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1. Introduction

The subfield subcode of a linear code C ⊂ Fn
qs , with s ≥ 1, is the linear code C ∩ Fn

q . 
This is a standard procedure that may be used to construct long linear codes over a small 
finite field. For instance, BCH codes can be seen as subfield subcodes of Reed-Solomon 
codes. In the multivariate case, the subfield subcodes of J-affine variety codes are well 
known [9] (in particular, the subfield subcodes of Reed-Muller codes) and have been used 
for several applications [8,10]. The main problem that arises when working with subfield 
subcodes is the computation of a basis for the code, which also gives the dimension. In 
this paper, we compute bases for the subfield subcodes of projective Reed-Muller codes 
over the projective plane P 2 and for their duals, and we also give tools to study the 
general case of projective Reed-Muller codes over the projective space Pm.

Projective Reed-Muller codes are evaluation codes obtained by evaluating multivariate 
homogeneous polynomials in the projective space. Arguing as in [17], when one considers 
the sum of the rate and the relative minimum distance as a measure of how good the 
parameters of a code are, we obtain that projective Reed-Muller codes outperform Reed-
Muller codes. It is therefore natural to pose the problem of studying the subfield subcodes 
of projective Reed-Muller codes, in particular, the problem of obtaining bases for the 
subfield subcode and its dual. As we stated previously, this has been done for different 
families of evaluation codes over the affine space [9,14], but for evaluation codes over 
the projective space this has only been studied for evaluation codes over certain subsets 
of the projective line [12]. In particular, the subfield subcodes of J-affine variety codes 
have been used for constructing quantum codes with good parameters [9,7], and one can 
expect that the subfield subcodes of projective Reed-Muller will also perform well in that 
setting.

In Section 3, we study the subfield subcode of a projective Reed-Muller code over the 
projective plane P 2 and its dual. Comparing with projective Reed-Muller codes over Pm, 
with m > 2, the case m = 2 is usually the most interesting one because it can give rise to 
long codes with competitive parameters, which is similar to what happens in the affine 
case with Reed-Muller codes. For the case m = 2, we provide explicit bases for both the 
subfield subcode of a projective Reed-Muller code over the projective plane P 2 and its 
dual. In order to construct the basis for the dual, we consider Delsarte’s Theorem 2.7, 
which shows that we can generate the dual of the subfield subcode of a projective Reed-
Muller code of degree d by considering the evaluation of the traces of monomials of degree 
d. Then we can obtain a basis for the code by extracting a maximal linearly independent 
set of vectors, and we do this by using the vanishing ideal of the projective plane from 
Lemma 3.3 and the division by a Gröbner basis of this ideal. For the primary code, we 
study some polynomials obtained by combining traces of monomials and such that they 
can be regarded as homogeneous polynomials of degree d. We show that the set formed 
by their evaluations is linearly independent, and we conclude that this set is a basis for 
the code by a dimension argument, as we already have a basis of the dual code.
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We generalize some of the previous ideas to the general setting of the projective space 
Pm in Section 4. When we consider a larger m, we usually increase the length at the 
cost of having worse relative parameters, and also the analysis gets more complicated. 
Nevertheless, we are able to deal with this case as well. We give the vanishing ideal of 
a certain set of representatives of the points of Pm. We prove that the set of generators 
that we give is a universal Gröbner basis of the ideal by using Buchberger’s criterion [4, 
§9 Thm. 3, Chapter 2] and showing that all the S-polynomials of the generators reduce 
to 0, for any monomial order. From this result, we obtain the initial ideal and a basis for 
the quotient ring. Moreover, we provide a way to obtain the remainder of the division 
algorithm by this Gröbner basis for any monomial. This can be proved by checking that 
the remainder that we state is equivalent in the quotient ring to the original monomial, 
i.e., both have the same evaluation, and then checking that all the monomials in the 
support of the remainder are part of the basis given for the quotient ring. Particular 
cases of these ideas have been used previously for the projective line and the projective 
plane [12,19], and we showcase them in full generality. With these tools, it is possible 
to deal with the general case of computing bases for the subfield subcodes of projective 
Reed-Muller codes over Pm and their duals, although getting explicit results as in the 
case m = 2 seems out of reach as it gets too technical.

In Section 5, we provide some examples of subfield subcodes of projective Reed-Muller 
codes. We compare their parameters with the codes from [13], and we see that some of 
the codes that we obtain have the best known parameters for the binary and ternary 
case. When considering longer codes, it is thus expected to also achieve good parameters, 
although the absence of tables for long codes makes comparisons difficult. One way to 
see that some of the longer codes also have good parameters is to consider the Gilbert-
Varshamov bound [15, Thm. 2.8.1]. We provide a table with several of the codes that we 
obtain that exceed it.

2. Preliminaries

We consider a finite field Fq of q elements with characteristic p, and its degree s exten-
sion Fqs , with s > 1. We consider the projective space Pm over Fqs and the polynomial 
ring S = Fqs [x0, . . . , xm]. Throughout this work, we will fix representatives for the points 
of Pm: for each point in Pm, we choose the representative whose first nonzero coordinate 
is equal to 1, starting from the left. We will denote by Pm the set of representatives that 
we have chosen (seen as points in the affine space Am+1) and we will call them standard 

representatives. Let n = |Pm| = qs(m+1)−1
qs−1 . We consider the following evaluation map:

evd : Sd → Fn
qs , f �→ (f(Q1), . . . , f(Qn))Qi∈Pm ,

where Sd denotes the homogeneous polynomials of degree d. If m = 1, the image of 
this evaluation map is the projective Reed-Solomon code of degree d (also called doubly 
extended Reed-Solomon code), and we will denote it by PRSd. The parameters of these 
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codes are [qs + 1, d + 1, qs − d + 1]. If m > 1, then the image of the previous evaluation 
map is the projective Reed-Muller code of degree d, which we will denote by PRMd(m). 
This is another well known family of codes [17,20].

Given a code C ⊂ Fn
qs , its subfield subcode with respect to the extension Fqs ⊃ Fq is 

defined as Cσ := C ∩ Fn
q . Subfield subcodes of projective Reed-Solomon codes, denoted 

by PRSσ
d , were studied in [12], and in this paper we are interested in studying the subfield 

subcodes of projective Reed-Muller codes and their dual codes, denoted by PRMσ
d (m)

and PRMσ,⊥
d (m), respectively. Before studying the projective case, let us show what 

happens in the affine case.

2.1. Subfield subcodes of affine Reed-Muller codes

The subfield subcodes of affine Reed-Muller, and, more generally, J-affine variety 
codes, are well known [8,10]. We introduce now some of the basic techniques that are 
used to study the subfield subcodes of Reed-Muller codes, which we will denote by 
RMσ

d (m).
Let m ≥ 1 be an integer. We consider the ideal Iqs in the ring R = Fqs [x1, . . . , xm]

generated by xqs

j − xj . It is clear that the finite set of points defined by Iqs is precisely 
the whole affine space Am over Fqs .

Let n = qsm. Consider the quotient ring Rqs = R/Iqs and the evaluation map evAm :
Rqs → Fn

qs given by

evAm(f) = (f(Q1), f(Q2), . . . , f(Qn))Qi∈Am .

This map is well defined and is clearly an isomorphism of vector spaces because Iqs is 
the vanishing ideal of Am. When working over quotient rings, we will use the same letter 
f to denote the equivalence class and any polynomial representing it.

For m = 1, the image by the evaluation map of R≤d, the polynomials of degree less 
than or equal to d, is the Reed-Solomon code of degree d (sometimes called extended 
Reed-Solomon code), which we denote by RSd. For m ≥ 2, the image by the evaluation 
map of R≤d is the Reed-Muller code of degree d.

We introduce now multivariate cyclotomic sets, which are useful for computing the 
subfield subcodes of Reed-Muller codes. We consider Z/〈qs− 1〉, where we represent the 
classes of Z/〈qs−1〉 by {1, 2, . . . , qs−1}, and we define Zqs = {0} ∪Z/〈qs−1〉, where we 
represent its classes by {0, 1, . . . , qs−1}. We will call a subset I of the Cartesian product 
Zm

qs :=
∏m

i=1 Zqs a cyclotomic set with respect to q if q ·c ∈ I for any c ∈ I. Furthermore, 
I is said to be minimal (with respect to q) if it can be expressed as I = {qi ·c, i = 1, 2, . . . }
for a fixed c ∈ I, and in that situation we will write Ic := I and nc = |Ic|.

Now we define the following lexicographic order in the Cartesian product Zm
qs: a =

(a1, . . . , am) < (b1, . . . , bm) = b if and only if the rightmost entry of b − a, viewing this 
vector in Zm, is positive. We say that a ∈ Ic is a minimal representative of Ic if a is 
the least element in Ic according to the order that we have given, and we will say that 
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b ∈ Ic it is a maximal representative of Ic if it is the biggest element. We will denote by 
A the set of minimal representatives of the minimal cyclotomic sets, and by B the set of 
maximal representatives of the minimal cyclotomic sets.

We can introduce a notion of degree for the elements in Zm
qs. Given an integer d ≥ 1, 

we define Δd = {c = (c1, c2, . . . , cm) ∈ Zm
qs |

∑m
i=1 ci = d}, Δ<d = {c = (c1, c2, . . . , cm) ∈

Zm
qs |

∑m
i=1 ci < d} and Δ≤d = {c = (c1, c2, . . . , cm) ∈ Zm

qs |
∑m

i=1 ci ≤ d}. We will also 
denote by A<d and A≤d the elements a ∈ A such that Ia ⊂ Δ<d and Ia ⊂ Δ≤d, 
respectively.

Example 2.1. Consider the extension F4 ⊃ F2 with m = 2. We have q = 2 and qs = 22 =
4. Therefore, Z4 = {0} ∪Z/〈3〉. We have the following minimal cyclotomic sets:

I(0,0) = {(0, 0)}, I(1,0) = {(1, 0), (2, 0)}, I(0,1) = {(0, 1), (0, 2)}, I(1,1) = {(1, 1), (2, 2)},

I(3,0) = {(3, 0)}, I(0,3) = {(0, 3)}, I(3,3) = {(3, 3)}, I(2,1) = {(2, 1), (1, 2)},

I(1,3) = {(1, 3), (2, 3)}, I(3,1) = {(3, 1), (3, 2)}.

The set of minimal representatives is

A = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 0), (0, 3), (3, 3), (2, 1), (1, 3), (3, 1)},

and the set of maximal representatives is:

B = {(0, 0), (2, 0), (0, 2), (2, 2), (3, 0), (0, 3), (3, 3), (1, 2), (2, 3), (3, 2)}.

For each a ∈ A, we define the following trace map:

Ta : Rqs → Rqs , f �→ f + fq + · · · + fq(na−1)
,

where we fix representatives in Rqs as follows: we will choose the representative of f (and 
Ta(f)) such that the monomials xγ1

1 · · ·xγm
m in its support have their exponents reduced 

modulo qs − 1, i.e., 0 ≤ γi ≤ qs − 1, 1 ≤ i ≤ m. We will represent elements of Rqs and 
R in the same way (simply as polynomials). Therefore, sometimes we consider Ta(f) as 
a polynomial in R (the representative that we have chosen), which can be seen in other 
quotient spaces (such as the one we will define for the projective case).

Example 2.2. Continuing with Example 2.1, let us consider a = (2, 1) and compute 
Ta(x2

1x2). We have na = 2 and, since x4
1 = x1 in R4 = F4[x1, x2]/〈x4

1 − x1, x4
2 − x2〉, 

then Ta(x2
1x2) = x2

1x2 + x1x
2
2 which is the representative of x2

1x2 + x4
1x

2
2 in R4 with its 

exponents reduced modulo qs − 1 = 3.

The following result gives a basis for the subfield subcodes of Reed-Muller codes (and 
also Reed-Solomon codes) [8, Thm. 11], which we will denote by RMσ

d (m).
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Theorem 2.3. Set ξa a primitive element of the field Fqna . A basis for the vector space 
RMσ

d (m) is obtained by considering the images under the map evAm of the set

⋃
a∈A≤d

{Ta(ξraxa) | 0 ≤ r ≤ na − 1}.

As a consequence, we have that

dim RMσ
d (m) =

∑
a∈A≤d

na.

Remark 2.4. Theorem 2.3 implies that, for different cyclotomic sets Ia = Ib, the evalu-
ation of the polynomials in the sets {Ta(ξraxa) | 0 ≤ r ≤ na − 1} and {Tb(ξrbxb) | 0 ≤ r ≤
nb − 1} are linearly independent. Moreover, if we have Ia = Ib, then the previous sets 
generate the same vector space.

2.2. Subfield subcodes of projective Reed-Muller codes

Now we introduce the techniques that we will use to compute subfield subcodes of 
evaluation codes over the projective space. We had previously defined the usual evalua-
tion map evd over the projective space, which can be generalized to the evaluation map 
ev : S → Fn

qs given by

ev(f) = (f(Q1), f(Q2), . . . , f(Qn))Qi∈Pm .

It is clear that the kernel of the evaluation map is precisely the vanishing ideal of Pm, 
denoted by I(Pm). If we consider ev(Sd) (corresponds to projective Reed-Solomon codes 
or projective Reed-Muller codes), the resulting code will be isomorphic to Sd/(I(Pm) ∩
Sd) ∼= (Sd + I(Pm))/I(Pm). As we will see throughout this work, the vanishing ideal 
I(Pm) gives plenty of information about these codes.

Remark 2.5. Throughout the rest of the paper, given a set of polynomials B, we will 
refer to the set {ev(f) | f ∈ B} ⊂ Fn

qs as the evaluation of the set B.

We will say that f ∈ S evaluates to Fq in Pm if ev(f) ∈ Fn
q . The following result gives 

us conditions for a polynomial to evaluate to Fq in Pm.

Lemma 2.6. One has that f ∈ k[x0, . . . , xm] evaluates to Fq in Pm if and only if 
f(1, x1, . . . , xm), f(0, 1, x2, . . . , xm), f(0, 0, 1, x3, . . . , xm), . . . , and f(0, 0, . . . , 0, 1, xm)
evaluate to Fq in Am, Am−1, Am−2, . . . , A, respectively, and f(0, . . . , 0, 1) ∈ Fq.

Proof. We can decompose Pm as the following union of affine spaces: Pm =
⋃m

i=0 Ai, 
where Ai = {Q = [Q0 : · · · : Qm] ∈ Pm | Q0 = · · · = Qi−1 = 0, Qi = 1} if 1 ≤ i ≤ m, 
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and A0 = {Q = [Q0 : · · · : Qm] ∈ Pm | Q0 = 1}. Therefore, f evaluates to Fq in Pm if 
and only if f evaluates to Fq in each set Ai, 0 ≤ i ≤ m. The evaluation of Fq at each 
of the points of the set Ai is the same as the evaluation of f(0, . . . , 0, 1, xi+1, . . . , xm), 
and the evaluation of this polynomial at the points of Ai is the same as its evaluation in 
Am−i. �

In order to construct polynomials that evaluate to Fq in Pm we consider homoge-
nizations of traces of polynomials. Given a polynomial f ∈ R = Fqs [x1, . . . , xm], and a 
degree d ≥ deg(f), we define the homogenization of f up to degree d as

fh = xd
0f(x1/x0, x2/x0, . . . , xm/x0) ∈ Sd = Fqs [x0, . . . , xm]d.

In what follows, we will always consider some fixed degree d, and, unless stated otherwise, 
we will assume that we homogenize up to degree d.

Let d ≥ 1 and let a ∈ A≤d. We are interested in homogenizing the polynomials from 
the basis from Theorem 2.3. The condition a ∈ A≤d ensures that, with the fixed repre-
sentatives that we have chosen for Ta(f) (the exponents of the monomials are reduced 
modulo qs−1), we have deg(Ta(f)) ≤ d. Now we can define the following homogenization:

T h
a : R → S/I(Pm), f �→ (Ta(f))h, (1)

where we homogenize up to degree d, and we consider that Ta(f) ∈ R is the representative 
that we have chosen in Rqs . Note that the homogenization is not well defined in general 
for a class in Rqs , which is why we had to fix a representative for Ta(f).

These homogenized traces have already been used to obtain bases for the subfield 
subcode of a projective Reed-Solomon code and its dual in [12]. With respect to the dual 
code of a subfield subcode, we have the following result by Delsarte [5]:

Theorem 2.7. Let C ⊂ Fn
qs be a linear code.

(C ∩ Fn
q )⊥ = Tr(C⊥),

where Tr : Fqs → Fq maps x to x +xq + · · ·+xqs−1 and is applied componentwise to C⊥.

In [12], a basis for the dual of the subfield subcode of a projective Reed-Solomon code 
was obtained by using the previous result. In the following sections we will generalize 
these ideas to deal with the case Pm, with m > 1.

3. Codes over the projective plane

In this section, we focus on the case X = P 2, where we can give precise results, 
although it gets much more technical than the case m = 1 from [12]. The goal is to 
compute bases for PRMσ,⊥

d (2) and PRMσ
d (2) and, in particular, their dimensions. We 



8 P. Gimenez et al. / Finite Fields and Their Applications 94 (2024) 102353
set S = Fqs [x0, x1, x2], and consider cyclotomic sets in two coordinates. Here, A will 
be the set of minimal representatives of cyclotomic sets in two coordinates, and we will 
usually use the letters a and c to denote elements (a1, a2) and (c1, c2) of some cyclotomic 
sets Ia or Ic. We will also use the univariate cyclotomic sets in this context, and we define 
A1 := {a2 | (a1, a2) ∈ A}. Because of the choice of the ordering of the elements in Z2

qs , 
a = (a1, a2) ∈ A verifies that a2 is a minimal representative of the cyclotomic set Ia2

in one coordinate. Therefore, A1 is also the set of minimal representatives of cyclotomic 
sets in one coordinate. We will use letters a2 or c2 (or a letter that clearly corresponds 
to an integer) to denote the elements of the cyclotomic sets Ia2 in one coordinate.

The next result summarizes the main consequences of the results of this section. The 
definitions of d and Y can be found in Definition 3.5 and (12), respectively.

Theorem 3.1. Let 1 ≤ d ≤ 2(qs − 1). Then the subfield subcode of the projective Reed-
Muller code, PRMσ

d (2), is a code with length n = |Pm| = qm+1−1
q−1 , and dimension

dim(PRMσ
d (2)) =

∑
a∈A<d

na +
∑
a2∈Y

na2 + ε,

where, if we consider b2 ∈ A1 with Ib2 = Id, then ε = nd + 1 if I(qs−1,d) ⊂ Δ≤d; 
ε = 1 if I(qs−1,d) ⊂ Δ≤d and 

⋃
c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d; and ε = 0 otherwise. 

Moreover, the minimum distance is bounded by

wt(PRMσ
d (2)) ≥ wt(PRMd(2)) = (qs − t)qs(1−r),

where d − 1 = r(qs − 1) + t, with 0 ≤ t < qs − 1.

The formula for the dimension in the previous result can be found in Corollary 3.42. 
The dimension of PRMσ,⊥

d (2) can be derived from the previous result, but we also provide 
another formula in Corollary 3.13. Moreover, in Theorem 3.39 and Theorem 3.12 we 
provide bases for PRMσ

d (2) and PRMσ,⊥
d (2), respectively.

3.1. Dual codes of the subfield subcodes of projective Reed-Muller codes

We start by computing a basis for the dual of the subfield subcode of a projective 
Reed-Muller code since it is slightly easier due to the nature of Delsarte’s Theorem, 
Theorem 2.7. For this we need the following result from [20] about the dual of a projective 
Reed-Muller code.

Theorem 3.2. Let m ≥ 2, 1 ≤ d ≤ m(qs − 1) and d⊥ = m(qs − 1) − d. Then

PRM⊥
d (m) = PRMd⊥(m) for d ≡ 0 mod (qs − 1),

PRM⊥(m) = PRM ⊥(m) + 〈(1, . . . , 1)〉 for d ≡ 0 mod (qs − 1).
d d
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Setting m = 2 now, in order to use Delsarte’s Theorem 2.7, it is useful to introduce 
the following trace map

T : S/I(P 2) → S/I(P 2), f �→ f + fq + · · · + fqs−1
.

With this definition, it is clear that ev ◦T = Tr ◦ ev. Hence, the trace code Tr(PRM⊥
d (m))

can be seen as the code generated by the evaluation of some traces in this case. In 
particular, we can consider T (Sd⊥) (if d ≡ 0 mod qs − 1, we also consider T (λ · 1), 
λ ∈ Fqs). The image by the evaluation map of T (Sd⊥) is a system of generators of 
Tr(PRM⊥

d (m)) if d ≡ 0 mod qs − 1. If we extract a maximal linearly independent set of 
polynomials from T (Sd⊥), then its image by ev will be a basis for the dual of the subfield 
subcode.

As we said before, the kernel of the evaluation map is precisely I(P 2), and we have an 
isomorphism of the primary code with S/I(P 2). The ideal I(P 2) will play a crucial role 
in understanding linear independence of the polynomials in T (Sd). Hence, it is helpful to 
obtain a Gröbner basis for this ideal and a basis for the quotient S/I(P 2). The following 
result is a consequence of Theorem 4.1 and Lemma 4.3, which will be proven in Section 4.

Lemma 3.3. The following polynomials form a universal Gröbner basis of I(P 2):

I(P 2) = 〈x2
0 − x0, x

qs

1 − x1, x
qs

2 − x2, (x0 − 1)(x2
1 − x1), (x0 − 1)(x1 − 1)(x2 − 1)〉.

Moreover, the set of monomials {xa1
1 xa2

2 , x0x
a2
2 , x0x1 | 0 ≤ ai ≤ qs − 1, 1 ≤ i ≤ 2} is a 

basis for S/I(P 2).

Remark 3.4. Because of the generator x2
0 − x0 of the previous ideal, any positive power 

of x0 is equivalent to x0 in the quotient ring. Therefore, any monomial xa0
0 xa1

1 xa2
2 with 

a0 > 0 is equivalent to x0x
a1
1 xa2

2 in S/I(P 2).

In what follows, we assume d ≡ 0 mod qs − 1 to avoid making exceptions due to 
Theorem 3.2 (we will recover this case later). By Theorem 2.7 and Theorem 3.2, we have 
that PRMσ,⊥

d (2) can be generated by the image by the evaluation map of traces (using 
the map T ) of multiples of the monomials of degree d⊥. We show next that, to obtain a 
basis for the dual code, it is enough to consider the trace maps Ta instead of T , which 
we extend from Rqs to S/I(P 2) in the following way:

Ta : S/I(P 2) → S/I(P 2), f �→ f + fq + · · · + fq(na−1)
,

for a certain a ∈ A.
We consider the trace map from Fqs to Fql , TrFqs/Fql

(with l | s): TrFqs/Fql
(x) =

x + xql + · · · + xql(
s
l
−1)

. By Theorem 2.7, Theorem 3.2, and the previous discussion, we 
have that Tr(PRM⊥

d (2)) is generated by the evaluation of T (Sd⊥), which is generated 
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by the set {T (λxγ), λ ∈ F∗
qs , x

γ ∈ Sd⊥}. Let λ ∈ F∗
qs , γ = (γ0, γ1, γ2) and γ̂ = (γ1, γ2). 

We consider the cyclotomic set Iγ̂ , and we have that

T (λxγ) ≡λxγ + λqxqγ + · · · + λqnγ̂−1
xqnγ̂−1γ

+ λqnγ̂
xγ + λqnγ̂+1

xqγ + · · · + λq2nγ̂−1
xqnγ̂−1γ + · · ·

≡TrFqs/Fq
nγ̂

(λ)xγ + (TrFqs/Fq
nγ̂

(λ))qxqγ + · · ·

≡Tγ̂
(
TrFqs/Fq

nγ̂
(λ)xγ

)
mod I(P 2),

(2)

where, if γ0 > 0, we can reduce the exponent of x0 in each monomial to 1 (see Re-
mark 3.4), and we are using that (xγ1

1 xγ2
2 )q

nγ̂ ≡ xγ1
1 xγ2

2 mod S/I(P 2). Equation (2)
shows that, for each monomial xγ , it is enough to consider the traces

{Tγ̂(ξrγ̂xγ) | 0 ≤ r ≤ nγ̂ − 1}. (3)

This is because the trace function is surjective, which means that every element of Fqnγ̂

is obtained as TrFqs/Fq
nγ̂

(λ) for some λ ∈ Fqs . Taking into account the linearity of the 

trace function, and the fact that {1, ξγ̂ , . . . , ξnγ̂−1
γ̂ } constitutes a basis for Fqnγ̂ , we obtain 

what we stated.
Thus, for computing a basis for PRMσ,⊥

d (2), we just need to consider the union of the 
sets in (3), and extract a maximal linearly independent set. In principle, we will not see 
the dual code as the image by the evaluation map of a set of homogeneous polynomials. 
This makes Lemma 3.3 specially valuable in order to argue about linear independence 
when we consider polynomials of different degree (for homogeneous polynomials, the 
homogeneous ideal I(Pm) from [18] can be used to discuss linear independence).

We note that, for d > 2(q − 1), PRMd(2) is the whole space. Hence, we will always 
assume that d ≤ 2(q − 1) in what follows. We introduce now the following sets which 
play a crucial role in grouping the polynomials in Sd with linearly dependent traces.

Definition 3.5. Let 1 ≤ d ≤ 2(q−1). For 0 ≤ b ≤ 2(q−1), we define b as the representative 
of b mod (qs − 1) between 1 and qs − 1 if b = 0, and 0 otherwise. For a = (a1, a2) ∈ A, 
we define

Ma(d) = 〈xb0
0 xb1

1 xb2
2 | (b1, b2) ∈ Ia, b0 + b1 + b2 = d〉 ⊂ Sd.

It is clear that the union of these sets contains all the monomials of Sd, which implies 
that Sd = 〈

⋃
a∈A Ma(d)〉. Therefore, we have that T (Sd) = 〈

⋃
a∈A T (〈Ma(d)〉)〉, where 

we have used the linearity of T . Thus, in order to obtain a set of polynomials such that 
its image by the evaluation map is a basis for PRMσ,⊥

d (2), we are going to obtain a basis 
for T (Ma(d)), for each a ∈ A, and then consider the union of these bases which, by the 
previous argument, will generate T (Sd). We will then extract a basis from this union.
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To achieve that, we first introduce the following definition that we use throughout 
this section.

Definition 3.6. Let 1 ≤ d ≤ 2(qs − 1). We will say that Ma(d) contains monomials of the 
two types if there are monomials m1, m2 ∈ Ma(d) such that x0 | m1 and x0 � m2.

Using all the previous notation, we have the following result which translates some 
conditions on cyclotomic sets into conditions on the sets Ma(d).

Lemma 3.7. Let 1 ≤ d ≤ 2(qs − 1). We have the following:

1. Ma(d) is not empty if and only if Ia ∩ Δ≤d = ∅.
2. x0 divides some monomial in Ma(d) if and only if Ia ∩ Δ<d = ∅.
3. x0 does not divide all the monomials in Ma(d) if and only if Ia ∩ (Δd ∪ Δd) = ∅.
4. Ma(d) contains monomials of the two types if and only if Ia ∩ Δ<d = ∅ and Ia ∩

(Δd ∪ Δd) = ∅.
5. x0 does not divide any monomial in Ma(d) = ∅ if and only if Ia ∩ Δ≤d ⊂ Δd.

Proof. The first one is clear from the definitions. We prove (4) first. If Ma(d) contains 
monomials of the two types, then Ma(d) is not empty, and there is a monomial xb1

1 xb2
2 ∈

Ma(d). This means that (b1, b2) ∈ Ia, and we have b1 + b2 ≡ d mod (qs − 1). Hence, 
(b1, b2) ∈ Ia ∩ (Δd ∪ Δd) = ∅. There is also a monomial xc0

0 xc1
1 xc2

2 ∈ Ma(d) with c0 > 0, 
which implies that c1 + c2 < d and (c1, c2) ∈ Ia ∩ Δ<d.

Conversely, if we have c ∈ Ia such that c1 + c2 ≡ d mod (qs − 1), this means that, 
if c1 > 0, xc1+λ(qs−1)

1 xc2
2 has degree d for some λ ∈ {0, 1}, which means that this 

monomial would be in Ma(d). If c1 = 0, the same reasoning proves that the monomial 
x
c2+λ(qs−1)
2 would be in Ma(d) for some λ ∈ {0, 1}. Taking into account the condition 

Ia∩Δ<d = ∅, there is an element u ∈ Ia such that xu1
1 xu2

2 is of degree less than d. Thus, 
xu0

0 xu1
1 xu2

2 ∈ Ma(d), where u0 = d − u1 − u2. This proves (4).
By adapting the previous argument, it is easy to prove (2) and (3), and (5) is the 

negation of (2), taking (1) into account. �
Example 3.8. We can consider the extension F16 ⊃ F2 (q = 2, s = 4), and the cyclotomic 
set I(0,3) = 〈(0, 3), (0, 6), (0, 9), (0, 12)〉. For 1 ≤ d ≤ 2 we have that M(0,3)(d) = ∅ since 
I(0,3) ∩ Δ≤2 = ∅. For d = 3, we have M(0,3)(3) = 〈x3

2〉, i.e., x0 does not divide any 
monomial in M(0,3)(3) (due to the fact that I(0,3) ∩ Δ≤3 = {(0, 3)} ⊂ Δ3). For d = 5
(similarly for d = 4), we have that M(0,3)(5) = 〈x2

0x
3
2〉, i.e., x0 divides all the monomials 

in M(0,3)(5) (precisely because I(0,3)∩Δ5 = ∅). For d = 6 we have M(0,3)(6) = 〈x3
0x

3
2, x

6
2〉, 

i.e., M(0,3)(6) contains monomials of the two types, since we have (0, 3) ∈ I(0,3)∩Δ<6 and 
(0, 6) ∈ Ia∩Δ6. Lastly, if we consider a degree higher than qs = 16, we have to take into 
account d. For example, for d = 18, we have M(0,3)(18) = 〈x15

0 x3
2, x

18
2 , x12

0 x6
2, x

9
0x

9
2, x

6
0x

12
2 〉. 

We see that M(0,3)(18) contains monomials of the two types, as we have that d = 3 and 
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(0, 3) ∈ I(0,3)∩Δ3, which means that we can consider the monomial x18
2 ≡ x3 mod I(P 2), 

which does not have x0 in its support.

The following result is a consequence of Lemma 4.4, which is proved in Section 4. It 
will allow us to obtain a basis for T (Ma(d)), for each a ∈ A, and it can be understood as 
the remainder after using the multivariate division algorithm of a monomial with respect 
to the Gröbner basis from Lemma 3.3.

Lemma 3.9. Let a0, a1, a2 be integers, with a0, a1 > 0. We have that

xa0
0 xa1

1 xa2
2 ≡ xa1

1 xa2
2 + x0x

a2
2 − xa2

2 + x0x1 − x0 − x1 + 1 mod I(P 2)

≡ xa1
1 xa2

2 + (x0 − 1)(xa2
2 + x1 − 1) mod I(P 2).

We recall that the kernel of ev is I(P 2). This implies that a set of classes (polynomials) 
in S/I(P 2) is linearly independent if and only if the evaluation of this set is linearly 
independent. This is why, in the following, we may argue about linear independence 
both from the point of view of polynomials in S/I(P 2) and vectors in Fn

qs .

Lemma 3.10. Let a = (a1, a2) ∈ A, let ξa be a primitive element of Fqna and let ξa2 be a 
primitive element of Fqna2 . Then the following polynomials constitute a basis in S/I(P 2)
for T (Ma(d)) = 〈T (λxb0

0 xb1
1 xb2

2 ), λ ∈ Fqs , x
b0
0 xb1

1 xb2
2 ∈ Ma(d)〉:

1. If x0 divides all the monomials in Ma(d) = ∅:

{Ta(ξrax0x
a1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}.

2. If x0 does not divide any monomial in Ma(d) = ∅:

{Ta(ξraxa1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}.

3. If Ma(d) contains monomials of the two types, and a1 = 0:

{Ta(ξraxa2
2 ) | 0 ≤ r ≤ na − 1} ∪ {Ta(ξrax0x

a2
2 ) | 0 ≤ r ≤ na − 1}.

4. If Ma(d) contains monomials of the two types, and a1 > 0:

{Ta(ξraxa1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}
∪ {(x0 − 1)(Ta2(ξra2

xa2
2 ) + Ta2(ξra2

)(x1 − 1)) | 0 ≤ r ≤ na2 − 1}.

Proof. The fact that the polynomials of each set {Ta(ξraxa0
0 xa1

1 xa2
2 ), 0 ≤ r ≤ na} are lin-

early independent can easily be seen since the evaluation of each set {Ta(ξraxa0
0 xa1

1 xa2
2 ), 0

≤ r ≤ na} in [{1} × F2
qs ] is the same as the evaluation of {Ta(ξraxa1

1 xa2
2 ), 0 ≤ r ≤ na} in 
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F2
qs , and we know that the evaluation of this set in F2

qs is linearly independent it is part of 
the basis given in Theorem 2.3 for the affine case. For each monomial xb0

0 xb1
1 xb2

2 ∈ Ma(d), 
because of the discussion that led to (3), we know that, instead of considering the set 
{T (λxb0

0 xb1
1 xb2

2 ), λ ∈ Fqs}, it is enough to consider the set {Ta(ξraxb0
0 xb1

1 xb2
2 ), 0 ≤ r ≤ na}.

Therefore, if we consider xb0
0 xb1

1 xb2
2 , xc0

0 xc1
1 xc2

2 ∈ Ma(d), with b0, c0 > 0, we know 
that it is sufficient to consider the traces {Ta(ξraxb0

0 xb1
1 xb2

2 ), 0 ≤ r ≤ na − 1} and 
{Tb(ξrbxc0

0 xc1
1 xc2

2 ), 0 ≤ r ≤ na − 1} for each monomial, respectively. However, the evalua-
tions of these sets of traces generate the same space in [{1} × F2

qs ] due to Theorem 2.3
and Remark 2.4, and in the rest of the points both sets of polynomials evaluate to 0. For 
the case with b0 = c0 = 0, we just need to observe that the evaluation of any polynomial 
f(x1, x2) in P 2 is fixed by its evaluation in [{1} ×F2

qs ]. By the same argument as before, 
the evaluations of the two sets of polynomials we are considering in [{1} ×F2

qs ] generate 
the same space, and by the previous observation this implies that their evaluations over 
P 2 generate the same vector space.

Hence, if we consider the traces of the monomials in Ma(d), it is enough to consider the 
traces of a monomial divisible by x0 (if any) and the traces of a monomial not divisible 
by x0 (if any). In fact, we can assume that we are considering the monomials x0x

a1
1 xa2

2
and xa1

1 xa2
2 , as any other choice for a monomial that is divisible by x0 and a monomial 

that is not divisible by x0, respectively, would span the same space when considering the 
space generated by the traces. In the case where Ma(d) only has monomials of one of 
those types, we know that those traces are linearly independent and we obtain the cases 
(1) and (2). Another easy case is when a1 = 0, in which, if Ma(d) contains monomials 
of the two types, we just obtain the polynomials

{Ta(ξraxa2
2 ) | 0 ≤ r ≤ na − 1} ∪ {Ta(ξrax0x

a2
2 ) | 0 ≤ r ≤ na − 1}.

We have seen that both of these sets are linearly independent, and when we consider 
the union we still keep the linear independence since the monomials of each of these 
traces are part of the basis in Lemma 3.3 and both sets have disjoint support for their 
polynomials. This corresponds to the case (3).

The case where a1 > 0 and Ma(d) contains monomials of the two types is more 
involved. By the previous discussion, it is enough to consider the sets of polynomials 
{Ta(ξrax0x

a1
1 xa2

2 ), 0 ≤ r ≤ na − 1} and {Ta(ξraxa1
1 xa2

2 ), 0 ≤ r ≤ na − 1} for generating 
T (Ma(d)), and we are interested in knowing how many linearly independent polynomials 
in S/I(P 2) there are in the union of those sets. In order to construct a basis for the space 
generated by all these polynomials, we start with the polynomials in {Ta(ξraxa1

1 xa2
2 ), 0 ≤

r ≤ na}, and we will check which polynomials from the other set can be included without 
losing linear independence. First, by Lemma 3.9, we have that

xqla0
0 xqla1

1 xqla2
2 ≡ xqla1

1 xqla2
2 + (x0 − 1)(xqla2

2 + x1 − 1) mod I(P 2).

Thus, for a = (a1, a2) with a1 > 0, we consider Ia and ξa a primitive element of Fqna , 
and we obtain
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Ta(ξraxa0
0 xa1

1 xa2
2 ) ≡ Ta(ξraxa1

1 xa2
2 ) + (x0 − 1)

na−1∑
l=0

ξq
lr

a (xqla2
2 + x1 − 1) mod I(P 2)

≡ Ta(ξraxa1
1 xa2

2 ) + (x0 − 1)(Ta(ξraxa2
2 ) + Ta(ξra)(x1 − 1)) mod I(P 2).

(4)

By (4), we obtain that we have to see which polynomials of the type

(x0 − 1)(Ta(ξraxa2
2 ) + Ta(ξra)(x1 − 1)) = (x0 − 1)Ta(ξraxa2

2 ) + (x0 − 1)(x1 − 1)Ta(ξra) (5)

can be included in the basis that we are constructing without losing linear independence. 
We note that the exponents of x2 in these polynomials are precisely the elements of Ia2 . 
In fact, these polynomials are closely related to the corresponding traces of Ia2. Arguing 
as we did to get (2), we obtain that

Ta(ξraxa2
2 ) = Ta2

(
TrFqna /F

q
na2

(ξra)x
a2
2

)
. (6)

By the argument we used to get (3), we see that the set {Ta2(ξra2
xa2

2 ) | 0 ≤ r ≤ na2 − 1}, 
where ξa2 is a primitive element of Fqna2 , generates the same vector space as {Ta(ξraxa2

2 ) |
0 ≤ r ≤ na − 1}. This implies that the set of polynomials

{(x0 − 1)(Ta(ξraxa2
2 ) + Ta(ξra)(x1 − 1)) | 0 ≤ r ≤ na}

generates the same space as the set

{(x0 − 1)(Ta2(ξra2
xa2

2 ) + Ta2(ξra2
)(x1 − 1)) | 0 ≤ r ≤ na2}.

This is because the same linear combination that expresses Ta(ξraxa2
2 ) in terms of the 

traces Ta2(ξra2
xa2

2 ) also gives Ta(ξra) in terms of the traces Ta2(ξra2
) (we just evaluate 

x2 = 1), and vice versa. Thus, when considering the polynomials from (5) that we have 
to include, is enough to consider

{(x0 − 1)(Ta2(ξra2
xa2

2 ) + Ta2(ξra2
)(x1 − 1)) | 0 ≤ r ≤ na2 − 1}, (7)

which are linearly independent since they coincide with the univariate affine case from 
Theorem 2.3 when we evaluate in the points of [{0} ×{1} ×Fqs ]. Finally, when we consider 
the union of those polynomials with the set {Ta(ξraxa1

1 xa2
2 ), 0 ≤ r ≤ na}, we see that they 

are linearly independent because the polynomials from (7) evaluate to the zero vector in 
[{1} × F2

qs ], while the polynomials from the set {Ta(ξraxa1
1 xa2

2 ), 0 ≤ r ≤ na} give linearly 
independent vectors when evaluating in [{1} × F2

qs ]. �
By Lemma 3.10, if x0 divides all the monomials from Ma(d), or does not divide any 

of the monomials in Ma(d), we only have to consider na polynomials for each a ∈ A to 
construct a basis for T (Ma(d)). However, if Ma(d) contains monomials of the two types 
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we have to consider na + na2 polynomials (note that for a1 = 0 we have a = (0, a2) and 
2na = 2na2 = na + na2).

Remark 3.11. We note that if a1 = 0 and Ma(d) contains monomials of the two types, 
this means that xd

2 ∈ Ma(d), which implies that d ∈ Ia2 . Therefore, the case (3) in 
Lemma 3.10 applies only to (0, d) ∈ A, and only when M(0,d) contains monomials of the 
two types.

Let d⊥ = 2(q − 1) − d. We introduce the following notation to state the main result 
of this section. For each a ∈ A such that Ma(d⊥) = ∅, let ξa be a primitive element in 
Fqna , and consider the following set:

(a) If x0 divides all the monomials from Ma(d⊥), we set

Ta = {Ta(ξrax0x
a1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}.

(b) We set

Ta = {Ta(ξraxa1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}

otherwise.

The reasoning behind Ta is that for any a ∈ A such that Ma(d⊥) = ∅, from 
Lemma 3.10 we obtain that Ta is a set of linearly independent polynomials in T (Ma(d⊥)). 
We define U = {a ∈ A | Ma(d⊥) = ∅}, and we consider the union of the previous sets:

D1 =
⋃
a∈U

Ta.

This is one of the sets that we will consider for constructing a basis for PRMσ,⊥
d (2).

If Ma(d⊥) contains monomials of the two types, then, besides Ta, Lemma 3.10 states 
that there are more linearly independent polynomials in T (Ma(d⊥)). Thus, we turn our 
attention now to the case (4) from Lemma 3.10. For each a2 ∈ A1, let ξa2 be a primitive 
element in Fqna2 , and we consider the set

Ta2 = {(x0 − 1)(Ta2(ξra2
xa2

2 ) + Ta2(ξra2
)(x1 − 1)) | 0 ≤ r ≤ na2 − 1}.

Let V = {a2 ∈ A1 | Ia2 = Id⊥ and ∃ c ∈ A with c2 = a2 and Mc(d⊥) contains monomi-
als of the two types}, and we consider the set

D2 =
⋃

Ta2 .

a2∈V
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If we want to generate all the polynomials in 
⋃

a∈A T (Ma(d⊥)), from Lemma 3.10 we 
see that we still have to consider the polynomials corresponding to a ∈ A such that 
Ia2 = Id. Let us define a set D3 that will contain the polynomials corresponding to this 
case and that we will consider for constructing a basis for PRMσ,⊥

d (2). Let a2 ∈ A1 such 
that Ia2 = Id⊥ , and ξa2 a primitive element in Fqna2 .

(a) If M(0,d⊥)(d
⊥) = M(0,a2)(d⊥) contains monomials of the two types:

(a.1) If there is an element c ∈ A such that c2 = a2, Ic = I(0,d⊥), and Mc(d⊥)
contains monomials of the two types, we set

D3 = {Ta2(ξra2
x0x

a2
2 ) | 0 ≤ r ≤ na2 − 1} ∪ {(x0 − 1)(x1 − 1)}.

(a.2) We set

D3 = {Ta2(ξra2
x0x

a2
2 ) | 0 ≤ r ≤ na2 − 1}.

otherwise.
(b) We set

D3 = ∅

otherwise.

We note that the case (b) happens if and only if x0 does not divide any monomial in 
M(0,d⊥)(d

⊥). The precise reason why we define D3 in this way will be clear in the proof 
of Theorem 3.12, which we will state after defining one last set, which we are considering 
just to cover the case in which d ≡ 0 mod qs−1. In that case, we also have the evaluation 
of 1 in the dual code of PRMd(2) by Theorem 3.2. If d = qs − 1, we define D4 = {1}, 
and D4 = ∅ otherwise.

Theorem 3.12. Let d ≥ 1 and d⊥ = 2(qs − 1) − d. For each a ∈ A, let ξa be a primitive 
element in Fqna such that Ta(ξa) = 0, and for each a2 ∈ A1, let ξa2 be a primitive 
element in Fqna2 such that Ta2(ξa2) = 0 (one can always assume this [3]). Using the 
previous definitions, we consider the set

D = D1 ∪D2 ∪D3 ∪D4.

Then we have that the image by the evaluation map of D forms a basis for PRMσ,⊥
d (2).

Proof. Firstly, by Theorem 3.2 we know that PRM⊥
d (2) is equal to PRMd⊥(2), ex-

cept when d ≡ 0 mod (qs − 1), in which case we also have to consider the evalua-
tion of the constant 1. If d ≡ 0 mod (qs − 1), by Delsarte’s Theorem, Theorem 2.7, 
PRMσ,⊥

d (2) = Tr(PRMd⊥(2)), and due to the fact that we have Tr ◦ ev = ev ◦T , we 
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see that if we consider T (Sd⊥) (and possibly the constant 1), we obtain a system of 
generators for PRMσ,⊥

d (2). Therefore, in order to obtain a basis, we just need to study 
linear independence between these polynomials. In fact, we have Sd⊥ = 〈

⋃
a∈A Ma(d⊥)〉, 

which means that we can consider the union of the bases given for each T (Ma(d⊥)) from 
Lemma 3.10, and we can obtain a basis for PRMσ,⊥

d (2) by extracting a maximal linearly 
independent set. We focus first on computing a basis for T (Sd⊥), and we will consider 
the cases where d ≡ 0 mod qs − 1 later.

In what follows, for each a ∈ A we consider ξa a primitive element in Fqna , and for 
each a2 ∈ A1 we consider ξa2 a primitive element in Fqna2 . By construction, it is clear 
that we have D1∪D2 ⊂ T (Sd⊥). We show now that also D3 is contained in T (Sd⊥), and 
D4 is contained in T (Sd⊥ + 〈1〉) when D4 = ∅.

Let a2 ∈ A1 such that Ia2 = Id⊥ . For D3, we have to justify that, if M(0,d⊥)(d
⊥)

contains monomials of the two types and there is an element c ∈ A such that c2 = a2, 
Ic = I(0,d⊥) and Mc(d⊥) contains monomials of the two types, then (x0 − 1)(x1 − 1) is 
in T (Sd⊥). Under these assumptions, by Lemma 3.10 we have that the following sets are 
in T (Sd⊥):

{T(0,a2)(ξ
r
(0,a2)x

a2
2 ) | 0 ≤ r ≤ n(0,a2) − 1} ∪ {T(0,a2)(ξ

r
(0,a2)x0x

a2
2 ) | 0 ≤ r ≤ n(0,a2) − 1},

{Tc(ξraxc1
1 xc2

2 ) | 0 ≤ r ≤ nc − 1} (8)

∪ {(x0 − 1)(Tc2(ξrc2x
c2
2 ) + Tc2(ξrc2)(x1 − 1)) | 0 ≤ r ≤ nc2 − 1}.

Taking into account that c2 = a2, if we assume that ξ(0,a2) = ξa2 (note that na2 =
n(0,a2)), then T(0,a2)(ξr(0,a2)x

a2
2 ) = Tc2(ξrc2x

c2
2 ) and T(0,a2)(ξr(0,a2)x0x

a2
2 ) = x0Tc2(ξrc2x

c2
2 ). 

By assumption, we have that Tc2(ξc2) = 0. Hence, taking into account that we can 
generate the polynomial (1 − x0)Tc2(ξc2xc2

2 ) with the first union of sets in (8), we see 
that with the first union of sets and the last set from (8) we can generate (x0−1)(x1−1). 
Thus, D1 ∪ D2 ∪ D3 ⊂ T (Sd⊥). On the other hand, if d = qs − 1, we have D4 = {1}, 
and it is clear that D4 ⊂ T (Sd⊥ + 〈1〉). Therefore, we have seen that the image by the 
evaluation map of D is always in PRMσ,⊥

d (2).
Now we justify that the evaluation of the polynomials in D is linearly independent. 

If we consider the monomials xa0
0 xa1

1 xa2
2 , xb0

0 xb1
1 xb2

2 , of degree d⊥, with Ia = Ib (for 
a = (a1, a2), b = (b1, b2)), then we have that the sets {Ta(ξraxa0

0 xa1
1 xa2

2 ), 0 ≤ r ≤ na − 1}
and {Tb(ξrbxb0

0 xb1
1 xb2

2 ), 0 ≤ r ≤ nb − 1} are linearly independent since in [{1} × F2
qs ] they 

are linearly independent by the affine case from Theorem 2.3 in two variables. Using 
Lemma 3.10 we see that the polynomials in D1 are linearly independent.

Each polynomial (x0 − 1)(Ta2(ξra2
xa2

2 ) + Ta2(ξra2
)(x1 − 1)), with 0 ≤ r ≤ na2 − 1, has 

the same evaluation in [{0} ×{1} ×Fqs ] as −Ta2(ξra2
xa2

2 ) in Fqs . Hence, the evaluation of 
the polynomials in D2 is linearly independent by Theorem 2.3 in one variable. Moreover, 
these polynomials evaluate to 0 in [{1} ×F2

qs ], while the polynomials from D1 have linearly 
independent evaluation in [{1} × F2

qs ], which means that the evaluation of D1 ∪ D2 is 
also linearly independent.
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We show now that a similar reasoning proves that the evaluation of D1 ∪D2 ∪D3 is 
also linearly independent. Looking at the definition of D3, if we are in the case (a.1), 
the evaluation of the polynomial (x0 − 1)(x1 − 1) is linearly independent from the eval-
uation of the rest of polynomials in D1 ∪ D2 ∪ D3 as it is the only one that evaluates 
to 0 in [{1} × F2

qs ] and [{0} × {1} × Fqs ], and the rest of polynomials have linearly in-
dependent evaluations in those sets. Let a2 ∈ A1 such that Ia2 = Id⊥ . The evaluation 
of Ta2(ξra2

x0x
a2
2 ), for some 0 ≤ r ≤ na2 − 1, is linearly independent from the evaluation 

of any polynomial in D1, besides Ta2(ξra2
xa2

2 ), due to the argument we used to discuss 
linear independence between elements in D1. But its evaluation is also linearly indepen-
dent from the evaluation of Ta2(ξra2

xa2
2 ) by Lemma 3.10 (3). The same argument that we 

used to prove that the evaluation of the polynomials in D1 ∪D2 is linearly independent 
proves that the evaluation of Ta2(ξra2

x0x
a2
2 ) is linearly independent from the evaluation 

of the polynomials in D2. Thus, in this case, the evaluation of D1 ∪D2 ∪D3 is linearly 
independent. The same arguments prove that D1 ∪ D2 ∪ D3 is linearly independent in 
the other cases that appear in the definition of D3.

We study now the cases in which we have D4 = ∅, i.e., the case where d = qs − 1. 
The evaluation of the constant 1 is linearly independent from the evaluation of the rest 
of polynomials in this case since, if we look at the evaluation in [{0} × {1} × Fqs ], the 
constant 1 is linearly independent from the evaluation of the rest of univariate traces by 
Theorem 2.3. Hence if we had a linear combination of polynomials from D1 ∪D2 ∪D3

with the same evaluation as 1 in P 2, when setting x0 = 0, x1 = 1, the result would be 
the constant 1. If we look at the polynomials that we have in D1 ∪ D2 ∪ D3, the only 
polynomial that would have a constant in its support after setting x0 = 0, x1 = 1, would 
be the only polynomial in T0: (x0 − 1)(1 + (x1 − 1)) = (x0 − 1)x1. However, we only 
consider this polynomial in D2 if there is some b ∈ A such that Ib2 = I0 = {0} and 
if Mb(d⊥) = Mb(qs − 1) contains monomials of the two types. Therefore, b2 = 0, and 
we must have b1 = qs − 1 if we want to have some monomial that is not divided by 
x0 in Mb(qs − 1) by Lemma 3.7. However, M(qs−1,0)(qs − 1) = {xqs−1

1 } does not have 
monomials of the two types. Thus, the polynomial (x0 − 1)x1 is not in D1 ∪D2 ∪D3 in 
this case and the evaluation of D = D1 ∪D2 ∪D3 ∪D4 is linearly independent.

The only thing left to prove for asserting that D is a basis is that this set is a maximal 
linearly independent set, or, equivalently, that D generates T (Sd⊥) if d ≡ 0 mod qs − 1, 
and D generates T (Sd⊥ + 〈1〉) otherwise. To see that D generates T (Sd⊥) when d ≡
0 mod qs − 1, we have seen that it is enough to check that we can generate all the bases 
for the sets T (Ma(d⊥)) from Lemma 3.10. Let a ∈ A such that Ma(d⊥) = ∅. If Ma(d⊥)
does not have monomials of the two types, then we see that the basis for T (Ma(d⊥))
from Lemma 3.10 is contained in D1. If Ma(d⊥) contains monomials of the two types, 
then we are in case (3) or case (4) from Lemma 3.10.

Due to the ordering of the elements in Z2
qs , a ∈ A implies that a2 ∈ A1. We consider 

now the case (4) and we assume first that Ia2 = Id⊥ . In this situation, it is clear by the 
definitions that the basis for T (Ma(d)) from Lemma 3.10 is contained in D1 ∪D2.
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Now we study the case (3) from Lemma 3.10, and also the case (4) when Ia2 = Id⊥ , 
which are the only cases left. By Remark 3.11, in both situations we have that Ia2 = Id⊥ . 
Instead of studying the sets T (Mc(d⊥)), with c ∈ A and c2 = a2, one by one, we consider 
them together in this case, and we will see that we can generate 

⋃
c∈A|c2=a2

T (Mc(d⊥)). 
For each c ∈ A with c2 = a2 and Mc(d⊥) = ∅, if Mc(d⊥) does not have monomials of 
the two types, we have already seen that the basis for T (Mc(d⊥)) from Lemma 3.10 is 
contained in D1. And if Mc(d⊥) contains monomials of the two types, then it is also 
clear that the first set of polynomials that appears in cases (3) and (4) from Lemma 3.10
is contained in D1. Thus, we focus on the second set of polynomials from those cases in 
Lemma 3.10.

If M(0,d⊥)(d
⊥) = M(0,a2)(d⊥) contains monomials of the two types, by the definition of 

D3 we have that the basis for T (M(0,a2)(d⊥)) from Lemma 3.10 is contained in D1 ∪D3. 
If we also have some c ∈ A, Ic = I(0,a2), with c2 = a2, and such that Mc(d⊥) contains 
monomials of the two types, then we have that (x0 − 1)(x1 − 1) ∈ D3, and by the 
reasoning that we did after (8) it is clear that we can generate the basis of T (Mc(d⊥))
given in Lemma 3.10 with the polynomials in D1 ∪D2 ∪D3.

If M(0,a2)(d⊥) does not have monomials of the two types, we clearly have the basis from 
Lemma 3.10 for T (M(0,a2)(d⊥)) contained in D1∪D3. We also note that, by Lemma 3.7, 
M(0,a2)(d⊥) does not have monomials of the two types if and only if d⊥ = a2, i.e., d⊥ is 
the minimal element in Id⊥ . Hence, for any c ∈ A with c2 = a2 = d⊥, Ic = I(0,d⊥), we 
obtain that, for each γ ∈ Ic, we have γ1 = 0 and γ1 + γ2 > c2 = d⊥, which means that 
Mc(d⊥) = ∅.

Finally, we have to consider the cases where d ≡ 0 mod qs−1. If d = qs−1, we already 
have 1 ∈ D4. For the case d = 2(qs − 1), we have T(0,0)(x0

1x
0
2) = 1 in D1, which means 

that we also have the evaluation of the constant 1 when evaluating the polynomials in 
D. Therefore, we have proved that the image by the evaluation map of D is a basis for 
PRMσ,⊥

d (2). �
Corollary 3.13. Let d ≥ 1 and d⊥ = 2(qs − 1) − d. Let U = {a ∈ A | Ma(d⊥) = ∅} and 
V = {a2 ∈ A1 | Ia2 = Id⊥ and ∃ c ∈ A with c2 = a2 and Mc(d⊥) contains monomials
of the two types} as before. The dimension of PRMσ,⊥

d (2) is

dim(PRMσ,⊥
d (2)) = |D| = |D1| + |D2| + |D3| + |D4| =

∑
a∈U

na +
∑
a2∈V

na2 + ε3 + ε4,

where ε3 = nd⊥ +1 if M(0,d⊥)(d
⊥) contains monomials of the two types and there is Ic =

I(0,d⊥) with c2 ∈ Id such that Mc(d⊥) contains monomials of the two types; ε3 = nd⊥ if 
M(0,d⊥)(d

⊥) contains monomials of the two types but there is no Ic = I(0,d⊥) as before; 
and ε3 = 0 otherwise. Finally, ε4 = |D4|, i.e., ε4 = 1 if d = qs−1, and ε4 = 0 otherwise.

Example 3.14. Consider the extension F4 ⊃ F2 and let us compute the set D for 
d = 4. We have d⊥ = 2 and, from Example 2.1, the set of minimal representatives 
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is A = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 0), (0, 3), (3, 3), (2, 1), (1, 3), (3, 1)}. We start by con-
structing the set D1. We consider the minimal representatives a such that Ma(d⊥) = ∅, 
which by Lemma 3.7 is equivalent to having Ia ∩ Δ≤d⊥ = ∅. The only cyclotomic sets 
that satisfy that condition in this case are I(0,0), I(1,0), I(0,1) and I(1,1). Therefore, we 
have U = {(0, 0), (1, 0), (0, 1), (1, 1)} and D1 =

⋃
a∈U Ta. For example, assuming ξ(1,0) is 

a primitive element of F4, for a = (1, 0) we have

T(1,0) = {T(1,0)(ξr(1,0)x1) | 0 ≤ r ≤ 1} = {ξr(1,0)x1 + ξ2rx2
1 | 0 ≤ r ≤ 1}.

We also have |D1| =
∑

a∈U na = 7. For |D2|, we consider A1 = {0, 1, 3}. The only 
a ∈ A such that Ma(d⊥) contains monomials of the two types are the ones such that 
Ia ∩ Δ<d⊥ = ∅ and Ia ∩ (Δd⊥ ∪ Δd⊥) = ∅, according to Lemma 3.7. This is a subset of 
U , and from the elements of U , the ones that satisfy this condition are (1, 0) and (0, 1). 
For example, I(1,0) ∩Δ<2 = (1, 0) and I(1,0) ∩Δ2 = (2, 0). Hence, looking at the second 
coordinate of (1, 0) and (0, 1), we have V = {0, 1}, and D2 =

⋃
a2∈V Ta2 . For example, 

if we consider ξ1 = ξ(1,0) a primitive element of F4, for a2 = 1 we have

T1 ={(x0 − 1)(T1(ξr1x2) + T1(ξr1)(x1 − 1)) | 0 ≤ r ≤ 1}
={(x0 − 1)(ξr1x2 + ξ2r

1 x2
2 + (ξr1 + ξ2r

1 )(x1 − 1)) | 0 ≤ r ≤ 1}.

We have |D2| =
∑

a2∈V na2 = 3. One can check that D3 = D4 = ∅ in this case. Thus, 
the evaluation of the set D1 ∪D2 is a basis for PRMσ,⊥

4 (2), and dim PRMσ,⊥
4 (2) = 10.

3.2. Subfield subcodes of projective Reed-Muller codes

In this section we compute a basis for PRMσ
d (2). The discussion gets more technical 

than in the previous case, but we can obtain explicit results as well. We start by consid-
ering some sets of polynomials that we use to construct a basis for the subfield subcode. 
We recall the notation A≤d = {a ∈ A | Ia ⊂ Δ≤d} and A<d = {a ∈ A | Ia ⊂ Δ<d}. 
We also consider A1

≤d = {a2 ∈ A1 | ∀c2 ∈ Ia2 , c2 ≤ d} for the univariate case. It is also 
important to recall the definition of homogenized trace from (1).

Lemma 3.15. Let 1 ≤ d ≤ 2(qs− 1) and let ξa be a primitive element in Fqna . The image 
by the evaluation map of the polynomials in the set

B1 =
⋃

a∈A<d

{x0Ta(ξraxa1
1 xa2

2 ) | 0 ≤ r ≤ na − 1},

is in PRMσ
d (2). Moreover, the evaluation of the polynomials in B1 is linearly independent.

Proof. The evaluation of these polynomials in [{1} × F2
qs ] is the same as the evaluation 

of the polynomials of the set
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⋃
a∈A<d

{Ta(ξraxa1
1 xa2

2 ) | 0 ≤ r ≤ na − 1}

in F2
qs . This set of polynomials evaluates to Fq by Theorem 2.3, which means that the 

polynomials in B1 evaluate to Fq in [{1} × F2
qs ], and they clearly evaluate to 0 in the 

rest of the points in P 2. By Lemma 2.6, each of these polynomials evaluates to Fq. We 
have to see that these polynomials are equivalent modulo S/I(P 2) to some homogeneous 
polynomials of degree d, because in that case these polynomials would have the same 
evaluation as some homogeneous polynomials of degree d, which means that their eval-
uation is in PRMσ

d (2). Let a ∈ A<d. For 0 ≤ r ≤ na − 1, we consider the polynomial 
T h
a (ξrax

a1
1 xa2

2 ), where we homogenize up to degree d. Having a ∈ A<d means that, after 
reducing the exponents modulo qs−1, the monomials xc1

1 xc2
2 that appear in the support 

of Ta(ξraxa1
1 xa2

2 ) satisfy that c1 + c2 < d (these exponents are precisely the elements 
of Ia ⊂ Δ<d). Therefore, after homogenizing up to degree d, x0 divides all the mono-
mials in the support of T h

a (ξrax
a1
1 xa2

2 ). Taking into account the equation x2
0 − x0 from 

I(P 2), this means that T h
a (ξrax

a1
1 xa2

2 ) ≡ x0Ta(ξraxa1
1 xa2

2 ) mod I(P 2) in this case. Hence, 
the evaluation of the polynomials in B1 is in PRMσ

d (2).
We finish the proof by noting that their evaluation is linearly independent precisely 

since their evaluation in [{1} × F2
qs ] is linearly independent by Theorem 2.3. �

Example 3.16. We consider an extension F16 ⊃ F2 (i.e., q = 2, s = 4), and the goal 
of the examples in this section is to compute a basis for PRMσ

21(2). We start by com-
puting the set B1, which is a set of linearly independent polynomials that evaluate 
to Fq by the previous discussion. First of all, we need to consider all the cyclotomic 
sets Ia such that Ia ⊂ Δ<21. For each of those cyclotomic sets, we consider the cor-
responding set of traces from B1. For example, we can consider the cyclotomic set 
I(1,1) = {(1, 1), (2, 2), (4, 4), (8, 8)}, which gives us the following n(1,1) = 4 polynomi-
als (ξ is a primitive element in F24):

T h
(1,1)(x1x2) = x19

0 x1x2 + x17
0 x2

1x
2
2 + x13

0 x4
1x

4
2 + x5

0x
8
1x

8
2,

T h
(1,1)(ξx1x2) = ξx19

0 x1x2 + ξ2x17
0 x2

1x
2
2 + ξ4x13

0 x4
1x

4
2 + ξ8x5

0x
8
1x

8
2,

T h
(1,1)(ξ2x1x2) = ξ2x19

0 x1x2 + ξ4x17
0 x2

1x
2
2 + ξ8x13

0 x4
1x

4
2 + ξx5

0x
8
1x

8
2,

T h
(1,1)(ξ3x1x2) = ξ3x19

0 x1x2 + ξ6x17
0 x2

1x
2
2 + ξ12x13

0 x4
1x

4
2 + ξ9x5

0x
8
1x

8
2,

where we see that we are homogenizing up to degree d = 21. As we have said in the 
previous discussion, these polynomials are linearly independent because in [{1} × F2

qs ]
they have the same evaluation as the traces T(1,1)(ξrx1x2), 0 ≤ r ≤ n(1,1) − 1, that 
would appear in the affine case from Theorem 2.3. And they clearly evaluate to Fq, as 
they evaluate to 0 in the rest of the points of P 2. We can continue doing this for all the 
other cyclotomic sets such that Ia ⊂ Δ<21, and we obtain 

∑
a∈A<21

na = 127 linearly 
independent polynomials that form B1.
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We consider now another set of homogeneous polynomials that will be linearly inde-
pendent from B1 and whose polynomials evaluate to Fq. We start with the case d ≤ qs−1, 
which is easier. Let us focus first on the cyclotomic sets Ia with a ∈ A≤d \ A<d. Hav-
ing Ia ∩ Δd = ∅ implies that the corresponding homogeneous traces T h

a (ξrax
a1
1 xa2

2 ), 
0 ≤ r ≤ na − 1, with ξa a primitive element in Fqna , have at least one monomial which 
is not divisible by x0. Hence, although the evaluation of these traces in [{1} × F2

qs ] is 
going to be equal to the evaluation of Ta(ξraxa1

1 xa2
2 ) in F2

qs , which has coordinates in 
Fq, the evaluation in [{0} × {1} × Fqs ] and [0 : 0 : 1] does not necessarily have its co-
ordinates in Fq, and, by Lemma 2.6, these polynomials might not evaluate to Fq. By 
Lemma 2.6 and Theorem 2.3 in one variable, if a polynomial f(x0, x1, x2) evaluates to 
Fq in P 2, f(0, 1, x2) must be a linear combination of traces in the variable x2. A natural 
idea is to consider linear combinations of homogenized traces such that, when setting 
x0 = 0, x1 = 1, we obtain that the evaluation of f(0, 1, x2) in Fqs is the same as some 
trace in the variable x2. To do that, we introduce the following definition.

Definition 3.17. For each a2 ∈ A1
≤d, we define the set

Ya2 := {a ∈ A≤d | Ia = I(d−c2,c2) for some c2 ∈ Ia2}.

Remark 3.18. Recall that, with the order chosen for the cyclotomic sets, we have that 
c ∈ A implies c2 ∈ A1. Therefore, in this case c ∈ Ya2 implies c2 = a2.

Example 3.19. Let us continue with the setting of Example 3.16. We have d = 21 and 
d = 6, and we will compute Ya2 for a2 = 0, 1. To do so, we consider first the univariate 
cyclotomic sets:

I0 = {0}, I1 = {1, 2, 4, 8}, I3 = {3, 6, 9, 12}, I5 = {5, 10}, I7 = {7, 11, 13, 14}, I15 = {15}.

For a2 = 0, we just have Y0 = {(3, 0)} because I(3,0) = I(6,0) = I(d−0,0). For a2 = 1, we 
need to obtain the minimal elements of the cyclotomic sets I(21−1,1), I(21−2,2), I(21−4,4)
and I(21−8,8). We have

I(5,1) = {(5, 1), (10, 2), (5, 4), (10, 8)},
I(4,2) = {(2, 1), (4, 2), (8, 4), (1, 8)},
I(2,4) = {(8, 1), (1, 2), (2, 4), (4, 8)},
I(13,8) = {(11, 1), (7, 2), (14, 4), (13, 8)}.

Hence, Y1 = {(2, 1), (5, 1), (8, 1), (11, 1)}.

The idea behind the definition of Ya2 is the following: if we consider c ∈ Ya2 and the 
polynomial T h

c (ξrcx
c1
1 xc2

2 ), then, if d− c2 = d − c2, we have the monomial xd−c2
1 xc2

2 in 
the support of this homogenized trace (if d− c2 < d − c2, we would have the monomial 
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xqs−1
0 xd−c2

1 xc2
2 instead), and when setting x0 = 0 and x1 = 1, we obtain the monomial 

xc2
2 , with c2 ∈ Ia2 , in the support of f(0, 1, x2). We have

d− c2 = d− c2 ⇐⇒ d− c2 ≤ qs − 1 ⇐⇒ d− (qs − 1) ≤ c2. (9)

In fact, it is clear that all the monomials that we obtain from this homogenized trace 
when setting x0 = 0, x1 = 1, are monomials xc2

2 with c2 ∈ Ia2 . Thus, the traces associated 
to c ∈ Ya2 give monomials xc2

2 with c2 ∈ Ia2 when setting x0 = 0, x1 = 1.
The case with Ia2 = Id is slightly more complicated, since in this case we have two 

monomials, xqs−1
1 xd

2 and xd
2 (if d ≥ qs), of degree d with different evaluation in P 2 which 

give the same monomial xd
2 when setting x0 = 0, x1 = 1. This means that two different 

homogenized traces from different cyclotomic sets can have xd
2 in its support. We will 

exclude this case in what follows now as we will study this case separately later. Hence, 
for a given a2 ∈ A1

≤d with Ia2 = Id and ξa2 a primitive element in Fqna2 , we can consider 
the sum

fr
a2

=
∑

c∈Ya2

T h
c (ξra2

xc1
1 xc2

2 ),

for 0 ≤ r ≤ na2 , and, due to the previous discussion, we obtain that in the support of 
fr
a2

(0, 1, x2) there are only monomials of the form xγ2
2 with γ2 ∈ Ia2 . Each monomial xγ2

2
can only come from one of the homogenized traces since, if γ2 = d, this monomial can 
only come from the monomial xd−γ2

1 xγ2
2 in the support of fr

a2
, with γ2 ≥ d − (qs − 1)

due to (9). Moreover, the coefficient of each of these monomials xγ2
2 is the same that this 

monomial would have in Ta2(ξra2
xa2

2 ) because we saw in Remark 3.18 that c2 = a2 for 
every c ∈ Ya2 . If d ≤ qs − 1, the condition from Equation (9) is always satisfied for any 
γ2 ∈ Ia2 . In this case, if we have

⋃
c2∈Ia2

I(d−c2,c2) ⊂ Δ≤d,

then Ya2 contains all the minimal elements γ ∈ A such that Iγ = I(d−γ2,γ2). Therefore, 
we have all the monomials xd−γ2

1 xγ2
2 , for γ2 ∈ Ia2 , in the support of fr

a2
, and we obtain 

fr
a2

(0, 1, x2) = Ta2(ξra2
xa2

2 ). The polynomials fr
a2

are homogeneous of degree d and, by 
Lemma 2.6, they evaluate to Fq. Thus, their evaluation is in PRMσ

d (2).
For d ≥ qs, we can consider instead the condition

⋃
c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ Δ≤d. (10)

We avoid the case c2 = d − (qs − 1) = d as we will study it later, and we consider only 
c2 > d − (qs − 1) in order to satisfy Equation (9). Reasoning as in the previous case, if 
the previous condition is satisfied, then fr

a (0, 1, x2) has in its support all the terms from 

2
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Ta2(ξra2
xa2

2 ) with degree greater than d − (qs − 1) = d. We claim that, in this situation, 
it is always possible to construct a polynomial gra2

whose evaluation is in PRMσ
d (2) and 

such that gra2
(1, x1, x2) = fr

a2
(1, x1, x2), gra2

(0, 1, x2) = Ta2(ξra2
xa2

2 ), and gra2
(0, 0, 1) = 0.

We first note that, in this situation, we can homogenize the equations of the field 
and obtain homogeneous polynomials of degree d. By this, what we mean is that we can 
consider a multiple of xqs

i − xi, for i = 1, 2, and homogenize it up to degree d. If this 
multiple has degree less than d, then that homogenized polynomial evaluates to the 0 
vector in P 2. However, when the degree of this multiple is exactly equal to d ≥ qs, we 
can obtain the following polynomials by multiplying the field equations by monomials 
and then homogenizing:

(
xc1

1 xc2−1
2 (xqs

2 − x2)
)h

=
(
xc1

1 xc2+qs−1
2 − xc1

1 xc2
2

)h

= xc1
1 xc2+qs−1

2 − xqs−1
0 xc1

1 xc2
2 ,

where we are assuming that c1+c2+qs−1 = d and c2 > 0. We note that we only consider 
d ≤ 2(qs−1) (for a higher degree PRMd(2) is the whole space). Thus, c1 + c2 = d. Using 
the other field equation, we can get

(
xc1−1

1 xc2
2 (xqs

1 − x1)
)h

=
(
xc1+qs−1

1 xc2
2 − xc1

1 xc2
2

)h

= xc1+qs−1
1 xc2

2 − xqs−1
0 xc1

1 xc2
2 .

All of these polynomials are equivalent to xc1
1 xc2

2 (1 − x0) in S/I(P 2), which is a more 
compact way of writing them, and we will refer to them as homogenized field equations. 
Although this last expression is not homogeneous, it has the same evaluation in P 2

as a homogeneous polynomial of degree d, which implies that its evaluation is also in 
PRMd(2). With this in mind, we have that, for any 0 ≤ c2 ≤ d − 1, the polynomial 
xd−c2

1 xc2
2 (1 −x0) can be seen as a homogeneous polynomial of degree d, and its evaluation 

in [{1} × F2
qs ] is the zero vector, in [{0} × {1} × Fqs ] it is the same as the evaluation 

of xc2
2 , and it is 0 in [0 : 0 : 1]. Moreover, the polynomial x1x

c2
2 (1 − x0) has the same 

evaluation. For c2 = d, we have the polynomial xd
2(1 −x0), but in this case the evaluation 

at [0 : 0 : 1] of this polynomial is equal to 1. This polynomial will only be considered 
later when we study the case with Ia2 = Id.

As a consequence, if we add to fr
a2

a homogenized field equation, the evaluation of the 
resulting polynomial in [{1} ×F2

qs ] does not change, and when setting x0 = 0, x1 = 1, we 
obtain fr

a2
(0, 1, x2) +xc2

2 , for some 0 ≤ c2 ≤ d− 1. Hence, if Ia2 = Id, and if we have the 
condition 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d (we recall that, under this assumption, 

fr
a2

(0, 1, x2) has in its support all the terms from Ta2(ξra2
xa2

2 ) with degree greater than 
d), then, adding adequate multiples of the homogenized field equations, we can obtain 
a polynomial gra2

such that gra2
(1, x1, x2) = fr

a2
(1, x1, x2), gra2

(0, 1, x2) = Ta2(ξra2
xa2

2 ), 
and gra2

(0, 0, 1) = 0. Therefore, the polynomial gra2
is defined as the polynomial obtained 

by adding the necessary multiples of the homogenized field equations to fr
a2

to obtain 
gra2

(0, 1, x2) = Ta2(ξra2
xa2

2 ). Because of all the previous discussion, it is clear that the 
evaluation of gra is in PRMσ

d (2).

2
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Moreover, we see that the polynomial

hr
a2

= x0

⎛
⎝ ∑

c∈Ya2

Tc(ξra2
xc1

1 xc2
2 )

⎞
⎠ + (1 − x0)x1Ta2(ξra2

xa2
2 )

has the same evaluation as the polynomial gra2
, which means that its evaluation is also 

in PRMσ
d (2).

Furthermore, avoiding the case in which Ia2 = Id, we can express both the case with 
d ≥ qs and d ≤ qs − 1 using the same polynomials and conditions. To see this, we first 
introduce the following notation:

Y =

⎧⎨
⎩a2 ∈ A1

≤d | Ia2 = Id such that
⋃

c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ Δ≤d

⎫⎬
⎭ .

The elements of Y are just the a2 ∈ A1
≤d such that we can construct a polynomial in 

PRMσ
d (2) whose evaluation in [{0} × {1} × Fqs ] is equal to some trace of xa2

2 with the 
previous ideas. In the case d ≤ qs − 1, the condition in the set Y is the same that we 
were considering before. Note that for a2 = 0 and d = qs − 1, the condition that we had 
for d ≤ qs − 1 was

⋃
c2∈Ia2

I(d−c2,c2) = I(qs−1,0) = {(qs − 1, 0)} ⊂ Δ≤qs−1,

which is always satisfied. The condition that we have used for Y when a2 = 0 and 
d = qs − 1 would be

⋃
c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) = ∅ ⊂ Δ≤d,

which is always satisfied as well. The following result summarizes the previous discussion.

Lemma 3.20. Let 1 ≤ d ≤ 2(qs − 1), and let ξa2 be a primitive element in Fqna2 . The 
evaluation of the polynomials in the set

B2 =
⋃

a2∈Y

⎧⎨
⎩x0

⎛
⎝ ∑

c∈Ya2

Tc(ξra2
xc1

1 xc2
2 )

⎞
⎠ + (1 − x0)x1Ta2(ξra2

xa2
2 ), 0 ≤ r ≤ na2 − 1

⎫⎬
⎭

is in PRMσ
d (2). Moreover, the evaluation of the polynomials in B1 ∪B2 is linearly inde-

pendent.

Proof. In the previous discussion we have showed that, if d ≥ qs, all the polynomials in 
B2 have their evaluation in PRMd(2), and we also checked that they evaluate to Fq due 
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to Lemma 2.6. For the case d ≤ qs − 1, these polynomials have the same evaluation as 
fr
a2

, which means that their evaluation is also in PRMσ
d (2).

The evaluation of the polynomials in B2 is linearly independent since it is linearly 
independent in [{0} ×{1} ×Fqs ] by the affine case from Theorem 2.3: in [{0} ×{1} ×Fqs ]
we have univariate traces in x2 from different cyclotomic sets. Moreover, the evaluation 
of the polynomials in B2 is linearly independent from the evaluation of the polynomials 
in B1 because the evaluation of the polynomials in B1 is zero in [{0} × {1} × Fqs ]. �
Remark 3.21. Let a2 ∈ A1, and let

Y ′
a2

:= {a ∈ A≤d \ A<d | Ia = I(d−c2,c2) for some c2 ∈ Ia2}.

The set

B′
2 =

⋃
a2∈Y

⎧⎨
⎩x0

⎛
⎝ ∑

c∈Y ′
a2

Tc(ξra2
xc1

1 xc2
2 )

⎞
⎠ + (1 − x0)x1Ta2(ξra2

xa2
2 ), 0 ≤ r ≤ na2 − 1

⎫⎬
⎭

has the same properties as B2 in Lemma 3.20. This is because, for any a ∈ A<d, we have 
already considered x0Ta(ξraxa1

1 xa2
2 ), 0 ≤ r ≤ na − 1, in B1, and x0Ta(ξra2

xa1
1 xa2

2 ) is in the 
span of those traces for any 0 ≤ r ≤ na2 − 1.

Example 3.22. Let us continue with the setting from Example 3.19 and compute the 
polynomials in the set B′

2 defined in Remark 3.21, although we will also compute all 
the sets needed to obtain B2 as well. We first compute Y . We have that a2 ∈ Y if the 
condition (10) is verified. In this case, d = 21 and d − (qs − 1) = d = 6. For a2 = 0 we 
have I0 = {0}, and the union of cyclotomic sets in the left hand side of (10) is empty, 
which means that the condition is satisfied, and 0 ∈ Y .

For a2 = 1, we verify that {(11, 1), (7, 2), (13, 8), (14, 4)} = I(21−8,8) ⊂ Δ≤21 (note that 
8 is the only element in I1 greater than d = 6). The condition (10) is satisfied and 1 ∈ Y . 
We do not consider a2 = 3 now since I3 = Id, which is the case that we will cover in 
Example 3.25. For a2 ∈ {5, 7, 15}, it is easy to check that we have a2 /∈ Y . For example, 
for a2 = 7, the cyclotomic set I(21−7,7) = {(14, 7), (7, 11), (11, 13), (13, 14)} ⊂ Δ≤21, 
because, for instance, (11, 13) /∈ Δ≤21. Therefore, we have

Y = {0, 1}.

Now, for each a2 ∈ Y , we have to compute Ya2 . This was already done in Example 3.19, 
and Y0 = {(3, 0)} and Y1 = {(2, 1), (5, 1), (8, 1), (11, 1)}. By Remark 3.21, we can consider 
the sets Y ′

0 = ∅ and Y ′
1 = {(11, 1)} (I(11,1) is the only cyclotomic set that we have 

considered which is in Δ≤21\Δ<21) instead of Y0, Y1, respectively, and the set B′
2 obtained 

satisfies the same properties as B2. For simplicity, we construct B′
2 instead of B2.
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We now obtain the polynomials in B′
2. For a2 = 0 we have na2 = n0 = 1, which 

means that we only consider one polynomial, and we also have Y ′
0 = ∅. We consider the 

following polynomial:

{(1 − x0)x1T0(x0
2)} = {(1 − x0)x1}.

For the case a2 = 1, we have na2 = n1 = 4, and we have Y ′
1 = {(11, 1)}. Thus, using 

Remark 3.21, we consider the set of polynomials

{x0T(11,1)(ξr1x11
1 x2) + (1 − x0)x1T1(ξr1x2), 0 ≤ r ≤ n1 − 1},

where ξ1 is a primitive element in Fqn1 = F16. Hence, we have constructed the set

B′
2 = {(1 − x0)x1} ∪ {x0T(11,1)(ξr1x11

1 x2) + (1 − x0)x1T1(ξr1x2), 0 ≤ r ≤ n1 − 1},

whose size is n1 +n0 = 5. In Example 3.16 we obtained that the cardinality of B1 is 127. 
This means that B1 ∪ B′

2 (and B1 ∪ B2) contains 132 polynomials whose evaluation is 
in PRMσ

21(2), and the evaluation of these polynomials is linearly independent.

We construct now one last set B3. In the previous study, we have omitted the case 
in which Ia2 = Id. Therefore, we consider now a2 ∈ A1 be such that Ia2 = Id. We 
assume that a2 ∈ A1

≤d (if a2 /∈ A1
≤d the set B3 will be the empty set). We follow a very 

similar reasoning to the one we did for the set B2. For the case 1 ≤ d ≤ qs − 1, we were 
considering the polynomials

fr
a2

=
∑

c∈Ya2

T h
c (ξra2

xc1
1 xc2

2 )

to construct B2. We can still consider such a polynomial if Ia2 = Id, but in this case, 
fr
a2

(0, 0, 1) is the coefficient of xd
2 in fr

a2
, which is nonzero if I(0,d) ⊂ Δ≤d. We have that 

fr
a2

(0, 0, 1) ∈ Fq only if r = 0, and in that case the polynomial

la2 = x0

⎛
⎝ ∑

c∈Ya2

Tc(xc1
1 xc2

2 )

⎞
⎠ + (1 − x0)x1Ta2(x

a2
2 ) + (1 − x0)(1 − x1)xd

2

has the same evaluation in P 2 as f0
a2

. If 
⋃

c2∈Ia2
I(d−c2,c2) ⊂ Δ≤d, i.e., we have 

f0
a2

(0, 1, x2) = Ta2(x
a2
2 ) = Td(xd

2), la2 evaluates to Fq and its evaluation is in PRMd(2)
(it has the same evaluation as fr

a2
).

For the case d ≥ qs, we can consider the homogenized field equation xd
2(1 − x0)

to obtain a polynomial gra2
such that gra2

(1, x1, x2) = fr
a2

(1, x1, x2) and gra2
(0, 1, x2) =

Ta2(ξra2
xa2

2 ). The problem that arises in this specific case is the following: the monomial 
xd

2 can be obtained when setting x0 = 0, x1 = 1, from the monomials xqs−1
1 xd

2 and xd
2, 
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both of them of degree d. Hence, following the previous notation, we have to study two 
different cases: if fr

a2
(0, 1, x2) has xd

2 in its support (which means that xqs−1
1 xd

2 is in the 
support of f), or if fr

a2
(0, 1, x2) does not have xd

2 in its support.
We start with the case in which fr

a2
(0, 1, x2) does not have xd

2 in its support, where 
we need to use xd

2(1 − x0) to construct gra2
. The main difference is that in this case 

gra2
(0, 0, 1) is equal to the coefficient of xd

2, which is nonzero. Therefore, by Lemma 2.6, 
this coefficient has to be in Fq if gra2

evaluates to Fq. We are also interested in obtaining 
gra2

(0, 1, x2) = Ta2(ξra2
xa2

2 ) for some 0 ≤ r ≤ na2 − 1. The coefficient of xd
2 in gra2

(0, 1, x2)
is precisely the coefficient with which we considered xd

2(1 − x0) when constructing gra2
. 

Thus, the only possibility to have this coefficient in Fq is that this coefficient is equal 
to 1 (the case r = 0), and g0

a2
(0, 1, x2) = Ta2(x

a2
2 ). With this in mind, it is easy to 

check that la2 , as defined previously, has the same evaluation as the polynomial g0
a2

in 
P 2 in this case. As we argued for the set B2, to ensure that the evaluation of la2 is in 
PRMd(2), we need to have 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d. This condition ensures 

that f0
a2

(0, 1, x2) has all the monomials from Ta2(x
a2
2 ) in its support, except maybe the 

monomials xc2
2 with c2 ∈ {0, 1, . . . , d}, which appear in the support of g0

a2
(0, 1, x2) when 

adding to f0
a2

(0, 1, x2) the corresponding homogenized field equations.
Finally, we consider the case in which we have xqs−1

1 xd
2 in the support of fr

a2
, i.e., 

fr
a2

(0, 1, x2) has xd
2 in its support. If we look at the definition of fr

a2
, this happens if and 

only if I(qs−1,d) ⊂ Δ≤d. This is equivalent to having that d is the maximal element of 
Ia2 . Therefore, the condition 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) = ∅ ⊂ Δ≤d is automatically 

satisfied in this case. This allows us to construct a polynomial l′a2
which is very similar 

to la2 :

l′a2
= la2 − x0T(qs−1,a2)(x

qs−1
1 xa2

2 ).

Indeed, we can subtract the polynomial T h
(qs−1,d)(x

c1
1 xc2

2 ) from f0
a2

, and, adding the cor-
responding homogenized field equations (we will need to use xd

2(1 −x0) in order to obtain 
Ta2(x

a2
2 ) when setting x0 = 0, x1 = 1, as we have subtracted the monomial xqs−1

1 xd
2), we 

would get a polynomial g′a2
such that g′a2

(1, x1, x2) = f0
a2

(1, x1, x2) −T(qs−1,a2)(x
qs−1
1 xa2

2 ), 
g′a2

(0, 1, x2) = Ta2(x
a2
2 ), g′a2

(0, 0, 1) = 1. Hence, the polynomial l′a2
has the same evalua-

tion as the polynomial g′a2
, which means that the evaluation of l′a2

is in PRMσ
d (2).

On the other hand, we saw previously that the condition 
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2)
⊂ Δ≤d is satisfied in this case. Hence, adding homogenized field equations to fr

a2
as we 

did to obtain the set B2, we can obtain a polynomial gra2
such that gra2

(1, x1, x2) =
fr
a2

(1, x1, x2), gra2
(0, 1, x1) = Ta2(ξra2

xa2
2 ), gra2

(0, 0, 1) = 0. Note that in this case we are 
not using the homogenized field equation xd

2(1 − x0) to construct gra2
since we already 

have the monomial xqs−1
1 xd

2 in the support of fr
a2

, which reduces to xd
2 when setting 

x0 = 0, x1 = 1. It is easy to check that the polynomial

hr
a2

= x0

⎛
⎝ ∑

Tc(ξra2
xc1

1 xc2
2 )

⎞
⎠ + (1 − x0)x1Ta2(ξra2

xa2
2 ),
c∈Ya2



P. Gimenez et al. / Finite Fields and Their Applications 94 (2024) 102353 29
where ξa2 is a primitive element in Fqna2 , has the same evaluation in P 2 as gra2
. Therefore, 

the evaluation of the polynomials hr
a2

is equivalent modulo S/I(P 2) to the evaluation of 
some homogeneous polynomials of degree d, and they evaluate to Fq, which means that 
the evaluation of the polynomials hr

a2
is in PRMσ

d (2). We can now define the set B3 in 
the following way:

(a) If I(qs−1,d) ⊂ Δ≤d, set B3 = {la2 −x0T(qs−1,a2)(x
qs−1
1 xa2

2 )} ∪{hr
a2
, 0 ≤ r ≤ na2 − 1}.

(b) If I(qs−1,d) ⊂ Δ≤d:
(b.1) If 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d, set B3 = {la2}.

(b.2) Set B3 = ∅ otherwise.

With this definition, we can summarize everything discussed thus far in the following 
result.

Lemma 3.23. Let 1 ≤ d ≤ 2(qs − 1) and let a2 ∈ A1 such that Ia2 = Id. If B3 = ∅, the 
evaluation of the set B3 is in PRMσ

d (2), and the evaluation of the set B = B1 ∪B2 ∪B3
is linearly independent.

Proof. In the previous discussion we have seen that, under the stated conditions, the 
evaluation of the polynomials in B3 is in PRMσ

d (2), i.e., for each polynomial in B3, a 
homogeneous polynomial of degree d with the same evaluation can be constructed, and 
it evaluates to Fq.

The set B1 ∪ B2 is linearly independent due to Lemma 3.20. The polynomial la2

(respectively, the polynomial la2 − x0T(qs−1,a2)(x
qs−1
1 xa2

2 )) is not contained in the span 
of B1∪B2 since it is the only polynomial that we are considering with nonzero evaluation 
at [0 : 0 : 1]. With this in mind, the same argument as in Lemma 3.20 proves that the 
evaluation of the rest of polynomials in B3 (if any) is linearly independent, and the 
evaluation of these polynomials is also linearly independent with the evaluation of the 
polynomials in B1 ∪B2. �
Remark 3.24. We can argue as in Remark 3.21 to construct simpler polynomials than 
the polynomials hr

a2
and la2 . This gives rise to a set B′

3 with the properties stated in 
Lemma 3.23.

Example 3.25. Let us continue with the setting from 3.22. We did not study the case 
a2 = 3 because Ia2 = I3 = Id = I6. This case is covered by Lemma 3.23, and we 
construct the set B′

3 from Remark 3.24 in this example. Following the statement of 
Lemma 3.23, we check first if I(qs−1,d) ⊂ Δ≤d, for d = 21, d = 6 and qs − 1 = 15. We 
have

I(15,6) = {(15, 3), (15, 6), (15, 9), (15, 12)}.

We see that I(15,6) ⊂ Δ≤21, for example we have (15, 9) with 15 + 9 = 24 > 21.
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Now we have to verify the condition (10). The only elements c2 in Ia2 = {3, 6, 9, 12}
such that c2 > d are 9 and 12. The corresponding cyclotomic sets I(21−9,9) and I(21−12,12)
are

I(9,3) = {(9, 3), (3, 6), (12, 9), (6, 12)},
I(6,3) = {(6, 3), (12, 6), (3, 9), (9, 12)}.

Hence, we see that the condition (10) is satisfied since both cyclotomic sets are con-
tained in Δ≤21. Therefore, we have to construct la2 , for which we have to compute Y3. 
We have I(21−6,6) = I(15,3) from before, but we have seen that this cyclotomic set is 
not contained in Δ≤21. Thus, (15, 3) /∈ Y3. On the other hand, we have just seen that 
(6, 3), (9, 3) ∈ Ya2 , as both of them are contained in Δ≤21. The last cyclotomic set that 
we have to consider is the following:

I(21−3,3) = {(3, 3), (6, 6), (9, 9), (12, 12)},

which is not contained in Δ≤21. Hence, Y3 = {(6, 3), (9, 3)}. Using Remarks 3.21 and 
3.24 in this case gives Y ′

3 = Y3, which means that we have B′
3 = B3. The only polynomial 

in B3 is

l3 = x0
(
T(9,3)(x9

1x
3
2) + T(6,3)(x6

1x
3
2)
)

+ (1 − x0)x1T3(x3
2) + (1 − x0)(1 − x1)x21

2 .

We obtain that there are 133 polynomials in B1 ∪B2 ∪B3, with linearly independent 
evaluation, and this evaluation is in PRMσ

21(2).

The following results show that the case where 1 ≤ d ≤ qs − 1 is particularly simple.

Lemma 3.26. Let 1 ≤ d ≤ qs − 1. We have that |Id| = 1 if and only if d = λ qs−1
q−1 , for 

some integer 1 ≤ λ ≤ q − 1.

Proof. We only need to observe that

|Id| = 1 ⇐⇒ dq ≡ d mod qs − 1 ⇐⇒ d(q − 1) = λ(qs − 1) = λ(q − 1)q
s − 1
q − 1

⇐⇒ d = λ
qs − 1
q − 1 , for some 1 ≤ λ ≤ q − 1. �

Proposition 3.27. Let 1 ≤ d ≤ qs− 1. Then B3 = ∅ if and only if d is a multiple of q
s−1
q−1 . 

In that situation

B3 = {xd
2}.

Proof. If d is a multiple of q
s−1
q−1 , by Lemma 3.26, we have that |Id| = 1 and I(0,d) ⊂ Δ≤d. 

By Lemma 3.23, B3 = {ld}. We have Yd = {(0, d)} from its definition. Then, by the 
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definition of ld we have ld = x0T(0,d)(xd
2) + (1 − x0)x1Td(xd

2) + (1 − x0)(1 − x1)xd
2 =

x0x
d
2 + (1 − x0)x1x

d
2 + (1 − x0)(1 − x1)xd

2 = xd
2.

On the other hand, if B3 = ∅ and we consider a2 ∈ A1
≤d with Ia2 = Id, by Lemma 3.23

we have that 
⋃

c2∈Ia2
I(d−c2,c2) ⊂ Δ≤d. Using Lemma 3.26, we assume that |Ia2 | > 1, 

and we will obtain a contradiction. Let e ∈ Ia2 with e = d. This implies that there is an 
integer l > 0 such that d ≡ qle mod qs − 1. Therefore, we have (ql(d− e), d) ∈ I(d−e,e), 
with ql(d− e) = 0. This implies that I(d−e,e) ⊂ Δ≤d, a contradiction. �

In order to assert that B is a basis, we would need to show that B generates the whole 
code PRMσ

d (2). However, we have already computed the dimension for PRMσ,⊥
d (2). By 

Lemma 3.23, we know that the evaluation of the polynomials in B is linearly independent, 
which means that if we show that |B| = n − dim PRMσ,⊥

d (2), then this implies that B is 
a basis. To see this, we will introduce a new decomposition of the sets B and D.

Let 1 ≤ d ≤ 2(qs − 1), and d⊥ = 2(qs − 1) − d. For the set B, we first define Γ1 = B1. 
On the other hand, let a2 ∈ A1 such that Ia2 = Id, and we define Γ2 in the following 
way:

1. If I(qs−1,d) ⊂ Δ≤d, we set

Γ2 = B2 ∪ {hr
a2
, 0 ≤ r ≤ na2 − 1}.

2. We set

Γ2 = B2,

otherwise.

And we define Γ3 = B \ (Γ1 ∪ Γ2). Equivalently, we consider the following definition:

(a) If I(qs−1,d) ⊂ Δ≤d, we set

Γ3 = {la2 − x0T(qs−1,a2)(x
qs−1
1 xa2

2 )}.

(b) If I(qs−1,d) ⊂ Δ≤d:
(b.1) If 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d, we set

Γ3 = {la2}.

(b.2) We set

Γ3 = ∅,

otherwise.



32 P. Gimenez et al. / Finite Fields and Their Applications 94 (2024) 102353
It is clear by construction that B = Γ1 ∪Γ2 ∪Γ3. The idea behind this decomposition 
is that in Γ1 we have sets of size na for some a ∈ A, in Γ2 we have sets of size na2

for some a2 ∈ A1, and in Γ3 we have a set of size 1 (if any). Now we define a similar 
decomposition for D, and we will see later why we are interested in this decomposition.

For the set D, we define first Γ⊥
1 = D1. Let a2 ∈ A1 such that Ia2 = Id. Now we 

define Γ⊥
3 as follows:

1. If there is an element c ∈ A such that c2 = a2, Ic = I(0,d⊥), and Mc(d⊥) contains 
monomials of the two types, we set

Γ⊥
3 = (x0 − 1)(x1 − 1).

2. We set

Γ⊥
3 = ∅,

otherwise.

We can now define Γ⊥
2 = D \ (Γ⊥

1 ∪ Γ⊥
3 ). This can also be expressed in the following 

way:

Γ⊥
2 = (D2 ∪D3 ∪D4) \ {(x0 − 1)(x1 − 1)}. (11)

Again, by construction we have D = Γ⊥
1 ∪ Γ⊥

2 ∪ Γ⊥
3 .

Remark 3.28. The condition in (1) from the definition of Γ⊥
3 implies that M(0,d⊥)(d

⊥)
contains monomials of the two types. Indeed, if d⊥ ≥ qs, M(0,d⊥)(d

⊥) always contains 
monomials of the two types, and if d⊥ ≤ qs − 1 and there is an element c ∈ A such 
that c2 = a2, Ic = I(0,d⊥), and Mc(d⊥) contains monomials of the two types, this 
means that there is γ ∈ Ic with γ1 > 0 such that γ1 + γ2 = d⊥ by Lemma 3.7, with 
γ2 ∈ Id⊥ . Therefore, d⊥ is not the minimal element in Id⊥ , which means that M(0,d⊥)(d⊥)
contains monomials of the two types. Hence, we have (x0 − 1)(x1 − 1) ∈ Γ⊥

3 if and only 
if (x0 − 1)(x1 − 1) ∈ D3.

Let b2 ∈ A1 such that Ib2 = Id, for some degree 1 ≤ d ≤ 2(qs − 1). For ease of use, 
we recall here the sizes of the set we have just defined:

(a.1) |Γ1| = |B1| =
∑

a∈A<d
na.

(a.2) |Γ2| = |B2| + nd =
∑

a2∈Y na2 + nd if I(qs−1,d) ⊂ Δ≤d, and |Γ2| = |B2| otherwise.
(a.3) |Γ3| = 1 if 

⋃
c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d, and |Γ3| = 0 otherwise.

(b.1)
∣∣Γ⊥

1
∣∣ = |D1| =

∑
a∈U na.
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(b.2)
∣∣Γ⊥

2
∣∣ = |D2| + |D3 \ {(x0 − 1)(x1 − 1)}| + |D4| =

∑
a2∈V na2 + nd + |D4| if 

M(0,d⊥)(d
⊥) contains monomials of the two types, and 

∣∣Γ⊥
2
∣∣ =

∑
a2∈V na2 + |D4|

otherwise, where |D4| = 1 if d = qs − 1, and |D4| = 0 otherwise.
(b.3)

∣∣Γ⊥
3
∣∣ = 1 if there is an element c ∈ A such that c2 = b2, Ic = I(0,d⊥), and Mc(d⊥)

contains monomials of the two types, and 
∣∣Γ⊥

3
∣∣ = 0 otherwise.

Definition 3.29. Let b = (b1, b2) ∈ Z2
qs . We define

b′ = (b′1, b′2) := (qs − 1 − b1, q
s − 1 − b2).

Remark 3.30. Let c ∈ A. Then c2 ∈ Ia2 if and only if c′2 = qs − 1 − c2 ∈ Ia′
2
.

We are interested in doing these decompositions because the length of these codes is 
n = q3s−1

qs−1 = q2s + qs + 1, and we also have 
∑

a∈A na = q2s, 
∑

a2∈A1 na2 = qs. We prove 
now that |Γ1| +

∣∣Γ⊥
1
∣∣ = q2s, |Γ2| +

∣∣Γ⊥
2
∣∣ = qs and |Γ3| +

∣∣Γ⊥
3
∣∣ = 1. This is reminiscent of 

the affine case, in which if we evaluate the traces corresponding to a ∈ A for the primary 
code, then for the dual code we do not need to consider the traces corresponding to Ia′. 
The strategy in our case will be similar: for each a ∈ A such that we consider its traces 
in B, we will see that we do not consider the traces corresponding to Ia′ in D. We start 
with the sets Γ1 and Γ⊥

1 .

Lemma 3.31. With the definitions as above, we have |Γ1| +
∣∣Γ⊥

1
∣∣ = q2.

Proof. By definition, it is clear that we have q2s − |Γ1| =
∑

a∈A\A<d
na. We note that 

a ∈ A \ A<d if and only if there is (c1, c2) ∈ Ia such that c1 + c2 ≥ d. Therefore, 
2(qs − 1) − c1 − c2 = c′1 + c′2 ≤ d⊥, which means that Ma′(d⊥) = ∅. It is easy to 
see that na = na′ , and we have 

∑
a∈A\A<d

na =
∑

a′∈A|Ma′ (d⊥) �=∅ na′ =
∣∣Γ⊥

1
∣∣. Thus, 

|Γ1| +
∣∣Γ⊥

1
∣∣ = q2s. �

For the case of Γ2 and Γ⊥
2 , we need the following technical results.

Lemma 3.32. Let 1 ≤ d ≤ 2(qs−1), d⊥ = 2(qs−1) −d and c ∈ A. Then Mc′(d⊥) contains 
monomials of the two types if and only if Ic ∩ (Δd ∪ Δ2(qs−1)−d⊥) = ∅ and Ic ⊂ Δ≤d, 
where Δz = ∅ if z < 0.

Proof. By Lemma 3.7, Mc′(d⊥) contains monomials of the two types if and only if 
Ic′ ∩ Δ<d⊥ = ∅ and Ic′ ∩ (Δd⊥ ∪ Δd⊥) = ∅. The condition Ic′ ∩ Δ<d⊥ = ∅ implies that 
there is (γ′

1, γ
′
2) ∈ Ic′ such that 2(qs − 1) − γ1 − γ2 < d⊥ ⇐⇒ γ1 + γ2 > d. Thus, 

γ ∈ Ic ⊂ Δ≤d. The condition Ic′ ∩ (Δd⊥ ∪ Δd⊥) = ∅ implies that there is an element 
(γ′

1, γ
′
2) ∈ Ic′ with either 2(qs − 1) − γ1 − γ2 = d⊥ or 2(qs − 1) − γ1 − γ2 = d⊥. Hence, 

γ ∈ Δd ∪ Δ s ⊥ . �
2(q −1)−d
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Remark 3.33. It is easy to check that 2(qs−1) −d⊥ = d if d ≥ qs−1, and 2(qs−1) −d⊥ =
d + qs − 1 if d ≤ qs − 2.

The following result, among other things, relates the set

Y =

⎧⎨
⎩a2 ∈ A1

≤d, Ia2 = Id |
⋃

c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ Δ≤d

⎫⎬
⎭ (12)

with the set V = {a2 ∈ A1 | Ia2 = Id⊥ and ∃ c ∈ A with c2 = a2 and Mc(d⊥) contains
monomials of the two types}.

Lemma 3.34. Let a2 ∈ A1
≤d. Then 

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d if and only if 

there is no c ∈ A with Ic′ = I(0,d⊥), c
′
2 ∈ Ia′

2
, and such that Mc′(d⊥) contains monomials 

of the two types.

Proof. Let a2 ∈ A1
≤d. By Lemma 3.32, we can translate the statement to the following: 

we have 
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d if and only if there is no c ∈ A, Ic =
I(qs−1,d⊥′), with c2 = a2, Ic ∩ (Δd ∪ Δ2(qs−1)−d⊥) = ∅ and Ic ⊂ Δ≤d. In what follows, 

we will use this last statement instead of the original one. We also note that d⊥
′
= d if 

d = qs − 1, and d⊥
′
= 0 if d = qs − 1.

We assume that 
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d and we consider c ∈ A, Ic =
I(qs−1,d⊥′), with c2 = a2. If Ic ∩ Δd = ∅, we have (d − γ2, γ2) ∈ Ic for some γ2 ∈ Ia2 . 
This implies that d − γ2 ≤ qs − 1, i.e., γ2 ≥ d − (qs − 1). If γ2 > d − (qs − 1), then, 
by our assumptions, Ic = I(d−γ2,γ2) ⊂ Δ≤d. If we had γ2 = d − (qs − 1) and d ≥ qs, 
then this would imply that (qs − 1, d) ∈ Ic, which is a contradiction with the fact that 
Ic = I(qs−1,d). If d = qs − 1, then γ2 = 0, which implies that (d − γ2, γ2) = (qs − 1, 0)
and Ic = {(qs − 1, 0)}, a contradiction with the fact that Ic = I(qs−1,d⊥′) = I(qs−1,0).

On the other hand, if Ic ∩ Δd = ∅ and Ic ∩ Δ2(qs−1)−d⊥ = ∅, we have γ ∈ Ic with 

γ1+γ2 = 2(qs−1) −d⊥, and γ2 ∈ Ia2 . Considering Remark 3.33, if d ≥ qs−1, this implies 
γ ∈ Δd, a contradiction with the assumption Ic∩Δd = ∅. If d ≤ qs−2, then we note that 
γ2 ≤ d since a2 ∈ A≤d, and γ1 ≤ qs−1, which implies γ1+γ2 ≤ d +qs−1 = 2(qs−1) −d⊥. 
We can only obtain the equality if γ1 = qs − 1 and γ2 = d, which is a contradiction with 
the assumption Ic = I(qs−1,d).

For the other implication, we assume now that there is no c ∈ A, Ic = I(qs−1,d⊥′), 
with c2 = a2, Ic ∩ (Δd ∪ Δ2(qs−1)−d⊥) = ∅ and Ic ⊂ Δ≤d. For each γ2 ∈ Ia2 , with 
γ2 > d − (qs − 1), there is an element c ∈ A such that Ic = I(d−γ2,γ2). Because of 
the ordering chosen for the elements in Z2

qs, we must have c2 = a2. We clearly have 
(d −γ2, γ2) ∈ Ic∩Δd = ∅. By our assumption, we must have Ic = I(d−γ2,γ2) ⊂ Δ≤d. �
Remark 3.35. Lemma 3.34 implies the following. Let a2 ∈ A1

≤d with Ia2 = Id. Then 
a2 ∈ Y if and only if there is no c ∈ A with c′2 ∈ Ia′

2
, Ic′ = I(0,d⊥), and such that 

Mc′(d⊥) contains monomials of the two types.
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Recalling that d′ = d⊥ if d = qs−1, and d
′ = 0 if d = qs−1, we see that if d = qs−1, 

Ia2 = Id together with c′2 ∈ Ia′
2

already implies Ic′ = I(0,d⊥). For d = qs− 1, in the case 
a2 = 0, we see that the previous statement says: 0 ∈ Y if and only if there is no c ∈ A
with c′2 ∈ Iqs−1, Ic′ = I(0,qs−1), and such that Mc′(qs − 1) contains monomials of the 

two types. However, M(0,qs−1)(qs − 1) = {xqs−1
2 } does not have monomials of the two 

types. Therefore, in this case we can also omit the condition Ic′ = I(0,d⊥).
Thus, we have the following statement. Let a2 ∈ A1

≤d with Ia2 = Id. Then a2 ∈ Y if 
and only if there is no c ∈ A with c′2 ∈ Ia′

2
and such that Mc′(d⊥) contains monomials 

of the two types.

Lemma 3.36. Let 1 ≤ d ≤ 2(qs − 1), d⊥ = 2(qs − 1) − d. If d = qs − 1, then M(0,d⊥)(d
⊥)

contains monomials of the two types if and only if I(qs−1,d) ⊂ Δ≤d.

Proof. If d⊥ ≥ qs, then M(0,d⊥)(d
⊥) contains monomials of the two types because 

xqs−1
0 xd⊥

2 , xd
2 ∈ M(0,d⊥)(d

⊥). In this case, we have d ≤ qs − 2, which ensures that 
I(qs−1,d) ⊂ Δ≤d.

If d⊥ ≤ qs − 1, M(0,d⊥)(d⊥) contains monomials of the two types if and only if d⊥ is 
not the minimal element of Id⊥ . We have (d⊥)′ = qs−1 −d⊥ = qs−1 − (2(qs−1) −d) =
d − (qs − 1). The condition d⊥ ≤ qs − 1 implies that d ≥ qs − 1. Taking into account 
the assumption d = qs − 1, we can assume now that d > qs − 1. Thus, (d⊥)′ = d, and 
we obtain that M(0,d⊥)(d⊥) contains monomials of the two types if and only if d⊥ is not 
the minimal element of Id⊥ , which happens if and only if (d⊥)′ = d is not the maximal 
element of Id, which happens if and only if I(qs−1,d) ⊂ Δ≤d. �
Lemma 3.37. We have that |Γ2| +

∣∣Γ⊥
2
∣∣ = qs.

Proof. We start with the following decomposition:

qs =
∑

a2∈A1

na2 =
∑

a2∈A1
≤d,a2∈Y,Ia2 �=Id

na2 +
∑

a2∈A1
≤d,a2 /∈Y,Ia2 �=Id

na2

+
∑

a2∈A1\A1
≤d,Ia2 �=Id

na2 + nd.

We recall that 
∑

a2∈A1
≤d,a2∈Y,Ia2 �=Id

na2 = |B2|. We also recall the definition V = {a2 ∈
A1 | Ia2 = Id⊥ and ∃ c ∈ A | c2 = a2 and Mc(d⊥) contains monomials of the two 
types}. Let a2 ∈ A1

≤d. By Remark 3.35, if d = qs − 1, we have that a2 ∈ Y if and only 
if the minimal element of Ia′

2
is not in V . Taking into account that na2 = na′

2
, we have 

that

∑
a ∈A1 ,a /∈Y,I �=I

na2 =
∑

b′ ∈V |I =I ,a ∈A1

nb′2 .
2 ≤d 2 a2 d 2 b2 a2 2 ≤d
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If d ≥ qs − 1, we have A1
≤d = A1, and the only thing left to do is to consider the 

cyclotomic set Id. However, if d ≤ qs − 2, we can consider a2 ∈ A1 \ A1
≤d. We have 

that d ≤ qs − 2 ⇐⇒ d⊥ ≥ qs, and a2 ∈ A1 \ A1
≤d implies that there is γ2 ∈ Ia2

with γ2 > d ⇐⇒ γ′
2 < d⊥ in this case. Hence, we can consider c = (d⊥ − γ′

2, γ
′
2), 

and we have that {xqs−1
0 x

d⊥−γ′
2

1 x
γ′
2

2 , xd⊥−γ′
2

1 x
γ′
2

2 } ⊂ Mc(d⊥), which means that Mc(d⊥)
contains monomials of the two types, and Ia′

2
= Id⊥ , i.e., if we consider b2 ∈ A1 such 

that Ib2 = Ia′
2
, we have b2 ∈ V .

Reciprocally, if we consider a2 ∈ A1 and we have c′ ∈ A such that c′2 ∈ Ia′
2
= Id⊥ and 

Mc′(d⊥) contains monomials of the two types, there is (γ′
1, γ

′
2) ∈ Ic with γ′

1 +γ′
2 = d⊥ =

d⊥ − (qs − 1), which means that γ1 + γ2 = d + (qs − 1), with γ2 ∈ Ia2 . If γ1 < qs − 1, 
then γ2 > d and a2 ∈ A \ A≤d. If γ1 = qs − 1, then γ2 = d, a contradiction since in this 
case Ia′

2
= Id⊥ implies Ia2 = Id.

Thus, we have obtained that

∑
a2∈A1

≤d,a2 /∈Y,Ia2 �=Id

na2 +
∑

a2∈A1\A1
≤d,Ia2 �=Id

na2 =
∑
b′2∈V

nb′2 = |D2|.

We now focus on the cyclotomic set Id. We use Lemma 3.36, as we are still in the 
case d = qs − 1. If d < qs − 1, we always have |Γ2| = |B2| by definition, and we also have 
|Γ3| = |D2| + nd because {xqs−1

0 xd⊥
2 , xd⊥

2 } ⊂ M(0,d⊥)(d
⊥), i.e., M(0,d⊥)(d

⊥) contains 
monomials of the two types. If d > qs − 1, we have |Γ2| = |B2| + nd if and only if 
M(0,d⊥)(d⊥) does not have monomials of the two types, by Lemma 3.36, and |Γ2| = |B2|
otherwise. Thus, we have that |Γ2| = |B2|+nd if and only if 

∣∣Γ⊥
2
∣∣ = |D2|, and |Γ2| = |B2|

if and only if 
∣∣Γ⊥

2
∣∣ = |D2| + nd. Hence, for d = qs − 1 we have proved that

|Γ2| +
∣∣Γ⊥

2
∣∣ = qs.

On the other hand, if d = qs − 1, the condition Ia2 = Id = Iqs−1 implies Ia′
2
= I0

instead of Ia′
2
= Id⊥ = Iqs−1. For any a2 ∈ A1

≤d = A1, a2 /∈ {0, qs − 1}, the previous 
relations between elements in Y and elements in V hold by Remark 3.35. For a2 = 0
and a2 = qs − 1 we have that M(0,qs−1)(qs − 1) and M(qs−1,0)(qs − 1) are the only sets 
Mc(d⊥) with c2 = 0′ or c2 = (qs − 1)′, respectively, such that x0 does not divide all 
the monomials in Mc(qs − 1), and none of them contains monomials of the two types. 
Hence, for d = qs − 1, we obtain that 0 /∈ V , and also that |D2| =

∑
a′
2∈V na′

2
since 

M(0,qs−1)(qs − 1) does not have monomials of the two types, and there is no other 
c ∈ A with c2 = qs − 1 such that Mc(qs − 1) contains monomials of the two types. On 
the other hand, for d = qs − 1 is easy to see that 0 ∈ Y . Moreover, for d = qs − 1
we have that A1 \ A1

≤d = ∅, and we have I(qs−1,qs−1) ⊂ Δqs−1, which means that 
|Γ2| = |B2| =

∑
a2∈Y na2 . Summarizing all of this, we have

|Γ2| + |D2| + nqs−1 = qs,
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because for any a2 ∈ A1, a2 /∈ {0, qs − 1}, we have that either a2 ∈ Y or a′2 ∈ V as 
before, and we have that 0 ∈ Y , qs − 1 /∈ Y and qs − 1 /∈ V . Obviously, in this case 
nqs−1 = 1, and for d = qs − 1, looking at the definition of Γ⊥

2 from (11), we see that ∣∣Γ⊥
2
∣∣ = |D2| + 1 (the previous argument shows that, in this case D3 = ∅). Therefore, 

|Γ2| +
∣∣Γ⊥

2
∣∣ = qs. �

Lemma 3.38. We have that |Γ3| +
∣∣Γ⊥

3
∣∣ = 1.

Proof. Let a2 ∈ A1 such that Ia2 = Id⊥ . By Remark 3.28, we have that Γ⊥
3 = ∅ if 

and only if there is an element c ∈ A such that c2 = a2, Ic = I(0,d⊥), and Mc(d⊥)
contains monomials of the two types. By Lemma 3.34, this happens if and only if ⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d. By the definition of Γ3, this happens if and only 
if Γ3 = ∅. The cardinality of these sets is 1 if they are nonempty, which implies that 
|Γ3| +

∣∣Γ⊥
3
∣∣ = 1. �

Now we state the main result of this section.

Theorem 3.39. Let 1 ≤ d ≤ 2(qs − 1). The image by the evaluation map of the set

B = B1 ∪B2 ∪B3,

with B1, B2, B3 as defined in Lemmas 3.15, 3.20 and 3.23, respectively, forms a basis for 
the code PRMσ

d (2).

Proof. By Lemma 3.23, we know that the image by the evaluation map of the set B is 
in PRMσ

d (2), and it is linearly independent. By Lemmas 3.31, 3.37 and 3.38, we have 
that |B| + |D| = |B| + dim PRMσ,⊥

d (2) = q2 + q + 1 = n. Thus, B is a maximal linearly 
independent set, and we obtain the result. �
Remark 3.40. The sets B′

2 and B′
3 obtained using Remarks 3.21 and 3.24, respectively, 

also satisfy that B1 ∪B′
2 ∪B′

3 is a basis for PRMσ
d (2).

We have that PRMσ
d (2) is a subcode of PRMd(2). Thus, we should be able to obtain 

PRMσ
d (2) as the evaluation of some set of homogeneous polynomials of degree d. In 

fact, in all the discussions leading to Lemmas 3.15, 3.20 and 3.23, we showed how to 
construct homogeneous polynomials with the same evaluation as the ones considered in 
Theorem 3.39. Concrete expressions for these homogeneous polynomials can be given, but 
they get considerably more involved than the expressions obtained for the polynomials 
in B.

Example 3.41. Continuing with Example 3.25, Theorem 3.39 states that the image by 
the evaluation map of the set B = B1 ∪ B′

2 ∪ B3 that we have constructed in those 
examples gives a basis for the code PRMσ

21(2). Indeed, it can be checked with Magma 
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[2] that the dimension of PRMσ
21(2) is precisely 133 (the cardinality of B), and that the 

evaluation of the polynomials in B is in PRMσ
21(2).

Corollary 3.42. Let 1 ≤ d ≤ 2(qs − 1). We have the following formula for the dimension 
of PRMσ

d (2):

dim(PRMσ
d (2)) = |B1| + |B2| + |B3| =

∑
a∈A<d

na +
∑
a2∈Y

na2 + ε,

where, if we consider b2 ∈ A1 with Ib2 = Id, then ε = nd + 1 if I(qs−1,d) ⊂ Δ≤d; ε = 1
if I(qs−1,d) ⊂ Δ≤d and 

⋃
c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ Δ≤d; and ε = 0 otherwise.

We have seen in Lemma 3.38 that we have the evaluation of a polynomial with xd
2 in 

its support in PRMσ
d (2) if and only if we do not have the evaluation of (x0 − 1)(x1 − 1)

in PRMσ,⊥
d (2). If we have the evaluation of (x0 − 1)(x1 − 1) in PRMσ,⊥

d (2), this implies 
that PRMσ

d (2) is a degenerate code, with a common zero at the coordinate associated to 
[0 : 0 : 1] for all its vectors. However, if we only have one common zero, the codes that 
we obtain after puncturing are still different than the ones obtained in the affine case. 
Nevertheless, if we obtain that all the points in [{0} × {1} × Fqs ] are common zeroes 
of the vectors in PRMσ

d (2), then, after puncturing, we obtain a subfield subcode of an 
affine Reed-Muller code.

The only parameter left to estimate is the minimum distance. For a code C we denote 
its minimum distance by wt(C). For the code PRMσ

d (2) we have the bound given by the 
minimum distance of PRMd(2) (see [20]):

wt(PRMσ
d (2)) ≥ (qs − t)qs(1−r), (13)

where d − 1 = r(qs − 1) + t, 0 ≤ t < qs − 1. This is the usual way to bound the 
minimum distance of a subfield subcode, for instance see [12] for the subfield subcodes 
of projective Reed-Solomon codes. For the subfield subcodes of projective Reed-Muller 
codes, this bound is sharp in most of the cases that we have checked with Magma [2]
(qs ≤ 9). For example, in Table 2 from Section 5, the bound is sharp except for d = 2, 
which corresponds to a degenerate code, and for d = 10 (the bound is 8 instead of 9).

For the dual code PRMσ,⊥
d (2), there is no straightforward bound for the minimum 

distance, as we see next. Given C ⊂ Fn
qs , if Cq = C, where we understand this as the 

component wise power of the code, we say that C is Galois invariant. By [1, Thm. 4], 
we have that Tr(C) = Cσ. Writing Theorem 2.7 as C⊥ ∩ Fn

q = Tr(C)⊥, we note that 
C⊥,σ = C⊥ ∩ Fn

q = (Cσ)⊥ = Cσ,⊥. Therefore, when C is Galois invariant, we have

wt(Cσ,⊥) = wt(C⊥,σ) ≥ wt(C⊥).

This bound has been used frequently in the affine case [8,10], but in the projective case 
we do not have Galois invariant codes in general and we do not have the previous bound, 
nor the equality between PRMσ,⊥

d (m) and PRM⊥,σ
d (m).
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4. Codes over the projective space

In this section we want to deal with the case of m variables, for m > 2. We have seen 
that, for m = 2, obtaining bases for the subfield subcodes is quite technical. Hence, we 
do not aspire to give explicit results in this section for the bases of the subfield subcodes 
of projective Reed-Muller codes with m > 2, but we can show that all the basic ideas can 
be generalized to treat this case. First we give a universal Gröbner basis for the vanishing 
ideal of Pm, which was a fundamental tool for the previous section when m = 2. With 
respect to the terminology for Gröbner bases, we refer the reader to [4]. Particular cases 
of the following result were already presented in [19,12].

Theorem 4.1. The vanishing ideal of Pm is generated by:

I(Pm) = 〈x2
0 − x0, x

qs

1 − x1, x
qs

2 − x2, . . . , x
qs

m − xm, (x0 − 1)(x2
1 − x1),

(x0 − 1)(x1 − 1)(x2
2 − x2), . . . , (x0 − 1) · · · (x2

m−1 − xm−1), (x0 − 1) · · · (xm − 1)〉.

Moreover, these generators form a universal Gröbner basis of the ideal I(Pm), and we 
have that

in(I(Pm)) = 〈x2
0, x

qs

1 , xqs

2 , . . . , xqs

m , x0x
2
1, x0x1x

2
2, . . . , x0x1 · · ·x2

m−1, x0x1 · · ·xm〉.

Proof. We consider the polynomials f0 = x2
0 − x0, f1 = xqs

1 − x1, f2 = xqs

2 − x2, . . . , 
fm = xqs

m − xm, and g1 = (x0 − 1)(x2
1 − x1), g2 = (x0 − 1)(x1 − 1)(x2

2 − x2), . . . , 
gm−1 = (x0 − 1)(x1 − 1) · · · (xm−2 − 1)(x2

m−1 − xm−1), gm = (x0 − 1) · · · (xm − 1), and 
set J := 〈f0, . . . , fm, g1, . . . , gm〉.

Due to the generators fi, i = 0, 1, . . . , m, it is clear that the variety defined by J over 
the algebraic closure Fqs is the same as the variety defined over Fqs . By using [11, Thm. 
2.3], if we prove that the variety defined by J over Fqs is Pm, then we can conclude that 
J = I(Pm).

Given P ∈ Pm, we have that P = [0 : 0 : · · · : 0 : 1 : Pl+1 : · · · : Pm] for some l, 
0 ≤ l ≤ m, with Pi ∈ Fqs for i = l + 1, . . . , m. One can check that each generator of J
vanishes at P , which means that Pm is contained in the variety defined by J .

Conversely, if all the generators of J vanish at a point P = [P0 : P1 : · · · : Pm], because 
of the generator f0 the first coordinate is either 0 or 1. Considering the generator gm, 
we also have that

(P0 − 1)(P1 − 1) · · · (Pm − 1) = 0.

This means that there is an integer l such that Pl = 1, and we choose this l to be the 
smallest with that property. If l = 0, then P = [1 : P1 : · · · : Pm] ∈ Pm. If l > 0, using 
the generator gl−1 we obtain
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(P0 − 1)(P1 − 1) · · · (P 2
l−1 − Pl−1) = 0.

Hence, Pl−1 = 0 since P0, P1, . . . , Pl−1 are different from 1 due to the choice of l. Doing 
this recursively we get that P0 = P1 = · · · = Pl−1 = 0, which means that P = [0 : 0 :
· · · : 0 : 1 : Pl+1 : · · · : Pm] ∈ Pm. Therefore, we have J = I(Pm).

The only thing left to prove is that the generators of I(Pm) form a universal Gröbner 
basis for I(Pm). For any monomial order we have that xi > 1, i = 0, 1, . . . , m. Looking 
at each generator, we see that its initial monomial does not depend on the monomial 
order. Thus, if we prove that all the S-polynomials reduce to 0, and these reductions do 
not depend on the monomial order, we will have that these generators form a universal 
Gröbner basis for I(Pm) using Buchberger’s criterion [4, §9 Thm. 3, Chapter 2], and we 
will also obtain the stated initial ideal.

To show that all the S-polynomials reduce to 0, we will use two facts:

(a) If the leading monomials of f and g are relatively prime, then S(f, g) reduces to 0 
by [4, §9 Prop. 4, Chapter 2]. In particular, if f and g depend on different variables, 
then S(f, g) reduces to 0.

(b) If f and g share a common factor w, then S(f, g) = wS(f/w, g/w). Moreover, if we 
can apply (a) to S(f/w, g/w), i.e., S(f/w, g/w) reduces to 0 using f/w and g/w, 
then S(f, g) reduces to 0 using f and g.

On one hand, for all i, j, 0 ≤ i < j ≤ m, we have that S(fi, fj) reduces to 0 by (a). 
On the other hand, for all k, l, 1 ≤ k < l < m, using (b) we have

S(gk, gl) = (x0 − 1) · · · (xk−1 − 1)(xk − 1)S(xk, (xk+1 − 1) · · · (xl−1 − 1)(x2
l − xl)),

where the last S-polynomial reduces to 0 by (a). For l = m, the same argument applies, 
as we have

S(gk, gm) = (x0 − 1) · · · (xk−1 − 1)(xk − 1)S(xk, (xk+1 − 1) · · · (xm−1 − 1)(xm − 1)).

Finally, we consider S(fi, gk), for 1 ≤ i ≤ m, 1 ≤ k < m. If i > k, this S-polynomial 
reduces to 0 by (a). If i = k, using (b) we have

S(fk, gk) = (x2
k − xk)S((1 + xk + · · · + xqs−2

k ), (x1 − 1) · · · (xk−1 − 1)),

and the last S-polynomial reduces to 0 by (a). If i < k, applying (b) we obtain

S(fi, gk) = (xi−1)S(xi(1+xi+ · · ·+xqs−2
i ), (x1−1) · · · (xi−1−1)(xi+1−1) · · · (x2

k−xk)),

where the last S-polynomial reduces to 0 by (a). For the cases with i = 0 or k = m, an 
analogous reasoning proves that the S-polynomials reduce to 0. �
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Remark 4.2. If qs > 2, from the proof of Theorem 4.1 we also obtain that the universal 
Gröbner basis obtained in Theorem 4.1 is in fact the reduced Gröbner basis with respect 
to any monomial order. Moreover, the same happens for any subset of the generators 
given in Theorem 4.1 and the ideal that they generate.

Now we give a convenient basis for S/I(Pm), and also we show how to express any 
monomial in S/I(Pm) in terms of this basis, i.e., we give the result of using the di-
vision algorithm for any monomial with respect to the universal Gröbner basis from 
Theorem 4.1.

Lemma 4.3. The set given by the classes of the following monomials

{xa1
1 · · ·xam

m , x0x
a2
2 · · ·xam

m , . . . , x0x1 · · ·xm−2x
am
m , x0 · · ·xm−1 |0 ≤ ai ≤ qs−1, 1 ≤ i ≤m}

is a basis for S/I(Pm).

Proof. Let M be the given set of monomials. We have that there is no monomial from 
M contained in in(I(Pm)) by Theorem 4.1. We also have that |M| = qsm + qs(m−1) +
· · ·+qs+1 = qs(m+1)−1

qs−1 = |Pm|, which is the dimension of S/I(Pm) as a vector space (by 
definition, this is equal to deg(S/I(Pm)), which is equal to |Pm| by [16, Prop. 2.2]). We 
finish the proof by noting that the classes of the monomials not contained in in(I(Pm))
form a basis for S/I(Pm) [6, Thm. 15.3]. �
Lemma 4.4. Let xa0

0 xa1
1 · · ·xam

m =
∏m

i=0 x
ai
i such that a0 > 0, a1 > 0, . . . , al > 0 and 

al+1 = 0, with 0 ≤ l ≤ m (ak := 0 for k > m). Assume also that ai ≤ qs − 1, 1 ≤ i ≤ m.

(a) If l < m, then

m∏
i=0

xai
i ≡

(
m∏

i=l+2

xai
i

)(
l∏

i=1
xai
i

+ (x0 − 1)
(

l∏
i=2

xai
i + (x1 − 1)

(
· · ·

(
xal

l + (xl−1 − 1)xl

)
· · ·

)))
mod I(Pm),

where we understand that the product from s to t with s > t is equal to 1.
(b) If l = m, then

m∏
i=0

xai
i ≡

(
m∏
i=1

xai
i

+ (x0 − 1)
(

m∏
xai
i + (x1 − 1)

(
· · ·

(
xam
m + (xm−1 − 1)

)
· · ·

)))
mod I(Pm).
i=2
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Proof. Two polynomials belong to the same class in S/I(Pm) if and only if their evalu-
ation in Pm is the same. Thus, to check the stated equivalences, it is enough to verify 
that both sides have the same evaluation in Pm. We assume first that l < m. We claim 
that

l∏
i=0

xai
i ≡

l∏
i=1

xai
i

+ (x0 − 1)
(

l∏
i=2

xai
i + (x1 − 1)

(
· · ·

(
xal

l + (xl−1 − 1)xl

)
· · ·

))
mod I(Pm).

Indeed, if we decompose Pm as in the proof of Lemma 2.6, we can check that the 
evaluation of both sides is the same at each Ar, 0 ≤ r ≤ m. Because of the assumption 
a0 > 0, the left hand side is 0 at every point which is not in A0. Both sides evaluate to 
the same values in A0. For the evaluation in Ar, with 1 ≤ r < l, we can set x0 = x1 =
· · · = xr−1 = 0, and in the right hand side we get

(−1)r+1

(
l∏

i=r

xai
i −

(
l∏

i=r+1
xai
i + (xr − 1)

(
· · ·

(
xal

l + (xl−1 − 1)xl

)
· · ·

)))
.

Setting xr = 1, we obtain 0, which is what we get in the left hand side as well. If r = l, 
when we set x0 = x1 = · · · = xl−1 = 0 we obtain

(−1)l+1 (xal

l − xl) ,

which is equal to 0 when we set xl = 1, as the left hand side. For Ar with l < r ≤ m, 
the right hand side is always 0 since it is divisible by xl. Now (a) follows by considering 
the following factorization:

m∏
i=0

xai
i =

(
m∏

i=l+2

xai
i

)(
l∏

i=0
xai
i

)
.

An analogous argument shows that, when l = m, the polynomial stated in (b) has the 
same evaluation as 

∏m
i=0 x

ai
i in Pm. �

Remark 4.5. It is not hard to see that all the monomials appearing in the right hand 
side of the expressions given in Lemma 4.4 are part of the basis from Lemma 4.3.

Hence, we have seen that the basic tools we have used for the case m = 2 can be 
generalized to the case m > 2. For the duals of the subfield subcodes, the reasoning that 
led to (2) and (3) shows that, in order to obtain a basis for T (Sd), for each monomial 
xγ ∈ Sd, it is enough to consider the traces
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{Tγ̂(ξrγ̂xγ) | 0 ≤ r ≤ nγ̂ − 1}, (14)

where in this case we are considering cyclotomic sets in m coordinates, and we extend 
the definitions for γ̂ and Tγ̂ to this case in the obvious way. Hence, to obtain a basis we 
have to extract a maximal linearly independent set from the union of the previous sets. 
Theorem 4.1 and Lemma 4.4 give the necessary tools to do that, but getting a general 
explicit formula for such a basis is quite involved.

For the primary code, the idea would be to consider homogenizations of the traces from 
the basis of the affine case from Theorem 2.3, and then consider linear combinations of 
these polynomials such that, when setting x0 = x1 = · · · = xj = 0 for some 0 ≤ j ≤ m −1, 
we obtain traces in less variables, similarly to what we did in the case of the projective 
plane.

5. Examples

In this section we show some examples of the parameters obtained from subfield 
subcodes of projective Reed-Muller codes over the projective plane. For computing the 
dimension, we can use Corollary 3.13 and Corollary 3.42, and for computing the minimum 
distance we use Magma [2]. We will denote the parameters of PRMσ

d (2) by [n, k, δ], 
and the parameters of the dual code PRMσ,⊥

d (2) by [n, k⊥, δ⊥]. With respect to the 
parameters of the codes that we obtain, it is only possible to compare these codes with 
the codes from [13] for small finite field sizes. This is because the codes that we obtain 
have length n = q3s−1

qs−1 = q2s+qs+1, which gives rise to very long codes when we increase 
q or s. Moreover, it is better to consider moderate values of s due to the fact that the 
size of the corresponding cyclotomic sets increases for larger s, and therefore if we start 
with degree d and we consider degree d − 1, for each monomial of degree d that we are 
no longer evaluating, all its powers of q (seen in S/I(P 2)) will not appear in any trace 
from the basis that we have given for PRMσ

d (2), and the size of the set formed by the 
monomial and its powers of q is precisely the size of the corresponding cyclotomic set. 
This can cause significant drops in dimension, leading in some cases to codes with worse 
parameters compared to the cases with smaller s. Thus, we first consider binary codes 
and ternary codes arising from extensions of small degree.

For the extensions F4 ⊃ F2 and F8 ⊃ F2, we obtain the parameters from Table 1. For 
the extension F8 ⊃ F2 we omit the codes with d = 2, 3 as they are equal to PRMσ

1 (2). In 
the cases where δ⊥ is 1, we have that PRMd(2) is a degenerate code. For instance, for the 
extension F4 ⊃ F2, for d = 1 we have qs +1 = 5 common zeroes for all the vectors in the 
code, which means that, after puncturing, we obtain the same as the subfield subcode 
of an affine Reed-Muller code. However, for d = 2 we only have 1 common zero, and 
the corresponding code after puncturing does not correspond to the subfield subcode of 
any affine Reed-Muller code. With respect to the parameters, some of the codes from 
Table 1 have the best known parameters for a linear code with its length and dimension, 
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Table 1
Binary codes corresponding to the extensions F4 ⊃ F2 and F8 ⊃ F2, respec-
tively.

d n k δ k⊥ δ⊥

1 21 1 16 20 1
2 21 2 12 19 1
3 21 9 8 12 5
4 21 11 4 10 2
5 21 16 3 5 8
6 21 20 2 1 21

d n k δ k⊥ δ⊥

1 73 1 64 72 1
4 73 2 40 71 1
5 73 7 32 66 1
6 73 8 24 65 1
7 73 27 16 46 9
8 73 28 8 45 1
9 73 32 8 41 2
10 73 40 8 33 1
11 73 51 5 22 16
12 73 59 4 14 4
13 73 66 3 7 32
14 73 72 2 1 73

Table 2
Ternary codes corresponding to the 
extension F9 ⊃ F3.

d n k δ k⊥ δ⊥

1 91 1 81 90 1
3 91 2 63 89 1
4 91 9 54 82 4
5 91 9 45 82 1
6 91 10 36 81 1
7 91 19 27 72 1
8 91 36 18 55 10
9 91 38 9 53 2
10 91 45 9 46 4
11 91 58 7 33 18
12 91 70 6 21 36
13 91 73 5 18 6
14 91 80 4 11 36
15 91 86 3 5 54
16 91 90 2 1 91

according to [13]. For example, that is the case for the codes with parameters [21, 9, 8]2, 
[21, 12, 5]2 and [21, 16, 3]2.

With respect to ternary codes, we consider the extension F9 ⊃ F3. The parameters of 
the corresponding codes are presented in Table 2, where we have omitted the case d = 2
since it corresponds to the same code as PRMσ

1 (2).
We can compare the parameters of these codes with the ones obtained with affine 

Reed-Muller codes. Besides the fact that we obtain longer codes for the same field size, 
if we consider k+δ

n as a measure of how good a code is, we usually have that the projec-
tive code PRMσ

d (2) is better in that sense than RMσ
d (2). For example, we have that the 

code RMσ
4 (2) corresponding to the extension F9 ⊃ F3 has parameters [81, 9, 45]3, and 

PRMσ
4 (2) has parameters [91, 9, 54]3, and one can check that PRMσ

4 (2) has better pa-
rameters with respect to the value k+δ

n . In fact, the parameters of the code PRMσ
4 (2) are 

the best known parameters for a code with length 91 and dimension 9 over F3, according 
to [13]. Moreover, the codes from Table 2 with parameters [91, 21, 36]3, [91, 82, 4]3 and 
[91, 86, 3]3 are also the best known according to [13].
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Table 3
Long codes exceeding the Gilbert-
Varshamov bound.
q s d n k δ ≥
2 4 28 273 255 4
2 4 29 273 264 3
4 2 5 273 9 192
4 2 28 273 262 4
4 2 29 273 268 3
5 2 6 651 9 500
5 2 46 651 640 4
5 2 47 651 646 3
3 3 50 757 741 4
3 3 51 757 750 3
2 5 60 1057 1035 4
2 5 61 1057 1046 3
7 2 8 2451 9 2058
7 2 94 2451 2440 4
7 2 95 2451 2446 3

Table 4
Binary codes corresponding to the 
extension F4 ⊃ F2 with m = 3.

d n k δ k⊥ δ⊥

1 85 1 64 84 1
2 85 2 48 83 1
3 85 16 32 69 5
4 85 18 16 67 1
5 85 33 12 52 2
6 85 60 8 25 21
7 85 67 4 18 8
8 85 78 3 7 32
9 85 84 2 1 85

For extensions of higher degree, or for fields with higher q, the codes that we obtain 
in this way are too long to be compared to the ones from [13]. As we have seen in the 
previous examples, some of the codes that we obtain have the best known parameters, 
while others do not have great parameters. Focusing on the ones with better parameters, 
in Table 3 we provide some long codes that surpass the Gilbert-Varshamov bound for 
different field extensions. For the minimum distance, we use the bound (13) since these 
codes are too large for Magma [2].

Finally, for the case m > 2, in Table 4 we show the binary codes obtained by consid-
ering the subfield subcodes of projective Reed-Muller codes over P 3 with respect to the 
extension F4 ⊃ F2, where we have computed the parameters with Magma [2]. The codes 
with parameters [85, 16, 32]2, [85, 60, 8]2 and [85, 78, 3]2 have the best known parameters 
according to [13].

Data availability

No data was used for the research described in the article.
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