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S1. Sn LPS construction 

The method used to construct the Sn local pseudopotential (LPS) followed two steps: 1) we 

constructed a Sn bulk-derived local pseudopotential (BLPS);1 and 2) we modified the resulting 

BLPS by using a force-matching (FM)2 process to better capture the liquid dynamics. The BLPS 

was constructed following the method previously introduced by Zhou et al.,1 where converged 

valence electron densities from various crystalline phase structures of Sn, calculated with Kohn-

Sham (KS) density functional theory (DFT) with a nonlocal pseudopotential (NLPS), were used as 

input to invert the KSDFT equations. A local KS effective potential is obtained from each valence 

electron density used as input. Afterwards, these effective potentials are unscreened by removing 

the Hartree electron repulsion and exchange-correlation (XC) potentials in order to obtain the 

approximate ionic external potential. As a consequence of using as a reference system a bulk 

crystalline environment, the atom-centered ionic potential (i.e., the atomic BLPS) is obtained by 

using the bulk crystal’s structure factor. Normally, all of these local potentials lie on a universal 
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curve, and a final BLPS can be obtained by the interpolation between all of the discrete data 

gathered for these atomic-centered ionic potentials. However, two free parameters are left to be 

tuned:3 1) the value of the non-Coulombic part of the BLPS in reciprocal space at q=0, namely 

vncBLPS(q = 0); and 2) rc as the point beyond which the Coulombic tail is enforced onto the BLPS in 

real space, namely vBLPS(r). These two parameters, vncBLPS(q = 0) and rc, are fit to reproduce the 

bulk moduli, equilibrium volumes, and relative phase energies obtained using an NLPS within 

KSDFT.  

KSDFT calculations were performed using the ABINIT planewave (PW) DFT code.4,5 We 

used a Troullier-Martins (TM) NLPS,6 generated with the FHI98PP code7 using the default core 

cutoff radii provided by the code. A Fermi-Dirac smearing with a width of 0.1 eV was used to 

smooth out the Fermi surface for all systems. All k-point meshes employed to sample the Brillouin 

zone were generated via the Monkhorst-Pack method.8  Integration over the Brillouin zone is 

performed using a Fermi-Dirac smearing with a width of 0.1 eV for all systems. For the OFDFT 

calculations, although the Wang-Godvind-Carter999,10 kinetic energy density functional (KEDF) 

provided more accurate results for the solid phases, it exhibited divergence problems for l-Sn. We 

therefore used the Wang-Teter-style KEDF11 with α = β = 1 2⁄ , as parameterized by Smargiassi 

and Madden.12  

For the BLPS construction, we used the KSDFT-NLPS reference valence electron densities 

and properties from the following crystalline structures: β-Sn, α-Sn, simple cubic (sc), face-centered 

cubic (fcc), and body-centered cubic (bcc). β- and α-Sn crystal structures are characterized by a 

tetragonal structure and a cubic structure, respectively. For geometry relaxations and energy 

calculations, we used the primitive cells consisting of two atoms for both β- and α-Sn, and one atom 

each for the sc, fcc, and bcc structures. The Monkhorst-Pack k-point grids employed for these cells 

were 20 x 20 x 35 and 15 x 15 x 15 for β- and α-Sn, respectively, and 20 x 20 x 20 for sc, fcc, and 

bcc. A 1200-eV kinetic-energy cutoff for the PW basis set was used. The selected PW kinetic 

energy cutoff and k-point meshes ensure that the accuracy of the total energy is converged to within 
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1.0 meV/atom. Convergence thresholds for the stress tensor elements and forces on ions were 5 ×

10−7 hartree bohr-3 and 5 × 10−5 hartree bohr-1, respectively.  

The general representation of the l-Sn phases with OFDFT-BLPS fails, however, by 

predicting a melting point for Sn 50% higher than the experimental value.13 We therefore used the 

FM method to improve the liquid representation; the FM method has been applied successfully to 

obtain accurate LPSs for liquid beryllium (Be), calcium (Ca), and barium (Ba).2 The procedure 

starts by performing a KSDFT-NLPS molecular dynamics (MD) simulation (within either the NVT 

or NVE ensemble) of the liquid on a small sample over a short simulation time. The forces acting 

on each atom, which are obtained for each configuration of the KSDFT-MD/NLPS simulation, 

affect all of the liquid phase properties; a better representation of the forces implies a better 

representation of the liquid. Therefore, in the second step of the FM-BLPS construction, we 

randomly selected several atomic configurations from the KSDFT-MD/NLPS run and computed the 

forces acting on the atoms with OFDFT and the BLPS. Afterwards, the difference between OFDFT 

and KSDFT forces was minimized by modifying the BLPS through the addition of Gaussian 

functions in which the amplitudes and widths of each Gaussian are taken as fitting parameters. In 

this work, we used two Gaussians located at two regions in reciprocal space: q = 0 and q = 2kF, 

where kF is the Fermi momentum corresponding to the mean electron density of the system. The 

addition of the Gaussians is performed on the non-Coulombic part of the BLPS in reciprocal space. 

The benchmark KSDFT-MD/NLPS data used for the forces comparison was kindly provided by 

Calderín et al.14 from their previous work on the evaluation of l-Sn’s properties where they used 

205 atoms. They also used the local density approximation (LDA) XC potential in their simulation 

as we do here. 

The comparison between the initial BLPS and the final FM-BLPS is displayed in Figure S1. 

The main modification to the initial BLPS appears at q = 0, where the value of the BLPS is 

significantly lowered. 
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FIG S1. Non-Coulombic parts of the initial BLPS (solid line) and final FM-BLPS (dashed line).  

 

We then calculated the melting temperature with both BLPS and FM-BLPS to evaluate the 

level of improvement obtained by including FM to refine the initial BLPS. We employed the Z-

method15,16 to eliminate the superheating that occurs in the heat-until-melts method and to avoid the 

extensive computational effort of liquid-solid coexistence simulations.17–19 The Z-method is based 

on calculating the threshold of thermal stability where if a solid configuration is provided with 

higher energy than the liquid phase, then the system will melt and its temperature will drop to the 

melting temperature. The procedure only requires MD simulations run in the NVE ensemble. For 

each volume, various simulations are run, each with a different input energy determined by the 

input temperature. The systems used in this study contained 512 atoms in a β-Sn structure with a 

volume ranging from 0.042 Å−3 to 0.040 Å−3  in increments of 0.0005 Å−3. The initial temperatures 

tested for each volume varied from 400 to 1200 K in increments of 100 K. The melting temperature 

obtained for the initial BLPS is 758 K, 253 K higher than the experimental value of 505 K.13 The 
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melting temperature obtained with the FM-BLPS is 522 K, much closer to experimental value. 

Thus, by applying FM to the initial BLPS, we adapted the pseudopotential to more accurately 

represent the liquid phase.  

 

S2. Thermodynamic, structural, and transport properties of l-Sn 

The theoretical atomic densities for l-Sn at each different temperature were obtained with NPT 

OFDFT-MD simulations of 512-atom systems initially in a β-Sn structure (Table S.I). 

 

TABLE S.I. Calculated atomic densities (ρOFDFT−MD) and experimental atomic densities20 �ρexp� for l-Sn at 
temperatures ranging from 573 to 1873 K. 

T (K) 573 673 773 873 973 1073 1273 1873 

𝛒𝛒𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎−𝐌𝐌𝐌𝐌 0.0411 0.0399 0.0394 0.0390 0.0386 0.0381 0.0375 0.0351 

𝛒𝛒𝐞𝐞𝐞𝐞𝐞𝐞 0.0352 --- --- --- 0.0337 0.0335 0.0325 0.0309 

 

The computed atomic densities (ρOFDFT−MD) are higher than the experimental values 

�ρexp�. This increase in density is partly due to the use of the LDA XC functional, which overbinds 

atoms, producing too-small chemical bonds and hence cell volumes. To determine how the too-high 

density affects l-Sn, we evaluated different static and dynamic properties at each temperature and 

compared them to available experimental and computational data. The final systems used to 

compute all of the properties were composed of 1000 atoms. The cell volumes were defined by the 

atomic densities in Table S.I. 

 

Static structure factor 

An experimentally accessible quantity closely related to the atomic structure of the liquid is the 

static structure factor, S(q), defined by the autocorrelation function, 

S(q) = 1
N
〈ρ(q�⃑ )ρ(−q�⃑ )〉,                                                       (2) 

where averages are taken over the wave vectors with the same magnitude and over configurations. 

In Figure S2, we compare predicted S(q) for different temperatures along with the X-ray diffraction 
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data (XRD) of Waseda20 and the inelastic neutron scattering (INS) of Itami et al.21 The OFDFT-MD 

S(q) has a main peak that shifts negligibly with temperature, from qp ≈ 2.38 Å−1  at T= 573 K to 

qp ≈ 2.34 Å−1 at T= 1873 K. The second peak’s position shifts equally little, from ≈ 4.58 Å−1 at 

T= 573 K to ≈ 4.61 Å−1 at T= 1873 K. The subsequent oscillations are rather weak for all 

temperatures. Some discrepancies with the experimental data are visible at the lower temperatures 

between 573 and 973 K, especially for the position of the main and second peaks. However, 

OFDFT-MD recovers correctly the height and amplitudes of the main and second peaks. Moreover, 

the shoulder on the high-q side of the main peak, which is the most distinctive feature of the 

measured S(q) for l-Sn, is also reproduced by OFDFT-MD at all of the temperatures studied.  
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FIG. S2. Static structure factors of l-Sn at different temperatures from OFDFT-MD, along with experimental 

data of Waseda20 and Itami et al.21  

Self-diffusion coefficient 

The self-diffusion coefficient can be obtained from the time integral of the velocity 

autocorrelation function, Z(t),22 

D = 1
βm∫ Z(t)dt,                                                            (3) 

where m is the atomic mass, β = 1
kBT� , kB is the Boltzmann constant, and T is the temperature. 

We performed correlations on sets of 500 configurations for the calculation of Z(t).  

Figure S3 displays the temperature dependence of the mean self-diffusion of Sn atoms in l-

Sn at different temperatures. Comparison is provided with previous experiments and simulations, 

which exhibit significant dispersion in their results. Nevertheless, OFDFT-MD results follow the 

overall trend established by previous data. Specifically, OFDFT-MD results are slightly higher than 

Itami et al.’s KSDFT-MD data,21 which simulated 64 atoms, but lower than Vella et al.’s23 and 

Mouas et al.’s24 classical (C)MD data, which simulated 5000 and 8000 atoms, respectively. This 

behavior suggests a clear dependence of the self-diffusion coefficient on the sample size, as 

previously studied by Yeh and Hummer.25 They provided an expression to correct this shortcoming, 

Dcorr = DOFDFT−MD + kBTξ
6πηL

,                                                 (5) 

where kB is the Boltzmann constant, T is the temperature, ξ is a constant equal to 2.837297, η is 

the OFDFT-MD viscosity, and L is the periodic cell length (assuming a cubic box). In Figure S3, 

the corrected values for the self-diffusion coefficient (OFDFT-MD corr.) for temperatures higher 

than 773 K closely follow those of CMD by Mouas et al. All of the simulations yield diffusivities 
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smaller than experiment, especially at high temperatures.  However, the largest deviation is only a 

factor of two, which is acceptable. 

 

 

 

 

 

 

 

 

FIG. S3. Self-diffusion coefficients of l-Sn at different temperatures from OFDFT-MD, along with 

experimental and other MD data. Experimental data are taken from Bruson and Gerl26 and Itami et al.27 

KSDFT-MD data are from Itami et al.,21 and CMD data are from Mouas et al.24 and Vella et al.23 The error 

bars, representing a 95% confidence interval, are smaller than the symbols. 

Chen et al.28 studied in detail size effects on l-Li properties by performing both OFDFT-

MD and CMD. They used cell sizes ranging from 250 to 1024 atoms for OFDFT-MD and from 250 

to 6750 atoms for CMD. The self-diffusion coefficient curve obtained for the different cell sizes 

simulated at the same temperature was extrapolated to infinite cell sizes. They found that the 

correction parameter introduced by Yeh and Hummer25 recovered the same values as the 

extrapolation procedure.  

Adiabatic sound velocity 
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The dynamic structure factor, S(q,ω), at every temperature studied exhibits side peaks in a 

given wave-vector range, indicative of collective density excitations. The dispersion relation of such 

side peaks gives rise to a curve, ωm(q), where the slope at q → 0 equals the adiabatic sound 

velocity, cs.22 Figure S4 illustrates the temperature dependence of cs and its comparison with 

previous measurements by Hosokawa et al.29 and Blairs30 as well as the analytical values obtained 

by the experimentally derived equation by Blairs.30 Our OFDFT-MD results closely follow the 

experimental data, especially at temperatures lower than 1800 K; we therefore are able to correctly 

describe the collective density excitations present in the system. 

 

 

 

 

 

 

 

 

 

FIG. S4. Adiabatic sound velocities from OFDFT-MD and from experiments by Hosokawa et al.29 and 

Blairs.30 Stars: Predicted values from experimentally derived equation by Blairs.30 The error bars represent a 

95% confidence interval. 

Shear viscosity coefficient 
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We calculated the shear viscosity via the transverse current correlation function, CT(q,ω), 

by using the relationship,22 

η(q) = kBTρ
q2CT(q,ω=0),                                                         (6) 

where η(q) is the generalized shear viscosity and ρ is the atomic density. The shear viscosity 

coefficient, η, is obtained by extrapolating η(q) to q → 0. For such an endeavor, we use a 

Lorentzian as introduced by Balucani et al.,31  

η(q) = η
1+aq2

.                                                            (7) 

Results for the shear viscosity with respect to temperature for l-Sn are displayed in Figure S5. 

Along with our OFDFT-MD data, we include both experimental and CMD simulation data. As with 

the self-diffusion coefficient, the OFDFT-MD results are inside the region delimited by the 

experimental data, which exhibit a significant dispersion. Specifically, the OFDFT-MD results are 

close to the CMD results by Mouas et al.24 and Vella et al.,23 which fall into the intermediate region 

between the different experimental data sets. 
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FIG. S5. Shear viscosities at different temperatures from OFDFT-MD, along with experimental and CMD 

data. Experimental data are from Plevachuk et al.,32 Sun et al.,33 Tan et al.,34 and Rozhitsina et al. (following 

both a heating and cooling process).35 CMD data are from Mouas et al.24 and Vella et al.23 The error bars 

represent a 95% confidence interval. 

All of the studied properties agree quite well with available experimental data, suggesting that 

the overestimated atomic density does not significantly impact the results.  

 

S3. Collective dynamics of l-Sn at 573 K 

Intermediate scattering functions 

Table S.II presents the different correlation sets used to evaluate the intermediate scattering 

functions F(q, t). Time origins were taken at every time step. As the wave vector approaches the qp 

value, the correlation sets increase in length because F(q, t) decays more slowly in time, associated 

with the de-Gennes narrowing caused by strong structural correlations.22  

TABLE S.II. Number of configurations used in the correlation sets for each wave-vector range in the 

evaluation of F(q, t). 

𝐪𝐪-range (Å−𝟏𝟏) 

0.216-0.375 0.433-0.650 0.685-1.877 2.068-2.242 2.355-2.471 2.672-3.066 3.230-4.670 

2000 1000 700 2000 3000 2000 1200 

 

Current correlation functions 

Table S.III provides the different correlation sets and time origins used to evaluate both the 

transverse and longitudinal current correlation functions, CL(q, t) and CT(q, t). Time origins were 

always taken at every time step. 
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TABLE S.III. Number of configurations used in the correlation sets for each wave-vector range in the 

evaluation of CL(q, t) and CT(q, t). 
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