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Early Fault Detection in Induction Motors Using
AdaBoost With Imbalanced Small Data and

Optimized Sampling
Ignacio Martin-Diaz, Student Member, IEEE, Daniel Morinigo-Sotelo, Member, IEEE, Oscar Duque-Perez,

and Rene de J. Romero-Troncoso, Senior Member, IEEE

Abstract—Intelligent fault detection in induction motors (IMs) 
is a widely studied research topic. Various artificial-intelligence-
based approaches have been proposed to deal with a large amount 
of data obtained from destructive laboratory testing. However, in 
real applications, such volume of data is not always available due 
to the effort required in obtaining the predictors for classifying 
the faults. Therefore, in realistic scenarios, it is necessary to cope 
with the small-data problem, as it is known in the literature. Fault-
related instances along with healthy state observations obtained 
from the IM compose datasets that are usually imbalanced, where 
the number of instances classified as the faulty class (minority) 
is much lower than those classified under the healthy class (ma-
jority). This paper presents a novel supervised classification ap-
proach for IM faults based on the adaptive boosting algorithm 
with an optimized sampling technique that deals with the imbal-
anced experimental dataset. The stator current signal is used to 
compose a dataset with features both from the time domain and 
from the frequency domain. The experimental results demonstrate 
that the proposed approach achieves higher performance metrics 
than others classifiers used in this field for the incipient detection 
and classification of faults in IM.

Index Terms—Classification algorithms, condition monitoring, 
data analysis, fault diagnosis, induction motors (IMs), rotors, sam-
pling methods.
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NOMENCLATURE

ANFIS Adaptive neuro-fuzzy inference system.
CBM Condition-based monitoring.
CV Cross Validation.
DT Decision Tree.
FDD Fault detection and diagnosis.
FN False Negative.
FP False Positive.
fLSH Frequency of the left sideband harmonic.
fRSH Frequency of the right sideband harmonic.
f1 Feeding frequency.

IM Induction motor.
NB Naive Bayes.
RMS Root Mean Square.
S Induction motor slip.
TN True Negative.
TP True Positive.
VSI Voltage Source Inverter.

I. INTRODUCTION

E LECTRIC motors are the most employed electromechani-
cal equipment in industry these days, especially induction

motors (IMs) due to their reliability, low cost, and robustness.
Consequently, their usage requires condition-based monitoring
(CBM) to minimize the costs originated by unexpected faults
that cause production loss [1]. One of the benefits of predictive
maintenance is the reduced risk of forced outages, and it permits
the scheduling and prioritization on the rotary machines inspec-
tion in large industries [2]. The monitoring of electric signals
has several advantages, such as remote sensing, low implemen-
tation cost, online monitoring, etc. In industrial applications, it
is usual that motors with frequent starts or large load variations
due to thermal gradients and large thermo-mechanical stress
suffer rotor cage failures. This, normally in its incipient phase,
causes cracks in the joint of bar and end ring [2]. Therefore, it
is relevant to appreciate the characteristic changes produced in
the previous stages to the fully broken bar.

Fault detection and diagnosis (FDD) systems can be con-
ceived from two perspectives: model-based methods and data-
driven methods. The former gives good results for well-
controlled environments whereas the latter offers a powerful
mean to extract useful information for the design of motor mon-
itoring systems as those based on the motor current signature



analysis (MCSA) [3]. MCSA can extract practical information
at an early stage to avoid subsequent catastrophic failures. This
technique has advantages over the vibration analysis for the
difficulty to quantify the rotor severities due to the different
mechanical stiffness between the electromagnetic forces by
damaged bars and the location of vibration sensors [4].

Nowadays, with the increasing use of ac drives in industries,
the CBM and FDD strategies demand intelligent monitoring
techniques to take advantage of the easily acquired data [5], [6].
Most of the recent monitoring algorithms are computationally
efficient and can be developed on hardware to diagnose multiple
IM faults or also discriminate among different types of faults
[7], [8]. Thus, the artificial-intelligence-based techniques are
currently supplanting the conventional knowledge since these
may be demanded to automate IM diagnostic procedures. More-
over, the supervised scheme permits us, by training a classifier
with an appropriate number of observations, to generate enough
knowledge to identify an incorrect behavior of the squirrel-cage
rotor.

Diagnosis of broken bars is a mature research field where
many contributions have been presented. Saidi et al. [9] pro-
pose two higher order spectra techniques showing that bispec-
trum patterns can lead to better results than those obtained by the
power spectrum. In [10], Soualhi et al. deal with the difficulty
of the influence of frequency converters which introduce unde-
sirable harmonics. It produces a distorted stator current signal
that complicates the feature extraction, and therefore the diag-
nosis. They suggest an approach based on signal processing and
an unsupervised classification technique (artificial ant cluster-
ing). By contrast, in [8], an automatic decision-based structure
is designed for the detection of broken rotor bars and broken
end rings in three-phase squirrel cage IMs. This approach con-
sists of a neural network for the classification of rotor faults
where the accuracy metric is employed to analyze the perfor-
mance. Following the idea of these biological-inspired models,
Ghate and Dudul [11] develop a radial-basis function multi-
layer perceptron with a cascade connection for the detection of
small- and medium-size IM considering different simultaneous
faults. Other studies deal with the broadly used support vector
machines with similar purposes [12]. This classifier has been
demonstrated to have proper generalization capability, and it
has shown good performance for separable and nonseparable
data using appropriate kernels. Furthermore, there are studies
which combine a set of fuzzy if–then rules that have the skill to
approximate nonlinear functions, and decision trees to elaborate
models of induction rules from empirical data. Tran et al. [13]
propose a two sequential step approach. First, a decision-tree-
based method is utilized for feature selection. Second, the pre-
viously obtained crisp rules are converted to fuzzy rules to find
the structure of adaptive neuro-fuzzy inference system (ANFIS)
classifier. The dataset is constructed with vibration and current
signals. Lei et al. [7] also apply an ANFIS-based system to
diagnose faults of rolling element bearings. It shows a good
generalization, and the accuracy metric is used to measure the
classifier’s performance.

It has to be taken into account that the motor runs actually in
its usual healthy condition. Therefore, when an incipient fault
occurs, the classifier has to deal with an imbalanced dataset,

that is, the number of available instances of the healthy class
outnumbers the ones related to the faulty class. Additionally,
the available amount of data from the faulty class is limited.
However, as far as the authors’ knowledge, there are no pub-
lished studies for the diagnosis of IM faults on imbalanced
datasets and much less considering a limited number of faulty
tests. Accordingly, there is a necessity to develop a classifier
that takes into account this imbalanced small data distribution.

An adaptive boosting (Adaboost) classifier can deal with this
imbalanced dataset situation, and it is presented for construct-
ing a stronger decision-based approach using weak learning
algorithms. The AdaBoost algorithm has resulted in a promis-
ing way to classify imbalanced datasets in other research fields
[14], [15]. This ensemble consists of reweighting a training
set to improve the results of classification, which is based on
a weighted vote from a linear combination of the weak clas-
sifiers. Imbalanced datasets do not have enough faulty class
observations, and hence, additional approaches are required be-
yond those algorithm level-based ones. Sampling techniques
(data level approaches) add a preprocessing step where the data
distribution is rebalanced to decrease the effect in the learning
process of the underrepresented faulty class distribution [16].
Some of these techniques are undersampling, oversampling, or
the method known as synthetic minority oversampling technique
(SMOTE) [17]. For this reason, Adaboost, in conjunction with a
sampling technique, provides an adequate classification scheme
to deal with the aforementioned fault diagnosis scenario.

This paper presents the development of an efficient classifica-
tion ensemble, applicable for scenarios that combine an online
monitoring with a following diagnosis stage. During experi-
mentation, destructive tests are carried out for different rotor
severities in an IM that is fed from an inverter and the line. The
information from the current signal is reduced into useful knowl-
edge that leads to the collection of representative features about
the motor condition. Various statistical and frequency-domain
parameters are used to handle the problem at steady state. The
combined approach is formed by an optimized sampling proce-
dure and an Adaboost algorithm for the diagnosis of IM faults.
The fault classification is improved in terms of generalization
when limited data are used for the training period, which also
ends with satisfying results for imbalanced sets. The experi-
mental results show the classifier performance under balanced
and imbalanced situations, with and without the sampling tech-
nique SMOTE. Finally, the outcomes obtained per rotor fault
severity are compared with state-of-the-art algorithms by using
appropriate metrics. It is expected to achieve an improvement
in performance to illustrate the suitability and effectiveness of
this contribution.

II. FAULT DIAGNOSIS FEATURES EXTRACTION

The AdaBoost-based proposed classification scheme is sum-
marized in Fig. 1. First, considering the MCSA technique, the
data are acquired from the stator current of the machine during
a steady-state regime. Next, important features are computed
using the signal information of one-phase stator current in both
time and frequency domain by developing a convenient prepro-
cessing stage. Once a collection of appropriate variables is ob-



Fig. 1. Proposed classification scheme.

Fig. 2. Feature selection flowchart.

tained (see Fig. 2), a feature selection method is used to choose
the most pertinent features, which is detailed in Section IV-B.
Then, the data are divided into training and testing sets to cal-
ibrate the algorithm parameters. This process finishes once the
optimal parameters are chosen according to the maximum num-
ber of successes (faults detected) by a cross-validation method.
For the sake of comparative reasons, this strategy is applied to
several datasets depending on the imbalanced ratio (IR) and on
the size of the dataset. With the help of proper evaluation met-
rics, the results for every case are presented in the corresponding
section.

The diagnosis system uses time-domain statistical features,
along with others from the frequency domain, that have been
suggested as meaningful input data for diagnosis objectives [11],
[18]. Some of the higher order statistical (HOS) parameters
have the property of being sensitive to non-Gaussian distributed
measurements. Nevertheless, the lower-order statistics, those
that use from constant to quadratic terms (e.g.. first and second
moments) are significantly more robust. Particularly, this study
focuses on statistics calculated from the discrete current signal
during a constant load condition. As it can be seen in Fig. 2,
the set of statistics includes from the first moment (mean) to
the fourth, the first four cumulants, the absolute mean, the crest
factor, etc. Also, there are HOS measures such as skewness and
kurtosis, which use the third or higher power of the discrete
sample. The kurtosis tries to reveal the proportion of variance
explained by the extreme data combination with regard to the

mean, in contrast to those much less deviated from the mean. On
the other hand, the skewness measures the degree of asymmetry
from the probability distribution of the current values about its
mean.

Additionally, the frequency-domain predictors can be ob-
tained due to the appearance of the sidebands around the main
supplying frequency harmonic because of rotor asymmetries
[19]. For instance, when an incipient rotor-bar breakage devel-
ops, a resultant backward rotating field appears at a slip fre-
quency with respect to the forward rotating rotor. This opposite
rotating field induces a voltage and a current in the stator wind-
ing at characteristic frequencies. This induced current causes
torque and speed pulsations until two sidebands around the fun-
damental frequency emerge in the frequency spectrum [19]. For
this reason, the amplitude of these sidebands is considered as a
fault severity indicator on the rotor. There are more sidebands
that also appear around some higher order harmonics [20]. How-
ever, for the purposes of this study, the left-side harmonic (fLSH )
and the right-side harmonic (fRSH ) around the fundamental fre-
quency are enough for their usage as BRBindicators [19], whose
expressions are, respectively, presented as

fLSH = (1 − 2s)f1 (1)

fRSH = (1 + 2s)f1 . (2)

The damaged rotor bars do not cause immediate failures of
an IM. Nonetheless, its unpredictable failure evolution may pro-
voke future catastrophic failures to any internal motor parts. This
is critical for large industrial motors where a timely detection of
the rotor fault can avoid catastrophic consequences.

III. PROPOSED CLASSIFICATION APPROACH

Imbalanced datasets are becoming more and more common
in real-industry applications leading to machine learning (ML)
classifiers far from optimal performance. In addition, when the
available data is small, overfitting becomes almost unavoid-
able, and the noise, together with outliers, turns into a patent
concern. Researchers have studied carefully how to deal with
this problem through feature-selection strategies from the root
(level data) to approaches to the algorithm level [17]. There
is no systematic way to either address the problem of imbal-
ance classes or well-defined methods that assist in the choice
of the strategy to follow under the challenging conditions of
limited samples. For this reason, the use of an appropriate clas-
sifier results in one of the fundamental points for the diagno-
sis stage design. In this paper, AdaBoost is used to enhance
generalization, and a cross-validation method aims to reduce
the data variability during the fitting phase. This section intro-
duces an attempt to face this imbalanced small data classifica-
tion problem. The overview of the proposed methodology can
be seen in Fig. 3. First, a sampling technique to rebalance an
initial dataset is presented. Then, a cross-validation technique
for assessing the generalization of the results from a statistical
perspective is applied. Finally, a novel algorithm for the diag-
nosis of IM faults is described to deal with the issue already
presented.



Fig. 3. Proposed methodology for the diagnosis of incipient rotor-bar
breakage.

A. Sampling Techniques

Various groups of techniques have been introduced to address
the problem of imbalanced classification in which the number
of observations of one class is much larger than those from the
minority class (faulty observations). Many different approaches
have been proposed to solve this problem in other fields, and
the literature is extensive in this sense [21]. One of the main-
stream methods is based on sampling, where the objective is
to sample a balanced training set from an original imbalanced
dataset [16], [21]. These methods are based on either undersam-
pling or oversampling of one class in a random manner [16].
The random sampling has some disadvantages that may sup-
pose a worsening of the diagnosis. On one hand, undersampling
techniques lose valuable information obtained during the data
acquisition phase, possibly useful for the classifier induction.
On the other hand, oversampling techniques made literal copies
of the minority class observations what may lead to the clas-
sifier incurring in overfitting [21]; that is, for instance, when
either a rule-based or a decision-tree-based classifier is built
seemingly accurately, whereas it is actually concealing a repli-
cated instance. Similarly, there is a method known as SMOTE
[17], which combines the oversampling of the unusual (mi-
nority) class with the undersampling of the normal (majority)
class through the synthetic generation of additional examples.
With all of this in mind, an approach to the construction of IM-
supervised classifiers from imbalanced datasets to broaden the
decision regions of the faulty rotor state can be considered. For
this purpose, the implementation of SMOTE for a real dataset
formed by processed laboratory tests is approached in following
sections. This algorithm, proposed in [17], consists in an over-
sampling of the minority class by creating synthetic instances
avoiding to duplicate known faulty observations. SMOTE is
motivated by a technique that demonstrated to be successful in
other fields as, for example, handwritten character recognition
[22]. However, with this technique, the synthetic observations
are produced in the predictor space rather than with the pri-
mary data. The faulty instances are oversampled by taking each
faulty tuple of predictors with its respective target variable and
introducing synthetic examples along the line segments joining
any or all of the k-nearest neighbors from the faulty class. The

number of k-nearest neighbors is optimized according to the
number of detected faults by the classifier in question, and it de-
pends on the amount of oversampling required. The generation
of synthetic additional samples follows these steps.

1) Compute the difference between the faulty sample (vec-
tor of predictors) under consideration and its k-nearest
neighbors of the same class. For categorical features, the
majority vote procedure is chosen to assign the values.

2) Multiply this value by a random number in the range (0,1),
and add it to the feature vector previously examined.

This procedure causes the selection of a random point along
the line segment between two specific feature vectors and thus,
it creates a synthetic group of new samples. The algorithm effec-
tively forces the decision region of the faulty class to become
more general, within a coherent margin. The pseudo-code of
the SMOTE algorithm can be consulted in the original arti-
cle [17]. The synthetic samples cause the classifier to create
larger and less specific decision regions, rather than smaller
and more specific regions. Consequently, the learning algorithm
can be trained with more number of fault-related observations
by means of synthetic instances generation, regarding the case
where healthy class observations outnumber the faulty ones un-
der an imbalanced scenario.

B. Adaptive Boosting

Classifier ensemble learning consists basically in constructing
multiple classifiers from an original data distribution and, after
collecting each classifier prediction, deciding the label of the
unknown samples based on a consensus rule (usually majority
voting). Consequently, by using redundant ensembles, the gen-
eralization ability is enhanced because each base classifier does
not commit the same errors on a limited training set to which
it is fitted. This fact allows learning different patterns by each
classifier. The AdaBoost algorithm was proposed as a boosting
algorithm by Freund and Schapire [23]. The main concern re-
lated to ML classifiers is to achieve a reasonable bias-variance
tradeoff from a statistical point of view. The bias reveals the clas-
sifier ability to generalize correctly to a testing set, whereas the
variance expresses the sensitivity of the classifier prediction due
to the training data. Generally speaking, boosting combinations
usually have resulted in being useful for the variance reduction
owing to the averaging by the ensemble, which in turn indicates
a decrement of overfitting. AdaBoost is also recognized for
achieving a meaningful reduction in bias as well. The justifica-
tion is because weak base learners can predict slightly better than
random guessing without fitting excessively [23]. Hence, there
is a statistical reasoning behind it, which makes it suitable rather
than standard learning methods that perform vaguely on the mi-
nority class. The core concept is based on weak classifiers focus-
ing their efforts on those instances misclassified previously. The
AdaBoost algorithm samples sequentially with replacement, by
taking the sample importance into account and prioritizing those
that are most often misclassified by the preceding classifiers
on previous rounds. That is, AdaBoost initially chooses every
sample with equal probability. In each iteration, a new weak
learner is added to the ensemble and a weighting vector adjusts



Fig. 4. AdaBoost algorithm (pseudocode).

Fig. 5. Experimental setup and diferent rotor conditions.

adaptively to the errors of the weak classifiers to later update
the probability distribution. A sample that is correctly classified
receives a lower probability to be drawn in the next iteration,
and a misclassified sample receives a higher probability. The
pseudocode of the AdaBoost algorithm is shown in Fig. 4.

IV. FAULT CLASSIFICATION WITH ADABOOST

A. Laboratory Setup and Data Description

A layout of the laboratory setup can be seen in Fig. 5. An IM,
star connected and fed both directly from the line and an inverter
supply is tested in a laboratory to collect data for this study. The
motor and the inverter have the specifications shown in the
Appendix. The motor is loaded with a magnetic powder brake
and tested under two load conditions. The operating frequency
is 50 Hz. The stator current is acquired by a Hall-Effect current
transducer by LEM. A National Instruments NI cDAQ-9174
base platform with an NI 9215 acquisition module is used for
data acquisition with a sampling frequency of 80 kHz and a
sampling time of 10 s. The motor is tested first under healthy
conditions (R1). Fault conditions are produced by drilling a
hole in one of the rotor bars. An incipient fault is obtained by

TABLE I
DESCRIPTIONS OF THE IMBALANCED DATASETS

Label of classification Condition IR Number of samples

R1 Healthy 1, 2, 5, 10 60 (IR = 1), 120 otherwise
R2 Slightly BRB 1, 2, 5, 10 60, 60, 24, 12
R3 Half-BRB 1, 2, 5, 10 60, 60, 24, 12
R4 Thinner BRB 1, 2, 5, 10 60, 60, 24, 12
R5 Thicker BRB 1, 2, 5, 10 60, 60, 24, 12

drilling a 4.2-mm hole with a diameter of 2.5 mm in one of
the bars (R2). Next, a partially broken bar was produced with
a depth hole of 9.4 mm and the same diameter (R3). Then, a
more developed bar breakage (R4) was achieved by drilling an
18 mm hole with the diameter unchanged. Finally, the R4 hole
diameter is widened to 3.5 mm to attain the last severity (R5).
The datasets formed according to a particular IR and the already
explained rotor severities (also considering the number of tests
per case), are presented in Table I. The IR of a dataset [16]
is defined as the number of healthy class observations divided
by the number of faulty cases of each rotor condition. The IRs
considered in this study are 1, 2, 5, and 10, forming binary
sets for the target variable (rotor condition). The healthy class
is always present in the mentioned sets. This selection of IR
serves to analyze the influence of the level of imbalance under
this particular small data problem. The IR chosen is influenced
by the available observations obtained from the experimental
setup.

B. Feature Selection From the Initial Variables

Feature selection (or variable selection) is a useful step in a
diagnosis methodology. It serves basically to remove irrelevant
variables to the classification stage. The benefits of variable
selection procedures are three-fold: increasing the prediction
performance of the variables, providing faster and less costly
predictors, and sometimes it helps to better understand the un-
derlying process of the bar breakage in the diagnosis of IM.
Thus, a filter method, known as correlation analysis [24], is
considered. First, the correlation matrix of all variables is con-
structed. Then, the highly correlated attributes (with a cutoff of
0.8) are eliminated, as it can be seen in Fig. 2. It has been ob-
served that different features are selected in this stage depending
on the dataset under study. The common features chosen for all
cases are shown in Fig. 2 and these are the variables used to
train the classifiers.

C. Optimized Sampling for Small Imbalanced Data

According to the procedure explained in Section III, the
SMOTE sampling technique is applied to various imbalanced
datasets with different IR, as it is described in Table I. The tuning
parameters of this technique are the number of nearest neighbors
and the number of randomly generated faulty samples. The first
is optimized using a cross-validation procedure regarding the
faulty cases detected once a balanced dataset is achieved with
SMOTE. The second depends on the number of faulty synthetic
instances required to balance the dataset, which depends on the



Fig. 6. 2-D scatterplot of imbalanced sets, IR = 2 (left) and the SMOTEd set
(right), for (a) R1 and R3 observations, and (b) R1 and R4 observations.

size of the dataset under consideration. In this study, three sizes
of datasets per each IR are considered (see Table I). The best
results are obtained for one nearest neighbor on all cases. The
2-D scatterplots for R3 and R4 against R1 (healthy) conditions
are presented in Fig. 6 before and after applying the introduced
technique. Only the left-side harmonic amplitude versus the slip
are plotted for clarity reasons.

D. AdaBoost Tuning

As it is described in previous sections, AdaBoost is relatively
flexible (it can be combined with any learning algorithm) and it
is simpler and easier to program than other state-of-the-art al-
gorithms. Also, it has the advantage that no prior knowledge is
required about the weak classifier, and it can provide consistent
rules of thumb for both binary and multiclass problems. For the
latter, the proposed version is known as AdaBoost.M1 [23]. But
there is a rule for the error committed by each weak classifier,
εt , which must be less than one-half to update the weights of the
training samples α, in the right direction. The AdaBoost tuning

parameters have been chosen following the criterion based on
the detected faulty cases rate, that is, according to the number
of faults detected by the classifier and not by the number of
correct answers on all classes. For this classifier, the tuning pa-
rameters are the following: the number of trees that compose the
ensemble, the maximum tree depth and the learning coefficient
type (Breiman or Freund). Each learning coefficient updates the
weights of the training sample α, differently:

• Breiman : α =
1
2

ln
(1 − εt)

εt
(3)

• Freund : α = ln
(1 − εt)

εt
. (4)

During the tuning phase, the most outstanding weak classifier
turns out to be the decision tree (CART algorithm). A CART
tree is a binary decision tree built by splitting a root node (that
contains the variables whole information) into two child nodes,
making a recursive partition of the instance space. In the CART
algorithm [25], each split depends on the value of only one
variable. The growing procedure consists basically in ascertain-
ing each predictor’s best split in a stepwise manner toward the
following nodes. It must be choose those splits that maximize
the Gini Impurity criterion, which is a standard decision-tree
splitting metric. Thus, the node must be split using its best split
found previously. The algorithm ends once the stopping rules
are reached. Each leaf is assigned to a unique class label (ro-
tor condition). Alternatively, the leaf may hold a probability
vector indicating the probability of the target attribute having
a certain value. Instances are classified by passing them from
the root of the tree down to a decision node, according to the
outcome of the along the path rules. For the data under con-
sideration, the remaining tuning parameters that get the best
AdaBoost performance are a maximum depth of five trees and
the Breiman learning coefficient. The training and testing error
(by 5-repeated-10-fold CV) evolution of the AdaBoost classifier
shows that an acceptable performance can be appreciated when
approximately 75 trees are reached for the imbalanced case, but
this number is lower for the SMOTEd set. For this reason, a
suitable number of trees to build the ensemble are 100 and 50
for the imbalanced conditions and the SMOTE-sampled data,
respectively.

V. RESULTS

This section presents the classification results obtained for
the experimental data presented earlier. In order to demonstrate
the effectiveness of the intended scheme for diagnosis purposes,
an AdaBoost performance comparison study, under imbalanced
and balanced conditions, is shown. Therefore, under an imbal-
anced scenario, a satisfying performance of the sampling tech-
nique can be determinant to deliver a proper distribution of the
provided data to the classifier. Then, the strength of AdaBoost
compared with other state-of-the-art algorithms for classifying
the previous rotor bar severities is evaluated. The classifiers are
implemented in the statistical computing environment known
as R, [26]. For these purposes, the one-against-one (OAO) and
the one-against-all (OAA) approaches for a binary problem are



regarded. These approaches are chosen because of the progres-
sive nature of the rotor-bar breakage, where the classes of the
target variable come from the same type of fault unlike for
example, faults in bearings.

A. Performance Analysis of the Proposed Approach.

The arrangement of the training and testing sets are realized
according to a 5-repeated-10 cross-validation method [27], [28],
as it is shown in Fig. 3. To observe the adequate performance
of the proposed approach, first, the suitability of the sampling
technique should be verified. The accuracy measure does not
allow a correct interpretation of the classifier performance with
each class taken into account, which it is an important fact when
discriminating among different severity degrees. In this sense,
the use of additional performance metrics is required [29], [30]
to appreciate the differences among various classifiers for every
damaged rotor condition, and under imbalanced conditions. The
scores used are the following:

Recall =
TP

(TP + FN)
(5)

Precision =
TP

(TP − FP)
(6)

Specificity =
TN

(TN + FP)
(7)

Accuracy =
FP + FN

(TP + TN + FP + FN)
. (8)

Accuracy gives a value related to the overall behavior of the
algorithm on all rotor states. Recall (also known as sensitivity
in the medical field) and Precision provide more precise infor-
mation about the classifier performance on the class of interest
(faulty rotor). Furthermore, the specificity, also known as true
negative rate is necessary to introduce later the ROC curve. In
this case, a multiclassification approach is considered, and the
classifier is trained with instances from all classes (from R1 to
R5). By using SMOTE, the original class distribution is altered
due to the additional generation of synthetic examples. With
this balancing technique, an increase in the number of faulty
instances correctly classified has been observed, as can be seen
in Table II. Table II shows the Confusion Matrix (in percentage)
and its derived scores for the AdaBoost classifier without and
with the SMOTE application for an IR = 2, separated by semi-
colons, respectively. The Recall and Precision scores are used
to analyze the classification performance on the faulty obser-
vations. In the first case (AdaBoost without applying SMOTE),
poorer results for the R2 severity degree are found. However,
when the SMOTE algorithm is used to obtain a balanced set,
the classifier performance is quantitatively improved concerning
this rotor fault severity, R2.

B. OAO Performance Evaluation

As ML algorithms are becoming common as IM diagnosis
tools, there is a need to evaluate the performance of algorithms
varying in complexity. In this study, the performance metrics
mentioned earlier will be used on different fault scenarios, and

TABLE II
CONFUSION MATRIX AND PERFORMANCE METRICS FOR THE MULTICLASS

CASE WITH ADABOOST: IR = 2 AND SMOTE (IR = 1)

Predicted rotor state (%) Actual rotor state (%)
(IMBALANCED DATA WITH IR = 2; SMOTED DATA)

R1 R2 R3 R4 R5

R1 30.3;16.9 4.2;3.3 0.0; 0.0 0.7;0.8 0.0;0.0
R2 2.7;2.5 12.5;16.7 0.3;0.3 0.0;0.1 0.0;0.0
R3 0.3;0.1 0.0;0.0 16.3;19.7 0.0;0.0 0.0;0.0
R4 0.0;0.2 0.0;0.0 0.00;0.00 15.9;19.1 0.4;0.3
R5 0.0;0.0 0.0;0.0 0.0;0.0 0.0;0.0 16.3;19.7

Scores by class

Recall 0.91;0.86 0.75;0.83 0.98;0.98 0.96;0.95 0.98;0.98
Precision 0.86;0.80 0.81;0.85 0.98;0.99 0.97;0.97 1.00;1.00

TABLE III
PERFORMANCE METRICS FOR THE IMBALANCED PROBLEM WITHOUT

OPTIMIZED SAMPLING WITH THE THREE CLASSIFIERS

Target severity IR Classifier Accuracy Precision Recall

R2 10 NB 0.8091 0.0000 0.0000
DT (CART) 0.9076 0.3333 0.0167
AdaBoost 0.9561 1.0000 0.5167

5 NB 0.7681 0.2762 0.2417
DT (CART) 0.8472 0.5472 0.4833
AdaBoost 0.9514 0.9885 0.7167

2 NB 0.6078 0.3801 0.2800
DT (CART) 0.8167 0.7491 0.6767
AdaBoost 0.9811 0.9863 0.9567

R3 10 NB 0.9470 0.6923 0.7500
DT (CART) 0.9712 0.8475 0.8333
AdaBoost 0.9864 1.0000 0.8500

5 NB 0.9194 0.6987 0.9083
DT (CART) 0.9750 0.9554 0.8917
AdaBoost 0.9917 1.0000 0.9500

2 NB 0.9078 0.8182 0.9300
DT (CART) 0.9433 0.9136 0.9167
AdaBoost 0.9989 1.0000 0.9967

Dataset size (120/12), (120/24), and (120/60) for IR = 10, IR = 5, and
IR = 2, respectively.

using the same datasets, to compareAdaBoost against two other
ML models. Their fitted parameters and most relevant charac-
teristics are chosen according to the most successful detection
rate achieved through the CV procedure. To provide a detailed
explanation (but not excessively extensive) of the classifiers be-
havior, an individual comparison for R2 and R3 rotor severities
is presented in Tables III and IV. The R1 state (healthy rotor)
versus R2 (slightly BRB) and R3 (half-BRB) classification re-
sults are analyzed for the following classifiers: Naı̈ve Bayes,
Decision Tree, and AdaBoost. In Table III, performance metrics
for the imbalanced problem without optimized sampling with
the three classifiers under different IR is presented. Analyzing
the R2 case, AdaBoost shows a better performance compared to
the rest. However, as the IR increases, its results turn out poorer.
This outcome applies equally to the other two classifiers. It is
also interesting to analyze the Accuracy values and observe how
misleading this score can be. The Naive Bayes (NB) classifica-
tion results with an IR = 10 are a good example because there
is not a single faulty instance correctly classified (value of zero



TABLE IV
PERFORMANCE METRICS FOR SMOTED DATASETS WITH THE

THREE CLASSIFIERS

Target severity IR Classifier Accuracy Precision Recall

R2 10 NB 0.7150 0.6949 0.7667
DT (CART) 0.9208 0.9014 0.9450
AdaBoost 0.9967 0.9934 1.0000

5 NB 0.6483 0.6440 0.6633
DT (CART) 0.8642 0.8519 0.8817
AdaBoost 0.9975 0.9950 1.0000

R3 10 NB 0.9233 0.9364 0.9083
DT (CART) 0.9550 0.9723 0.9367
AdaBoost 1.0000 1.0000 1.0000

5 NB 0.9442 0.9540 0.9333
DT (CART) 0.9508 0.9640 0.9367
AdaBoost 1.0000 1.0000 1.0000

Dataset size (120/12) and (120/24) for IR = 10 and IR = 5, respectively.

TABLE V
PERFORMANCE METRICS FOR SMOTED DATASETS WITH THE THREE

CLASSIFIERS FOR DIFFERENT SIZES OF THE DATASET

Target severity IR Size (H/F) Classifier Precision Recall

R2 10 120/12 NB 0.6949 0.7667
DT (CART) 0.9014 0.9450
AdaBoost 0.9934 1.0000

60/6 NB 0.8328 0.8967
DT (CART) 0.8036 0.8867
AdaBoost 0.9967 0.9967

30/3 NB 1.0000 1.0000
DT (CART) 0.9571 0.8933
AdaBoost 1.0000 1.0000

5 120/24 NB 0.6440 0.6633
DT (CART) 0.8519 0.8817
AdaBoost 0.9950 1.0000

60/12 NB 0.6174 0.7100
DT (CART) 0.8797 0.9267
AdaBoost 1.0000 0.9967

30/6 NB 0.9184 0.9000
DT (CART) 0.9032 0.9333
AdaBoost 1.0000 0.9867

for Precision and Recall scores). On the other hand, the classifi-
cation on R3 achieves better outcomes. In particular, AdaBoost
achieves remarkable Precision and Recall values. Finally, with
an IR = 2, which is not so severe, more optimistic results for
each classifier are shown clearly, as it was expected. Obviously,
those values are smaller for R2 due to the difficulty to obtain
discriminative differences with the predictor’s information.

Table IV shows the classification results after applying the
SMOTE technique. The performance seems considerably im-
proved for one classifier to another. However, it appears that a
high IR ( = 10) corrected with SMOTE better improves the NB
and CART classifiers for the R2 severity. But, the outcomes of
AdaBoost do not vary too much. Regarding the R3 fault severity,
while AdaBoost classifies correctly all instances belonging to
this class, NB and Decision Tree (DT) (CART) produce worse
results as the IR increases from 5 to 10.

The final analysis, summarized in Table V, tries to study
the effect on the classification performance of the size of the
dataset, according to each IR. This study is focused on the in-
cipient fault detection, that is, only the R2 severity is considered.

Fig. 7. ROC curves: Classifier comparison after applying SMOTE sampling
for the literature classifiers and the proposed AdaBoost ensemble for an
IR = 10.

The AdaBoost results suffer slightly differences for the metrics
presented for each dataset size. However, it seems a priori that
the dataset size is not determinant to ensure good results for the
same IR. The reduction of instances to obtain smaller datasets is
done randomly. For this reason, the performance results, which
are influenced by the most complicated instances to classify,
depend possibly on their presence in the final training set. How-
ever, AdaBoost is not so negatively affected, unlike the NB and
DT (CART) classifiers, as their performance evaluation demon-
strate. It has been observed that their scores vary in a small range
without an identified pattern.

C. OAA Performance Evaluation

The ROC curves are one of the most recurrent performance
measures because of the graphical information that can be ob-
tained about the classifier behavior. In the ROC space, the true
positive rate (TPR, sometimes referred to as sensitivity or Re-
call) is graphed as a function of the false positive rate (FPR,
which equates to 1-Specificity) for different cutoff points of a
varying threshold [31]. From the ROC curves, several claims can
be gleaned. The closer the curve is to the upper left-hand border
of the ROC space, the more accurate the classifier is considered.
However, if the curve comes close to the space diagonal, it rep-
resents a less accurate classifier. Hence, the area under the curve
is also a measure of accuracy. This curve has been demonstrated
to be useful to evaluate classifier performances [27]. In order to
analyze the OAA case (healthy observations against the whole
set of faulty rotor states), a SMOTEd dataset with an IR of 10
is used. Different ROC curves, shown in Fig. 7, are obtained for
each classifier. AdaBoost seems to have better performance than
others because its ROC curve is graphed closer to the optimal
point in the ROC space. It is obvious that all curves are different
and that the AdaBoost algorithm outperforms the rest.

In summary, Fig. 7 shows how well each classifier can per-
form in a generic context where the faulty observations are



TABLE VI
SPECIFICATIONS OF THE IM USED

Manufacturer Siemens

Rated power 0.75 kW
Rated voltage 400 V
Rotor type Squirrel cage
Rated current: 1.9 A
Number of pole pairs 2
Rated speed 1395 R/min

TABLE VII
SPECIFICATIONS OF THE INVERTER

Manufacturer ABB

Model ACS355
Control Mode V/f linear
Power range 0.37 to 4 kW

all considered equally important. However, the OAO analysis
demonstrated the differences when discriminating among rotor
severities. Finally, the use of SMOTE under imbalanced sce-
narios has shown important results to deal with classification of
faults in IMs.

VI. CONCLUSION

A novel approach for imbalanced dataset where the IM
healthy observations outnumber those of fault related is pre-
sented. The proposed application, based on the AdaBoost al-
gorithm, improves the predictive accuracy of classifiers by fo-
cusing on difficult observations that belong to the faulty class.
Provided that it is still unclear which sampling method per-
forms best, or what sampling rate should be used, one con-
clusion is that the SMOTE technique improves the classifier
performance once the faulty cases increase their representation.
The AdaBoost classifier seems a promising approach to deal
with imbalanced datasets. The combined use of SMOTE and
Adaboost has demonstrated that, in presence of varying sizes
of the dataset (for the same IR) and under different number of
IRs, it still presents stable results. However, there are still some
issues for improvement as for instance, what the most repre-
sentative IR is and which features should perform best. In this
paper, a filter method for the feature selection is used due to
the small set of observations available. However, decision tree-
based methods intrinsically perform variable selection to build
its set of rules. Under a common framework of experiments, the
results indicate that the proposed classification approach results
in a better prediction of the faulty class than others classifiers
presented in recent literature. The dataset obtained from the ex-
periments contained different intermediate severities previous
to a full BRB, which provides accurate diagnosis for incipient
rotor faults detection of IM. Finally, future research is needed to
address its least explored points, particularly when other com-
petitive predictors are applied within the IM fault diagnosis field.

APPENDIX

NAMEPLATE DATA OF THE IM

See Tables VI and VII, shown at the top of the page.
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