
Biomedical Signal Processing and Control 87 (2024) 105512

A
1
n

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Unveiling the alterations in the frequency-dependent connectivity structure
of MEG signals in mild cognitive impairment and Alzheimer’s disease
Víctor Rodríguez-González a,b,∗, Pablo Núñez a,b,c, Carlos Gómez a,b, Hideyuki Hoshi d,
Yoshihito Shigihara d, Roberto Hornero a,b,e, Jesús Poza a,b,e

a Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
b Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
c Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
d Hokuto Hospital, Obihiro, Japan
e IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain

A R T I C L E I N F O

Keywords:
Connectivity-based Meta-Bands (CMB)
Meta-Bands
Connectivity
Alzheimer’s disease (AD)
Mild cognitive impairment (MCI)

A B S T R A C T

Mild cognitive impairment (MCI) and dementia due to Alzheimer’s disease (AD) are neurological disorders that
affect cognition, brain function, and memory. Magnetoencephalography (MEG) is a neuroimaging technique
used to study changes in brain oscillations caused by neural pathologies. However, MEG studies often use fixed
frequency bands, assuming a common frequency structure and overlooking both subject-specific variations and
the potential influence of pathologies on frequency distribution. To address this issue, a novel methodology
called Connectivity-based Meta-Bands (CMB) was applied to obtain a subject-specific functional connectivity-
based frequency bands segmentation. Resting-state MEG activity was acquired from 161 participants: 67
healthy controls, 44 MCI patients, and 50 AD patients. The CMB algorithm was used to identify ‘‘meta-bands’’
(i.e., recurrent network topologies across frequencies). The meta-bands were used to extract an individualised
frequency band segmentation. The network topology of the meta-bands and their sequencing were analysed to
identify alterations associated with MCI and AD in the underlying frequency-dependent connectivity structure.
We found that MCI and AD alter the neural network topology, leading to connectivity patterns both more
widespread in the frequency spectrum and heterogeneous. Furthermore, the meta-band frequency sequencing
was modified, with MCI and AD patients exhibiting sequences with increased complexity, suggesting a
progressive dilution of the frequency structure. The study highlights the relevance of considering the impact
of neural pathologies on the frequency-dependent connectivity structure and the potential bias introduced by
using fixed frequency bands in MEG studies.
1. Introduction

Alzheimer’s disease (AD) is a serious clinical and social challenge,
particularly in developed nations [1]. AD is characterised by progres-
sive neuronal damage that results in cell death. This pathology is
the leading cause of dementia, and affects the behaviour, cognition,
memory, and functional ability of the patients [1]. Mild cognitive
impairment (MCI) is typically regarded as the prodromal phase of AD,
in which patients experience symptoms that are not compatible with
healthy ageing but are not severe enough to warrant a diagnosis of
dementia [1]. Moreover, the prevalence of individuals with AD or MCI
is expected to continue growing; therefore, AD is deemed one of the
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most important challenges that healthcare systems will face in the
coming years [1].

Neuroimaging techniques are powerful tools to study brain activity.
Specifically, neurophysiological techniques such as electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) offer several ad-
vantages compared to other techniques such as Positron Emission
Tomography (PET) or functional Magnetic Resonance Imaging (fMRI),
due to their non-invasiveness (compared with PET) and ability to
provide high temporal resolution (compared with both) [2]. This latter
property allows to capture the entire range of brain variability, from
the slower waves to the faster oscillations. This feature is of great
importance, given that it has been suggested that neural variability may
play an important role in higher cognitive functions [3,4]. This study is
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focused on MEG, as it provides higher spatial resolution and improved
robustness against noise and volume conduction than EEG [5–8].

The neurophysiological dynamics recorded by MEG can be altered
by diverse diseases that affect the central nervous system. A more pro-
found understanding of their pathological fingerprint can be achieved
by studying these alterations. Previous research has investigated the
changes in MEG activity caused by MCI and AD [9–11]. Some of these
changes can be observed through local activation analyses, i.e., when
studying the time courses of the neural signal at sensors or sources
individually [9,12,13]. These local activation measures have revealed
that MCI and AD lead to slower brain oscillations with reduced irreg-
ularity, complexity, and variability [14–16]. Furthermore, it has been
shown that both MCI and AD impact static functional connectivity, and
are considered as ‘‘disconnection syndromes’’ [9–11,17–19]. In recent
years, there has been a growing interest in investigating how MCI and
AD affect dynamic functional connectivity patterns (dFC) [20–23]. This
approach is grounded on the premise that the interactions between
brain regions do not remain stable across time [22,24]. Some intriguing
discoveries have emerged in this field, such as aberrant dFC patterns in
resting-state, which have been linked to MCI and AD. However, many
of these studies consider that neural activity can be grouped in fixed
frequency ranges, as they are conducted after filtering the signals in
the so-called ‘‘canonical’’ frequency bands.

Although the canonical frequency bands are supported by a large
array of literature, they have some limitations, including: Rodríguez-
González et al. [8] and Newson and Thiagarajan [25]: (i) they were
established around eight decades ago when the acquisition technology
differed significantly from modern systems; (ii) the modern analysis
algorithms have considerably evolved since the original definition of
the canonical frequency bands; (iii) the frequency boundaries are not
consistent across studies, thereby hindering the replication of findings;
and (iv) the bands are fixed and, thus, they do not account for subject-
specific neural oscillatory patterns. In a previous study, we found that,
these bands accurately reflect the group-level activity in MEG signals,
however, they overlook important information about subject-specific
neural idiosyncrasies [8].

Previous research has demonstrated that MCI and AD alter the time-
dependent connectivity structure, leading to less stable brain states
in time [21]. There, Núñez and colleagues employed the canonical
frequency bands, considering the frequency patterns comparable for
controls, MCI, and AD patients. However, in this study employed the
novel Connectivity-based Meta-Bands (CMB) methodology introduced
in [8] to evaluate whether these pathologies (MCI and AD) are affecting
the frequency-dependent connectivity structure of neural activity, in
addition to the time-dependent connectivity structure, as Núñez and
colleagues demonstrated [21,22,26]. To the best of our knowledge, this
is the first time that the influence of MCI and AD in this network-
based frequency structure is assessed. We hypothesised that MCI and
AD disrupt the meta-band structure, that is, the neural mechanisms that
regulate the frequency-dependent connectivity structure. Therefore,
two main objectives were proposed for the present study: (i) to evaluate
the sensitivity of the CMB algorithm to the alterations elicited by MCI
and AD; and (ii) to develop new metrics to characterise these changes.

2. Materials and methodology

2.1. Participants

A total of 161 participants were included in the study: 67 healthy
elderly controls, 44 patients with MCI, and 50 patients with dementia
due to AD. The diagnoses were carried out according to the National In-
stitute on Aging and Alzheimer’s Association (NIA-AA) criteria [27,28].
The healthy elderly controls (HC) did not suffer psychiatric disorders
nor have a history of neurological alterations.

Statistical tests were conducted to evaluate differences between
sociodemographic variables. The groups displayed differences in age
2

Table 1
Sociodemographic and clinical data of the participants. HC: cognitively healthy elderly
controls; MCI: patients with mild cognitive impairment; AD: patients with dementia due
to Alzheimer’s disease; m: mean; std: standard deviation; M: male; F: female; MMSE:
Mini-mental state examination.

Feature Group

HC MCI AD

Number of subjects 67 44 50
Age (years, m ± std) 71.0 ± 7.6 77.2 ± 6.1 81.6 ± 7.0
Sex (M:F) 32:35 12:32 23:27
MMSE (m ± std) 29.5 ± 0.8 26.0 ± 2.6 17.4 ± 5.7

(𝜒2 = 44.48, p-value < 0.001, Kruskal–Wallis test), but not in sex (𝜒2

= 5.16, p-value = 0.076, Chi-squared test). The sociodemographic and
linical data of the sample are displayed in Table 1.

Participants and caregivers provided their written informed consent
or the study before their participation. All the analyses were conducted
n accordance to the Code of Ethics of the World Medical Association
Declaration of Helsinki). The Ethics Committees of Hokuto Hospital
Obihiro, Japan; approval numbers: #1001, #1007-R3, #1020, and
1038), and Kumagaya General Hospital (Kumagaya, Japan; approval
umbers: #25, #26, #51, and #76) gave their approval for the research
rotocol.

.2. MEG recordings

Magnetoencephalographic (MEG) resting-state neural activity was
cquired for 5 min for each subject. During the recording, participants
emained in supine position and awake, with their eyes closed. All the
ecordings were monitored in real time by the researchers in order to
nsure safety and prevent somnolence.

The MEG acquisition took place in the Hokuto Hospital and Ku-
agaya General Hospital using a MEG Vision PQ1160C (Yokogawa
lectric, sampling frequency of 1000 Hz) and a RICOH160-1 (RICOH
ompany, 𝑓𝑠 = 2000 Hz), respectively. Both systems are functionally
quivalent, consisting on a whole-head 160-channel axial gradiometers
ystem placed in a magnetically-shielded room. Before the recordings,
he head position was scanned by means of coil markers placed on the
ead of the patient.

.2.1. MEG preprocessing
The MEG recordings obtained at Kumagaya General Hospital were

ownsampled to 1000 Hz to homogenise the MEG recordings. Then, the
ame 5-step preprocessing protocol was applied to all the signals [29]:
i) application of the SOurce-estimate-Utilising Noise-Discarding
SOUND) algorithm to remove artifacts [30]; (ii) finite impulse re-
ponse (FIR) bandpass filtering between 1 and 70 Hz to limit noise
andwidth; (iii) finite impulse response (FIR) bandstop filtering be-
ween 49 and 51 Hz to remove powerline interference; (iv) artifact
ejection by means of independent component analysis (ICA); and (v)
election of 5-s artifact-free trials by visual inspection.

.2.2. Source inversion
Source-level time courses were obtained by means of the weighted

inimum norm estimation (wMNE) method [31]. This method restricts
he solutions by minimising the energy of the solution, weighting
eeper sources to ease their detection [31]. This algorithm displays
ood performance with MEG signals [31–34]. The implementation
f this method is freely available in the Brainstorm toolbox (http://
euroimage.usc.edu/brainstorm) [35]. The ICBM152 anatomical tem-
late was used to create the forward model [36,37]. A boundary
lement method head model with three layers (brain, skull, and scalp)
as created by means of OpenMEEG [29,38]. Source space was re-

tricted to the cortex, considering 15 000 sources, which were limited
o be normal to cortex [29]. Sources in opposite directions were flipped
o avoid having neighbouring generators blurring the sources [39].
inally, the 15 000 sources were grouped in the 68 regions of interest
ROIs) provided by the Desikan-Killiany atlas [29,40,41].

http://neuroimage.usc.edu/brainstorm
http://neuroimage.usc.edu/brainstorm
http://neuroimage.usc.edu/brainstorm
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2.3. Methods: Connectivity-based meta-bands

Our analyses were based on a novel methodology developed for
extracting the meta-bands (i.e., network topologies repeated across fre-
quencies, that are considered as attractors of the connectivity topology
in each frequency bin): the CMB algorithm [8]. These meta-bands are
frequency ranges defined on the basis of the similarity of their under-
lying connectivity patterns [8]. In this study, the original processing
pipeline was adapted to ease the characterisation of the pathological al-
terations, and reduce its computational burden, considering a potential
clinical implementation. The CMB algorithm provides a thorough de-
scription of the connectivity patterns with a high frequency resolution.
Then, these frequency-dependent connectivity patterns are grouped in
communities (i.e., meta-bands) by means of the Louvain GJA algorithm.
Please refer to Rodríguez-González et al. [8] for a full description of the
algorithm.

The same hyper-parameters as in [8] were employed, since they
have been optimised for MEG signals with similar characteristics to
those used here: a sampling frequency of 1000 Hz, filter bandwidth
of 1 Hz, frequency overlapping of the filters of 50%, and filter order of
500. Additionally, the analyses were conducted in the frequency range
between 1 and 70 Hz, discarding the connectivity matrices between
47.5 and 52.5 Hz to avoid the influence of powerline interference and
the filtering process associated to it [8,42].

Firstly, MEG signals were preprocessed and their source-level time
courses were extracted by means of the wMNE algorithm, as described
in Section 2.2.2. Of note, the algorithm hyperparameters (i.e., filter
order, frequency resolution, and filter overlap) were set according to
the values established in [8]. Then, based on the hyper-parameters
previously defined, a narrowband 1-Hz filter bank was applied to the
MEG recordings at source level. Next, the functional connectivity was
estimated for each of these narrowband signals using the orthogo-
nalised version of the amplitude envelope correlation (AEC). The HC
sample was randomly divided into two different subsets: (i) the HCtrain
subset, composed of 37 subjects; and (ii) the HCtest subset, composed
of 30 subjects. With this, we pretended to emulate a real clinical
environment. There, when the diagnostic support tool is developed,
the ‘‘reference’’ meta-band topology and sequencing (i.e., those for
cognitively healthy controls) are extracted only once at the beginning
and maintained throughout all the study (i.e., they should not change
with every inclusion of a new subject). Furthermore, this division also
supports the robustness of the methodology, as it can be observed that
the data distribution for the HCtest group is closer to the HCtrain than the
other groups (MCI and AD). After that, frequency-dependent recurrence
plots (RPs) were created for the HCtrain subset, and the connectivity
community detection was carried out by means of the Louvain GJA
algorithm. Following this process, we obtained the frequency activation
sequence (FAS), as well as the meta-band network topologies for the
HCtrain group. Of note, the meta-bands were ordered according to their
frequency of occurrence (i.e., the first meta-bands will be the one
that is active in the largest number of bins in the FAS). Next, these
meta-band network topologies were used as reference to compare with
the frequency-dependent connectivity matrices associated to the other
groups (HCtest subset, MCI patients, and AD patients) and to generate
the corresponding FAS. Further details of the methodology are provided
in the Supplementary Material.

The meta-bands obtained for the HCtrain sample were used as the
canonical connectivity patterns of a ‘‘healthy’’ brain. This method
facilitates direct comparisons, not only of the meta-band structure itself,
but also of the activation sequence across frequencies. Otherwise, as the
meta-bands can be different across groups, their comparison would not
be straightforward. Therefore, this approach allows for implementation
in clinical settings, as it is scalable and can easily accommodate new
pathological groups without requiring re-computation of the meta-
3

bands for each group every time a new patient is included [8]. In c
addition, the definition of a HCtest sample avoids the bias of estimat-
ing the parameters with the same subjects employed to extract the
meta-band topologies.

The community detection step returns two main results: (i) the
network topology associated to each of the meta-bands and (ii) the FAS.
The former describes the average connectivity matrix for each meta-
band, which groups the recurrent network topologies across frequen-
cies. On the other hand, the FAS is a categorical function specifying the
dominant meta-band in each frequency bin, i.e., the meta-band network
topology displaying highest correlation with each frequency-specific
connectivity matrix.

The network topologies of the meta-bands previously obtained were
used to generate the FAS for the other groups (HCtest, MCI patients,
and AD patients) by correlating those topologies with the connectivity
matrices of each frequency bin. The meta-bands for the other groups
were not extracted, as the objective of the present study was to assess
the deviation that AD and MCI provokes regarding the meta-bands (and
its associated FAS) from a healthy elderly population. A summary of
this methodology is graphically represented in Fig. 1.

2.4. Novel metrics to parametrise the frequency activation sequence (FAS)

In order to parametrise the frequency structure of the meta-bands,
we used a diverse array of metrics, some of them defined for the first
time in the context of the present work. These metrics can be grouped
in two categories, depending on the characteristics of the frequency-
dependent connectivity structure they measure: (i) alterations in the
frequency-dependent connectivity topology, quantified using the At-
traction Strength (AS), Degree of Dominance (DoD), and Topological
Adaptation (TA); and (ii) alterations in the meta-band sequencing,
summarised by means of the Switching Rate (SR), and Band Complexity
(BLZC). While AS and DoD were already presented in [8], TA, SR and
BLZC are introduced here for the first time.

2.4.1. Topological adaptation
The Topological Adaptation (TA) summarises the similarity of the

frequency-dependent connectivity matrices assigned to a given meta-
band and the reference topology of each meta-band obtained from
the HCtrain group. It is estimated as the global Spearman correlation
between the mean of all the connectivity matrices assigned to a specific
meta-band, and the topology of a specific meta-band. It is computed as
follows:

𝑇𝐴𝑖 = corr
(

𝑚𝑖,𝑀𝑖
)

, (1)

where 𝑚𝑖 is the mean of all the connectivity matrices assigned to
the meta-band 𝑖, and 𝑀𝑖 is the connectivity matrix associated to the
meta-band 𝑖. The higher the values of TA, the better adaptation of
he frequency-dependent connectivity matrices to the extracted meta-
ands.

.4.2. Attraction Strength
The Attraction Strength (AS) measures the degree of adaptation

f the functional connectivity matrix in each frequency bin to its
orresponding meta-band [8]. It is formally defined as the Spearman
orrelation between each frequency-dependent connectivity matrix and
he corresponding meta-band [8].

𝑆(𝑖) = 𝑐𝑜𝑟𝑟(𝑎𝑖,𝑀𝑑𝑖), (2)

here 𝑐𝑜𝑟𝑟(⋅) is the Spearman correlation, 𝑎𝑖 the connectivity matrix
t the frequency 𝑖, and 𝑀𝑑𝑖 the network topology of the dominant
eta-band at the frequency 𝑖. Higher values mean better fit to the
orresponding dominant meta-band.
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Fig. 1. Flow diagram of the employed methodology to assess the frequency-dependent connectivity structure of MEG activity: (1) Preprocessing — The signals are preprocessed,
and their source-level time courses reconstructed; (2) Connectivity estimation in band-limited signals — For all the subjects, MEG signals are filtered using a narrowband 1-Hz filter
bank, and the orthogonalised version of the amplitude envelope correlation (AEC) is used to estimate the functional connectivity for each filtered signal; (3) Meta-band extraction for
the HCtrain subset — For a subset of the healthy controls sample (the ones considered for training), recurrence plots describing repetitions of the frequency-dependent connectivity
structure are computed, and a community detection process is carried out based on the Louvain GJA algorithm; (4) Extraction of the frequency activation sequence (FAS) and
other parameters for the other groups — Using the meta-bands extracted in step (3), the FAS, Topological Adaptation (TA), Attraction Strength (AS), Degree of Dominance (DoD),
Switching Rate (SR), and Band Complexity (BLZC) are obtained for the other groups under study (HCtest subset, MCI patients, and AD patients).
2.4.3. Degree of Dominance
The Degree of Dominance (DoD) evaluates how each connectivity

matrix in a given frequency bin fits its corresponding dominant meta-
band as opposed to the non-dominant meta-bands [8]. It is computed as
the AS minus the average Spearman correlation between the connectiv-
ity matrix in each frequency bin and the corresponding non-dominant
4

meta-bands [8]:

𝐷𝑜𝐷(𝑖) = 𝑐𝑜𝑟𝑟(𝑎𝑖,𝑀𝑑𝑖) −
1

𝑚 − 1

𝑚
∑

𝑛=1
𝑛≠𝑑

𝑐𝑜𝑟𝑟(𝑎𝑖,𝑀𝑛𝑖), (3)

where 𝑀𝑛𝑖 is the network topology of each of the non-dominant meta-
bands at the frequency 𝑖, and 𝑚 the number of meta-bands identified
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with the HCtrain subset. Higher values mean better fit to the dominant
meta-band when compared with the non-dominant meta-bands.

2.4.4. Switching rate
The switching Rate (SR) parameter measures the proportion of

frequency bins where a meta-band change occurs as a fraction of the
total number of frequency bins. Higher values of SR indicate less stable
meta-bands.

2.4.5. Band complexity
The Band Complexity (BLZC) is defined as the Lempel–Ziv Complex-

ity of the FAS. Further details on the computation of the Lempel–Ziv
Complexity can be found in [43]. Higher values are associated with
an increased complexity in the FAS structure, which is related to a
higher number of different meta-band sequences. Similar metrics have
been used to characterise the complexity of the activation of time
meta-states [22,24].

SR and BLZC provide complementary information. The former com-
putes only the number of meta-band changes, while the latter calculates
the complexity of the meta-band sequencing. For example, a subject
continuously changing between meta-band 1 and 2 will display high
SR values, but low BLZC ones.

2.5. Statistical analyses

To evaluate the between-group statistically significant differences
in the parameters, a bootstrapping approach was employed [44,45].
The distribution of the average differences between all pairs of groups
was computed after bootstrapping (resampling with replacement) the
groups 50 000 times for each comparison [44,45]. The p-value was
considered as twice the proportion of average differences greater or less
than 0 (the smallest of them) [44,45]. For each comparison, it was re-
ported the grand-average of the difference values and the p-value [45].
The multiple comparison problem was controlled by applying false
discovery rate (FDR) correction using the Benjamini and Hochberg
procedure [45,46].

3. Results

3.1. Potential impact of age as confounding factor

To prevent misinterpretation of results, the impact of age as con-
founding factor was evaluated in the parameters under study. Results
showed no significant impact in any of the parameters under study
(p-value > 0.05, Spearman’s correlation test, FDR corrected).

3.2. Computation of the frequency activation sequencing (FAS)

The network topologies of the three main meta-bands detected
for the HCtrain subset, as well as the corresponding FAS are depicted
in Fig. 2. The FAS for the HCtest subset, MCI patients, and AD pa-
tients groups are also included in Fig. 2. There, it can be appreciated
that the advance of the pathology progressively blurs the underlying
frequency-dependent connectivity structure.

For the HCtrain subset, three main meta bands were identified: meta-
band 1, with a widespread network topology for low (around the
delta band) and high frequencies (around gamma band); meta-band
2, around beta frequencies with a mid-frontal topology; and meta-
band 3, with a posterior distribution of connections around alpha and
very few frequency bins around high beta. The FAS for the HCtest
subset displays a similar pattern to that for the HCtrain subset. On
the other hand, it can be observed that the FAS for the MCI and
AD patients groups revealed a gradual degradation on the frequency-
dependent connectivity structure: the meta-bands 2 and 3 are altered,
progressively losing stability and presence.

Also, it is noteworthy that the values for the HCtrain are closer to the
Ctest than to the other groups. This happens consistently for all the
etrics that will be further evaluated in this manuscript, and it is very
5

elevant as it points out that both HC groups show coherent behaviour.
3.3. Alterations in the structure of the frequency-dependent connectivity

The TA values for the different combinations of connectivity ma-
trices and meta-bands are depicted in Fig. 3. This metric evaluates
the alterations that the pathology elicits in the meta-band topological
structure. The panel in row 𝑖 and column 𝑗 represents the TA of the
mean of the connectivity matrices assigned to meta-band 𝑖 and the
network topology of meta-band 𝑗. For all the comparisons, a similar
tendency arises, with lower values as dementia progresses. For all the
comparisons, statistically significant differences between HC and AD
patients can be observed. Furthermore, all the comparisons involving
the connectivity matrices assigned to meta-band 1 show statistically sig-
nificant differences between HC and MCI patients as well. Additionally,
when comparing the connectivity matrices assigned to meta-band 2 and
the network topologies of meta-bands 2 and 3, statistically significant
differences between patients with MCI and AD can also be observed.

The differences in the mean and standard deviation of the AS are
depicted in Fig. 4. The mean of the AS shows a decrease with the
development of the pathology, with statistically significant differences
between HC and AD patients. On the other hand, the standard deviation
of the AS seems to be less affected by the pathology, with no statistically
significant differences between groups. It is noteworthy that the data
distribution of the HCtrain group shows a distribution of values closer
o the HCtest than to the other groups, specially for the AS.

In Fig. 4, the data distribution of the mean and standard deviation
of the DoD across groups can be appreciated. Both metrics, the mean
and the standard deviation of the DoD, show a similar tendency:
values become smaller along with the development of the dementia.
Furthermore, while the mean of the DoD shows statistically significant
differences between HC and AD patients, the standard deviation of the
DoD obtains statistically significant differences for the three compar-
isons under study (HC-MCI, HC-AD, and MCI-AD). As expected, DoD
values for HCtrain are closer to those for HCtest than for the pathological
roups.

.4. Alterations in the meta-band sequencing

Fig. 5 shows the data distribution for the SR and BLZC for all the
groups under study. Despite the aforementioned differences in the
patterns that they characterise, both metrics display increasing values
with the progression of the pathology. Furthermore, both of them
display statistically significant differences between HC and AD patients.

4. Discussion

In this study, we have characterised the frequency-dependent con-
nectivity structure of MEG signals in elderly controls, MCI patients and
AD patients, using a distinct subset of healthy controls as a reference
group. Our findings demonstrated that: (i) the CMB algorithm is sen-
sitive to the alterations provoked by MCI and AD in the underlying
meta-band structure; (ii) the novel metrics introduced in this study are
useful to quantify subtle changes in frequency-dependent connectivity
structure.

4.1. The frequency-dependent functional connectivity patterns

Firstly, it is noteworthy that the meta-band segmentation presented
in this study exhibits considerable deviation from conventional fre-
quency band segmentations. The CMB methodology proposes an alter-
native, automatic, FC-based, and subject-specific frequency band seg-
mentation that shifts the focus of the conventional approaches. Thus,
the observed differences in the results between the two approaches are
reasonable. However, it is still possible to find common points between
them, such as the identification of a meta-band around the canoni-

cal alpha band. For a more comprehensive comparison of the CMB
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Fig. 2. (A) FAS and network topology of the three main meta-bands detected for the reference (i.e., HCtrain) group. (B) FAS of each subject of the HCtest subset, extracted using
the reference (HCtrain) network topologies. (C) FAS of each subject of the MCI group, extracted using the reference (HCtrain) network topologies. (D) FAS of each subject of the AD
group, extracted using the reference (HCtrain) network topologies. Colours in plots indicate the dominant meta-band at each frequency bin (green: meta-band 1; brown: meta-band
2; and blue: meta-band 3).
algorithm with canonical frequency bands, please refer to Rodríguez-
González et al. [8]. Furthermore, the identification of non-adjacent
meta-bands (i.e., meta-bands expanding across non-adjacent frequency
ranges) also deserves further attention. As discussed in [8], several
explanations may account for this observation. Firstly, it could be a
spurious effect arising from averaging different trials, as it neglects
the dynamic behaviour of functional connectivity [22,24]. Secondly,
it could be due to cross-frequency coupling patterns, which have been
proven to play a pivotal role in resting-state activity [47,48]. Finally, it
could be the result of grouping frequencies based on their underlying
network topology. Consequently, this does not imply the existence of
only three global meta-bands, but rather indicates similar network
topologies operating across distant frequencies. For a more detailed ex-
planation of the reasoning behind the non-adjacent meta-bands, please
see [8].
6

The structure of the meta-bands obtained for the HCtrain subset is
consistent with that of a prior study [8]. In that study, 3 meta-bands
were identified with a larger sample (123 subjects) that included not
only elderly subjects, but also cognitively healthy young volunteers.
Thereby, the FAS obtained for the HC subsets (HCtrain and HCtest) is
aligned with the outcomes reported by Rodríguez-González et al. [8],
where a similar meta-band sequencing was obtained for MEG activity.
The most noticeable distinction between the FAS obtained in these
studies is evident in the meta-band centred around the alpha band.
While this meta-band (i.e., meta-band 3) is predominantly concentrated
around alpha frequencies in this study, it exhibited a more significant
presence around high beta frequencies in [8]. Two primary factors
may account for this discrepancy. Firstly, the difference in sample size,
which has been demonstrated to influence the results [8]. Secondly,
the differences in age between the samples may also, at least partially,
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Fig. 3. Distribution plots of the TA between the connectivity matrices assigned to a specific meta-band (rows) and the network topology of the three different meta-bands (columns).
Statistically significant between-group differences are indicated with horizontal grey lines (p < 0.05, bootstraping approach FDR-corrected). m: mean of the connectivity matrices
assigned to a specific meta-band; M: network topology of a specific meta-band; HCtrain: healthy elderly control train subset (blue); HCtest: healthy elderly control test subset (green);
MCI: patients with mild cognitive impairment group (yellow); AD: patients with dementia due to Alzheimer’s disease group (red). The data distribution of the HCtrain is displayed
for completeness, but it is not included in the comparisons.
Fig. 4. Distribution plot of the mean (first column), and standard deviation (second
column) of the AS (first row) and DoD (second row). Statistically significant between-
group differences are indicated with horizontal grey lines (p < 0.05, bootstraping
approach FDR-corrected). AS: Attraction Strength; DoD: Degree of Dominance, m:
mean; std: standard deviation; HCtrain: healthy elderly control train subset (blue);
HCtest: healthy elderly control test subset (green); MCI: patients with mild cognitive
impairment group (yellow); AD: patients with dementia due to Alzheimer’s disease
group (red). The data distribution of the HCtrain is displayed for completeness, but it
is not included in the comparisons.

Fig. 5. Distribution plots of the SR and the BLZC. Statistically significant between-group
differences are indicated with horizontal grey lines (p < 0.05, bootstraping approach
FDR-corrected). SR: Structural Richness; BLZC: Band Complexity; HCtrain: healthy elderly
control train group (blue); HCtest: healthy elderly control test group (green); MCI:
patients with mild cognitive impairment group (yellow); AD: patients with dementia
due to Alzheimer’s disease group (red). The data distribution of the HCtrain is displayed
for completeness, but it is not included in the comparisons.
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contribute to this discrepancy, as it has been established that age can
affect functional connectivity patterns [49–51].

4.2. Beyond the disconnection syndrome: blurring of the meta-band struc-
ture

This study provides novel evidence that the structure of the meta-
bands is progressively altered by dementia, as indicated by TA, AS, and
DoD metrics. Previous research has identified alterations in functional
connectivity patterns associated with MCI and AD, leading to their
classification as a disconnection syndromes [19,52–56]. Interestingly,
a recent study proposed a novel method that combines deep learning
and explainable artificial intelligence to study the frequency-dependent
connectivity alterations associated with AD and MCI [57]. This paper
focuses on identifying the neural dynamics that reflect the transition
between these two pathological states [57]. However, the current work
is the first study to consider these alterations as a dilution of the
underlying frequency structure, rather than solely a disconnection.

The findings of the current study suggest that dementia alters the
frequency-dependent structure of connectivity, as demonstrated by the
TA metric, which showed statistically significant differences between
HC and AD groups. This result is consistent with previous studies by
Knyazeva and colleagues [58,59], who observed global functional con-
nectivity alterations in AD when analysing the broadband. Additionally,
the connectivity matrices assigned to the meta-band 1 showed signifi-
cant differences between HC and MCI patients across all comparisons.
Given that these matrices appear around delta and gamma frequencies,
the results suggest that early alterations associated with dementia may
manifest in these frequency bands. This is consistent with previous
studies that have reported alterations in functional connectivity in MCI
and early AD patients in delta [60–62] and gamma frequencies [63].
Interestingly, delta and theta functional connectivity have been found
to be associated with the progression from MCI to AD [62]. In the
same study, it can be appreciated that the differences in functional
connectivity between HC and MCI are not produced in specific brain
regions but in a widespread fashion [62]. This is in line with the
topology of the connectivity matrices assigned to the meta-band 1;
although this should be carefully interpreted as the comparison is not
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straightforward. Additionally, the comparisons between the connectiv-
ity matrices assigned to the meta-band 2 and the meta-bands 2 and 3,
display statistically significant differences between HC and AD patients,
and between MCI patients and AD patients (but not between HC and
MCI patients). These matrices correspond with frequency bins around
the conventional beta band, having a mid-frontal network topology,
which suggests that the pathological alterations in these frequencies
and brain areas have not yet emerged in the MCI phase.

The AS displays only statistically significant values in the compari-
son between HC and AD patients. This indicates that the adaptation of
the connectivity matrices to the dominant meta-band is only affected
in later stages of the pathology. Meanwhile, the DoD metric shows
statistically significant differences in mean values between HC and
AD patients, and in standard deviation values for all three compar-
isons (HC-AD, HC-MCI, and MCI-AD). These findings suggest that the
pathological changes not only reduce the adaptation of the connectivity
matrices to the dominant meta-band, but also the similarity balance
between the dominant meta-band and other meta-bands, likely to a
greater extent, resulting in a decreased similarity balance. These find-
ings point out to a dilution of the network topologies in pathological
states, compared to those of the HC subjects, as: (i) the similarity with
the dominant meta-band is decreased; (ii) the difference in similarity
between the dominant meta-band and the other ones is decreased; (iii)
the standard deviation of the previous metric (DoD) is also reduced.
These pathological alterations result in more homogeneous topologies,
suggesting the loss of specialised and integrated networks, with their
functions assumed by other brain regions. This is in line with previous
studies that have used EEG and MEG signals to demonstrate that AD
patients exhibit decreased clustering coefficient and modularity, indica-
tive of more heterogeneous and widespread network topologies [64–
66]

SR and BLZC display a similar pattern, with progressively increasing
values for MCI and AD patients and statistically significant differences
between HC and AD patients. Nonetheless, as it has been previously
stated, they reflect different properties of the meta-band structure.
Firstly, the results obtained with SR indicate that MCI and AD can
be associated with less stable meta-bands. This metric is similar to
the dwell time used in a previous study by Núñez and colleagues,
which characterised the stability of time-dependent meta-states [22].
In that study, it was observed that the stability of the meta-states
decreased for MCI and AD patients, which is in agreement with our
findings [22]. It is worth noting that a previous study reported a
decreased transition frequency for AD patients, which is related to
the width of the alpha band [67]. This narrowing of the alpha band
may be a consequence of the disruption of the frequency-dependent
connectivity structure that we observed in MCI and AD patients. As
suggested by Moretti and colleagues, these alterations might be asso-
ciated with compensatory mechanisms [67]. Moreover, the dilution of
the meta-band structure observed in the pathological patients results
in an increased number of meta-band changes. In this regard, we also
observed an increase in BLZC for pathological patients, which suggests
that the mechanisms governing meta-band transitions are affected by
the disease. Notably, a previous study reported an increase in the
complexity of time-dependent EEG meta-state sequencing [22]. Both
findings support the notion of a gradual loss of the time-frequency
structure of the functional neural network associated with AD progres-
sion. Regarding temporal meta-states, it has been observed that more
stable meta-states are a way to keep the efficiency of the networks [68,
69]. Furthermore, the efficiency of temporal meta-state transitions has
been linked to higher cognitive functions [69]. Hence, the decreased
complexity of the FAS for HC may be attributed to an optimisation of
brain function, where the number of transitions between meta-bands is
limited.

This study applies a novel algorithm to evaluate the alterations that
MCI and AD elicit in MEG signals. It employs a completely new per-
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spective, laying the groundwork for further investigations. Our findings
demonstrate that distinct frequency-dependent connectivity patterns
are present during rest among HC, MCI, and AD patients. These findings
are of utmost significance, as they shed light on the underlying mech-
anisms of AD progression and offer a potential explanation for the lack
of consensus in network dynamics observed in this disease [70–72].

4.3. Limitations and future lines

Although this study has yielded very interesting and promising
results, there are some limitations that should be further considered.
First, the CMB methodology itself present some constraints (i.e., it has
been optimised for resting-state signals; it requires to select some hyper-
parameters; and it considers the FC stable in time). A more detailed
description of the CMB methodology can be found in [8]. This algo-
rithm, employs the Louvain GJA community detection methodology as
it does not require to a-priori define the number of communities to be
detected. Nonetheless, it could be interesting to explore the results us-
ing other community detection methods, such as Infomap or Newman’s
Spectral Approach, to verify the consistency of the findings [73].

Furthermore, a per-group community detection approach was em-
ployed, enabling direct comparisons of detected meta-bands across
groups. However, the use of an individual (i.e., subject-based) com-
munity detection approach would emphasise individual differences.
Future studies could consider utilising this approach in conjunction
with longitudinal neurophysiological recordings, which may uncover
subject-specific alterations related to the trajectory of AD. Also, it could
be useful to not only consider the FAS, which is a ‘‘hard’’ assignment of
the dominant meta-band in each frequency bin, but also use the specific
correlation values with each of the detected meta-bands [24].

Finally, the performance of the CMB methodology has been previ-
ously assessed in EEG recordings (with 19 and 32 channels), demon-
strating a decreased performance compared to MEG signals [8]. The
CMB methodology should also be tested with other neuroimaging
techniques (e.g., fMRI or high-density EEG), to further evaluate the
robustness of the results across different modalities of functional brain
imaging.

5. Conclusions

In this study, we have applied a novel methodology to identify
the alterations in the frequency-dependent connectivity structure of
resting-state MEG recordings induced by MCI and AD. Our analysis has
revealed a gradual blurring of network topologies associated with AD
progression, as indicated by the TA, DoD, and AS metrics. Furthermore,
SR and BLZC metrics indicate that the meta-band sequencing is also
diluted, with a more complex and heterogeneous frequency-dependent
structure in MCI and AD patients. The metrics that we have proposed
here are capable of quantifying the subtle alterations that MCI and AD
elicit in the frequency-dependent structure of neural signals, and may
be used in future studies to facilitate the diagnosis of MCI and AD.
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