNs) [38] , EfficientNet-B7 [39] , 

egNet X_32gf [40] , ViT-L-32 [41] and ConvNeXt Large [3] . 

ResNeXt [37] is an architecture that replaces the 3x3 convo- 

utions within the ResNet model with clustered 3x3 convolutions. 

he ResNeXt bottleneck block splits a single convolution into mul- 

iple smaller parallel convolutions. ResNeXt uses aggregation in- 

tead of concatenation in the original Inception-ResNet block. Wide 

esidual Networks (WRNs) [38] consider the problem that each 

raction of a percent of improved accuracy costs almost double 

he number of layers. The authors proposed a novel architecture 

n which they decreased the depth and increased the width of 

he residual networks. This architecture deals with the problem 

f diminishing feature reuse, which makes the training of resid- 

al networks slow. EfficientNet [39] seeks a balance between the 

umber of parameters and accuracy. This multi-objective neural 

rchitecture optimises both accuracy and FLOPS, similar to MNAS- 

et [42] . EfficientNet-B7 scales depth, width and resolution from 

fficientNet-B0 using a composite coefficient. In RegNet [40] , a de- 

ign space design principle was presented. They conducted popu- 

ation based experiments on hundreds of models, looking at how 

arameters and settings affect different criteria. They introduced 

egNet as an effective design space according to those principles. 

Vision Transformers (ViT) [41] are based on transformers origi- 

ally designed for NLP tasks. While the CNNs use pixel convolu- 

ions, the ViT divides images into visual fixed-size patches, cor- 

ectly embeds each patch, and includes positional embedding as 

nput to the transformer’s encoder. This transformer uses a self- 

ttention layer, able to enhance some parts of the input data while 

iminishing other parts, focusing on the most important areas of 

he image. ViT usually requires a large dataset, so transfer learning 

s usually used as a starting point. 

Although the transformer-based models managed to outper- 

orm ImageNet [43] classification results with respect to CNNs in 

ecent years, ConvNeXt [3] has been able to bring convolutional 

odels to the top again, using certain features inherited from the 

iT models. It uses depthwise convolutions, which are similar to 

he weighted sum operation in self-attention, and Gaussian Error 

inear Unit (GELU) activation functions, similar to ViT. In addition, 

t uses larger kernel sizes and an inverted bottleneck design that 

educes the parameters, thus increasing the performance. 

. Analysis of the system 

We propose a new technique called CP-CVV, based on a modi- 

cation of the CVV technique [2] , previously used to improve the 

lassification of CNNs, to enhance the training of Siamese neural 

etworks. When CVV is applied to CNNs, the training data are di- 

ided into k different validation slots, with the remaining data not 

sed for validation in each slot being chosen as the training data 

or that slot. A single classifier type, such as ResNeXt-101 [37] , is 

rained k times with each different validation set, and the out- 

uts of the models are finally combined using soft and hard-voting 

echniques. 

In CP-CVV, the validation sets for each k slot are selected by 

istributing the n classes into k validation slots (see Fig. 1 ). That is,

or each of the k trainings of a model, the validation set will consist 

f ≈ n/k classes. The order of the classes is randomised before the 

alidation slots are allocated. In this way, we prevent potentially 

elated classes from entering into a single training. 
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Fig. 1. Distribution of classes in k slots. 
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Our CP-CVV model integrates k Siamese neural networks using 

 soft/hard voting mechanism. In contrast to how other Siamese 

ets are trained, in our approach, each of the k independent net- 

orks is trained independently with different training and valida- 

ion classes. Fig. 2 shows the scheme of the model during infer- 

nce. The model receives two images, corresponding to a positive 

air if the images correspond to the same class and negative oth- 

rwise. The pair of images is fed into each of the k Siamese nets, 

ormed by a backbone of the same type, which produces a vec- 

or of features. The weights of this backbone are similar within 

he same Siamese, but different among the k models. The output 

eature vector of each backbone is multiplied by an element-wise 

ultiplication. Three dense layers are then added, integrated with 

ropout and batch normalisation. The first of the dense layers uses 

 Rectified Linear Unit (ReLU) activation function, while the out- 

ut of the second dense layer uses sigmoid activation. Finally, a 

ast dense layer is responsible for the classification using another 

igmoid activation function. Unlike other Siamese networks, where 

he connection of the backbone features is done by calculating the 

uclidean distance, several dense hidden layers are used in this 

ase. As can be seen in Fig. 2 , the output of each Siamese net-

ork approximates the value to 0 or 1, depending on whether the 

air has been classified as positive or negative. In the integration 

f multiple classifiers by hard-voting, we accumulate the number 

f positive and negative pairs detected, with the final output pro- 

ucing the largest number of postings. In the case of soft-voting, 

he output value is accumulated among the different classifiers 

nd then divided by the total number of classifiers. If the result 

s greater than 

1 
2 , then it will be a positive pair, and negative oth-

rwise. 

Let τ be the set that includes all the classes of the dataset, λ
he set of classes used for training and β the set of classes for test- 

ng. Let T i and V i be the training and validation sets corresponding 

o the slot i and k the number of slots used in CP-CVV. These sets

ust verify Eqs. 1 to 4 . 

= λ ∪ β (1) 

= 

k ⋃ 

i =1 

V i (2) 

k 
 

 =1 

V i = ∅ (3) 

T i = λ − V i 

]∀ i ∈ k (4) 

The classes of a training slot i are those used by all the other

lots in the validation, as shown in Eq. 5 . 
 

T i = 

k ⋃ 

j=1 

V j : j � = i 

] 

∀ i ∈ k (5) 
4 
Similarly, a validation slot, i , is composed of the intersection of 

he classes of the other training slots, as shown in Eq. 6 . 
 

V i = 

k ⋂ 

j=1 

T j : j � = i 

] 

∀ i ∈ k (6) 

Each k model is trained with their respective training and vali- 

ation slot. This data distribution means that the ensemble model 

an be generalised better for different situations, avoiding the val- 

dation overfitting. The inference is carried out using voting. For 

n input sample, x , p i (x ) is the sigmoid output value given by

he Siamese network i . In our experiments, we have seen that a 

iamese net with one sigmoid output gave better results than a 

etwork with two outputs; one to show that the two images be- 

onged to the same category and one for the opposite case. In the 

igmoid output case, the output takes the value 0 when the images 

elong to the same class and 1 otherwise. In Eq. (7) , soft voting is

btained by accumulating the output values given by all the classi- 

ers. w i is a weight associated with each classifier i , 1 
k 

in our case.

f the result is greater than 

1 
2 , then the images belong to different 

ategories and the global output is set to 1. 

(x ) = 

{ 

1 if 

[ ∑ k 
i =1 w i · p i (x ) 

] 
> 

1 
2 

0 otherwise 
(7) 

Hard voting requires prior binarisation of the probability, as 

hown in Eq. (8) . The output of each classifier approaches 0 or 1, 

epending on whether the images belong to the same category or 

ot. Then, as shown in (9) , the output is obtained by accumulating 

he binary values of each class j. As in soft voting, w i is 1 
k 

in our 

ase, and the output approaches 0 or 1, depending on the sum. 

 i (x ) = 

{
1 if p i (x ) > 

1 
2 

0 otherwise 
(8) 

(x ) = 

{ 

1 if 

[ ∑ k 
i =1 w i · b i (x ) 

] 
> 

1 
2 

0 otherwise 
(9) 

.1. Classification problem 

Siamese nets allow us to infer whether two images belong to 

he same class. However, in a real classification application, what 

ould be of interest would be to correctly classify images into a 

articular category. So, in a supermarket, you may want to add 

ew classes and have the system take care of cataloguing images 

f incoming products among those classes. For each class, there 

ould only be one catalogue image. 

In CP-CVV, the outputs of several Siamese nets are mathemati- 

ally comparable as they represent whether or not two images be- 

ong to the same category. In the classification problem, we analyse 

he cumulative probability that an image belongs to each of the 

ossible categories. In other words, we draw k · c inferences from 

he Siamese nets, obtaining a matrix with k rows and c columns. A 

ell of the matrix represents the probability that an image belongs 

o class c in the k slot. If we accumulate the column values of that

ell and divide by k , we obtain the probability that an image be- 

ongs to that class according to all the slots. 

Let P c be the cumulative result of adding the sigmoid outputs 

f the different Siamese nets for a test class c, where c ∈ β . There-

ore, P c is the value of a test image belonging to a category. This 

s evaluated by selecting one random image per category. Let p ci 

e the sigmoid output of the classifier i with an image from the 

ategory c. For soft voting, P c is obtained by (10) 

 c (x ) = 

k ∑ 

i =1 

w i · p ci (x ) (10) 
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Fig. 2. Diagram of the proposed solution. 
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In order to find the most similar category, we keep the one that 

s closest to 0. This is achieved with the arg c min function, as shown

n Eq. (11) . This function returns the winning class. 

 sof t (x ) = arg c min 

[
P c (x ) 

]
(11) 

In the case of the hard voting classification, p ci is previously 

inarised, as shown in (12) ; where only the output with the lowest 

lass value is set to 0 for an estimator. 

 ci (x ) = 

{
0 if c = arg c min [ p ci (x ) ] 
1 otherwise 

(12) 

Then, P ′ c is obtained by adding the binarised value in this case, 

ee Eq. (13) , and the winning category is given by (14) . 

 

′ 
c (x ) = 

k ∑ 

i =1 

w i · b ci (x ) (13) 

 hard (x ) = arg c min 

[
P ′ c (x ) 

]
(14) 

We show below the experiments carried out to demonstrate 

hat the proposed method improves the result obtained by Siamese 

etworks trained without CP-CVV. 

. Experiments and results discussion 

We have used the Grocery Store Dataset [4] , a dataset of super- 

arket products that allows us to evaluate the performance of the 

roposed method, as it has many classes and can be separated into 

est classes and different validation slots. 

The experiment consisted of evaluating how Siamese networks 

mprove using the new CP-CVV method. For this, we performed a 

ross-validation against the test data, choosing s = 4 different test 

ets and applying the CP-CVV to the rest of the data. In this way,

e verified that the model responds correctly to different test sets. 

able 1 shows the list of test classes for each slot s . It is impor-

ant to note that the evaluation of the 4 test sets is different from 

he validation slots used during training. We have performed four 

raining runs with CP-CVV and four evaluations and have shown 

verage values. 

CP-CVV has been applied with k = 5 by distributing the train- 

ng data into 5 validation slots, as previously explained. In Fig. 3 , 

e can see the distribution of the classes in s = 0 with k = 5 vali-

ation slots. To train the k = 1 Siamese network, the classes of its 

lot are used as validation, while the rest of the classes are used 

s training data. It is important to point out that one aspect is the 

ross validation applied to testing, whereby the aim is to see that 
5

he new CP-CVV method works well for different selected s test 

lots; and another different aspect is the application of CP-CVV it- 

elf, which is carried out on k validation slots. 

To evaluate the effectiveness of the CP-CVV method applied 

o Siamese neural networks, several state-of-the-art backbones 

ave been used to implement the Siamese nets: ResNeXt-101 [37] , 

ide Residual Networks (WRNs) [38] , EfficientNet-B7 [39] , RegNet 

_32gf [40] , ViT-L-32 [41] and ConvNeXt Large [3] . 

Each of the models was trained using a CP-CVV with k = 5 (in- 

ependent validation sets of the classes). Fig. 4 shows the training 

uring 100 epochs of the s = 0 and k = 0 model for these esti-

ators, where we can appreciate that the models that converge 

he best and the fastest are EfficientNet-B7 and ConvNeXt Large. 

hese plots have been shown to visualise a similar training of 100 

pochs. However, as early-stopping is applied, the training is com- 

leted in a smaller number of times. The graph up to 100 epochs 

as been generated by training the model during those epochs 

n order to show graphs with similar ranges. When using early- 

topping, we evaluate the validation drop for 10 epochs. Thus, for 

xample, ConvNeXt and ResNeXt converge in less than 40 epochs. 

The training started from a transfer learning of the weights of 

he backbones previously trained against ImageNet [43] . The im- 

ges were then normalised with respect to the mean values ob- 

ained from ImageNet. In addition, data augmentation has been 

sed, performing transformations that include rotation (20 ◦), trans- 

ation (20%), scaling (20%) and shearing (20%). Random flips (50%) 

ave also been applied. An Adam optimiser, with a learning rate 

f 0.0 0 04, and the binary crosentropy loss were used during the 

raining. 

As can be seen, the evaluation of a CP-CVV Siamese model 

ased on a particular backbone requires quite a few training ses- 

ions, specifically s · k . However, this is only for the most realistic 

valuation of the model improvement. Since the test classes are 

ompletely independent of the models, for a real problem, it would 

e sufficient to carry out k trainings. 

The training of the models was carried out on a deep learn- 

ng server with two Xeon Gold 6230R processors, two 48GB Nvidia 

TX A60 0 0 GPUs, and 768GB of RAM. The average training time for 

ach of the models was 720 minutes. However, as several training 

essions were parallelised due to GPU capacity, the training of the 

 models of each type and each s slot were reduced. In total, for s

 4 and k = 5 , we trained 120 models ( s · k ·6 different models),

aking approximately 21,600 minutes (15 days) to be completed. 

Table 2 shows that the CP-CVV model applied to the training 

f multiple Siamese networks with a similar backbone improves 
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Table 1 

Test class distribution for cross validation with s = 4 slots. 

s = 0 s = 1 

Arla-Ecological-Sour-Cream 

Brown-Cap-Mushroom 

Carrots 

God-Morgon-Orange-Juice 

God-Morgon-Red-Grapefruit-Juice 

Granny-Smith 

Lime 

Mango 

Oatly-Oat-Milk 

Passion-Fruit 

Sweet-Potato 

Tropicana-Golden-Grapefruit 

Yellow-Onion 

Alpro-Blueberry-Soyghurt 

Arla-Mild-Vanilla-Yoghurt 

Cabbage 

God-Morgon-Apple-Juice 

God-Morgon-Orange-Red-Grapefruit-Juice 

Honeydew-Melon 

Nectarine 

Oatly-Natural-Oatghurt 

Red-Bell-Pepper 

Red-Delicious 

Satsumas 

Tropicana-Juice-Smooth 

Zucchini 

s = 2 s = 3 

Alpro-Fresh-Soy-Milk 

Alpro-Vanilla-Soyghurt 

Banana 

Beef-Tomato 

Alpro-Blueberry-Soyghurt 

Arla-Lactose-Medium-Fat-Milk 

Arla-Natural-Mild-Low-Fat-Yoghurt 

Cantaloupe 

God-Morgon-Orange-Red-Grapefruit-Juice 

Kiwi 

Orange-Bell-Pepper 

Papaya 

Solid-Potato 

Carrots 

Conference 

Garlic 

Honeydew-Melon 

Pomegranate 

Tropicana-Mandarin-Morning 

Watermelon 

Yellow-Bell-Pepper 

Yoggi-Strawberry-Yoghurt 

Tropicana-Juice-Smooth 

Vine-Tomato 

Yoggi-Vanilla-Yoghurt 

Zucchini 

Fig. 3. Separation and training for CP-CVV ( k = 1 ). 

Table 2 

CP-CVV improvement with different classification Siamese networks for k = 5 (% except for loss). HV: Hard Voting. SV: Soft Voting. 

Backbone \ Metric Test accuracy 

without CP-CVV 

Test accuracy 

(CP-CVV HV) 

Test accuracy 

(CP-CVV SV) 

Loss (without 

CP-CVV) 

Loss (CP-CVV HV) Loss (CP-CVV SV) 

ResNeXt-101 0.8490 0.8893 0.8966 3.3570 2.0504 2.9732 

Wide-ResNet-101 0.8510 0.8993 0.9051 3.2538 1.9845 2.9188 

ViT-L-32 0.7770 0.8216 0.8248 4.7435 3.0337 4.2682 

EfficientNet-B7 0.8825 0.9380 0.9392 2.1585 1.4383 1.7875 

RegNet_x_32gf 0.8718 0.9111 0.9184 2.6174 1.7371 2.4807 

ConvNeXt_large 0.8961 0.9498 0.9486 1.9314 1.3044 1.6533 

Global CP-CVV (All 

models with k = 5) 

0.9390 0.9469 1.9247 2.6803 

Selective CP-CVV 

(ConvNeXt_large + 

EfficientNet-B7) 

0.9483 0.9526 1.3714 1.7204 

Selective CP-CVV 

(ConvNeXt_large + 

RegNet_x_32gf + 

EfficientNet-B7) 

0.9548 0.9560 1.4933 1.9739 

6 
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Fig. 4. Training of Siamese networks with different backbone for CP-CVV k = 0 (100 epochs). 
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emarkably. We can observe how the method, in both its soft- 

oting (SV) and hard-voting (HV) versions, improves the results of 

ll Siamese using a single model. As an example, a Siamese net 

ith a ConvNeXt_large backbone (0.8961) is improved with 5 esti- 

ators in both hard (0.9498) and soft-voting (0.9486). The results 

re the average of the cross validation of s slots. 

We have also evaluated models that integrate different 

ackbones, including one that combines all models (ResNeXt- 

01, Wide-ResNet-101, ViT-L-32, EfficientNet-B7, RegNet_x_32gf 

nd ConvNeXt_large), one that integrates the top two mod- 

ls (EfficientNet-B7 and ConvNeXt_large) and one that integrates 

he top three models (EfficientNet-B7, RegNet_x_32gf and Con- 

NeXt_large). The integration uses k = 5 estimators per backbone. 

The results show that the best results are obtained with the se- 

ective model that integrates the three best models (0.9560 in CP- 

VV SV). The integration of these three models accumulates the 

robability of the 15 associated models in the case of soft-voting. 

ote that each model has been trained 5 times with the different 

alidation sets. For the case of hard-voting, instead of accumulating 

robabilities, 1 or 0 is accumulated, depending on whether the re- 

ult is greater than 

1 
2 , as explained above. Transformers and atten- 

ion models, such as ViT-L-32, do not provide good results in our 

xperiments. These models usually require very large datasets and 

o not always respond well to the generalisation problem, as we 

ound here. The best result using a single model integrated with 

he new CP-CVV is provided by ConvNeXt (0.9498). As we can see 

rom the results, it is important to highlight the fact that the new 
v

7 
P-CVV technique oriented to Siamese networks always improves 

he result with respect to the traditional Siamese. 

Although, in most cases, it performs better with soft-voting 

han with hard-voting, the error seems to be superior in soft- 

oting. This is due to the way the output is calculated, since in 

V it is an accumulation of probabilities, which usually leads to a 

igher error. 

Table 3 shows the comparison of the results with the previ- 

us work that explored the combination of a neural network-based 

ackbone and a LOMO descriptor within the same Siamese net. 

hat work used the same dataset and the same evaluation tech- 

ique. We can see how the new CP-CVV method improves the 

esults of that work using only the ResNeXt-101 backbone. If we 

onsider other backbones, such as ConvNext_large or the selective 

P-CVV ensemble (ConvNeXt_large + RegNet_x_32gf + EfficientNet- 

7), the results are greatly outperformed. 

.1. Classification problem 

To carry out the experiments related to the classification prob- 

em, a random image is selected from all the test categories, and 

 random image from each possible category is chosen for cata- 

oguing. The selected image is compared with each of the selected 

mages for each category. The result is the most similar category. 

owever, at any given moment, the model may predict that two 

r more categories are similar, but only the one with the lowest 

alue is kept, since the positive pairs are those close to 0. In ad- 
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Table 3 

CP-CVV improvement over comparable work (%). 

Technique Test accuracy 

Siamese with ResNeXt-101 0.8490 

Siamese with ResNeXt-101 + LOMO backbone [35] 0.8820 

CP-CVV SV Siamese with ResNeXt-101 backbone 0.8966 

CP-CVV HV Siamese with ConvNeXt_large backbone 0.9498 

Selective CP-CVV SV Siamese (ConvNeXt_large + RegNet_x_32gf + EfficientNet-B7) 0.9560 

Fig. 5. Selection of images to solve the classification problem. 
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ition, the TOP-2 value is computed, which shows whether any of 

he possible categories are correct, i.e., if the model has catalogued 

n image in two possible categories, and the real category is one 

f them. Sometimes, there are certain categories that represent im- 

ges of objects with a certain similarity. The image categorisation 

oop is repeated for the entire set of images to be evaluated. 

Fig. 5 shows how the image selection process is carried out for 

he evaluation. For each of the images in the test set, one image 

s randomly selected from each of the test categories. Then, the 

airs formed by the image being evaluated and each of the ran- 

om images are introduced and evaluated in the Siamese net, or 

he set of Siamese networks, using the new CP-CVV. The category 

ith the lowest value of similarity is the winning class, with which 

he evaluated image is associated. In the new CP-CVV, a Siamese k 

et is applied to each pair and the output values are accumulated 

n the case of soft-voting, choosing the category with the lowest 

umulative value, as explained above. In the case of hard-voting, 

he output of each Siamese is previously binarised, checking the 

utput with the lowest class value given for an estimator, as pre- 

iously explained. Then, the values are accumulated among the k 

iameses, as is done in soft-voting, and the winner is the category 

ith the lowest cumulative value. 

Table 4 shows the classification result for the test images, i.e., 

he classes that have not been used to train the Siamese networks. 

his inference technique is the most realistic one used to solve 

lassification problems using Siamese networks, and the results ob- 

ained show its potential for application in a real problem. In this 

ase, it can be seen that the model which uses the combination of 

he ConvNeXt_large and EfficientNet B7 classifiers by means of the 

ew CP-CVV obtains the best classification results. In 79.26% of the 

ases, the category is correct. We have to take into account the fact 

hat there can be a lot of differences between images of the same 

ategory. For example, a milk carton can be upside down in one 

mage and pictured frontally in another. This makes the classifica- 

ion a challenge and other methods, such as those looking for im- 

ge key points, do not work well in these cases. The experiments 

ave been repeated 5 times and the values shown are the average. 
C

8 
In addition to the evaluation of CP-CVV with Siamese nets, two 

xperiments with Prototypical networks (ProtoNets) [18] and At- 

entional Constellation Nets [19] have been carried out. Although 

rotoNets can deal with the problem of zero-shot learning, our ex- 

eriments focus on one-shot-learning. This implies that the num- 

er of labelled examples per class in the support set is equal to 

ne ( n s = 1 ). We have also set up a query size of 25 images per

lass ( n q = 25 ). On the other hand, the network has been trained

o classify 13 classes (number of classes in a classification task: 

 way = 13 ). We have also used data augmentation and the same 

est set to compare the results. Although the results obtained with 

rotoNet are significantly worse than most of our models, it is im- 

ortant to mention that it has converged quickly. In 18 epochs and 

34 minutes, it achieved an 89.03% training accuracy (peak value). 

egarding the Attentional Constellation Nets, we have also used 

he same test and parameters: n s = 1 , n q = 25 and n way = 13 . This

odel has completely converged in 110 minutes, even less than 

rotoNet, and 56 epochs (train acc: 99.96%, val acc:71.33%). Our 

odel, parallelised, requires about 720 minutes of training. The 

est accuracy of the Attentional Constellation Net was 76.44%, only 

urpassed by some of our more complex ensemble models. 

Table 5 shows the confusion matrix of the selective model 

ith ConvNeXt_large and EfficientNet-B7, using soft-voting and k 

 5 estimators. There are categories where the images have some 

imilarities and the confusion matrix shows a decrease in accu- 

acy, such as Mango and Lime , or Yellow-Onion and Brown-Cap- 

ushroom . This confusion matrix has been developed taking into 

ccount the classes of slot s = 0 (see Table 1 ). The system would

bviously work better if the images were always taken from a sim- 

lar position, but it shows how our system gives good results even 

n these situations of high variability in images of the same cate- 

ory. 

We have also evaluated the method with a general dataset, 

IFAR-FS [44] (CIFAR-100 few-shots), which is randomly sampled 

rom CIFAR-100. This dataset is divided into training, validation 

nd test classes. We have combined the training and validation 

lasses and then divided them into K = 4 slots according to CP- 

VV. We then trained 4 models with a ConvNeXt_small backbone 
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Table 4 

Results of using the CP-CVV method with Siamese neural networks for the classification problem in OSL for k = 5 (% except for loss). HV: Hard Voting. SV: Soft Voting 

(Average from 5 repetitions of the test). 

Backbone / Metric Test accuracy 

(without CP-CVV) 

Test accuracy 

(CP-CVV HV) 

Test accuracy 

(CP-CVV SV) 

TOP-2 accuracy 

(without CP-CVV) 

TOP-2 accuracy 

(CP-CVV HV) 

TOP-2 accuracy 

(CP-CVV SV) 

ResNeXt-101 0.5313 0.6120 0.6484 0.7765 0.7857 0.8525 

Wide-ResNet-101 0.5369 0.6332 0.6535 0.7742 0.7857 0.8364 

ViT-L-32 0.4415 0.4525 0.4995 0.6590 0.5853 0.7258 

EfficientNet-B7 0.6834 0.7111 0.7419 0.8894 0.8871 0.9171 

RegNet_x_32gf 0.5313 0.6152 0.6378 0.8134 0.8065 0.8548 

ConvNeXt_large 0.7355 0.7825 0.7899 0.8963 0.8963 0.9194 

Global CP-CVV (All models with k = 5) 0.7406 0.7544 0.8963 0.9055 

Selective CP-CVV (ConvNeXt_large + 

EfficientNet-B7) 

0.7926 0.7899 0.9355 0.9378 

Selective CP-CVV (ConvNeXt_large + 

RegNet_x_32gf + EfficientNet-B7) 

0.7677 0.7576 0.9240 0.9332 

ProtoNet [18] 0.5964 0.7700 

Attentional Constellation Net [19] 0.7644 0.8224 

Table 5 

Confusion matrix of the selective CP-CVV model (ConvNeXt_large + EfficientNet-B7). 
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or 10 epochs. Being smaller images, 32x32 pixels, the training has 

een relatively fast, about 120 minutes sequentially. We have also 

sed data augmentation. The Siamese nets achieved approximate 

ccuracy values of 0.82 for validation and 0.97 for training. Next, 

e evaluated the model against test sets of 5 classes ( n way = 5 )

nd on the OSL problem ( n shots = 1 ). We performed 5 runs, clas-

ifying 1,0 0 0 random images at a time, and calculated the mean 

alues. Table 6 shows the classification result with the CP-CVV SV 

nd CP-CVV HV methods and their comparison with other models. 

t should be noted that CP-CVV is open to combine different mod- 

ls, so it is possible that these values could be improved by adding 

ome other combined classifier. As some models can work in both 

nductive and transductive modes, the table reflects under which 

etting the experiment with the best results was conducted. 
9 
Our method works in inductive setting, which means that it is a 

ore restrictive method than transductive methods. In the perfor- 

ance comparison of FSL with CIFAR_FS, some methods are induc- 

ive and some are transductive. Under the same experimental con- 

itions, it should be noted that transductive methods have some 

dvantage in using unlabelled images of the test cases themselves 

ecause they can obtain extra information about the test data dis- 

ribution to make better predictions. Within the inductive meth- 

ds, our method is easy to implement and obtains promising re- 

ults with CIFAR_FS, achieving higher values than the other meth- 

ds presented. 

Finally, a different kind of experiment was carried out to eval- 

ate the CVV method with the most modern convolution network, 

onvNeXt [3] . The result of the experiment has improved the latest 
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Table 6 

Comparison of test accuracy (%) with other current models against the CIFAR_FS 100 

model ( n way = 5 , n shots = 1 ). 

Model Setting Test accuracy 

PT + MAP+SF+SOT [22] Transductive 0.8994 

PEMnE-BMS [20] Transductive 0.8844 

Illumination Augmentation + PT+MAP [23] Transductive 0.8773 

BAVARDAGE [26] Transductive 0.8735 

EASY 3xResNet12 [27] Transductive 0.8716 

CP-CVV SV with ConvNeXt_small backbone (ours) Inductive 0.8550 

P-M-F with ViT [25] Transductive 0.8430 

CP-CVV HV with ConvNeXt_small backbone (ours) Inductive 0.8386 

SIB [24] Transductive 0.8000 

HCTransformers [21] Inductive 0.7889 

EASY 3xResNet12 [27] Inductive 0.7620 

PEMnE-NCM [20] Inductive 0.7484 

Table 7 

Comparison of different classification models. 

Model / Metric Test accuracy Balanced test accuracy Precision Recall F1-Score 

DenseNet-169 with SVM [4] (baseline) 0.8500 

Model with ResNeXt-101 [35] (140 epochs) 0.9080 0.9209 0.9250 0.9210 0.9230 

Cascade Model with ResNeXt-101 [35] 0.9200 0.9306 0.9350 0.9310 0.9330 

Ensemble ”C” of different classifiers [36] 0.9348 0.9498 0.9452 0.9446 

Soft CVV with ensemble of 5 ResNeXt-101, 5 EfficientNet B7 and 5 Wide ResNet-101 [2] 0.9441 0.9555 0.9580 0.9560 0.9570 

Soft CVV with 5 ConvNeXt Large (our experiment) 0.9580 0.9696 0.9720 0.9700 0.9710 
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lassification results obtained against the Grocery Store Dataset [4] . 

s the test set of this dataset was selected by the authors them- 

elves, the results are comparable under the same conditions as 

ther existing works. Table 7 shows the comparison of this model 

rained with CVV and other models working on the same dataset. 

he authors of the Grocery Store Dataset established a baseline 

ith a DenseNet-169 that was combined with an SVM classifier 

sing the feature vector. In [35] , a stacking model of two ResNeXt- 

01 was evaluated, obtaining 92% balanced test accuracy. In [36] , 

he authors evaluated different ensembles of networks, achiev- 

ng 94.98% balanced test accuracy. Their best result was obtained 

sing a hard-voting approach, integrating the following models: 

esNet-50, ResNet-101, ResNet-152, EfficientNet-B1, DenseNet-121, 

enseNet-169 and DenseNet-201. Finally, the best results to date 

ere obtained using the CVV technique on a model composed of 5 

esNeXt-101, 5 EfficientNet B7 and 5 Wide ResNet-101 [2] . In our 

ork, we evaluated this method on the ConvNeXt Large network, 

chieving the best results to date (95.80% test accuracy / 96.96% 

alanced test accuracy). 

The experiments carried out have shown how the new CP-CVV 

ethod improves the behaviour of Siamese networks, indepen- 

ently of the backbone used. Moreover, due to the nature of the 

raining itself, the resulting model allows promising results to be 

btained in the classification of images into categories where we 

nly have one example. Furthermore, the CVV method has also 

een used with the latest convolutional network to improve clas- 

ification results on a well-known grocery product dataset. 

There is a limitation to the CP-CVV method that depends on 

he number of slots created. The method starts to offer improved 

esults from k = 2 and goes up to a maximum value of k , k = 5

n this article. From that moment on, if we increase k , the results

ill be inverted. The method follows a parabola of the accuracy as 

 function of k and it is necessary to try with different k until the

ptimal value is obtained. This search is costly, since for each spec- 

fied k we have to multiply the training time by k ( k · t). In addi-

ion, the inference time will also be multiplied by k . If we use more

esources (more GPU memory, multiple GPUs, distributed process- 

ng, etc.), these times will be reduced. On the other hand, for val- 

es with k < 4 , it is recommended to limit the data distribution in
w

10 
alidation. If we do not limit the slot size, an imbalance between 

he amount of data in training and in validation will occur. 

Additionally, solving the classification problem itself has an as- 

ociated cost. In our method, c forward steps must be carried out 

or an image, where c is the number of classes (this is because they 

re Siamese networks). In addition, if we have k models, the time 

ill be that of the inference of k · c models. Although it may seem 

uite a lot, the results of the method are promising and again, de- 

ending on resources, the inferences can be parallelised. Naturally, 

he higher the number of evaluation classes, the worse the results 

nd the longer the inference time. 

Finally, it is worth mentioning that, although we could select 

alidation slots with some intersection, and this would certainly 

lso improve the results of the individual model, in CP-CVV we 

ropose that as we are dealing with a Siamese network problem 

hat must separate images of the same or different categories, we 

ust train models with different classes in validation so as to be 

ble to respond to different cases that have similar nature; thus 

iving us the ability to decide whether or not two images belong 

o the same category. 

. Conclusions 

We have presented a system that integrates different Siamese 

eural networks using a modification of the CVV method, called 

P-CVV, based on class-oriented CVV partitioning. This technique 

rains multiple classifiers, based on the same backbone, with dif- 

erent validation sets whose intersection is the empty set. How- 

ver, as the problem in One Shot Learning is to be able to clas- 

ify unknown classes, the validation partitioning is performed us- 

ng different classes from those used during training, but which 

n turn do not overlap between the k validation sets. The models 

re integrated using soft and hard voting techniques. Finally, the 

odels are evaluated using another test set with classes that are 

ifferent from the training and validation ones. 

The results of the experiments show that the combined model 

sing CP-CVV is able to improve the previous results obtained with 

he Grocery Store Dataset. In addition, the method has been evalu- 

ted with respect to the classification problem itself. Siamese net- 

orks allow us to tell whether two images belong to the same 



J. Duque-Domingo, R.M. Aparicio and L.M.G. Rodrigo Pattern Recognition 143 (2023) 109797 

c

a

a

t

i

A

o

c

e

B

t

n

u

h

a

t

a

t

o

s

e

u

t

r

l

p

C

b

c

i

t

a

h

s

C

o

p

t

c

p

D

c

i

D

 

c

A

C

i

d

D

t

C

d

w

R

 

 

 

 

[

 

[

[

[  

[  

[

[  

[

[

lass or not, but an additional step is necessary to classify an im- 

ge among a set of possible categories. The classification results 

lso offer promising results, considering the large difference be- 

ween images belonging to a similar category, which would make 

t unfeasible to use other methods based on obtaining key points. 

s an additional experiment, all the published classification results 

f this dataset have been improved using the latest CVV-integrated 

onvolution network, ConvNeXt. 

Different current backbones for Siamese networks have been 

valuated (ResNeXt-101, Wide ResNet-101, ViT-L-32, EfficientNet- 

7, RegNet_X-32 and ConvNext_large), and how the new CP-CVV 

echnique always improves the performance of individual Siamese 

etworks has been demonstrated. The best combined classifier 

ses the 5 ConvNext_large and 5 EfficientNet-B7 classifiers. We 

ave also evaluated our method against a Prototypical network and 

n Attentional Constellation Net, which have required less training 

ime, but have produced lower classification results. Our model has 

lso been evaluated with CIFAR_FS, showing that even as an induc- 

ive method it competes with some of the best transductive meth- 

ds. 

The main advantage of the CV-CPP model is that it is relatively 

imple to use and improves the results with all the cases we have 

valuated. It allows the results of any type of Siamese network, 

sed mainly for the OSL problem, to be boosted. The main limi- 

ation of CV-CPP is that it requires parallel inference, so it usually 

equires one or more GPUs with a larger memory. It also involves 

onger training time, as it is necessary to train several models. De- 

ending on the trade-off between accuracy and inference time, the 

V-CPP model is configurable and we can select a different num- 

er of sub-models to integrate. 

Our further research will aim to improve the unknown class 

lassification problem itself. Although 79% is a promising figure, it 

s far from the values sought by companies and industries. We aim 

o solve this problem by using additional techniques that could 

lso consider the case of FSL, in which it would be necessary to 

ave a few images of each category in order to improve the re- 

ults. 
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