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Departamento de Estad́ıstica e Investigación Operativa

Universidad de Valladolid

Paseo Prado de la Magdalena, s/n

47005 Valladolid, Spain

Email: crueda@eio.uva.es

pilarr@eio.uva.es

Abstract. We introduce multivariate State-Space Models to estimate and

forecast fertility rates that are dynamic alternatives to logistic representa-

tions for fixed time points. Strategies for Kalman filter and Quasi-Newton

algorithm initialization, that assure convergence of the iterative fitting pro-

cess, are provided. The broad impact of the new methodology in practice is

proven using data series from Spain, Sweden and Australia and comparing

the results with a recent approach based on Functional Data analysis and

with official forecasts. Very satisfactory short and medium term forecasts

are obtained. Besides, the new modeling proposal provides practitioners with
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several suitable interpretative tools and this application is one interesting ex-

ample that shows the usefulness of the State-Space representation to model

a real multivariate process.

Keywords: State-Space model, Kalman Filter, Fertility rates, Demo-

graphic forecast, Logistic model, Total Fertility Rate.

1 Introduction

The term fertility refers to the occurrence of births to an individual, a group

or an entire population. It is determined by several biological, economic and

social factors. The problem of estimating and forecasting fertility parameters

is one that has a long tradition in demography. The population projections

from fertility, mortality and migration components have always had a critical

importance for policy-making because they set the basis for medium and long-

term planning in many fields. Age-fertility rates are often used as inputs in

the most popular population projection models.

Several approaches have commonly been used for projecting rates in de-

mography. The simplest is to use average rates from recent years. Another

approach is to suppose that the rates in the population to be projected will

converge over time toward those found in another population or chosen by

expert judgement.

On the other hand, approaches based on stochastic modeling have also

been developed. These approaches have two advantages when compared with

the simple extrapolation method: they use more historical information and

provide prediction intervals. Projection from time series models, however,

are often strongly affected by the structure of the models themselves and by
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the changes in rates that occur during the base period. Therefore, many de-

mographers support the use of mixed procedures, where external judgments

and information on historical errors are included in the models. Interesting

recent proposals along this line are those of Alho et al (2006) and Alders et al

(2007). Nowadays, there is not unanimity about what is the best procedure

because there are important issues with all the proposals and more statistical

research is necessary. This paper is a contribution to this field.

The simplest way of making stochastic forecasts is to use univariate time-

series models to analyse separate age-specific rates, but taken together, the

separate analyses may not yield a plausible age-pattern (inconsistency prob-

lem). Therefore, it seems desirable to use modeling and forecasting methods

that capture that smooth shape over age to produce consistent and accurate

estimates.

Several approaches have been developed to analyse fertility and mortality

patterns using stochastic models. Here, we comment on the two most widely

used. The curve fitting approach, which involves fitting parametric curves

to the age-specific rates, and the principal components approach, which in-

volves using a matrix decomposition to obtain a linear transformation of

the data with a simplified structure. Among the curve fitting models for

fertility rates, the more familiar until recently were the Coale and Trussell

(Coale and Trussell (1974)) model and the Gamma curve model (Thompson

et al (1989)). Both have been used in many applications since their devel-

opment, by Keilman and Pham (2000) or Scherbov (2002) among others.

Schmertamnn (2003) recently proposed a new model based on constrained

quadratic splines.

The second approach uses dimensional reduction techniques to linearly

transform the rates. One of the most popular models is the Lee-Carter model
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to forecast mortality rates (see Lee and Carter (1992)). Several authors have

extended the Lee-Carter method (Booth et al (2006) and De Jong and Tickel

(2006) among others). Moreover, Hyndman and Ullah (2007) and Hyndman

and Booth (2008) have proposed a Functional Data (FD) approach that can

also be considered as a successor of Lee-Carter and which has been applied

to forecasting fertility and mortality rates. One main difference between the

curve fitting and the dimension reduction approaches is that the model for

the rates is defined using known parametric functions depending on age for

the former but estimated functions depending on age in the latter. For a

review of the different approaches see Booth (2006).

The aim of this paper is to propose a new approach to forecast fertility

curves that uses the methodology of State-Space (SS) modeling. We will use

the model to provide short and medium term forecasts of age-specific fertility

rates and other fertility indices. The SS model is based on the Logistic

model (LO) proposed by Rueda and Alvarez (2008). It uses simple functional

expressions and the modeling and forecasting step is done simultaneously.

The parameters of the model can be interpreted as indicators of the level of

fertility, and shape of fertility curves. Finally, explanatory variables can also

be easily incorporated into the model.

The procedure is validated using data series from different countries and

periods and the results are compared with those obtained with the FD ap-

proach and with official forecasts. In all cases studied, very satisfactory

results are obtained, both for the short and medium term forecast.

The LO model is presented in section 2. The SS model is defined in

section 3 where a strategy is designed for Kalman filter and Quasi-Newton

algorithm initialization that assure convergence of the iterative fitting pro-

cess. In section 4, the SS model is applied to data series from Spain, Sweden
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and Australia and finally, conclusions are drawn in Section 5.

2 Logistic model for fertility

2.1 Data and initial assumptions

We assume that birth counts and estimates of population at risk are available

from vital registration and population census or population registers. To

simplify the exposition, single year age data are used although the approach

can also be used for other age groups. Let d be the total childbearing ages

analysed. In the applications in section 4, d=30, the lowest childbearing

are 16 for Spain and Sweden, as appears in the Eurostat data base, while

it is 15 for Australia, and the highest 45 and 44 respectively. We use the

following data: age-specific birth number for each calendar year, age-specific

population numbers at 30th June in each year. For each year t = 1, ..., n,

and age j = 1, ..., d; we define by,

bj(t) = Births in the calendar year t for females of age j

wj(t) = Female population of age j exposed to risk in year t (30th June)

mj(t) =
bj(t)

wj(t)
= observed fertility rate for females of age j in calendar year t

Following the general consensus in actuarial modeling, we assume that

births are generated by a Poisson process with intensity: ρj(t). Under this

model, mj(t) are the MLE of ρj(t). The models proposed in this paper give

smoothed estimators for ρj(t).

In the next subsection, the LO model is defined and some properties of

the model are commented on.
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2.2 Description and properties of LO models

The r-dimensional logistic model to analyse fertility curve for a given moment

in time, t, is given by:

[LO]r log(ρ(t)/(1 − ρ(t)) = Aβt (2.1)

where βt = (β0(t), β1(t), ..., βr−1(t))
′ is the parameter vector and A is a

known d× r design matrix with orthogonal columns defined as a function of

power of age:

A = (A0, A1, ..., Ar−1) Ak = (A1k, ..., Adk)
′ 0 ≤ k ≤ r − 1

The expression of the first three columns are given below using basic statistics

from the age distribution :

Aj0 = 1, Aj1 = (j − a) , Aj2 = (j − a)2
− S2

a, Aj3 = (j − a)3 −
Ka

S2
a

(j − a)

a =
1

d

d∑

j=1

j S2
a =

1

d

d∑

j=1

(j − a)2 Ka =
1

d

d∑

j=1

(j − a)4 j = 1, ..., d

The suitability of the fitted model to describe fertility curves is evaluated

in Rueda and Alvarez (2008) with data from 226 countries. In that paper,

the fit of the [LO]r model is compared with that of the Quadratic Spline

(QS) model of Schmertmann (2003) and the (CT) model form Coale and

Trussell (1974). The logistic model [LO]4 gives better results than the CT

model and comparable results to the QS in developed countries (the three

models defined using 4 parameters). The incorporation of power of age of

higher order ([LO]r , r > 4) significantly improves the fit in many countries

but for some countries and years, a model with fewer parameters suffices. We

have decided to work with the model [LO]7 as a standard for the dynamic

analysis, for single-year age groups, in the following sections.



7

The parameters of the model can be interpreted as measures of the level

(or period quantum β0(t)), and shape (or tempo (βi(t)) of fertility curves, as

shown in Rueda and Alvarez (2008). For a discussion of tempo and quantum

concepts in demography see Van Imhoff and Keilman (2000) and Sobotka

(2003). Then, in particular, changes in the Total fertility Rate (TFR) values

in a period can be interpreted as changes in quantum and/or tempo via the

changes in the observed beta series. These interpretative properties are used

in practice to describe past and future fertility using real data in section 4.

3 Definition of State-Space models

In this section we present the SS representation to analyse series of rates. SS

modelling provides a unified methodology for treating a wide range of prob-

lems in time series analysis, allowing considerable flexibility in the specifica-

tion of the parametric structure for time series processes. In this approach,

it is assumed that the development over time of the system under study is

determined by an unobserved series of state-vectors: αt with which are asso-

ciated a series of observations: Yt. The linear SS model can be defined using

two equations. The first is known as the observation equation and expresses

the vector observation as a linear function of a state vector plus a noise. The

second equation, called the state equation, determines αt+1 in terms of αt

and a noise term. It is assumed that the initial state vector is uncorrelated

with all the noise terms, so the state vector then has the Markov property.

In a general SS representation, neither the vector observation nor the state

vector is assumed to be stationary. A large number of well known time series

models have an SS representation. To find the estimates of the state vector,

the SS methodology uses the well-known Kalman filter. The Kalman filter is
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a recursive algorithm, that is, it is based on formulae in which we calculate

the value at time t+1 from earlier values for t, t-1,...,1. The question of

how these recursions are started up at the beginning of the series is called

initialization. The Kalman filter provides a unified approach to prediction

and estimation for all processes that can be given by an SS representation.

When the models depend on unknown parameters, the estimation is pro-

vided by maximum likelihood. For maximization of the log-likelihood, we

use a Quasi-Newton algorithm that starts with a trial value for the parame-

ter vector. For a non expert reader in state space modeling, we recommend

the book by Commandeur and Koopman (2007) and chapter 8 from the book

by Brockwell and Davis (2002). For a more detailed study, see Durbin and

Koopman (2001).

To derive the final expression as a gaussian SS model given below, we have

assumed that the logits vector , Yt =
(
log

(
m

1
(t)

1−m
1
(t)

)
, ..., log

(
md(t)

1−md(t)

))
′

, is

conditionally normally distributed with mean Aβt and that βt are indepen-

dent ARIMA processes. The logistic model defined in (2.1), the orthogonality

of the design matrix A, the standard normal approximation to the Poisson

and the time component of the data are the properties that support these

assumptions.

The SS model for fertility is written in a usual form with two equations.

The observation equation has the structure of a linear regression model with

coefficients that depend on time and the state-equation represents the devel-

opment of the system over time, as follows :

Observation equation Yt = Bαt + εt εt  Nd(0,H )

State equation αt+1 = Rαt + ηt ηt  Np(0,Q)

1 ≤ t ≤ n α1  N(a1, P1)

(3.1)
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To obtain the above SS representation we first calculate the logistic es-

timators fitting the model (2.1). These latter estimators are obtained using

standard software for logistic regression that uses the observed fertility rates

and female population figures as inputs and provides estimators for the mu-

tivariate beta process: βt = (β0(t), β1(t), ..., β6(t))
′ as output. ARIMA pro-

cesses are then fitted to each component of the output series. The analysis

of data sets from different countries points to nonstationary models selected

from ARIMA(0,1,0) or ARIMA(1,1,0) for each component; this is nothing

new, as fertility series in the literature have been traditionally fitted using

small order ARI processes. The p-dimensional state vector αt, where p ≥ 7,

and the form of the state-equation (R), are derived from βt and the differ-

ences needed to define the ARIMA processes selected. The number of the

differences considered determines the exact value of p and the matrix B is

obtained from the relation: Aβt = Bαt, B = [A, 0],where 0 is d× (p−7) (See

Durbin and Koopman (2001), pag 46).

Moreover in the SS representation (3.1), the error terms εt and ηt are

assumed to be serially independent of each other at all time points and H and

Q are unknown diagonal matrices, that do not depend on time, measuring

the model errors (disturbance variances). Also, the initial state vector α1

is assumed to be N(a1, P1) independently of ε1, ..., εn and η1, ..., ηn, where

a1 and P1 are assumed to be known and must be provided to initialize the

Kalman filter, a1 is derived using the logistic estimators and P1 is initialized

as 0.

The vector of model parameters is given by the parameters in R and the

d+ p disturbance variances in H and Q. Initial guesses for the parameters

are also needed to use a Quasi-Newton maximization algorithm to derive

MLE. The initial values are for the disturbance variances in Q, the values
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derived using the logistic estimators. For H, the mean values, in the observed

time, of the asymptotic estimated Poisson variance matrix for the logistic

transform. The asymptotic Poisson variance of log(m(t)/(1 − m(t))) is by

the Taylor approximation: Hp
t = diag([wj(t)ρj(t)(1 − ρj(t))

2]−1) and the

estimated variance is given by Ĥp
t , Ĥp

t = diag([wj(t)mj(t)(1 − mj(t))
2]−1).

Finally, the autoregressive parameters which define matrix R are initialized

using nonnegative values (we use 0.5).

We illustrate the way the matrices B and R are derived and also the initial

value a1 using the model fitted to the Swedish data analysed in section 4 as

an example. In this case, the ARIMA processes for the initial series of logistic

estimators are as follows: ARIMA(1,1,0) for βi(t), i ≤ 3 and ARIMA(0,1,0)

(random walk without drift) for βi(t), i ≥ 4. Then,

αt = (β0(t), ..., β6(t),∇β0(t + 1),∇β1(t + 1),∇β2(t + 1),∇β3(t + 1))′

where,

∇βi(t + 1) = βi(t + 1) − βi(t) i = 0, 1, 2, 3

The initialization is given by,

α1 = a1 =
(
β̂0(1), ..., β̂6(1),∇β̂0(2),∇β̂1(2),∇β̂2(2),∇β̂3(2)

)
′

where β̂i(1) and β̂i(2) are the logistic estimators given by (2.1) for the first

two years. Therefore, matrix R is 11×11 and depends on 4 parameters which

are the autoregressive coefficients of the beta process models for βi(t), i =

0, 1, 2, 3, as follows :
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R =





1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 φ0 0 0 0

0 0 0 0 0 0 0 0 φ1 0 0

0 0 0 0 0 0 0 0 0 φ2 0

0 0 0 0 0 0 0 0 0 0 φ3





B is a 30× 11 matrix where the first 7 columns equals those in matrix A

and the last 4 columns have values equal to zero. Q is diagonal 11× 11 with

7 parameters:

Q = diag(0, 0, 0, 0, σ2
η5, σ

2
η6, ..., σ

2
η11)

Alternatively, a model with the same structure as model (3.1), where

Ĥp
t = diag([wj(t)mj(t)(1−mj(t))

2]−1), can be fitted to the data. The results

are similar to those obtained using H . To fit the state space model, we

use the software package SsfPack in Ox computing environment (Koopman

et al (1998)). The inputs to start the program are : the observed rates,

the exact form of matrices B and R , the initial values for the parameter

vector, and the distribution of the initial state α1  N(a1, P1). The outputs

are the parameter estimates and the h-step ahead forecast together with

their estimated standard errors. we summarize below the steps of the fitting

process:



12

1. Model Definition: ARIMA processes for the betas are derived using

the logistic estimators from (2.1). The selected processes determine the

dimensionality of the multivariate alpha process and the exact form of

matrices R and B.

2. Kalman filter Initialization: an initial guess for the vector a1 is derived

using the logistic estimators for t = 1 and t = 2 and P1 is initialized as

0.

3. Estimation of parameters: MLE are derived using a Quasi-Newton

maximization algorithm. The values used to initialize the algorithm

are for the disturbance variances in Q, the values derived using the

logistic estimators. For H, the mean values, in the observed time, of

Ĥp
t . The autoregressive parameters in matrix R are initialized as 0.5.

4. Forecasting: smoothed estimators for the beta process, forecasted val-

ues and prediction intervals are derived using the Kalman filter and

smoother.

The iterative estimation process converged in all cases we tried. This

is not necessarily the case if other initial values are used. To measure the

prediction capacity, the model is fitted reserving the last three (five) years

for each country and period and the corresponding SSE for these three (five)

years alone is computed.

Through the selection of specific ARIMA processes fitted to beta series,

different fertility scenarios for the future can be assumed. This means that

the SS approach allows demographers to draw the form of the fertility curve

for the following years selecting models that stagnate, accelerate, or deceler-

ate current trends in fertility levels (controlling β0(t)) and other important

characteristics (controlling βi(t), i ≥ 1).) This can be also done in a similar
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way to Lee’s(1993) proposal to constrain the ultimate level of the TFR fore-

cast. Therefore, the SS approach permits changes to be incorporated into

the age pattern of fertility which are expected to be different in the future

from in the past.

As we focus in this paper on the comparison of the SS and the FD ap-

proach, we introduce next the main features of the FD approach and the main

differences with the SS approach. The FD approach uses a similar model

structure to that of the SS approach : g(m(j, t)) =
r−1∑
k=0

βk(t)φk(j) + etj + ǫtj ,

where etj and ǫtj are the model and observational error terms respectively

and g a Box-Cox transformation, often the logarithm, and where φk(j) is a

set of orthonormal basic functions estimated from the data using functional

data analysis in a similar manner to Ramsay and Silverman (1997, Chapter

6). The prediction intervals in the FD approach are obtained by forecasting

the beta coefficients, using univariate time series models, and from the esti-

mation of the observational error and model error variance. (See the papers

of Hyndaman and Ullah (2007) and Hyndman and Booth (2008) for details).

The main difference between the SS and FD approaches is that in the former

the base functions φk(j) are fixed but in the latter they are data dependent.

In our application, at least, this appears to make the SS approach somewhat

less dependent on the choice of the data period than the FD. Moreover, as

the parametric series, in the SS approach, are interpreted as measures of

changes in the level and shape of fertility curves, a comparison of the beta

series predictions from different base periods is a good strategy to select a

reasonable base period for medium term forecasts: long enough to provide

good estimators but also short enough to reject the non relevant data for the

near future. We illustrate these ideas with the analysis of real data series in

the next section.
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4 Examples

The cases of Spain, Australia and Sweden will be analyzed in this section.

These countries have been selected for several reasons. The analysis of the

Spanish fertility is interesting as the drop in the birth rate in Spain has

occurred in part through the adoption of general European patterns, but

with three essential points: a much greater relative and absolute, a noticeably

smaller final TFR rate and also a considerable smaller fertility rate below

thirty (Cabré(2003) and Fernández de la Mora y Varela (2000)). For the

case of Sweden, demographic researchers have paid great attention to the

study of fertility in this country, because good quality data is available, and

also because Sweden was one of the first countries where fertility levels under

the replacement level (2.1 in developed countries) were observed. See Kohler

and Ortega (2002), Andersson (2004), Hoem (2005) and references in these

papers. Finally the data from Australia has also been extensively analysed

by an important group of demographers and statisticians from the country

who have produced several of the most interesting recent papers in the field

(Booth (2006), Hyndman and Ullah (2007) and Hyndman and Booth (2008)).

This research checked the proposed FD approach with data series from this

country. Then, a fair comparison with results from the SS approach is also

feasible and of special interest in this case.

The European data have been obtained from Eurostat data base

(http://epp.eurostat.ec.europa.eu), for 1971-2005 in Spain and for 1955-

2005 in Sweden. The Australian data for 1921-2003 comes from the R package

’Addb’ from the personal web page of Rob Hyndman. Also from this web

page the ’demography’ R package is used to implement the FD approach

(Hyndman (2006)) and obtain summary statistics that are good to compare

different aspects of both approaches. Moreover, official TFR forecasts from
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Eurostat, the Spanish National Statistical Institute, and the Australian Bu-

reau of Statistics are also used for comparison with the predicted TFR from

the SS approach.

For Spain, as short series are available, only a set of forecasts up to 2020

are provided using the complete period 1971-2005. For Sweden, two sets of

predictions up to 2020 were constructed: one based on the annual data series

1955-2005, another based on annual figures observed during the period 1975-

2005. For Australia, the country with the longest series, we construct three

series of predictions based on data from the periods: 1921-2003, 1955-2003

and 1975-2003.

The general features of past and future fertility are analyzed based on the

beta series in subsection 4.1 for Spain, Sweden and Australia. The short and

medium term forecasts with the 80% prediction intervals are also included.

In subsection 4.2, the official forecast and forecasts from the FD approach

are compared with the SS forecasts from different base-periods, using TFR

series. The prediction capacity is also calculated, reserving the last three

(five) years in each country.

4.1 Past and future Fertility by the State Space ap-

proach

In the following presentation we will discuss the interpretative properties of

the beta series estimates from fitting model (3.1) to real data. The R matrix

is derived using the longest period for each country. This matrix depends on

several autoregressive parameters which are then estimated for each period.

Alternatively, different ARIMA models could have been selected for each

period. However, we have checked that the predictions are quite similar with

different ARIMA models, which fit the data reasonably well. We reproduce
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here only the most significant estimated series βi(t) i=0,1,2. We also use the

TFR series to illustrate the comments.

In Spain, the TFR has gone down from values around 2.9 in 1975 to

1.34 in 2005, one of the lowest values in the world. Figure 1 illustrates this

fact. Beta series are also drawn in figure 1, which explain that the fertility

change in Spain is mainly due to a quantum effect (β0(t)). Also, in the last

15 years, changes in the shape of the fertility curve have been observed, as

illustrated by the β1(t) trend in this period. The consequence is that lower

TFR values, than expected without shape changes, have been observed. By

instances, figure 1 shows that while β1(1991) and β1(2002) are quite similar,

TFR(1991) is larger than TFR(2002).

The opinion of Bijak (2004), among other experts, is that a slow recovery

on fertility level is predictable. This is the scenario that our forecast gives;

βi(t) trends show that the recovery with the SS approach will be due mainly

to the increasing values for β0(t). The TFR for 2020 is 1.57. A slight increase

of other βi(t) is also predicted in the future. The result is that higher rates

are predicted in the early to mid-twenties with respect to rates in 2005. This

is an interesting feature of Spanish fertility curves that started in 2000 and

that fits the model and is also predicted to continue in the future (see figure

4).

Swedish fertility (Figure 2) has experienced special behavior: after de-

creasing in the early seventies, around 1977 this trend stopped, so that for

several years, the TFR remains more or less constant. Then, in the late 1980s

it increased, decreasing again in the 1990s to 1.51 in 1996. Since then, the

TFR has increased to 1.75 in 2005. In this country, change in fertility has

also been characterized by important changes in the level (β0(t)) but also

the mean age of childbearing has increased since 1975 with a stable period in
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the late 1980s (the same pattern as β1(t)) and important changes were also

observed in β2(t) from 1970 to the late eighties. Again, as in Spain, lower

TFR values than expected without shape changes, have been observed, in

the period from 1995 to 2002.

To obtain the forecast in Sweden we have used two base periods: 1955-

2005 and 1975-2005. Results are very similar in both cases (figure 2). The

quantum component is predicted to be stable in the future. As the longer

base period is more informative in forecasting future trends, then this is taken

into account by us when obtaining the fertility parameters in 2020. The

TFR value will increase very slowly as a consequence of changes in the tempo

component. Bijak (2004) says that for Sweden one can expect the recent

high TFR (1.85 in 2006) values to be quite good predictors of comparatively

high fertility in the future, and other experts share this opinion.

Australian fertility has experienced important changes in the level and the

shape components throughout the long period starting in 1921. The trends

in beta series illustrates this fact (figure 3). Having reached a TFR of

3.0 during the early-1920s, Australian fertility was relatively low during the

1930s, falling to 2.1 children per woman in 1934. In 1961, it peaked at 3.5

children per woman. Since then, fertility has declined to 1.73 in 2001 (1.76

in 2002 and 1.75 in 2003). However, the quantum component β0(t) decreased

until the late eighties and has since increased. The low TFR values observed

since 1990 are again a consequence of tempo changes. The reverse effect is

observed in the period 1940-1960.

Australian fertility data from 1921 is available for analysis and the SS

model is fitted using three different base periods: 1921-2005,1955-2005 and

1975-2005. As in Sweden, small differences are observed in the future depend-

ing on the base period selected (figure 3). As current childbearing behavior
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is very different from that of women in the 1930s and data from 1955 gives us

a sufficiently large series and good estimators, we have selected this period as

the base period to get and interpret future fertility parameters. A behavior

similar to that of Sweden is predicted for future Australian fertility. The

TFR value will increase as a consequence of changes in the tempo component

up to 1.81 in 2020 (figure 3). Besides, it is known that the TFR has had

an upward trend, reaching 1.81 babies per woman in 2006. Hugo (2007), in

agreement with other experts, says that the most reasonable interpretation

of recent trends is that there is a degree of stability around 1.8 births per

woman. The forecasted values with the SS approach are also interpreted in

the same way.

Figures 4,5 and 6 show the forecast fertility curve along with 80% pre-

diction intervals for one step ahead and 2020 for the three countries under

study. The Spanish pattern is significatively different from the other two

countries for ages 15 to 30. This fact agrees with the hypothesis of several

experts that pronounced regional differences in European fertility are likely

to prevail.

4.2 A comparative study

Figures 7, 8 and 9 show the TFR forecasted values obtained with the SS, FD

and official forecasts. The FD approach has been implemented using k=6

basic functions and state space exponential smoothing time series models.

Different base periods going until 2005 for Spain and Sweden and 2003 in

Australia have been considered. The official forecasted values have been ob-

tained from data until 2004. To simplify the graphical representation we have

only drawn the series for the medium fertility assumptions. It is interesting

to note that the recent TFR values in the three countries are higher than
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those observed in 2004, being, 1.33(2004), 1.34(2005), 1.37(2006) in Spain,

1.75 (2004), 1.77(2005), 1.85 (2006) in Sweden, and, 1.76(2004), 1.77(2005),

1.81(2006) in Australia. According to this, the next official forecasts are

likely to be higher.

For the three countries and selected base periods of section 4.1, the SS

approach provided higher TFR forecasted values in 2020 than the official

forecasts, but close to them. In addition, the forecasted TFR for alternative

base periods are not far from each other in all the cases. On the other hand,

the FD approach also gives values close to official forecasts in the cases of

Sweden and Australia for selected periods (1921-2003 in Australia and 1955-

2005 in Sweden). However, the forecasted TFR for Spain are far from the

results obtained by either official or SS approaches and also the influence

of the base periods is stronger, as the forecasted TFR values from different

periods are far from each other. The choice of the base period has also

consequences for the predicted age patterns. Let us consider the example

of Australia. Figure 10 shows the forecast fertility schedules for 2020 using

data from periods 21-03 , 55-03 and 75-03. The differences in the FD forecast

patterns are stronger than those for the SS approach. Moreover, in the latter

case, the differences in the predicted slope for β1(t) explains the differences

in forecasting patterns. Those from the 75-03 and 55-03 data, where the

predicted slope of β1(t) is increasing, results in a pattern that corresponds

to an increasing trend in the mean age of fertility. Meanwhile, The one from

the 21-03 data, where the predicted slope of β1(t) is more or less constant,

results in a pattern that corresponds to no trend in the mean age of fertility.

Finally, in Table 1 we have included the SSE values, for 2003-2005 in

Spain and Sweden and for 2000-2003 in Australia, after the model is fitted,

reserving the last three years and Table 2 shows the results reserving five
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years for each country and period. The prediction capacity for the short term

across periods and countries is very high with both SS and FD approaches,

the SS being the best predictor in the cases where longer periods are used.

5 Conclusions

From a Statistical point of view the SS approach has the advantage that the

modeling and forecasting steps are done simultaneously and simple functional

expressions are used; the model permits the analysis of parity-age-specific

data or grouped data and the inclusion of covariables. From a demographic

point of view, a useful feature is that the most important parameters have

natural interpretations. In this paper, we have only begun to exploit these

possibilities by explaining past and future fertility and selecting the base

period.

We have focused in this paper on the comparison of the SS approach with

the FD approach from a statistical point of view. For some periods implau-

sible forecasts have arisen with the FD approach. In practice, such forecasts

would not be used, and the forecasting approach itself would be modified in

any one of the many available ways. However, a potential advantage of the

SS approach is that it seems to be less sensitive to the choice of the data

period.

To carry out the analysis we have used the SsfPack software by Koopman

et al (1998). The software can be obtained freely at http://www.ssfpack.com.

SsfPack is a suite of C routines for carrying out computations involving the

statistical analysis of univariate and multivariate models in state space form.

The full implemented link is Ox, which is an object-oriented statistical sys-

tem. We have prepared programs to analyse and forecast fertility using the
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logistic-SS models with this software framework (the sample programs and

our advisor are available by emailing us).
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Country and Period State-Space Funtional Data

75-00 Australia 0.000396 0.001264

55-00 Australia 0.000398 0.003290

21-00 Australia 0.000368 0.000528

71-02 Spain 0.000220 0.000166

75-02 Sweden 0.000801 0.000702

55-02 Sweden 0.000726 0.002067

Table 1: Prediction capacity of SS and FD approaches. SSE for the last three

years

Country and Period State-Space Funtional Data

75-98 Australia 0.00084921 0.00186771

55-98 Australia 0.00107156 0.0179468

21-98 Australia 0.00108486 0.00127282

71-00 Spain 0.00625957 0.00296848

75-00 Sweden 0.00621306 0.00611426

55-00 Sweden 0.00653331 0.00921913

Table 2: Prediction capacity of SS and FD approaches. SSE for the last five

years
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Figure 1: Spain: SS beta series.Observed and predicted TFR values.
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Figure 2: Sweden: SS beta series.Observed and predicted TFR values.
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Figure 3: Australia: SS beta series.Observed and predicted TFR values.
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Figure 4: Spain: Forecast fertility rates for 2006 and 2020, along with 80%

prediction intervals.
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Figure 5: Sweden: Forecast fertility rates for 2006 and 2020, along with 80%

prediction intervals.
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Figure 6: Australia: Forecast fertility rates for 2004 and 2020, along with

80% prediction intervals.
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Figure 7: Spain: SS, FD and official Forecast from Eurostat and INE (Span-

ish Statistical National Institute) of TFR for 2006-2020
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Figure 8: Sweden: SS, FD and official Forecast from Eurostat of TFR for

2006-2020. Using different base periods.
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Figure 9: Australia: SS, FD and official Forecast from Australian Bureau of

Statistics (ABS) of TFR for 2006-2020. Using different base periods.
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Figure 10: Australia: SS, FD Forecasts for 2020 using different base periods.


