Phosphatidylinositol 4,5-bisphosphate anchors cytosolic group IVA phospholipase A₂ to perinuclear membranes and decreases its calcium requirement for translocation in live cells

Javier Casas, Miguel A. Gijón, Ana G. Vigo, Mariano Sánchez Crespo, Jesús Balsinde¹ and María A. Balboa²

Institute of Molecular Biology and Genetics, CSIC-UVa 47003 Valladolid, Spain.

¹To whom correspondence should be addressed. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid, Facultad de Medicina. Calle Sanz y Forés s/n, 47003 Valladolid, Spain. Phone: 34-983-423-062; FAX: 34-983-423-588; E-mail: jbalsinde@ibgm.uva.es

²Also corresponding author. Instituto de Biología y Genética Molecular (IBGM-CSIC), Universidad de Valladolid, Facultad de Medicina. Calle Sanz y Forés s/n, 47003 Valladolid, Spain. Phone: 34-983-184-833; FAX: 34-983-423-588; E-mail: mbalboa@ibgm.uva.es

RUNNING TITLE: PIP₂-induced translocation of cPLA₂ α .

Abstract

The eicosanoids are centrally involved in the onset and resolution of inflammatory processes. A key enzyme in eicosanoid biosynthesis during inflammation is Group IVA phospholipase A₂ (also known as cytosolic phospholipase A₂ α , cPLA₂ α). This enzyme is responsible for generating free arachidonate (AA) from membrane phospholipids. cPLA₂ α translocates to perinuclear membranes shortly after cell activation, in a process that is governed by the increased availability of intracellular Ca^{2+} . However, cPLA₂ α also catalyzes membrane phospholipid hydrolysis in response to agonists that do not mobilize intracellular Ca²⁺. How cPLA₂ α interacts with membranes under these conditions is a major, still unresolved issue. Here we phosphatidylinositol 4,5-bisphosphate report that $(PtdIns(4,5)P_2)$ promotes translocation of cPLA₂ α to perinuclear membranes of intact cells in a manner that is independent of rises in the intracellular Ca^{2+} concentration. PtdIns(4,5)P₂ anchors the enzyme to perinuclear membranes and allows for a proper interaction with its phospholipid substrate to release arachidonate.

Introduction

It is well established that the hydrolytic attack of AA-containing phospholipids by $cPLA_2\alpha$ constitutes the first regulatory step of the eicosanoid biosynthetic cascade (Bonventre, 2004; Hirabayashi et al., 2004). $cPLA_2\alpha$ is unique among all the phospholipase A₂ family members (Six and Dennis, 2000) due to its substrate selectivity for AA-containing phospholipids and its tight regulation by Ca^{2+} and phosphorylation (Clark et al., 1991; Lin et al., 1993; Gijón et al., 2000a; Dessen et al., 1999). Free AA generated by activated $cPLA_2\alpha$ can be oxygenated into a variety of compounds, called the eicosanoids, that not only are involved in acute and chronic inflammatory diseases such as arthritis, asthma, and postischaemic tissue-injury, but can also regulate physiological processes such as renal function, and female reproductive events including parturition (Bonventre, 2004; Hirabayashi et al., 2004; Uozumi et al., 1997; Bonventre et al., 1997).

cPLA₂ α is a cytosolic enzyme in resting cells and translocates to membranes when cell activation takes place. The enzyme possesses a calcium-binding domain (C2) in its N-terminal half that helps the enzyme interact with membrane phospholipid when the intracellular Ca²⁺ concentration ([Ca²⁺]i) rises. A single mutation in this domain, i.e. substitution of Asp-43 with Asn, D43N) completely abrogates the Ca²⁺dependent translocation of cPLA₂ α to cellular membranes and, as a result, AA release is inhibited (Perisic et al., 1999; Gijón et al., 1999; Qiu et al., 1998).

However, stimuli that are known not to affect $[Ca^{2+}]i$ such as bacterial lipopolysaccharide, phorbol esters or okadaic acid, are nonetheless able to induce robust AA mobilization and eicosanoid production responses in a cPLA₂ α -dependent manner (Shinohara et al., 1999; Gijón et al., 2000b). The mechanism by which

cPLA₂ α interacts with membranes under conditions that do not involve increase of intracellular Ca²⁺ concentrations ([Ca²⁺]i) has remained unaddressed.

In vitro activity studies carried by Leslie and Channon (1990) in the early 90's utilizing a partially purified cPLA₂ α preparation, had suggested that anionic phospholipids such as PtdIns(4,5)P₂ and phosphatidic acid, when incorporated into the vesicle substrate, were capable of stimulating the activity of the enzyme and decreasing its Ca²⁺ requirement from mM to nM levels. More recently, Mosior et al. (1998) described the potent and specific increase in affinity of pure cPLA₂ α for surfaces containing PtdIns(4,5)P₂ at physiological concentrations, and this effect paralleled an increase in substrate hydrolysis. Importantly, the enhancing effects of PtdIns(4,5)P₂ were observed even in the presence of EGTA ([free Ca²⁺] < 2 nM). Das and Cho (2002) recently described a cluster of cationic residues in the catalytic domain of cPLA₂ α (Lys⁴⁸⁸, Lys⁵⁴¹, Lys⁵⁴³, and Lys⁵⁴⁴ in the human sequence) that appears to play a role in the in vitro activation of the enzyme by PtdIns(4,5)P₂, a finding that was corroborated later on by Six and Dennis (2003).

With regard to intact cells, we observed that in UV light-treated macrophages, increased PtdIns(4,5)P₂ synthesis occurs at resting Ca²⁺ levels, and this parallels the cPLA₂ α -dependent mobilization of AA (Balsinde et al., 2000). These data led us to propose that PtdIns(4,5)P₂ might be involved in cPLA₂ α activation at Ca²⁺ levels equaling those pertaining to unstimulated cells (Balsinde et al., 2000). In this paper we demonstrate that PtdIns(4,5)P₂ anchors cPLA₂ α to perinuclear membranes of intact cells in a manner that is independent of rises in [Ca²⁺]i, thus allowing for proper interaction of the enzyme with its phospholipid substrate to optimally release AA.

Results and Discussion

We were interested in examining whether cellular increases in PtdIns(4,5)P₂ regulate $cPLA_2\alpha$ translocation to intracellular membranes in live cells. To this end, we prepared HEK cells stably expressing a fusion protein of enhanced green fluorescent protein (EGFP) and human cPLA₂ α . The cells were studied under the confocal microscope during treatment with fluorescent PtdIns(4,5)P₂ (BODIPY^RTR-tagged PtdIns(4,5)P₂; abbreviated as TR-PI(4,5)P₂). When complexed with histone or neomycin carriers that counteract the negative charges of TR-PI(4,5)P₂ and make it membrane-permeable (Ozaki et al., 2000), it takes 5-10 min for the phospholipid to penetrate into the cell (Fig. 1). Once inside, TR-PI(4,5)P₂ localized primarily to perinuclear membranes, in accord with previous observations (Ozaki et al., 2000). Movement of TR-PI(4,5)P₂ to perinuclear membranes was closely followed by the complete translocation of $cPLA_2\alpha$ to the same location (Fig. 1A). When EGFP-cPLA₂ transfected cells were treated only with the carrier, EGFP-cPLA₂ did not translocate (Fig. 1B). Furthermore, when cells transfected with EGFP alone were exposed to TR-PI(4,5)P₂, the green fluorescence pattern did not change (Fig. 1C). AA mobilization was studied under these conditions. Figure 1D shows that exposure of the cells to TR-PI(4,5)P₂ enhanced AA release, thus indicating that membrane phospholipid hydrolysis follows from translocation of cPLA₂ to perinuclear membranes.

A possible explanation for TR-PI(4,5)P₂-induced cPLA₂ α membrane translocation and subsequent activation could be that the phosphoinositide, once inside the cell, is hydrolyzed by phospholipase C to generate inositol 1,4,5trisphosphate which results in elevated [Ca²⁺]i and hence cPLA₂ α translocation. However, cPLA₂ α translocation to membranes was also observed when the cells were treated with TR-PI(3,4)P₂, whose hypothetical hydrolysis by phospholipase C

would not yield inositol 1,4,5-trisphosphate (Fig. 1E). That both PtdIns(4,5)P₂ and PtdIns(3,4)P₂ isomers modify the subcellular localization of cPLA₂ α suggests a charge effect rather than the result of a metabolic transformation via phospholipase C. The PtdIns(3,4)P₂-induced translocation of cPLA₂ α was accompanied by an increased release of AA, similar in extent to that produced by PtdIns(4,5)P₂ (data not shown). This is consistent with the in vitro studies of Six and Dennis (2003) showing increased cPLA₂ α activity in response to PtdIns(3,4)P₂. Interestingly, Das and Cho (2002) failed to observe an effect of PtdIns(3,4)P₂ on the activity of cPLA₂ α . The reasons for this discrepancy may likely arise from differences in the experimental protocols followed by these authors.

Experiments were also conducted with the macrophage cell line RAW 264.7. Owing to their immunoinflammatory nature, RAW 264.7 macrophages possess a robust machinery for eicosanoid biosynthesis and thus provide a more appropriate cell context to validate $cPLA_2\alpha$ translocation and AA release in response to PtdIns(4,5)P₂. Exposure of EGFP-cPLA₂ α -transfected macrophages to TR-PI(4,5)P₂ resulted in membrane translocation of the enzyme (Fig. 2A) and enhanced AA release (Fig. 2B).

We also performed measurements with pure PtdIns(4,5)P₂, isolated from bovine brain. Probably because of the presence of long chain fatty acids in pure PtdIns(4,5)P₂, it was not possible for us to deliver this phospholipid into the cell's interior by using a shuttle. Thus, for these experiments we utilized digitoninpermeabilized cells (Balsinde et al., 2000). Using this procedure, we confirmed that native PtdIns(4,5)P₂ induced translocation of EGFP-cPLA₂ α to perinuclear membranes in a similar fashion to that previously observed with BODIPY-TR-Pl(4,5)P₂ in Fig. 1 (data not shown).

Mosior et al. (1998) have shown that binding of $cPLA_2\alpha$ to phospholipid vesicles enriched in PtdInsP₂ is essentially a Ca²⁺-independent process. To verify whether this is also the case in live cells, we incubated the cells in a Ca²⁺-free EGTA-containing buffer. The continued presence of cells in Ca²⁺-free buffer lowers the intracellular Ca²⁺ level well below that normally occurring in resting cells incubated in a regular Ca²⁺-containing buffer (Di Virgilio et al., 1984). Under these Ca²⁺-free conditions, no translocation of cPLA₂ α was observed after addition of TR-PI(4,5)P₂, even though the phosphoinositide penetrated normally into the cell (Fig. 3). Interestingly, if Ca²⁺ was restored to the incubation medium, a very rapid distribution of cPLA₂ α to the perinuclear membranes of TR-PI(4,5)P₂-treated cells was observed (Fig. 3). These results suggest that, in cells, the PtdInsP₂ effect is not Ca²⁺-independent; rather, a threshold Ca²⁺ is necessary for cPLA₂ α to translocate to membranes. This view is consistent with previous data by Das and Cho (2002).

To further characterize this Ca^{2+} effect, we conducted experiments with a mutant construct where the cPLA₂ α has the mutation D43N (EGFP-D43N-cPLA₂) which severely limits the ability of the enzyme to bind calcium (Bittova et al., 1999; Perisic et al., 1999; Gijón et al., 1999). As shown in Fig. 4, the mutant EGFP-D43N-cPLA₂ did not translocate in response to TR-PI(4,5)P₂, even in the presence of 1.3 mM CaCl₂ in the incubation buffer, demonstrating that a functional C2 domain is necessary for cPLA₂ translocation to perinuclear structures in response to PtdInsP₂.

Since TR-PI(4,5)P₂ and cPLA₂ α appear to move to similar intracellular structures (Figs. 1 to 3), a co-localization analysis was performed. Fig. 5A shows the merge of green (from the EGFP-cPLA₂) and red (from the TR-PI(4,5)P₂) fluorescences in cells treated for 20 min with TR-PI(4,5)P₂, suggesting co-localization in the perinuclear region. Analysis of co-localization with the LaserPix confocal image

software (BioRad) provides a better definition of the pixels showing perfect colocalization of both fluorescences (Fig. 5B, white mask). In Fig, 5C, a threedimensional representation of such co-localization is shown, and the color of each pixel defines the level of co-localization. Nuclear membrane and perinuclear structures (most likely Golgi and endoplasmic reticulum) show the most intense colocalization. As a control for the co-localization analyses, note a cell in the bottom left corner of Figs 5A-C that does not express EGFP-cPLA₂ α and thus stains red, and another cell in the bottom right corner that expresses the EGFP-cPLA₂ α but did not take TR-TR-PI(4,5)P₂ in, and thus stains only green. Accordingly, these two cells do not show in the co-localization mask (Fig. 5B) or in the three-dimensional representation (Fig. 5C).

Taking advantage of the fact that in the absence of extracellular calcium, TR-PI(4,5)P₂ fails to induce EGFP-cPLA₂ α translocation to membranes (see above), green and red fluorescences can be analyzed in the same cell at different localizations (Fig. 5D). Under these conditions, the colocalization coefficients obtained with the LaserPix software were: red to green, 0.37 ± 0.08, and green to red, 0.33 ± 0.06. After restoring calcium to the extracellular medium, the colocalization analysis was repeated on the same cells and the data were: red to green, 0.40 ± 0.05; and green to red, 0.88 ± 0.01.

Altogether, the results presented so far indicate that $PtdIns(4,5)P_2$ functions to anchor $cPLA_2$ to the perinuclear and nuclear membranes in live cells, by a process that requires the presence of a certain threshold level of Ca^{2+} as well as a functional Ca^{2+} binding site in the enzyme (Fig. 3). Thus, $PtdIns(4,5)P_2$ may either provide a second binding site for $cPLA_2\alpha$ in addition to the Ca^{2+} -binding site, or act to lower the Ca^{2+} requirement of $cPLA_2\alpha$ for membrane binding. To evaluate these two

possibilities, changes in [Ca²⁺]i were monitored in Fluo-3-loaded cells exposed to the phosphoinositide (Fig. 6). TR-PI(4,5)P₂ induced changes in $[Ca^{2+}]i$ with a very different pattern, potency and kinetics from the calcium ionophore ionomycin, which is also known to potently induce $cPLA_2\alpha$ membrane translocation (Gijón et al., 2000a) (cf. Figs. 6A and 6B). Given these differences, we proceeded to determine the minimal Ca²⁺ requirements for TR-PI(4,5)P₂ to induce cPLA₂ α translocation. To this end, cells were incubated in a Ca^{2+} -free medium, exposed to either TR-PI(4.5)P₂ or ionomycin. Thereafter different CaCl₂ concentrations were added to the incubation medium, and confocal microscopy images of the $cPLA_2\alpha$ movement were taken. [Ca²⁺]i was monitored in Fluo-3-loaded cells in parallel under exact experimental conditions. Figs. 7A and 7B show that TR-PI(4,5)P₂ promoted cPLA₂ α membrane translocation at extracellular Ca^{2+} concentrations between 6-30 μ M, which translate to 50-220 nM in terms of [Ca²⁺]i. It is particularly striking that TR-PI(4,5)P₂-induced translocation of cPLA₂ α begins to be detected in all the cells analyzed already at an extracellular Ca²⁺ concentration of 15 µM, which only induces minimal changes in [Ca²⁺]i (~50 nM) (Figs. 7A and 7C). Note, on the other hand, that ionomycin promotes visible translocation of cPLA₂ α only at higher extracellular Ca²⁺ concentrations, approx. 60-150 µM, which raise [Ca²⁺]i up to 350-400 nM (Figs. 7B and 7D). These results provide strong evidence that TR-PI(4,5)P₂-induced cPLA₂ α translocation occurs at substantially lower $[Ca^{2+}]$ levels than that triggered by ionomycin.

In vitro mutagenesis studies have identified a cluster of four Lys as the putative PtdInsP₂-binding site (Das and Cho, 2002; Six and Dennis, 2003). In the human enzyme, these are Lys⁴⁸⁸, Lys⁵⁴¹, Lys⁵⁴³, and Lys⁵⁴⁴. We constructed a mutant in which Lys⁴⁸⁸ was substituted by Glu and the three other Lys by Ala (EGFP-K488E/K541A/K543A/K544A-cPLA₂ α ; EGFP-4KE/A-cPLA₂ α) (Das and Cho, 2002;

Six and Dennis, 2003). When transfected into cells, the EGFP-4KE/A-cPLA₂ α mutant actually translocated in response to TR-PI(4,5)P₂ (Fig. 8A), although the degree of co-localization between mutant enzyme and phospholipid was considerably lower than that previously observed with the wild type enzyme (Fig. 8B). More importantly, cells transfected with the EGFP-4KE/A-cPLA₂ α mutant did not mobilize AA in response to TR-PI(4,5)P₂, while cells transfected with the wild-type enzyme did it readily (Fig. 9). These results demonstrate that the four-Lys cluster described by Das and Cho (2002) is indeed crucial for cPLA₂ α to translocate to membrane in a functionally-active form. That the EGFP-4KE/A-cPLA₂ α mutant also translocates to membrane in response to PtdInsP₂ may suggest the existence of additional binding site(s) within the enzyme. However, since membrane binding of the EGFP-4KE/A-cPLA₂ α mutant is not productive (i.e. no AA is released), it is probably of very limited biological significance. The behavior of the mutant EGFP-4KE/A-cPLA₂ clearly suggests that translocation of the enzyme to membrane does not necessary lead to enhanced AA release.

It has previously been demonstrated that PtdInsP₂ does not increase the specific activity of the K541A/K543A/K544A mutant, as measured by an in vitro assay (Das and Cho, 2002; Six and Dennis, 2003). In our intact cell system, PtdInsP₂ promotes translocation of the construct EGFP-4KE/A-cPLA₂ to perinuclear membranes, but this is not accompanied by an increased AA release, which is in accordance with the aforementioned in vitro studies (Das and Cho, 2002; Six and Dennis, 2003). In these studies an increase in the basal activity of the mutated enzyme as compared to the wild type enzyme was also shown. Our studies in intact cells failed to obtain reproducible evidence for such a phenomenon, as measured by basal AA release. It appears likely that in intact cells, the basal state of the cPLA₂ α

may be governed by multiple factors, some of which may not be apparent in an in vitro assay.

Our data, along with results from previous studies (Das and Cho, 2002; Six and Dennis, 2003) demonstrate that the positive charge generated by Lys⁴⁸⁸, Lys⁵⁴¹, Lys⁵⁴³ and Lys⁵⁴⁴, allows the cPLA₂ to properly bind to PtdInsP₂. Mutation of these Lys leads to changes in the specific activity of the enzyme compared to the wild type enzyme, as measured in an in vitro assay (Das and Cho, 2002; Six and Dennis, 2003). We have extended these data by showing decreased AA release in the mutants in response to PtdInsP₂. The structure of those four Lys does not conform to the structure of well known phosphoinositide-binding domains such as the plekstrinhomology (PH), the FYVE, or the Phox-homology (PX) domains (Lemmon, 2003). It is likely that this cationic cluster belongs in a novel, yet-undefined phosphoinositide-binding domain, as suggested elsewhere (Das and Cho, 2002).

Based on all the above findings, it is intriguing to speculate with novel modes of cPLA₂ α interaction with cellular membranes leading to enhanced phospholipid hydrolysis. By using a methodology that preserves cellular integrity, i.e. shuttling fluorescent PtdInsP₂ into the cell by the use of lipophilic carriers, we have studied the interaction between PtdInsP₂ and cPLA₂ α under a physiologically relevant setting, thus avoiding potential problems arising from the use of cellular fixation or permeabilization techniques. Our live cell studies clearly indicate that variations in the cellular PtdIns(4,5)P₂ may help regulate the physical location of cPLA₂ α . Importantly however, for this regulatory role of PtdIns(4,5)P₂ to manifest, an intact C2 domain within the enzyme and a certain threshold level of intracellular calcium are required. The results suggest a sequential mode of cPLA₂ α interaction with the membrane, where the enzyme first binds via the C2 domain in the presence of low Ca²⁺ levels.

This is followed by binding to $PtdIns(4,5)P_2$ via the cationic cluster of four Lys, which positions the enzyme in the proper manner to effect phospholipid hydrolysis and AA release.

In this model of cPLA₂ α activation by PtdIns(4,5)P₂, the threshold Ca²⁺ level required is far below that found in stimulated cells, and resembles more that of resting cells, i.e. ~50 nM. This is in contrast with studies in vitro, which reflected no Ca²⁺ requirement for cPLA₂ α binding to and hydrolysis of phospholipids in mixed micelles Six and Dennis, 2003). This difference highlights the very complex nature of the interaction of cPLA₂ α with a biological membrane in a live cell context. cPLA₂ α has been shown to physically interact with ceramide 1-phosphate (Subramanian et al., 2005) and a number of proteins, including vimentin (Nakatani et al., 2000) and a splice variant of Tip60 (Sheridan et al., 2001). Thus it is likely that in cells, numerous entities in addition to PtdInsP₂ may interact with cPLA₂ α and modulate its membrane-binding properties.

It is important to note that the above scenario does not exclude the possibility that PtdInsP₂ binding may occur first, and this in turn augments the calciumdependent lipid binding of the C2 domain. Such a sequence of events has received some experimental support by the recent work of Subramanian et al. (2005) in which ceramide 1-phosphate was found to increase cPLA₂ α activity by interacting with the C2 domain, thereby lowering the calcium requirement for translocation.

Our findings provide a mechanistic insight into the intracellular signaling triggered by stimuli like bacterial lipopolysaccharide, UV light, phorbol esters or okadaic acid, which do not mobilize Ca^{2+} from internal stores, yet they all activate the cPLA₂ α -mediated release of AA (Shinohara et al., 1999; Gijón et al., 2000b). It is likely that the increased synthesis of PtdInsP₂ that occurs during cellular stimulation

by these agonists (Balsinde et al., 2000; Taylor et al., 1984), together with the low nanomolar levels of $[Ca^{2+}]i$, provides the signals to anchor cPLA₂ α to perinuclear membranes. Two subfamilies of kinases, termed type I and type II, are involved in the biosynthesis of PtdIns(4,5)P₂ during cell activation. Type I consists of PtdIns(4)P 5-kinases, while type II consists of PtdIns(5)P 4-kinases. Members of both subfamilies have been localized in the perinuclear region of cells (Doghman et al., 2003). On the basis of our findings we propose that PtdIns(4,5)P₂ formed by phosphatidylinositol monophosphate kinases at the perinuclear envelope may help recruit cPLA₂ α to this compartment at low $[Ca^{2+}]i$ levels. Future studies should shed additional light on the mechanisms governing PtdIns(4,5)P₂ accumulation in perinuclear membranes and their overall role in cPLA₂ α -mediated AA signaling.

Materials and Methods

Reagents. Cell culture media and supplements were purchased from Gibco (Paisley, Scotland, UK). BODIPY^R-TR-X C₆-PI(4,5)P₂, BODIPY^R-TR-X C₆-PI(3,4)P₂, carriers (neomycin and histone), and Fluo-3-AM were purchased from Molecular Probes (Carlsbad, CA, USA). Other reagents were from Sigma Ibérica (Madrid, Spain).

Lipid preparation. Lipids were prepared following the manufacturer's instructions. Briefly, 2 μ g phospholipid was mixed with 2 μ l carrier (neomycin or histone, 0.5 mM), resuspended in 200 μ l HBSS containing 10 mM HEPES and, unless otherwise indicated, 1.3 mM CaCl₂, sonicated in a water bath for 2 min, and allowed to rest at 37°C for 10 min before use. Final concentration of PtdInsP₂ in the solution is 5.7 μ M.

Cells - HEK cells were cultured in DMEM supplemented with 2 mM glutamine, 10% fetal calf serum, 100 U/ml penicillin and 100 μ g/ml streptomycin at 37°C in a 5% CO₂ humidified incubator. Cells were passaged twice a week by trypsinization. Cells (40-70% confluence) were transfected with 1 μ g plasmid/ml using Lipofectamine PlusTM (Invitrogen), following the manufacturer's instructions. For stably transfected cells, 1 mg/ml G418 was used for selection and subsequent passages. RAW 264.7 cells were cultured in RPMI medium supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 μ g/ml streptomycin and 2 mM glutamine at 37 °C in a 5% CO₂ humidified incubator.

Constructs. The DNA sequence of human $cPLA_2\alpha$ was cloned into the pEGFP vector (Clontech, Palo Alto, CA) using Hind-III and Pst-I cloning sites. This construct codes for the

expression of a fusion protein containing an N-terminal EGFP followed by the entire sequence of the human cPLA₂ α . Wild type cPLA₂ α was mutagenized within the C2 domain by replacing Asp⁴³ with Asn (D43N), using the QuikChange XL Site-Directed Mutagenesis kit from Stratagene and the oligonucleotides 5'-CATGCTTGATACTCCAAATCCCTATGTGGAAC-3' (forward) and 5'-GTTCCACATAGGGATTTGGAGTATCAAGCATG-3' (reverse). Mutagenesis was confirmed by sequencing. Wild type EGFP-cPLA₂ α was also mutagenized to produce EGFP-D488E/D541A/D543A/D544A-cPLA₂ in two steps. First, the mutant EGFP-D541A/D543A/D544A-cPLA₂ was obtained by using the QuikChange XL Site-Directed Mutagenesis kit from Stratagene and the oligonucleotides 5´-GAGCCTCTGGATGTCGCAAGTGCAGCGATTCATGTAGTGGACAG-3 (forward) 5'-CTGTCCACTACATGAATCGCTGCACTTGCGACATCCAGAGGCTC-3'. and Then, a second round of mutagenesis was performed to change Lys⁴⁸⁸ to Glu using the primers: 5'-GGACGTGCTGGGGGGGGGGGGCACCACACTTCATGC-3' (forward) and 5'-GCATGAAGTTGTGTACCTCCCAGCACGTCC-3'(reverse).

Confocal microscopy - Cells were seeded on glass bottom culture dishes (MatTek Corp., Ashland, MA, USA) coated with Poly-L-lysine (Sigma). After 24 hours, the culture medium was replaced with HBSS containing 10 mM HEPES and 1.3 mM CaCl₂. Cells were monitored at 37°C by confocal microscopy using a Bio-Rad laser scanning Radiance 2100 system coupled to a Nikon TE-2000U inverted microscope equipped with a DH-35 tissue culture dish heater (Warner Instruments). Images were obtained with a CFI Plan Apo 60X, oil immersion, 1.40 NA objective, which provided a theoretical confocal layer thickness of approximately 0.4 µm at the wavelengths used. Green fluorescence from the EGFP was monitored at 488 nm argon laser excitation and the combination of a HQ500 long band pass and a HQ560 short band

pass blocking filters. Red fluorescence from BODYPI-TRx was monitored at 543 nm HeNe laser excitation using a HQ590/570 long band pass blocking filter. In some experiments cells were incubated with HBSS without calcium and then discrete amounts of CaCl₂ were added sequentially to obtain extracellular concentrations of 6, 15, 30, 60, 150, and 300 μ M.

AA release - HEK cells (2.5×10^{5} /well) were labeled with 0.5 µCi [³H]AA for 20 h. Cells were then extensively washed and overlaid with 0.5 ml serum-free DMEM supplemented with 0.1 mg/ml of albumin, and treated with 5 µM thimerosal for 15 min to blunt fatty acid reacylation (Pérez et al., 2004). Cells were then treated with PtdInsP₂, and the supernatants were collected at different time points. After extraction, lipids were separated by thin-layer chromatography using the system n-hexane/diethyl ether/acetic acid (70:30:1 by volume). Spots corresponding to AA and phospholipid were scraped and radioactivity was quantified by liquid scintillation counting.

Intracellular Ca²⁺ measurements. HEK cells were loaded with 3 μ M Fluo-3-AM for 20 min in medium with 10% serum at 37°C in a 5% CO₂ incubator. Cells were then washed and incubated with HBSS containing 10 mM HEPES and 1.3 mM CaCl₂. Fluorescence was monitored under confocal microscope at 488 laser excitation and the combination of a HQ500 long band pass and a HQ560 short band pass blocking filters, having the iris totally open. At the end of each experiment calibration was done as previously described by Kao et al. (1989), using MnSO₄ at a final concentration of 2 mM, and lysis with 40 μ M saponin to obtain the background signal. Where analysis of intracellular calcium levels was studied in the presence of different concentration of

extracellular CaCl₂, cells were loaded with Fluo-3, washed with HBSS with 2 mM EGTA, and layered with HBSS containing 10 mM HEPES in the absence of CaCl₂. Different amounts of CaCl₂ were added every 10 min, and fluorescence was recorded every 15 seconds under a confocal microscopy. Calibration was also performed at the end of each experiment as indicated above.

Acknowledgements

We thank Alberto Alvarez Barrientos (National Center for Cardiovascular Research, Madrid) and Alberto Sánchez Guijo for expert technical help with the confocal microscope. This work was supported by Grant BMC2001-2244 from the Spanish Ministry of Science and Technology, Grants BFU2004-01886/BMC, SAF2004-04676, and SAF2004-01232 from the Spanish Ministry of Education and Science, and *Red Brucella, Red Respira,* and *Red Temática de Investigación Cardiovascular,* from *Instituto de Salud Carlos III.* A.G.V. was supported by a predoctoral fellowship from *Instituto Carlos III (Becas de formación en investigación,* BEFI 029034). M.A.G.'s present address is: Department of Pharmacology, University of Colorado Health Sciences Center, Mail Stop 8303, P.O. Box 6511, Aurora, CO 80045, USA. E-mail: Miguel.Gijon@uchsc.edu.

Abbreviations List

AA, arachidonic acid; $cPLA_2\alpha$, cytosolic Group IVA phospholipase A₂; $[Ca^{2+}]I$, intracellular Ca^{2+} concentration; PtdIns, phosphatidylinositol bisphosphate.

References

Balsinde, J., Balboa, M. A., Li, W. H., Llopis, J. & Dennis, E. A. Cellular regulation of cytosolic group IV phospholipase A₂ by phosphatidylinositol bisphosphate levels. J. Immunol. 164, 5398-5402 (2000).

Bittova, L., Sumandea, M. & Cho, W. A structure-function study of the C2 domain of cytosolic phospholipase A₂. Identification of essential calcium ligands and hydrophobic membrane binding residues. J. Biol. Chem. 274, 9665-9672 (1999).

Bonventre J. V. Cytosolic phospholipase $A_2\alpha$ reigns supreme in arthritis and bone resorption. Tends Immunol. 25, 116-119 (2004).

Bonventre, J. V., et. al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A₂. Nature 390, 622-625 (1997).

Clark, J. D., L. L. Lin, R. W. Kriz, C. S. Ramesha, L. A. Sultzman, A. Y. Lin, N. Milona & Knopf, J. D. A novel arachidonic acid-selective cytosolic PLA₂ contains a Ca²⁺-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043-1051 (1991).

Das, S. & Cho W. Roles of catalytic domain residues in interfacial binding and activation of group IV cytosolic phospholipase A₂. J. Biol. Chem. 277, 23838-23846 (2002).

Dessen, A., J. Tang, H. Schmidt, M. Stahl, J. D. Clark, J. Seehra & W. S. Somers. Crystal structure of human cytosolic phospholipase A₂ reveals a novel topology and catalytic mechanism. Cell 97, 349-360 (1999).

Di Virgilio, F., Lew, D. P. & Pozzan, T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca²⁺ levels. Nature 310, 691-693 (1984).

Doughman, R. L., Firestone, A.J. & Anderson, R. Phosphatidylinositol phosphate kinases put PI4,5P₂ in its place. J. Membr. Biol. 194, 77-89 (2003).

Evans, J. H., Spencer, D. M., Zweifach, A. & Leslie C. C. Intracellular calcium signals regulating cytosolic phospholipase A₂ translocation to internal membranes. J. Biol. Chem. 276, 30150-30160 (2001).

Gijón, M. A., Spencer, D. M., Kaiser, A. L. & Leslie, C. C. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A₂. J. Cell Biol. 145, 1219-1232 (1999).

Gijón, M. A., Spencer, D. M. & Leslie, C. C. Recent advances in the regulation of cytosolic phospholipase A₂. Adv. Enzyme Regul. 40, 255-68 (2000a).

Gijón, M. A., Spencer, D. M., Siddiqi, A. R., Bonventre, J. V. & Leslie, C. C. Cytosolic phospholipase A₂ is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium. Novel role of mitogen-activated protein kinase

pathways in cytosolic phospholipase A₂ regulation. J. Biol. Chem. 275, 20146-20156 (2000b).

Hirabayashi., T., Murayama, T. & Shimizu, T. Regulatory Mechanism and Physiological Role of Cytosolic Phospholipase A₂. Biol. Pharm. Bull. 27, 1168-1173 (2004).

Kao, J.P.Y. Harootunian A.T. & Tsien R.Y. Photochemically generated cytosolic calcium pulses and their detection by Fluo-3. J. Biol. Chem. 264, 8179-8184 (1989).

Lemmon, M. A. Phosphoinositide recognition domains. Traffic 4, 201-213 (2003)

Leslie, C. C. & Channon, J. Y. Anionic phospholipids stimulate an arachidonylhydrolyzing phospholipase A₂ from macrophages and reduce the calcium requirement for activity. Biochim. Biophys. Acta. 1045: 261-270 (1990).

Lin, L. L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth & R. Davis. cPLA₂ is phosphorylated and activated by MAP kinase. Cell 72, 269-278 (1993).

Mosior, M., Six, D. A. & Dennis, E. A. Group IV cytosolic phospholipase A₂ binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273, 2184-2191 (1998).

Nakatani, Y., Tanioka, T., Sunaga, S., Murakami, M. & Kudo, I. Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic

phospholipase A₂α. J. Biol. Chem. 275,1161-8 (2000).

Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J. & Prestwich, G. D. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc. Natl. Acad. Sci. U.S.A. 97, 11286-11291 (2000).

Pérez, R., Melero, R., Balboa, M. A. & Balsinde, J. Role of group VIA calciumindependent phospholipase A₂ in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J. Biol. Chem. 279, 40385-40391 (2004).

Perisic, O., Paterson, H. F., Mosedale, G., Lara-Gonzalez, S. & Williams, R. L. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain in regulation of cytosolic phospholipase A₂. J. Biol. Chem. 274, 14979-14987 (1999).

Qiu, Z.-H., Gijón, M. A., de Carvalho, M. S., Spencer, D. M. & Leslie, C. C. The role of calcium and phosphorylation of cytosolic phospholipase A₂ in regulating arachidonic acid release in macrophages. 273, 8203-8211 (1998).

Sheridan, A. M., Force, T., Yoon, H. J., O'Leary, E., Choukroun, G., Taheri, M. R., & Bonventre, J. V. PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A₂, induces apoptosis, and potentiates prostaglandin production. Mol. Cell. Biol. 21, 4470-4481 (2001).

Shinohara, H., Balboa, M. A., Johnson, C. A., Balsinde, J. & Dennis, E. A. Regulation of delayed prostaglandin production in activated P388D₁ macrophages by group IV cytosolic and group V secretory phospholipase A₂s. J. Biol. Chem. 274, 12263-12268 (1999).

Six, D. A. & Dennis, E. A. The expanding superfamily of phospholipase A₂ enzymes: classification and characterization. Biochim. Biophys. Acta 1488, 1-19 (2000).

Six, D. A. & Dennis, E. A. Essential Ca^{2+} -independent Role of the Group IVA Cytosolic Phospholipase A₂ C2 Domain for Interfacial Activity. J. Biol. Chem. 278, 23842-23850 (2003).

Subramanian, P., Stahelin, R.V., Szulc, Z., Bielawska, A., Cho, W. & Chalfant, C.E. Ceramide-1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase $A_2\alpha$ and enhances the interaction of the enzyme with phosphatidylcholine. J. Biol. Chem. 280, 17601-17607 (2005).

Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A. & Moore, J. P. Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312, 462-465 (1984).

Uozumi, N., et. al. Role of cytosolic phospholipase A_2 in allergic response and parturition. Nature 390, 618-622 (1997).

FIGURE LEGENDS

Figure 1. EGFP-cPLA₂ translocation and AA release driven by TR-PIP₂. EGFPcPLA₂- (A, B, E) or EGFP- (C) transfected HEK cells were treated with TR-PI(4,5)P₂/histone (A, C), TR-PI(3,4)P₂/histone (E), or carrier only (histone, B). Pictures were taken at the indicated time points under the confocal microscope. D) [³H]AA-labeled HEK cells were either untreated (open circles) or treated with TR-PI(4,5)P₂/carrier (closed circles), and [³H]AA release was measured at the indicated time periods. Each experiment was performed at least three times with identical results.

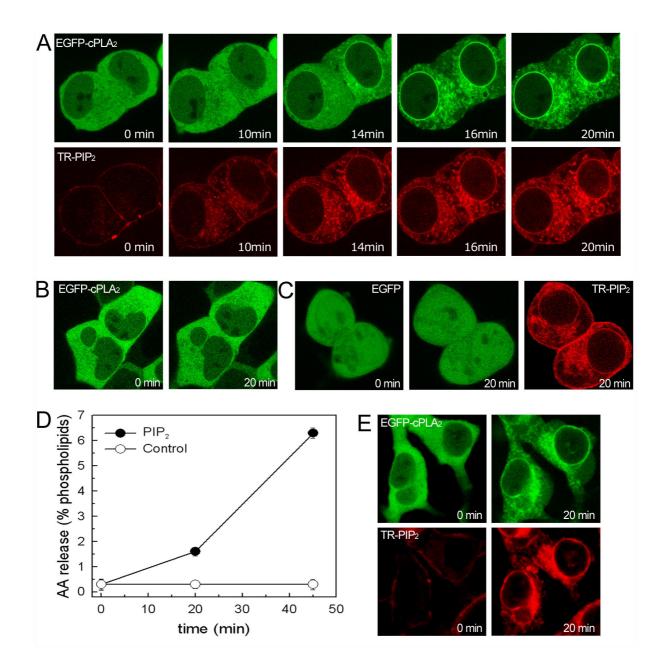
Figure 2. TR-PIP₂ effects on RAW 264.7 cells. RAW 264.7 macrophages transfected with EGFP-cPLA₂ were treated with TR-PI(4,5)P₂/histone for the indicated periods of time and analyzed by confocal microscopy (A) or for [³H]AA release (B) as in Figure 1. Each experiment was performed at least three times with identical results.

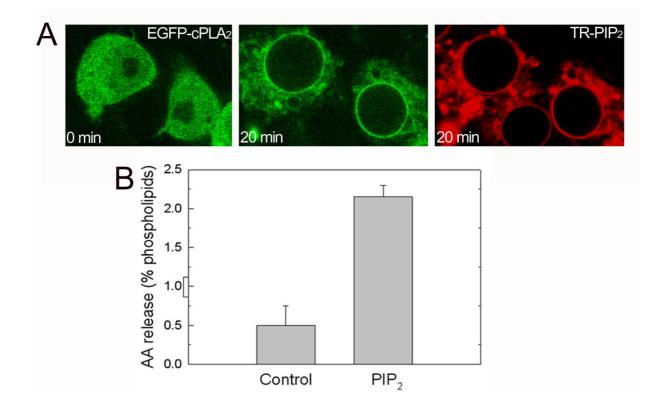
Figure 3. Ca^{2+} is necessary for EGFP-cPLA₂ translocation in response to TR-PI(4,5)P₂. EGFP-cPLA₂-transfected HEK cells were treated with TR-PI(4,5)P₂/histone in HBSS medium without Ca^{2+} , and pictures were taken under the confocal microscope. After a 30-min treatment, 1.3 mM Ca₂Cl was added to the incubation medium (the two columns on the right hand side), and pictures were taken at the indicated time points. Each experiment was performed at least three times with identical results.

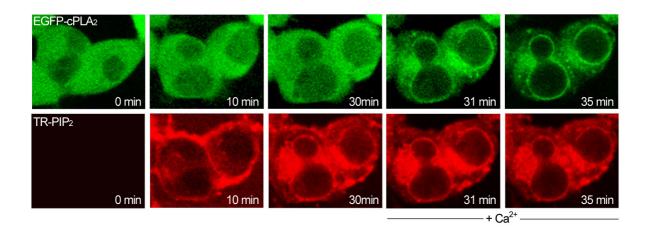
Figure 4. A intact Ca^{2+} binding domain is necessary for EGFP-cPLA₂ translocation in response to TR-PI(4,5)P₂. HEK cells transfected with the mutant EGFP-D43N-

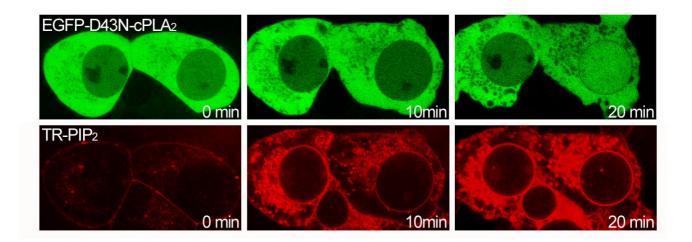
 $cPLA_2$ were treated with TR-PI(4,5)P₂/histone in HBSS with 1.3 mM CaCl₂ and pictures were taken at the indicated time points by confocal microscopy. Each experiment was performed at least three times with identical results.

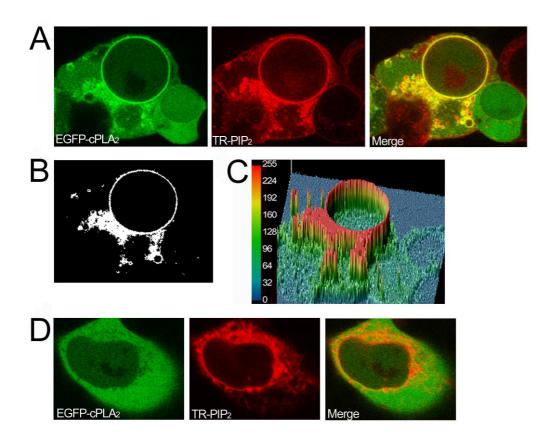
Figure 5. EGFP-cPLA₂ and TR-PI(4,5)P₂ colocalization analysis. HEK cells transfected with the construct EGFP-cPLA₂ were treated with TR-PI(4,5)P₂ for 20 min in the presence (A) or absence (D) of extracellular calcium, and pictures of green and red fluorescences were taken by confocal microscopy. The merge of both fluorescences is also shown. LaserPix software analysis of co-localization fluorescences in (A) is shown as a white mask (B), or as a colored three-dimensional representation, where red means maximum level of colocalization (255) and dark blue means the minimum (0) (C). Each experiment was performed at least three times with identical results.

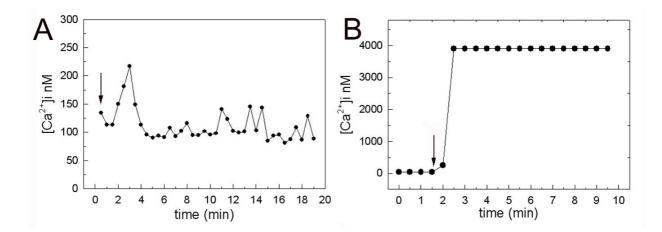

Figure 6. Intracellular Ca²⁺ levels in HEK cells. Intracellular measurements of Ca²⁺ were performed in Fluo-3-loaded HEK cells treated with TR-PI(4,5)P₂/histone (A) or 5 μ M ionomycin (B) in buffer containing 1.3 mM CaCl₂. Arrows indicate the time point at which the stimuli were added. Each data point represents the average of 20-40 cells. Fluorescence of Fluo-3 was detected by microscopy and recorded every 15-30 s. Each experiment was performed at least three times with identical results.

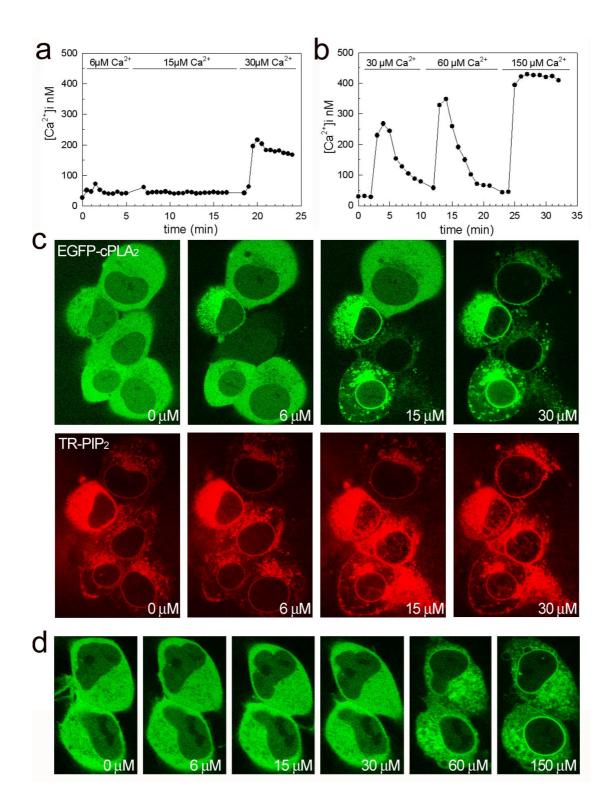

Figure 7. Intracellular Ca²⁺ requirements for TR-PI(4,5)P₂-driven translocation of EGFP-cPLA₂. Fluo-3-loaded HEK cells were first treated with TR-PI(4,5)P₂/histone (A) or 5 μ M ionomycin (B) in a buffer without Ca²⁺ and later, different CaCl₂ amounts were added as indicated. Fluorescence of Fluo-3 was detected by microscopy and

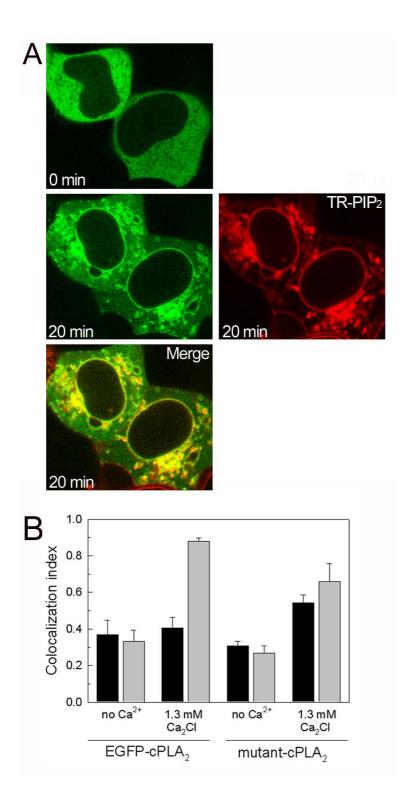

recorded every 15-30 s. Each data point represents the average of 20-40 cells. Translocation of EGFP-cPLA₂ was analyzed by confocal microscopy under the same conditions indicated above for HEK cells (C, cells treated with TR-PI(4,5)P₂/histone; D cells treated with 5 mM ionomycin). Extracelular concentration of CaCl₂ is indicated. Each experiment was performed at least three times with identical results.


Figure 8. Analysis of the EGFP-4KE/A-cPLA₂ mutant. (A) HEK cells transfected with the mutant EGFP-4KE/A-cPLA₂ were treated with TR-PI(4,5)P₂/histone and pictures were taken under the confocal microscope for the indicated time periods. (B) Co-localization analyses (LaserPix software) of the fluorescence from EGFP-4KE/A-cPLA₂ mutant and TR-PI(4,5)P₂ or EGFP-cPLA₂ and TR-PI(4,5)P₂ as a control, were performed in the presence of absence of extracellular calcium, as indicated. Co-localization index of red to green (black bars) or green to red (grey bars) is shown. Each data barr represents the average of 10-20 cells. Experiments were performed at least three times with identical results.


Figure 9. AA released by HEK cells transfected with the mutant EGFP-4KE/A-cPLA₂. [³H]AA-labeled HEK cells transfected with the EGFP-cPLA₂ construct (closed circles) or the mutant EGFP-4KE/A-cPLA₂ (open circles) were treated with TR-PI(4,5)P₂/carrier and [³H]AA release was measured at the time indicated time points. Each experiment was performed at least three times with identical results.







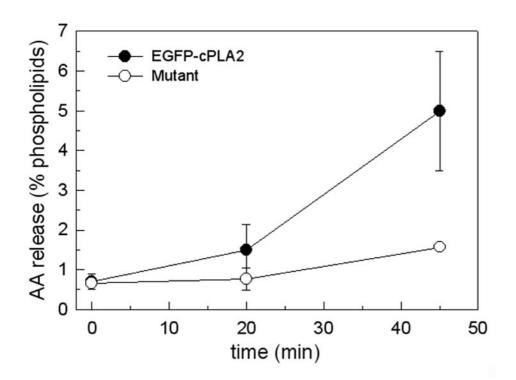


Figure 9