
Citation: Del-Pozo-Velázquez, J.;

Chamorro-Posada, P.; Aguiar-Pérez, J.M.;

Pérez-Juárez, M.Á.;

Casaseca-De-La-Higuera, P. Water

Detection in Satellite Images Based

on Fractal Dimension. Fractal Fract.

2022, 6, 657. https://doi.org/

10.3390/fractalfract6110657

Academic Editor: Viorel-Puiu Paun

Received: 28 September 2022

Accepted: 1 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Water Detection in Satellite Images Based on Fractal Dimension
Javier Del-Pozo-Velázquez, Pedro Chamorro-Posada * , Javier Manuel Aguiar-Pérez ,
María Ángeles Pérez-Juárez and Pablo Casaseca-De-La-Higuera

Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid,
ETSI Telecomunicación, Paseo de Belén 15, 47011 Valladolid, Spain
* Correspondence: pedcha@tel.uva.es; Tel.: +34-9-8342-3000

Abstract: Identification and monitoring of existing surface water bodies on the Earth are important
in many scientific disciplines and for different industrial uses. This can be performed with the help
of high-resolution satellite images that are processed afterwards using data-driven techniques to
obtain the desired information. The objective of this study is to establish and validate a method
to distinguish efficiently between water and land zones, i.e., an efficient method for surface water
detection. In the context of this work, the method used for processing the high-resolution satellite
images to detect surface water is based on image segmentation, using the Quadtree algorithm, and
fractal dimension. The method was validated using high-resolution satellite images freely available
at the OpenAerialMap website. The results show that, when the fractal dimensions of the tiles in
which the image is divided after completing the segmentation phase are calculated, there is a clear
threshold where water and land can be distinguished. The proposed scheme is particularly simple
and computationally efficient compared with heavy artificial-intelligence-based methods, avoiding
having any special requirements regarding the source images. Moreover, the average accuracy
obtained in the case study developed for surface water detection was 96.03%, which suggests that
the adopted method based on fractal dimension is able to detect surface water with a high level
of accuracy.

Keywords: image segmentation; fractal dimension; OpenAerialMap; quadtree; satellite images;
water detection

1. Introduction

Identification and monitoring of different types of surface water bodies on the Earth
are necessary for numerous scientific disciplines and industrial uses and are of paramount
importance in sustaining all forms of lives and ecosystems. Surface water refers to water
on the surface of the Earth, including wetlands, rivers, or lakes. This definition usually
excludes oceans because of their enormous size and salty character, although smaller saline
water bodies are normally included [1]. Potential applications and uses of identifying and
monitoring surface water include sustainable agriculture, irrigation reservoirs’ monitoring,
wetland inventory, watershed monitoring, river dynamics, climate change, types of climates,
environment monitoring, and flood mapping [2–6]. In short, identification, monitoring,
and assessment of present and future water resources are essential, as water information is
crucial in many areas and necessary for human life.

One way to detect and monitor surface water on the Earth is through the use of high-
resolution satellite images. These satellite images can be captured with the help of a variety
of remote sensing technologies and devices. Some examples of remote sensing techniques
used to obtain satellite images are satellite sensors, aerial photographs, or drones. The
possibilities opened by remote sensing technologies and devices, especially drones, have
attracted the interest of many researchers and practitioners [7,8].

It is important to remark that the trustworthiness of satellite images depends on
their resolution; in other words, low quality images will not be able to provide infor-
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mation with added value. After all, satellite images are often snapshots generated by
different algorithms that are able to determine how the raw data from sensors must be
interpreted and visualized. Through platforms like Google Earth [9] and websites like Ope-
nAerialMap [10], satellite images are becoming increasingly ubiquitous and are available
to scholars and technicians. The availability of this high-resolution imagery was exploited
in this research work.

High-resolution satellite images can be processed with the help of different data-driven
techniques to obtain the desired information. Some of the techniques most commonly used
for satellite image processing are enhancement, feature extraction, segmentation, fusion,
change detection, compression, classification, and feature detection. Researchers and
practitioners often categorize these techniques into four broad categories: pre-processing,
transformation, correction, and classification [11–14]. Although satellite image processing
can be performed using a variety of computational methods, different methods will produce
different results in a number of fields of application and use cases and, consequently, the
wrong selection of techniques will produce worse results for a specific application or
use case. Moreover, processing satellite images is computationally intensive and can be
quite complex.

In the context of this research work, satellite images will be used to detect surface
water. To obtain the necessary information from the satellite images, a method based on
image segmentation plus fractal dimension analysis will be used. Then, when the fractal
dimensions of the tiles in which the image is divided after segmentation are calculated,
there is a clear threshold where water and land can be distinguished.

Image segmentation is a process that allows breaking down a digital image into several
image segments or regions of interest. This technique allows reducing the complexity of
the image to make further analysis easier and has been broadly researched and exploited
by scholars and practitioners [15–18]. During the segmentation process, the same label will
be assigned to all pixels belonging to the same category. When a segmentation technique
is used, the input can be a single region selected by a segmentation algorithm, instead of
the whole image. This will reduce the processing time and computational effort. Image
segmentation can be based on detecting similarity between pixels in the image to form a
segment, based on a threshold (similarity), or the discontinuity of pixel intensity values of
the image (discontinuity). In an image segmentation process, the objective is to identify the
content of the image at the pixel level, which means that every pixel in the image belongs to
a single class, contrary to, for example, image object detection, where the bounding boxes
of objects can overlap [19].

A fractal is a structure where each part has the same statistical properties as a whole.
In other words, fractals are complex patterns that are self-similar across different scales
and, for this reason, can be thought of as never-ending patterns that can be created by
repeating a simple process indefinitely. Fractals have attracted the interest of scholars and
researchers [20–22]. One of the reasons for this is the interesting possibilities in using fractals
in a variety of very different fields of application and use cases [23–29]. More specifically,
one of the possible uses of fractals is the image compression field, where a block-based
image compression technique, which detects and decodes the existing similarities between
different image regions, called fractal image compression, is applied [30].

Artificial intelligence (AI) has evolved in the last decades thanks to the progress in
computer science and technology [31]. Moreover, the information storage capacity has
considerably increased, allowing the treatment of massive amounts of data, which is
commonly known as Big Data. Nevertheless, a systematic literature review on the existing
methods capable of detecting water in aerial images reveals several challenges. Delving into
the world of AI, convolutional neural networks (CNNs) have proven to be an excellent tool
in the fields of deep learning (DL) and machine learning (ML) [32]. CNNs are composed
of a series of layers that extract features from the pixels, just as a human eye would do.
However, this type of network needs to be trained by supervised learning, which means
that it is necessary to indicate the object to be detected in the training images.
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Moreover, sometimes, AI techniques focused on the detection of objects in images
can pose difficulties that can vary depending on the field of application and the type of
image or object to be detected [33]. In fact, to use AI techniques for the same objective as
the method proposed in this paper, it would be necessary to count with a set of metadata
in attached files, apart from the image itself. An example is a shapefile, which is a vector
format that saves the location of geographic elements and attributes associated with them.

For example, in [34], a combination of clustering and an ML classifier to detect water
in high resolution aerial images, obtained from Sentinel, is presented. Nevertheless, the
main difficulty in the use of this model is related to the data source, as it is necessary to use
pictures with the associated geoinformation metadata.

Therefore, these requirements must be considered when preparing a dataset to train
and evaluate a neural network. Likewise, there are some objects that, because of their
heterogeneity, are difficult to detect using AI techniques [35].

The objective of this research work is to establish and validate a method to distinguish
efficiently between water and land zones, i.e., an efficient method for surface water detec-
tion, based on image segmentation plus fractal dimension analysis. More specifically, this
research work uses the computational method described in [36] to directly estimate the
dimension of fractals stored as digital image files. To validate this method in the context
of surface water detection, an experimental study was conducted using high-resolution
satellite images freely available to researchers and practitioners at the OpenAerialMap
website [10]. The proposed scheme is particularly simple and computationally efficient
compared with heavy-artificial intelligence-based methods, avoiding having any special
requirements regarding the source images.

The remainder of the paper is organized as follows. Section 2 introduces the proposed
method for surface water detection based on image segmentation plus fractal dimension
analysis. Section 3 describes the case study developed where high-quality satellite images,
obtained from the freely accessible OpenAerialMap website [10], were used as the source
to detect surface water. The obtained results after applying the method are also presented.
Finally, in Section 4, these results are discussed and interpreted.

2. Water Detection Using Quadtree Segmentation and Fractal Dimension Analysis

The proposed method can be divided into three different phases: (1) image pre-
processing, (2) image segmentation, and (3) fractal dimension analysis of the images’ tiles.

Initially, the quality of the image is far more important, as it is necessary to start with
a high-resolution picture that contains a considerable quantity of information. For this
reason, images taken from the open-source website known as OpenAerialMap [10] were
used as the source. Although the website has more than 12,000 images, 670 sensors, and
963 providers, it is necessary to apply a filter at the time of selection. The first criterion
is to obtain images containing water areas, as water detection is the main purpose of
this work. As previously mentioned, this study requires high-quality images, and this
requirement sets the second selection criterion. Fortunately, the source has a search engine
that allows filtering by resolution level; however, size and resolution vary depending on
the provider. Therefore, in this work, both criteria were applied, obtaining a set of pictures
with a resolution of 300 × 300 ppi and a file size of around 20 MB, depending on the image
size. Because color information has a three-dimensional property, which makes processing
bulkier and heavier [37], the first step consists of transforming original RGB (red, green
and blue) pictures into grayscale ones.

Secondly, once the images have been pre-processed, segmentation is performed to
obtain several tiles for which the fractal dimension will be calculated. In this research work,
a frequently used algorithm, called Quadtree, was used [38]. A quadtree is a tree data
structure commonly used to partition a two-dimensional space by recursively subdividing
it into four regions. Quadtree decomposition allows subdividing an image into regions that
are more homogeneous than the image itself, thus revealing information about the structure
of the image. In this work, a script was developed to apply the quadtree algorithm to an



Fractal Fract. 2022, 6, 657 4 of 12

input image. Firstly, the concept known as a node was implemented, which represents
a spatial region, i.e., the top-left point of the image followed by its width and height.
Nevertheless, to divide the input image, it is necessary to use the mean squared error of
the pixels, obtaining the concept of a purity node. Then, there are two parameters that
must be set to stop the recursive subdivision of the quadtree method: the contrast and the
node size. On the one hand, the contrast is defined because, if there is too much contrast,
it is necessary to continue dividing, while if there is too little contrast, it is better to finish
the algorithm. On the other hand, the node size depends on the size and the amount of
information of the image, because a middle ground is sought, i.e., if the node size is too
small, the tiles are overfitted, whereas if it is too big, the tiles provide the same information
as the original image. Likewise, it is necessary to emphasize the relevance of storing the
coordinates of each region, specifically the upper-left and lower-right coordinates. This
step is necessary to crop the grayscale picture and to obtain all of the regions for which the
fractal dimension will be calculated.

Thirdly, when the image pre-processing and segmentation have been completed, the
compression fractal dimension [36] of the resulting tiles can be calculated. The greater the
number of regions, the longer the processing time. In order to calculate the compression
fractal dimension of each tile, the following three tasks are needed: (1) image tile resizing,
(2) image tile compression, and (3) sweeping for image tile size storage. Initially, the first
step consists of resizing each one of the tiles, sweeping the resizing percentage from 10%
to 90% with an increment of 10%. This corresponds to reducing the image size to 10%,
20%, . . . , and 90% of the original file size. It is worth noting that a free library, called
ImageMagick [39], was used, where the resizing percentage is related to the payload.
Therefore, the greater the resizing percentage, the larger the size of the file that will be
obtained. Finally, the resulting number of resized images is obtained by multiplying
the set of tiles by nine. When the regions have been resized, a crucial second step is
performed, which consists of a process of compression, which is necessary to obtain the
fractal dimension. Again, the open-source library ImageMagick [39] was used; however, in
this case, it is applied to compress each one of the tiles in GZIP file format. The third step is
based on a sweep where the size of the compressed tiles is stored in rows. Thus, there will
be one file with nine rows for each tile, relating each row to the resizing percentage.

To understand the next steps, it is necessary to first explain the mathematical compo-
nent that supports the calculation of the compression fractal dimension, as described in
detail in [36]. The initial image whose fractal dimension we want to estimate requires

Ni = nxny (1)

symbols to be stored, one per pixel, where N is the total number of pixels; nx and ny are
the number of pixels along the x- and y-axis, respectively; and the subindex i stands for
“image”. If a file containing this set of symbols is compressed, the minimum file size

S = Nih (2)

required to store the information of the image is the entropy S of the data file, where h
(bits/symbol) is the entropy rate.

We now address the effect of changing the image resolution on the file size and its
entropy. As the scale s used to represent the image is varied, the number of pixels used
along each axis changes linearly with s, and the total number of pixels used to represent
the image varies as

Ni(s) = nxny = N0s2 (3)

where N0 is an arbitrary reference number. Therefore, the optimal compressed file size is

S(s) = N0s2h(s) (4)
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At the same time, as a fractal body, the amount of information required to represent
such an object at the scaling level s is [36]

N f = 2H(s) = N1sD (5)

where N1 is an integer, D is the fractal dimension, and H(s) is the number of bits required to
represent the fractal. Therefore, the entropy of the picture file follows the scaling asymptotic

S(s) ∼ 2H(s) ∼ sD (6)

and we can estimate the fractal dimension D from the sizes of the image files after compres-
sion at each resolution level s by calculating the compression dimension.

Dc = lim
s →∞

logS(s)
logs

(7)

The compression dimension calculation will only provide a valid estimate of the fractal
dimension if the image file gives a truthful representation of the fractal object in full detail
at all of the scaling levels considered. That is,

N f (s)� Ni(s) (8)

at all values of s used in the calculation. Equation (8) sets a bound on the minimum usable
resolution of the image file at the beginning of the calculation and the depth of the values
of s used in the estimation algorithm.

When the sizes of the compressed tiles are stored in files, linear regression is calculated
for each file, sweeping the nine values. In this operation, the slope is obtained facing the
logarithm of the resizing scale against the logarithm of the compressed sizes. Although
the resizing scale ideally ranges from 10% to 90% [36], an exhaustive study shows that,
for the tiles used, there is a turning point where the linearity disappears, indicating the
violation of Equation (7). Therefore, in this research work, the scale varies between 70% and
90%, i.e., the reduced information contents in the scaled versions with resizing percentages
between 60% and 10% yield meaningless data. Finally, the slope calculated for each tile
corresponds to the fractal dimension of a specific tile.

To finish, when the fractal dimensions of the tiles are calculated, it is found that there is
a clear threshold where surface water and land zones can be distinguished. This threshold
depends on the scenario, defined as a collection of pictures captured under the same
conditions, i.e., they must have the same resolution, pixel dimensions, bit depth, dynamic
range, and so on. In addition, a threshold is calculated for each scenario, carrying out a loop
to test the accuracy obtained with a range of thresholds, selecting the threshold that allows
the best accuracy to be obtained. Likewise, this range of thresholds oscillates between the
smallest and the largest fractal dimension, obtained in the first picture of each scenario.

Besides, it is necessary to clarify how the accuracy is calculated, for which it is essential
to label each tile to obtain a ground truth. Likewise, the accuracy percentage is calculated
by dividing the correctly classified tiles by the total number of tiles and multiplying the
result by one hundred. Then, in order to validate the established threshold, this threshold
is applied to another image of the same scenario and its accuracy is calculated. As the
threshold varies according to the scenario, two application scenarios were established, with
two images each. The first image of each scenario is used to calculate the optimal threshold,
while the second image of each scenario is used to validate the previously calculated
threshold. This shows that it is possible to set clear thresholds for different scenarios where
surface water and land zones can be distinguished. To show the results, as previously
explained, the tiles must have been labeled, thus a comparison can be made contrasting the
predictions made with the fractal dimension against the true labels.
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3. Results

In this work, high-quality satellite images, obtained from OpenAerialMap [10], were
used to detect surface water. The results show that it is possible to set a threshold in the
fractal dimension that allows differentiation between surface water and land zones.

However, it is more important to determine the accuracy, which must be studied for
each picture, as the accuracy will determine the validity or not of the proposed method.
Each image presents a specific accuracy; however, the average obtained in this work is
96.03%, which indicates good performance of the proposed method.

The first scenario has two different images, one to set the optimal threshold of this
scenario (Figure 1a) and one to validate this threshold (Figure 1d). Next, image pre-
processing was applied, converting RGB images into gray-scale ones (Figure 1b,e).
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Figure 1. First scenario. (a) Original satellite RGB image in TIFF format (image 1). (b) Original
satellite grayscale (image 1). (c) Original satellite grayscale segmented (image 1). (d) Original satellite
RGB image in TIFF format (image 2). (e) Original satellite grayscale image (image 2). (f) Original
satellite grayscale segmented (image 2).

In Figure 1c–f, the segmentation performed by the Quadtree algorithm can be observed.
The number of tiles depends on the size and the amount of information in the picture. In the
first image, the minimum region size was set to 30 pixels, obtaining 757 tiles. Nevertheless,
in the second picture, the minimum region size was set to 60 pixels owing to the dimensions,
obtaining 934 tiles.

In Figure 2, a distribution histogram of the fractal dimensions of the first scenario can
be observed. The x-axis shows the range in which the fractal dimensions are delimited,
whereas on the y-axis, the frequency of repetition can be analyzed.

Then, in Figure 3a,b, the resizing evolution of a specific tile of the first image and the
second image in the first scenario, correspondingly, can be analyzed. The first resizing
corresponds to 90% and the last one corresponds to 10%; therefore, the last image contains
more information.

Finally, Figure 4a,b show the results of the images of the first scenario. The accuracy
of the first picture is 94.98%, whereas the second image obtains an accuracy of 96.79%. The
threshold obtained on the first scenario is 1.86. As can be seen, using the threshold obtained
for image 1 in image 2, an even higher accuracy is obtained, validating that the water was
clearly identified for this scenario.
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The second scenario is also composed of two different images, one to establish the
optimal threshold of this scenario (Figure 5a) and one to validate this threshold (Figure 5d).
Again, next, image pre-processing was applied, converting RGB images into gray-scale
ones (Figure 5b,e).
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Figure 5. Second scenario. (a) Original satellite RGB image in TIFF format (image 1). (b) Original
satellite grayscale (image 1). (c) Original satellite grayscale segmented (image 1). (d) Original satellite
RGB image in TIFF format (image 2). (e) Original satellite grayscale image (image 2). (f) Original
satellite grayscale segmented (image 2).

In Figure 5c,f, the segmentation performed by the Quadtree algorithm can be observed.
In the first image, the minimum region size was set to 60 pixels, obtaining 1024 tiles. In the
second picture, the minimum region size was set to 30 pixels, obtaining 505 tiles. Again, the
reason that the number of tiles is higher than in the first scenario is because of the amount
of information contained in the image, as well as its size.

Again, Figure 6 shows a distribution histogram of the fractal dimensions of the second
scenario. The x-axis shows the range in which the fractal dimensions are delimited, whereas
on the y-axis, the frequency of repetition can be analyzed.
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Figure 6. Histograms of the fractal dimensions of the second scenario. Results for images 1 and 2 are
displayed in the left and right plots, respectively.

Again, in Figure 7a,b, the resizing evolution of a specific tile of the first image and the
second image in the second scenario, correspondingly, can be analyzed. The first resizing
corresponds to 90% and the last one corresponds to 10%; therefore, the last image contains
more information.
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Finally, Figure 8a,b show the results of the images of the second scenario. The accuracy
of the first picture is 95.51%, whereas the accuracy of the second picture is 96.83%. The
threshold obtained on the scenario is 1.90. As in the previous scenario, using the threshold
obtained for image 1 in image 2, a higher accuracy is obtained, demonstrating once again
that the water areas were clearly identified for this scenario too.
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Figure 8. Original satellite RGB image with blue dots over surface water regions and red dots over
land regions in the second scenario. (a) Image 1. (b) Image 2.

4. Discussion

The method proposed in this paper, based on image segmentation, performed with
the Quadtree algorithm, and compression fractal dimension calculation of the tiles in which
the image is divided after completing the segmentation phase, in order to detect surface
water bodies on Earth, is particularly simple, especially when compared with the complex
techniques used in AI. It is also remarkable that this method does not have any special
requirements regarding the data source, which is a great advantage, because only the image
is needed, but no geoinformation metadata are required. Moreover, from a computational
point of view, the proposed method, based on the computational scheme described in [36]
to directly estimate the dimension of fractals stored as digital image files, involves lighter
tasks than the training and related tasks of artificial neural networks. Moreover, the average
accuracy obtained in the work developed for surface water detection was 96.03%, which
suggests that the fractal dimension is quite useful to detect surface water with a high level
of accuracy.
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