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Resumen

Durante la dltima década, el desarrollo de procesadores multinticleo ha incremen-
tado significativamente las capacidades paralelas de los sistemas de computo. Sin
embargo, la gran cantidad de cédigo secuencial ya existente no puede aprovechar de
forma directa estas capacidades, lo que obliga al programador a paralelizar sus aplica-
ciones. Esta es una tarea que requiere un amplio conocimiento tanto de la aplicacién
como de la arquitectura subyacente. Técnicas como la paralelizacién especulativa
facilitan esta tarea, al ocuparse de garantizar que el cédigo paralelo cumple con la
semdantica secuencial. Sin embargo, estas técnicas también requieren la intervencién
manual de programadores experimentados.

Esta Tesis aborda este problema proponiendo una nueva cldusula OpenMP, spec-
ulative, que define aquellas variables que pueden provocar una violaciéon de depen-
dencia, y un sistema en tiempo de compilacion que transforma esta nueva cldusula en
Ilamadas a una libreria en tiempo de ejecucién paralela especulativa. Estas propuestas
garantizan que todos los accesos a variables especulativas se realizan respetando la
semdntica secuencial del programa, y evita obligar al programador a que modifique
manualmente el c6digo para soportar su paralelizacién especulativa.

Antes de instrumentar un bucle con construcciones OpenMP, incluida nuestra
cldusula propuesta, el programador necesita extraer cierta informacién del cédigo a
paralelizar. Sin herramienta automaéticas, el programador tiene que extraer esta infor-
macién manualmente. Esta Tesis aborda también el problema de la caracterizacién
automatica de bucles secuenciales con el objetivo de encontrar nichos de paraleli-
zacion en benchmarks conocidos que puedan beneficiarse de la paralelizacion espe-
culativa basada en software. Para ello, proponemos un sistema que aprovecha una
representacion intermedia XML para realizar un andlisis estatico del cédigo fuente y
lo combina con la informacién de su perfil de ejecucion, obteniendo la caracterizacion
del cédigo. Ademds, esta Tesis propone un sistema que aprovecha esta informacion,
sintetizando y generando automaticamente las directivas y cldusulas OpenMP nece-
sarias para paralelizar un cédigo especulativamente.

La incorporacién de nuestra cldusula propuesta, speculative, en la implementa-
cién de OpenMP de un compilador tan extendido como GCC, junto con la automati-
zacion de todo el proceso de paralelizacién, ayudard a que la paralelizacion especu-
lativa basada en software esté lo suficientemente madura como para ser utilizada en
produccién.

Palabras clave

Paralelizacién especulativa, TLS, XML, XPath, andlisis de cddigo, perfiles de
ejecucion, representacion de codigo fuente, transformacién de cédigo, GCC, plugin,
OpenMP, generacion automadtica de codigo.



Abstract

Multicore technologies have increased the peak performance of computing sys-
tems during the last decade. However, unlike previous advances in computer archi-
tecture, existent code cannot immediately take advantage of these architectures im-
provements. To fully exploit multicore capabilities, programmers should parallelize
their applications, a difficult task that requires an in-depth knowledge of both the ap-
plication and the underlying computer architecture. Parallelization techniques such as
Thread-Level Speculation (TLS) eases this task, ensuring that the parallel code satis-
fies the sequential semantics. Nevertheless, this technique also requires manual and
tough intervention by expert programmers.

This Ph.D. thesis addresses this problem defining a new OpenMP clause, called
speculative, which points out those variables that may lead to dependency violation,
and a compile-time system that seamlessly translates this new OpenMP clause into
calls to our TLS runtime system. This ensures that all accesses to these speculative
variables will be carried out according to sequential semantics, and frees program-
mers from the manual augmentation of the source code required by the speculative
parallelization.

Before instrumenting a loop with OpenMP constructs, including our proposed
speculative clause, programmers firstly need to extract certain information about
the source code that they aim to parallelize. Without automatic tools, programmers
have to manually extract the information. This Ph.D. thesis also addresses the problem
of automatic characterization and coverage of sequential loops, with the aim of find-
ing parallelization niches in widely-used benchmarks that may benefit from software-
based speculative parallelization. To do this, we have proposed a system that takes
advantage of an XML-based representation of the source and combines profiling in-
formation to extract all this information. Besides, we have also proposed a system that
leverages this information, automatically synthesizing and generating the OpenMP
constructs needed to parallelize the source code speculatively.

We believe that the implementation of the new OpenMP clause in a mainstream
compiler, together with the automation of the whole process of the parallelization,
will help thread-level speculation to be mature enough for its production use.

Keywords

Speculative parallelization, Thread-Level-Speculation, TLS, XML, XPath, pro-
filing information, code analysis, compiler framework, source code representation,
source code transformation, GCC, plugin, OpenMP, automatic code synthesis.
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Resumen de la tesis

Una de las principales preocupaciones de las ciencias de la computacion es el estu-
dio de las capacidades paralelas tanto de programas como de los procesadores que
los ejecutan. Existen varias razones que hacen muy deseable el desarrollo de téc-
nicas que paralelicen automdticamente el cédigo. Entre ellas se encuentran el in-
menso nimero de programas secuenciales existentes ya escritos, la complejidad de
los lenguajes de programacion paralelos, y los conocimientos que se requieren para
paralelizar un cédigo. Sin embargo, los actuales mecanismos de paralelizacién au-
tomdtica implementados en los compiladores comerciales no son capaces de parale-
lizar la mayoria de los bucles en un cédigo, debido a la dependencias de datos que
existen entre ellos. Por lo tanto, se hace necesaria la busqueda de nuevas técnicas
que saquen beneficio de las potenciales capacidades paralelas del hardware y arqui-
tecturas multiprocesador actuales. Estas técnicas requieren la intervencion manual de
programadores experimentados, y la paralelizacién especulativa no es una excepcion.

Esta Tesis aborda este problema definiendo una nueva cldusula OpenMP, llamada
speculative, que permite sefialar qué variables pueden llevar a una violacién de
dependencia. Ademds, esta Tesis también propone un sistema en tiempo de compi-
lacién que, usando la informacién sobre los accesos a las variables que proporcionan
las cldusulas OpenMP, afiade autométicamente todo el c6digo necesario para gestionar
la ejecucién especulativa de un programa. Esto libera al programador de modificar el
c6digo manualmente, evitando posibles errores y una tediosa tarea.

Antes de instrumentar un bucle con directivas y cldusulas OpenMP, incluyendo
nuestra propuesta de cldusula speculative, los programadores deben extraer cierta
informacién sobre el cédigo fuente que quieren paralelizar. Sin herramientas au-
tomadticas, los programadores tienen que extraer manualmente esta informacién. Esto
incluye el uso de las variables dentro de cada bucle; funciones de entrada y salida que
puedan complicar o incluso impedir la paralelizacion; y atin mds importante, determi-
nar si merece la pena paralelizar un bucle, o si la sobrecarga necesaria para gestionar
los diferentes hilos serd mayor que el beneficio obtenido de la paralelizacién.

Esta Tesis aborda también el problema de la caracterizacién automatica de bu-



2 Resumen de la tesis

cles secuenciales con el objetivo de encontrar nichos de paralelizacién en benchmarks
conocidos que puedan beneficiarse de la paralelizacién especulativa basada en soft-
ware. Para hacer esto, proponemos un sistema que aprovecha una representacién
intermedia XML para realizar un andlisis estético del cédigo fuente y lo combina con
la informacién de su perfil de ejecucion, obteniendo la caracterizacién del cédigo,

Finalmente, esta Tesis propone un sistema que aprovecha esta informacion, sinte-
tizando y generando automdticamente las directivas y cldusulas OpenMP necesarias
para paralelizar un cédigo especulativamente. La incorporacién de nuestra clausula
speculative en la implementaciéon de OpenMP de un compilador tan extendido
como GCC, junto con la automatizacion de todo el proceso de paralelizacién, ayu-
dard a que la paralelizacion especulativa basada en software esté lo suficientemente
madura como para ser utilizada en produccién.

R.1 Metodologia de investigacion

La metodologia de investigacién seguida por esta Tesis para alcanzar los objetivos
propuestos es definida por el método de investigacion para ingeniera del software des-
crita en [2]. Este método establece cuatro etapas que el proceso de investigacién tiene
que seguir. Estas etapas pueden repetirse ciclicamente hasta refinar las soluciones
propuestas.

1. Observar las soluciones existentes. Esta etapa tiene el propdsito de detectar
problemas que seran abordados durante el proceso de investigacién, comen-
zando por las soluciones existentes. Esto conlleva un completo estudio del
estado del arte con el objetivo de encontrar trabajos relacionados con nuestra
investigacion. Este estudio se encuentra dividido en diferentes secciones que se
presentan dentro de cada capitulo de la Tesis.

2. Proponer mejores soluciones. En esta etapa se propone una solucién que aborde
las limitaciones encontradas en la fase anterior. Como mostraremos a lo largo
de este documento, existe una carencia de sistemas que combinan paraleli-
zacién automdtica con técnicas de paralelizacion especulativa basada en soft-
ware, es decir, soluciones que no requieren la intervencién de un programador
para afiadir el cédigo extra necesario para gestionar la ejecucion especulativa.
Ademds, el motor de ejecucion especulativa en el que se basa esta Tesis requiere
OpenMP para clasificar las variables de los bucles a paralelizar, y por tanto, es
necesario afiadir una nueva cldusula que permita identificar aquellas variables
que lleven a violaciones de dependencia. Hasta ahora, el motor clasificaba es-
tas variables como shared, forzando al programador a afadir manualmente el
c6digo necesario para gestionar la ejecucion especulativa. Este trabajo puede
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evitarse definiendo una nueva categoria: speculative, y su cldusula asociada.
Haciendo esto, un sistema puede procesar en tiempo de compilacion esta nueva
cldusula y anadir automaticamente el c6digo necesario para gestionar la ejecu-
cion especulativa. El problema de como obtener la informacién necesaria para
clasificar las variables en funcién de sus accesos también es abordado por esta
Tesis.

3. Construir o desarrollar la solucion. La solucién propuesta en la etapa anterior
es implementada en esta etapa. Para ello, hemos desarrollado un prototipo de
sistema en tiempo de compilacién que cubre las necesidades encontradas en la
etapa anterior.

4. Medir y analizar la nueva solucion. Finalmente, este método ingenieril es-
tablece que la solucién propuesta tiene que resolver los problemas descubiertos
en la primera etapa. Para ello, hemos usado pruebas de regresién durante el de-
sarrollo y validacién de la correccion del sistema, mientras que también hemos
usado benchmarks sintéticos y aplicaciones reales para evaluar el sistema.

R.2 Metas y contribuciones

De acuerdo a los problemas identificados en la seccién anterior, la pregunta de inves-
tigacion de esta Tesis es la siguiente:

Es posible desarrollar un mecanismo en tiempo de compilacion ca-
paz de (1) detectar nichos susceptibles de ser paralelizados especulativa-
mente, (2) evaluar su impacto en términos de tiempo de ejecucion en pa-
ralelo, y (3) transformar automdticamente codigo secuencial en codigo
especulativamente paralelo?

Para responder estas preguntas de investigacion, se han cumplido los siguientes
objetivos intermedios.

R.2.1 Evaluacion de las capacidades de los compiladores

Hemos medido las capacidades de paralelizacién de los compiladores comerciales,
exponiendo las limitaciones de los mecanismos de paralelizacién automadtica que im-
plementan. El estudio revela que estos mecanismos de paralelizacion automatica s6lo
alcanzan un 19% de speedup en promedio para los benchmarks del SPEC CPU2006.

1. Using SPEC CPU2006 to Evaluate the Secuential and Parallel Code Generated
by Commercial and Open-source Compilers. Sergio Aldea, Diego R. Llanos,
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Arturo Gonzalez-Escribano. The Journal of Supercomputing, 59(1), January
2012, pages 486-498.

2. Evaluacién de compiladores comerciales usando SPEC CPU2006. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XIX Jornadas de Parale-
lismo, Castellén, Spain, September 17-19, 2008.

R.2.2 Propuesta y definicion de una clausula OpenMP: speculative

Hemos afiadido soporte para TLS en OpenMP. Para ello, hemos propuesto una nueva
cldusula OpenMP que permita controlar aquellas variables que son susceptibles de
provocar una violacién de dependencia. Esta cldusula recibe el nombre de specula-
tive, y permite la ejecucion en paralelo de cualquier bucle cuyo andlisis de depen-
dencia no puede hacerse en tiempo de compilacién.

3. Support for thread-level speculation into OpenMP. Sergio Aldea, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Proceedings of the 8th international confer-
ence on OpenMP in a Heterogeneous World (IWOMP’12), Barbara M. Chap-
man, Federico Massaioli, Matthias S. Miiller, and Marco Rorro (Eds.). Springer-
Verlag, Berlin, Heidelberg, 2012. pages 275-278.

R.2.3 Diseiio, implementacion, y evaluacion de la clausula OpenMP spec-
ulative

Hemos desarrollado un plugin GCC que afiade soporte en el compilador para la
cldusula speculative propuesta en el punto anterior. Este plugin transforma el bucle
que ha sido marcado con la directiva omp parallel fory lacldusula speculative,
en un bucle especulativamente paralelo. Esta transformacion supone la insercién de
todas las llamadas a la libreria de ejecucién TLS que son necesarias para (a) distribuir
bloques de iteraciones entre los diferentes procesadores, (b) sustituir las lecturas y
escrituras sobre variables especulativas por sus correspondientes versiones especula-
tivas, y (c) realizar las copias parciales de los valores de las variables especulativas al
final de la ejecucién de cada bloque de iteraciones. La libreria de ejecucidn paralela
especulativa usada en esta Tesis es la desarrollada por Estebanez, Garcia-Yagiiez,
Llanos, y Gonzalez-Escribano [62! 69].

También hemos mejorado la documentacidén existente sobre los plugins GCC. Para
ello, hemos descrito como programar, enlazar con GCC y ejecutar un plugin, asi como
la estructura interna de un plugin.

Finalmente, hemos evaluado la cldusula propuesta y el plugin desarrollado. El
codigo generado automdticamente por el sistema no s6lo obtiene speedup en aplica-
ciones que no son paralelizables en tiempo de compilacién por mecanismos automati-
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cos convencionales, sino que también obtiene un menor rendimiento que el cédigo
paralelizado manualmente. Los speedups obtenidos mediante el sistema desarrollado
son alrededor del 20% mejor que los speedups obtenidos mediante la alternativa ma-
nual. Por lo tanto, con la cldusula OpenMP speculative, los programadores pueden
paralelizar aplicaciones evitando todas los inconvenientes y dificultades asociados a
la paralelizacion especulativa manual.

4. A New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level
Speculation into OpenMP. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Aceptado en Euro-Par 2014. Volumen 8632
de Lecture Notes of Computer Science. Pendiente de publicacion.

5. An OpenMP extension to support Thread-Level Speculation. Sergio Aldea, Al-
varo Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. Submitted.

6. Una extensioén para OpenMP que soporta paralelizacion especulativa. Sergio
Aldea, Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano.
Actas XXV Jornadas de Paralelismo, Valladolid, Spain, September, 17-19, 2014.

R.2.4 Deteccion de nichos de paralelizacion especulativa y clasificacion
de variables

Hemos propuesto un sistema basado en XML, llamado BonaFide C Analyzer (BFCA),
que combina el andlisis estético del cddigo fuente con la informacién de su perfil de
ejecuciéon con el objetivo de generar informes completos de todos los bucles de un
programa. Estos informes incluyen el porcentaje de tiempo de ejecucion del bucle
respecto del total del programa, si un bucle es adecuado para la paralelizacién, una
clasificacion de todas las variables dentro del bucle en funcién de cdmo son accedi-
das, asi como otros inconvenientes que impiden el paralelismo. Toda esta informacién
permite analizar como determinadas construcciones del cédigo fuente son usadas en
aplicaciones reales, ayudando al programador a paralelizar el cddigo. Esta informa-
cién puede ser procesada automaticamente para definir clausulas OpenMP, incluyendo
también nuestra cldusula propuesta para definir las variables especulativas.

BFCA nos ha permitido hacer un extenso estudio sobre las aplicaciones del SPEC
CPU2006 [82]. Este estudio no sélo caracteriza cuantitativa y cualitativamente los
bucles de esas aplicaciones en funcidn de su idoneidad para ser paralelizados, sino
que también informa hasta qué punto el uso de técnicas de paralelizacién automdtica
puede ayudar a reducir el tiempo de ejecuciéon. Este estudio también clasifica todos
los bucles en estos benchmarks de acuerdo a diferentes dificultades que pueden afec-
tar la paralelizacién, como el uso de aritmética de punteros, llamadas a funciones
de entrada/salida y de gestion de memoria, y dependencias de variables globales y
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estaticas. Este tipo de informacién es extremadamente dificil de obtener de forma
manual, y puede ser usada para guiar el desarrollo de futuros proyectos en el drea de
la paralelizacién automatica.

Finalmente, nuestra estudio muestra que el 47,72% de los bucles presentes en
las aplicaciones analizadas son potencialmente paralelizables mediante modelos de
programacion paralela como OpenMP, mientras que el 37,7% tnicamente pueden ser
ejecutados en paralelo con la ayuda de técnicas de ejecucion paralela especulativa.

7. The BonaFide C Analyzer: Automatic Loop-level Characterization and Cov-
erage Measurement. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-
Escribano. The Journal of Supercomputing, 2014. Online, DOI:10.1007/s11227-
014-1091-3.

8. Towards a compiler framework for thread-level speculation. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Proceedings of the 19th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP 2011), Ayia Napa, Cyprus, February 9-11, 2011. pages 267—
271.

9. Extending a source-to-source compiler with XML capabilities. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XXI Jornadas de Parale-
lismo, Valencia, Spain, September 7-10, 2010.

10. XMLCetus y Sirius: andlisis y traduccion de cédigo C utilizando herramientas
XML. Sergio Aldea, Diego R. Llanos, Arturo Gonzales-Escribano. Techni-
cal Report IT-DI-2010-001, Departamento de Informdtica, Universidad de Val-
ladolid, 2010.

R.2.5 Sintesis automatica de cédigo especulativo

Hemos propuesto una soluciéon que aprovecha la clasificacion de las variables que rea-
liza BFCA para generar automdticamente una version paralela del cédigo analizado,
insertando directivas y cldusulas OpenMP, incluyendo nuestra cldusula speculative.
Esta propuesta libera al programador de modificar e instrumentar manualmente el
codigo fuente con esas construcciones OpenMP, lo que generalmente es una tarea
tediosa y propensa a errores.

Como resultado, el bucle instrumentado es ejecutado correctamente en paralelo,
con un rendimiento que dependerd del nimero que violaciones de dependencia que
se produzcan en tiempo de ejecucion. Esta solucién también puede ser utilizada para
instrumentar un bucle paralelo con OpenMP estdndar.

Las conclusiones de esta contribucion serdn enviadas para su publicacién durante
el afio 2014.
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R.3 Conclusiones

Esta Tesis ha respondido a las preguntas de investigacion planteadas inicialmente. Las
dos primeras cuestiones se han probado mediante un experimento en el que los bu-
cles FOR de las aplicaciones en C de la suite de benchmarks SPEC CPU2006 han
sido caracterizados y clasificados. Se ha obtenido que, en promedio, el 37,7% de
los bucles FOR son potencialmente paralelizables mediante técnicas especulativas.
Ademéds, se ha obtenido que esos bucles representan el 28,34% del tiempo de ejecu-
cion de los benchmarks, siendo este porcentaje un valor significativo. La extraccion
de estos dos niimeros demuestra que (1) es posible detectar nichos susceptibles de ser
paralelizados especulativamente, y (2) es posible evaluar su impacto en términos de
tiempo de ejecucién. Determinar si un bucle es potencialmente paralelizable es una
tarea compleja debido al gran nimero de variables que estdn involucradas. Esto de-
muestra el valor que tiene un sistema como el desarrollado, que permite realizar esta
tarea automdticamente.

Para responder a la tercera pregunta, hemos desarrollado un sistema en tiempo de
compilacién que recibe el nombre de ATLaS. Este sistema demuestra que es posible
transformar automaticamente un c6digo secuencial en uno especulativamente para-
lelo. Esta transformacién ha sido realizado en varios pasos. Primero, mediante la
caracterizacion de los bucles FOR, BFCA anade automdticamente en el cédigo las
directivas OpenMP necesarias para paralelizarlo, incluyendo nuestra cldusula pro-
puesta, speculative. Esta cldusula es entonces analizada por ATLaS para generar
todo el cédigo necesario para gestionar la ejecucion especulativamente paralelo del
codigo. Este proceso no requiere la intervencién manual del programador, salvo la
mera seleccion del bucle a ser paralelizado. Por lo tanto, la transformacién de una
version secuencial del c6digo en una version paralela se lleva a cabo de manera au-
tomadtica, incluyendo la instrumentacion del c6digo con las construcciones OpenMP,
y la generacién del cédigo adicional para gestionar la paralelizacién especulativa.

Esta Tesis no cubre ciertos cuestiones que nos gustaria abordar, y que definen el
trabajo futuro para esta investigaciéon. En primer lugar, es necesaria definir una serie
de heuristicas que permitan escoger automdticamente los bucles a paralelizar. Con
estas heuristicas, los programadores podrian evitar decidir qué bucle es mas idéneo o
mads beneficiosa es su paralelizacion en términos de tiempo de ejecucién. En segunda
lugar, la solucién propuesta por esta Tesis estd enfocada en bucles FOR. Como tra-
bajo futuro queda actualizar esta solucién para que sea capaz de detectar, analizar, y
paralelizar cualquier region del cédigo fuente que sea susceptible de ser paralelizada.
Por otro lado, seria conveniente el desarrollado de un compilador fuente-a-fuente para
analizar sintdcticamente el c6digo y generar directamente una representaciéon XML,
evitando la dependencia con sistemas de terceros como Cetus. Finalmente, con to-
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dos los puntos anteriores resueltos, el siguiente paso seria el desarrollo de un compi-
lador que automdticamente paralelizara bucles o cualquier regién del cédigo fuente,
que seria escogida siguiente las heuristicas propuestas. Este compilador generaria el
c6digo binario ejecutable, que dependiendo de la regién paralela seria ejecutado en
paralelo especulativamente, o usando OpenMP estdndar.
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Chapter

Introduction

One of the main concerns of current computer science is the study of parallel capabil-
ities for both programs and processors that execute them. Due to the huge number of
sequential programs already written for many decades until now, complexity of par-
allel programming languages, and knowledges required to parallelize source codes, a
technique that automatically parallelize them is quite desirable. However, automatic
parallelization techniques currently implemented in many commercial compilers are
not able to parallelize most of the loops because of data dependencies. Therefore,
the search of new techniques that obtain a profit from potential parallel capabilities of
current hardware and CMP (Chips MultiProcessor) architectures is still necessary.

Current speculative techniques are experimental and require manual intervention
of expert programmers. These programmers firstly need to extract certain information
about the source code that they want to parallelize. Without automatic tools, program-
mers have to manually extract that information, such as variable usages within each
loop, or I/O functions that complicate or even preclude the parallelization. More
important, they should determine whether it is worth parallelizing a loop or if the
thread-management overheads would be larger than the benefit of parallelizing. This
information extraction is the first step to speculatively parallelize a source code. The
second step is to add all the functions and structures needed to handle the specula-
tive execution. So far, this process should also be carried out manually. This Ph.D.
thesis arises in this context. First, with a framework proposal that automatically ex-
tracts such information from source codes; and second, with a compile-time system
proposal that automatically adds all the extra code lines to handle the speculative ex-
ecution of a program.
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1.1 Motivation

Most of the parallel programming models require the programmer to address two
critical issues. The first one is the decision of which loop is more profitable to be
parallelized. To answer this question, it is necessary to know the percentage of the
total execution time consumed within each loop of the application, known as the loop
coverage [96]]. Since this information usually depends on the application control flow
as well as its input data, the loop coverage cannot be obtained with static analysis
alone. Thus, auxiliary profiling tools that return loop coverage are required.

Once a candidate loop has been chosen, programmers face a second problem: To
ensure that the loop can be safely run in parallel. Informally speaking, only loops
whose iterations do not depend on other iterations can be parallelized. To ensure
that the code can be run in parallel, the programmer should be able to classify all
variables present in the code into “private” variables (that is, variables that are always
written in an iteration before being used in the same iteration), and “read-only shared”
variables, that are only read and not written in any iteration. If all variables inside a
loop are either private or read-only shared, then the loop can be safely parallelized'.
If a single variable is found that does not fit in these two categories, then the loop
is not parallelizable at compile time, and we have to draw on other techniques such
as software-based speculative parallelization. It is easy to see that this dependency
analysis is a tedious and error-prone task, difficult to be done by hand if the target
loop has more than a few dozen lines of code.

In this Ph.D. thesis we will address the problem of obtaining the characterization
and coverage of target loops automatically. By using an XML-based representation of
the source code, we will determine the usage of the variables in the context of loops,
and classify them in three categories: private, shared, and a third one, called specu-
lative, which identifies variables that may lead to dependency violations. Besides this
classification, our proposal also extracts other meaningful information from the code,
such as pointer usage, memory management, I/O activity or usage of static variables
inside loops. This information is relevant from the point of view of a programmer that
wants to parallelize these loops.

Since executing a loop in parallel usually implies an overhead to start up the mech-
anisms of parallelization, execution times of loops are very important to determine
whether it is worthwhile to parallelize them. A short loop (in execution time) is not
worth being parallelized. It will probably take less time to execute it sequentially,
because thread-management overheads associated to parallelization may ruin poten-
tial improvements of a parallel execution. However, a long loop could recover this

"Further analysis may be required to ensure that, after parallel execution, final values stored in private
variables meet sequential semantics.
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overhead when it is executed in parallel. Therefore, loops must be correlated with
their execution profile to determine the relative amount of time that is spent in them.
Otherwise, if all of these loops are located in cold code, the compiler could spend a
great deal of effort speculatively parallelizing cold loop nests which would not result
in any performance improvement. Our proposal collects the profiling information in
order to better characterize the loops, and properly identify which of them are more
profitable to be parallelized.

Once a loop is identified as suitable to be parallelized, programmers need to man-
ually parallelize it using speculative techniques. However, this task is usually tedious
and mistakes are easily committed. In this Ph.D. thesis, we address this problem
proposing a prototype to automatically perform all the transformation needed in the
source code in order to speculatively parallelize an application. Our final goal is to
generate speculative parallel source code automatically, being the resultant code func-
tionally equivalent to the original sequential code. In order to achieve this goal, we
will implement these transformations into a mainstream compiler such as GCC.

1.2 Objectives of the dissertation

According to the identified problems described in the previous section, the research
question to be solved in this Ph.D thesis is the following:

Is it possible to develop a compile-time mechanism able to (1) detect
susceptible niches for speculative parallelization, (2) evaluate their im-
pact in terms of parallel execution time, and (3) automatically transform
such sequential source code into a parallel speculative version?

1.2.1 Milestones
In order to answer this research question, we need to accomplish some intermediate,
more specific objectives:

Goal 1: Evaluation of compilers parallelization capabilities

To assess the limitations of the automatic parallelization approaches pro-
vided by commercial compilers.

Speculative parallelization is an alternative to automatic parallelization performed
by compilers. Therefore, it is necessary to demonstrate why it is so important to
study this alternative instead of simply settling for a compiler-guided automatic par-
allelization. In order to provide numerical data about the performance of automatic
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parallelization performed by compiler, it is necessary to carry out an analysis of the
parallelization capabilities of some commercial and well-known compilers, such as
the Intel C/C++/Fortran compiler, Sun Studio compiler, and GCC.

Goal 2: OpenMP speculative clause proposal and definition

To propose and define a new OpenMP clause to point out the variables
that could lead to a dependency violation.

This kind of variables can be called speculative. This Ph.D. thesis takes as its
reference the software-based speculative parallelization runtime system developed by
Cintra and Llanos [36} 37, [110]]. This system classifies the variables in terms of their
accesses, and uses OpenMP to handle the execution of the threads. Until then, these
variables are classified using the private and shared OpenMP clauses. These clauses
do not distinguish the kind of variables that may lead to a dependency violation, which
are precisely the kind of variables that speculative parallelization deals with. Operat-
ing in this way requires the manual intervention of programmers to point out the state-
ments that contains accesses (writings or readings) to those variables, and to modify
these statements to add the necessary code to handle the speculative execution control-
ling the possible dependency violations. This work can be avoided by labeling these
variables with a new specific OpenMP clause, letting a compile-time system to pro-
cess them and to automatically add the extra code necessary to handle the speculative
execution.

Goal 3: OpenMP speculative clause design, implementation and evaluation

To design and implement the new OpenMP clause into a mainstream
compiler, as well as evaluating the proposed clause with real-world ap-
plications, comparing the performance of the generated code with re-
spect to the speculative execution of manually-instrumented versions of
the same benchmarks.

Due to its open-source character, the strong community behind it, and above all,
the plugin mechanism to add new functionalities, GCC [72] is the compiler chosen
to implement our OpenMP extension. GCC plugins [71] provide extra features to
the compiler, enabling to modify GCC by adding, replacing, monitoring, or even re-
moving passes from the compiler, without touching the GCC source code. Using the
plugin mechanism, we will develop a compile-time system that automatically adds
the code needed to handle the speculatively parallel execution of a loop, and uses the
proposed OpenMP clause to manage the speculative variables. The additional code
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inserted in this way will be needed by the runtime speculative system. The variable
classification that this system needs is provided by Goal 4.

With the new OpenMP speculative clause, programmers will be able not only to
parallelize some applications that are not parallelized at compile-time by conventional
automatic schemes, but also they will be able to parallelize those applications without
all the hurdles involved in the manual-speculative parallelization. In order to evaluate
the capabilities of the proposed clause and the compile-time system, which perform
all the changes needed in a source code to parallelize it speculatively, we will test
them using synthetic benchmarks, and also some real-world applications. Besides
of observing the speedups that our proposal can achieve, these experiments will also
allow us to compare the performance of the automatic-generated code in relation with
the same applications modified by hand to use the same speculative runtime system.

Goal 4: Speculative parallelization niches detection and variable classification

To merge static analysis and profiling information to extract some fea-
tures of source code, and detect and quantify the hurdles that may affect
the parallelization.

Parallelization techniques include the need of detecting loops that are good candi-
dates for parallelization, and classifying all variables of these loops according to their
use, a task surprisingly hard to be carried out manually. The combination of static
analysis of source code with profiling data will provide useful information regard-
ing all loops in the target application, including loop coverage, loop suitability for
parallelization, a classification of all variables inside loops based on their accesses,
and other hurdles that restrict parallelization. This information allows analyzing how
particular language constructs are used in real-world applications, and helps program-
mers to find candidate loops to be parallelized. Moreover, this information includes a
classification of all variables used inside each loop.

Goal 5: Automatic synthesis of speculative code

To generate an OpenMP-based version of the source code analyzed that
uses the new speculative clause to speculatively parallelize a target
loop.

The classification of all variables used inside each loop can be used to automati-
cally generate an OpenMP-based parallel version of the loop, using the shared, pri-
vate and the proposed speculative clause to declare the uses of each variable inside the
loop. As a result, the target loop will be guaranteed to correctly run in parallel, with a
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parallel performance that will depend on the actual number of dependency violations
that will arise at runtime.

1.3 Research methodology

In order to accomplish the objectives proposed in this Ph.D. thesis, we have followed
a research methodology defined by the research method for software engineering de-
scribed in [2]]. This method establishes four phases that the research process has to
follow. This phases can be cyclically repeated with the aim of refining the solutions
proposed.

1. Observe existing solutions. This phase has the purpose of detecting the prob-
lems that will be addressed during the research process, starting with the exist-
ing solutions. A complete study of the literature should be carried out to find
works related with our research. This study is split into the different state-of-
the-art sections presented in each chapter of this document.

2. Propose better solutions. In this phase, a solution is proposed a solution to
overcome the limitations found in the previous step. As we will see, there is
a lack of works proposing systems that merge automatic parallelization with
thread level speculation, i.e. solutions that require no intervention of the pro-
grammers to add the necessary extra code to handle the speculative execution.
Moreover, the software-based speculative runtime system used in this research
requires OpenMP clauses to classify variables, and hence, it seems necessary
to add a new clause to point out those variables that may lead to dependency
violations. Until now, OpenMP classifies them simply as shared, forcing pro-
grammers to manually add the code that handle such situations. This work can
be avoided by defining a new speculative category, and its associated clause.
Doing so, a compile-time system can process it automatically adding the extra
code necessary to handle the speculative execution. The information needed to
classify variables according to their accesses is also a need that this dissertation
will cover.

3. Build or develop the solution. The solution proposed in the previous phase is
implemented in this step. We will develop a prototype of a compile-time system
that covers the needs found in the previous phase.

4. Measure and analyze the new solution. Finally, the engineering method estab-
lishes that the proposed solution has to solve the problems discovered in the
first phase of the research methodology. We will use regression tests during the
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development, in order to validate the correction of the system, whereas we will
evaluate the system using synthetic benchmarks and some real-world applica-
tions.

1.4 Document structure

This document is structured as follows. Chapter [2]uncovers the limitations of the au-
tomatic parallelization approaches, which are not able to parallelize many codes on
the basis of a compile-time analysis. This study provides a result that lead us to other
alternatives, such as speculative parallelism. Chapter [3|defines a new OpenMP clause,
with the aim of classifying the variables that may lead to dependency violations. This
clause provides an opportunity to automatize the speculative parallelization of source
code, which will be implemented in Chap.[4] Chapter[d]also evaluates the capabilities
of the proposed compile-time system, measuring the speedup achieved by paralleliz-
ing some real-world applications, and also comparing the performance obtained by
the automatic parallelization of those codes in relation with the manually-modified
versions of the same codes that take advantage of the same runtime parallelization
system. Chapter. [5] proposes a solution to extract all the information required in the
process of parallelizing source codes, helping not only with the decision about which
loop is more profitable to be parallelized, but also providing meaningful information
in order to parallelize a loop properly. This information is very valuable not only for
speculative schemes, but also with other kind of parallelization techniques. Finally,
Chap. [6] proposes a system that uses the reports generated by the solution proposed
in the previous chapter to automatically generate an OpenMP-based version of the
analyzed source code that uses the proposed OpenMP clause. As a result, the source
code is parallelized speculatively.

To sum up, Chap. [7|covers the contributions of this Ph.D. thesis, as well as the con-
clusions, potential future work, and improvements over the developed system. This
chapter also aims to answer our research question, and collects the different publica-
tions associated to each partial goal.

Finally, several appendices are included. Appendix [A|covers some extended de-
tails related with the technologies involved in the development of the prototypes pro-
posed. Appendix[B|describes in-depth and helpful details of GCC for the development
of plugins. Appendix [C]contains installation and user’s manuals for the prototypes de-
veloped and presented in this document. and finally, App.[D|describes the content of
the digital support attached to this document.
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Chapter

Evaluation of Compilers
Parallelization Capabilities

As a runtime technique, it is expected that speculative parallelization extract more
parallelism than pure compile-time techniques, such as the ones implemented in par-
allelizing compilers. To measure how effective are current compilers in parallelizing
source code, in this chapter we will carry out an analysis of the parallelization capabil-
ities of some commercial and well-known compilers, such as the Intel C/C++/Fortran
compiler, Sun Studio compiler, and GCC. These capabilities will be measured in terms
of the parallel performance of the code generated. Since each compiler has its own
characteristics, and applies its own optimizations, a study of the sequential perfor-
mance will be also carried out, with the aim of determining if there is a correlation
between both sequential and parallel performances.

2.1 Problem description

Compilers are a critical part of any computing environment, allowing programmers
to better exploit the hardware capabilities of their systems, minimizing the sequential
execution time and, in some cases, offering the possibility of parallelizing part of the
code automatically. However, in many cases this approach is limited mainly due to
two reasons: Insufficient performance improvement, and inability to parallelize the
code effectively. In the first case, although the compiler is capable of parallelizing the
code, the resulting program may not produce noticeable speedups. In the second case,
compilers perform static analysis to determine whether a code is parallelizable, being
rather cautious in the decision. A compiler usually does not parallelize part of a code
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if it is not completely sure that this part is parallelizable. Since correctness is their
main concern, compilers do not assume risks.

As a result, many codes that have an inherent parallelism are not parallelized
by compilers, losing the opportunities that current multicore architectures offer. In
order to effectively measure the limitations of automatic parallelization techniques,
this chapter relies on the SPEC CPU2006 v1.1 benchmark suite to evaluate the parallel
performance of the code generated by three widely-used compilers (Intel C++/Fortran
Compiler, Sun Studio, and GCC). As we will see, this evaluation will give support
to our aim of improving and making more accessible other alternatives such as the
speculative parallelization, which may obtain better performances in some codes, or
even parallelize codes that are impossible of parallelizing by others means.

The rest of the chapter is structured as follows. Section[2.2]introduces the concept
of benchmarking and gathers information on the particular benchmarks suite that we
have used in the study: SPEC CPU2006. Section [2.3]is split into two parts. The
first part discusses in detail the performance of the sequential code generated by the
compiler suites using the two benchmark sets that are part of the SPEC CPU2006
suite: CINT2006 and CFP2006, whereas the second one describes the effect in terms
of performance of the auto-parallelization flags available in Sun and Intel compilers.
Finally, Sect. 2.4] summarizes the results, providing overall ratings and describing
the main conclusions of the study. Moreover, it summarizes our contributions to the
literature.

2.2 State of the art

In order to evaluate the performance of a compiler it is not appropriate to use arbitrary
source codes. This section shows the reason to use benchmarks in order to obtain
meaningful results that are reproducible by other research groups. Besides, bench-
marks are the perfect choice to compare performances between compilers, and the
SPEC CPU2006 benchmarks suite is one of the most widespread alternatives used by
researchers in the field of high performance computing.

2.2.1 Benchmarking Overview

Benchmarking is a concept transversal to many fields, and particularly to business.
One of the main concerns of businesses, no matter the sector in which they are, is the
incessant evolution in order to improve themselves and overcome their competence.
In this race, it is important the development of increasingly efficient products, with
higher quality and cheaper costs. Businesses should not only overcome rivals and win
the battle of market, but also learn from them their mistakes and successes, to see
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which strategies are used to reach those results.

In business terms, benchmarking allows measuring differences between enter-
prises, to observe results from the strongest competitor, and to understand the strate-
gies that this competitor has followed to reach its position. Thus, benchmarking is
not only a measuring instrument for a particular product or set of products, but also
and more important, it is a tool that allows comparing some products with others,
observing improvements that the business can adopt, and integrating strategies that
lead to the development of higher-quality and higher-performance products. Thereby
benchmarking is observed as a learning process, and in this Ph.D. thesis it is used to
evaluate compiler’s performance, to compare between them, and finally, to learn about
their parallelization capabilities. This will lead us to seek other alternatives such as
speculative parallelization.

Before that, in order to understand the importance of benchmarking it is useful to
know its history.

History of benchmarking

In 1979 [24, 25], Xerox was in a critical situation. It was losing its position in a
market created by itself and dominated along the 60’s with more than the 80% world
participation. This situation was due to the good work of its Japanese competitors. In
1979, companies as Canon, Minolta or Ricoh began to sell their photocopiers in the
USA, with lower prices than Xerox’s. Japanese’s photocopiers had a sale price equal
to the production costs of Xerox’s photocopiers.

With the purpose of recovering its leading position, Xerox sent a crew to Fuji-
Xerox, its Japanese affiliate, to study in detail processes and materials used in that
country. Xerox was looking for a reference (a benchmark) to change its strategy and
understand what it could do better. The result of this study was discouraging. Results
uncovered the reason for such a big difference in prices:

e Xerox had nine times more suppliers and twice more employees.
e Delivery times of final products was doubled.

e Production lines had ten times more defective components.

o Final products had seven times more manufacturing defects.

At sight of these results, Xerox concluded that Japanese competitiveness was not
due to a cheaper labor, neither government subsidies, but details in the manufacturing
process. This first study performed by Xerox was the first benchmarking. As result,
Xerox’s products improved in quality (from 91 defects in 100 machines to 14 defects),
production costs (reduced by 50%), and development time (reduced by 60%).
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In 1981, in evidence of these improvements, Xerox’s directives ordered to adopt
benchmarking studies in all their business, and they embraced a new philosophy: To
reach higher quality in their products and processes, both employees and benchmark-
ing are essential. As a consequence, annual increases in productivity went from 2-3%
to over 10%. These results led other competitors to accept this practice along the 80’s,
being later adopted in other sectors.

Before 1981, most of the studies were performed using comparisons between
products of the same company. Benchmarking changed how companies were work-
ing, and it led to a new way of working in which products and processes from other
companies were the focus point to grow up as business.

Formal definition of benchmarking

Despite the work of many experts in the field, there does not exist an unique defini-
tion of benchmarking. From the business context we can obtain two classical defini-
tions. Robert C. Camp, benchmarking pioneer, introducer of this technique in Xerox,
and now the president of Global Benchmarking Network, defines benchmarking as
“the activity of learning, exchanging, and adapting best practices to your organiza-
tion” [26]. Michael J. Spendolini, a reputed expert in benchmarking, slightly extends
Camp’s definition: “Benchmarking is a continuous and systematic process to evalu-
ate products, services and processes against competitors, or renowned organizations
considered world leaders in their field” [148]].

Both definitions are related to the search for industrial best practices that lead to
superior performance. These definitions are straightforwardly applicable to business,
but benchmarking is also very important in computing. From the computing point
of view, benchmarking is related with the execution of a computer program, or set
of programs, with the purpose of measuring the performance of an entire computer,
some hardware components, or another software programs as compilers or database
management systems. A benchmark provides a way to compare the performance of
different subsystems between them and it frequently allows a rapid technical progress
and a community building [[14/] since each group has a reference to compare its de-
velopments.

Types of benchmarks in computing

Once we have seen two definitions of benchmarking, we will focus on the computing
field. Computing benchmarks can be classified in two ways [[14]: high-level vs. low-
level benchmarks, and synthetic vs. application benchmarks.
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High-level vs. low-level benchmarks

Depending on the level of the measured components, benchmarks are high-level or
low-level. Low-level benchmarks intend to measure the performance of the individual
hardware components: CPU clock, memory and cache cycle times, hard disk average
access time, etc. These tests can be useful to check whether the performance of a
particular component is accordant with the expected performance, or simply to know
characteristics of an unknown system.

High-level benchmarks measure the performance of the hardware/driver/OS com-
bination for a specific aspect of a system, e.g. file I/O performance, or for a specific
hardware/driver/OS/application performance, e.g. a benchmark to measure the per-
formance of the Apache Web Server on different systems.

Due to their characteristics, low-level benchmarks are all synthetic benchmarks,
while high-level benchmarks may be synthetic or application benchmarks.

Synthetic vs. application benchmarks

Benchmark can also be classified as synthetic or application benchmarks, depending
on their operation and design benchmarks. Synthetic benchmarks are designed to
measure the performance of individual components, generally taking them to their
maximum capacity. However, results of these benchmarks are controversial, since
they do not reflect the performance of the components in real-life situations. Synthetic
benchmarks use instructions typical of real programs, and measure the speed in which
they are processed. These benchmarks are a kind of “real-life application simulators”,
and they could not represent the real performance of the component that they measure.

On the other hand, application benchmarks or “real-world benchmarks” are formed
by or are based on real applications, which simulate real-situation workloads to mea-
sure the performance of the whole system, or only a subsystem. This is the case of the
SPEC CPU benchmarks suites used in this document, and the reason to choose them.
These benchmarks provide a more reliable measurement of the performance of a sys-
tem than synthetic benchmarks, since the latter only choose a set of representative
instructions and their results must be interpreted under these conditions.

SPEC CPU Benchmarks suites

The SPEC CPU2006 benchmark suite will be used in this chapter to check the paral-
lelization capabilities of commercial compilers. Moreover, these benchmarks will be
also used in following chapters to obtain different results, including the performances
of the prototypes proposed in this Ph.D. thesis. Testing with synthetic applications
could be simpler, but not realistic. With the aim of obtaining results in which we can
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trust, it is necessary to use “real” applications, such as the ones included in the SPEC
CPU benchmarks suites.

SPEC (Standard Performance Evaluation Corporation) [150] is a non-profit con-
sortium formed by several software companies, hardware manufacturers, etc. This
consortium was founded in 1988 by a small group of computer sellers with the aim
of obtaining a performance standard test that would offer some realistic and com-
parable results. Over time, SPEC has grown to become one of the more successful
performance standardization bodies, with more than 60 member companies.

SPEC seeks to simulate real situations, and because of that, it gets real-life appli-
cations from various fields of science and engineering (maths, physics, chemistry,
etc.), using them as benchmarks with different workloads in order to obtain per-
formance evaluations. The first benchmark suite was released by SPEC in October
1989 [133l], called “SPEC Benchmark Suite for Unix Systems version 1.0”. This suite
was formed by just ten benchmarks, and it allowed to produce three metrics: “In-
teger SPECmark” for the four integer benchmarks, “floating-point SPECmark” for
the six floating-point benchmarks, and “overall SPECmark”, which was a result that
includes the execution of all the benchmarks without type distinctions. In Decem-
ber 1991 [136], SPEC renamed its integer and floating point benchmark metrics as
“SPECint” and “SPECfp”. The following month, SPEC released “SPECint92” and
“SPECfp92”, and hence the previous versions were renamed as “SPECint89” and
“SPECfp89”. However, this new version did not allow getting an overall result of
both metrics.

SPEC updates periodically the suite due to the evolution of computers and the
growth and increasing complexity of application programs. In this way, SPEC re-
leased new versions in 1995, 2000, and 2006, each one with more applications, more
complex codes, and larger workload sets. Following subsections slightly describe the
last two versions used in this Ph.D. thesis: SPEC CPU2006 and SPEC CPU2000.

SPEC CPU2006

SPEC CPU2006 is the last benchmark suite developed by SPEC, whose first version
was released on August 24, 2006. Current version of SPEC CPU2006 is 1.2 [51],
released in September 2011. The reason of this update is the rapid evolution of the
computers performance in the first decade of the 21st century. In summer of 2006,
many of the CPU2000 benchmarks executed in contemporary computers ended their
executions in less than a minute. Hence, little changes in the system state or measure-
ment conditions could affect final results significantly. Other factors also influenced in
this update. Programs became more complex and larger since the release of CPU2000.
Therefore, in SPEC CPU2006, the consortium decided to update the benchmarks in-
cluded in the suite for new versions of the same programs, and also new relevant
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programs of other fields, as voice recognition or video compression.

SPEC CPU2006 includes 29 benchmarks, whose descriptions can be found in [82].
They are encompassed in two groups: “CINT2006”, which contains applications that
only work with integer numbers, and “CFP2006, which contains applications that
work with floating-point numbers. SPEC supplies the benchmarks in the form of
source code, which testers are not allowed to modify except under very restricted
circumstances.

To execute each benchmark, SPEC CPU2006 has three different workload sets,
ranked in order of increasing workload:

e Test, which is used to check for the correct execution of the benchmark.

e Train, which involves a bigger workload and it is used to optimize benchmarks
by feedback.

e Reference, which is the workload set used to obtain execution times and hence,
the final performance results.

SPEC establishes strict rules to run the benchmarks and to report the results, with
the aim of ensuring that the observed level of performance can be obtained by other
researchers. The benchmark also includes a tool to run and score benchmarks auto-
matically [149].

For CPU2006, SPEC defines two type of metrics. Base metrics are reproduced
compiling and running the entire benchmark using the same compiler flags in the
same order for a given language. These metrics are required for all reported results,
and provide a consistent baseline for comparing performance. The peak metrics are
optional and have less strict requirements, allowing to obtain better results using a
tailored set of flags for each benchmark, while the base metrics have stricter guidelines
for compilation.

SPEC uses a reference machine to normalize the performance metrics used in the
CPU2006 suites. Each benchmark was run and evaluated on this system to establish
a reference time for that benchmark. These times are then used in the SPEC calcula-
tions. SPEC uses a Sun system, the “Ultra Enterprise 2" introduced in 1997, as the
reference machine. This system has a 296 MHz UltraSPARC II processor with two
cores and two GB RAM. Table summarizes its characteristics.

After running the benchmark, the SPEC CPU2006 suite generates a report with the
relative performance of the System-Under-Test (SUT) compared with the reference
machine. To consider a report valid, it should be generated executing each benchmark
three times with the test and train workloads and then three times with the reference
workload. The execution times of the latter provides the final results. After the entire
benchmark suite is run on the SUT, a ratio for each benchmark is calculated using
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CPU model | UltraSPARC II processor
CPU Characteristics | 296 Mhz, 2 cores, 1 chip
L1 Cache Size | 16 KBI+ 16 KBD
L2 Cache Size | 2 MB I+D
RAM Memory | 2 GB
Disk Subsystem | 2x36 GB 10000 RPM SCSI
Operating System | Solaris 10 3/05
Kernel Version | 2.6.19
File System Type | ufs
Compiler | Sun Studio 11

Table 2.1: Characteristics of SPEC CPU2006 reference system. According to the specifica-
tions, one of the disks is dedicated to the operating system and the other to the code and data
set of the benchmark suite.

the wall-clock time spent on the SUT and the time spent by the reference system, as
provided by the suite in [126]. From these ratios, the suite calculates the geometric
mean of 12 normalized ratios, one for each integer benchmark, and the geometric
mean of 17 normalized ratios, one for each floating-point benchmark.

SPEC CPU2000

The SPEC CPU2000 benchmark suite was released at December 30, 1999, and it was
updated until the version 1.3, released at November 1, 2005 [50], almost 6 years later.
Finally, CPU2000 was officially retired in February 2007 [49]]. Despite CPU2000
is not the last version released by SPEC, at present it is widely used by researchers
because CPU2006 is complex and tricky.

SPEC CPU2000 includes 26 benchmarks [81]] that are divided in two groups,
“CINT2000” and “CFP2000”, following the same criteria than in SPEC CPU2006.
CPU2000 also defines three workload sets to execute its benchmarks: fest, train,
and reference, ranked in order of increasing workload. Execution rules applied in
CPU2006 are also applied here, and CPU2000 defines the same two type of metrics:
base and peak. Overall, most of what was said for the CPU2006 benchmark suite ap-
plies here. The reference machine used in SPEC CPU2000 is even the same than the
machine used in SPEC CPU2006, but with less memory (256 MB) and slower caches.

2.2.2 Automatic parallelization and SPEC CPU2006

Surprisingly, there is a lack of comparisons about the automatic parallelization capa-
bilities of modern compilers, using either SPEC CPU2006 or other benchmarks. How-
ever, some research has been carried out on the characterization of SPEC CPU2006
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benchmark on sequential architectures. Li et al. [[L07] characterize the performance
of SPEC CPU2006 both on Intel and AMD architectures, using GCC 4.1.2 with the
-03 flag. Their study includes an evaluation of the level of instruction-level paral-
lelism found. Kejariwal et al. [98]] compares the behaviour of both SPEC CPU2000
and SPEC CPU2006 on an Intel platform, using the Intel Optimizing Compiler, giv-
ing some hints that may guide the design of future microprocessors. Ye et al. [172]
characterize the performance differences between 32- and 64-bit versions of the SPEC
CINT2006 on an Intel x86-64 platform, using GCC 4.1.1. Their work shows that sev-
eral X86 integer applications runs slower in 64-bit mode than in 32-bit mode, a result
consistent with our study, as we will see in the following section. This explains the
effect based on the different instruction and data cache lines requested when using
these different address spaces.

2.3 Evaluation of the parallelization capabilities of commer-
cial compilers

Speculative parallelization is an alternative to automatic parallelization performed by
compilers. Therefore, it is necessary to demonstrate why it is so important to study
this alternative instead of simply relying on automatic parallelization.

This section aims to measure how much performance can be obtained by auto-
matic parallelization, evaluating three popular widespread compilers for Intel-based
architectures: Intel C++/Fortran Optimizing Compiler version 11.0.074 [88.1145], Sun
Studio 12 [155] and GCC 4.3.2 [73]]. Parallelization capabilities of these compilers
will be measured in terms of the parallel performance of the code generated. Since
each compiler has its own characteristics, and applies its own optimizations, we will
also perform a study of the sequential performance of the code generated, with the
aim of determining if there is a correlation between both sequential and parallel per-
formances. In this way, we can find if the parallelization capabilities of a compiler are
related to the sequential performance that the same compiler is able to extract from a
source code.

Therefore, both sequential and parallel performance have been evaluated. The
evaluation has been made compiling and running the SPEC CPU2006 v1.1 suite on
both 32-bits and 64-bits systems, comparing the performance of these compilers with
different benchmarks and hardware configurations. The study also includes a de-
tailed description of the different problems that arise while compiling SPEC CPU2006
benchmarks with these tools, an information difficult to obtain elsewhere.

To sum up, the goal of this study is threefold: (1) To provide results that lead
to a better understanding of compiler technology and use, (2) to give an insight into
SPEC CPU2006 benchmark suite, describing the main problems encountered while
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CPU model | Intel® Core™ 2 CPU E6300
CPU Characteristics | 1.86 Ghz, 1066 MHz bus. 2 cores, 1 chip
L1 Cache Size | 32 KB I+ 32 KB D on chip per core
L2 Cache Size | 2 MB I+D on chip per core
RAM Memory | 3 GB (2x512 MB + 2x1 GB DDR2 667 MHz)
Operating System | Mandriva Linux Release 2007.1, 32 bits (SUT1)
Mandriva Linux Release 2007.1, 64 bits (SUT2)
Kernel Version | 2.6.17-13
File System Type | ext3.
Compilers | GCC 4.3.2
Intel C++/Fortran 11.0.074 Professional Edition
Sun Studio 12 (Sun C/C++ 5.9, Sun Fortran 95 8.3)

Table 2.2: Characteristics of the Systems-Under-Test SUT1 and SUT?2.

CPU model | Dual Core AMD Opteron® Processor 270
CPU characteristics | 1.93 Ghz, 1066 MHz bus. 4 cores, 2 chips
L1 Cache Size | 64 KB I + 64 KB D on chip per core
L2 Cache Size | 1 MB I+D on chip per core
RAM Memory | 4 GB
Operating System | Gentoo Base System release 1.12.9
Kernel Version | 2.6.19
File System Type | ext3
Compilers | GCC 4.3.2
Intel® C++/Fortran 11.0.074 Professional Edition
Sun Studio 12 (Sun C/C++ 5.9, Sun Fortran 95 8.3)

Table 2.3: Characteristics of the System-Under-Test SUT3.

using different compiler suites, and finally (3) to show the limit of the parallelization
capabilities of these compilers that encourages us to seek other alternatives such as
speculative parallelization.

Systems under test

To perform the study, two different hardware configurations were used, and for one
of them it was used 32- and 64-bits versions of the same operating system. This leads
to three different Systems-Under-Test (SUT). The first System-Under-Test (SUT1) is
based on an Intel® Core™ 2 CPU E6300 processor, running a 32-bits version of
the GNU-Linux operating system. SUT?2 is based on the same hardware as SUT1,
but it runs 64-bits version of GNU-Linux. Table[2.2] summarizes their characteristics.
Finally, SUT3 is based on a Dual Core AMD Opteron® Processor 270 (see Table .

Described systems were evaluated with the entire SPEC CPU2006 v1.1 bench-
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mark suite. The chosen performance metric was the base speed provided by the
benchmark. A base metric was chosen instead of a peak metric since the former
has more strict guidelines for compilation and forces to use the same compiler flags
for all benchmarks, avoiding the use of tailored optimizations.

As it has been previously described in Sect. SPEC CPU2006 provides three
workload sets for each benchmark: test, train and reference. These sets are ranked
in order of increasing workload. The first two are workloads that intend to check
the correctness of the compilation and execution process, while the third one is used
to evaluate performance. After running the benchmark, the SPEC CPU2006 suite
generates a report with the relative performance of the SUT compared with the refer-
ence machine. Recall that, to consider a report valid, it should have been generated
executing each benchmark three times with the test and train workloads and then
three times with the reference workload. Execution times of the latter provides the
final results. Each execution time is then compared with the execution time of the
same benchmark in the reference system [126], defining a ratio. From these ratios,
the suite calculates the geometric mean of 12 integer benchmark normalized ratios,
called SPECint2006, and the geometric mean of 17 floating-point benchmark normal-
ized ratios, called SPECfp2006.

Compiler flags

In order to compile and run the benchmark suite, each compiler needs some particular
flags. Unfortunately, SPEC CPU2006 does not suggest a minimum set of flags. This
makes the search for adequate flags a trial-and-error process. Moreover, as Chan et
al. pointed out in 1994 [32], it is difficult to ensure that none of the flags chosen is
offered by the compiler just to optimize some SPEC program, a situation not allowed
by any released SPEC benchmark. Besides this, the base speed metric forces to use
the same flags to compile the entire benchmark. After an extensive experimentation,
the final flags used in the study are shown in Table[2.4]

We found that that many additional optimizations available did not work equally
well or, even worse, could not be applied to all benchmarks. The particular reasons are
described below. We found this information extremely useful for anyone interested in
running these benchmarks.

GCC compiler, 410.bwaves, 32-bits versions (SUT1) In this system, when exe-
cuting 410.bwaves compiled with the -03 flag, the “train” input set leads to
incorrect results. -02 flag should be used instead.

GCC compiler, 64-bits version (SUT2 and SUT3) The -03 flag includes by default
-finline-functions, which expands functions during compilation. This flag
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GCC -O3 -funroll-loops -fno-inline-functions ftree-vectorize

INTEL sequential 32-bit flags: -O3 -ipo -xT -axT -no-prec-div -funroll-all-loops
-no-for-main (C and Fortran at once)

sequential 64-bit flags: -O3 -ipo -xW -axW -no-prec-div -funroll-all-loops
-no-for-main (C and Fortran at once)

parallel flags added: -parallel

SUN sequential 32-bit flags: -fast -xarch=sse3 -library=stlport4 (C++ Bench-
marks except 453.povray)

sequential 64-bit flags: -fast -xarch=sse3 -m64 -library=stlport4 (C++
Benchmarks except 453.povray)

parallel flags added: -xautopar -xreduction

Table 2.4: Compiler and linker flags used to obtain the SPEC CPU2006 base speed metric
used in this study. 64-bit binaries was generated for 64-bit SUTs.

makes some benchmarks fail in 64-bits systems. Therefore, we used the flag
-fno-inline-functions to cancel the optimization.

GCC compiler, 400.perlbench The -fno-string-aliasing flag is needed to run
this benchmark in all SUTs, so it should be included among the flags needed to
obtain the base speed metric.

GCC compiler, auto-parallelization options The GCC compiler is unable to com-
pile some benchmarks when adding the -ftree -parallelizing-loops=n
flag. This fact makes impossible to compare the effect of this feature with
the corresponding features of Sun and Intel compilers, since in order to run the
benchmark all applications must compile and run correctly.

Intel compiler Different problems were detected in the compilation of all the bench-
marks when the -fast flags is used. This is because the -static flag is auto-
matically included when using -fast. We have replaced the use of ~fast with
the use of all flags it includes, except -static.

Intel compiler, mixed Fortran-C applications Intel Fortran compiler does not cor-
rectly compile benchmarks that are written with a Fortran-C combination, such
as 435.gromacs, 436.cactusADM and 454.calculix. The flag -nofor-main for
the Fortran compiler solves this problem. This option specifies that the main
program is not written in Fortran, so it prevents the compiler to link for_-
main.o in the applications.

Intel compiler, 64-bits systems For these systems the -xT flag generates special-
ized code, enabling vectorization. In particular, according to Intel Reference
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Manual [88]], -xT may generate SSE instructions for the Intel® Core™ 2 Duo
Processor family. However, we have found that the use of -xT flag produces
invalid executions. The flag -xW, that optimizes for Pentium™4 processor, was
used instead. This problem does not happen with option -axT, that also gener-
ates non-processor specific code, although we change it to —axW to follow Intel
recommendations.

Sun compiler, 32-bits versions (SUT1), 400.perlbench and 416.gamess To com-
pile these benchmarks, the -xautopar and -xreduction should not be used.
This only happens with the v1.1 version of the SPEC CPU2006 benchmark,
while the v1.0 version runs perfectly well with these flags.

Sun compiler, 64-bits versions (SUT2 and SUT3), 400.perlbench To compile this
benchmarks, the -xautopar and -xreduction should not be used. As the with
preceding issue, this only happens with the v1.1 version of the SPEC CPU2006
benchmark, while the v1.0 version runs well with these flags.

Sun compiler, C++ benchmarks In these cases, SUT1 displays the following linker
error with the 64-bits configuration:
/usr/1ib64/libm.so: file not recognized: File format not recognized
This error is due to a problem with the Sun linker, that is not able to use the
1ibm library in 64-bits operating systems. We simply replace Sun’s linker with
GNU’s, through a symbolic link.

Sun compiler, C++ benchmarks It was necessary to use the STLport implementa-
tion of C++ standard library (-1ibrary=stlport4), instead of using the library
by default (1ibCstd). This change solves compilation errors in C++ bench-
marks. However, in the particular case of 453.povray, this option had to be
removed, using the library by default, because the STLport library causes the
following error:
octree.cpp, line 755: Error: The function copysign must have a proto-
type.

This change in the library used does not invalide the base speed metric obtained.

Sun compiler, auto-parallelization options When using these options with Sun
compilers, it is necessary to set the OMP_NUM_THREADS environment variable
to match the number of threads to use during the parallel execution, and the
PARALLEL variable, to set the number of available processors. In our case, we
set these variables to four.

410.bwaves, 483.xalancbmk, 447.deallll There is a run-time issue to be considered
when running these benchmarks. Due to a problem with the system stack size,
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these benchmarks show the following error message:

410.bwaves: copy #0 non-zero return code (rc=0, signal=11)

The solution is to increase the stack size before running the benchmark suite,
through the command ulimit -s unlimited.

2.3.1 Sequential performance

SPEC CPU2006 benchmarks are divided in two sets: integer benchmarks and floating-
point benchmarks. Since differences between these two types of benchmarks are sig-
nificant, we will analyze their results separately.

Sequential performance of integer benchmarks

To evaluate the relative performance of the code generated by each compiler suite,
we ran the entire SPEC CPU2006 test with each compiler and each SUT considered.
We start our study evaluating the relative performance of the SPEC CPU2006 integer
applications. Figure [2.1] shows the performance of the code generated for each com-
piler suite for all three SUTs considered. Figure [2.1(a) shows the results for SUTI,
in which Intel’s performance is much higher than the performance offered by GCC
and SUN. The reason is, in part, the availability of the autovectorization flag in Intel,
which is capable of vectorizing five loops in the 462.libquantum benchmark, while
GCC is only able to do it in a single loop. Sun performance is clearly lower than
Intel’s, both for the geometric mean and for most of the benchmarks executed.

Figure [2.1(b) shows the results for the 64-bits configuration (SUT2). In this case,
Sun achieves a better performance, although the differences among the compilers are
not so high.

The numerical differences in terms of performance are lower in SUT3 (64-bits),
and the overall performance of the machine is similar for all three compiler suites
(Fig.[2.1](c)). It is interesting to note the lower performance of 462.libquantum for the
Intel compiler, while for SUT1 and SUT?2 the same benchmark runs much faster. We
have found no explanation for this effect, since we have used the same compilation
flags as in SUT?2. Finally, it is worth remarking the high performance obtained by the
code generated with GCC in 464.h264ref benchmark, improving by 18% the results
obtained using Intel compilers.

We conclude that, in the set of integer benchmarks of SPEC CPU2006, all three
compilers perform equally well in the 64-bits environment with the optimization flags
considered. Regarding the 32-bits environment, Intel shows an average improvement
of 30.7% over the performance of the code generated by GCC compiler and 24.7%
over Sun compiler. We remind that performance is a moving target in the field of
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Figure 2.1: Sequential performance of SPEC CPU2006 INT benchmarks.
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Figure 2.2: Sequential performance of SPEC CPU2006 FP benchmarks.

compilers, and these results may experience variations with other SUT configurations,
compiler versions or different optimizations.

Sequential performance of floating-point benchmarks

Performance differences are bigger for SPEC CPU2006 floating-point benchmarks.
Figure [2.2] shows the relative performance of the execution of all 17 floating-point ap-
plications using the different compiler suites. Figure [2.2fa) shows the results obtained
in SUT1. For this environment, Intel gets the best results in every single benchmark,
surpassing the Sun compiler for more than 101% in 435.gromacs, 84% in 433.milc,
or 75% in 439.cactusAMD. On the other hand, GCC obtains the worst results in 11
benchmarks, with a global performance of 7.48 points, 38% lower than Intel and 18%
lower than Sun compilers.

Figure[2.2]b) shows the results for SUT2, that is, the same hardware configuration
than SUT1 but with a 64-bits operating system. Differences among compilers remain
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quite large. Intel obtains the best performance on 14 out of 17 benchmarks, with an
average performance that is 35.8% better than the performance obtained with GCC
code and 15.4% better than Sun’s.

If we compare the results for SUT1 and SUT?2, we observe that all three compilers
improve their results when running in the 64-bits environment, while the improve-
ment is much smaller when dealing with integer-based applications. This result is
consistent with the work by Ye et al. [[172], that reports a performance gain of 7% on
average when running in a 64-bit address space. In the floating-point case, Intel com-
pilers achieve an average improvement of about 7%, Sun improves by 21% and GCC
improves by 25%, although the performance of the latter is well below its competitors.

Finally, Fig. 2.2]c) shows the relative performance of SUT3, a 64-bits system
(recall Table 2.3). Differences are not so high in this case, although Intel performs
consistently better than Sun and GCC compilers, with better results in roughly half of
the benchmarks. As it happened in other cases, with rare exceptions, the use of GCC
compilers lead to worse results than the use of Intel and Sun compilers, although
differences are minor: 20% of slowdown with respect to the code generated by Intel
and 16% with respect to Sun’s.

We conclude that, in the case of the SPEC CPU2006 floating-point applications,
the use of the Intel compiler suite considered leads to better performance results with
the optimization flags considered, particularly when the code runs on Intel-based ar-
chitectures.

2.3.2 Parallel performance

The following lines summarize the performance of the parallel code generated by Intel
and Sun compilers. Although GCC 4.3.2 offers the possibility of exploiting loop-
based parallelism through the use of the ~-ftree-parallelizing-loops flag, its use
leads to compilation errors in several of the benchmarks of the SPEC CPU2006 suite.
The strict rules of use of the benchmark suite prevent us to compile and evaluate
separately each benchmark, so the performance of parallel GCC applications will not
be considered here.

Regarding integer benchmarks, the performance results of the parallel versions
automatically generated by Intel and Sun compilers are pretty much the same that for
their sequential counterparts. These results, that are not shown here, makes clear that
the autoparallelization capabilities offered by Intel and Sun compilers are not enough
to extract any parallelism of the considered integer benchmarks. These benchmarks
are in fact hardly parallelizable even by hand, and the cost of thread management is
usually higher than the benefits obtained.

While differences in integer-based benchmarks are minimal, the performance gain
obtained with autoparallelization mechanisms is much higher for floating-point-based
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Figure 2.3: Parallel performance of SPEC CPU2006 FP benchmarks. The black box in each
bar represents the performance of the sequential version of the application in the same SUT.

applications. Figure shows the results.

The relative performance of the parallel code running in SUT1 is shown in Fig.[2.3|a).
The black lines in each bar represent the performance of the sequential execution of
the same benchmark in this architecture. We can see that both Intel and Sun compilers
present a performance gain in almost all benchmarks, with no significant slowdown in
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any case. The average performance obtained according to SPEC specifications shows
an improvement of about 15% for Intel code and 16% for the code generated by Sun
compilers. We can consider these values as acceptable, taking into account that they
have been obtained automatically and the parallel system is composed of just two
threads. It is interesting to highlight the behavior of 436.cactusAMD, with a speedup
of about 2 x with two cores.

The situation changes drastically when evaluating the performance of the parallel
code in SUT2, that runs a 64-bits environment. Figure [2.3(b) shows the results. It
is surprising to discover that the Intel-compiled version of several applications run
slower in this parallel environment, while the performance of the code generated by
Sun compilers is similar to SUT1. Since the purpose of this study is to evaluating
the capabilities of different compilers while running SPEC benchmark code, no effort
was done in migrating the applications to a 64-bits environment other than adjusting
compiler flags. For this environment, Sun compilers obtains a performance gain of
about 10% with respect to the sequential evaluations on SUT2.

Finally, Fig. 2.3|c) shows the performance results when running the benchmarks
in a four-threads environment. In this case, Intel achieves a 17% improvement average
over the sequential code, while Sun gets about 22% improvement. Efficiency, on the
other hand, drops to 29% for Intel and 30% for Sun code.

Making the average of the results for the floating-point applications of SPEC
2006, the use of auto-parallelization flags allows obtaining a significant performance
gain, of about 17% on average with Intel compilers and 21% with Sun compilers.

2.3.3 Conclusions of the study

This study aims to help users to better understand the wide spectrum of compiler tech-
nology, evaluating three of the most popular compilers using SPEC2006 benchmarks.
The chapter evaluates the performance of the generated code for both integer and
floating-point benchmarks, not only in terms of sequential performance of the gener-
ated code, but also in terms of the availability of auto-parallelization mechanisms.

Our results show that, with respect to integer benchmarks, all three compilers
perform equally well, with small differences in terms of performance that are too
small to be considered significant. In the set of floating point benchmarks, differences
between sequential performance of the code generated by the three compilers are more
relevant. The code generated by the Intel compiler used is 39.8% faster than the code
generated by GCC and 16.4% faster than the code generated by Sun compiler. Due to
the constant improvements on compiler technologies, these performance differences
may change in other compiler versions and/or using a different set of optimization
flags.

With respect to the possibility of auto-parallelizing the code, our study concludes
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that this option is not useful when processing SPEC 2006 integer applications. How-
ever, in the case of the floating-point applications of SPEC 2006, the use of auto-
parallelization flags allows obtaining a significant performance gain, of about 17% on
average with Intel compilers and 21% with Sun compilers. Although Sun obtains a
better performance gain, it might be due to its lesser performance in the sequential
tests. We lack the implementation details that explain the performance gap between
these two compilers, but the study arises that their parallelization capabilities are quite
similar, and differ from one SUT to another.

Considering not only overall results, it is worth noting that the performance gains
are not uniform. For example, Intel presents a low performance in 462.libquantum
benchmark in 64-bits systems, while GCC compiler generates fast code for 464.h264ref
with SUT2. This prevents us to not generalize these conclusions to all applications
written in a given programming language. Moreover, a tailored collection of flags for
a given application may improve performance results in particular combinations of
applications, compilers and platforms. Therefore, a developer who wants to choose
between one of these compilers, either to run a sequential application or parallelize
a code automatically, should evaluate their performance for his/her application and
underlying architecture.

2.4 The problem of extracting more parallelism

Having in mind the risks of generalizing performance results while talking about code
generated by different compilers, we can conclude from these results that paralleliza-
tion capabilities of both Intel and Sun compilers are an interesting feature that is ma-
ture enough to consistently produce a performance improvement at no cost in terms of
developing effort. This fact makes these options a good starting point to better exploit
the capabilities of modern multicore systems.

However, and here it is the main problem and concern, relying on these features
to generate a parallel version for a many-cores architecture may not be enough to
fully exploit hardware capabilities of the system, due to the reduced performance
gain obtained. We find that searching for alternatives, as speculative parallelization,
that could exploit better CPU’s processing capabilities, and the intrinsic parallelism
presented in many of the source codes, is quite necessary.

Some studies suggests that the performance of thread-level speculation is very
limited [97]], obtaining just an 1% of improvement over SPEC CPU2006 bench-
marks [96]. However, these studies and same-style others have been severely crit-
icized in [89], because they only consider parallelism at the innermost loop level,
not considering outer loops, which imply to discard a significant source of speedup.
They do not either take into account the effect of compiler optimizations that could
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improve the performance of speculative parallelization. Trying to correct these mis-
takes, Packirisamy et al [[134] perform their own study and obtain very different re-
sults. Overall, with an optimal loop selection in SPEC CPU2006 benchmarks, they
achieve a speedup of 60% on four cores, which is quite higher than the 17% obtained
by Intel compiler using auto-parallelization in a four cores system in our study.
These results encourage us to seriously consider speculative parallelization, and
to build procedures and tools to do this parallelization as easy as possible. A way to
achieve this is taking advantage of the information present in the source code, and
combining it with profile information. This path is explored in the following chapter.

The work and the conclusions described in this chapter has been published in the
following papers:

e Using SPEC CPU2006 to Evaluate the Secuential and Parallel Code Generated
by Commercial and Open-source Compilers. Sergio Aldea, Diego R. Llanos,
Arturo Gonzalez-Escribano. The Journal of Supercomputing, 59(1), January
2012, pages 486-498.

e Evaluacién de compiladores comerciales usando SPEC CPU2006. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XIX Jornadas de Parale-
lismo, Castellén, Spain, September 17-19, 2008.



38

Chapter 2. Evaluation of Compilers Parallelization Capabilities



Chapter

OpenMP speculative Clause
Proposal and Definition

Software-based, thread-level speculation (TLS) systems allow the parallel execution
of loops that cannot be analyzed at compile time. TLS systems optimistically assume
that the loop is parallelizable, and augment the original code with functions that check
the consistency of the parallel execution. If a dependency violation is detected, offend-
ing threads are restarted, making them to consume correct values. Although many
TLS implementations have been developed so far, robustness issues and changes re-
quired to existent compiler technology prevent them to reach the mainstream. In this
chapter we propose a different approach: To add TLS support to OpenMP. A new
OpenMP speculative clause would allow executing in parallel loops whose depen-
dency analysis cannot be done at compile time.

3.1 Problem description

The availability of multicore architectures allows users not only to run several applica-
tions at the same time, but also to run parallel code. However, the manual development
of parallel versions of existent, sequential applications is an extremely difficult task
because it needs (a) an in-depth knowledge of the problem to be solved, (b) under-
standing of the underlying architecture, and (c) knowledge on the parallel program-
ming model to be used. Meanwhile, automatic parallelization offered by compilers
only extracts parallelism from loops when the compiler can assure that there is no risk
of a dependency violation at runtime. Only a small fraction of loops falls into this
category, leaving many potentially-parallel loops unexploited. Alternative, recently-

39
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Parallel, speculative execution

Original Code Thread 1 Thread 2 Thread 3
(iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)

do i=1,9

if (i == k) then v[1l] = £(v[1]) v = £(vI4]) 2 v = f(v ) 2
v[i] = £(v[i-2]) = £(v[2]) 1 vis vi[8] =>f{¥[8])
else K i=f(v[3]) 6] = £(v[6 = £(v[
vIil = £(v[i])
end if | v[4] = £(v[4]) v[7] = £(v[7])
end do 3 v[5] = v[8] = £(vI[8])

v[6] = £(v[6]) v[9] = £(v[9])

Figure 3.1: Speculative parallelization starts the parallel execution of the loop, while a mon-
itor tracks the execution to detect cross-thread dependency violations. If such a violation
occurs, (1) speculative parallelization stops the consumer thread and all threads that execute
subsequent blocks, (2) discards its partial results, and (3) restarts the threads to consume the
correct values.

proposed concurrency primitives, such as transactional memory, suffer from other
problems such as immaturity and a lack of scalability [[60]].

The most promising runtime technique to extract parallelism from fragments of
code that cannot be analyzed at compile time is called software-based Speculative Par-
allelization (SP). This technique, also called Thread-Level Speculation (TLS) [36, 53]
78| or even Optimistic Parallelization [[102} [103]] aims to automatically extract loop-
and task-level parallelism when a compile-time dependency analysis cannot guaran-
tee that a given sequential code is safely parallelizable. TLS optimistically assumes
that the code can be executed in parallel, relying on a runtime monitor to ensure cor-
rectness. The original code is augmented with function calls that distribute iterations
among processors, monitor the use of all variables that may lead to a dependency
violation, and perform in-order commits to store the results obtained by successful it-
erations. If a dependency violation appears at runtime, these library functions stop the
offending threads and restart them in order to use the updated values, thus preserving
sequential semantics.

There exists a trade-off between the potential performance gain and the overheads
due to the use of additional functions to monitor the consistency of the parallel ex-
ecution. However, as long as not many dependency violations arise, TLS can speed
up these fragments of code, effectively augmenting the percentage of sequential code
that can be executed in parallel.

To better understand how SP works, we will briefly describe the different situa-
tions that may arise when two threads access the same variable concurrently, as we
can see in Fig. [3.I] Informally speaking, and focusing on loop-based speculation,
variables that are always written before being read in the context of a given iteration
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Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iteration 1, x =1) (iteration2, x=1) (iteration 3, x =2) (iteration 4, x =2)
t0 (a) Speculative stores plus detection of dependence violations (Time 13: thread 1 detects no dependence violations)
t Lcica 1lvarl = SV[x] t2 (Time t6: thread 1 detects no dependence violations) .
13 L sv [x] = LocalVar2 R (Time t10: Thread 3 detects violation: thread 4 squashed)
t4 LocalVarl = SV[x]
P o t5
6 e :SV [x] )= LocalVar2 t6 B _ .
t7 LocalVarl = SV[x]
8 LocalVarl = SV[x]
t9 SV[x] = LocalVar2
(Time t4: Thread 2 forwards updated value for sv[1] from thread 1) 1o - sv[x] 4= LocalVar2
Reference  (Time t8: Thread 3 forwards value of sv{2] from reference copy)
w%\’/[%f] (Time t7: Thread 4 forwards value of sv[2] from reference copy)
(b) Speculative loads with most-recent value forwarding
Time ; ji
\/ (c) In—order commit of data from successfullyfinished threads

Figure 3.2: Example of speculative execution of a loop and summary of operations carried
out by a runtime TLS library.

are called private. Variables that are only read and not written in the whole loop are
called read-only shared variables. If a compiler detects that all variables inside a loop
are either private or read-only shared, then the loop can be safely parallelized'. Un-
fortunately, most loops have variables whose values might be written in a particular
iteration and later be read in a subsequent iteration. Sequential semantics impose a
total order for both operations, and if these two operations are done out-of-order by
different threads a dependency violation occurs. In this case, the results generated
by the thread that consume the outdated value of such speculative variable should be
discarded, together with all the results generated by its successors. This is called a
squash operation.

Figure [3.2] shows a more detailed example of thread-level speculation. The fig-
ure represents four threads executing four consecutive iterations, and the sequence of
events when the loop is executed in parallel. The value of x was not known at compile
time, so the compiler was not able to ensure that accesses to the SV structure do not
lead to dependency violations when executing them in parallel. Note that, at runtime,
the actual indexes of SV [x] are known.

A handful of TLS solutions has been proposed during the last years by several re-
search groups [36, 56, 103} [171]]. However, none of these solutions are mature yet to
be integrated into production compilers and runtime libraries. The limitations suffered
by these systems are motivated by the lack of a compile-time framework to search for

"Further analysis may be required to ensure that, after parallel execution, final values stored in private
variables meet sequential semantics.
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#pragma openmp parallel for \
private (i,b) shared (a,v)
for (i=0; i<MAX; i++) { | for (i=0; i<MAX; i++) {

b = func(i); b = func(i);

v[i] = b * alil; v[i] = b * al[i];

(a) (b)

Figure 3.3: Example of loop parallelization with OpenMP.

code fragments suitable for speculative execution, and the difficult of automatically
adding the speculative directives needed for runtime parallelization. Most TLS solu-
tions so far relies on human intervention to transform the original, sequential code into
a version that can be speculatively executed in parallel. Some proposals manually an-
alyze and transform the original code, while others need the programmer to manually
mark the potentially parallel regions with compiler directives. None of these solutions
are desirable in production environments, since they require a deep understanding of
both the original code and the speculative parallelization method used.

The purpose of this chapter is to discuss how to add TLS support into OpenMP [132]],
one of the most successful parallel programming models available. Parallel applica-
tions written with OpenMP should explicitly declare parallel regions of code. In the
case of parallel loops, the programmer should classify all variables used inside the
loop according to their use. Figure [3.3| shows an example of (a) a sequential C loop,
and (b) its parallelization with OpenMP directives. As can be seen, all variables inside
the loop body should be classified as “private” or “shared”. Informally speaking, “pri-
vate” variables are always defined in a given iteration before their use, being their data
not propagated across iterations. On the other hand, “shared” variables have values
that are visible by all threads executing the loop in parallel, i.e. their data should be
available across different iterations. In our example, a[] is a read-only shared vector,
while v [] is a shared vector whose elements are modified by each iteration.

Being OpenMP a simple and powerful mechanism for code parallelization, its use
has several limitations. First, the classification of all variables inside of the critical
region according to their use is a time-consuming, error-prone task. Second, OpenMP
does not ensure the execution of the code according to sequential semantics, being the
programmer responsible for such a task. In our example, in Fig.[3.3] the programmer
is responsible to ensure that each thread modifies a different element of v[]. Third,
in many cases potentially-parallel regions cannot be safely parallelized because their
control flow depend on runtime data. Consider the code depicted in Fig[3.4] Suppose
that the value of k is not known at compile time. Assuming b>0, if the parallel ex-
ecution of the loop calculates iteration i before iteration i-b, access to v[i-b] may
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#pragma openmp parallel for \
private (i,b) shared (a,k) \
speculative(v)
for (i=0; i<MAX; i++) { | for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
if (b==k) if (b==k)
v[i] = v[i-b]; v[i] = v[i-b];
else else
v[i] = b * al[il; v[i] = b * al[il;
+ +
(a) (b)

Figure 3.4: A loop that cannot be safely parallelized with current OpenMP clauses (a), and
its parallelization with our new speculative clause (b).

return an outdated value, breaking sequential semantics. The only way to guarantee a
correct behavior would be to serialize the execution of iterations ¢ — b and ¢, a difficult
task in the general case.

Taking all this into consideration, our proposal consists in augmenting OpenMP
with software-based TLS techniques, to ensure that definitions and uses of shared
variables are carried out according to sequential semantics. To do so, we propose a
new speculative clause. This clause would allow the programmer to handle varia-
bles whose use can potentially lead to a dependency violation, and therefore should
be monitored at runtime in order to obtain correct results. Note that the use of such a
category effectively frees the programmer from the task of deciding whether a partic-
ular variable is private or shared. To the best of our knowledge, no production-state
parallel programming model incorporates support for software-based TLS.

In addition to the usefulness of this new clause for any programmer, the clause
may also have a great impact in the usability of the software-based speculative par-
allelization runtime system developed by Cintra and Llanos [36, 37, (110], which this
Ph.D. thesis takes as its reference. This system uses OpenMP to handle the execution
of the threads, and to classify the variables in terms of their accesses. With the defini-
tion of a new speculative clause, variables that might lead to a dependency violation
could be annotated by the programmer, and automatically instrumented at compile
time.

The rest of the chapter is organized as follows. Section [3.2]describes some of the
properties of OpenMP. Section [3.3] gathers the different approaches to the problem
of adding support for speculative parallelism into OpenMP. Section [3.4] describes the
new OpenMP clause that we propose, while Sect. [3.5] describes the changes that the
proposed clause has to perform in the loop being parallelized. Finally, Sect. [3.6]sum-
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marizes the conclusions of this chapter, as well as our contributions to the literature.

3.2 Analysis of OpenMP capabilities

This section explores some of the features of OpenMP that make it a good alternative
to parallelize source codes, analyzing some of its limitations that lead us to propose
the definition of a new clause.

OpenMP [33]52] is an API (Application Programming Interface) developed to
specify parallel computation in shared memory systems, for C, C++, and Fortran. In
a shared memory system, all processors share the same memory; namely, data writ-
ten by a processor is visible by others processors. Therefore, OpenMP, as a shared
memory programming language, communicates by manipulating shared memory va-
riables.

In simplified terms, OpenMP is an abstraction layer that hides most of the tricky
details of parallel programming in shared memory systems. OpenMP is appropriated
when the programmer knows that the code can be run in parallel, but the data depen-
dency analysis is not able to determine whether it is safe to parallelize or not, or when
the compiler lacks information to parallelize the code. The way of using OpenMP is
through the addition of compiler directives in the original sequential code, annotating
and identifying parallel loops, without no bigger changes.

However, OpenMP does not provide the capability of processing variables that
may lead to a dependency violation. It only provides clauses, which affect the direc-
tives, to point out which variables are shared by all threads, and which variables are
private to each thread. Programmers are responsible for detecting those situations in
which a dependency violation may occur, and manually rewrite the code using some
of the OpenMP directives. However, some situations are impossible to solve without
breaking the parallelism. For these cases, and also for those situations when a manual
rewriting of the code is not straightforward, it becomes greatly useful the definition
of a new clause that allows handling such conflictive variables, and triggers all the
changes needed in the code automatically.

To sum up, some of the OpenMP advantages and drawbacks are the following:

OpenMP advantages

e Good performance and scalability.
e De-facto and mature standard.

e Portability. OpenMP is supported by several compilers? as GCC, Intel’s, IBM’s

%see http://openmp . org/wup/openmp-compilers/
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or Cray’s compilers.

e OpenMP requires a little effort to parallelize since it appears as a abstract layer.
With simple compiler directives it is possible to declare which variables are
private or shared. OpenMP makes the rest.

e OpenMP allows incremental parallelism, working on one region at one time.
Thus, substantial changes in several sections at once are not needed.

e In general, original sequential source code does not need to be changed. This
reduces the chance of introducing errors.

e Using a shared memory model avoids to explicitly specify data distribution.

OpenMP disadvantages

e OpenMP does not give the programmer any hint about the feasibility of run-
ning the code in parallel. The programmer uses OpenMP at his/her own risk,
and usually needs to perform some changes manually in order to parallelize
codes which have likely dependency violations. The new clause proposed in
this chapter aims to solve this issue.

e Even if a code is feasible to be run in parallel, OpenMP does not ensure an
improved performance.

e It requires a compiler that supports OpenMP.

e OpenMP overheads are not worthy when the size of the loop is too small.

Defining a new clause to point out variables that might lead to dependency vio-
lations is the first step in order to achieve an automatic transformation of the code to
handle this dependencies. In the next chapter, we will focus on how we combine the
proposed clause with a TLS system in order to parallelize a code.

3.3 OpenMP and TLS: State of the art

As far as we know, there are not proposals to extend OpenMP to support software-
based TLS. Instead, in the literature there are some approaches that extend OpenMP to
support hardware speculation. Early works such as [[117] propose the use of pragma
directives to enable speculative parallelism at a hardware level, being the details of
the implementation transparent to the programmer. In a similar way, [133]] exposes
the advantages of using OpenMP to explicit hints to the compiler and the underlying
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hardware in order to extract speculative parallelism. In contrast to our proposal, these
works do not define any new OpenMP directive.

More recently, proposals are focused on Transactional Memory (TM) [83], [105]],
an alternative that implements speculative parallelism but differs from TLS in how
data dependencies are handled. TM uses transactions rather than locks to synchronize
critical sections in parallel applications, ensuring that these transactions are executed
atomically in isolation, similarly to the transactions of a database system. In the other
hand, TLS spawns new threads from the one-thread sequential application, which is
split in tasks or chunks of iterations that are speculatively executed by each thread.

Proposals such as [13} 1123} [169] extend OpenMP to support TM, providing new
directives and clauses in order to mark and wrap critical sections. OpenTM [13]], from
Stanford, is an Application Programming Interface (API) which extends OpenMP
to support speculative parallelization by using TM. OpenTM defines new constructs
which enable programmers to wrap critical sections within transactions, and also
extends the runtime system of OpenMP, including new runtime functions, to allow
the transactional execution. They implement OpenTM extending the GNU OpenMP
(GOMP) implementation [130] for GCC 4.3.0. A similar proposal comes from the
Barcelona Supercomputing Center. They also propose new directives or clauses to
integrate OpenMP with TM [[123] and present a runtime environment [122]] to sup-
port their proposal. Instead modifying GCC, they use a source-to-source translator to
transform the code within a transaction, and generate the proper function calls to the
runtime library routines. Another proposal to include transactions in OpenMP is the
IBM XL STM compiler [169]. They suggest a simple directive to wrap the structured
block as a transactional region, and provide a runtime system to execute the code
region. Focusing on the IBM XL compiler, there are also a proposal of directives
to support hardware transactional memory [20]], and an another to support hardware-
based TLS [86]. Note that these two proposals require the use of the IBM Blue Gene
hardware, and hence, unlike our system, they cannot be used in any architecture.

Similar to these proposal, but focused on embedded systems, Soc-TM [63] is a
framework that proposes another extension to OpenMP, defining a set of compiler di-
rectives to provide hardware and software support for TM programming on embedded
systems. This allows the extraction of the speculative parallelization inherent in some
applications, without dealing with the low-level details of the transactional program-
ming. Programmers only need to outline transactions in the application code, and the
system transforms and execute the resulting code.

Although some of these proposals implement the code generation required, as far
as we know, there are not any specific work that proposes or implements OpenMP
extensions to support software-based Thread-Level Speculation. This gap is what we
aim to fill with the OpenMP clause proposed in this chapter. In the next chapter we
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#pragma omp parallel for speculative (list)
for-loop

Figure 3.5: New OpenMP speculative clause proposed.

will see how the support for this clause is implemented as a plugin-based compiler
pass that supports the TLS runtime library based on the technique that Cintra and
Llanos’ speculative runtime system [36l [37]] implements.

3.4 Solution proposed: A new OpenMP speculative clause

The problem of adding speculative parallelization support to OpenMP can be handled
from two points of view. The first one requires the addition of a new directive, for
example pragma omp speculative for. However, this option is more demanding,
because there are many OpenMP related components that should be modified. We
believe that it is preferable to use a different approach, which is the proposal of a new
clause for the OpenMP “parallel loop” construct. This new clause would enable the
programmer to enumerate which variables should be updated speculatively. As it is
stated in Sect.[3.2] the definition of a OpenMP clause to point out conflictive variables
that may lead to a dependency violation is rather useful, not only from the point of
view of a programmer facing a source code with this possible issue, but also from the
perspective of the TLS system, because this clause is the first step to transform the
code automatically, and handle the dependencies.

Taking this into consideration, we propose a new clause for OpenMP to provide
support for speculative parallelization of FOR loops, using OpenMP as API, and the
speculative system described in Section4.2.1]as runtime TLS library, although details
on their connection will be treated in the next chapter.

The new OpenMP clause is called speculative, and it needs to be used as clause of
a parallel for directive. This new clause is shown in Figure[3.5] where 1ist contains
variables that may lead to any dependency violation.

With this extension, programmers write OpenMP programs as usual, but now with
the possibility of annotating as speculative those variables that could lead to a de-
pendency violation. With this method, programmers do not have to take care of han-
dling these potential violations, being the speculative runtime system the responsible
of such task. Once a programmer annotates each variable to its type, a compiler plugin
augments the code to integrate the TLS runtime library.

Figure [3.6] shows an example of the use of the proposed clause. Variable 1 is
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#pragma omp parallel for default (none)
private (i, Q, aux)
speculative (a)
for (i = 0; i < MAX; i++) {
Q=1 % (MAX) + 1;
aux = al[Q—1];

Q0 = (4 % aux) % (MAX) + 1;
a[Qo—1] = aux;
}

Figure 3.6: Example of FOR loop annotated with the speculative clause.

private, since it is the variable that controls the iterations of the FOR loop. Variables Q
and aux are private, because they are always written before being read in the context
of an iteration. And finally, variable a is speculative, because accesses to this variable
can lead to dependency violations. During parallel execution, a particular iteration
may read from a a non-updated value and therefore the execution will be incorrect. As
we will see in Sect. a speculative management of a allows the parallel execution
of this loop.

3.5 speculative clause internals

From the point of view of a programmer, the structure of a loop being speculatively
parallelized due to the proposed clause is not so different from a loop parallelized with
regular OpenMP directives. Current OpenMP parallel constructs force the program-
mer to explicitly declare the variables used into the parallel region according to their
use, which can be an extremely hard and error-prone task if the loop has more than a
few dozen lines. In this way, if the programmer is unsure about the use of a certain
variable or structure, he could simply label it as speculative.

However, the use of the new clause forces the compiler plugin to perform several
changes into the source code. Since the clause points out those variables which may
lead to a dependency violation, the compiler has to rewrite part of the loop in order to
handle possible violations, ensuring a correct parallelization of the loop.

Under speculative execution, each thread maintains a version copy of the data
structure that is accessed speculatively (in Fig the SV vector). At compile time,
the original code is augmented to perform speculative stores, speculative loads, and
in-order commiits. In addition, the loop structure is rearranged in order to allow the re-
execution of squashed iterations. The following paragraphs describe these operations
in detail.
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Speculative stores At compile time, all write operations to the data structure being
speculatively accessed should be replaced with calls to a speculative store function.
This function writes the datum in the version copy of the current thread, and ensures
that no thread executing a subsequent iteration has already consumed an outdated
value for this structure element, a situation called “dependency violation”. If such a
violation is detected, the offending thread and its successors are stopped and restarted.
In the example depicted in Fig. [3.2] the checks for dependency violations performed
by Threads 1 and 2 do not find any successor that has consumed an outdated value
for SV[1]. However, at time t1o, Thread 3 discovers that Thread 4 has consumed in
t7 an outdated value for SV[2], so a dependency violation has been found. Therefore,
Thread 4 should be stopped and restarted, in a so-called squash operation. When
Thread 4 is restarted, it will forward the updated value for SV[2] from Thread 3, thus
successfully continuing the execution of its chunk of iterations.

Speculative loads At compile time, all reads to the speculative data structure should
be replaced with calls to a function that performs a speculative load. This function
obtains the most up-to-date value of the element being accessed. This operation is
called forwarding. If a predecessor (that is, a thread executing an earlier iteration)
has already defined or used that element, the value is forwarded (as Thread 2 does in
Fig.[3.2). If not, then the function obtains the value from the reference copy of the
data structure (as Thread 3 does in the figure).

Commit operation If no dependency violation arises during the execution of a
given thread, its changes to the speculative data structure should be committed to
the reference copy of the data structure. Note that commits should be done in order,
to ensure that the most up-to-date values are stored. After performing the commit
operation, a thread can receive a new iteration or block of iterations to continue the
parallel work.

Scheduling iterations under TLS Finally, the original loop to be speculatively par-
allelized should be augmented with a scheduling method that assigns to each free
thread the following chunk of iterations to be executed. If a thread has successfully
finished a chunk, it will receive a brand new chunk not executed yet. Otherwise, the
scheduling method may assign to that thread the same chunk whose execution had
failed, in order to improve locality and cache reutilization.

Therefore, the speculative clause triggers significant changes into the code. Read
and write operations to speculative variables have to be replaced at compile time with
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function calls of “loading” and “storing” that handle these operations. Read opera-
tions have to be changed for function calls that obtain the most up-to-date value of the
element being accessed. Write operations have to be changed for function calls that
write the data in the version copy of the current processor, ensuring that no thread exe-
cuting a subsequent iteration has already consumed an outdated value for this structure
element, a situation called “dependency violation”. If such a violation is detected, the
offending thread and its successors has to be stopped and restarted.

Reduction operations such as sum and maximum reductions applied on specula-
tive variables have to be detected too. Although this type of accesses could be replaced
with regular loading and storing operations, replacing them with the appropriate func-
tion calls that handle them efficiently leads to faster performance.

The clause also implies changes further than speculative loads and stores. These
changes depend on the underlying TLS system. In our case, the loop annotated with
the speculative clause requires to be transformed into a loop with as many iterations
as available threads. As we saw above, at the beginning of the loop body, a scheduling
method assigns to the current thread the block of iterations to be executed.

Once a thread has finished the execution of the assigned chunk of iterations, a
function has to be called in order to check the correct the execution of these iterations.
If the execution was successful, the version copy of the data is committed to the main
copy; otherwise, version data is discarded.

To sum up, tasks that should be carried out when the speculative clause is used
includes (1) replacing the original definition of the loop, (2) changing all accesses
to speculative variables for the corresponding “loading” and “storing” function calls,
and (3) adding the corresponding function call that is invoked once each thread has
finished its chunk of iterations, to either commit the results, or restart the execution if
the thread has been squashed.

3.6 Conclusions

Adding speculative support to OpenMP would increase the number of loops that could
be parallelized with this programming model. The proposed OpenMP clause, called
speculative, would allow executing in parallel loops whose dependency analysis
cannot be done at compile time. The programmer may label some of the variables in-
volved as private or shared, using speculative for the rest. Note that our proposal
would let to transform any loop into a parallel loop, although the parallel performance
will depend of the actual number of dependency violations being triggered at runtime.

Details of how the clause are implemented, and a description of the specific
changes required in the code in order to link with our reference TLS library, will
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be given in the following chapter.

The work and the conclusions described in this chapter has been published in the
following paper:

e Support for thread-level speculation into OpenMP. Sergio Aldea, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Proceedings of the 8th international confer-
ence on OpenMP in a Heterogeneous World (IWOMP’12), Barbara M. Chap-
man, Federico Massaioli, Matthias S. Miiller, and Marco Rorro (Eds.). Springer-
Verlag, Berlin, Heidelberg, 2012. pages 275-278.
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Chapter

OpenMP speculative Clause
Design, Implementation and
Evaluation

In this chapter we propose a compile-time system that adds support for Thread-Level
Speculation into OpenMP. Our solution augments the original user code with calls to
a TLS library that handles the speculative parallel execution of a given loop, with the
help of the new OpenMP speculative clause, which was proposed in the previous
chapter, for variable usage classification. To support it, we have developed a plugin-
based compiler pass for GCC that augments the code of the loop. With this approach,
we only need one additional code line to speculatively parallelize the code, compared
with the tens or hundreds of changes needed (depending on the number of accesses to
speculative variables) to manually apply the required transformations.

4.1 Problem description

As we have stated in previous chapters, development of parallel versions of existent,
sequential applications is an extremely difficult task because it needs (a) an in-depth
knowledge of the problem to be solved, (b) understanding of the underlying architec-
ture, and (c) knowledge of the parallel programming model to be used. Many parallel
languages and parallel extensions to sequential languages have been proposed to ex-
ploit the capabilities of modern multicore system. The most successful proposal in the
domain of shared memory system is OpenMP [33]], a directive-based parallel exten-
sion to sequential languages as Fortran, C, or C++, that allows the parallelization of
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user-defined code regions. As we have stated in the previous chapter, OpenMP does
not ensure the correct execution of the code according to sequential semantics, making
the programmer responsible for such tasks. Possible dependency violations between
iterations that may occur during execution need to be addressed by the programmers.

As we saw in Chap. [2| automatic parallelization offered by compilers only ex-
tracts parallelism from loops when the compiler can assure that there is no risk of a
dependency violation at runtime. Only a small fraction of loops falls into this cate-
gory, leaving many potentially parallel loops unexploited. Thread-Level Speculation
(TLS) techniques allow extracting parallelism from fragments of code that cannot be
analyzed at compile time, namely, the compiler cannot ensure that the loop can be
safely run in parallel. TLS can deal with those situations in which dependency vi-
olations may occur, leading the parallel loop to finalize its execution correctly. The
main problem of these techniques is that the code needs to be manually augmented in
order to handle the speculative execution and monitor the possible dependencies. Pro-
grammers have to modify those accesses to variables that may lead to a dependency
violation, also known as speculative variables.

In Chap. 3| we have proposed to extend OpenMP to allow the user to mark varia-
bles as speculative, being such variables later handled by a compile-time system that
enables the automatic transformation of the code to support its execution by a TLS
runtime library. As we will see, the transformations proposed are transparent to pro-
grammers, who do not need to know anything about the TLS parallel model. These
key aspects of our proposal solves the problems stated above. Programmers only have
to classify variables depending on their accesses, letting our solution perform all the
changes needed in the source code. To do so, in the previous chapter we have defined
a new OpenMP clause (speculative) that handles those variables whose use may
lead to any dependency violation. See Chap[3] for more details concerning this new
clause and its semantic.

In this chapter, we present the development of a GCC plugin-based compiler pass
to support the new clause speculative into GCC OpenMP implementation. This
pass transforms the loop with the corresponding omp parallel for directive, insert-
ing the runtime TLS calls needed to (a) distribute blocks of iterations among proces-
sors, (b) perform speculative loads and stores of speculative variables (pointed out
using the new clause), and (c) perform partial commits of the correct results calcu-
lated so far. The TLS runtime library used is based on the same design principles as
the speculative parallelization library developed by Cintra and Llanos [36} 37].

This chapter also aims to contribute to the scarce documentation about GCC plu-
gins. We explain the plugin internal structure, together with the numerous issues that
appear in the development of a plugin-based, GCC compiler pass. As far as we know,
most of the information provided here is not available elsewhere, unless looking into



4.2. State of the art 55

Original Code Parallel Execution
do i=1,9 Thread 1 Thread 2 Thread 3
if (i == k) then . . _ . . _ . . _
oli] = E(vli-2]) (iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)
else
v[i] = £(v[i]) vI[1l] = £(v[1]) v[4] = £(v[4]) v[7] = £(v[7])
end if v[2] = £(v[2]) vi5] = £v[3]) v[8] = £(v[8])
end do I3)= £(vI3D) v[6] = £(v[6]) vI9] = £(v[9])

Figure 4.1: Value of k is not known at compile time, and thus the loop is not parallelizable.
If & = 5, thread 1 may not have computed the value of v[3] in time for use by thread 2. Note
that if the dependency did not cross thread boundaries (for example, with & = 6), the compiler
could parallelize the loop.

the GCC source code itself. We also describe how to build, link to GCC, and execute
a plugin. In App. [C]we give additional details.

The rest of the chapter is organized as follows. Section4.2|introduces some TLS
key concepts, and some related work. Section 4.3]explains how the TLS runtime li-
brary used by the proposed solution works, as well as some of the transformations
that need to be applied into the source code to speculatively parallelize an application.
Section {.4] describes the GCC architecture and its plugin mechanism. Section §.5]
presents the solution proposed to add support for TLS into OpenMP. Section 4.6 eval-
uates our OpenMP speculative clause with some synthetic and real-world bench-
marks. Finally, Sect. 4.7] summarizes the conclusions of this chapter, as well as our
contributions to the literature.

4.2 State of the art

In order to achieve the goal of implementing the new OpenMP clause, to add support
for TLS, we have used the plugin mechanism of GCC. This section first describes
the state of the art of TLS systems. Then, we will also introduce GCC and its plugin
mechanism, with the reasons that leads to use it. Moreover, we will briefly describe
some other GCC plugins that can be found in the literature.

4.2.1 Thread-level speculation systems

As it is stated in Sect. [2.1} automatic parallelization is only possible when there are
not any data dependencies. If any dependency may appear in the loop, the compiler
refuses to parallelize it (Figure {.1| shows an example of a RAW dependency.) How-
ever, in many cases the compiler is not able to determine whether two sets of iterations
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are independent. In these cases it adopts a conservative position. When this situation
occurs, the compiler generates the code assuming these iterations are dependent, even
if they are really not. In this context raises TLS, a technique that goes beyond the
automatic parallelization and try to skip its limitations.

Speculative parallelization (SP), also called Thread-Level Speculation (TLS) or
Optimistic Parallelization [102} [103]] assumes that sequential code can be optimisti-
cally executed in parallel, and relies on a runtime monitor to ensure that no depen-
dency violations are produced. A dependency violation appears when a given thread
generates a datum that has already been consumed by a successor in the original se-
quential order. In this case, the results calculated so far by the successor (called the
offending thread) are not valid and should be discarded. Early proposals [78}142]] stop
the parallel execution and restart the loop serially. Other proposals stop the offending
thread and all its successors, re-executing them in parallel [36} 53,166, [171]]. A recent
paper by our research group [68]] only restarts the offending thread and all subsequent
threads that have consumed any value from it, leading to a noticeable performance
improvement.

Speculative parallelization can be either implemented in hardware or software.
While hardware mechanisms do not require changes in the code and do not add over-
heads to speculative execution, they require changes in the processors and/or the cache
subsystems (see e.g. [38, 180, (116} 153} [173]]). Software-based speculation, on the
other hand, requires to augment the original code with instructions that drive the run-
time dependency analysis. Although these instructions imply a performance overhead,
software-based SP can be effectively used in current shared-memory systems with no
hardware changes. This chapter proposes a software-based solution that greatly sim-
plifies the transformation process.

As we have seen in[3.5] software-based TLS requires that the original code be aug-
mented at compile time to perform speculative loads, speculative stores, and in-order
commits. In addition, it also requires that the loop structure be rearranged in order to
follow the re-execution of squashed operations. Without computational support, this
is a task that programmers have to carry out manually. Our plugin solves this limita-
tion, automatically performing all these changes required by the TLS runtime library
that gives support. Programmers just need to use the new OpenMP clause we have
proposed in Chap. [3|to point out which variables may lead to a dependency violation.

4.2.2 GCC: The GNU Compiler Collection

The GNU Compiler Collection (GCC) [72] is one of the most important compil-
ers nowadays. It supports several languages, as C, C++, Objective-C, Java, Fortran
(F77,F90,F95) or Ada, and more than 30 target architectures. The official meaning
for GCC is “GCC Compiler Collection”, which refers to the complete suite of tools
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that it includes. However, unofficially, GCC is known as the “GNU C Compiler”, em-
phasizing its more extended use: To compile C programs. This name was the original
name in its early days.

The development of GCC is supervised by the Free Software Foundation (FSF),
and is the responsible organism to distribute GCC. One of the most important fea-
tures of GCC is its distribution under the GNU General Public License (GNU GPL).'.
This license allows the user not only to use and modify GCC, but also it allows the
possibility of distributing these modifications, always under the GPL license, or a
derived license in which the requirements for distributing the whole work cannot be
any greater than the requirements that are in the GPL. This requirement is known as
copyleft, and describes the practice of using copyright law to offer the right to dis-
tribute original or modified copies of the software preserving the same rights in these
modified versions.

The GNU GPL license is one the main reasons for the popularity of GCC. But this
is not the only one. GCC is written in C, paying an exceptional attention to portability.
It can run on most platforms available today, and produce output for many different
architectures, including cross-compiling. Of course, this feature has an obvious ad-
vantage: GCC can compile software for embedded systems that are not capable of
running an entire compiler. The second argument is its modularity. Any program-
mer can modify GCC, adding a new front end for a new language, support for a new
architecture, or adding new functionalities, thanks to its modular design. This fea-
ture, along with the GNU Generic Public License, shapes the collaborative character
of the GCC project. Anyone can improve and share with others his modifications,
seeing how his own contributions take part of future versions of GCC. This is one of
our aims that lead us to implement the new speculative OpenMP clause into GCC
through the plugin mechanism. We have chosen to modify GCC because it is a main-
stream mature compiler, and we expect that extending GCC functionalities will have
a higher impact. Moreover, as long as GCC supports more than 30 architectures, this
increases the compatibility of our proposal.

Since version 4.5, GCC can be extended by plugins. Although they cannot ex-
tend the parsed language, plugins do provide extra features to the compiler, enabling
to modify GCC by adding, replacing, monitoring, or even removing passes from the
compiler, being unnecessary the modification of the GCC source code. The use of
plugins provides several advantages, such as faster building of prototypes, easier mod-
ifications and contributions, and the use of GCC as a research compiler. Until version
4.5, extending GCC’s operation required the modification of several GCC files, and
a more in-depth knowledge about it was needed. Using plugins, programmers can
load external shared modules, which are inserted as new passes into the compiler. We

"For details see the license file *COPYING’ distributed with GCC source code.
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will take advantage of this feature to develop our plugin and add support to TLS into
OpenMP.

Despite being the most popular compiler, knowledge about its internal working is
confusing for most of people. There are several reasons for this complexity. One of
them is the huge size of its source code, more than 4.3 millions of lines of code in its
version 4.6.22. It accepts many different source languages, and targets a high amount
of different architectures and operating systems. It also performs a lot of optimiza-
tions, most of them target-independent. Moreover, part of the code is generated at
building time, adding a new level of complexity. All of these properties, together with
the fact that GCC source has been coded by many different programmers, without a
single architect, and split into hundreds of files, make GCC an extremely complex
software.

In addition to GCC’s complexity, most of the online documentation is not com-
plete, being much information only available in the source code directly. Therefore,
in this chapter, we also strive to gather and explain part of these information, mainly
focusing on the plugin mechanism, which we use to implement the new OpenMP
clause.

4.2.3 Other GCC Plugins

Several research groups have experimented with the GCC plugin mechanism. Among
them, some plugins are designed to make the development of GCC plugins easier than
with the standard procedure, such as GCC Melt [151]], MilePost GCC [65]], or a GCC
Python plugin [113]. We decided to develop our transformation system as a GCC
plugin using the standard procedure, in order to avoid dependencies to third-party,
not-so-mature systems.

Besides these plugins, there are also others with different purposes, including for-
mal verification of sequential C programs [39]), instrumentation of the compiler’s
intermediate representation [146])), extension of the C++ template meta-programming
mechanism [47]], generic static analysis that exposes different GCC intermediate rep-
resentations to JavaScript [[70]], or program performance improvement [[65)]. This di-
versity of applications shows the wide spread of uses that GCC plugins offer.

4.3 Cintra and Llanos’ TLS runtime library

In order to have a better understanding of the transformations applied by the solution
proposed in this chapter, this section describes some of the most important details of
the TLS runtime library which guides the development.

2Obtained using David A. Wheeler’s ’SLOCCount’[[168]].
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As it has been stated, the library follows the design principles of the speculative
parallelization library developed by Cintra and Llanos [36,137]. Cintra and Llanos de-
veloped a runtime library that uses a sliding window mechanism that allows the par-
allel execution of W consecutive chunks of iterations. Each time the non-speculative
thread finishes, a partial commit takes place; the thread executing the following chunk
becomes the new, non-speculative thread; and the window advances, allowing the ex-
ecution of new chunks of iterations. Despite its good performance figures, the runtime
library developed by Cintra and Llanos suffers from severe limitations. First, their li-
brary requires that all speculative variables were packed in a single, one-dimensional
vector before the start of the speculative loop. Second, all speculative variables should
share a single data type. Third, speculative variables can only be accessed by name
inside the loop (no references by addresses or pointers were allowed). Finally, this
runtime library creates W version copies of the entire speculative data structure, being
W the size of the sliding window being used, instead of just keeping version copies of
the data elements actually accessed. These limitations prevent the use of this runtime
library to support a speculative clause, where variables and data structures labeled
as speculative may be of different data types, can be accessed by name or address,
and where speculative data structures can be of any size.

The TLS runtime library used in this Ph.D. thesis, developed by Estebanez, Garcia-
Yégiiez, Llanos, and Gonzalez-Escribano [[62, 69], overcomes all these limitations. It
allows the speculative access to variables of any data type, both by name or by ad-
dress, and managing the space needed for version copies on demand. In this section,
to better understand the changes applied by the solution into the source code, we
will briefly explain such transformations from the point of view of a programmer that
rewrites the code.

4.3.1 Loop transformation for speculative execution

Figure briefly shows the transformation of a parallel loop for speculative execu-
tion. This transformation is automatically carried out by our compiler plug-in. The
changes are briefly described below:

Lines 2-3: Additional, internal variables are defined.

Line 4: Before the loop, the omp_get_num_threads () function is called to obtain
the number of available threads.

Line 5: A specbegin() function is called to initialize the execution of the following
parallel loop. If it is the first loop being parallelized, this function also initializes
the runtime speculative library.
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1: char a; float b; 1: char a; float b;
2: char temp; float value;
3: int tid, threads; ...
4: threads = omp_get_num_threads();
5: specbegin(MAX);

6: #pragma openmp parallel for \ | 6: #pragma openmp parallel for \

private (i) \ private (i, tid, temp, value,...) \
speculative (a, b) shared (a, b, threads,...) \

7: for (i=0; i<MAX; i++) { 7: for (tid=0; tid<threads; tid++) {
8: while(true) {
9: i = assign_following_chunk(tid,MAX,...);

’Uriginal loop code, part l‘ ’Original loop code, part l‘

10: a = f(b); 10: specload (&b, sizeof(b),..., &value);
11: temp = f(value);
12: specstore(&a, sizeof(a),..., &temp);

’Original loop code, part 2‘ ’Original loop code, part 2‘

13: commit_or_discard_data(tid,...);
14: if (no_chunks_left(tid, MAX,...))
15: break;
16: }

17: % 17: %

(a) (b)

Figure 4.2: Loop transformation to allow its speculative execution: Original (a) and trans-
formed (b) code.

Line 6: All variables labeled as speculative are automatically reclassified as shared.
Besides this change, all reads and stores inside the loop body on that specula-
tive variables (not shown in the figure) are replaced with calls to specload()
and specstore() functions, in order to keep sequential consistency, as de-
scribed in Sect. B.2.1] Our compiler plug-in also labels other internal varia-
bles needed by the runtime systems as private and shared, such as tid and
threads in our example.

Line 7: The original loop structure is replaced with a parallel FOR loop with just
“threads” iterations. This launches the number of desired threads.

Line 8: A while(true) loop ensures that each thread repeteadly requires a chunk of
iterations from the original loop to be processed. If no chunks are left, a break
statement exits this loop and the end of the thread is reached (see line 14).

Line 9: Inside the loop, each thread receives the index of the first iteration of its
assigned chunk and proceeds with the original loop body.
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Lines 10-12: The read of b variable in line 9 of Fig. #.2a) is replaced with a call
to the specload() function, that recovers the most up-to-date value for this
variable. The exact behavior of specload() is described later in this section.
The value is stored in a private, temporal location.Line 10 of Fig. f.2{(a) also
performs a write on a. This write is replaced with a call to specstore() (line
9), that first stores the value in a local version copy and then checks whether
a successor has already consumed an outdated value of a. If so, the offending
thread and some or all of its successors (depending on the squash policy being
defined [[68]]) are squashed.

It is important to highlight that only the lines of the original loop body that
involve speculative variables are changed in this way: the remaining code is
left with no changes.

Line 13: Once finished the original loop body, a call to commit_or_discard_data()
checks whether the thread has been squashed or not. If a squash operation was
issued by a predecessor, local copies of speculative data will be discarded. If
the thread has not been squashed and it is the not-spec one, a partial commit
will occur.

Line 14: After finishing their tasks related to the current chunk, all threads check
whether there are no pending chunks to be executed. If there is no pending
work, threads leave the while loop.

When all threads have exited the while (true) loop, the end of the parallel section
has been reached and (despite the number of needed attempts) all chunks of iterations
have been successfully executed, and their results committed to the speculative
variables.

4.4 GCC and the plugin mechanism

Before describing the implementation of the new speculative clause, it is necessary
to introduce the GCC architecture, and the plugin mechanism to add new passes and
functionality to GCC operation. Moreover, we strive to clarify some aspects of the
plugins, including some key points about how implementing them correctly.

4.4.1 GCC Architecture

Figure@] shows the scheme of the GCC architecture [40, 71, 1281129, [131]]. In basic
terms, GCC is a big pipeline that converts one program representation into another,
through different stages. Each stage generates a lower-level representation, until the
assembly code is generated in the last stage.
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Front End | | Middle End | Back End '

GIMPLE
@ Plugin Pass
Interprocedural RTL Call Graph
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RTL
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I SSA Final Code | Pass
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Figure 4.3: GCC Compiler Architecture. The main OpenMP related components, highlighted
in grey, are the C, C++ and Fortran parsers, and the GIMPLE IR level. Highlighted in black
is the location of our plugin pass.

GCC architecture has three clearly different blocks: Front End, Middle End and
Back End. There is one front end for each programming language. The parser of
each language converts source files into an unified tree form, called GENERIC, that
is a high-level tree representation. When it finishes, the Front End emits a GENERIC
representation of the code, that serves as the interface between the front end and the
rest of the compiler.

The Middle End works on GIMPLE, which is a 3-address language with no high-
level control flow structures. In GIMPLE, each statement does not contain more than
3 operands (except function calls), control flow structures are combinations of condi-
tional statements and goto operators, and there is a single scope for variables. This
kind of representation is convenient to optimize the source code, and thus, we have
added our plugin in this point.

The transformation process from GENERIC into GIMPLE is performed in two
phases. First, a High GIMPLE representation is created, and then, it is transformed to
a Low GIMPLE representation. Figure [4.4] shows the whole process, called gimpli-
fication. Figure [.5]shows the gimplification process that transforms the code shown
in Fig. Once the source code is in GIMPLE form, an interprocedural optimizer
is called, where inlining operations, constant propagation, or static variable analysis
are performed.

The following step is the transformation from GIMPLE into SSA (Static Single
Assignment) representation. Figure [4.6] shows an example of this transformation. In
SSA form, each variable is assigned or written only once, creating new versions for
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GENERIC High GIMPLE Low GIMPLE
if (foo(a + b, c)) tl=a+b tl=a+b
c=b++/a t2 = foo(tl,c) t2 = foo(tl,c)
else if (t2!=0) if (t2!=0) <LABEL1> else <LABEL2>
c=a c=b/a <LABEL1>:
return c b=b+1 c=b/a
else b=b+1
c=a goto <LABEL3>
t3=c <LABEL2>:
return t3 c=a
<LABEL3>:
t3=c
return t3

Figure 4.4: Transformation example from GENERIC into a Low GIMPLE representation.

each assignment of the same variable, that can be read many times. When different
versions of the same variable are written into both branches of a conditional expres-
sion, a ¢-function is added just after the conditional block, allowing the selection of
the correct version of the variable, depending on the branch executed. SSA repre-
sentation is used for several optimizations as forward expression substitution, loop
interchange, vectorization or parallelization, among others. These optimizations are
performed in around 100 passes.

After these optimizations, the SSA representation is converted back to the GIM-
PLE form, which is transformed into a register-transfer language (RTL) form, in
which the Back End works on. RTL was the original primary intermediate repre-
sentation used by GCC. It is a hardware-based representation that corresponds to an
abstract machine with an infinite number of registers. GCC also uses this form to per-
form several optimizations, such as branch prediction or register renaming, in around
70 passes. Finally, the Final Code Generation step of the Back End creates the as-
sembly code for the target architecture (x86, mips, etc.) from the RTL representation.

Transactions between the different phases are sequenced by the Call Graph and
the Pass Manager. The Call Graph Manager generates a call graph for the compilation
unit, decides in which order the functions are optimized, and drives the interprocedural
analysis. The Pass Manager sequences individual transformations and handles pre-
and post-cleanup actions as needed by each pass. All passes executed by the Pass
Manager are launched in init_optimization_passes() in passes.c. Since the
version 4.5 it is possible to add new passes to this compile process through the plugin
mechanism.
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GENERIC

#pragma omp parallel for
default(none) private(i,Q,aux)
speculative(array)

for (i=1;i<=MAX;i++) {
Q =i% (MAX) + 1;

gimplifi

aux = array[Q-1];

Q = (4 * aux) % (MAX) + 1;

array[Q-1] = aux;

ration
——

{

GIMPLE

#pragma omp parallel

default(none) private(i,Q,aux)
speculative(array)

#pragma omp for nowait
for(i=1;i<=1000;i=i+1)
{

tl =i % 1000;

Q=tl+1;

t2=Q+-1;

aux.l = array[t2];

aux = aux.l;

aux.2 = aux;

t3 = aux.2 * 4,
t4 =t3 % 1000;
Q=t4+1;

t5=Q +-1;
aux.2 = aux;
array[t5] = aux.2;

1}

Figure 4.5: Example of transformation of the code in Fig.[3.6/from GENERIC into a GIMPLE
representation.

44.2

GCC plugins

Since the version 4.5, GCC can be extended by plugins. Plugins provide extra fea-
tures to the compiler, but cannot extend the parsed language, except using events
for #pragma-s or __attribute__, among others. Plugins allow the modification of
GCC, by adding, replacing, monitoring, or even removing passes from the compiler,
but without touching the GCC source code. This has several advantages:

Faster building of prototypes, since it is not necessary anymore to modify and

recompile GCC.

Easier modifications and contributions. Some internal APIs has been wrapped

for external use.

Extensibility, enabling to write specific passes to process source code, which
do not have place inside GCC since they are tied to a particular domain, corpo-

ration, community or software.

Use of GCC as a research compiler, allowing to share your modifications with
the community in an easier way since you only have to distribute the plugin
code, and not each GCC file modified.
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GENERIC High GIMPLE SSA form
if (foo(a + b, c)) tl=a+b tli=a1+ b
c=b++/a t2 = foo(tl,c) t2; = foo(tly,c1)
else if (t2!'=0) if (t21!=0)
c=a c=b/a c2=bi/a1
return c b=b+1 b, =Db1 +1
else else
c=a C3=a1
ca = ¢(c2,C3)
t3=c t3=ca
return t3 return t3

Figure 4.6: Transformation example from original GIMPLE to SSA.

Before the advent of GCC plugins, the only way to add a new pass into GCC was
modifying several GCC files. In a simplified way, the steps that were necessary to add
a new pass are the following [131]]:

e The new pass can be implemented in a new file, which have to be added to gcc
directory, or by editing an existing pass.

e The file Makefile.in controls the compilation process, so it was necessary to
add a new target rule to this file.

o If we want that the plugin requires a flag to be triggered, it is necessary to be
added to gcc/common. opt, which is a file that collects all the options for the
language- and target-independent parts of the compiler.

e Create a new instance of the struct tree_opt_pass, which in recent versions
(since 2008) is called gimple_opt_pass, rtl_opt_passor simple_ipa_opt_-
pass, depending on where we add the new pass.

e Once the struct tree_opt_pass has been created, declare it in file gcc/tree-
pass.h, and add it to the compilation process using NEXT_PASS in the function
init_optimization_passes() in file passes.c.

o Finally, add a gate function to read the new flag.

e With all the code written, document the new pass in gcc/doc/invoce. texi.

As it can be seen in the all the steps above, adding a new pass required to edit
and modify several files. All this work has been simplified since the implementation
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of plugins into GCC. Currently, using plugins programmers can load external shared
modules, which are inserted as new passes into the compiler. We will take advantage
of this feature to develop our plugin to add support to TLS into OpenMP.

Plugins are developed independently to GCC as separate files, and then compiled
into shared libraries which are loaded into GCC at run-time. Essential information
about plugins can be divided in two parts: (1) How the source files that code plugins
are structured, including the description of each part and its meaning, and (2) how
they need to be compiled and loaded into GCC.

Plugin structure

Plugins have a well-defined structure, as it is shown in Fig. The following items
describe each part of this structure.

e Line 1: We need to include the header for the basic GCC API. After this header
we can include any of the headers located in the plugin directory®. For example,
if we are dealing with GIMPLE nodes, we need to include gimple.h.

e Line 2: This line asserts that the plugin has been licensed under a GPL-compatible
license. It is the license check, and not a functional part of the plugin.

e Line 3: Plugin information about itself, in case users ask for help using gcc -v
or gcc —~help.

e Line 4: GCC version checking. GCC API might not be the same between
different version. It is necessary to explicit the version of GCC that our plugin
is compatible with. Line 23 finishes the plugin if the version of GCC is not
correct.

e Line 5: The gate is a callback tripped just before the plugin is executed. If the
gate returns true, the plugin is executed, otherwise it is skipped.

e Line 6: This is the function that actually implements the plugin pass. For
example, in a GIMPLE pass, we can traverse each statement from each function
being processed by the plugin.

e Lines 7-20: This structure is the compiler pass descriptor. Among other fields,
we can describe the type of the compiler pass (GIMPLE_PASS, TPA_PASS, STM-
PLE_IPA_PASS, or RTL_PASS), the name of the pass, the gate and execute func-
tion, the list of properties required, provided or destroyed by the pass and the

3To see where the plugin directory is located, execute gcc -print-file-name=plugin.
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#include <gcc—plugin.h>
int plugin_is_GPL_compatible=1;
static struct plugin_info myplugin_info =
{ .version = "001", .help = "Work in progress", };
static struct plugin_gcc_version myplugin _ver = { .basever = "4.6.2",

static bool myplugin_gate (void) { return true; }
static unsigned myplugin_exec (void) { /* pass code x/ }

static struct gimple_opt_pass myplugin pass = { {
GIMPLE_PASS,

"plug", /% name x/

myplugin_gate, /* gate */

myplugin_exec, /* execute x/

NULL, /* sub *x/

NULL, /* next x*/

0, /* static_pass_number x/

0, /* tv_id */

PROP_gimple_any /* properties_required x/

0, /% properties_provided */

0, /* properties_destroyed x/

0, /* todo_flags_start x*/

TODO_dump_ func /* todo_flags_finish %/ } };

int plugin_init (struct plugin_name_args xinfo,

struct plugin_gcc_version xver) {

struct register_pass_info pass;

if (strncmp(ver—>basever, myplugin_ver.basever, strlen("4.6.2")))
return —1; /% Incorrect version of GCC x*/

pass.pass = &myplugin_pass.pass;

pass.reference_pass_name = "mudflap";
pass.ref_pass_instance_number = 1;

pass.pos_op = PASS_POS_INSERT_AFTER;

register_callback ("plug",PLUGIN_PASS_MANAGER_SETUP,NULL, &pass) ;
register_callback ("plug",PLUGIN_INFO,NULL, &émyplugin_info) ;
return 0; }

bi

67

Figure 4.7: Example of plugin structure, including the definition of the plugin, the initializa-
tion function, and the code that executes the compiler pass.

list of actions that the pass manager should do before or after the pass execu-
tion. A list of properties and actions is found in file tree-pass.h, where it is
also described each of the fields of the pass descriptor.

e Lines 21-30: plugin_init() is the first function called when the plugin is
loaded, and it is responsible for doing the initialization and registering all the
callbacks required.

e Lines 24-27: These lines set information about the pass implemented (line 24)
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and tell GCC in which point our plugin will be called. In our case, the plugin
is called after the first iteration of the pass mudflap, which is the compiler pass
executed just before GCC parses the OpenMP directives and clauses.

e Lines 28-29: These lines register the plugin to be handled by the PLUGIN_-
PASS_MANAGER, using the name established in the corresponding field of the
structure that describes the compiler pass, and register the information about
the plugin

Compiling and executing a plugin

Firstly, in order to execute a plugin it is necessary that the version of GCC be 4.5 or
superior, and that GCC have been compiled with the plugin support enabled (easily
checkable invoking gcc -print-file-name=plugin which returns the plugin direc-
tory). To compile a plugin we can execute the following line:

$ gcc —I'‘gcc —print—file—name=plugin‘/include —fPIC —shared —02 plugin.c —o
plugin.so

Executing a plugin is as easy as running GCC with the following flag:

$ gcc —fplugin=/path/to/plugin/name.so

which tells GCC to load the shared object and execute it as part of the compiler. This
kind of operation shows one of the main advantages of using plugins. Plugins allow
us to program and compile them independently to GCC, and activate them just when
we need.

More details about GCC and the plugin mechanism are found in Appendix

4.5 Solution proposed: The ATLaS compilation framework

In order to add support for Thread-Level Speculation into OpenMP, we proposed in
Chap. 3] a new clause, called speculative. In this chapter we propose a new com-
pilation module, in a form of GCC plugin, not only to parse the new clause, but also
to generate all the changes needed to effectively parallelize the code using a Thread-
Level Speculation runtime library. This compilation module, together with the TLS
runtime library, makes up a new system called ATLaS (Applied Thread-Level Specu-
lation).
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4.5.1 Updating GCC to support the new speculative clause

We have already described the GCC architecture and the plugin mechanism to add
new compiler passes. The compiler-phase of ATLaS is based on the compiler GCC
4.6.2 [[72] for the C programming language, extending its functionality through a plu-
gin. This section describes the modifications that are performed in GCC to add support
for the new speculative clause, and the development of the plugin.

Parsing the new speculative clause

Although the plugin mechanism enables us to perform all the changes needed by the
TLS runtime library, plugins do not allow extending the parsed language. Therefore,
adding a new OpenMP clause recognized by GCC requires not only the creation of
a plugin, but also modifying the GCC code itself. In order to parse the new clause
speculative, we have extended the GNU OpenMP (GOMP), an OpenMP imple-
mentation for GCC. The main parts of the GCC architecture related with OpenMP are
highlighted in grey in Figure GOMP has four main components [[130]: parser,
intermediate representation, code generation, and the runtime library called 1ibGOMP.
In relation to GOMP, we have focused on modifying its parsing phase and the inter-
mediate representation (IR). The generation of new code to support TLS is located in
the plugin developed, and it is mainly composed of calls to the TLS library functions
needed for the speculative execution.

The parser identifies OpenMP directives and clauses, and emits the corresponding
GENERIC representation. We have modified the C parser and the IR to add support
for the new clause speculative. First, we have created the GENERIC representation
of the new clause like other standard clauses. Then, the compiler has been prepared
to recognize and parse the clause as part of the parallel loop construct. When the new
clause has been parsed and the IR is generated, our plugin detects the clause and starts
all the transformations needed on the code.

Modifying GCC to detect the clause: Cumbersome details

Novillo described in [130] some details about the OpenMP implementation in GCC.
In this section we will describe the changes needed” to parse the new speculative
clause. These changes involved the parser and the IR of GCC.

Parser Since our speculation runtime system works with programs written in C,
we need to modify the C parser in c-parser.c. This file represents the front end
for C programs. As we said in Sect. the new clause is designed to be used as

“For GCC 4.6.2.
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clause of a parallel for directive. Thus, we have modified the masks OMP_PARALLEL -
CLAUSE_MASK and OMP_FOR_CLAUSE_MASK to include the new clause: PRAGMA OMP_-
CLAUSE_SPECULATIVE. This element has been previously added to the enumeration
pragma_omp_clause in c-family/c-pragma.h. Then, we have modified the c_-
parser_omp_clause_name () function to recognize the word speculative as clause,
and c_parser_omp_all_clauses() to parse the clause and the list of speculative
variables.

Each speculative variable is treated by the speculative runtime system as a shared
variable. Therefore, in omp-1low.c, in each switch statement where we found a case
for nodes OMP_CLAUSE_SHARED, we have added a new case for the node OMP_CLAUSE_-—
SPECULATIVE. We have done the same in gimplify.c and tree-nested.c files. In
file c-typeck.c, we have modified the function c_finish_omp_clauses(), which
validates all clauses against OpenMP constraints, to include the new clause. Finally,
in the switch found in c_split_parallel_clauses() in c-family/c-omp.c, we
have added a new case for the node OMP_CLAUSE SPECULATIVE.

IR Directives and clauses have defined their corresponding GENERIC nodes in
tree.* files. We need to update some of these files in order to add the GENERIC
code for the new clause. In tree.h we have added the code OMP_CLAUSE SPECULA-
TIVE for the new clause in the enumeration omp_clause_code. The position where
we insert the code in this enumeration is important, because it is used to index the ta-
bles omp_clause_num_ops and omp_clause_code_name. According to these relative
positions, we have done two changes in tree.c: the number of operands of the new
clause has been added to the array omp_clause_num_ops[], and in the same position
of the array omp_clause_code_name [] we have added the name of the clause. It has
been also added the node OMP_CLAUSE_SPECULATIVE as a case in the switch of the
function walk_tree 1.

Finally, in order to correctly dump the new clause, we have added a new case in
the switch of the function dump_omp_clause () in tree-pretty-print.c

4.5.2 Plugin-based compiler pass description

Once the new clause proposed is recognized by GCC, programmers can set the spec—
ulative variables, and the plugin developed can augment the original code. Using the
plugin mechanism, our system adds a new compiler pass into the GCC pipeline. This
new pass performs all the transformations needed in the code when the programmer
annotates a variable of a loop as speculative.

The plugin developed is based on the version 4.6.2 of GCC. The new pass is run
once the compiler has transformed the code into GIMPLE, and just before GCC does
the first pass related to OpenMP (omplower). Therefore, our GIMPLE transformation
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Figure 4.8: GCC passes and intermediate code representations. The plugin works on the
GIMPLE representation.

Original annotated code Code generated

| —»omp_set_num_threads(T);
specbegin(N); I specbegin(N);
#pragma omp parallel for\ / #pragma omp parallel for\
private(a) shared (b) \ I private(a) shared (b) \
speculative(v) - - - — — - - » private(engine_vars) \

—» shared(engine_vars) \
—>» shared(v)

{

for (i=1;i <= N; i++) { - — — —|- > initSpecLoop(v, 1);
a=v[i-l], - - - -=-=- - - - — » specload(a, v, i);
vii-1]=b; - - - =—-=-=-—-—— — > specstore(yv, i, b);

} - - - - - — - = — » endSpeclLoop(v, N);

}

Figure 4.9: Example of code annotated and the resulting transformed code. initSpecLoop
and endSpecLoop are macros that expand to more code, hidden here for legibility reasons.

pass is added before pass_lower_omp in passes.c. As we can see in Fig.[4.§] at this
point we have the code in a GIMPLE representation, and the FOR-loop marked with
the omp parallel for directive preserves all the clauses written by the program-
mer. Therefore, we have the information about which variables are shared, private,
and speculative, the latter thanks to the new clause proposed. After this pass, GCC
processes speculative variables as shared, while their handling as speculative will be
carried out at runtime by the TLS library.

Figure [4.9]shows a brief example of the transformations made by the plugin. The
parser detects the new speculative clause, and the new compiler pass automatically
performs all the transformations needed to speculatively parallelize the loop. If the
plugin does not find the speculative clause on the pragma, the semantic of the loop
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remains identical to any other standard OpenMP loop. With the list of variables and
data structures that should be speculatively updated, the plugin replaces each read of
one of these variables or data element with a specload () function call. Similarly, all
write operations to speculative variables are replaced with a specstore() function
call. Loads or stores involving other variables do not require additional changes in
the code, since all flavors of private and shared variables keep their respective seman-
tics in the context of a speculative execution. The plugin also adds all the structures
and functions needed to run the TLS system that parallelize the code. This process
is completely transparent to programmers, shielding them from the intricacy of the
underlying speculative parallelizing model. They only have to label the variables in-
volved in the target loop as private or shared, as with any other OpenMP program,
and label as speculative those variables that can lead to any dependency violation.

The scheme of the process followed by the plugin can be resumed in the following
steps:

1. The plugin traverses each function of the original program looking for an OpenMP
parallel loop directive with a speculative clause on it. If the plugin does not find
the speculative clause on the pragma, the semantic of the loop remains identical
to any other standard OpenMP loop.

2. If the plugin finds the speculative clause, it extracts the speculative variables
pointed by the clause, and adds an OpenMP library function: omp_set_num_-
threads(T), where T is the number of threads indicated in the compilation
command.

3. The plugin labels as private or shared those variables needed by the runtime
system. The code generated by the plugin also includes the creation of other
new variables that are also added to the private or shared lists.

4. The plugin adds all the code needed to run the TLS system, including the re-
placing of the original loop by a new loop that drives the speculative execution.

5. The plugin traverses the GIMPLE nodes of the loop searching for readings
from and writings into the speculative variables. Each read is replaced by a
specload () function; each write is replaced by a specstore () function.

6. If the plugin detects situations of sum or maximum reductions, it replaces them
by a specredadd () or a specredmax () functions, respectively.

Once the plugin has transformed the loop, GCC operation continues with the next
passes. When the compilation ends, the resulting binary file is prepared to run specu-
latively.
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Interface with Estebanez et al. TLS runtime library

The plugin-based compiler has to augment the code with the functions and structures
needed for the speculative execution, and defined by the TLS runtime library. The
library used, due to Estebanez, Garcia-Ydgiiez, Llanos and Gonzalez-Escribano [62,
691, is largely based in Cintra’s and Llanos’ work (see [36,37] for details). The plugin
has to replace accesses over speculative variables with specload() or specstore()
function calls. The interface of specload() is the following:

specload (UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)

The first parameter is the address of the speculative variable; the second parameter
is the size of the variable; the third one is the number of chunk being executed (needed
to infer the slot being used); and the last parameter is a pointer to a place to store the
datum requested.

The interface of specstore () is the same than specload (), but the last parameter
is a pointer to the value to be stored into the speculative variable.

specstore(UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)

Replacing speculative loads and stores requires the plugin to detect code lines
where a write and/or read is applied, to extract the type of the speculative variable
or the particular field of an speculative structure, and to perform the changes needed,
including the addition of new variables to handle the temporal values required.

The plugin is also able to detect reductions applied on speculative variables, re-
placing them by the appropriate function calls to the TLS runtime library that handle
them, called specredadd () and specredmax (). These functions have the same inter-
face than the speculative stores:

specredadd (UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)
specredmax (UCHAR* addr, UINT size, UINT chunk_number, UCHAR* value)

In the case of sum reductions, the last parameter of the function is the value that
is added to the speculative variable. For reductions in which the maximum value
needs to be calculated, this last parameters is the new possible maximum value for the
speculative variable. Figure d.10] sketches the transformations performed for sum and
maximum reductions.

The plugin has not only to replace accesses over speculative variables with their
corresponding function calls. The TLS runtime library also requires other functions
and structures that the plugin has to correctly insert into the code. Figures[4.9/and[4.10]
sketch some of the transformations needed. Regarding the original loop, the plugin
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Original annotated code Code generated

~ » omp_set_num_threads(T);

specbegin(N); - » specbegin(N);

#pragma omp parallel for\ |! #pragma omp parallel for \
private(nbterm, ncterm, aux) \ |! private(nbterm, ncterm) \
speculative(nbtot, ncterm, \!- > private(engine_vars) \

ntmax) - - - -{- —» shared(engine_vars) \

— > shared(v)

nbtot = nbtot + nbterm; - — — +~ —» specredadd(nbtot, nbterm);
nctot = nctot + ncterm; — - — - —» specredadd(nctot, ncterm);

aux = ncterm + nbterm;,
if (ntmax < aux) - — — + — » specredmax(ntmax, aux);
ntmax = aux; /

Figure 4.10: Example of sum and maximum reductions and the resulting transformed code.

replaces the parallelized loop with a new loop that drives the speculative execution.
This new loop iterates over the threads, has the same body as the original (although it
is augmented with extra code that ensures the correct distribution of iterations among
the threads,) and commits the data stored in the speculative variables. The definition
of the new loop and the code inserted before the body of the original loop are gath-
ered in the macro initSpecLoop() in Fig. 9| for simplicity. The code lines which
are required to be inserted after the body of the original are gathered in the macro
endSpecLoop ().

Besides modifying the target loop and its body, the plugin also adds an OpenMP
library function before the parallelized loop: omp_set_num_threads(), which sets
the number of threads for its parallel execution.

Handling different types of speculative variables

As the TLS runtime library, the plugin developed is able to handle different types of
speculative variables. A target loop may have several speculative variables and data
structures, each of them being of different data types, accessed by name or address,
and where data structures can be of any size. Our plugin avoids programmers to
address the issues resulting from these different situations. Programmers just need to
mark which variables are speculative, whereas the plugin and the runtime library
deals with their different types, and sizes.

In order to handle this task, the plugin detects the size of the speculative vari-
able, and properly sets the size parameter of specload() and specstore() func-
tions. For example, it sets the size parameter to 1 if the speculative variables is a
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char, to 4 if is an integer, to 8 if is a double, or the size of an structure element if it
is part of a structure. The plugin also creates new variables to save temporal data that
these functions need, with the same type than the target and speculative variable.

Scheduling

The current scheduling methods implemented by OpenMP are not enough to handle
speculative parallelization. These methods assume that the task will never fail, and
therefore they do not take into account the possibility of restarting an iteration that has
failed due to a dependency violation. The scheduling method used with speculative
parallelization is different from classic scheduling methods, e.g. 79,1101}, [161]]. Under
TLS, the execution of an iteration or chunk of iterations can be discarded, so the
scheduling method should be able to re-assign the squashed iteration to the same or a
different thread. Although the scheduling process is implemented by the TLS runtime
library, the plugin also changes part of the loop structure to allow the re-execution of
iterations.

Handling complex variables and statements

The plugin is able to handle all definitions and uses of scalar variables, not only sim-
ple assignments. This includes dealing with complex statements, that are required to
maintain the same order in which the multiple speculative loads and stores are exe-
cuted. The plugin first handles the loads, creating new temporal variables that take
part of the expression that assigns a value to the speculative variable. After replac-
ing the loads for the corresponding specload(), the plugin handles the store into
the speculative variable by placing a specstore (). An example of this situation is a
writing into a speculative array with the use of a speculative variable as index.

Programmers may write other constructs that the plugin can deal with. This in-
cludes assignments from one pointer to another, accesses involving directions or the
data pointed out by the pointer, assignments between entire data structures or only
certain fields of those structures, speculative variables involved in casting operations,
etc. The plugin handles these situations with a right setting of the size of the actual
speculative variable that is read or written, and correctly typing the temporal variables
required for the TLS runtime library.

Using the plugin to compile the user code

From the point of view of programmers, to speculatively parallelize a source code
with our system they only have to add an OpenMP parallel loop directive and set a
few parameters to the compiler. First, programmers should add the OpenMP directive
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Compiler parameters:
- Threads
- Block size
- Mask size
- Max. number of iterations
- Max. number of speculative elements

The ATLaS script

Programmer Code GCC 4.6.2

C+ OperjMP with + > Binary executable
speculative clause plugin

‘ TLS Runtime library |

Figure 4.11: Overview of the code generation process for the speculative clause.

in the target loop, and classify its variables according to their usage in private and
its variants, shared, and speculative.

Second, to compile the program, programmers should indicate the value for some
parameters, such as the size of the block of iterations that will be issued for speculative
execution, or the number of threads they want to launch. Unfortunately, some of these
values should be embedded in the plugin. This forces the programmer to recompile the
plugin before the processing of a source code that includes the speculative clause.
We have developed a wrapper script that launches the compilation of the plugin plus
the speculative runtime system. More details about the parameters and how to run
this script are found in Appendix [C| In short, this script has to be executed with the
following parameters:

$ atlas —threads T —block B —maxpointer P —maxiter I —mask M —c "example.c"

where I is the maximum number of iterations that a speculative loop can execute
in the program, T is the number of threads we want to run the program with, B is the
size of the block of iterations, P is the maximum number of elements which are spec-
ulative, and M is the size of the mask used in the hash-based solution implemented by
the TLS runtime library to recover the version copies of the speculative variables [62].

These parameters are set by the programmer and they are not very tricky to choose,
because to set maxiter and maxpointer they only need to know some basic features
of the target loop. For example, a loop that speculatively reads from and writes into
an array of 1000 elements, and has 200 iterations sets the value of P to 1000, and I to
200. The other three parameters, the number of threads, the block size, and the mask
size are variable, and programmers can experiment with different values to obtain the
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: #define NITER 6000

:int array[MAX], array2[MAX];

. struct card{ int field; };

: struct card p1 = {3}, p2 = {99999}, p3 = {11111};
. char aux_char =’a’;

. double aux_double = 3.435;

sinti, j;

o g WOWN-=O

7: #pragma omp parallel for default(none) \

private(i, j) shared(array1, p2) \

speculative(p1, p3, aux_char, aux_double, array2)
10: for (i=0;i<NITER ;i++) {

11: for(j=0;j<NITER ;j++){

12: if (i<=1000) p1.field = array[i % 4] + j;

13: else array2[i % 4] = p1.field;

© ®

14: if (i>2000) aux_char =i % 20 + 48 + aux_char % 48;
15: else aux_char =i % 20 + array[i % 4] % 10 + 48;

16: if (i > 1500)
17: aux_double = array[i % 4]/ (i+1) + aux_double;
18: else array2[i % 4] = (int) (aux_double / i*j) + (array2[ (i+j) % 4] + i*j) % 1234545;

19: if (i*j > 10000) p1 = p2; else p3 = p1;
20: }
21: }

Figure 4.12: Example of the kind of situations that the plugin can deal with.

best performance to their applications.

With these simple modifications, a programmer could speculatively parallelize a
code, while the rest of transformations needed are transparently performed by the
plugin and the compiler. Figure .11 resumes the code generation process performed
by the plugin and the link with the TLS runtime system, transparent to the user.

4.5.3 Validation

In order to check the correctness of our plugin and the code that it generates, we have
developed a battery of regression tests. These regression tests include more than 50
loops with one or more speculative variables, scalar variables, pointers, elements from
multidimensional arrays, or elements from data structures. They also cover situations
with speculative variables that have different types, and loops executing a number of
iterations that are variable and defined at runtime. These regression tests are devel-
oped with the aim of covering possible situations that we can find in a source code,
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allowing us to check the correction of the plugin before addressing real applications.
One of these tests is shown in Fig. where we check the correct operation of the
plugin with speculative accesses over variables with different sizes, and speculative
accesses to data structures, including assignments between entire structures.

As we will see in the following chapter, we have also tested the plugin with
synthetic and real-word applications that are not parallelizable at compile time due
to several data dependencies, requiring runtime speculative parallelization. Real-
world applications includes the 2-dimensional Minimun Enclosing Circle (2D-MEC)
problem [166], the 2-dimensional Convex Hull problem (2D-Hull) [39], the Delau-
nay Triangulation using the Jump-and-Walk strategy [55} [125]], a C implementation
of TREE [16], and 456.hmmer, a benchmark from the SPEC CPU2006 benchmark
suite [182].

The plugin is able to speculatively parallelize the target loops in these benchmarks
correctly. In other words, the plugin is not only able to recognize the new clause
and transform the source code correctly, but it also generates executables that run in
parallel, and produce the expected outcome.

4.6 Evaluation of our OpenMP speculative clause

The solution proposed in the previous sections performs all the transformations needed
in a source code with the goal of parallelizing it speculatively, using the TLS runtime
library. This is an automatic approach that aims to be an easier, and faster way to
apply TLS than the traditional manual approach. However, the use of the new specu-
lative clause plus the plugin would come to nothing if it led to a slower performance.
Therefore, with our prototype we seek to achieve a performance at least as fast as the
performance obtained by manually parallelizing the code. In this section, we will
show the speedups achieved by our prototype with some synthetic and real-world ap-
plications, and we will also compare the performances obtained by both automatic
and manually approaches. Moreover, we will quantify the number of lines required to
parallelize these applications to estimate the programmability of both approaches.

4.6.1 Evaluation methodology

Firstly, before showing the results of the experiment, we need to describe how the
experiment is designed, which hardware is used, and how experiments are run to
obtain the results that we will show later. Moreover, we also list which measures are
covered in the evaluation, and which synthetic and real-world applications are used to
obtain the results.
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Design of the experiment

Experiments have been designed to obtain the relative performance between the auto-
matic and manual approach, i.e. to compare the performance obtained by our proto-
type with the performance achieved by the manual parallelization of the same source
codes. These applications has been run on a 64-processor server, equipped with four
16-core AMD Opteron 6376 processors at 2.3GHz and 256GB of RAM, which runs
Ubuntu 12.04.3 LTS. All threads had exclusive access to the processors during the
execution of the experiments, and we used wall-clock times in our measurements.

Performances are measured using the speedup ratio, and therefore we will use it
to compare both approaches. To calculate the speedups, we need the execution times,
and thus, each code were instrumented to measure the execution times of the loops
that are being parallelized. Both automatic and manual parallelization started with the
same sequential code, and the same loop is parallelized by both approaches.

The experiment process has been carried out as follows:

1. Each sequential code is run to obtain (1) the execution time before parallelizing,
and (2) the outcome expected for each code.

2. Each sequential code is the basis on which both automatic and manual par-
allelization are applied. Automatic parallelization is performed by using the
new OpenMP speculative clause proposed in the preceding chapter. The pro-
grammer parallelizes the target loop using OpenMP, classifying the variables
according to their accesses using the standard and the new clauses. Manual
parallelization, on the other hand, was done by manually carrying out all the
transformations needed to speculatively parallelize the code. The number of
lines required in each parallelization is recorded with the aim of estimating and
comparing the difficulty of the process.

Each code is executed three times by using a script that automatizes the process,
and it is calculated the average time for the following sets of processors: 1, 2,
4,8, 12, 16, 20, 24, 32, 40, 48, 56, and 64.

3. Before considering these results valid, it is verified that each of the executions
has finished correctly and output the expected outcome.

4. Finally, we calculate the relative performance by each set of processors using
the execution times obtained.

Evaluation measures

Results obtained in the experiments are presented using the following measures:
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e Execution times: We will use wall-clock times. Time will be measured in
seconds, with a precision of six decimals, although results presented in this
chapter are rounded to three decimals. The time needed to read the input set
and the time needed to output the results have not been taken into account.

e Lines of code: This measure indicates an estimation of the difficulty in the par-
allelization process, as well as the time required. Obviously, this time depends
on other factors, but it is necessary to recall that using the plugin also avoids
many of them.

e Speedup: It is the ratio between the execution time achieved by a program in
sequential, i.e. running in a single processor, and the execution time achieved
by the program when running in parallel in several processors. The speedup
achieved by an application with P processors is defined by the following for-
mula:

Sp:%

where 77 is the execution time of application run sequentially, and Tp is the
execution time of the application run in parallel with P processors.

¢ Relative performance: Comparison between the automatic and the manual
approach will be shown using a ratio defined by the following formula:

T}gnanual B ngnual

RP = pum—
T]%uto S;zjuto

where P is the number of processors, 75444 is the execution time achieved by
the manual parallelization of the application with P processors, and T%“/ is the
execution time achieved by the automatic parallelization of the application with
P processors, using the plugin proposed. This ratio can also be calculated using
the speedups, being S}?“”ual the speedup obtained by the manual approach with
P processors, and S%*% the speedup obtained by the automatic approach with

P processors.

Dataset

The applications run in the experiments can be divided in synthetic benchmarks and
real-world applications. We have designed three synthetic benchmarks, called Com-
plete, Tought, and Fast, which aim to cover three possible situations that we can find
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: #define NITER 6000

:int array[MAX], array2[MAX];

. struct card{ int field; };

: struct card p1 = {3}, p2 = {99999}, p3 = {11111};
. char aux_char =’a’;

. double aux_double = 3.435;

sinti, j;

o g WOWN-=O

7: #pragma omp parallel for default(none) \

private(i, j) shared(array1, p2) \

speculative(p1, p3, aux_char, aux_double, array2)
10: for (i=0;i<NITER ;i++) {

11: for(j=0;j<NITER ;j++){

12: if (i<=1000) p1.field = array[i % 4] + j;

13: else array2[i % 4] = p1.field;

© ®

14: if (i>2000) aux_char =i % 20 + 48 + aux_char % 48;
15: else aux_char =i % 20 + array[i % 4] % 10 + 48;

16: if (i > 1500)
17: aux_double = array[i % 4]/ (i+1) + aux_double;
18: else array2[i % 4] = (int) (aux_double / i*j) + (array2[ (i+j) % 4] + i*j) % 1234545;

19: if (i*j > 10000) p1 = p2; else p3 = p1;
20: }
21: }

Figure 4.13: Complete synthetic benchmark.

=4

: #define NITER 1000000, MAX 100
. int array[MAX];

—_

2: #pragma omp parallel default(none) private(P) speculative(array)
3: for (P=0;P <NITER ; P++) {

4: Q=P % (MAX) + 1;

5: aux = array[Q-1];

6: Q= (4"aux) % (MAX) + 1;

7: array[Q - 1] = aux;

8

-}

Figure 4.14: Tough synthetic benchmark.

in codes that are not parallelized at compile time. The Complete benchmark, shown in
Fig. aims to test if the plugin is capable of parallelizing codes that includes spec-
ulative access of data with different sizes, and speculative access to data structures.
When executing this loop in parallel, all the iterations lead to dependency violation.
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0: #define NITER 180000

1: int array[MAX];

2: inti,jk;

3: int spec1 =0, spec2 = 0;
4: intiter1, iter2;

5: #pragma omp parallel default(none) private(i, k) shared(array, iter1, iter2) \
6: speculative(spec1, spec2)

7: for (i=0;i<NITER ;i++) {

8: if (i==iterl) j = spec1;

9: if (i==iter2) j = spec2;

10:  for (k = 0; k < array[i % MAX] + j; k++) {

11: if (k >= 179900) spec1 = (k + array[ (i + k) % MAX]) % NITER;

12: if (k <= 1200) spec2 = array[ i % MAX];

13: }

14: if (i==NITER - 1) spec1 = spec2;
15: }

Figure 4.15: Fast synthetic benchmarks.

As we will see, although the speculative execution finishes successfully, the speedup
obtained will be extremely poor.

The Tough benchmark, depicted in Fig. .14 was designed to heavily test the ro-
bustness of the TLS runtime library and of the underlying consistency protocol used.
All of its iterations perform a load and a store on the same speculative data struc-
ture, with almost no computational load on private variables. This situation adversely
affects performance, although the number of dependency violations during parallel
execution is relatively small (4.46%). We will test if our prototype is able to achieve
similar results to the manual parallelization.

Finally, the Fast benchmark, shown in Fig. has been designed to test the
efficiency of the speculative scheduling mechanism. In this benchmark, only two of
the 180 000 iterations (0.001%) lead to a dependency violation. Note that this single
dependency is enough to prevent the compile-time parallelization of this loop. As
with the Tough benchmark, our main goal is testing whether the prototype is capable
of obtaining as fast performances as the manual parallelization.

We have also used real-word applications in the experiments. These applications
are not parallelizable at compile time due to several data dependencies, requiring
runtime speculative parallelization. These applications are the 2-dimensional Min-
imun Enclosing Circle (2D-MEC) problem [166]], the 2-dimensional Convex Hull
problem (2D-Hull) [39], the Delaunay Triangulation using the Jump-and-Walk strat-
egy [551125]], a C implementation of TREE [16]. and 456.hmmer, a benchmark from
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the SPEC CPU2006 benchmark suite [82].

The 2D-MEC problem consists in finding the smallest circle that encloses a set of
points. We have used the randomized incremental approach due to Welzl [166], that
solves the problem in linear time. This algorithm starts with a circle of radius equal
to zero located in the center of the search space. If a point lies outside the current
solution, the algorithm defines a new circle that uses this point as one of its frontiers.
It is interesting to note that points that laid inside the old solution may laid outside the
new one. Therefore, all points should be processed again to check if the new circle
encloses them. The solution can be defined by two or three points, and the algorithm
is composed of three nested loops. We have speculatively parallelized the innermost
loop, that consumes 45% of the total execution time, with a 10-million-point input
set.

The 2D-Hull problem solves the computation of the convex hull (smallest enclos-
ing polygon) of a set of points in the plane. We have used Clarkson et al. [39] imple-
mentation. The algorithm starts with the triangle composed by the first three points
and adds points in an incremental way. If the point lies inside the current solution, it
will be discarded. Otherwise, the new convex hull is computed. Note that any change
to the solution found so far generates a dependency violation, because other successor
threads may have been used the old enclosing polygon to process the points assigned
to them. The probability of a dependency violation in the 2D-Hull algorithm depends
on the shape of the input set. For example, if N points are distributed uniformly on a
disk, the i-th iteration will present a dependency with probability in §(+//4). If points
lie uniformly on a square, the probability of a dependency will be in 6(log(7)/i).

We have compared the performance of both automatic and manual approaches of
the 2D-Hull using three different, 10-million point input sets. The first one, Kuzmin,
is an input set that follows a Gauss-Kuzmin distribution, where the density of points
is higher around the center of the distribution space. This input set leads to very few
dependency violations, since points far from the center are very scarce. The Square
and Disc input sets are uniform distributions of points inside a square and a disc,
respectively. It is easy to see that the Square input set leads to an enclosing polygon
with fewer edges than the Disc input set, thus generating fewer dependency violations.

Following real-world application is the randomized incremental construction of
the Delaunay Triangulation using the Jump-and-Walk strategy, which was introduced
by Miicke et al. [55) [125]]. This incremental strategy starts with a number of points,
called anchors, whose containing triangles are known. The algorithm finds the clos-
est anchor to the point to be inserted (the jump phase), and then traverses the current
triangulation until the triangle that contains the point to be inserted is found (the walk
phase). After this location step, the algorithm divides this triangle into three new tri-
angles, and then updates the surrounding edges to keep the Delaunay properties. This



84 Chapter 4. OpenMP speculative Clause Development and Evaluation

local modification to the current Delaunay solution may lead to dependency viola-
tions, since other threads may have traversed the old solution while trying to add new
points. The expected amount of dependency violations generated by the Delaunay
Triangulation depends on the number of processors and the length of the traversing
path. It is easy to see that, the shorter the distance between the closest anchor and the
point to be inserted, the fewer triangles that are visited in the walk and the smaller the
probability of a dependency violation. This fact suggests that the algorithm should
work with many anchors. However, the bigger the number of anchors, the more dis-
tance comparisons have to be performed to find the closest anchor to our point, thus
degrading sequential performance. Our implementation uses a number of anchors that
represents a good balance between these effects for the input size used. Our imple-
mentation is composed by two loops: The first one builds a Delaunay Triangulation of
the first 5 000 points, that will be used later as anchors, while the second loop inserts
all the remaining points (up to one million). We have speculatively parallelized this
second loop.

The TREE problem [16], unlike the previous three applications, does not suffer
from dependency violations, but it is still not parallelizable in compile time because it
has dependency structures that are dependent on the input data. We have parallelized
the loop that iterates over the bodies and computes the forces on them, which has
more than 150 code lines. Compilers also find hurdles in several sum and maximum
reductions contained in the loop, which ATLaS detects and handle properly. We have
run this benchmark with a 4096-body input set.

Finally, 456.hmmer is a benchmark from the SPEC CPU2006, which performs
an analysis of a protein sequence using profile hidden Markov models (HMMs). We
have parallelized the outermost loop in function P7Viterbi (), located in the source
file fast_algorithms.c, which consumes 90% of the total execution time with any
of the workload sets defined by SPEC CPU2006. Although the speedup achieved
is under 1x, we include the results for this benchmark as a demonstration of the
capabilities of the compile-time system, which is able to seamlessly process such
a complex code as 456.hmmer. The low performance obtained is due to the large
number of dependency violations, which makes the runtime system unable to achieve
better results.

4.6.2 Performance results and programmability

Figure 4.16| shows the speedups achieved using the proposed OpenMP speculative
clause with the synthetic benchmarks described in the previous section. The paral-
lel execution of the Fast benchmark in our shared-memory parallel system returns a
maximum speedup of 44.5x with 64 processors, while showing an efficiency of more
than 90% when dedicating up to 32 processors for this task. These results indicate
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Figure 4.16: Speedups achieved using the speculative clause with synthetic benchmarks.
Results are shown by number of processors.
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Figure 4.17: Speedups achieved using the speculative clause with real-world applications.
Results are shown by number of processors.
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that the overhead due to the runtime speculative library is negligible.

The two other synthetic benchmarks achieve expected results, with extremely poor
speedups, which are justified by their characteristics. Both synthetic benchmarks,
Tough and Complete are not designed to obtain speedup, but to test robustness and the
wide range of situations that the system is able to face, respectively.

Figure shows the speedups achieved using the new clause with some real-
world applications. For the 2D-MEC benchmark, our solution achieves minor speedups,
with peaks of 2.6 x. Although these are not big figures, the manual use of the TLS li-
brary to parallelize this application requires more than ten hours of a very specialized
work, while our compile-supported solution simply requires to declare as specula-
tive the variables that hold the solution found so far.

In the case of 2D-Hull, as we have described above, results depend on the input
set. Performance varies from a 2.4x speedup with the Disc input set, which causes a
huge number of dependency violations, to a 13x speedup with the Kuzmin input set,
which leads to fewer violations. As with the previous benchmark, the parallelization
of the loop with our solution is straightforward, while the manual changes needed to
use the TLS runtime library needs more than thirty hours of carefully replacing all
loads and stores with function calls and changing the loop structure to support thread
scheduling.

Delaunay’s execution produces a high number of dependency violations, which
affects the speedup. Delaunay achieves a peak performance of 3.1x speedup. The
programming effort to obtain a speculative version for this benchmark is very simi-
lar to the one needed for 2D-Hull, while the speculative clause reduces this effort
vastly.

TREE obtains a peak of 6.5x speedup. This benchmark is characterized by the
presence of reductions over sum and maximum operations that involve speculative
variables. These situations are easily resolved by our proposed clause, while handling
them manually requires more than ten hours of programming effort.

Finally, the runtime system is not able to improve the sequential performance of
456.hmmer, due to large number of dependency violations in the loop parallelized.
Without manually transforming this loop to break these dependencies, is not possible
to achieve better results than the 0.6x speedup achieved. In any case, a manual par-
allelization of this loop requires more than twenty hours, whereas the speculative
clause frees the programmer from this task.

Automatic parallelization moves the workload from the programmer to the com-
piler. This is a great deal if the performance achieved by the automatic approach
is as good as the obtained by the manual one. In Fig we display the relative
performance of both automatic and manual approaches for the real-word applica-
tions, whereas Table [4.1] shows the numerical differences, also including the syn-
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Figure 4.18: Relative performance of the automatic vs. manual approach with real-world
applications.

Relative performance by number of processors

Application 8 16 24 32 40 48 56 64
Complete 1.323 1.398 1.208 1.204 1.280 1.184 1.399 1.275
Tough 1.063 1.087 1.132 1.209 0.985 1.188 1.168 1.044
Fast 1.078 1.063 1.040 1.051 1.041 1.035 1.032 1.010

2D-Hull (Kuzmin) 1.301 1.288 1.203 1.404 1.384 1.287 1.440 1.205
(Disc) 1.360 1.358 1.317 1.319 1.169 1.119 1.091 0.997

(Square) 1.294 1.250 1.287 1.229 1.316 1.262 1.440 1.254
Delaunay 1.261 1.255 1.212 1.212 1.026 1.106 1.182 1.122
2D-MEC 1.335 1.369 1.367 1.416 1.285 1.285 1.377 1.410
TREE 1.125 1.106 1.124 1.077 1.149 1.198 1.014 1.218
456.hmmer 1.192 1.169 1.199 1.215 1.128 1.152 1.160 1.153

Geom. Mean 1.219 1.211 1.205 1.231 1.158 1.178 1.202 1.150

Table 4.1: Runtime performance of the code generated by the plugin versus the runtime
performance of the code parallelized manually.

thetic benchmarks. The experimental results show that the automatic transformation
leads to a faster code than the one obtained by manually replacing accesses to spec-
ulative variables with function calls. The performance achieved by the applications
parallelized using the speculative clause is around 20% faster than the performance
scored by the manual parallelization on geometric average. The reason is that the
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Number of lines TLS-related facts
Application Auto Manual #Variables #Loads #Stores
Complete 1 60 5 6 8
Tough 1 33 1 1 1
Fast 1 43 2 3 3
2D-Hull 1 136 1 20 24
Delaunay 1 186 1 30 34
2D-MEC 1 50 10 3 6
TREE 1 42 4 4 5
456.hmmer 1 72 1 11 12
Average 1 77.75 3.1 9.8 11.6

Table 4.2: Number of lines required in both automatic and manual approaches, together with
the number of speculative variables, and the amount of speculative loads and stores required
to be replaced with function calls to the TLS library.

manual transformation of the source code may prevent the application of certain com-
piler optimizations. In contrast, our automatic transformation system works with the
GIMPLE intermediate representation, after the first phases of the compiler have been
triggered.

Regarding programmability, the use of the proposed clause dramatically reduces
the number of lines required in comparison with the former, manual way of paralleliz-
ing a code using the TLS library, as Table shows. Parallelizing a code with the
proposed speculative clause only requires one line of code (the modified OpenMP
pragma), while parallelizing the same code manually requires tens to thousands of
new lines, depending on the number of accesses to speculative variables. Such reduc-
tion in the number of required lines is not the only advantage. Parallelizing the code
with the plugin only requires classifying the variables within the loop according to
their usage, whereas the manual alternative is not only a hard, error-prone task, but
also requires an in-depth knowledge of the TLS library.

4.7 Conclusions

In this chapter, we propose a compile-time system that automatically adds the code
needed to handle the speculatively parallel execution of a loop, and implements a
new OpenMP clause, called speculative, that labels those variables that may lead
to a dependency violation. We have used the plugin mechanism provided by GCC
to support the new OpenMP clause. Using this clause, programmers can point out
the speculative variables, not needing to know anything about the speculative paral-
lelization model. In order to parallelize a code, programmers are only required to add



4.7. Conclusions 89

one line (the OpenMP pragma plus the speculative clause), instead of the signif-
icant amount of lines required by the manual parallelization, which depends on the
number of accesses to speculative variables. The parser detects the new OpenMP
clause proposed, and the plugin-based compiler pass performs automatically all the
transformations needed to speculatively parallelize the loop.

In this chapter we have also resumed some of the knowledge acquired during the
development of the plugin and the modifications carried out on the GCC compiler.
Our aim is that the information gathered in this chapter will help other researchers to
modify and extend the GCC compiler through the plugin mechanism.

Moreover, we have evaluated our compile-time system together with the runtime
library developed by Estebanez, Garcia-Y4giiez, Llanos, and Gonzalez-Escribano [62,
69], obtaining significant speedups in applications that are not parallelizable at com-
pile time because of the dependency between iterations. Comparing the performance
obtained by the automatically generated codes with the manually parallelized codes,
we have also found that the use of our compile-time system leads to better perfor-
mance.

We expect that implementing this new clause in a mainstream compiler, together
with the automation of the whole process of the speculative parallelization, will help
Thread-Level Speculation to be mature enough for use in production. Moreover,
adding speculative support to the OpenMP standard would greatly increase the num-
ber of loops that could be parallelized with this programming model. Our proposal
would let to transform any loop into a parallel loop.

The work and the conclusions described in this chapter has been published in the
following papers:

e A New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level
Speculation into OpenMP. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Accepted in Euro-Par 2014. Volume 8632 of
Lecture Notes of Computer Science. To appear.

e An OpenMP extension that supports Thread-Level Speculation. Sergio Aldea,
Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. Submit-
ted to IEEE Transactions on Parallel and Distributed Systems in April 2014.

e Una extension para OpenMP que soporta paralelizacién especulativa. Sergio
Aldea, Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano.
Actas XXV Jornadas de Paralelismo, Valladolid, Spain, September, 17-19, 2014.
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Chapter

Speculative Parallelization Niches
Detection and Variable Classification

We consider that the use of the OpenMP speculative clause defined, implemented
and evaluated in the previous chapter simplifies to a great extent the parallelization
of existing applications. However, to take advantage of this clause, two important
tasks still depends on the programmer: the choice of the best candidate loop to be
parallelized, and a classification of the usage of the variables of this loop.

Our aim is to help the programmer with both tasks. In this chapter, we introduce
the BonaFide C Analyzer, an XML-based framework that combines static analysis
of source code with profiling information to generate complete reports regarding all
loops in a C application, including loop coverage, loop suitability for parallelization,
a classification of all variables inside loops based on their accesses, and other hur-
dles that restrict the parallelization. This information allows analyzing how particular
language constructs are used in real-world applications, and helps the programmer to
parallelize the code, for example using OpenMP clauses, and more particularly, our
OpenMP speculative clause proposed in the preceding chapters. It is important to
highlight that this framework not only helps the programmer that wants to use spec-
ulative parallelization, but also any programmer looking for a parallelization of the
code in a shared-memory architecture.

To show this features of the framework, we present the results of an in-depth loop
characterization of C applications that are part of the SPEC CPU2006 benchmark
suite. Our study shows that 47.72% of loops present in the applications analyzed are
potentially parallelizable with existent parallel programming models such as OpenMP,
while an additional 37.7% of loops could be run in parallel with the help of runtime
speculative parallelization techniques.

91
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5.1 Problem description

Multicore technologies have increased the peak performance of computing systems
during the last decade. However, unlike previous advances in computer architecture,
existent code cannot immediately take advantage of these architecture improvements.
To fully exploit multicore capabilities, programmers should parallelize their applica-
tions, a difficult task that requires an in-depth knowledge of both the application and
the underlying computer architecture [31]].

Fortunately, there exist different shared-memory parallel programming models
that aim to facilitate parallel programming, being OpenMP [33] the most popular
one. With OpenMP, the programmer can exploit loop-level parallelization by simply
adding an OMP PARALLEL directive just before the target loop.

However, and despite their usefulness, these parallel programming models need
from the programmer to address two critical issues. The first one is the decision
of which loop is more profitable to be parallelized. To answer this question, it is
necessary to know the percentage of the total execution time consumed within each
loop of the application, known as the loop coverage [96]. Loops which represent
a significant amount of execution time compared with the total execution time of
the program are usually good candidates, because their effective parallelization may
lead to a significant improvement in the execution time of the whole program. Since
this information usually depends on the application control flow as well as its input
data, the loop coverage cannot be obtained with static analysis alone. Thus, auxiliary
profiling tools that return loop coverage for a given input set are required.

Once a candidate loop has been chosen, programmers face a second problem: To
ensure that the loop can be safely run in parallel. Informally speaking, only loops
whose iterations do not depend on other iterations can be parallelized. To ensure
that the code can be run in parallel, the programmer should be able to classify all
variables present in the code into “private” variables (i.e., variables that are always
written in an iteration before being used in the same iteration), and “read-only shared”
variables, that are only read and not written in any iteration. If all variables inside a
loop are either private or read-only shared, then the loop can be safely parallelized.
Further analysis may be required to ensure that, after parallel execution, final values
stored in private variables meet sequential semantics. Figure[5.1|shows an example of
such parallelizable loop. If a single variable is found that does not fit into these two
categories, then the loop is not parallelizable at compile time, and we have to draw on
other techniques such as software-based speculative parallelization. It is easy to see
that, regardless of the use of TLS programming techniques, this dependency analysis
is a tedious and error-prone task, difficult to be done by hand if the target loop has
more than a few dozen lines of code.
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for (1 =0; 1 < 100; i++ ) { // i controls the loop and it is private
v[i] = alil + i; // v is private (only written), and a is read-only shared

by

Figure 5.1: Example of a loop with private (i and v[]) and read-only shared (a[]) data
structures.

In this chapter, we address the problem of obtaining the characterization and cov-
erage of target loops automatically. To do so, we have developed an experimental
framework that solves both issues, merging static analysis with dynamic information.
Our framework transforms the source code of a C application into a single XML [23]]
tree, in which every element of the source code is represented using XML nodes
and attributes. Our framework, partially based on the Cetus source-to-source C com-
piler [54]], works as follows:

1. We have extended Cetus to develop a new tool called XMLCetus, that gener-
ates an XML tree of the sequential source code based on Cetus Intermediate
Representation (IR).

2. This XML tree is then automatically augmented with profiling information ob-
tained by running the sequential code.

3. The resulting XML tree is later explored using XPath [18] capabilities, to per-
form different analyses, including the characterization of all loops in terms of
coverage, together with the definition and use of all variables inside all loops of
the application.

The final result is a complete report regarding all loops in the application, includ-
ing loop coverage, loop suitability for parallelization with OpenMP directives, and a
classification on the definition and usage of all variables inside all loops. Besides,
Bonafide C Analyzer (BFCA) is designed to locate and quantify some hurdles that
affect the parallelization. Thus, these reports can also be used to guide the automatic
parallelization of the code.

In order to evaluate our approach, we have conducted an extensive study of the C
applications present in the SPEC CPU2006 benchmark suite [[82]]. The study not only
characterizes in both quantitative and qualitative terms the loops of these applications
regarding their suitability for parallel execution, but it also reports to what extent the
use of automatic parallelization techniques may help to further reduce the execution
time. The study also classifies all loops in these benchmarks according to differ-
ent characteristics that may affect their parallelization, including the use of pointer
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arithmetic, I/O and memory management calls, and dependencies of static and global
variables, together with their aggregate coverage. This kind of information, extremely
hard to obtain by other means, can also be used to guide future developments in the
field of automatic parallelization.

Summing up, the main contributions of this chapter are the following:

e We present a framework that combines the compile-time analysis and the loop-
based, runtime profiling information of a source code in a single, XML-based
representation. As far as we know, this approach is unique with respect to the
related work described in the following section, and helps to close a gap de-
scribed in the literature, since traditional profilers focus primarily on functions
and inner loops [124].

e We have used the combined static and dynamic information of the code to char-
acterize all loops with respect of the loop-based parallelization opportunities
they offer, not only in terms of loop coverage but also with respect to the possi-
bility of a dependency violation among iterations.

o The flexibility offered by the XML representation allows extending this frame-
work for other purposes, such as automatic source code optimization.

The rest of this chapter is organized as follows. Section[5.2]describes some related
approaches. Section [5.3]introduces two problems that affect the parallelization of a
source code: Granularity, and data dependencies between instructions. Section [5.4]
describes the overall architecture of the framework developed, together with its com-
ponents. To evaluate the proposed solution, we have performed a detailed analysis
of the opportunities for parallelization in the C applications of the SPEC CPU2006
benchmark suite, that it is shown in Sect.[5.5] Finally, Sect.[5.6|concludes this chapter
and summarizes our contributions to the literature.

5.2 State of the art

As it has been stated, when programmers parallelize source codes, one of the issues
they have to face is the possible dependencies between iterations, which may avoid the
correct parallelization of a given loop. In this section we describe what is the meaning
of data dependencies, and how these dependencies are determined by the accesses
to the variables used in the loop iterations. This section also explores some of the
different approaches to discover parallelism, and the importance of a correct selection
of the loops to be parallelized. Moreover, it also gathers different ways to represent
source codes using XML, which can be used to extract valuable information from
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Parallel Execution

. Thread 1 Thread 2 Thread 3
Original Code (iterations 1 to 3) (iterations 4 to 6) (iterations 7 to 9)
do i=1, 9 v[1l] = £(v[1]) v[4] = £(v[4]) v[7] = £(v[7])
v[i]l = £(v[i]) v[2] = £(v[2]) v[5] = £(v[5]) v[8] = £(v[8])
end do v[3] = £(v[3]) v[6] = £(v[6]) v[9] = £(v[9])

Figure 5.2: Parallel execution of a loop without dependencies using three threads. Because
each one of the iterations is independent, compilers can execute them in parallel.

them. Finally, we will introduce Cetus, the source-to-source transformation compiler
that we have used as a starting point in the development of BFCA.

5.2.1 Parallel execution and variable classification

Nowadays, parallel systems are widely present in several areas thanks to the develop-
ment of CMP (Chip Multi-Processor) architectures. However, parallel computation
has been a classical problem for more than half a century. As Lamport said in a paper
of 1974, in which he describes several methods for obtaining parallel execution of
nested loops [104]:

“Any program using a significant amount of computer time spends
most of that time executing one or more loops”.

Therefore, loops are the main target to apply parallelism. Different iterations of a
loop can be executed at the same time by different processors, as Figure[5.2]shows. At
a software-level, this code parallelization can be done manually or automatically. On
one hand, there exist various parallel programming languages, parallel extensions and
library functions, such as OpenMP [33], MPI [[75]], UPC [28]], X10 [34], Chapel [31],
or Fortress [[152]. However, most of these solutions require a deep knowledge about
the problem to parallelize, the underlying architecture and the communications li-
brary, while most of the code already developed that can benefit from these solutions
are sequential. To avoid this problem, parallelization can be automatically achieved
by compilers.

Automatic parallelization, on the other hand, can be done at compilation time,
as we saw in Chap. [2] or at execution time (inspector/executor model and specula-
tive parallelization). However, both options are closely attached to the presence of
potential dependencies in the code.
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5.2.2 Parallelism discovery and loop selection

A correct selection of loops to be speculatively parallelized can have noteworthy ben-
efits in the overall performance of the applications. In order to get an accurate source
code parallelization, the profiling information has been proved as an invaluable tool to
achieve a correct loop selection [141} [165]. Although extracting and using correctly
this information has a performance penalty, and includes scalability problems [99],
many works have shown that it is not pointless. For example, obtaining an optimal
loop selection, Wang et al. [163] get speedups of 20% in SPEC2000 integer bench-
marks, and Packirisamy [134]] reports speedups of 60% in SPEC CPU2006 bench-
marks.

Some recent papers present results about which loops have to be selected in a
speculative parallelization context. Focusing on hardware-based approaches, there
are many that benefit from the selection of loops [35} 84} 93109, 111} [167]]. Johnson
et al. 93] make the selection of loops and the decision on the number of threads to
execute them at the same time the profile run executes. Following a different approach
to the problem, Luo et al. [[111]] estimate the parallel performance of each loop in terms
of the probability and cost of speculation failure. As we will see, our proposal is not
only suitable to detect speculative parallelization niches, but also reveals hurdles that
may affect any kind of parallelization. Finally, POSH [109] is a compiler targeted to
hardware-based TLS architectures. POSH uses a compiler pass to discard ineffective
loops on the basis of some heuristics that are previously calculated. The profiling
information returned by POSH is related to the use of hardware resources in those
architectures, such as cache and register usage. By contrast, the data collected by our
solution are not related to hardware resources, but to the source code itself.

Other approaches rely on cost models which use the information extracted by a
profiler to select loops, on the basis of the density of data dependency [162, [170],
the cost of re-executing iterations due to dependency violations [58]], the Amdahl’s
Law [27], the different overheads of a parallel execution [S7], the frequency of depen-
dencies [[157]], or speedup estimations based on graphs [67} [165]]. Our solution does
not use theoretical cost models. Instead, it characterizes loop coverages using real
executions and classifies based on the potential dependency violations, with the aim
of guiding programmers to parallelize the code using this information.

As many of the papers of the literature expose, pure static loop analysis is in-
sufficient. This kind of analysis requires complex models and results in inherent
inaccuracy estimations. As a direct consequence, a lower number of loops are par-
allelized with this technique [99]]. This is the reason why we propose to complete
static information with dynamic information, obtained through profiling, which has
been demonstrated as a very efficient technique to improve loop selection. As a nov-
elty feature, our solution not only points out which loops are better to be parallelized,
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but also identifies hurdles presented in a code that may affect the parallelization.

5.2.3 Frameworks to transform source code

Our solution, called BFCA (BonaFide C Analyzer) takes advantage of the benefits
derived from using XML [23]. With XML, we can directly represent, analyze and
manipulate the program structure. As McArthur et al. [119] pointed out, as long as
the granularity of the details of the source code in the XML is higher than in plain
text representation, it is possible to create a huge variety of tools to manipulate, trans-
form and extract information from source codes. There are several examples of these
useful tasks, such as counting all the occurrences of a syntactic construct, even in a
particular context; finding the number of functions called by a function; or finding
the number of functions calling a particular function. Such tasks cannot easily be
done with plain-text representations. Examples of more advanced tasks are refactor-
ing [45,1120]], exchanging [22}85], differencing [41], program slicing [[74], generation
of UML models [[144], addressing source code [42], source code transformations [46],
or fact extraction [43,144].

We can list other benefits of using XML to represent source codes, which are the
following:

e XML is simple and extensible. Programmers have flexibility to create tags and
attributes.

e Support for multiple query languages, such as XQuery or XPath, being the last
used in the development of BFCA.

e Support for complex transformations (XSLT, SFX, or TextReader).
e Support for cross-referencing.

e Easy parsing with all existing XML tools, as well as easy exchange between
CASE tools.

e XML is well suited for representing hierarchical data. The structure of the
source code is explicitly represented by the nesting of elements in the XML
document.

e Support for a document format as well as data format. This duality is widely
used to both save the structure of a source code, and its formatting information.

e Support for tasks that cannot be done on plain text representations, such as
counting all the occurrences of a syntactic construct, finding the number of
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functions called by a function, or counting the number of functions calling a
particular function.

e Large interest from the open source community. XML is widely used and ac-
cepted as standard.

There are some works that use XML to represent source code in order to ex-
tract some information. One of the first XML representations of source code is
JavaML [11]], used to describe Java source codes. Like BFCA, JavaML directly rep-
resents the structure of source codes by nesting XML nodes, not preserving format-
ting information. Other approaches do store formatting information, such as JavaML
2.0 [3], sccML [114]], XSDML [118], JaML [64] and PALEX [[112]. In consequence,
storing all this information requires much more space than BFCA, which only pre-
serves structural information of the code. Preservation of formatting information is
not a priority to our framework, since it is focused on the analysis of source code.

BFCA only needs the Abstract Syntax Tree (AST) that represents the code for its
purposes, and thus, BFCA’s XML files only represent explicitly the entire AST, re-
moving the formatting information such as OOML [115]] and Zou’s and Kontogiannis’
proposal [[174]]. Other data, including the flow information, are implicitly stored. This
feature allows BFCA to save memory resources, unlike other approaches, such as the
XREF-model [10]], which stores the relations across multiple files; ACML [74], which
generates XML trees more than a hundred times larger than the original source codes
to store all the syntactic and semantic information; or the proposals of Al-Ekgram and
Kontogiannis [4], and Putro and Liem [[140], which represent higher level abstractions
that are not needed by the BFCA operation, such as the Control Flow Graph (CFG),
the Program Dependence Graph (PDG), and the Call Graph.

On the other hand, there are approaches that store partial ASTs, only marking
selected nodes, such as XMLizer [119], or Cordy’s proposal [48]. These approaches
generate XML trees that are smaller than BFCA’s, but they do not contain all the
information needed to the kind of analysis that BFCA does. In [154], Sun et al.
propose to obtain the XML representation directly and faster than using an AST or a
compilation process. This solution is not applicable in our approach, since we have
based the XML transformation on the Cetus IR obtained through compiling the source
code.

Finally, in order to avoid the low scalability associated with the bottom-up parsers,
and presented in some proposals such as Power’s and Malloy’s [137]], BFCA follows
a top-down approach. Moreover, BFCA is not graph-based, as GraX [61], GXL [85],
or Wagner’s et al. [164] approaches, which are not intended to represent the exact
program code, but instead its higher-level structure. This level of representation is
closer to others, for example control flow graphs.
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Cetus

As we have seen, using XML to represent source code has several advantages. In order
to obtain the XML representation of a source code, instead of starting from scratch,
we decided to take benefit of an existing software, called Cetus. Cetus [12}154] is a
compiler infrastructure written in Java for source-to-source transformation of C pro-
grams developed by Purdue University (Indiana, USA). It is under a modified Artistic
License [29], a license similar to the Perl Artistic License, which allows distribution
of Cetus’ modifications, being public these changes and known by the Purdue Univer-
sity.

Cetus provides several functions, such as auto-parallelization of loops through pri-
vate and shared variables analysis, and automatic insertion of OpenMP directives [33]].
Cetus uses ANTLR version 2 to build a recognizer and interpreter of C grammar. This
choice is not casual, because ANTLR has also its origins in Purdue University. Using
this grammar, Cetus builds an Intermediate Representation (IR), an abstract represen-
tation that holds the block structure of a C program. The IR is implemented in the
form of a class hierarchy and accessed through their class member functions.

Cetus provides an API that is very useful to manipulate nodes in the Intermedi-
ate Representation, and to get information about nodes. Cetus and its API will be
the starting point of the developed framework, leveraging its IR to create the XML
representation of the source code. Appendix [A]gathers a more detailed description of
Cetus.

After briefly describing the relevant literature, we will now discuss which factors
affect the parallelization.

5.3 Granularity and data dependencies

In order to parallelize loops we mainly face with two problems: Granularity, and
dependencies between instructions.

The first problem, granularity, comes from the start-up and synchronization over-
head needed to execute a parallel loop. If a loop has not enough work to compensate
the cost of a parallel launching, the loop is not parallelized. Therefore, a compiler
should tend to parallelize the outer loops rather than the inner loops, with the aim of
minimizing the cost associated to synchronization. Reducing the frequency of syn-
chronization is equivalent to increasing the granularity of the parallel iterations.

The second problem is the existence of data dependencies. Formally, a depen-
dency is a relation between two statements of the program, which ensures that the
meaning of the program is preserved. A dependency defines a constraint that deter-
mines the execution order of the instructions, and thus the transformations that can be
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applied to the code.

This problem is not new. In 1966, Bernstein already defined three conditions [19]
to consider parallelizable two sequences of instructions or successive iterations of a
loop. These conditions are defined in a mathematical form, and could be summa-
rized as follows. Two iterations I; and I, being I; executed before I> according to
sequential semantics, can be safely executed in parallel if:

1. iteration I does not read a location that has been written by iteration I;. If
this occurs, this situation is called RAW dependency (Read After Write) or true
dependency.

2. iteration I does not write into a location that has been read by iteration I;. If
this occurs, this situation is called WAR dependency (Write After Read) or anti
dependency.

3. iteration I does not write into a location that has been written by iteration I;.
If this occurs, this situation is called WAW dependency (Write After Write) or
output dependency.

If iterations in a loop violate some of the Bernstein’s conditions, the loop is not
parallelizable. In other words, a compiler only transforms a sequential loop into a par-
allel one when it is able to check that none of the Bernstein’s conditions are violated.

There are two types of dependencies, data and control dependency. A control
dependency is caused by the control flow. For example, in the case of an /F condition,
there is a control dependency between the statement that defines the condition and
every statement inside the /F block, which cannot be executed before the condition
has been checked. This paper does not focus on this type of dependency.

A data dependency ensures that data is read and written in the correct order. For
example, in the following code, the order in which statement in line 1 (S7) statement
in line 2 (S9) are executed is indifferent. However, statement in line 3 has to be
executed after S; and S5.

A =2
B=1
C=A+B

Allen and Kennedy, in their book [7], offer a formal definition of this concept:

“There is a data dependency from statement S to statement Ss if and
only if
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1. both statements access the same memory location and at least one
of them stores into it, and

2. there is a feasible run-time execution path from S1 to Sa”.

In order to detect data dependencies in source codes, moderns compilers perform
several tests. A large number of data dependency test has been proposed (see [[138]
for an evaluation of them). The most well-known tests are, in order of increasing
complexity and computation cost, GCD (Greatest Common Divisor) [15]], Banerjee
test [[LS]], I-test [LOO], Omega test [139]], and Polyhedral model [[17].

The dependencies between iterations are determined by the dependencies between
variables within these iterations. We can classify each variable in terms of these de-
pendencies. Our proposed solution address this issue.

5.4 Solution proposed: BFCA

In the preceding sections we have exhibited the importance of an accurate selection of
the loops to be parallelized. With the aim of solving this problem, we propose a pro-
totype that combines static analysis of source code with profiling information. As we
will see, this prototype provides useful information that will help us in the detection
of loops that are good candidates for parallelization. The prototype outputs informa-
tion regarding all loops in an application, including loop coverage, loop suitability for
parallelization, a classification of all variables inside loops based on their accesses,
and other hurdles that restrict parallelization.

5.4.1 Requirements specification

First of all, we will formally define the requirements that the proposed system has to
fulfill:

Functional requirements

[FQR-01] The system has to convert the Intermediate Representation (IR) of Cetus
into an XML tree.

[FQR-02] The system has to recognize all the node types proposed by the Cetus IR
which has a corresponding language element in C.

[FQR-03] The system has to annotate each FOR loop with its length in number of
code lines (this is a functionality not offered by the original software of Cetus).
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[FQR-04] The system has to use the opportunities offered by XML technologies in
order to seek and locate all the code features required.

[FQR-05] The system has to classify variables regarding their usage in the code, in
private, shared, and speculative. This classification will be done following the
guidelines that will be described in Sect. [5.4.6]

[FQR-06] The system has to report which variables are either written or read, or both
written and read in the context of each FOR loop.

[FRQ-07] The system has to classify FOR loops in terms of the variable usage.
[FQR-08] The system has to report if a FOR loop has other loops nested within.

[FQR-09] The system has to report if a FOR loop is affected by GOTO or BREAK
statements that affect to the regular execution flow of the code.

[FRQ-10] The system has to report about the percentage of the FOR loops affected
by hurdles to its parallelization, such as the pointer usage, memory management
instructions, I/0O functions and static variables.

[FRQ-11] The system has to detect static variables affecting a FOR loop in any
nested FOR loop and any function call in any level.

[FRQ-12] If a FOR loop is affected by a static variable, the system has to provide
the trace until the static variable. This includes nested FOR loops and function
calls. For each function of the path, the system has to provide the source file
and the line number.

[FRQ-13] The system has to be able to handle profiling information provided by
the Intel compiler in an XML format (this requirement takes advantage of the
XML documents generated by the Intel compiler, and avoids to adapt the output
of others profiler tools to our interests).

[FQR-14] Each FOR loop has to be annotated with the inclusive time (percentage
and absolute), the exclusive time (percentage and absolute), and the length of
the loop in lines of code.

[FRQ-15] For each FOR loop of the path, the system has to provide the source file,
the line number, and the inclusive and exclusive time.

[FRQ-16] The system has to report about the weight of each FOR loop in a source
code in terms of execution time, and lines of code.
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[FRQ-17] The system has to report about the coverage (in percentage of execution
time) of the different kind of FOR loops.

[FQR-18] The system has to be able to rebuild a C code throughout an XML tree
which encodes it, being the rebuilt code functionally equivalent to the original
C code.

[FRQ-19] The system has to provide its output in a human legible format.

Non-functional requirements

[NFR-01] The system has to inform the users about the right way to execute it upon
an incorrect launch by the user.

[NFR-02] The system has to provide a result in a time proportional to the size of the
input.

[NFR-03] The system has to be able to be executed from any path.

Constraints

[CNS-01] The system will not create XML trees from source codes written in lan-
guages different than C.

[CNS-02] The system will not recognize other profiling information that the provided
by the Intel compiler.

[CNS-03] The system will only work with C programs.

5.4.2 Framework architecture overview

Figure[5.3|shows the architecture of the BonaFide C Analyzer (BFCA). The inputs of
the framework are the C source files and an example input set. The original C code
is used in two ways. A module called XMLCetus builds an XML tree representing
the original C code, with all the information needed to later rebuild the source code.
XMLCetus is a modified version of Cetus [54], a source-to-source compiler infras-
tructure. XMLCetus extends Cetus’ functionality by building an XML representation
of Cetus’ Intermediate Representation (IR) tree.

Using XML to represent source code has several advantages. Besides being sim-
ple, extensible and a standard format to exchange data, XML is well suited for repre-
senting hierarchical data. Thus, the structure of the source code is explicitly reflected
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Figure 5.3: Architecture of the BonaFide C Analyzer.

in the nesting of elements into the XML document. This structure can be easily ex-
plored using XPath queries, and even transformed by XSLT rules. Exploiting these
technologies, we are able to merge static analysis with profiling information.

In order to obtain runtime information, the C code is compiled with the Intel C
compiler. The reason to use this commercial compiler to instrument codes instead of
open-source solutions is that the Intel compiler has a feature not available elsewhere:
the ability of providing profiling information on each loop in an XML format, in
which each loop is represented by a node, and its attributes are used to store relevant
information, including the inclusive and exclusive execution times consumed by each
loopl. This differs from what other profilers do, such as Sun’s, or OProfile, which
generate a text file with only the instructions and functions of the source file, annotated
with execution times. This text file needs to be post-processed in order to obtain
the loop coverage, and information about how these loops are nested. This is an
unnecessary step if we use the XML file generated by the Intel compiler instead.

A second module, called Profilazer, receives the XML file generated by XML-
Cetus and, using the profiling information for each loop, augments the XML tree
with the inclusive and exclusive execution times of every FOR loop, together with the
number of executions of all loops in the code. Merging the XML representation of the
source code with the execution times of the FOR loops provides useful information
about the structure and nesting of these loops.

Inclusive execution time of a loop is the amount of time that the loop consumes, including the time
spent by its nested loops and functions called from this loop. By contrast, exclusive execution time of
a loop is the time that the loop consumes by itself, excluding the time spent by its nested loops and
function calls.
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This augmented XML tree is the input for a third module called Loopest. This
module uses a collection of XPath expressions to query the XML DOM tree. We have
implemented queries that perform a dependency analysis of scalar variables, arrays,
structures, and function parameters, also looking for other constructs (such as memory
management, I/O function calls, pointer arithmetic, static variables) in the context of
every single FOR loop. These queries generate a complete analysis report that can
be used to either parallelize the application using OpenMP directives or to guide the
development of new automatic parallelization tools. Thus, as a direct application of
these reports, Loopest is able to augment the XML tree with additional statements,
and hence, allowing the instrumentation of the code using the extracted information.
This opens a door to the automatic parallelization of the code, by either inserting
OpenMP directives or special code constructs to handle the speculative parallelization
of promising loops. This feature will be covered in the following chapter.

Finally, we have developed a tool that converts the XML tree back into C lan-
guage, in order to check the correctness of the process, and to take advantage of the
possible augmented codes produces by Loopest. This module that performs such
transformation is called Sirius. The code generated by Sirius is equivalent to the orig-
inal code.

One of the main advantages of using BFCA for program analysis instead of other
alternatives (including Cetus) is extensibility. New functionalities can be easily added,
inserting new XPath queries into Loopest. As we will see in Sect. [5.5.3] the devel-
opment of the XPath queries needed for the present functionalities of BFCA is much
simpler than directly modifying Cetus for the same purpose.

To sum up, we will synthesize below the functionalities of each module:

1. XMLCetus:

o Input: A C source code file.
e Process: It creates an XML file from the Cetus IR.
e QOutput: An XML file that represents the C code.

2. Profilazer:

e [nputs: It has two inputs: the XML file created by XMLCetus, and the
XML file provided by the Intel compiler, with execution times of loops in
the code.

e Process: It augments the entry XML file that represents the C code, adding
the information provided by the XML Intel profiling file.

o Output: An augmented XML that represents a C code, with execution
times annotated as attributes in every loop.
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3. Loopest:

e Input: The augmented XML file created by Profilazer.

e Process: Using XPath queries, it analyzes the input XML file to classify
variables usage in loops, and to extract other useful information.

e QOutput: An exhaustive analysis report with the classification of each vari-
able in each loop in terms of private, shared, and speculative, among other
functionalities that will be later described, such as recognition of pointer
arithmetic, memory management, I/O functions usage in loops, or rele-
vance for each loop in terms of execution time.

4. Sirius:

e [nput: An XML file that represents a C code.
e Process: It generates a correct C file using the entry XML file.

e QOutput: A new C source code file, functionally-equivalent to the original
C source code.

5.4.3 Key aspects of our proposal

BFCA has some key aspects that are worthy of remark. It has a helpful value as source
code analyzer, extractor of features that characterize source codes, and as a reference
guide to programmers in the loop-based parallelization process:

e BFCA is focused on loop-level parallelism.

e BFCA profiles the execution time for each FOR loop. The coverage of loops
needs to be known in order to determine which loop deserves to be parallelized.
Parallelizing low-demanding loops incurs in overwhelming the application due
to OpenMP thread management overheads, which leads to slowdowns. There-
fore, it is completely necessary to select those loops which are profitable in
terms of execution time.

e With the XML representation of the source code, BFCA handles the structure
of each FOR loop, and how these loops are nested. This static representa-
tion is combined with the execution times of the FOR loops, and provides pro-
grammers useful information to decide which loops could be suitable to be
parallelized. This kind of information is not provided by traditional profilers,
as [[124] pointed out.
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o It classifies FOR loops in different categories with respect to their suitability
for parallel execution and taking into account the existence of potential depen-
dency violations. For this purpose, BFCA classifies variables accessed into the
FOR loops in private, read-only shared and speculative variables, this is, varia-
bles that can lead to any dependency violation. Extracting these data, BFCA
is able to estimate an upper bound of the degree of parallelism that could be
extracted with compile-time techniques, and the potential degree of parallelism
which may be possible to extract with runtime techniques, such as speculative
parallelization.

e As a dependency violation is not the only impediment to parallelize a loop,
our system is also able to perform an in-depth analysis to characterize the FOR
loops with respect to different hurdles that may also affect parallelization. Some
of these situations are the use of pointer arithmetic and variables, and memory
management function calls, which affects the static analysis of the code at com-
pile time; the existence of I/O function calls that should be carried out in order;
or the presence of static variables in user-space function calls that forces to a
certain execution to meet sequential semantics.

e BFCA does not only provides a loop classification, and the number of loops that
falls in each category described above. It also returns a detailed classification of
all variables inside all FOR loops in terms of their definition and use. Program-
mers will find this information extremely useful, both to decide which loops is
more profitable to be parallelized in first place, and to guide the parallelization
process.

e As a result of the use of XPath capabilities, BFCA could be easily customized
and extended to generate a detailed report on the existence of these and other
characteristics in the code being examined. BFCA is currently able to identify
FOR loops affected by GOTO and BREAK statements which may affect the ex-
ecution flow, as well as correctly handle both static and global variables. Other
situations could be detected by adding appropriate rules.

e Using the acquired information, BFCA could augment the XML tree with ad-
ditional statements and directives. This would allow inserting OpenMP direc-
tives, or even special code constructs to handle the speculative parallelization
of promising loops. Then, BFCA will transform the resulting, augmented code
back to C. We will further explore this possibility in the following chapter.

After briefly reviewing the overall framework architecture and the key aspects of
our proposal, we will now discuss each one of the system modules in more detail. The
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Figure 5.4: Cetus IR tree structure example. Each part of the source code corresponds with a
node in the tree. A “TranslationUnit” is a file containing source code.

purely technological aspects of the development of XMLCetus, Loopest and Sirius
were addressed in our M.Sc. thesis [S)]. However, the version of BFCA presented in
this dissertation is a modification of the version presented in the cited work, so here
we will detail the changes performed.

5.4.4 XMLCetus: Building the XML tree

BFCA has a modular architecture composed by four components. XMLCetus is the
first component and it is based on Cetus [54] (see also Sect. [A;l'[) Cetus is a com-
piler infrastructure written in Java for source-to-source transformation of C programs,
developed by Purdue University. Cetus builds an Intermediate Representation (IR),
an abstract representation that holds the block structure of a C program. The IR is
implemented in the form of a class hierarchy and accessed through its class member
functions. Figure[5.4]shows an example of Cetus IR from a C source code.

Although Cetus is a powerful tool, adding new functionalities to it requires an
in-depth knowledge of Java, Cetus Intermediate Representation, and its associated
data structures. Due to both simplicity and extensibility reasons, instead of using Ce-
tus capabilities to develop our compiler framework, we modify it to build an XML
representation of its IR, and we use XML standard tools to perform queries and mod-
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<ForLoop condition="i&It; 10"
~<Statement lineNumber="-1"> \,
<ExpressionStatement lineNumber="-1">
<Expression> :

... (Initial: BinaryExpression ) s
</Expression> >
</ExpressionStatement> \
‘\\</Statement> p \

initial="i=1;" step="i ++ " lineNumber="4" >

<Expression> ;
... ( Condlition: BinaryExpression )| - < - )

i </Expression> : T - . /

i ... ( Step: UnaryExpression ) b - /
i </Expression> /

{ <Expression> ; T /

<CompoundStatement> -
<Statement lineNumber="5">...</Statement>' -7
... (more statements ) P
</CompoundStatement> ‘
\ </Statement>

</ForLoop>

<BinaryExpression lhs="i{" operator="="rhs="1">
{<AssignmentExpression> T
<Expression> <IDExpression> ‘
<ldentifier array="" name="i" opUnary="" type="int"/> | N
</IDExpression> </Expression> 4 A
" <Expression> <Literal>
<IntegerLiteral value="1"/> I =:1
i </Literal> </Expression> | - -
! </AssignmentExpression> |~
k/BinaryExpression>

Figure 5.5: XML code generated by XMLCetus for a FOR loop statement (top), and the
binary expression that represents the loop initialization (bottom).

ifications to the structure.

XMLCetus is a modification of Cetus that generates an XML DOM tree based
on Cetus IR. The main changes to Cetus are made just after Cetus has finished the
analysis of the C source and has generated the IR. At this point, the XML tree is cre-
ated having the Program node as first node, and traversing the Cetus IR in pre-order,
depth-first search. Every node of the IR will have a corresponding representation in
the XML DOM tree, thus preserving the original structure of the Cetus IR, as well as
the name of the IR elements. This procedure generates an XML document that repre-
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sents the XML DOM tree, and it is printed into a new XML file. Figure[5.5|shows an
example of this XML generated.

The following steps explain the transformation procedure from Cetus IR to XML
DOM tree.

e Beginning with the first node, Program, XMLCetus recursively descends all its
TranslationUnit children nodes, that represents the source code files passed to
Cetus. The tree is traversed in preorder, depth-first search, getting the children
of each node as a list of nodes. Through a casting operation, this list is trans-
formed into a Traversable-type objects list. Traversable is the type defined by
Cetus as the generic class, representing any kind of node.

e Next, the type of the children nodes are checked. This is done with the help of
a loop that traverses each node. This loop finds, with subsequent checks, the
class the node is an instance of, using the instanceof Java operator. If one node
can be an instance of both a given class and its parent class, two DOM elements
that represent both nodes are created to reflect the original structure. This is just
an example of the several situations that may arise when creating DOM nodes
and their relationships.

e When the instance is checked as belonging to a particular class, an object in-
stance of this class is created. Now, it is possible to obtain relevant information
from the node and create a new DOM element with attributes that reflects this
information.

o Finally, after the creation of the element with its attributes, the DOM element
is appended to its corresponding parent.

This procedure generates an XML document that represents the DOM tree, and it
is printed into a new XML file.

5.4.5 Profilazer: Augmenting the XML tree with profiling information

The output XML file generated by XMLCetus is passed to Profilazer, which uses
the profiling information provided by the Intel compiler to generate an XML tree
augmented with the inclusive and exclusive execution times of every FOR loop in the
original source code. Inclusive execution time of a loop is the amount of time that the
loop consumes, including the time spent by its nested loops and functions called from
this loop. Exclusive execution time of a loop is the time that the loop consumes by
itself, excluding the time spent by its nested loops and function calls.

Each of these times is annotated in two forms: As an absolute time, and as a per-
centage respect to the total execution time of the program. Moreover, Profilazer also
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<ForLoop
absTime="613804091"
absTimePercent="10.0"
condition="1&lt; num_moves"
entryCount="1540780"
initial="1i=0;"
length="104"
lineNumber="8174"
selfTime="474855179"
selfTimePercent="7.7"
step="1 ++ ">

Figure 5.6: Example of ForLoop annotated after Profilazer.

annotates the number of times a loop is dynamically reached during the execution of
the program. An example of a FOR loop annotated with execution times by Profilazer
is shown in Fig.[5.6]

Adding profiling information to the XML document

In order to estimate the value of each loop in the code according to its execution
time, we need a compiler or a tool that provides us profiling information. It is not
straightforward to calculate the coverage of every loop in the code in terms of exe-
cution times. Most profiling tools only return execution times consumed by function
calls and C statements. Within the set of available options, the Intel compiler is the
alternative that better satisfies our needs, since it provides an XML output, instead
of generating a text file with the source file annotated with execution times, as Sun’s
profiler or OProfile.

Fortunately, the Intel compiler has a -profile-loops=all option, that allows the
executable file to generate an XML report with both inclusive and exclusive execu-
tion times of every loop. Since we already have an XML file describing the source
code, combining both XML trees is conceptually straightforward. This combination
is made by Profilazer. Both XML trees contain XML nodes representing the FOR
loops, with attributes that identify them properly. Therefore, for each of these nodes
in the XML tree generated by XMLCetus, Profilazer assigns the execution times of
the corresponding FOR loop encoded in the XML tree generated by the profiler.

Intel’s profiler information

XML output files generated by the Intel compiler are structured in two blocks. First,
they have profiling information about each function in the source code. Then, and this
is the information which we are interesting in, they have profiling information about
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<loops reportlevel="1" >"
<loop>
<ticks_perc>0.0</ticks_perc>
<ticks_abs>8169</ticks_abs>
<self_perc>0.0</self_perc>
<self_abs>7242</self_abs>
<entry_cnt>70</entry_cnt>
<function><! [CDATA[in_check] ]></function>
<src_file>
<name><! [CDATA[sJjeng.c]]></name>
<line>252</1line>
<path><! [CDATA[/home/seralde/CETUS/pruebasBenchmarks/458.sjeng/Fuente
/sjeng.c]]></path>
</src_file>
</loop>

</loops>

Figure 5.7: Extract of the file generated by Intel Compiler.

each FOR loop. Figure shows an extract of the generated XML file.

Each loop are annotated with its exclusive (self) and inclusive (ticks) execution
time in ticks (clock rate) as an absolute value, and as percentage respect to the total.
Moreover, each loop contains a reference to the function and the source file in which it
is contained, with the line number. All this information is essential to unambiguously
identify each loop, and thus, to correctly annotate loops in the XML document passed
by XMLCetus.

Development details

Profilazer extracts execution times annotated in the profiling report generated by the
compiler. For each loop in this report, it seeks the same loop in the XML file provided
by XMLCetus. Once the loop is found, Profilazer adds new attributes to annotate its
execution time.

To add profiling information to the correct FOR loop, it is necessary to identify
each loop with its line number and source file. However, the version of Cetus used
(1.1) does not preserve line number information in all situations. It means that match-
ing between FOR loops in profiling reports and FOR loops in the XML representation
is not possible, and hence, it is impossible to add profiling information to these loops.
We have studied this problem and we found out that the problem is always caused by
include statements within ifdef blocks, as it was already described in subsection “Ce-
tus known problems” in App.[Al Knowing the definitions applied in each benchmark,
we eliminate the ifdef blocks, preserving or erasing the include statements in function
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of the applied definitions.

Profilazer’s internal operation is described below.

1. First, Profilazer builds two XML documents using the XMLCetus output, which
represents the source code, and the XML file outputted by the compiler.

2. Profilazer extracts each loop of the profiling XML document through an XPath
expression.

3. For each loop, Profilazer extracts execution times, entry counts, and file and
line number in the source code.

4. As each loop in the XML profiling document matches with a single loop in the
XMLCetus document which represents the source code, Profilazer searches for
these loops using the line number and the file name.

5. Then, ForLoop nodes from the XML representing the source code are annotated
with the execution times extracted from the profiling XML document.

6. Finally, the new XML document is printed into a file, with the same name than
the original XML file created by XMLCetus plus the suffix “profiled”.

In step two, Intel Profiler fails because sometimes it annotates the same loop twice
or more times, with different values. The sum of these different values is often bigger
than the total time of the whole source code, thus the sum of these values is not the
correct execution time for a loop. This error is not documented by Intel, and the
biggest value in each case is quite close to values extracted by other profilers for those
same loops. Therefore, we decide to choose the biggest value in those cases in which
the compiler annotates the same loops twice or more times.

As we stated previously, obtaining the relevance of each loop in terms of execution
time is very useful to choose which loop is more profitable to parallelize. Besides this,
an XML tree representing the source code, augmenting with profiling information, can
be used to automatically parallelize a loop, either by introducing OpenMP directives,
or by building heuristics to choose automatically the target loop. The first path will
be covered in the following chapter. The second one is listed as potential future work
in the Conclusions of this Ph.D. thesis.

5.4.6 Loopest: Querying and modifying the XML tree

Loopest is a Java module that analyzes the augmented XML tree and provides three
sets of functionalities: (a) generation of reports on the aggregate coverage of every
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// (1) QUERY TO ISOLATE VARIABLES WRITTEN.
// VARIABLES AS INDEXES IN AN ArrayAccess ARE NOT CONSIDERED TO BE WRITTEN.
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]//Identifier[
not (ancestor: :AccessExpression) and not(ancestor::ArrayAccess)
ID)
| (VariableDeclarator[ descendant::Initializer ]/
Expression//Identifier[
not (ancestor: :AccessExpression) and not(ancestor::ArrayAccess)
D
| (FunctionCall/Expression[ position()!=1 1//
UnaryExpression[ Qoperator=’&’ ]//Identifier[
not (ancestor: :AccessExpression) and not(ancestor::ArrayAccess)

D

// (2) ArrayAccess WRITTEN.
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]//
ArrayAccess/Expression[1]//
Identifier[ not(ancestor::AccessExpression) ])
| (VariableDeclarator[ descendant::Initializer ]/
Expression//ArrayAccess/Expression([1]//
Identifier[ not(ancestor::AccessExpression) 1)
| (FunctionCall/Expression[position()!=1]//
UnaryExpression[ Qoperator=’&’ ]//ArrayAccess/Expression[1]//
Identifier[ not(ancestor::AccessExpression) ])

// (3,4) AccessExpression VARIABLES WRITTEN.
// THE OPTION "VARIABLEDECLARATOR + INITIALIZER" IS NOT CONSIDERED BECAUSE THAT
// CONSTRUCTION IS NOT POSSIBLE. (EXAMPLE: long date.rl = 5).
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]//
AccessExpression[ not(ancestor::AccessExpression) 1)
| (FunctionCall/Expression[position()!=1]1//
UnaryExpression[Q@operator="&’]//
AccessExpression[ not(ancestor::AccessExpression) 1)

// (5) VARIABLES READ AND WRITTEN (FROM UNARY INCREMENTS OR DECREMENTS) .
Statement [2] //ExpressionStatement/Expression// (UnaryExpression
[ @operator=’post ++’ or Qoperator=’post --’
or Qoperator=’pre ++’ or Qoperator=’pre --’
D7/
( (Identifier[ not(ancestor::AccessExpression) ])
| (AccessExpression[ not(ancestor::AccessExpression) ])

)

Figure 5.8: XPath code that searches for variables written inside a loop. This code includes
queries which detects (1) variables written as a result of being located at the left-hand side
of an assignment expression, (2) writes to array elements, (3) writes to fields inside data
structures, (4) variables affected by an address operator, and (5) implicit writes due to unary
increments or decrements.
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FOR loop, (b) generation of reports on the definition and use of all variables in the
context of every FOR loop, and (c) the ability of modifying the XML tree according
to this analysis, to either insert automatic parallelization directives, or directives and
functions that allow the speculative parallelization of the original source code. In this
chapter we will cover the first two functionalities; the third one will be discussed in
the following chapter.

Loopest relies on XPath capabilities to perform queries on the augmented XML
tree returned by Profilazer. XPath syntax is easy to learn, and allows building complex
queries with few words or lines. The result of these queries may be new node-sets that
can be combined into new queries. XPath queries work in a similar way than recursive
searches in a directory-based file-system structure, allowing to select nodes or set of
nodes in an XML document, based on the nodes’ attributes. As an example, Fig.[5.§]
shows the queries used in Loopest to isolate variables that are written inside a loop.
Such queries are much simpler to develop than directly modifying the Java code that
manages the IR structure in Cetus. For example, the first query in Fig. has three
different parts that isolate the variable x as written in the statements x = 2, int x = 0,
and function(&x), respectively.

The simplicity of XPath syntax allows a fast prototyping of new solutions. As
a result, Loopest can be modified to detect other features in a source code by imple-
menting new XPath queries, either to describe new rules in the variables classification,
or to detect new languages constructions. This property guarantees the extensibility
of Loopest.

Variable classification in the context of a FOR loop

In order to develop BFCA it is necessary to precisely define a set of rules to classify
variables into private, shared and speculative. There are a couple of considerations
regarding this classification. First, a variable passed by reference to another function
will be considered as a write. Second, a variable passed by value to another function
will be considered as a read.

Variable classification is described below. Table 5. 1lresumes this classification.

a) Omitted variables There are some variables that are ignored in this classifica-
tion:

1. From the point of view of Loopest, variable declarations without initialization
are ignored in the dependency analysis. These variables are not taken into ac-
count until they are used, read or written.

2. The numerical value of variable memory addresses will be considered constant.
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| Type | Description \

e Variables that control the execution of a loop.

e Variables that are always written in an iteration before being read,

and are not read after the loop execution.
Private ) ) )
e Variables that are only written and read after the loop, or are written

before being read.

e Data structures that only contains private variables.

e Variables that are only read.

e Variables that are involved in the main loop control (but they are not
Shared the control variable), as long as they are read-only variables.

e Data structures that all their elements are shared.

e Global variables that are only read inside the loop.

Speculative e Every variable that is not private or shared.

Table 5.1: Simplified variable classification in terms of their accesses.

b) Private variables The variables that fulfill the following requirements are clas-
sified as private:

PO1 Variables that are always written in an iteration before being read, and are not
read after the loop execution (in temporal terms). This include variables that
control inner loops. If the variable is read before the outermost loop, it does not
affect.

[PO1-Note] Pay attention to GOTOs or nested loops that affect the execution

flow.

P02 Variables that are only written and not read after the loop, or are written before
being read (output value of the variable is overwritten). It does not affect if
variables are read before the loop.

[PO2-Note] Pay attention to GOTOs or nested loops that affect the execution

flow.

P03 Data structures that only contain private variables. If any variable is not used,
not private, shared or speculative, the data structure continues being private.
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¢) Shared variables The variables that fulfill the following requirements are clas-
sified as shared:

CO1 Variables that are only read. Exception: The variable that controls the loop,
being only read inside the loop body, will be considered as private.

C02 Variables that are involved in the main loop control (but they are not the control
variable), as long as they are not modified during the loop execution, i.e., being
read-only variables. If these variables are not even read, they should be declared
as shared, because they are always read at least one time in each iteration in the
loop control.

CO03 Data structures that all their elements are shared.

C04 Global variables that are only read inside the loop.

d) Speculative variables In general terms, a speculative variable is every vari-
able that is not private or shared. Following rules discriminate all possible cases.

EO1 Variables that in a same iteration are always written before being read, and are
read outside the loop.

E02 Variables that are only written inside the loop, and also used outside the loop.

EO03 Data structures that it is not possible to determine whether they are private (rule
P03) or shared (rule C03) variables at compile time.

E04 Variables that are passed by reference to a procedure.

EO5 Variables that, in the context of an iteration, are first read and then written. In
the case of statements as a2 = f (a2), the implied variable is speculative. The
variable value is first read in the right-side and then written.

E06 Variables that are only used inside a loop with expressions that have the follow-
ing form are variables that support speculative reductions:
e VAR = VAR + f(x)
e VAR = VAR * f(x)
e MAX(VAR,f(x))
e MIN(VAR,f(x))
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EO07 Global variables (also data structures) that are written inside the loop, because
there is not an easy way to guarantee that this value will not be used after the
loop.

These rules help us to identify which loops are more profitable to be parallelized,
including which loops might be suitable to be parallelized by speculative means.

How Loopest works

In order to classify variable usage inside FOR loops, Loopest executes a set of XPath
queries that determine the variables being read, written, or read and then written.
These results are combined with other queries using set theory operations to classify
variables into private, read-only shared, and speculative classes, including the detec-
tion of private variables that are used after the end of the loop. We have used set
theory operations to simplify queries, and obtain a better mapping with the classifi-
cation rules. For example, a variable that is written and also read is detected when
we perform the union of the list of variables written and the list of variables read,
both obtained through XPath queries. Summarizing the classification of the previous
pages, private variables are: (1) variables that control the execution of a loop; (2)
variables that are always written in an iteration before being read, and are not read
after the loop execution; (3) variables that are only written and read after the loop,
or are written before being read; and (4) data structures that only contains private va-
riables. Shared variables are: (1) variables that are only read; (2) variables that are
involved in the main loop control (but they are not the control variable), as long as
they are read-only variables; (3) data structures that all their elements are shared; and
(4) global variables that are only read inside the loop. Variables that are not private
nor shared are considered speculative, because their definition and use may lead to
race conditions during a parallel execution. Loopest detects variables that match each
category described above, and then applies several set operations, such as union or
intersection, to obtain the final variable classification.

The XPath queries used by Loopest process all FOR loops present in the code,
regardless of their depth level, and all user functions called by them. All these data
provide the enough information that can be used to guide loop-level speculative par-
allelization of the code.

As we have stated above, Loopest has three different functionalities. The first one
is to use profiling information of every FOR loop, provided by the augmented XML
tree, to perform a classification of loops by their relevance in terms of execution time.
The second one is to generate a report with a taxonomy of variable usage for a target

This feature has been added with the help of the ListUrils package, provided by Apache Com-
mons [90]], that allows applying operations such as union or intersection over sets of variables.



5.4. Solution proposed: BFCA 119

loop. Finally, a third functionality offered by Loopest is the possibility of augment-
ing the XML tree with additional branches, thus allowing the instrumentation of the
code using the acquired information. This opens a door to the automatic paralleliza-
tion of the code, either inserting OpenMP directives or function calls that allow the
speculative parallelization of promising loops [37]]. This feature will be covered in the
following chapter.

“Well-formed” FOR loops

Among the features that Loopest extracts from source codes, the characterization of
FOR loops into “well-formed” loops is one of the most important in order to choose a
loop to be parallelized. A “well-formed” FOR loop is a loop that satisfies the follow-
ing properties:

o It has a single control variable.

e All three fields of the FOR structure (initialization, conditional evaluation, and
increment) are being used,

e It does not perform any change to the control variable inside the loop body.

This kind of FOR loops are more feasible to be parallelized, mostly because the
iteration space is known in advance, and hence, Loopest reports whether each loop
fulfills these requirements.

Extracting code features

As we have stated above, Loopest is able not only to classify variables within loops
as private, shared, or speculative, but also to provide more useful information about
pointer arithmetic usage, memory management functions, I/O functions or even static
variables affecting a loop in any nested level of loop or function. Moreover, Loopest is
also capable of leveraging profiling information provided by the subsystem Profilazer
to determine the importance of each loop in terms of execution time.

From the point of view of Loopest, extraction of new features, as pointer arith-
metic usage in a loop, only requires new XPath queries. Adding profiling information
into reports is even more straightforward since Loopest only needs to extract the val-
ues of two attributes (exclusive and inclusive time) once it detects a new loop. This
shows one of the main properties of Loopest: Extensibility. It is relatively easy to
modify it in order to detect new features in codes.

Loopest’s reports have a block for each loop in the source code. Figure [5.9]shows
an extract of the report generated for 458.sjeng, describing the FOR loop that starts



120 Chapter 5. TLS Niches Detection and Variable Classification

174: Line number: 174

174: Number of lines: 29

174: Inclusive Time Percent: 0.3

174: Exclusive Time Percent: 0.1

174: It doesn’t contain pointer arithmetic.

174: It contains a BREAK statement.

174: Number of Loop Control Variables: 1

174: It contains all its parts (initial, condition and step)

174: Loop Control Variable: (register int) 1i.

174: It hasn’t ancestor loops.

174: Variables read: (static const int) bishop_o[4],

174: Number of variables read: 7

174: Variables written: (register int) ndir,

174: Number of variables written: 3

174: Variables always written before read and not appear outside the loop:
(register int) ndir,

174: Number of variables read and written: 3

174: Variables read and written: (register int) ndir,
174: Variables only read: (static const int) bishop_ol[4],
174: Private Variables: (register int) ndir, (register int) a_sq,

174: Shared Variables: (static const int) bishop_o[4],
174: It is a ’'’'Well—formed’’ FOR Loop.
174: It is ’'’'Well—formed’’ FOR Loop with only private or shared variables.

Figure 5.9: Extract of report generated for 458.sjeng. Somes lines are cut to better presenta-
tion.

in line 174. Information shown contains an estimated number of lines of the FOR
loop, extracted from the IR generated by Cetus. Moreover, the report shows the inclu-
sive and exclusive times of the loop in percentage respect to the total execution time,
thanks to the contribution of Profilazer. Other useful information reported by Loopest
is pointer arithmetic usage, statements that break the execution flow, read and written
variables, variable classification into private, shared and speculative categories, and
whether each loop fits into the well-formed” category defined above. This part of
the report is interesting to individually characterize FOR loops. However, it is even
more interesting a report about the source code as a whole, summarizing the results.
Figure [5.10] shows the final lines of the report generated for 458.sjeng benchmark of
SPEC CPU2006.

These final lines show a good characterization of the source code, from the point
of view of its FOR loops. First, the report shows the percentage of “well-formed”
FOR loops and the percentage of these loops that only hold private and read-only
shared variables, and therefore may be parallelized at compile time. Subtracting the
second value from the first, we can obtain the percentage of loops that are potentially
speculatively parallelizable. Last features extracted by Loopest are the percentage of
loops that use pointer arithmetic, memory allocation functions, I/O functions, or are
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Number of FOR loops: 216

of "'Well—formed’’ FOR Loops: 91.66667%

of total time of the ’’Well—formed’’ FOR Loops: 19.599998%

of ’'’Well—formed’’ FOR Loops with only Private and Shared variables:
51.38889%

of total time of the ’"’'Well—formed’’ FOR Loops with only Private and
Shared variables: 17.7%

of FOR Loops with pointer arithmetic: 10.185185%

of total time of the FOR Loops with pointer arithmetic: 9.6

of FOR Loops with memory allocation functions: 0.0%

of total time of the FOR Loops with memory allocation functions: 0.0

of FOR Loops with I/O functions: 4.166667%

of total time of the FOR Loops with I/O functions: 0.0%

of FOR Loops affected by static variables: 18.981482%

of total time of the FOR Loops affected by static variables: 8.6

oo oe

o°

o

o o o° o o° o o°
o
o

o
o

Figure 5.10: Final lines of a report generated by Loopest for 458.sjeng.

affected by static variables. As a practical application, and a demonstration of the
capabilities of BFCA, in Section [5.5] this framework will be used to process some of
the SPEC CPU2006 benchmarks.

Searching for static variables

Recognition of loops affected by static variables, namely, variables whose lifetime ex-
tends across the entire run of the program, is interesting for parallelization purposes,
because the value of a write on a static variable in the context of a loop has to be
preserved after the loop. However, a dependency on a static variable is not always
obvious because the variable could be inside a nested loop, or nested function call.
Therefore, it is very useful to know the execution path that reaches the static variable
that affects a particular loop. Figure [5.11]shows the execution path that reaches the
static variable that affects the loop in line 7633 of 482.sphinx3. Loopest only shows
the first appearance of a static variable affecting the loop. Doing manually this task
is really time-consuming, because nested loops, and above all nested function calls,
complicates maintaining the trace. Therefore, providing an automatic method of ob-
taining these traces is very useful.

Loopest detects static variables that affect a particular loop in the following way:

1. First, Loopest searches for static variables within the body of the current loop,
including nested loops. If Loopest finds a static variable affecting the loop,
stops the search and prints the trace of the execution path that reaches that static
variable.
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7633: Static variable in line: 1210 : (static mylist_t * ) head

Path:
for loop (file: sphinx3.c (7633), incl. time: 0.0%, excl. time: 0.0%)
lextree_build (file: sphinx3.c (7634))
for loop (file: sphinx3.c (8350), incl. time: 0.0%, excl. time: 0.0%)
for loop (file: sphinx3.c (8364), incl. time: 0.0%, excl. time: 0.0%
for loop (file: sphinx3.c (8371), incl. time: %, excl. time:
for loop (file: sphinx3.c (8398), incl. time: %, excl. time:
lextree_node_alloc (file: sphinx3.c (84009)
__mymalloc__ (file: sphinx3.c (8303))
(static mylist_t * ) head (file: sphinx3.c (1210)

7633: Loop affected by static variables.

Figure 5.11: Trace of the static variable affecting loop in line 7633 of 482.sphinx3.

2. If there is not a static variable affecting the loop within its body, Loopest
searches for static variables within functions called from the current loop, nested
loops inside these functions, or functions called inside these functions. Note
that the level of nesting could be very high, and this is precisely why Loopest is
so valuable. It automatically performs a task that would be very time-consuming
to do manually.

3. Once a static variable is found in any nested level, Loopest prints the trace from
the first FOR loop before the variable occurrence.

To search static variables inside functions called within loops, Loopest keeps a
list with functions that is gradually extended with new functions as it finds them in
nested function calls. Once a function is called, Loopest assumes that possible future
paths to this function call will be the same. Thus, once a function is analyzed, it is
annotated to not be analyzed more times.

To keep the trace, Loopest maintains different lists with information of which
loops (identified by line number) are contained within which functions, which func-
tions are called by other functions, as well as the line number of these function calls.
With all this information, Loopest is able to recover the trace and rebuild the path
from the first FOR loop until the static variable found.

5.4.7 Sirius: Regenerating the C code

After building and analyzing the XML tree, the last part of the process is to convert
this representation back into C code, for testing purposes (i.e., to check whether the
generated C file has the same functionality than the original). To do so, we have devel-
oped a Java module called Sirius, that receives an XML document describing either
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the original C code as produced by XMLCetus or the augmented C code produced by
Loopest.

Sirius is based on XSLT [95]] capabilities, and uses template rules to translate the
XML document back to C. To apply the XSLT transformation rules, we have chosen
the Saxon tool [158]], due to its open-source nature and because it implements XPath
and XSLT 2.0.

The structure of the XSLT program developed consists in a set of template rules,
one for each element of the DOM tree that should be transform back into C language
elements. These template rules generate the C code that corresponds to the identified
DOM element, triggering other rules when necessary. For example, in the case of
a BinaryExpression element, the corresponding template rule generates the correct
binary operator, according to the value of the corresponding attribute, and decides
the application of the appropriate template rules to the left and right side expressions
of the binary operator. In other cases, Sirius defines modes for the template rules in
order to apply them depending on the context. For example, a node Initializer can
be either a child of a simple variable declarator node or an “struct” declarator. This
differentiation is necessary to correctly rewrite the code.

As aresult of the transformation made by Sirius, a C source file is generated. Since
all formattings (indentation, spaces, and line breaks) have been lost in the process,
we use the GNU tool indent to format the output file and make it more pleasant for
the reader. Besides formatting information, the only difference between the original
source file and the generated one involves constants defined in the original code with
#define macros, that now appear with their defined value.

With this transformation Sirius finishes the compilation framework process. Purely
technological details of Sirius, Loopest and XMLCetus can be found in our M.Sc. the-
sis [5]].

5.4.8 Validation

Software developed and presented in this document needs to be validated. As it has
been already described, the framework are divided in four subsystems or modules.
The validation process for each one described below.

XML Cetus and Sirius

Validation of XMLCetus has been achieved using Sirius, which rebuilds a C code
throughout its XML representation. Therefore, if the C code rebuilt by Sirius is cor-
rect, and functionality equivalent to the original C code, this constitutes a proof-of-
work that validates the correct operation of both XMLCetus and Sirius.
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There have been developed more than 75 regression tests in order to validate these
two subsystems. Since the methodology followed in the development of XMLCetus
and Sirius is a evolutionary prototyping, both subsystems have been developed by
using an incremental construction of prototypes, each one having more functionality
and covering more test cases than the previous one. The aim of these tests is to cover
every possible situation in a code. This methodology was chosen because it allows a
rapid development and to perform early tests to check the correction of the prototypes.
The regression tests developed can be found in the digital support attached to this
document.

Profilazer

The different auxiliary tools that have been used to assist and validate Profilazer oper-
ation are described below. With the exception of the first tool, all of them are included
in the digital support attached to this document.

e First of these tools is loopprofileviewer, provided by the Intel compiler. This
tool allows visualizing the profiling XML files generated by the compiler in a
nice human read format. It is also allows sorting each function or loop profiled
by name, line, absolute execution time (inclusive or exclusive), and percentage
of execution time. Using this tool it was easy to detect repetitions in annotated
FOR loops, with different profiling information for each one, as it was described
previously. This tool was also helpful to compare Intel profiling information
with other provided by Sun tools, which were used in previous developments.

o LoopFinger: It is used to check whether the line numbers of the FOR loops
annotated by XMLCetus are the same than their line numbers in the original
source code. This tool was developed to solve a problem with the original
Cetus software, already described in page[I12] that does not correctly maintain
the source code line numbers. Therefore, we developed this tool to track this
problem.

$ LoopFinger <XML—file.xml> <sourceCode>.c

e ProfilazerCheck: The XML file generated by the Intel profiler often contains
several repetitions for the same loop, with different times annotated each time.
As it was described before, the repetition with the longest time annotated is the
correct. This tool is used to check whether each FOR loop is correctly annotated
with the longest time.
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$ ProfilazerCheck <XML.profiled>.xml <profiling—information>.xml

Loopest

Loopest has been validated using more than 50 regression tests. Like with XMLCetus,
development methodology followed with Loopest is a evolutionary prototyping, and
thus, the validation process is quite similar to the one followed in the development
of XMLCetus and Sirius. These regression tests can be found in the digital support
attached to this document.

5.5 [Evaluation of the solution

To demonstrate the capabilities of our analysis framework, we will characterize a
set of C benchmarks in order to measure the potential gain that could be obtained
with the parallelization of some of their loops. As long as we will focus on loop-
level parallelization, both the coverage of FOR loops in terms of execution time and
the definition and use of all variables inside them should be taken into account. For
this study, we will use some of the C benchmarks provided by the SPEC CPU2006
benchmark suite [82]]. As it was described in Chap. [2} these benchmarks are based in
real-world applications, and are a good touchstone to test BFCA capabilities.

The structure of this section is the following. First, the evaluation methodology
followed is described, as well as the data set used. SPEC CPU2006 C benchmarks
will be used to obtain a characterization of loops from these applications. Second,
we will discuss the opportunities for parallelization of each SPEC CPU2006 C bench-
mark considered, classifying FOR loops in different categories with respect to their
suitability for parallel execution and taking into account the existence of potential de-
pendency violations. Third, a more in-depth analysis is performed to characterize all
FOR loops with respect to different situations that may affect parallelization, such as
the use of pointer arithmetic and variables, memory management function calls, I/O
activity, or static variables. With regard to the latter feature, in order to demonstrate
the potential of the framework, we reproduce here the examples of traces of FOR
loops affected by the presence of static variables in a given nested level of loop or
function call. Finally, we will quantify costs associated to the use of BFCA in terms
of execution times and sizes of the generated XML files.



126 Chapter 5. TLS Niches Detection and Variable Classification

5.5.1 Evaluation methodology

In Sect. [5.2.1] it was described the importance of data dependencies and other situa-
tions in order to parallelize source code. Therefore, building a framework that extracts
information about source codes and characterizes FOR loops, which are the main tar-
get to parallelize, is a valuable tool. In order to evaluate this framework in real situa-
tions, the use of benchmarks from suites such as SPEC CPU is a good alternative to
test the potential and capabilities of the framework. This section describes which fea-
tures are extracted from the C benchmarks that have relevance in parallelization tasks,
how these features are measured, and which datasets are used in the experiments.

Design of the experiment

Experiments have been designed to satisfy the goals presented in Sect.[I.2] One of
the goals is the use of profiling information to determine the relative importance of
each FOR loop in a source code, in terms of execution time. This goal is related
to the characterization of loops features, because using profiling information we can
determine the importance of each feature. In order to show framework capabilities
and obtain this characterization, the C benchmarks of SPEC CPU2006 will be used.
The experiment process has been carried out as follows:

1. XMLCetus is executed with each source code to obtain an XML-based repre-
sentation for them.

2. All C benchmarks are compiled using the Intel compiler with the option “-
profile-loops=all”, which instruments the source code to obtain profiling infor-
mation when the application is executed.

3. Using a script that automatizes the process, each benchmark is executed with
the three workload sets defined by SPEC CPU2006, ranked increasing work-
load: Test, Train, and Reference. In some cases, a workload requires the exe-
cution of the same benchmark several times. Regardless of this, and with the
aim of avoiding the effects of an irregular execution, each input set is executed
three times, and the average percentage is obtained.

4. Each execution generates an XML file with the profiling information. This
profiling XML file is renamed with the name of the application and the name of
the workload used. In the cases that the benchmark is executed more than once,
an XML tree is generated for each execution. Besides, for each set of three
executions which are used to obtain the average execution times, we create a
new XML tree that saves this average time for each tuple benchmark-workload
set.
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5. Once we have the profiling XML trees, Profilazer is executed to add profiling
information into the XML files created by XMLCetus. When there are various
profiling XML files for a same workload set, different XML files are generated
for each profiling file.

6. Finally, Loopest is executed with the profiled XML files, and statistics are ex-
tracted. When there are different profiled XML files for a single workload and
application average values are calculated for these statistics.

The second part of the experiment aims to show the potential of the framework
performing automatically a task that it would be endless manually: To obtain the
trace from the FOR loops until we reach a static variable that affects the loops, no
matter the level of nesting of loops or function calls. The process of this phase is
very similar to the previous one. Unlike the previous phase, we do not seek to obtain
an exhaustive characterization of these traces. Therefore, this study is only focused
on those benchmarks in which the dependency on static variables is significant in
terms of execution time. These times are obtained in the previous phase, as we saw
above. Therefore, in this point we only focus on the three benchmarks that fulfill this
requirement: 429.mcf, 458.sjeng, and 482.sphinx3. Only the most relevant results
will be shown. Obtaining these traces is a very similar process to the one followed in
the previous phase:

1. As a result of the previous phase, the benchmarks selected for this experiment
are already compiled and executed, as well as their corresponding XML trees
are also obtained.

2. A profiled XML file corresponding to the reference workload is picked for each
benchmark.

3. Loopest is executed using each profiled XML file, obtaining and saving the
resulting reports.

4. By searching in each report, only relevant or significant situations are chosen to
show them as examples of the potential of the developed framework.

Finally, it is obtained an empirical estimation of the costs of using the framework,
in terms of execution times and sizes of the XML files generated. To obtain execution
times, the command date is used before and after executing each subsystem.

Evaluation measures

The results obtained through the experiments are presented using the following mea-
sures:
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e Coverage time: Percentage of execution time that FOR loops that satisfy a par-
ticular condition with regard to the total running time. Coverage times shown in
the tables are referred to the three working sets defined in the SPEC CPU2006
benchmark suite.

e Lines of source code: This measure acts as an estimation of the complexity
and dimension of source codes, to put both BFCA execution times and size of
XML files into perspective.

e BFCA execution times: Time will be measured in seconds, with a precision
of two decimals. This measure provides an empirical estimation of the time
complexity of the developed framework.

e Source code and XML files sizes: Size will be measured in kilobytes, with a
precision of two decimals. This measure provides an empirical estimation of
the spatial complexity.

e Rates between times and between sizes: In order to set reference points to
compare times associated to the framework it is necessary to obtain the execu-
tion times of the original software of Cetus and the time consumed by XML-
Cetus. The ratio allows comparing how different the first values are in compar-
ison with the second values. We will also calculate the ratio between the size
of the original C source code and the size of the corresponding XML file, to
measure the overhead incurred.

Dataset

As we stated before, we will use C benchmarks extracted from SPEC CPU2006 to
obtain a characterization of the FOR loops from these applications. SPEC CPU2000
C benchmarks could be characterized too, but from the point of view of academic
interests, SPEC CPU2006 is the last benchmark suite, also the most complex and with
a larger dimension, and thus, it is more interesting to characterize these benchmarks.
However, SPEC CPU2000 benchmarks are very useful to experimentally estimate
time and spatial complexity of the framework operation. They will be used, together
with SPEC CPU2006, to measure times execution of original Cetus in comparison to
XMLCetus, execution times of Profilazer and Loopest operation, and size of the XML
files generated by XMLCetus in comparison to original source files.

In order to obtain the more accurate characterization results, we use the three
input sets that SPEC provides for each benchmark: 7est, which is used to check for
the correct execution of the benchmark; 7rain, which involves a bigger workload and
it is used to optimize benchmarks by feedback; and Reference, which is the bigger
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Application Lines Description
of code

401.bzip2 7292 Julian Seward’s bzip2 version 1.0.3, modified to do most
work in memory, rather than doing I/O

429.mcf 2044 Vehicle scheduling. Uses a network simplex algorithm to
schedule public transport

433.milc 12837 A gauge field generating program for lattice gauge theory
programs with dynamical quarks

456.hmmer 33210 Protein sequence analysis using profile hidden Markov mod-
els (profile HMMs)

458.sjeng 13291 A highly-ranked chess program that also plays several chess
variants

462.libquantum | 3454 Simulates a quantum computer, running Shor’s polynomial-
time factorization algorithm

464.h264ref 46 142 A reference implementation of H.264/AVC, encodes a
videostream using 2 parameter sets

470.1bm 875 Implements the "Lattice-Boltzmann Method" to simulate in-
compressible fluids in 3D

482.sphinx3 18280 A widely-known speech recognition system from Carnegie
Mellon University

Table 5.2: Description of the SPEC CPU2006 benchmarks used in the experiments. Lines of
code are calculated using SLOCCount [168]].

workload set used to obtain execution times, and hence, the final performance results.
The conditions of use of these benchmarks suite include the mandatory use of these
inputs sets, with the aim of ensuring that the observed level of performance can be
reproduced by other researchers. A detailed description for each input set can be
found in [81} 182]].

With regard to SPEC CPU2006 benchmark suite, and taking into account that
the prototype is designed to exclusively handle C programs, we have only selected
a subset of C benchmarks of this suite. Table [5.2]includes a description and shows
the size of the considered benchmarks. This list includes all C applications except
400.perlbench, 403.gcc and 445.gobmk. The reason to exclude them for this study
is that the version of the Cetus framework used is not able to process them, probably
because these benchmarks are fragmented into many C files (53 for 400.perlbench,
155 for 403.gcc, and 89 for 445.gobmk) with many conditional compilation flags, and
a great number of lines (around 116 000 for 400.perlbench, 484 000 for 403.gcc, and
157 000 for 445.gobmk).

As with CPU2006, we only use the C programs of CPU2000 [81]]. Table[5.3]sum-
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Application Lines Description
of code

164.gzip 7600 Data compression program written by Jean-Loup Gailly for
the GNU project

175.vpr 13600 Placement and routing program that implements a
technology-mapped circuit in a FPGA chip

177.mesa 81800 Free OpenGL 3-D graphics library

179.art 1200 Neural network used to recognize objects in a thermal image

181.mcf 1900 Vehicle scheduling. Uses a network simplex algorithm to
schedule public transport

183.equake 1200 Simulation of seismic wave propagation in large basins

186.crafty 20700 High-performance Computer Chess program that is designed
around a 64 bit word

188.ammp 12900 Modeling large systems of molecules usually associated with
Biology

197 .parser 10300 Syntactic parser of English

254.gap 62500 It implements a language and library designed mostly for
computing in groups

256.bzip2 3900 Julian Seward’s bzip2 version 0.1, performs no file I/O other
than reading the input

300.twolf 19200 Place and route simulator

Table 5.3: Description of the SPEC CPU2000 benchmarks used in the experiments. Lines of
code extracted from [81]].

marizes descriptions of the benchmarks used in the experiments. This table contains
all the C benchmarks of CPU2000, excluding 176.gcc, 253.perlbmk and 255.vor-
tex, because Cetus fails in their processing. Two of these benchmarks are the same
program (different versions) than used in CPU2006, 403.gcc and 400.perlbench, and
thus, Cetus experiences the same problem described above. Regarding the experi-
mental evaluation, as we stated before, we have run each input set three times and
obtained the average percentage.

In order to obtain the results presented in this chapter, it was necessary to create
different scripts that automatize the process. They are essentially bash scripts that
automatically execute the benchmarks, obtain the profiling XML files, execute Profi-
lazer to obtain profiled XML documents, and execute Loopest to get the final results
presented in this chapter. Since the description of these scripts is not relevant, and
targets (SPEC CPU benchmarks) of these scripts are protected by licences, they are
not described here, neither included in the digital support attached to this document.

Regarding to the execution of benchmarks, it is necessary to be sure that they are
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correctly run, and generate the correct output files. Most of the developed scripts used
the GNU tool diff to check whether results are equal to the expected results. How-
ever, this tool has a limitation: It only compares textual outputs. SPEC determines a
tolerance to be admitted in numerical results for some benchmarks. diff is not able to
take into account these numerical tolerances (in real numbers). Therefore, for those
benchmarks, it was necessary to use the SPEC version of diff, called specdiff, which
is a Perl script that admits these tolerance. Like SPEC CPU benchmarks, specdiff are
attached to a license and it cannot freely distributed. For this reason, this script is not
included in the digital support either.

5.5.2 Loop characterization of SPEC CPU2006 C benchmarks

As we have stated before, we have characterized a set of C benchmarks from SPEC
CPU2006 in order to both demonstrate the capabilities of our framework, and measure
the potential gain that could be obtained with the parallelization of some of their loops.
As long as we focus on loop-level parallelization, both the coverage of FOR loops in
terms of execution time and the definition and use of all variables inside them are
taken into account.

First, this section shows opportunities for parallelization in each of the SPEC
CPU2006 C benchmarks analyzed, classifying their FOR loops in three categories
that will be seen later. Second, a more in-depth analysis is performed to extract the
use of different types of variables, structures and functions inside FOR loops, whose
usage conditions the opportunities for parallelization. Finally, a characterization of
the usage of the static variables in those benchmarks will be shown.

Loop characterization with respect to potential dependency violations

Loops are one of the main sources of parallelism because of their repetitive nature.
However, not all loops are parallelizable. There are several reasons for this. The most
important one is the possibility of the occurrence of dependency violations. This
possibility may force the in-order execution of different instructions, thus limiting
the amount of parallelism that could be extracted. In fact, parallelizing compilers
conservatively refuse to parallelize loops that may incur in dependency violations.
Other reasons that limit the amount of parallelism to be extracted include the presence
of system calls that should be carried out in order, the use of pointer arithmetic, or
memory management functions.

In this section, we will use BFCA capabilities to isolate FOR loops that do not
present potential dependency violations, and therefore are valid candidates to be par-
allelized at compile time. Once a candidate loop is detected, programmers can de-
cide to parallelize this loop using standard, shared-memory APIs such as OpenMP.
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Well-formed FOR Loops

Application % Coverage Coverage Coverage
of loops Test Train Reference
401.bzip2 93.33 35.69 29.8 31.43
429.mcf 63.64 7.39 3.69 2
433.milc 64.11 2.5 2.1 1.9
456.hmmer 88.23 94.29 98 98.1
458.sjeng 91.67 19.2 15.9 19.59
462.libquantum 92.13 22.5 19.7 214
464.h264ref 95.31 75.69 76.09 77.59
470.1bm 100 96.8 99.8 100
482.sphinx3 80.4 40.8 64.69 81.99
Average 8.42 43.87 45.53 48.22

Table 5.4: Well-formed FOR loops.

BFCA gives a first estimation of the degree of parallelism that could be extracted with
compile-time techniques. This estimation is only an upper bound of that degree, be-
cause, as we stated before, there are several additional factors that limit in practice
how much parallelism can be obtained. These factors will be examined in the next
section.

We have analyzed all benchmarks using the three input sets provided by SPEC
CPU2006 for each benchmark, in order to obtain loop coverages in different circum-
stances. We are aware that the coverage obtained with a particular input set cannot
be extrapolated to other input sets, but we believe that this information is still useful
to guide the choice of loops to be parallelized. As long as the loop coverage can be
heavily influenced by the input set provided, users should select a “representative”
input set for their applications.

As an example of the capabilities of the framework, we have accumulated the in-
formation regarding each particular FOR loop returned by Loopest to show the degree
of parallelism present in each application. Tables [5.4] and [5.5] summarize the results
of the study of our SPEC CPU2006 C benchmarks. For each benchmark considered,
the tables show the following information:

e Summary of “well-formed” FOR loops (Fig. [5.12), i.e., loops that (a) have
a single control variable, (b) all three fields of the FOR structure (initializa-
tion, conditional evaluation, and increment) are being used, and (c) perform no
changes to the control variable inside the loop body. These loops are much
easier to be parallelized than other loops, mostly because the iteration space is
known in advance. According to BFCA results, these loops represent more than
85% of all loops present in the benchmarks considered.
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Well-formed FOR loops Well-formed FOR loops
parallelizable potentially parallelizable
Application at compile time at runtime

% of  Cov. Cov. Cov. % of  Cov. Cov. Cov.
loops Test  Train Ref. loops Test  Train Ref.

401.bzip2 46.67 1694 7.56 13.71 46.66 1875 2224 17.72
429.mcf 30.3 3.5 2 1.2 3334  3.89 1.69 0.8
433.milc ~ 33.25 1.4 1.3 1.3 30.86 1.1 0.8 0.6
456.hmmer  46.55 18.5 1.8 1.1 41.68 75.79 96.2 97
458.sjeng  51.39 17.5 14.5 17.7 40.28 1.7 1.4 1.89
462.libquantum 48.31 0.2 0.1 0.1 43.82 223 19.6 21.3
464.h264ref 57.59 37.6 34.69 39.1 37.72  38.09 41.04 3849
470.1bm 69.57 94.9 98.7 99.8 30.43 1.9 1.1 0.2
482.sphinx3  45.86 1.8 2.89 4.9 34.54 39 61.8 77.09

Average  47.72 2137 18.17 19.88 37.7 22.5 27.36  28.34

Table 5.5: Opportunities for parallelization techniques.

for (i=0;i<100;i++) { for (i=0;i<100;i++) { for (i=0;i<100;i++) {
b = function(i); v[i] = al[i] + i; v[i] = v[function(i)];
} ¥ ¥
(a) (b) (c)

Figure 5.12: (a) Example of a “well-formed” FOR loop. (b) “Well-formed” loop that only
holds private (i, and v[]) and read-only (a[]) data structures. (c) “Well-formed” loop not
safely parallelizable at compile time, because the statement can lead to a dependency viola-
tion.

Table[5.4]also shows the percentages of execution time that these “well-formed”
FOR loops represent with respect to the total running time, for each one of
the three working sets defined in the SPEC CPU2006 benchmark suite. For
some benchmarks, such as 401.bzip2, larger working sets consist of several
executions of the same executable with different input files. In these cases, we
have calculated the average percentages of all executions. As can be seen in the
table, these loops account for 43—48% of the total running time.

e Summary of loops that only holds private and read-only shared variables; i.e.,
loops that are valid candidates to be parallelized at compile time (Fig. [5.12p).
As can be seen in the last four columns of Table [5.5] roughly half of the loops
fall into this category. As we stated before, it might not be profitable to paral-
lelize the smallest loops due to thread management overheads. The table also
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summarizes their coverage for each input set, accounting for more than 20% of
the total execution time.

e Summary of loops that cannot be safely parallelizable at compile time (Fig.[5.12f).
This does not imply that these loops must be executed sequentially. Indeed, they
usually present some degree of parallelism, but the BFCA analysis has shown a
potential dependency violation that prevents them to be parallelized at compile
time. In these cases, the use of runtime, software-based speculative paralleliza-
tion techniques may help to extract their inherent parallelism [37]].

According to our results, speculative parallelization techniques could extract
some degree of parallelism from an average 37.7% of all loops present in the
benchmarks considered, covering around 26% of the execution time on aver-
age. These results highlight the importance of runtime techniques to further
parallelize sequential applications.

Loop characterization with respect to parallelization hurdles

As we stated above, it is not enough for a loop to be free of potential dependency
violations to be parallelizable at compile time. There are other parallelization hurdles
as well, such as the use of pointer arithmetic and/or the existence of memory man-
agement function calls, that inconveniences the static analysis of the code at compile
time; the existence of I/O function calls that should be carried out in order; or the pres-
ence of static variables in user-space function calls that forces to a certain execution
order to meet sequential semantics. Note that the analysis described here is extremely
difficult, if not impossible, to be carried out by other means.

Tables and [5.7] summarize the results obtained for the different characteris-
tics described above. For each considered benchmark, the table shows the following
information:

e Summary of loops that use pointer arithmetic (Fig. [5.13p). This situation is
detected using the data type of the variables present in the loop, described in
the field of the XML element that describe a particular variable. The average
number of loops (around 80%) reflects the importance of supporting pointer
arithmetic in compile-time or runtime parallelization schemes, a problem that
has been recently solved in the general case [62]. Execution time coverages of
these loops are also high: Only 458.sjeng and 470.lbm have coverage values
lower than 10%. Note that this analysis explain why, despite the high coverage
of “well-formed”, parallelizable loops in the benchmarks considered (as shown
in the previous section), parallelizing compilers still obtain only marginal im-
provements in the execution time of these benchmarks [6]].
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Number Loops with Loops with
of pointer arithmetic memory management
Application FOR Cov. Cov. Cow Cov. Cov. Covw.
loops % Test Train Ref. %0 Test Train Ref.
401.bzip2 120 88.33 452 41.09 40.88 0.83 0 0 0
429.mcf 33 9697 66.1 33.19 393 0 0 0 0
433.milc 418 87.56 722 71.8 72.6  2.39 0 0 0
456.hmmer 739 9581 94.29 98 98.14 352 0S5 0.1 0
458.sjeng 216 10.19 94 8 9.6 0 0 0 0
462.libquantum 89 87.64 22.8 19.9 214 0 0 0 0
464 h264ref 1792 8823 7589 76.19 77.89 323 02 0 0
470.1bm 23 7826 3.5 0.3 0 0 0 0 0
482.sphinx3 556 9371 492 71.89 86.09 0.54 0 0 0
Average 443 80.74 48.73 46.71 4954 1.17 0.08 0.01 0

Table 5.6: Relevance of challenges for parallelization techniques: Pointers and memory man-
agement.

e Summary of loops that perform calls to memory management functions, such as
malloc() or free() (Fig.[5.13b). In order to detect this hurdle, we look for XML
nodes inside the loop that represent standard, memory-management function
calls, such as malloc() or free(). On average, only 1.17% of loops make
use of dynamic memory capabilities, with a negligible coverage in terms of
execution time. This result suggests that dynamic memory management may
not be a priority in the list of problems that automatic parallelization techniques
should solve to speed up these benchmarks.

e Summary of loops that contain I/O function calls (Fig.[5.13k). As in the pre-

int * p, q; int * p; static s;
for (i=0;i<100;i++) for (i=0;i<100;i++) for (i=0;i<100;i++) for (i=0;i<100;i++)
{ { { {
p = &q; p=(int*)malloc(..); printf(...); s = function(i);
free (p);
¥ ¥ + }
(a) (b) () (d)

Figure 5.13: (a) Example of a loop using pointer arithmetic. (b) Loop containing memory
management functions. (c) Loop containing I/O function calls. (d) Loop affected by static
variables.
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Number Loops with Loops affected by
of I/O activity static variables
Application FOR Cov. Cov. Cov. Cov. Cov. Cov.
loops % Test Train Ref. %0 Test Train Ref.
401.bzip2 120 7.5 0.6 9.86 1.61 0 0 0 0
429.mcf 33 1212 26 0.8 0 6.06 533 268 342

433.milc 418 19.86 0.1 0.2 0.1 3.11 0.1 0.2 0.8

456.hmmer 739 13.67 0 0.1 0 8.25 5.7 0.4 0.25
458.sjeng 216  4.17 0 0 0 1898 85 6.7 8.6
462.libquantum 89  7.87 0 0 0 2697 04 0 0
464.h264ref 1792 0.89 0 0 0 8.26 0.9 0.8 0.7
470.1bm 23 4348 1.3 0.1 0 4.35 0 0 0

482.sphinx3 556 142 137 6.5 2.6 12.05 19 3.6 4.5
Average 443 1375 2.03 195 048 9.78 787 428 545

Table 5.7: Relevance of challenges for parallelization techniques: I/O activity and use of
static variables.

vious case, we perform a search for standard, I/O system calls. Loops with
such system calls cannot be parallelized at compile time, and runtime specu-
lative techniques are neither capable of handling speculative I/O calls without
operating system support. Therefore, these loops cannot be parallelized with
existent tools. As happens with loops that present memory management func-
tion calls, this category of loops is not quite representative, being 13.75% of
the total number of loops, with around 2% of execution time coverage. These
results suggest that the solution to this problem may neither be a priority for
automatic parallelization techniques.

e Percentage of loops that are affected by static variables (Fig. [5.13d). These
loops are detected searching for static variables being written, not only in the
loop itself but also inside the functions called inside the loop body, and recur-
sively, functions called by these functions. These are variables whose lifetime
extends across the entire run of the program, and thus, writing values on these
variables should be maintained after the FOR loop. This circumstance condi-
tions parallelism and it may be taken into account by any automatic paralleliza-
tion mechanism. Writings on static variables are only contained in a 9.78% of
the loops considered, although for some benchmarks this percentage reaches
a 27%. Their coverage for all input sets considered is not so high, even null
or almost zero in some benchmarks as 401.bzip2, 433.milc, 462.libquantum or
470.1bm.
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Characterization of the usage of static variables

Static variables declaration can be easily found with standard Unix tools such as grep.
However, until now it was extremely difficult to know which loops and functions were
affected by the declaration of a particular static variable. Recall that static variables
keep their value across different calls of the function that define them. Searching
manually these static variables is a daunting task, and writing down the trace until
reaching a definition of a static variable requires a substantial effort.

The identification of all loops and function calls affected by the existence of static
variables is another example of the powerful capabilities of BFCA framework. This
feature can be considered critical when working with applications such as 429.mcf,
where loops affected by static variables reach a 53.3% of coverage for the Test input
set. The BFCA framework includes a Loopest’s XPath rule to detect static variables,
reporting all FOR loops and functions affected by them.

In this section we will see how we can automatically solve this problem in sec-
onds, even in large programs like the benchmarks from SPEC CPU2006. Moreover,
the framework does not only provide just the trace, but also execution times, and that
is a very useful information in order to filter loops by importance, in terms of their
execution times. Since only the loops of three benchmarks from SPEC CPU2006
are significantly affected by static variables (see Table [5.13)), we will focus on them.
These benchmarks are 429.mcf, with a 34.2% of coverage in the reference workload
set, 458.sjeng, with an 8.6% of coverage), and 482.sphinx3 (with a 4.5% of coverage).
Others benchmarks have a coverage in the reference workload set lower than 1%, and
therefore, they will not be considered in detail.

The 429.mcf benchmark is one of the shortest benchmarks in SPEC CPU2006,
and it only has 33 FOR loops. Thus, it is not unusual that only two loops are affected
by static variables, as we can see in Fig. These two loops are affected each
one by static variables which are directly in their bodies. Information presented by
Loopest includes not only the dependency trace of the static variable, but also the
inclusive and exclusive time of each loop in the trace. This information is important
to weight the relevance (in terms of execution time) of the dependency on the static
variable. Loop in line 1937 has an inclusive and exclusive time of 34.2%, which is
the same percentage that we found in Table[5.13]

The 458.sjeng benchmark has 41 loops affected by static variables, but only three
of them has a time, inclusive or exclusive larger than 0.0%. These loops are shown in
Fig.[5.15] The sum of the exclusive times of each loop is 8.6%, the same time as the
coverage for the reference workload set shown in Table [5.13]

Traces shown in Fig. [5.15] manifest the value and usefulness of the developed
framework in a much better way than the previous benchmark . In each trace, the
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for loop (file: 429mcf.c (1909), incl. time: 0.0%, excl. time: 0.0%)
(static BASKET * ) perm][ ((50+300)+1) ] (file: 429mcf.c (1910)

for loop (file: 429mcf.c (1937), incl. time: 34.2%, excl. time: 34.2%)
(static long) basket_size (file: 429mcf.c (1942))

Figure 5.14: Excerpt of the report returned by Loopest for 429.mcf, notifying the use of the
static variables perm and basket_size, and describing both the functions and loops affected,
together with their coverage.

for loop (file: sjeng.c (8174), incl. time: 10.5%, excl. time: 7.8%)
see (file: sjeng.c (8193))
setup_attackers (file: sjeng.c (10022))
(static const int) rook_o[4] (file: sjeng.c (9855))

for loop (file: sjeng.c (8725), incl. time: 1.4%, excl. time: 0.8%)
check_legal (file: sjeng.c (8727))
is_attacked (file: sjeng.c, (2443))
(static const int) rook_o[4] (file: sjeng.c (164))

for loop (file: sjeng.c (9537), incl. time: 99.8%, excl. time: 0.0%)

search_root (file: sjeng.c (9550)
gen (file: sjeng.c (9072))
(static move_s * ) genfor (file: sjeng.c (2844))

Figure 5.15: Excerpt of the report returned by Loopest for 458.sjeng, notifying the use of
the static variables rook_o and genfor, and describing both the functions and loops affected,
together with their coverage.

dependency with the static variable is situated two nested levels below the FOR loop.
Namely, within the loop, there is a function call, inside this function there is another
function call, and finally within the last function we can find the static variable defined
or used. Obtaining manually all these traces is a hard and time-consuming task. How-
ever, by using the framework this task can be automatically achieved without spending
time. The report that Loopest generates, using the XML file created by XMLCetus,
and the annotations made by Profilazer, provides information about the trace of the
dependency of a loop to a static variable, and moreover, the execution times of each
loop in every traces, as we will see with the following benchmark.

The last benchmark analyzed, named 482.sphinx3, is more complex than the pre-
vious benchmark studied. It has 67 FOR loops affected by static variables. Since
simpler cases have been seen in the 429.mcf and 458.sjeng benchmarks, in this point,
we will only focus on the more complex case. Figure [5.16] shows an excerpt of the
report generated by BFCA when analyzing 482.sphinx, which has seven nested loops
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for loop (file sphinx3.c (12504); incl. time 2.0%; excl. time 0.2%)
for loop (file sphinx3.c (12505); incl. time 0.1%; excl. time 0.1%)
fe_frame_to_fea (file sphinx3.c (12510))
fe_spec_magnitude (file sphinx3.c (12895))
for loop (file sphinx3.c (12928); incl. time 0.0%; excl. time 0.0%
for loop (file sphinx3.c (12932); incl. time 0.0%; excl. time 0.0%)
for loop (file sphinx3.c (12939); incl. time 0.0%; excl. time 0.0%)
for loop (file sphinx3.c (12943); incl. time 0.0%; excl. time 0.0%)
fe_fft (file sphinx3.c (12950)
for loop (file sphinx3.c (13037); incl. time 0.0%; excl.time 0.0%)
(static int) k (file sphinx3.c (13037)

Figure 5.16: Excerpt of the report returned by Loopest for 482.sphinx, notifying the use
of static variable k and describing both the functions and loops affected, together with their
coverage.

and three nested function calls. These numbers provide an idea of the usefulness of
the developed framework and make clear its value.

The fragment shown indicates in its last line that a static variable k has been found,
and shows all the FOR loops and functions (in our case, functions fe_frame_to_-
fea(), fe_spec_magnitude(), and fe_fft()) affected by that declaration, together
with their inclusive and exclusive coverage. None of these loops or function calls can
be safely parallelized without taking this variable k into account.

These characterizations are merely a demonstration of the kind of studies that
can be conducted with our framework. The flexibility provided by XML tools makes
easy to modify XPath queries to further investigate the possibility of using emerging
parallelization techniques.

5.5.3 Why we do not use Cetus to detect variables usage

It is important to highlight the differences between our framework and a system based
exclusively on Cetus that detects variables usage. The main differences between both
approaches are simplicity and extensibility. Detection of private and read-only shared
variables is within Cetus capabilities, but the code required to implement this func-
tionality is much longer and complex than Loopest’s code. Modifying Cetus requires
a deeper knowledge of Java, Cetus IR, and its associated data structures. In our sys-
tem, adding new functionalities can be done simply adding new XPath queries, that
just requires some basic knowledge about XPath and Java to combine the results into
meaningful reports. Using the number of code lines needed as an effort indicator, in
Cetus at least eight Java classes take part directly to locate the private variables of
a given loop, representing 2 573 lines of code (calculated with SLOCCount [168]]).
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Lines  Time in seconds Rate of Size on Kilobytes
Application of code Cetus XMLCetus slowdown Source XML Rate
401.bzip2 7292 5.67 7.16 1.26 200 4320 21.60
429.mcf 2044 2.69 3.33 1.24 40 648 16.20
433.milc 12837 7.67 10.10 1.32 400 7560 18.90
456.hmmer 33210 9.00 12.82 1.42 1024 13616 13.30
458.sjeng 13291 6.33 8.17 1.29 288 5188 18.01
462.libquantum 3454 2.99 4.46 1.49 76 1612 21.21
464.h264ref 46142 10.64 1591 1.50 1448 25648 17.71
470.1bm 875 4.25 4.77 1.12 36 1852 51.44
482.sphinx3 18280 7.09 9.10 1.28 516 7676 14.88
Average 15269 6.26 8.42 1.32 448 7569 2147

Table 5.8: Generation times of XML documents for SPEC CPU2006 benchmarks, rate of
slowdown respect to Cetus’ original execution, and file sizes.

Meanwhile, Loopest only needs 425 lines of lower-complexity code to carry out the
same task, representing a reduction of around 83%.

Regarding extensibility, making changes to Cetus’ functionalities requires also a
deep knowledge about Cetus software and its intermediate representation. Changes
in Loopest software are much easier, because it is developed with XPath, not even
requiring a widespread knowledge about Java or XML. In fact, our framework can be
easily adapted to other transformation tasks not directly related with automatic paral-
lelization, just modifying or creating new XPath queries or XSLT transformations.

Finally, the combination of our XML representation of the source code and the
profile-based analysis provided by Intel compiler is straightforward. This greatly in-
creases the possibilities of our framework. As an example, it is possible to extract
execution times of every loop with XPath and set new attributes with this information
in the same XML tree.

5.5.4 BFCA performance considerations

In this section, we will compare the performance of the BFCA framework with other
solutions, including Cetus, both in terms of execution time and size of the generated
files. To do so, we will analyze the performance of each phase of the BFCA frame-
work separately.

XML Cetus performance

Tables [5.8] and [5.9] resume the execution times of both XMLCetus and the original
Cetus framework. The right part of the tables shows the sizes in Kilobytes of both
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Lines Time in seconds Rate of  Size on Kilobytes

Application of code  Cetus XMLCetus slowdown Source XML Rate
164.gzip 7600 6.99 7.79 1.11 238 2600 10.92
175.vpr 13600 9.84 12.47 1.27 535 5944 11.11
177.mesa 81800  28.69 59.55 2.08 1434 24168 16.85
179.art 1200 2.42 2.99 1.24 27 512  18.96
181.mcf 1900 7.88 10.02 1.27 42 632 15.05
183.equake 1200 2.44 2.89 1.18 39 756 19.38
186.crafty 20700  11.55 16.14 1.40 809 8756 10.82
188.ammp 12900  11.12 13.93 1.25 337 6940 20.59
197.parser 10300 8.65 10.54 1.22 333 4868 14.62
254.gap 62500 17.78 23.56 1.33 2150 29804 13.86
256.bzip2 3900 3.74 4.46 1.19 129 1368 10.60
300.twolf 19200  16.05 20.46 1.27 500 10844  21.69
Average 19733  10.60 15.40 1.32 548 8099 15.37

Table 5.9: Generation times of XML documents for SPEC CPU2000 benchmarks, rate of
slowdown respect to Cetus’ original execution, and file sizes.

the original code and its corresponding XML representation for each analyzed bench-
mark. As expected, the larger the source code, the longer XMLCetus takes to trans-
form the source file into an XML-based representation. However, a single line can be
very simple, thus generating a few XML nodes, or very complex, generating a large
number. Therefore, complexity of source codes also affects the generation times. This
explains the lower time consumed by benchmarks that have more code lines.

Differences between the time needed by XMLCetus and Cetus are not so large,
with a rate of slowdown of 1.32 on average for SPEC CPU2006 and CPU2000 bench-
marks, with peak values for each suite of 1.50 (464.h264ref), and 2.08 (177.mesa).
These differences, which do not alter the user experience, are significantly reduced
respect to results described in Power and Malloy’s work [137], where the rate of
slowdown reaches a 25.2 on average for different benchmarks.

Regarding file sizes, as Power and Malloy [[137]], Maruyama and Yamamoto [118]],
and Maletic et al. [[114] remarked, XML-based representations of source codes re-
quire larger files to contain them, because of all tags, attributes, and the expanded
way of representing source structures that detail each particular element. XMLCetus
creates XML files that are on average 21.5 times larger than original source code doc-
uments for SPEC CPU2006 benchmarks, and 15.37 times larger for SPEC CPU2000
benchmarks. XML file sizes generated by BFCA are bigger than files generated by
McArthur’s et al. [119], where XML files are 6.25 times larger on average, because
they only represent partial ASTs, not the entire AST as BFCA does. BFCA also gen-
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Lines FOR Time in seconds
Application of code Loops Profilazer Loopest
401.bzip2 7292 120 49.66 3.56
429.mcf 2044 33 3.72 1.73
433.milc 12837 418 71.78 2.27
456.hmmer 33210 739 111.09 7.53
458.sjeng 13291 216 121.49 9.29
462.libquantum 3454 89 18.68 2.15
464 .h264ref 46 142 1792 1064.19 45.92
470.1bm 875 23 5.32 5.16
482.sphinx3 18280 556 227.11 7.99
Average 15269 443 185.89 9.51

Table 5.10: Execution times of Profilazer and Loopest for SPEC CPU2006 C benchmarks.

erates bigger XML files than srcML’s (five times larger on average than the original
source code [114]]), because BFCA does not stop the creation of XML nodes at the
expression level. This approach is good in order to obtain smaller XML file sizes, but
makes more difficult the XPath searches and analysis that we implement in BFCA.
On the other hand, BFCA XML file sizes are smaller than those obtained with ACML
representation [[74]], with XML files more than a hundred times larger than the original
source code.

Profilazer and Loopest performance

Once XMLCetus has generated the XML-based representations of source code, Profi-
lazer and Loopest are executed. Sizes of XML files created by Profilazer, after adding
profiling information to the XMLCetus’ source code representation, are quite similar
to XML files created by XMLCetus, because Profilazer only adds a few attributes in
ForLoop nodes. It hardly means a few bytes to the total size, and thus, these sizes are
not shown in this study.

Tables [5.10] and [5.T1] show Profilazer and Loopest execution times. As it occurs
with XMLCetus execution, in general terms, the larger the source code, the longer
the time needed by Profilazer and Loopest. However, an important factor that affects
executions of both applications is the number of FOR loops that benchmarks contain.
Since FOR loops are the focus of the analysis performed by Loopest, and the focus of
the Profilazer operation, it is clear that the performance of both applications will also
depend on the number of these loops.

In the case of Loopest, its performance is not only affected by the number of FOR
loops, but also by their complexity. Since Loopest should report how statements,
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Lines FOR Time in seconds

Application of code Loops Profilazer Loopest
164.gzip 7600 78 16.19 1.79
175.vpr 13 600 346 36.08 6.19
177.mesa 81800 756 224.38 13.59
179.art 1200 71 5.38 1.94
181.mcf 1900 34 3.62 1.76
183.equake 1200 86 5.09 2.22
186.crafty 20700 223 207.87 6.54
188.ammp 12900 253 44.58 5.69
197 .parser 10300 450 118.51 5.26
254.gap 62500 1140 1142.19 52.01
256.bzip2 3900 103 14.01 2.86
300.twolf 19200 746 279.91 8.33
Average 19733 357.17 174.82 9.02

Table 5.11: Execution times of Profilazer and Loopest for SPEC CPU2000 C benchmarks.

functions and variables inside all loops are related with the rest of the source code, the
more complex FOR loops are, the longer Loopest takes to run.

5.6 Conclusions

This chapter addresses the problem of automatic characterization and coverage of se-
quential loops. We handle this problem with the development of BFCA, a flexible
and robust framework that provides complete and helpful reports that characterize the
loops in a code. This information, including loop coverage and variable usage, allows
fast prototyping of new solutions regarding code analysis and/or guiding the paral-
lelization of the application, using either shared-memory programming models such
as OpenMP, or speculative parallelization techniques, including the runtime library
used in this Ph.D. thesis. As we will see in the following chapter, this information can
be processed to automatically define OpenMP clauses, including our speculative
clause proposed in Chap. [3]

Our framework, which is based on Cetus, takes advantage of the XML representa-
tion and its associated analysis and transformation tools. The resulting system extends
Cetus capabilities in a much more flexible way: as an example, the use of our system
leads to an 83% reduction on the number of code lines needed to perform private
variable analysis.

This framework can use for three purposes. First, to discover parallelization
niches in widely used benchmarks that may benefit from software-based speculative
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parallelization. Second, to use this information to decide what limitations of current
parallelization schemes ought to be faced first. We hope that the use of this framework
will help runtime parallelization technology to be mature enough for its inclusion in
mainstream compilers.

The third use for this framework is the instrumentation of the augmented XML
code with automatic parallelization directives, such OpenMP and our proposed spec-
ulative clause, in order to automatically transform the code into a speculative, par-
allel version of the code, and letting Sirius translate the modified XML tree back into
C language, finishing the process. We will examine this possibility in detail in the
following chapter. We consider that this solution is a step towards the automatic use
of TLS techniques.

The work and conclusions described in this chapter has been published in the
following papers:

e The BonaFide C Analyzer: Automatic Loop-level Characterization and Cov-
erage Measurement. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-
Escribano. The Journal of Supercomputing, 2014. Online, DOI:10.1007/s11227-
014-1091-3.

e Towards a compiler framework for thread-level speculation. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Proceedings of the 19th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP 2011), Ayia Napa, Cyprus, February 9-11, 2011. pages 267—
271.

e Extending a source-to-source compiler with XML capabilities. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XXI Jornadas de Parale-
lismo, Valencia, Spain, September 7-10, 2010.

e XMLCetus y Sirius: andlisis y traduccién de cédigo C utilizando herramientas
XML. Sergio Aldea, Diego R. Llanos, Arturo Gonzales-Escribano. Technical
Report IT-DI-2010-001, Department of Computer Science, Universidad de Val-
ladolid, 2010.



Chapter

Automatic Synthesis of Speculative
Code

The preceding chapter proposed a system, called BFCA, able to analyze the source
code, and generate helpful reports that programmers may use to parallelize source
codes. In this case, once BFCA provided the analysis about how the variables are
used in the context of a FOR loop, programmers should write the OpenMP con-
structs necessary to parallelize the source code, including our speculative clause.
In this chapter, we propose to update BFCA to avoid such an error-prone, often time-
consuming task, by automatically instrumenting the source code with the necessary
OpenMP directives and clauses.

6.1 Problem description

The system proposed in Chap. [5] called BFCA, has some useful features, such as
the handling of an XML-based Intermediate Representation (IR) of the source codes
that enables to characterize them, or the generation of reports with information about
the loops in a source code. Using this information, programmers may be able to
parallelize the code, e.g. using the OpenMP standard, or our proposed speculative
clause in order to apply speculative parallelism. Nevertheless, programmers are forced
to annotate the source code manually.

Although the OpenMP standard is relatively easy to use, some level of exper-
tise is advisable in order to produce efficient parallel code. Programmers may use
OpenMP incorrectly, or may classify the variables in a parallel region inaccurately,
which makes the process of parallelize a source code an error-prone, time-consuming
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task.

To solve this problem, there are many proposals that provide an automatic classi-
fication of the variables [143), [163]], and as we will see in Sect. @], many others that
goes beyond and propose systems that automatically generate the OpenMP constructs
that are necessary to parallelize a source code. However, neither of them is focused on
Thread-Level Speculation (TLS), being the feedback provided by these systems tied
to the OpenMP standard.

In this chapter, we extend functionalities of BFCA (see Chap. [5)) to automati-
cally generate the OpenMP directives and clauses needed to parallelize a source code
speculatively, including our proposed speculative clause. This new version will be
called BFCA+. By doing this, programmers not only avoid the manual parallelization
of the source code, but also leave to BFCA+ the analysis of the code, and the insertion
of the OpenMP constructs.

The rest of this chapter is organized as follows. Section [6.2]lists some of the re-
lated approaches that also generates OpenMP constructs. Section [6.3] explains how
BFCA is updated to augment the source and generate the OpenMP-based specula-
tively parallel version of the code. Section [6.4|evaluates the solution proposed in this
chapter. Finally, Sect. [6.5]concludes this chapter.

6.2 State of the art

The generation of source code is a problem that concerns different areas, such as
refactoring, optimization, and parallelization of source codes. In the case of BFCA,
there are many different proposals to the automatic parallelization of source codes,
and more particularly, focused on the synthesis of OpenMP constructs.

One of the first attempts to automatize the generation of OpenMP constructs is the
POST project [[1]], that provides a simple environment that also allows the intervention
of the user. A more advanced system is ParaWise/CAPO [87, |91} 92], which uses a
dependency analysis to create the appropriate OpenMP directives to parallelize simple
and nested loops in Fortran applications. It also applies a certain level of optimization
transformations to enhance the quality of the generated code. This is also the case of
PLuTo [21]], a source-to-source framework that uses the polyhedral model to optimize
the code and generate OpenMP parallel code automatically.

The polyhedral model! [17] is used by several proposals to enhance the code
and obtain the information needed to create the OpenMP directives automatically.
Graphite [[160] is a branch of GCC that applies the polyhedral model to different pur-

'Tn the polyhedral model, the loops are described using a mathematical abstraction the optimizations
are mathematical transformations on this abstract description.
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poses, including the generation of parallel code, and proposes an auto-parallelization
option for GCC that uses OpenMP structures to define parallel sections. This work in-
spired Polly [76]], a similar proposal but focused on a different compiler: LLVM [106].
Other works that also use the polyhedral model such as Par4All [9,[159] and PYPS [77]],
are based on PIPS [8]], a source-to-source framework. Par4All uses the analysis per-
formed by PIPS to optimize and create OpenMP (among other standards) source
codes. PYPS is a Python-based programmable pass manager that also generates
OpenMP constructs.

Unlike most of the approaches, which are source-to-source parallelizers that auto-
matically generate OpenMP directives and clauses (e.g. Liao et al. [108], Cetus [54],
or several of the proposals seen above), Gaspard2 [156] follows a model-to-source
approach. Gaspard? is a graphical framework that needs that the code and the avail-
able parallelism be expressed by the user with an UML-based model, which is then
transformed into an OpenMP model that generates the parallel version of the source
code.

Finally, YAO [127] is a graph-based framework focused on the data assimilation
mostly for geophysical applications, able to generate not only OpenMP constructs to
parallelize code regions, but also atomic directives to avoid race conditions.

Like most of the approaches seen above, BFCA follows a source-to-source ap-
proach, leveraging its XML-based representation of the source code to analyze and
augment the code with OpenMP parallel constructs, including our speculative clause.
The following section details how BFCA+ operates to create OpenMP-based parallel
versions from sequential source codes.

6.3 Solution proposed: BFCA+

As we have seen above, there are many proposals that generate standard OpenMP
constructs to parallelize source codes automatically, but they are not intended to ad-
dress an automatic TLS-based parallelization. All the feedback returned by these
systems are tied to the OpenMP standard. Instead, BFCA aims to characterize source
code and the loops within from a speculative point of view. In this Ph.D. thesis, we
have addressed the problem of characterizing source codes, we have proposed a new
OpenMP speculative clause, and we have developed a compile-time system that
processes this clause to automatically generate the code necessary to parallelize an
application speculatively with our TLS runtime library.

In this point, the next obvious step is to close the circle, avoiding the manual
intervention of programmers when instrumenting the source code with the OpenMP
constructs. We propose an update to BFCA, called BFCA+, that adds a new feature:
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Figure 6.1: Overview of the BFCA+ plus ATLaS architecture, that analyzes the code, gen-

erates an OpenMP-based speculatively-parallel version of the code, and finally compiles it to
create an executable that runs in parallel speculatively.
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. - <loop_line> i—~ llelized
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Loop report + variable classification

Figure 6.2: Overview of the process that transforms a sequential C code into a speculatively

parallel one. BFCA+ generates the OpenMP constructs, including the speculative clause,
automatically.
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<ForLoop annotation="OpenMP">
<Annotation annotation="#pragma omp parallel for default (none) \
schedule (static) private (i, j) shared(varl,var2) \
speculative (spec_vars_list) />

Figure 6.3: Example of ForLoop augmented with OpenMP constructs.

<xsl:template match="ForLoop[@annotation="OpenMP’ ]">
<xsl:copy>
<xsl:copy—of select="@x"/>
<Annotation>
<xsl:attribute name="annotation">
<xsl:value—of select="S$pragma"/>
</xsl:attribute>
</Annotation>
<xsl:apply—templates/>
</xsl:copy>
</xsl:template>

Figure 6.4: XSLT code to augment a ForLoop with OpenMP constructs.

To use the information about the variable usage inside FOR loops as feedback, gener-
ating the proper OpenMP directives and clauses to parallelize a certain loop.

Figure details the proposed solution, showing how BFCA+ and ATLaS are
combined to ultimately generate an executable that runs in parallel speculatively.
BFCA+ analyzes the use of each variable in each loop and classifies them into pri-
vate, shared, or speculative. This classification is reported to the programmer, who
should decide which loop is parallelizable and more profitable in such a case, by us-
ing the rest of the information provided by BFCA+ as well. Then, BFCA+ is executed
once again, augmenting this time the loop that the programmer has pointed out with
the OpenMP parallel directive and the corresponding OpenMP clauses, including our
speculative clause proposed. These two consecutive BFCA+ runs are shown in
Fig. The subsequent transformation of the code to actually parallelize the code
is performed by ATLaS, our GCC-plugin-based compile-time system described in
Chap. 4 It is important to remark that, if the FOR loop being parallelized does not
contain speculative variables, BFCA+ generates the OpenMP constructs in order to be
parallelized according to the OpenMP standard.

This solution performs all the instrumentation task that consists of annotating a
parallel loop with the corresponding OpenMP constructs automatically. Instead of
manually annotating the parallel loop, programmers are relieved of such an error-
prone, and often tedious task. Figure [6.2] summarizes the process that transforms
a sequential source code into a parallel one. In a first execution, BFCA+ reports
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about each loop and how its variables are accessed. Then, the programmer only needs
to point out the line number of the loop to be parallelized. In a second execution,
BFCA+ uses the information on the variable accesses to automatically augment the
XML representation of the code by using Loopest+, which is an enhanced version of
the Loopest subsystem presented in Chap. [5| Figure[6.3]shows an example of this op-
eration. Loopest+ modifies the XML node that represents the FOR loop, and inserts
a new XML node with the OpenMP parallel directive and the corresponding clauses,
according to the variable classification that Loopest+ itself creates. This includes the
insertion of the speculative clause with those variables that may lead to a depen-
dency violation. Figure [6.4] shows the XSLT code that inserts the OpenMP pragma
into the XML representation of the source code.

Once Loopest+ has augmented the XML representation of the source code, Sirius
transforms it back into a C representation. During this process, the original sequential
code has been annotated with OpenMP constructs that parallelize it. Finally, ATLaS
processes these OpenMP annotations, and performs all the changes needed in the
loop to be run in parallel using our TLS runtime library, including the replacement of
the accesses over speculative variables with the corresponding speculative versions of
these accesses.

Example of use

As it has been described above, the process of augmenting a parallel FOR loop us-
ing BFCA+ is split in two steps. Figure [6.5] shows how the programmer should
run BFCA+ to parallelize the loop in the line 66 of the Tough benchmark shown in
Fig. First, the programmer should run BECA+ with the source code, to obtain
a report with the characterization of each loop. With this information, the program-
mer can choose which loop BFCA+ should parallelize. Then, the programmer runs
BFCA+ again with the XML file that represents the source code (generated by BFCA+
in the first execution) and the line number of the loop to be parallelized. After these
two runs, BFCA+ generates a source code in which the parallel loop is annotated with
the OpenMP constructs, including the OpenMP standard clauses and our specula-
tive clause, which are created using the variable classification made by BFCA+.

Once the source code is properly annotated, it can be compiled using ATLaS,
creating the executable that is able to run in parallel speculatively.

6.3.1 Validation

In order to validate the solution proposed in this chapter, we have used the 75 regres-
sion tests that have been used with Loopest and Sirius.
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Figure 6.5: Example of BFCA+’s run to parallelize the loop in line 66 of the Tough bench-
mark. It is also shown how ATLaS compiles the source code and generates the executable.

6.4 Evaluation of the solution

In Chap. ] we showed how ATLaS is able to generate all the extra code needed to
handle a speculatively parallel execution of a certain application. In order to perform
this, ATLaS requires the use of OpenMP, and specifically, our speculative clause,
which points out those variables that may lead to a dependency violation. Without
BFCA+, programmers need to manually classify variables of the loop that they aim
to parallelize, and then, insert all the OpenMP constructs required by ATLaS to par-
allelize it speculatively. BFCA+ solves this problem freeing programmers from this
error-prone, tedious task. To demonstrate the capabilities of BFCA+, we will gen-
erate the OpenMP constructs (including our proposed speculative clause) for the
same benchmarks used in Chap. ]
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6.4.1 Evaluation methodology

The evaluation of BFCA+ requires verifying the correct generation of the OpenMP
constructs, and more significantly, the accurate classification of the variables in the
loop to assure its correct parallel execution.

Design of the experiment

The experiments have been designed in order to verify that the source codes auto-
matically generated by BFCA+ are the same as the codes manually parallelized by
a programmer. Moreover, the experiments also include the verification that the gen-
erated source codes are correctly processed by ATLaS, thus generating all the code
necessary to handle their speculatively parallel execution. These experiments have
been run in the same machine that Chap. []s.

As every automatic process, the automatic generation of OpenMP constructs by
BFCA+ may be not error-prone. Consequently, we will show a situation of an inaccu-
rate classification of the variables, and the reasons behind this performance.

The experiment process has been carried out as follows:

1. Each sequential code is processed by BFCA+ to obtain the classification of the
variables, and a characterization of every loop in the code. This run allows us to
verify that each variable is correctly classified in private, shared, or speculative.

2. Each sequential code is one more time processed by BFCA+, but this time in-
dicating the line number of the loop that we aim to parallelize speculatively.
These loops are the same as the loops parallelized during the experiments of

Chap. ]

3. The resulting source codes, which have been augmented with the OpenMP con-
structs, are verified to ensure that these constructs are the same as the constructs
manually inserted in the benchmarks for the experiments of Chap. ]

4. These source codes are processed by ATLaS to verify that it is able to correctly
generate the speculative code.

5. Finally, the resulting binary files are executed to verify that they correctly run
in parallel, and generate the expected results.
Evaluation measures

Due to the particular nature of the experiments performed, they do not produce any
different result than the obtained in Chap. 4] Instead, in this chapter, we will show
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the transformation process from a sequential code into a parallel one for one of the
synthetic benchmarks and one of the real-world applications. First, we will show how
the OpenMP constructs are generated, and then, we will show how these OpenMP
constructs are processed by ATLaS to generate a TLS-based speculative version of

the original source code.

Dataset

As it has been said, the applications used to evaluate BFCA+ are the same as the
applications used to evaluate ATLaS, whose descriptions are found in Chap. 4]

#define NITER 180000
int array[MAX];
int i, 7,k;
int specl = 0, spec2 = 0;
int iterl, iter2;
for (i =0 ; 1 < NITER ; i++ ) {
if (i == iterl) j = specl;
if (i == iter2) j = spec2;
for (k = 0;
k < array[i % MAX] + j;
k++) |
if (k >= 179900)
specl =
(k+array|[ (i+k) $MAX]) $NITER;
if (k <= 1200)
spec2 = array[ i % MAX];
}
}
if (i == NITER — 1) specl = spec2;
}

(a)

#define NITER 180000

int array[MAX];

int 1, 73,k;

int specl = 0, spec2 = 0;
int iterl, iter2;

specbegin (NITER)

#pragma omp parallel default (none) \
private (i, k) \

shared (array, iterl, iter2) \
speculative (specl, spec2)
for (i = 0 ; i < NITER ; i++ ) {
if (i == iterl) j = specl;
if (i == iter2) j = spec2;
for (k = 0;
k < array[i % MAX] + j;
k++) |

if (k >= 179900)
specl =
(k+array [ (i+k) $MAX]) $SNITER;
if (k <= 1200)
spec2 =

o

array[ 1 % MAX];
}

if (i == NITER — 1)
}

specl = spec2;

(b)

Figure 6.6: OpenMP constructs generated by BFCA+ for the Fast synthetic benchmark (a),
and the sequential version of the code (b). Performance results of this code are shown in

Fig. [4.16] (page [85), and Table[d.T) (page [87).
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6.4.2 Generation of OpenMP constructs

BFCA+ has been tested with all the synthetic benchmarks and real-world applica-
tions used and described in Chap. [d] In this section, we show how BFCA+ correctly
processes the Fast the synthetic benchmark, and the 2D-MEC application.

Figure [6.6(b) shows the generation of OpenMP constructs for the Fast synthetic
benchmark (Fig. [6.6(a)). BFCA+ is able to correctly classify the variables accessed
in the loop of line 15. Variables i and k are private, since they are always written
in the context of an iteration. Variables array, iterl, and iter2 are only read, and
thus they are classified as shared. Finally, variables spec1 and spec?2 are classified as
speculative, because their accesses may lead to a dependency violation. Once BFCA+
has augmented the source code, ATLaS is able to process it in order to generate all
the extra code needed to handle its speculatively parallel execution. Figure[6.7]depicts
the intermediate representation generated by ATLaS after processing the source code
augmented by BFCA+. ATLaS adds the clauses needed for the variables used by the
TLS runtime system, augments the code to handle the correct assignation of iterations
to each thread, and replaces each access to the speculative variables with their cor-
responding speculative accesses: specstore_pointer () and specload_pointer().
Finally, the execution of the resulting code leads to the expected output.

As an example of the correct operation of BFCA+ with a real-world application,
Fig. [6.8] depicts the OpenMP constructs generated for the 2D-MEC application. The
variables that are only read in the loop are classified as shared, whereas the variables
that are always written before being read in the context of an iteration are classified
as private. Although the variables solrx, solry, and puntdef are only written in
the loop, they are first read after the loop, and thus they are classified as speculative.
Following the OpenMP standard, these variables should be classified as lastprivate,
but in our TLS runtime system they are treated as speculative, ensuring that after the
loop they have their expected value.

BFCA+ also classifies the variables centrox, centroy, and cuad_radio as specu-
lative, because they are always read before being written, in the context of an iteration.
Therefore, if their accesses are not protected, a certain iteration may read a value of
one of these variables that may have been changed by another iteration, leading to a
dependency violation.

As every automatic process, the automatic generation of OpenMP constructs by
BFCA+ may be not error-prone. Consequently, BFCA+ may make a mistake classi-
fying the variables accessed in a certain loop. Figure shows an example of this
incorrect performance. The variable stack is classified as private, because it is al-
ways written before being read in the context of an iteration. However, the index that
determines which position is accessed each time is changed in line 87, and thus the
writing in line 88 may affect to another iteration. Therefore, it should be classified as
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speculative. The reason behind this erroneous classification is that BFCA+ is not
currently able to detect if the index of an array access is changed during the execution
of the iteration.

6.5 Conclusions

This chapter addresses the problem of the automatic synthesis and generation of
OpenMP constructs. We handle this problem updating BFCA to leverage its out-
put, i.e., a characterization of the source code, and a report about each FOR loop, as
well as a classification of each variable in each loop according to their accesses. This
updated version of BFCA, called BFCA+, combines this information with the pro-
grammer’s choice on which loop to parallelize in order to automatically instrument
the loop to make it parallelizable by either the OpenMP standard or our TLS runtime-
library. This automatic instrumentation frees the programmer from a manual edition
of the source code that requires some technical expertise and likely leads to a tedious,
error-prone task.

This Ph.D. thesis is focused on TLS, and the preceding chapters have proposed
a new OpenMP clause for variables that may lead to dependency violation, and a
compile-time system, ATLaS, that use this clause to automatically generate the code
that it is necessary to parallelize a certain loop speculatively. The solution proposed
in this chapter automatically synthesizes and generates the OpenMP constructs, in-
cluding our speculative clause, to parallelize a source code using our TLS runtime
library.

A future improvement for BFCA+ is the implementation of some heuristics to
select the loop to be parallelized automatically. By doing this, programmers could
avoid deciding which loop is more profitable to be parallelized, relying on BFCA+
this decision, and bypassing any manual intervention.

We are looking forward to publishing the work and conclusions presented in this
chapter.
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#pragma omp parallel default (none) private(i, k, ini, current, tid, retflag, value) \
shared(array, iterl, iter2, specl, spec2, wheel ns, wheel ms, wheel, upper limit, varblock)
{

#pragma omp for schedule(static) nowait

for (tid = 0; tid <= 3; tid = tid + 1) {

ini = 0;
current = tid;
i = varblock[0] [current]+ini;

if (i > upper_limit - 1)
goto labelSquash_1;
varblock[2] [current] = varblock[2] [current]+1;

labelStartIteration_ 1:

if (iteration == iterl) {

if ispecload_pointer((unsigned char *) &(specl),
sizeof (specl), current, (unsigned char *) &j) == -1)

earlySquash (1) ;
}
if (iteration == iter2) {
spec2;

if (specload;pointer((unsigned char ) &(spec2),
sizeof (spec2), current, (unsigned char x) &j) == -1)
earlySquash (1) ;
}

for (k = 0; k < array[i % MAX] + j; k++) {
if (k >= 179900) {

specl

value = k + array[(i + k) % MAX] % NITER;

specstore_pointer((unsigned char *) &(specl),sizeof (specl),current, (unsigned char x) &value);

=k array[ (i + k) % MAX]) % NITER;

s = array[i %
value = array[ i % MAX];
specstore_pointer((unsigned char ) & (spec2),sizeof (spec2),current, (unsigned char x) &value);
}

}

if (iteration == NITER—1) {
specl < 29
if (specload_pointer ((unsigned char *) &(spec2), sizeof (spec2),
current, (unsigned char *) &value) == -1)
earlySquash (1) ;
specstore_pointer ((unsigned char ) &(specl),sizeof (specl),current, (unsigned char x) &value);
}

labelEndIteration_1:

if ((i != varblock[l][current] + ini) && (i < NITER - 1)) {
i=1i+1;
goto labelStartIteration_1;

}

labelSquash_1:
retflag = threadend pointer (&current);

if (retflag JOBDONE) goto labelEndLoop_1;

if (retflag == JOBTODO) {
i = varblock[0] [current] + ini;
varblock[2] [current] = varblock[2] [current] + 1;

goto labelStartIteration_1;
}

labelEndLoop_1:
i

} for

} p

Figure 6.7: Code generated by ATLaS after processing the source code of the Fast benchmark
augmented by BFCA+. For legibility reasons, many of the details of this representation are
omitted.
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#pragma omp parallel for default (none) \
private (rx,ry,k, yqr, ypr, xqr, xXpr, xpdq, ypd, lambdal, lambda2, denom, \
spec_centrox, spec_centroy, spec_cuad_radio, \
spec_puntdef, spec_solrx, spec_solry) \
shared (px, py, 9%, qy, j, input) \
speculative (centrox, centroy, cuad _radio, solrx, solry, puntdef)
for (k = 0; k < (3 — 1); k++) {
rx = input[0] [k];
ry = input[1][k];

spec_centrox = centrox;
spec_centroy = centroy;
spec_cuad_radio = cuad_radio;

if (cuad_dist (rx,ry,spec_centrox,spec_centroy) — spec_cuad_radio > EPS) {

Xpg = px — 9%;
Xgqr = gx — rx;
Xpr = px — rx;
ypa = py — 9vy;
yqr = qy — ry;
ypr = py — ry;
denom = 2 % (Xpg * ypr — ypg * Xpr);

if (denom == 0) { printf ("Error: 3 aligned points.\n"); exit (—1); }
if (py != ry) |
lambdal = (ygr * ypr + Xpr * xqr) / denom;
spec_centrox = (px + gx) / 2 + lambdal * (py — qy);
spec_centroy = (py + qy) / 2 + lambdal * (gx — px);
} else {
if (py !'= aqy) |
lambda2 = (yqgr * ypg + xgr * xpq) / denom;
spec_centrox = (px + rx) / 2 + lambda2 *x (py — ry);
spec_centroy = (py + ry) / 2 + lambda2 * (rx — px);
+}
spec_cuad_radio = cuad_dist (px, py, spec_centrox, spec_centroy);
centrox = spec_centrox;
centroy = spec_centroy;
cuad_radio = spec_cuad_radio;
spec_solrx = rx;

spec_solry = ry;
spec_puntdef = 3;
solrx = spec_solrx;
solry = spec_solry;
puntdef = spec_puntdef;
} // end if
}// end for k

// Readings of px, py, centrox, centroy, cuad_radio, solrx, solry, puntdef.

Figure 6.8: OpenMP constructs generated by BFCA+ for the 2D-MEC application. Perfor-
mance results of this code are shown in Fig.[#.T8|and Table 4.1 page [87}
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#pragma omp parallel for default (none) \ 55
private(p, skpslf, eps2, phi0O, acc0, posO, \ 56

dx, dy, dz, dr2, dr2inv, drinv, phim, \ 57
dr5inv, g, nbterm, ncterm, sptr, k, aux, \ 58
phiq, stack) \ 50
shared (iter, eps, pos, root, mass, rcrit2, \ 60
usquad, quad, subp, phi, acc) \ 61
speculative (nbtot, nctot, ntmax) 62
. 63
for (p=1; p<=iter; p++) { 64
eps2 = eps*xeps; 65
phi0 = 0.0; 66
acc0[1] = 0.0; 67
acc0[2] = 0.0; 68
acc0[3] = 0.0; 69
posO[1] = pos([p][1l]; 70
pos0[2] = pos([p][2]; 71
pos0[3] = pos([p][3]; 7
nbterm = 0;
ncterm = 0; 73
skpslf = false; 7
sptr = 1; 75
stack[sptr] = root; ;2
while (sptr > 0) { ;g
q = stack[sptr]; 80
sptr = sptr — 1; 81
82
dx = pos0[1] — pos[q][1l]; 83
dy = pos0[2] — pos[q][2]; 84
dz = pos0[3] — pos[q][3]; 85
dr2 = dx*dx + dy*xdy + dzxdz; 86
87
if (g < INCELL) { 88
if (g !'=p) { 89
dr2inv = 1.0 / (dr2 + eps2); 90
phim = mass[q] * sqrt(dr2inv); 91
phi0 = phi0 — phim; 9
phim = phim % dr2inv; 93
acc0[1] —= phim * dx; 94
acc0[2] —= phim * dy; 95
acc0[3] —= phim * dz; %
nbterm = nbterm + 1; 97
} else { skpslf = true; } 08
} else { 99
if (dr2 >= rcrit2[q]) { 100
dr2inv = 1.0 / (dr2 + eps2); 101
drinv = sqgrt (dr2inv); 102
phim = mass[q] * drinv; 103
phi0 = phi0 — phim; 104
phim = phim * dr2inv; 105
acc0[1] —= phim * dx; 106
acc0[2] —= phim * dy; 107
acc0[3] —= phim * dz;

}

if

Chapter 6. Automatic Synthesis of Speculative Code

if (usquad) {

dr5inv = dr2inv * dr2inv * drinv;

phig = dr5inv =*
(0.5 % ((dxxdx — dzxdz) =*
quad[qg] [1] + (dy*dy — dzx*dz)

* quad[q] [4]) +

dxkdy * quad[q] [2] + dxxdz *
quad[q] [3] + dy*xdz *
quad[ql [5]);

phi0 = phi0 — phig;

phig = 5.0 * phiq * dr2inv;

acc0[1l] —= phigkdx + dr5inv *

(dx*kquad[q] [1] + dy=*quad[q][2]
+ dz*xquad[q] [3]);

acc0[2] —= phigxdy + dr5inv *
(dx*quad([q] [2] + dy*quad[q] [4]
+ dzxquad[qgq] [5]);

acc0[3] —= phigxdz + dr5inv =*
(dx*quad[qg] [3] + dy*quad[qg] [5]
— dzx*(quad[q] [1] + quad[q][4]));

}

ncterm = ncterm + 1;

} else {
for (k=1; k<=NSUBC; k++) {
if (subplq] [k] != NULO) {

if (sptr >= MXSPTR) {
terror ("TRWALK: STACK OVERFLOW");
}

sptr = sptr + 1;

stack[sptr] = subplq] [k];
}
}
}
(!skpslf) { terror (" TRWALK: MISSED
SELF—INTERACTION"); }

phi[p] = phi0;
acc[p] [1] = accO0([1];
acc[p] [2] = acc0[2];
acc[pl[3] = accO0[3];

nbtot = nbtot + nbterm;

nctot
int aux =
if

}

or (p=1;

= nctot + ncterm;
ncterm+nbterm;

(ntmax < aux) {
ntmax = aux;

p<=nbc pt++)

Figure 6.9: OpenMP constructs generated by BFCA+ for the TREE application. Performance
results of this code are shown in Fig. [f.T8|and Table 4.1} page 87}



Chapter

Conclusions

Multicore technologies have increased the peak performance of computing systems
during the last decade. However, unlike previous advances in computer architecture,
existent code cannot immediately take advantage of these architectures improvements.
To fully exploit multicore capabilities, programmers should parallelize their applica-
tions, a difficult task that requires an in-depth knowledge of both the application and
the underlying computer architecture. Speculative parallelization techniques are not
an exception, and requires manual and careful intervention by expert programmers.

This Ph.D. thesis addresses this problem defining a new OpenMP clause, called
speculative, which points out those variables that may lead to dependency violation,
and a compile-time system that, using the information on the accesses to variables
made by the OpenMP clauses, automatically adds all the extra code lines to handle
the speculative execution of a program. This frees programmers from the manual
augmentation of the source code required by the speculative parallelization.

Before instrumenting a loop with OpenMP constructs, including our proposed
speculative clause, programmers firstly need to extract certain information about
the source code that they aim to parallelize. Without automatic tools, programmers
have to manually extract the information: variable usages within each loop, I/O func-
tions that complicate or even preclude the parallelization, and more important, to de-
termine whether it is worth parallelizing a loop or the thread-management overheads
would be larger than the benefit of parallelizing.

This Ph.D. thesis addresses the problem of automatic characterization and cover-
age of sequential loops, with the aim of finding parallelization niches in widely-used
benchmarks that may benefit from software-based speculative parallelization. To do
this, we have proposed a system that takes advantage of an XML-based representation
of the source and combines profiling information to extract all this information. Be-
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sides, we have also proposed a system that leverages this information, automatically
synthesizing and generating the OpenMP constructs needed to parallelize the source
code speculatively.

We believe that the implementation of the new OpenMP clause in a mainstream
compiler, together with the automation of the whole process of the parallelization,
will help thread-level speculation to be mature enough for its inclusion in production
tools.

7.1 Summary of results and contributions

The contributions of this Ph.D. thesis, ordered by goals, are the following. Publica-
tions associated with each goal are also listed.

7.1.1 Goal 1: Evaluation of compilers parallelization capabilities

We have measured the parallelization capabilities of commercial compilers, uncov-
ering the limitations of their automatic parallelization techniques. The study revels
that automatic parallelization only achieves a 19% of speed-up on average for SPEC
CPU2006 benchmarks.

1. Evaluacién de compiladores comerciales usando SPEC CPU2006. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XIX Jornadas de Parale-
lismo, Castellon, Spain, September 17-19, 2008.

2. Using SPEC CPU2006 to Evaluate the Secuential and Parallel Code Generated
by Commercial and Open-source Compilers. Sergio Aldea, Diego R. Llanos,
Arturo Gonzalez-Escribano. The Journal of Supercomputing, 59(1), January
2012, pages 486-498.

7.1.2 Goal 2: OpenMP speculative clause proposal and definition

We have added support for TLS into OpenMP. To achieve this goal, we have proposed
a new OpenMP clause to handle those variables that could lead to any dependency
violation. This new clause is called speculative. This new clause would allow
executing in parallel loops whose dependency analysis cannot be done at compile
time.

3. Support for thread-level speculation into OpenMP. Sergio Aldea, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Proceedings of the 8th international confer-
ence on OpenMP in a Heterogeneous World (IWOMP’12), Barbara M. Chap-
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man, Federico Massaioli, Matthias S. Miiller, and Marco Rorro (Eds.). Springer-
Verlag, Berlin, Heidelberg, 2012. pages 275-278.

7.1.3 Goal 3: OpenMP speculative clause design, implementation and
evaluation

In order to implement the clause proposed in the previous goal, we have developed
a GCC plugin-based compiler pass to support the new clause speculative into the
GCC’s OpenMP implementation. This pass transforms the loop with the correspond-
ing omp parallel for directive, inserting the runtime TLS calls needed to (a) dis-
tribute blocks of iterations amongs processors, (b) perform speculative loads and
stores of speculative variables (pointed out using the new clause), and (c) perform
partial commits of the correct results calculated so far. The TLS runtime library used
in this Ph.D. thesis have been developed by Estebanez, Garcia-Yégiiez, Llanos, and
Gonzalez-Escribano [62, [69]], using the same design principles than the speculative
parallelization library developed by Cintra and Llanos [36,37]].

Moreover, we have augmented the existing documentation about GCC plugins.
We have found that the documentation about building plugins is scarce. Therefore,
we have described how to build, link to GCC, and execute a plugin. We also have
described the plugin internal structure and helpful details for programmers.

Finally, we have evaluated the capabilities of the proposed clause and the compile-
time system that uses that clause to automatically parallelize real-world applications
speculatively. The code generated automatically not only achieves speedups in ap-
plications that are not parallelizable at compile-time by conventional automatic tech-
niques, but also performs better than the code parallelized manually. The speedups
achieved by the automatic approach are around 20% better than the speedups obtained
by the manual approach. With the new OpenMP speculative clause, programmers
can parallelize those applications avoiding all the hurdles involved in the manual-
speculative parallelization.

4. A New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level
Speculation into OpenMP. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos,
and Arturo Gonzalez-Escribano. Accepted in Euro-Par 2014. Volume 8632 of
Lecture Notes of Computer Science. To appear.

5. An OpenMP extension that supports Thread-Level Speculation. Sergio Aldea,
Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. Submit-
ted to IEEE Transactions on Parallel and Distributed Systems in April 2014.

6. Una extensioén para OpenMP que soporta paralelizacién especulativa. Sergio
Aldea, Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano.
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Actas XXV Jornadas de Paralelismo, Valladolid, Spain, September, 17-19, 2014.

7.1.4 Goal 4: Speculative parallelization niches detection and variable
classification

This Ph.D thesis proposes a system, called BonaFide C Analyzer (BFCA), an XML-
based framework that combines static analysis of source code with profiling infor-
mation to generate complete reports regarding all loops in a C application, includ-
ing loop coverage, loop suitability for parallelization, a classification of all variables
inside loops based on their accesses, and other hurdles that restrict the paralleliza-
tion. This information allows analyzing how particular language constructs are used
in real-word applications, and helps the programmer to parallelize the code, including
the runtime library used in this Ph.D. thesis. This information can be processed to
automatically define OpenMP clauses, including our clause proposed in the second
goal, in order to point out the speculative variables.

Using BFCA, we have conducted an extensive study of the C applications present
in the SPEC CPU2006 benchmark suite [82]. The study does not only characterize in
both quantitative and qualitative terms the loops of these applications regarding their
suitability for parallel execution. It also reports to what extent the use of automatic
parallelization techniques may help to further reduce the execution time. The study
also classifies all loops in these benchmarks according to different characteristics that
may affect their parallelization, including the use of pointer arithmetic, /O and mem-
ory management calls, and dependencies of static and global variables, together with
their aggregate coverage. This kind of information, extremely hard to obtain by other
means, can also be used to guide future developments in the field of automatic paral-
lelization.

7. Extending a source-to-source compiler with XML capabilities. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Actas XXI Jornadas de Parale-
lismo, Valencia, Spain, September 7-10, 2010.

8. XMLCetus y Sirius: andlisis y traduccién de cédigo C utilizando herramientas
XML. Sergio Aldea, Diego R. Llanos, Arturo Gonzales-Escribano. Technical
Report IT-DI-2010-001, Department of Computer Science, Universidad de Val-
ladolid, 2010.

9. Towards a compiler framework for thread-level speculation. Sergio Aldea,
Diego R. Llanos, Arturo Gonzalez-Escribano. Proceedings of the 19th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP 2011), Ayia Napa, Cyprus, February 9-11, 2011. pages 267—
271.
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10. The BonaFide C Analyzer: Automatic Loop-level Characterization and Cov-
erage Measurement. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-
Escribano. The Journal of Supercomputing, 2014. Online, DOI:10.1007/s11227-
014-1091-3.

7.1.5 Goal 5: Automatic synthesis of speculative code

We have developed a solution that leverages the BFCA’s classification of all variables
used inside each loop to automatically generate an OpenMP-based parallel version of
the loop, using the shared, private and the proposed speculative clause. The result-
ing framework, called BFCA+, frees the programmers from a manual intervention to
modify and instrument the source code with such OpenMP constructs, which is an
error-prone and often tedious task.

As a result, the target loop will be guaranteed to correctly run in parallel, with a
parallel performance that will depend on the actual number of dependency violations
that will arise at runtime. This solution can be also useful to instrument a parallel loop
with the OpenMP standard.

This work will be submitted for publication during the year 2014.

7.2 Answer to the research question

Is it possible to develop a compile-time mechanism able to (1) detect
susceptible niches for speculative parallelization, (2) evaluate their im-
pact in terms of parallel execution time, and (3) automatically transform
such sequential source code into a parallel speculative version?

The first two questions are affirmatively answered with the help of BFCA. Us-
ing this tool we have classified FOR loops from SPEC CPU2006 benchmarks. It is
obtained that on average a 37.7% of the FOR loops are potentially speculatively paral-
lelizable loops, and moreover, they have a coverage of 28.34% on average. Therefore,
they represent more than a quarter of the total execution time, which is a significant
time. Extraction of these two numbers demonstrates that (1) it is possible to detect
susceptible niches for speculative parallelization, and (2) it is also possible to evaluate
their impact in terms of execution time. Determining whether a loop is potentially
parallelizable is quite hard due to the large number of variables that are involved. For
this reason, our proposed solution, which allows performing this task automatically,
has a great value.

Regarding the third question, we have developed a compile-time system, ATLaS,
that proves that it is possible to automatically transform a sequential source code
into a speculatively parallel one. This transformation has been made in several steps.
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First, using the characterization of the FOR loops, BFCA+ automatically augments
the source with OpenMP constructs, including our proposed speculative clause.
This clause is then parsed by ATLaS to generate all the code needed to handle a
speculatively parallel execution of the source code. This process does not require
any other manual intervention by the programmer than the selection of the loop to
be parallelized. Therefore, the transformation from a sequential version of the code
into a parallel one is performed automatically, including the instrumentation of the
code with OpenMP constructs, and the generation of the additional code to handle the
speculative execution.

7.3 Future directions

There are still some issues that we would like to address, which define the future
directions for this research:

o To build heuristics to automatically choose target loops. With these heuristics,
programmers would avoid deciding which loop is more profitable to be paral-
lelized, relying on BFCA this decision, and bypassing any manual intervention.

e To extend our solution beyond FOR loops, in order to be able to recognize, ana-
lyze, and parallelize any region in the source code susceptible to be paralleliz-
able.

e To develop a source-to-source compiler to parse the source the code and directly
generate the XML representation, avoiding the dependency with a third-party
software such as Cetus.

e With all these points solved, to develop a compiler that automatically paral-
lelize loops or any parallel region in the source code, which would be chosen
following built-in heuristics. This compiler would generate the final binary ex-
ecutable, that depending on the parallel region would be executed in parallel
speculatively, or using the OpenMP standard runtime system.



Appendix

Related Technologies

The development of the prototypes presented in this Ph.D. thesis requires various tech-
nologies. As a starting point for BFCA, Cetus provides an API and a very interesting
underlying architecture for our purposes. Cetus builds an internal representation of
a C code that we can use to easily create an XML tree that represents it. Therefore,
this chapter resumes both kind of technologies used. On the one hand, Cetus as the
first stone of the development. On the other hand, XML technologies as the tools that
extract all the functionalities that we demand in the construction of the framework.

A.1 Cetus

Cetus [54] has already been introduced in Chap.[3] Since the first subsystem of BFCA,
called XMLCetus, is a modification of the original Cetus program, it constitutes the
starting point of the developing of BFCA.

In order to clarify some aspects regarding XMLCetus and its operation, this sec-
tion has the aim of briefly explaining some concepts and essential knowledge about
Cetus.

A.1.1 Essential knowledge about Cetus

There are some essential concepts required for the construction of BECA. This section
describes several of them.

Major classes

The main kind of blocks are described below. A further description of these classes
and their methods can be found in the API provided by the Cetus Project [30].
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Program: A Program object represents an entire program, which can embrace
one or various TranslationUnit. This node is the root of the syntactic tree build
by Cetus.

TranslationUnit: A TranslationUnit object represents a unique source file. It
only appears as direct descendant of the Program node.

Procedures: These objects represent each function defined in a C program.
When these functions are called from the code, they are represented as Func-
tionCall nodes.

Declarations: These objects appear in many places of the tree. As descendants
of a TranslationUnit, they represent global declarations of variables, functions
or even classes. As parameters of Procedures, they represent declarations of
formal parameters. And as children of ClassDeclaration nodes, they represent
methods and data members.

Expressions: Expressions objects represent assignments, function calls and
mathematical computations.

Statements: These nodes have two purposes: To provide control constructs,
and to provide wrappers for Declarations and Expressions. An example of the
first purpose is the IfStatements, whereas DeclarationStatement and Expres-
sionStatement are examples of the second one.

Specifiers: These objects are generally used in lists. For example, a variable
declaration may be prefixed with a list of specifiers such as const and float.

IR-node functions

Cetus provides an API that is very useful to manipulate nodes in the Intermediate
Representation, and to get information about a particular node, its parent node or its
child nodes. The most useful functions are the “get-type” functions, and they will be
used to build XMLCetus. Figure shows an usage example of these functions.

Syntax tree invariants

There are several syntax tree invariants which the IR tree satisfies. Knowledge of
these invariants was essential to develop XMLCetus. These invariants are three:

Invariant 1 If an object has a parent, then it has exactly one parent. Consequences

arc:
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for(i=0; i<100;i++){

ForLoop

}

getlnitialStatement() getBody()

getStep()

getCondition()

Statement Expression Expression Statement
i=0; i<100; i++; (...

Figure A.1: get() functions in a ForLoop node.

1. You may not take an object that has a parent and add it as the child of
another object.

2. If you want to use the same object in more than one place in the syntax
tree, you must clone the original object.

3. Cloned objects are identical to the originals except their parent is null.
Invariant 2 An object O can enumerate all of its children. Consequence is:

1. An iterator object can be created with O that can iterate over O’s children.
Invariant 3 An object controls the addition and removal of its children.

1. An object cannot become the child of another object without its permis-
sion.

2. Before an object can set its parent reference to another object, this last
one must already recognize the first is a child. Namely, the object must
already in the list of the children of the other object.

3. The child reference and parent reference must be set in that order.

A.1.2 Simple example of Cetus running

Figure [A.2] shows the transformation of a simple C code that Cetus performs if the -
parallelize-loops option enabled. The main options which can be enabled in the Cetus
running are following explained:

-parallelize-loops : It annotates loops with parallel directives. This option includes
the activation of several options: -ddt, -privatize, -reduction, -induction, and
-ompGen.
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Input Output
int main(void) { int main(void) {
int i; int i;
double t, s, a[100]; double t, s, a[100];
for(i=0; i<50;++i) { #pragma cetus parallel
t = ali]; #pragma cetus private(i,t)

a[i+50] = t + ai]; * #pragma cetus reduction(+: s)
’ #pragma omp parallel for reduction(+: s) private(i,t)

s=s+alil];
} for(i=0; i<50;++i) {
return 0; t=alil;
} a[i+50] =t + a[i];
s=s+alil];
[$cetus —parallelize—loops ej.c] return 0;

}

Figure A.2: Example of Cetus running.

-ddt It enables the Data Dependence Testing.

-privatize It performs the scalar/array privatization analysis.
-reduction It performs the reduction variable analysis.

-induction It performs the induction variable substitution.

-ompGen It generates OpenMP pragmas.

-verbosity=N Degree of status messages (0-4) that the user wish to see.

Activation of -parallelize-loops option causes the transformations seen in Fig.[A.2]
In this figure, we can note two kind of directives. One type is OpenMP’s directives,
as consequence of -ompGen option, and the other is internal to Cetus, that annotates
loops with information that Cetus will use to create automatically the OpenMP prag-
mas. Note that the generation of the OpenMP pragmas can only be enabled if Cetus
is able to determine whether the code is parallelizable at compile time. Once we have
described how Cetus works in the surface, we are prepared to understand Cetus in
more depth.

A.1.3 Class hierarchy design and Intermediate Representation

Cetus builds an Intermediate Representation (IR), an abstract representation that holds
the block structure of a C program. The IR is implemented in the form of a class hier-
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v TranslationUnit _ Expression
Program SN _» Declaration ---> Statement :--» - _ Expression
* TranslationUnit 2--» ... "\ Expression 2--» -
* Declaration * Expression

Figure A.3: Some nodes of the Cetus IR.

Program Expression
TranslationUnit BinaryExpression
Declaration UnaryExpression
Procedure FunctionCall
VariableDeclaration
ClassDeclaration IRIterator
DepthFirstIterator
Statement BreadthFirstIterator
IfStatement FlatlIterator
ForLoop Annotation
CompoundStatement

Figure A.4: Cetus hierarchy.

archy and accessed through its class member functions. In Cetus, the concept of state-
ments and expressions are closely related to the syntax of the C language, making the
source-to-source translation process easy. However, there are some disadvantages: An
increasing complexity for pass writers (since they should think in terms of C syntax)
and limited extensibility to process additional languages. Fortunately, this problem is
mitigated by the provision of several abstract classes, which represent generic control
constructs. Thus, generic passes can be written using the abstract interface, while
more language-specific passes can use the derived classes.

The Cetus IR (Fig.[A.3) has been built through a set of classes, which fit within a
class hierarchy (Fig.[A.4). In Cetus terminology, a TranslationUnit is a file containing
source code. The syntax tree and the class hierarchy are not equivalent. For example,
in the syntax tree, the parent of a TranslationUnit is a Program, however neither
TranslationUnit nor Program have a parent in the class hierarchy.

Figure [A.5| shows an example of Cetus IR from a C source code. There are two
basic building components in Cetus: TranslationUnit blocks, each one representing a



170 Appendix A. Related Technologies

_emnT Program

I TranslationUnit '
int main(void){ ’

inti,c;

D - Tha
N 4 >
'\, DeclarationStatement Procedure

! for (i=0;i<100;i++){ '

'
'
\] '

A}
A\
( VariableDeclaration ] CompoundStatement

-~ -

DeclarationStatement

ForLoop

P ——

ExpressionStatement

S.l v
. AssignmentExpression

Figure A.5: IR Tree Structure Example.

different source file; and Procedures, representing individual functions. Each Proce-
dure is composed of a list of simple or compound Statements that represent the flow
control of the program in a hierarchy form. Namely, there are compound Statements
as IF blocks or FOR loop that include within them other Statements (simples or com-
pounds), which reference, for example, THEN and ELSE blocks, or the body of a
loop. Expression blocks represent operations, such as variable assignments.

Although Cetus is a powerful tool, adding new functionalities requires an in-depth
knowledge of Java, Cetus IR, and its associated data structures. Due to both simplic-
ity and extensibility reasons, instead of using Cetus capabilities for developing the
compiler framework explained in Chap. [5} we have modified Cetus to build an XML
representation of its Intermediate Representation, and we use XML standard tools to
perform queries and modifications to the structure.

A.1.4 Cetus known problems

Experience using and modifying Cetus has led us to understand better its internal
operation and to discover some errors that they are worthwhile to note.

e Line numbers: Cetus IR does not maintain the line number of some state-
ments, e.g. the line number of variable declarations. This is a problem in order
to analyze the code, because is not always possible to use the statement line
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number as reference. Since essential elements of the analysis are FOR loops,
line numbers in this nodes are critical. However, Cetus, as its programmers rec-
ognized, does not maintain the correct line number in many statements. They
do not provide more details, thus experimentation has been necessary to find the
source of the problem. After performing several tests we find what the problem
is: Whenever a #include statement is within a #ifdef preprocessor directive,
lines following this directive are wrong. This error is also detected when an
#include is situated within a “/* */” comment block.

Since a modification of the Cetus grammar was not possible due to its com-
plexity, the solution to this problem is to rewrite code, commenting/eliminating
lines depending on the condition of the #ifdef. Namely, code is modified as
whether it has not these preprocessor directives (just those that contains #in-
clude). We can see below a real example of this error, extracted from a SPEC
CPU2000 benchmark, and how to correct it.

Original Correction

#ifdef NO_TIME_H //#ifdef NO_TIME_H

#include <sys/time.h> // #include <sys/time.h>
#else //#else

#include <time.h> #include <time.h>
#endif //#endif

#ifndef NO_FCNTL_H
#include <fcntl.h>
#endif

//#ifndef NO_FCNTL_H
#include <fcntl.h>
//#endif

N - N N U VU SR
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Since NO_TIME_H and NO_FCNTL_H are not defined in the code neither passed
by the compiler, we can rewrite these lines as above to avoid the error with line
numbers.

If the choice is to comment lines, it is mandatory to comment with “//”. In the
case of #include within a comment block, it is also necessary to re-comment
this line with *“//”.

o Definitions within #ifdef: Source codes transformed by Cetus and the Cetus
IR do not preserve preprocessor directives. Cetus only preserves those lines that
satisfy conditions depending on the definitions. As some of these definitions are
passed by the compiler, and thus not defined in the code, Cetus removes some
lines incorrectly. To solve this problem, it is necessary to write these defini-
tions in a header file, e.g. named compiler.h, instead of passing them by the
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compiler. In this way, Cetus does not remove those lines inside #ifdef that are
satisfied. Below a real example can be seen, extracted from a SPEC CPU2006
benchmark. If the compiler is executed with the following definitions:

$ gcc —g —DSPEC_BZIP —DSPEC_CPU —DBZ_UNIX bzip2.c —o 40lbzip2
the header file must contain the following definitions.

1 #define SPEC_BZIP
2 #define SPEC_CPU
3 #define BZ_UNIX

e Same #includes preceded by different definitions: In some cases in source
codes of SPEC CPU, a same #include is presented twice or more times in
source codes, but with different previous definitions, which condition the header
because there are some #ifdef within it. Therefore, in each inclusion of the
header, the code’s behavior is different. Since Cetus does not conserve #de-
fine definitions (Cetus resolves their names in their usage), when it creates the
new code with the Cetus IR, such source codes are wrong. Fortunately, this is
an uncommon practice in SPEC CPU benchmarks, but it still remains without
solution.

e Source files prefixed with numbers: Cetus renames some structures with
words prefixed with the source file name. If one of these source files begin
with a number, structures renaming will be prefixed with a number, and com-
piler will fail because variables or constants cannot prefixed with a number.

A.2 XML technologies

The prototype BFCA proposed in this dissertation makes an intensive use of XML
technologies. There are several reasons to use XML [23]. Using XML, we can rep-
resent source code in a structure form and easily build an XML tree from Cetus IR
thanks to a Java API. Once a source code is represented as an XML tree, it is possible
to use all the tools provided by the community to manipulate, exchange, transform
(XSLT), and search (XPath or XQuery). In order to develop the framework and its
subsystems, XPath and XSLT are essential to make easy and complex searches in the
source code, and to transform the XML representation back into C language again to
check the correctiveness of the representation and changes performed on it.
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<bookstore>

<book category="Fantasy">
<title lang="en">A Game of Thrones</title>
<author>George R. R. Martin</author>
<year>2003</year>
<price>15</price>

</book>

<book category="Children">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<pbook category="Business">
<title lang="en">What Would Google Do?</title>
<author>Jeff Jarvis</author>
<year>2009</year>
<price>20</price>

</book>

</bookstore>

Figure A.6: Example of XML document. A bookstore has three books, whose category is
expressed as attribute of the book node. By nesting tags we indicate the title, author, year and
price of each book.

A.2.1 XML basics

XML, designed by the World Wide Web Consortium (W3C), allows the specification
of user-defined markup tags adapted to the content of the document. This property
is extremely valuable because it gives freedom to programmers to build XML treed.
In the case of representing source code using XML, this freedom means flexibility to
represents any programming language. After all, programmers can represent any kind
of information with XML.

In broad outlines, an XML document are composed by a set of tags which have a
structure and a hierarchical relationship between them. XML tags are not predefined,
and the programmer must define his/her own tags. A visual description of an XML
example is shown in Figure[A.6

A.2.2 XPath

XPath is the XML Path Language [18]. It is a query language that allows selection
of nodes depending on routes and conditions. These routes are expressed as abso-
lute paths from the first node of the XML tree, or as relative paths from a particular
position in the tree. Moreover, it is possible to indicate conditions that narrow search
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conditions. XPath provides the feature of navigating the XML tree and selecting nodes
by different criteria.

Current version of XPath is 2.0, and it is the version used in the framework. Rea-
son of using this version is the expanded set of functions and operators. In fact, XPath
is a subset of XQuery 1.0, which is a more complex and complete language to query
collections of XML data. More information about the XPath syntax and its usage is
on the cited bibliography.

A2.3 XSLT

The main functionality of the developed framework is to obtain an XML represen-
tation of a C source code, and to used this representation to extract information that
otherwise would be more complicate to obtain. However, building an XML tree that
represents a particular C source code requires a validation process. It is necessary to
be sure that this XML tree matches at 100% in terms of functionality with the original
C source code. In order to check this situation, the use of a transformation language
as XSLT [95] is essential.

XSLT (Extensible Stylesheet Language Transformation) is an XML-based lan-
guage that transforms XML files into different representations. XML provides the
information and XSLT shapes the form of its representation. In this way, it is possi-
ble to transform a XML file that represents a C code into an equivalent C source file.
Therefore, back to the framework, using XSLT it is possible to transform the XML
tree back into C, and check if this C file is correct, compile, execute, and has the same
functionality than the original program.

A.2.4 Saxon

Saxon [94] is an XSLT and XQuery processor created by Michael Kay. Current de-
veloping line, Saxon 9 (last version is 9.3), implements XSLT 2.0 and XQuery 1.0.
Saxon offers different versions depending on the user’s needs. Version used in this
project is Saxon-B 9.1.0.1, since it has proven enough, and new versions require paid
licenses and do not offer new functionalities that we could be interested. The version
used is free, and provides the basic conformity level to these languages (XSLT and
XQuery), allowing to use all features excepting XML Schema processing. Saxon’s
code is written in Java and thus can be used from Java programs, as Cetus and the
subsystems developed as part of the prototype BFCA.
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GCC Details for Plugin Development

This appendix gathers some of the knowledge acquired before and during the devel-
opment of the GCC plugin presented in this Ph.D. thesis. Part of this knowledge
can be found in the GCC Internals [[71], but it has been significantly augmented with
information extracted directly from the source code.

B.1 GCC passes

All the transformations that GCC performs on the source code are organized in passes.
Each pass performs on the code in a particular intermediate representation. Develop-
ing a plugin requires deciding which kind of pass it will be. Figure [B.I] shows a
summarized view of all the passes and the different intermediate representation which
GCC works with. This figure reveals some kind of organization between passes.

GCC passes are hierarchically grouped in families. These families are imple-
mented in the GCC source code using structures. The list of these structures can be
found in tree-pass.h. A brief description of some of these passes can be found in
the internal documentation of GCC !.

e all lowering passes: This structure gathers all the passes needed to lower
the code into a shape in which optimizers can work. Among these passes we
find the pass that builds the Control Flow Graph (CFG), or the pass that lowers
the OpenMP constructs into GIMPLE.

e all _small_ipa_passes: It keeps all the small interprocedural optimization
passes, which do all their process at once, without splitting it into several stages

'Seehttp://gce. gnu. org/onlinedocs/gecint/Passes. html,
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Figure B.1: GCC passes and the different representations

as a regular IPA pass does. Among these passes we find the pass that expands
parallel regions defined using OpenMP into their own functions to be invoked
by the thread library, or the pass that builds the SSA representation.

e all _regular_ipa_passes: It gathers the rest of interprocedural optimization
passes. For example, one of these passes analyzes the control graph and decides
the inlining plan.

e all _1to_gen_passes: This structure keeps the two Link Time Optimization
(LTO) passes 2. LTO enables optimization passes across several compilation
units. For example, LTO enables to make inlining of a function defined in
foo.c and called in bar. c.

e all_passes: It gathers all the GIMPLE scalar and loop optimizations, and the
RTL optimizations.

e current_pass: It represents the current pass.

The passes of these groups are scheduled in the function init_optimization_-
passes () of passes.c, in the same order that they have been described above.

B.1.1 Pass description

Each pass is described using the following structure, located in tree-pass.h:

struct opt_pass

{
/* Optimization pass type. */
enum opt_pass_type type;

*Seehttp://gcc. gnu.org/onlinedocs/gccint/LT0. html for more details
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/* Name of the pass, used as a fragment of the dump file name. */
const char *name;

/* Gate function. x*/
bool (*gate) (void);

/* Execute function. x*/
unsigned int (*kexecute) (void);

/* A list of sub-passes to run, dependent on the gate predicate. */
struct opt_pass *sub;

/* Next in the list of passes to run, independent of the gate predicate. */
struct opt_pass *next;

/* Static pass number, used as a fragment of the dump file name. */
int static_pass_number;

/* The timevar id associated with this pass. */
timevar_id_t tv_id;

/* Sets of properties input and output from this pass. */
unsigned int properties_required;

unsigned int properties_provided;

unsigned int properties_destroyed;

/* Flags indicating common sets things to do before and after. x/
unsigned int todo_flags_start;
unsigned int todo_flags_finish;

I
This structure has several fields with a different meaning each one:

o type: This is the type of the pass. It must be one of the following:
— GIMPLE_PASS: This is a pass that works with the source code in GIMPLE
representation.

— IPA_PASS: This is an interprocedural pass, namely, a pass that works the
entire program, and not just a single function or a single block of code.



178 Appendix B. GCC Details for Plugin Development

— SIMPLE_IPA_PASS: This is a small interprocedural pass. The difference
between a regular and a small inter-procedural pass is that the latter does
everything at once, without splitting its process into several stages as a
regular IPA pass does. This kind of pass is useful for easier prototyping
and development of a new inter-procedural pass.

— RTL_PASS: This is a pass that works with the source code in RTL repre-
sentation.

e xname: The name of the pass. This name is important because it is used to
reference the pass, for example, in the passes scheduling, or at the moment of
adding a new pass before or after a certain pass.

e *xgate(): The gate function. This is the function that is executed before the
pass operation. It could be use to enable/disable the pass. If the return value is
true, the “execute function” is executed; otherwise, its execution is skipped.

e xexecute(): The execute function. This is the function called by the pass and
implements the pass operation. The return value could contain TODOs to execute
in addition to those in todo_flags_finish.

e xsub: Passes may be organized hierarchically. sub points to the first child pass.
Its execution depends on the value returned by the gate function, because these
passes are related.

e xnext: This structure points to the next pass in the list of passes, as they were
scheduled in the function init_optimization_passes() of passes.c. Its ex-
ecution does not depend on the value returned by the gate function, because the
passes are independent.

e static_pass_number: It is automatically generated by the pass manager, and
it is used in the dump file.

e tv_id: We use this variable to set a separate timer for the pass. This timer is
automatically started and stopped by the pass manager. The list of timers is
located in timevar.def.

e properties_required: The list of properties required for this pass.

e properties_provided: The list of properties that the source code satisfied
after the pass.

e properties_destroyed: The list of properties that the pass destroys.
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todo_flags_start: List of actions that the pass manager should carry out
before the pass execution.

todo_flags_finish: List of actions that the pass manager should carry out
after the pass execution.

Pass properties

In the pass descriptor, there are three fields that set up some properties related with
state or transformations done in the source code. The list of properties that a pass can
require, provide or destroy is located in tree-pass.h. They are the following:

PROP_gimple_any: This property ensures that it is allowed a full GIMPLE
grammar.

PROP_gimple_lcf: This property means that the control flow has been lowered.
PROP_gimple_leh: This means that the exception-handling has been lowered.

PROP_cfg: This property ensures that the function treated by the pass has a
non-none control flow graph (CFG).

PROP_referenced_vars: This property means that we have data about the va-
riables referenced in the function. This property is set up by the Dataflow Anal-
ysis (DFA), which finds all the variables referenced in the function.

PROP_ssa: This means that the GIMPLE tree is in SSA form.

PROP_no_crit_edges: This property is satisfied when all the critical edges of
the CFG have been split.

PROP_rt1: This means that the function or block of code treated by the pass is
in RTL form.

PROP_gimple_lomp: This property ensures that all the OpenMP directives have
been lowered into explicit calls to the runtime library (libgomp).

PROP_cfglayout: This property means that the CFG has been organized into a
more efficient order. It is used in the RTL representation.

PROP_gimple_lcx: This means that operations with complex numbers have
been lowered to scalar operations.

PROP_trees: This is a property that gathers the following four properties:
PROP_gimple_any, PROP_gimple_lcf, PROP_gimple_leh, and PROP_gimple_-
lomp.
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TODO flags

A TODO flag describes an action that the pass manager should carry out before or after
the pass execution. The list of TODO flags is located in the file tree-pass.h, and tells
the pass manager to carry out the following actions:

e TODO_dump_func: This flag tells the pass manager to dump an “image” of the
current state of the source code into a file. This flag only has effect when the
compiler is executed with some -fdump-xxx option.

e TODO_ggc_collect: It tells the pass manager to do the garbage collection.

e TODO_verify_ssa: It verifies if the GIMPLE representation is in a correct SSA
form.

e TODO_verify_flow: It verifies that the flow information in the control flow
graph (CFG) is correct. This is used by passes that modify the flow and need to
check if everything is correct.

e TODO_verify_stmts: It verifies if all the statements are correctly built. This is
used by passes that manually add new statements into the source code.

e TODO_cleanup_cfg: This flag tells the pass manager to cleanup the CFG, eras-
ing unreachable edges or blocks of code.

e TODO_dump_cgraph: This flag tells the pass manager to dump the callgraph into
a debugging file.

e TODO_remove_functions: Used by IPA passes, it removes functions just as
before inlining. IPA passes might be interested to see bodies of extern inline
functions that are not inlined to analyze side effects. The full removal is done
just at the end of IPA pass queue.

e TODO_rebuild_frequencies: It rebuilds function frequencies. Passes are in
general expected to maintain profile by hand, however in some cases this is not
possible: For example, when inlining several functions with loops frequencies
might run out of scale and thus needs to be recomputed.

e TODO_verify_rtl_sharing: Go through all the RTL insn (doubly-linked chain
of objects that represents a function) bodies and check that there is no unex-
pected sharing in between the subexpressions.
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e TODO_update_ssa: When a pass creates new symbols, these symbols need to
be renamed and it is also necessary to do the mapping between the old and the
new names registered. This flag updates the SSA form, inserting PHI nodes
for newly exposed symbols and virtual names marked for updating, and also
pruning the excess of PHI nodes.

e TODO_update_ssa_no_phi: It updates the SSA form without inserting any new
PHI nodes. It is usually used by passes that insert themselves all the PHI nodes.

e TODO_update_ssa_full_phi: It updates the SSA form inserting PHI nodes
everywhere they are needed, without doing a prune.

e TODO_update_ssa_only_virtuals: This flags only processes the symbols that
are marked to be renamed. The rest of old to new mappings for real names are
explicitly destroyed.

e TODO_remove_unused_locals: Some passes generate local variables that re-
main unused after the pass execution. This flag removes these local variables
from cfun->local_decls, which a structure that stores the local declarations
of the current function being compiled. This action reduces the size of dump
files and the memory footprint for VAR_DECLs.

e TODO_df_finish: Calldf_finish_pass() atthe end of the pass. This function
is located in df-core. c, and removes all the problems related with the Dataflow
Analysis (DFA). This function is the last action to do before finishing the DFA.

e TODO_df _verify: It calls df_verify() at the end of the pass if checking is
enabled. This function is located in df-core.c, and verifies that there is a
place for everything and everything is in its place, from the point of view of the
DFA.

e TODO_mark_first_instance: This flag is internally used for the first instance
of a pass.

e TODO_rebuild_alias: It rebuilds the aliasing information, which means that
the alias analysis is done again.

e TODO_update_address_taken: It rebuilds the addressable-vars bitmap and does
the register promotion.

e TODO_rebuild_cgraph_edges: It rebuilds the callgraph edges.
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e TODO_update_ssa_any: It gathers the following TODOs: TODO_update_ssa,
TODO_update_ssa_no_phi, TODO_update_ssa_full_phi, and TODO_update_-
ssa_only_virtuals. Internally used in execute_function_todo (), function
from passes. c that performs all TODO actions that should to be done on each
function.

e TODO_verify_all: It gathers the following TODOs: TODO_verify_ssa, TODO_-
verify_flow, and TODO_verify_stmts.

B.1.2 Dump files generated by the passes

Passes may only monitor the source code, but they usually make transformations
into the code. These transformations and changes can be seen if we activate the flag
TODO_dump_func in the todo_flags_finish field of the pass descriptor, and we also
enable the flag ~fdump-tree-all® in the GCC compilation. As a result of these two
actions, GCC generates a dump file which contains the state of the source code just
after the changes are done by the pass. The file name for the dump file generated is

<source—file>.<static_pass_number>[itr] .<pass—name>

where i represents an IPA pass, t represents a GIMPLE tree pass, and r is for
RTL passes. For example, the pass omplower, which is a GIMPLE_PASS, generates the
following dump file: examplefile.c.009t.omplowver.

The static_pass_number is automatically generated by the pass manager, and it
may not match with the order in which the passes are executed.

B.2 GCC plugins structure

A plugin has a well-defined structure:

e License check: This is more a “political” part of the plugin rather than func-
tional. Every plugin has to define the following global variable to assert that the
plugin has been licensed under a GPL-compatible license.

1 int plugin_is_GPL_compatible = 1;

3This option enables all the dump files generated by passes that process the intermediate language
tree, the GIMPLE passes. See http://gcc.gnu.org/onlinedocs/gcc/Debugging-0Options.html for
more debugging options.
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This requirement is mandatory for every plugin. Once a plugin is loaded into
GCC, and before the plugin begins its operation, the compiler checks for the
existence of this symbol in the global scope. If it exists, then the plugin can
run. Otherwise, the compiler emits a fatal error, and the execution is aborted:

ccl: fatal error: plugin path/to/plugin/name.so is not licensed
under a GPL—compatible licensed

path/to/plugin/name.so: undefined symbol: plugin_is_GPL_compatible

compilation terminated

o Plugin headers: The first header that a plugin has to include is gcc-plugin.h,
which contains functions and structures that are essential for the plugin. After
this header, we can include any of the headers located in the plugin directory .
The files in there are the GCC API accessible to your plugin. For example, if
we are dealing with GIMPLE nodes, we need to include gimple.h, or if we
have to access to GENERIC nodes and trees, we need to include tree.h.

e Plugin information: Every plugin should specify some information about it-
self, in case users ask for help using gcc -v or gcc -help. We can specify this
information using the structure plugin_info defined in gcc-plugin.h:

1 /* Information about the plugin */

2 static struct plugin_info myplugin_info =
3 {

4 .version = "001",

5 .help = "Work in progress",

6

bi

o GCC version checking: Each plugin is written using the API defined by a
particular version of GCC. This API could not be the same between different
versions, and therefore, the plugin could not work with a different version of
GCC. For this reason, plugins need to declare which version of GCC they work
for. This information is defined using the structure plugin_gcc_version:

.revision =

bi

nn .
’

1 /* This plugin works for GCC version 4.6.2 x/

2 static struct plugin_gcc_version myplugin_ver =
3 {

4 .basever = "4.6.2",

5 .datestamp = "20111026";

6 .devphase = "";

7

8

“To see where the “plugin” directory is located, execute gcc -print-file-name=plugin.
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For a particular version of GCC, in file plugin-version.h located in the plu-
gin directory of GCC, we can find the information that we have to write in
each field of this structure. As a plugin may not run correctly with a differ-
ent version of GCC, we need to validate during the plugin initialization if the
plugin is loaded in the correct version of GCC. There are two ways to check
this. The first one is less restrictive, and only consists in a string comparison
between the fields of two structures; one defined by the user, and other defined
in plugin-version.h:

int plugin_init (struct plugin_name_args *info,
struct plugin_gcc_version *xversion)

/% Validate the plugin with the correct version of GCC. x/
if (strncmp (version—>basever, myplugin_ver.basever, strlen("4.6.2")
))

return —1; /x Incorrect version of GCC %/

The second way to validate our plugin is using the function plugin_default_-
version_check(), which is a more strict check. This function compares both
structures field by field, and therefore, it is mandatory that not only the GCC
version, but also the datestamp and the other fields match. In order to use it, we
need to include the header plugin-version.h.

#include <plugin—version.h>

int plugin_init (struct plugin_name_args *info,
struct plugin_gcc_version *xversion)

if (!plugin_default_version_check (version, &gcc_version))
return 1;

Plugin initialization: The first function that is called after the plugin is loaded
is plugin_init (), and it is the responsible for doing the initialization and reg-
istering all the callbacks required.

//* Return 0 on success or error code on failure. *//

int

plugin_init (struect plugin_name_args *info, // Argument information
struct plugin_gcc_version xver) // Version info of GCC

This function has to return O if the initialization has been done correctly, and
otherwise, it has to return a non-zero value.

In the initialization, we establish in which moment the plugin is activated. A
plugin is activated by the compiler at specific events as defined in gcc-plugin.h.



B.2. GCC plugins structure 185

In those events in which we could be interested, the plugin should call the func-
tion register_callback() specifying the name of the event and address of
the callback function that will handle that particular event. Using register_-
callback() we can set in which point the plugin is called in the succession of
passes, or set the information about the plugin:

struct register_pass_info pass;

1

2

3 /* Information about the pass implemented,

4 from the pass descriptor. x/

5 pass.pass = &myplugin_pass.pass;

6

7 /* Tell GCC that we want to be called after the first SSA pass. x/
8 pass.reference_pass_name = "ssa";

9 pass.ref_pass_instance_number = 1;

10 pass.pos_op = PASS_POS_INSERT_AFTER;

12 register_callback ("myplugin",PLUGIN_PASS_MANAGER_SETUP,NULL, &pass);

14 /% Tell GCC some information about us, Jjust for use in
15 —help and —version. %/
16 register_callback ("myplugin", PLUGIN_INFO, NULL, &myplugin_info);

The definition of each event is located in the file plugin.def of the GCC plugin
directory. In file tree-pass.h we can find the name of each compiler pass, and
the three positions where we can add our plugin pass:

— PASS_POS_INSERT_AFTER: The plugin pass is inserted after the reference
pass.

— PASS_POS_INSERT_BEFORE: The plugin pass is inserted before the refer-
ence pass.

— PASS_POS_REPLACE: The plugin pass replaces the reference pass.

e Pass descriptor: Each pass of the compiler is described using a structure,
whose fields are described in tree-pass.h. We do not have to specify a value
for each field, and thus, a simple pass descriptor could be the following:

static struct gimple_opt_pass myplugin_pass =
{

.pass.type = GIMPLE_PASS, /* Type of pass x/
.pass.name = "myplugin", /* Plugin name x/
.pass.gate = myplugin_gate, /* Always retuns true x/

.pass.execute = myplugin_exec, /% Pass handler/callback x/

® N R W =
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However, if we want to set the pass properties, TODO flags, or other fields, the
following is the best and more compact way to specify them:

1

2 {

3 {

4 GIMPLE_PASS,

5 "myplugin",

6 myplugin_gate,

7 myplugin_exec,

8 NULL,

9 NULL,

10 0,

11 0,

12 PROP_cfg | PROP_ssa,
13 0,

14 0,

15 0,

16 TODO_dump_ func

17 | TODO_verify_ssa
18 | TODO_update_ssa
19 | TODO_verify_stmts
20 }
21 ¥
[ ]

static struct gimple_opt_pass myplugin_pass

/*

name x/

gate */

execute */

sub */

next x/
static_pass_number x/
tv_id x/
properties_required */
properties_provided x/
properties_destroyed */
todo_flags_start */

todo_flags_finish x*/

Gate function: This is the function that is executed before the pass imple-

mented by the plugin. It could be used to enable/disable the plugin. If the re-
turn value is true, the “execute function” is executed; otherwise, its execution

is skipped.

static bool myplugin_gate (void)

{

1
2
3 return true;
4

}

Execute function: This is the function called by the plugin and implements

the plugin pass. The return value could contain TODOs to execute in addition to
those in TODO_flags_finish. Usually, the return value is *0’.

static unsigned myplugin_exec (void)

1
2 {

3 (...your plugin...)
4 return O;

5

A complete view of the plugin structure can be found in Subsection
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B.2.1 Compiling and executing plugins

Once a plugin has been written, the next step is its compilation. The GCC project
itself makes some indications about how a plugin has to be compiled °. If the plugin
only has a single source file, it may be built with the following line:

$ gcc —I'gcc —print—file—name=plugin’/include —fPIC —shared —02 plugin.c —o
plugin.so

If the plugin source code involves more than one file, we can use a GNU Makefile
script to compile them. The following GNU Makefile script shows how to build a
simple plugin:

GCC=gcc

PLUGIN_SOURCE_FILES= pluginl.c plugin2.c

PLUGIN_OBJECT_FILES= $ (patsubst %.c,%.0,$ (PLUGIN_SOURCE_FILES))
GCCPLUGINS_DIR:= $(shell $(GCC) —print—file—name=plugin)
CFLAGS+= —I$ (GCCPLUGINS_DIR) /include —fPIC —02

plugin.so: $(PLUGIN_OBJECT_FILES)
$ (GCC) —shared $* —o $@

In order to execute a plugin, it is necessary that the version of GCC be 4.5 or
superior, and that GCC have been compiled with the plugin support enabled. To
check if our version of GCC has the support for plugins, we need to execute GCC
with the following option:

$ gcc —print—file—name=plugin

If the operative version of GCC has the plugin support, this command returns
the path to the directory where all the necessary header files to execute a plugin are
located. Otherwise it returns the word “plugin”.

Plugins are loaded by the compiler and invoked at pre-determined locations during
the compilation process, e.g. between other compiler passes. To load the plugin into
GCC, we need to run GCC with the option -fplugin=/path/to/plugin/name.so,
or directly specify the name of the plugin with a shorter option ~fplugin=name, if the
plugin is located in the plugin directory.

The option -fplugin-arg-name-key[=value] enables to pass arguments to the
plugin, where name is the name of the plugin, key is the name of a particular argument,
and value is the value for this argument.

We can also load several plugins in sequence, for example, to add different new
passes to the compiler.

Shttp://gce.gnu.org/onlinedocs/gecint/Plugins. html
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B.2.2 Plugin events

A plugin is activated by the compiler at specific events. The list of all considered
events is located in file plugin.def of the GCC plugin directory. This list are then
included by the file gcc-plugin.h. As we have seen before, these events allow us to
activate our plugin at a particular moment in the compiler process. The way to register
our plugin to a specific event is using the function register_callback (). One of the
arguments of this function is the event in which our plugin will be triggered:

e PLUGIN PASS MANAGER_SETUP: It is the most common event. It enables to hook
the pass implemented by the plugin into the pass manager. To that purpose, first
we need to define the pass.

e PLUGIN_INFO: This is the second most common event. It enables to define the
information about the plugin, which is printed with the —-help and --version
options.

e PLUGIN_FINISH_TYPE: To hook the pass after finishing parsing a type.

e PLUGIN_FINISH_DECL: To hook the pass after finishing parsing a declaration.
e PLUGIN_START_UNIT: The pass is hooked before processing a translation unit.
e PLUGIN_FINISH_UNIT: The pass is called after processing a translation unit.

e PLUGIN PRE GENERICIZE: It enables to see the low level AST in C and C++
frontends.

e PLUGIN_FINISH: The pass is called before GCC exits.

e PLUGIN_NEW_PASS: The pass implemented by the plugin is called when a pass
is first instantiated.

e PLUGIN_ATTRIBUTES: The pass is called during attribute registration.
e PLUGIN_PRAGMAS: The pass is called during pragma registration.

e PLUGIN_OVERRIDE_GATE: It enables to override the pass gate decision for current_-
pass, which is the structure (defined in tree-pass.h) that stores the current
optimization pass.

e PLUGIN_PASS_EXECUTION: The implemented pass is called before executing a
particular pass.
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e PLUGIN_ALL_PASSES_START: The pass is called before the first pass from all_-
passes, which is the structure (defined in tree-pass.h) that keeps the list of
all passes (hooked to the list using the function register_pass in passes.c).

e PLUGIN_ALL_PASSES_END: The pass is called after the last pass from all_-
passes.

e PLUGIN_ALL_TPA_PASSES_START: The pass is called before the first Interpro-
cedural Analysis (IPA) pass. In a similar way to all_passes, IPA passes are
listed in 2a11_small_ipa_passes and all_regular_ipa_passes.

e PLUGIN_ALL_TIPA_PASSES_END: The pass is called after the last IPA pass.

e PLUGIN_EARLY_GIMPLE_PASSES_START: The pass is called before executing

subpasses of a GIMPLE_PASS in execute_ipa_pass_list (), which is called

by the Link Time Optimization (LTO) process °.

e PLUGIN_EARLY_GIMPLE_PASSES_END: The pass is called after executing sub-
passes of a GIMPLE_PASS in execute_ipa_pass_list().

e PLUGIN_GGC_START: The pass implemented by the plugin is called at the start
of the GCC Garbage Collection (GGC)’.

e PLUGIN_GGC_MARKING: It enables to extend the GGC marking.
e PLUGIN_GGC_END: The pass is called at the end of GGC.
e PLUGIN_REGISTER_GGC_ROOTS: It enables to register an extra GGC root table.

e PLUGIN_REGISTER_GGC_CACHES: It enables to register an extra GGC cache ta-
ble.

e PLUGIN_EVENT_FIRST_DYNAMIC: This is a dummy event used for indexing call-
back array.

B.2.3 Plugin example

Below it is shown a source code of a complete operational example of a plugin:

/% Information about plugins and header that can be used
* could be find in the directory ’gcc

—print—file—name=plugin’ =x/

®Seehttp://gce.gnu.org/onlinedocs/gecint/LT0. html|for more details.
"Seehttp://gcc.gnu.org/onlinedocs/gccint/Type-Information. html|for more information.


http://gcc.gnu.org/onlinedocs/gccint/LTO.html
http://gcc.gnu.org/onlinedocs/gccint/Type-Information.html
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#include
#include
#include
#include
#include
#include
#include

{
.versio
.help =
bi

{

.baseve
bi

{
return

{

gimple

{

//

each

<gcc—plugin.h>
<coretypes.h>
<gimple.h>
<tree.h>
<tree—flow.h>
<tree—pass.h>
<stdio.h>

o= WO,
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int plugin_is_GPL_compatible=1;

/* Information about the plugin */
static struct plugin_info myplugin_info =

"Work in progress",

r="4.6.2",

* If the gate returns true,
* otherwise it is skipped.
static bool myplugin_gate (void)

true;

basic_block bb;

stmt;

gimple_stmt_iterator gsi;

/% Get the statement
stmt = gsi_stmt (gsi);
/* Do something with the stmt %/
...your code...

/* This plugin works for GCC version 4.6.2 x*/
static struct plugin_gcc_version myplugin_ver =

/% The gate is a callback tripped Jjust before exec is executed

exec 1s executed,

*/

/% The callback that we have registered in the pass definition
* It is tripped when a compiler event is met */

static unsigned
myplugin_exec (void)

/% GIMPLE statement iterator */

/* FOR_EACH_BB operates on a global variable in GCC which
* represents the current function being processed, cfun %/
FOR_EACH_BB (bb)

/* We traverse each basic block visiting
statement in the function x/

for (gsi = gsi_start_bb(bb); !gsi_end_p(gsi); gsi_next (&gsi))

*/
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printf ("Plugin finished...\n");
return 0;

// Pass descriptor
static struct gimple_opt_pass myplugin_pass =

{

bi

GIMPLE_PASS,

"myplugin", /* name */

myplugin_gate, /* gate x/

myplugin_exec, /* execute x/

NULL, /* sub */

NULL, /* next */

0, /% static_pass_number x/
0, /* tv_id */

PROP_cfg | PROP_ssa, /* properties_required */
0, /% properties_provided */
0, /* properties_destroyed x/
0, /% todo_flags_start x/

TODO_dump_func
| TODO_verify_ssa
| TODO_update_ssa
| TODO_verify_stmts /* todo_flags_finish */
}

/* Return 0 on success or error code on failure x/
int

plugin_init (struect plugin_name_args *info,
struct plugin_gcc_version xver) /% Version info of GCC %/

/% Argument information x/
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/% Used to tell the plugin—framework about where we want to be called in

* the set of all passes. This is located in tree—pass.h. x*/
struct register_pass_info pass;
printf ("Plugin initialized...\n");

/% Validate the plugin with the correct version of GCC %/
if (strncmp (ver—>basever, myplugin_ver.basever, strlen("4.6.2")))
return —1; /*x Incorrect version of GCC %/

/* Setup the info to register with GCC telling when we want to be
*x called and to what GCC should call, when it’s time to be called.

pass.pass = &myplugin_pass.pass;

/% Get called after GCC has produced the SSA representation of the

* program. In this case, after the first SSA pass. %/
pass.reference_pass_name = "ssa";
pass.ref_pass_instance_number = 1;

pass.pos_op = PASS_POS_INSERT_AFTER;

/% Tell GCC that we want to be called after the first SSA pass */

register_callback ("myplugin", PLUGIN_PASS_MANAGER_SETUP, NULL, &pass);

/% Tell GCC some information about us, Jjust for use in —help

*/
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and —version x/
register_callback ("myplugin", PLUGIN_INFO, NULL, &myplugin_info);

/* Successful initialization */
return 0;

B.3 GENERIC and GIMPLE representations

GCC handles several internal representations. In this section, we describe two of these
representations: GENERIC and GIMPLE. The reason to describe these representa-
tions is because they are involved in the plugin development. This section describes
the main details of these representations and the basic knowledge to address the plugin
construction.

B.3.1 GENERIC

GENERIC is the common representation, language-independent, shared by all front
ends. Each front end parses its corresponding source language, and emits the GENERIC
representation at the end of the process. This representation is very similar to the
Abstract Syntax Trees (ASTs), but without language specific constructs. Figure
shows a graphical representation of a GENERIC tree. All the tree nodes are defined
in tree.def.

Each parser can generate its own AST, but at the end of the process, it has to
emit a GENERIC representation of the source code. Before GENERIC, parsers built

VAR_DECL

DECL_SIZE()

DECL_NAME()

TREE_TYPE()
INTEGER_TYPE IDENTIFIER_NODE
IDENTIFIER_POINTER()

R

TYPE_NAME()

IDENTIFIER_NODE

IDENTIFIER_POINTER()

Figure B.2: Graphical GENERIC/TREE representation of int var;
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up trees for a single statement, and then the compiler lowered these trees, which were
abstract syntax trees, to RTL before moving on to the next statement. RTL fits well for
low-level optimizations, but it has a lot of limitations for higher level optimizations.
For example, RTL works with data types which are limited to machine words, and
therefore, it is not possible to deal with structures or arrays as a single construct.
Another limitation is the lack of trees for entire functions, requirement needed for
most of the high-level optimizations. For this reason, among others, it was proposed
to create new intermediate representations which allowed to handle this higher-level
constructs, such as arrays or functions, enabling and making new optimizations easier,
as inlining. From this purpose [[121]], GENERIC and GIMPLE arose in the version
4.0.0 of GCC, released in April 2005.

GENERIC tree nodes

A GENERIC representation uses tree as the data structure. A tree is defined in
GCC as a pointer to a big union of structures —called tree_node—, and thus, tree
nodes are dynamically typed. This set of structures can be found in tree.h, where the
node types common to all languages are defined. Each language has some particular
tree nodes. In the case of C and C++, these additional tree nodes are defined in
c-family/c-common.def.

All variables and structure fields pointing to tree nodes have the type tree, which
can address any type of node, even with different internal representations. GCC pro-
vides some functions and macros to access the data allocated in a particular tree node.
These functions and macros are defined in tree.h, and can be found in the GCC
internals.

B.3.2 GIMPLE

GIMPLE is a simplified version, a subset of GENERIC. GIMPLE is a three-address
language with no high-level control flow structures, in which each statement does not
contain more than three operands (except function calls or conditional expressions),
control flow structures are combinations of conditional statements and goto operators,
and there is no lexical scope. This restricted grammar facilitates the job to the differ-
ent optimization passes. Figure[d.4]shows some of the differences between GENERIC
and GIMPLE. Each GIMPLE statement is represented as a tuple, which contains the
type of the statement, the result, the operator, and the operands. The result and the
operands are still represented using trees, with the same syntax used in the GENERIC
representation. Figure[B.3|shows the internal raw representation of GIMPLE using tu-
ples. This view can be obtained with the compilation option -fdump-tree-all-raw,
while the normal view —like a source code— of GIMPLE is obtained with the option
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High GIMPLE Low GIMPLE Raw GIMPLE
tl=a+b tl=a+b gimple_assign <plus_expr, t1, a, b>
t2 = foo(tl,c) t2 = foo(tl,c) gimple_call <foo, t2, t1, c>
if (t2!=0) if (t2!=0) <LABEL1> else <LABEL2> gimple_cond <ne_expr, t2, 0, <LABEL1>, <LABEL2>>
c=b/a <LABEL1>: gimple_label <<LABEL1>>
b=b+1 c=b/a gimple_assign <trunc_div_expr, ¢, b, a>
else b=b+1 gimple_assign <plus_expr, b, b, 1>
c=a goto <LABEL3> gimple_goto <<LABEL3>>
t3=c <LABEL2>: gimple_label <<LABEL2>>
return t3 c=a gimple_assign <var_decl, ¢, a, NULL>
<LABEL3>: gimple_label <<LABEL3>>
t3=c gimple_assign <var_decl, t3, ¢, NULL>
return t3 gimple_return <t3>

Figure B.3: Internal raw form of GIMPLE, with the 3-operands tuples

—-fdump-tree-all.

GIMPLE lowers the control flow, where the program is transformed into a se-
quence of statements and conditional and unconditional jumps. This lowered control
flow eases the transformation of GIMPLE into a SSA form. There exist two GIMPLE
levels: High GIMPLE, generated in a first phase where cleanups and simplifications
are performed, and Low GIMPLE, where the control flow are lowered. Differences
between these two levels can be found in Figure 4.4]

Further information on how are named each GIMPLE node, and how to manipu-
lating them, is found in the GCC Internals [71].

Traverse the GIMPLE representation

There are several ways to traverse the GIMPLE representation. In Sect. [B.2.3] we
have seen one of them, which implies traversing each basic_block that represents
the current function being processed. This function is also accessible using the global
variable current_function_decl. The following code shows how to traverse the
GIMPLE representation:

static unsigned myplugin_exec (void)
{
/% Get the body of the current function declaration. x*/
gimple_seq seqg = gimple_body (current_function_decl);
/* Traverse the body of the current function. */
walk_gimple_seq (seq, scan_stmt, scan_op, NULL);

}

/* This function is used to traverse each statement in the sequence. x*/
static tree
scan_stmt ( gimple_stmt_iterator xptr_gsi,

bool xhandled_ops_p,
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struct walk_stmt_info *xwi)

/* Get the current statement. x*/
gimple stmt = gsi_stmt (*ptr_gsi);

/* Get the code of the statement to proc
switch (gimple_code (stmt))

case GIMPLE_OMP_PARALLEL:

case GIMPLE_CALL:
}
return NULL_TREE;
}
/* This function can be used to traverse all the operands
of each statement. x/

static tree
scan_op (tree *tp, int *walk_subtrees, woid xdata)
{
return NULL_TREE;
}

it properly.

195

*/

The function walk_gimple_seq enables us to traverse the sequence of statements
of the current function. It has two parameters that are the names of two functions. The
first one is used to access to each statement, whereas the second one is used to access,
if necessary, the operands of each statement. Before processing each statement or
operand, it is highly advisable to do a switch in order to process them according to

its type and avoid errors.
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Appendix

Installation and User’s Manuals

This appendix describes the installation process of BFCA and ATLaS, including all
the instructions necessary to install the required software for these both systems, and
also the user’s manual.

C.1 BFCA: BonaFide C Analyzer

BFCA was proposed in Chap. [5| Although BFCA consists of four subsystems that
could be used independently, it is specially designed to be used as a single system.

C.1.1 System Requirements

Bona Fide C Analyzer requires to have the following software and packages installed
on your computer:

e JAVA 2 SDK, SE 1.6.x (or later).
e ANTLRV2.

e C development environment (C preprocessor, C standard library, C compiler.
GCC is recommended).

e Intel C Compiler version 12 (installed in a compatible Linux system).

C.1.2 Installation Guide

Once you have installed each software specified below, you have to follow the next
steps to install BFCA in your computer:

197
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1. Unpack the tarball. This will create a new directory, named bfca-1.0, with the
sources of Bona Fide C Analyzer.

$ tar xzfv bfca—1.0.tar.gz

2. Inthe bfca-1.0 directory, there is an script named pathvars. sh, which modify
the PATH and CLASSPATH environment variables. You have to modify the
following line of the script in order to set the path of the directory in which you
unpack the tarball.

INSTALL_DIR=$HOME/bfca—1.0

3. Set the environment variables for a terminal window adding the following line
to .bashrec file:

source INSTALL_DIR/pathvars.sh

4. Checks INSTALL_DIR/src/XMLCetus/build.sh to verify if the following two
lines are correct for your system.

JAVABIN="/usr/bin" #JAVA location
ANTLR="/usr/share/java/antlr.jar" #antlr location

|91

. Install Bona Fide C Analyzer using install.sh script.

‘ $ ./install.sh bin

6. Bona Fide C Analyzer contains a set of source codes (samples directory) that
you can use to test the correct operation of the software. You can test it us-
ing the test option from the installation script, which also checks the correct
installation of the software.

‘ $ ./install.sh test

3

. Once you have installed Bona Fide C Analyzer, you are ready to use it:

‘ $ bfca —help
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C.1.3 Command Options

Bona Fide C Analyzer has several options. Mandatory arguments to long options are
mandatory for short options too.

—c,

_i’

—o,

—m,

—X,

—p,

——compile "FILE1.C FILE2.C ..." : specifies the list of source files to be
analyzed (and compile if -m | ——makefile option is not specified).

Note: —c and —I options cannot be activated at the same time.

——1list FILE : specifies a file which contains a list with the source files to
be analyzed. It is not necessary to point out all the source files, but the correct
operation of XMLCetus is not guaranteed, because of the original software of
Cetus may not be able to build the Intermediate Representation of the code.
There could be dependencies that force to indicate all the source files.

Note: —c and —I options cannot be activated at the same time.
——flag "FLAG1 FLAG2 ..." : specifies the flags to compile the code.
Note: This option will be ignored with —m,——makefile option".

——input "PARAM1 PARAM2 ..." : specifies the input parameters to execute
the user’s program.

——output : specifies the file where analysis results will be written.

——makefile : specifies that the compilation of the user’s program depends
on a Makefile. With this option it is necessary to point out the name of the
executable created by the Makefile, using the —e, ——exec option.

Note: If the makefile operation depends on an argument, you can pass it fol-
lowing this option.

——exec RUNFILE : specifies the name of the executable resulting of the com-
pilation of the user’s program.

——xml "FILE.XML" : specifies the XML file that represents the source code
that contains the target loop.

Note: It is mandatory to use this option together with -p, —parallelize

——parallelize "LOOP_LINENUMBER" : specifies the line number of the loop
to be augmented with OpenMP + speculative clauses

Note: It is mandatory to use this option together with -x, —xml
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—h, ——help : display this help and exit.

—v, ——version : output version information and exit.

C.1.4 Running Example

Bona Fide C Analyzer can be executed with two purposes: obtaining a characteriza-
tion of the source code, and augmenting the source with OpenMP constructs.
Characterizing the source code

If the software that you want to analyze is compiled by using a Makefile, you have
two alternatives:

1. To create a file with the list of source files that you want to analyze, and then
pass this file name to Bona Fide C Analyzer.

$ bfca —m —1 list —e exec —o report.out —i "input_filel input_file2"

This command (1) compiles the source code, (2) generates an executable named
exec.exe, (3) executes it with the specified input files, and finally (4) generates
a report with the use of the variable in a file named report.out.

2. To indicate them by using the ——compile option:

$ bfca —m —c "sourcel.c source2.c source3.c" —e exec —o report.out
—i "input_filel input_file2"

On the other hand, if you do not have a Makefile, you can use Bona Fide C Ana-
lyzer with the —c and —f options:

$ bfca —m —c "sourcel.c source2.c" —f "Flagl Flag2" —e exec —o report.out
—i "input_filel input_file2"

Augmenting the source code

Once a source code has been characterized, and BFCA has generated an XML version,
you can execute the software with the following options to instrument a certain loop
with OpenMP constructs.

$ bfca —x "source.xml" —p 66
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C.2 ATLaS

The compilation-module of ATLaS was described in Chap. 4 in which we propose
a GCC plugin to automatically apply all the transformations needed for speculatively
parallelize a source code. In this section, we describe the installation process of the
whole system ATLaS, including compilation-module and the TLS runtime library, as
well as a running example for final users.

C.2.1 Content of the package

The package contains the following directories:

e atlas: This is the script that allows us to run ATLAS. The different options to
execute this script are described in Sect. [C.2.4]

e doc/: This directory contains the PDF version of this document.

e gcc_updates/: This directory contains the source files that modify the com-
piler GCC to support the new OpenMP speculative clause.

e specprag/: This directory contains the core of ATLAS, all the source code that
implement the compiler and runtime modules of ATLAS.

C.2.2 System Requirements

ATLaS only requires the GCC compiler, preferably version 4.6.2, to be executed. The
rest of packages required are involved with the compilation process of GCC and they
will be described in the next section. Therefore, you need to install GCC version 4.6.2,
with the plugin support enabled. To check this, you need to execute the following
command and see the corresponding output.

$ <gcc install dir/>gcc —print—file—name=plugin
<gcc_install_dir/>/lib/gcc/<architecture_and_so>/4.6.2/plugin

This path indicates the directory where header files needed to execute plugins are
located. If the plugin support is not enabled, you only will receive the word plugin
in the output.

The compiler module of our system was developed using version 4.6.2 of GCC.
Any version superior to 4.5, in which plugins were introduced, should work. However,
we only ensure that the compiler module work with version 4.6.2.
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C.2.3 Installation Guide

The installation process should be done in two steps. First, you have to download,
compile and install GCC. Second, you need to replace original GCC files with source
files that we provide you in the ATLaS package.

Install and compile GCC 4.6.2

First, you have to download version 4.6.2 of GCC from one of the official mirrors.
For example, from the next URL:

ftp://wuw.mirrorservice.org/sites/ftp.gnu.org/gnu/gec/gec-4.6.2/gcc-4.6.2.tar.bz2

GCC requires that various tools and packages be available for use in the build
procedure. The following packages are required:

o Another GCC compiler. This is necessary to compile the required version of
GCC.

o GNAT (gnat-4.4)

e GMP (libgmp3-dev)
e MPFR (libmpfr-dev)
e MPC (libmpc-dev)
e GNU binutils

e libc6-dev (If you have a 64-bit system, install the 32-bit version of the library:
libc6-dev-i386).

e libtool

¢ GAWK
A more detailed list of the prerequisites can be found in:
http://gcc.gnu.org/install/prerequisites.html

Once you have installed all the packages listed above, you need to prepare the
building directory.

1. Uncompress the file downloaded into a directory called srcdir.


ftp://www.mirrorservice.org/sites/ftp.gnu.org/gnu/gcc/gcc-4.6.2/gcc-4.6.2.tar.bz2
http://gcc.gnu.org/install/prerequisites.html
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mkdir <gcc build dir>

mkdir <gcc_build _dir>/sredir

mv gcc—4.6.2.tar.bz2 <gcc build dir>/sredir
cd <gcc_build dir>/srcdir

tar —xvjz gcc—4.6.2.tar.bz2

wr v v 0

2. At the same level than srcdir, create a new directory called objdir.
$ mkdir objdir
3. Configure the compilation process of GCC with the following command. The
-prefix option indicates where this version will be installed.

$ cd objdir

$ ../srcdir/configure —enable—shared —enable—threads=posix
—enable—_ cxa_atexit —enable—clocale=gnu
—enable—languages=c —prefix=/opt/gcc—4.6.2

4. Starts the compilation. This process could take several hours.

‘ $ make bootstrap

5. Install the compiler in the directory indicated in the configuration command.

‘ $ make install

6. Once this process has finished, you have GCC version 4.6.2 installed in your
computer. The next step is add to this version the support for the OpenMP
speculative clause.

More compilation options and a detailed documentation of this process can be
found in:

http://gcc.gnu.org/install/configure.html

Add support for the OpenMP speculative clause into GCC

Original implementation of GCC does not support Thread-Level Speculation (TLS).
We have designed a new OpenMP clause, called speculative, to support TLS into
GCC. For this purpose, we need to modify the following files of GCC:


http://gcc.gnu.org/install/configure.html
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$ cd gcc_updates

$ 1ls x

c-parser.c gimplify.c tree.c tree-nested.c
c-typeck.c omp-low.c tree.h tree-pretty-print.c

c-family:
c-omp.c c-pragma.h

Modifying GCC to add this new clause can be done in two simple steps:

1. Copy the files in directory gcc_updates into the directory that contains the
original source files of GCC.

‘ $ mv gcc_updates/x <gcc build dir>/srcdir/gcc

2. Recompile GCC, executing the following command in the directory objdir.

$ cd <gcc build dir>/objdir
$ make

At this point, you have installed in your computer a modified version of GCC that
support the new OpenMP clause.

Using ATLaS with your software

Once you have installed our modified version of GCC, you need to accomplish a few
more steps to use ATLaS with your application. You have to follow the next steps to
install ATLaS (compiler and runtime modules):

1. Copy atlas script into the directory that contains your source code. This script
drivers the compilation of your program with the TLS library.

$ cp atlas <your_ application_dir>

2. Create a symbolic link to the directory specprag of the installation directory,
using the same name than the original. This directory contains the compile and
runtime modules of ATLaS.

$ 1n —s <path_to_specprag> specprag

In this point, your are ready to start using ATLaS.
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C.2.4 Command Options

ATLaS has several options. Mandatory arguments to long options are mandatory for
short options too.

-t, --threads INTEGER : specifies the number of threads to execute the resulting
binary file.

-b, --block INTEGER : specifies the size of each block of iterations.

-p, --maxpointer INTEGER : specifies the maximum number of elements which
are speculative.

-i, --maxiter INTEGER : specifies the maximum number of iterations that a spec-
ulative loop can execute.

-m --mask INTEGER : specifies the size of the mask used.

-c, —--compile "FILE1.C FILE2.C ..." : specifies the list of source files to be
analyzed.
-f, --flag "FLAG1 FLAG2 ..." : specifies the flags to compile the code.

-e, —--exec RUNFILE : specifies the name of the executable resulting of the compi-
lation of the user’s program.

-d, --dump : enables the dumping at various stages of processing the intermediate
language tree to a file.

-h, --help : display this help and exit.
-v, —-version : output version information and exit.

Six of this options are mandatory: --threads, --block, --maxpointer, --maxiter,
--mask, and --compile. If you do not specify any of these options, ATLaS generates
the following output:

You must specify the number of threads with '—t’ or '——threads’
You must specify the size of the block of iterations with '—b’ or '—Dblock’
You must specify the maximum number of speculative elements with '—p’ or
' —maxpointer’
You must specify the maximum number of iterations with "—i’ or '——maxiter’
You must specify the size of the mask with '—m’ or ’'—mask’
You must specify a C file with "—c’ or '——compile’
Usage: atlas —t "threads" —b "block" —p "maxpointer" —i "maxiter" —m "mask"

—c "filel.c"
Example: atlas —t 4 —b 50 —p 10 —i 10000 —m 127 —c "example.c"
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A template for a correct execution of ATLaS could be the following:

$ atlas —threads T —block B —maxpointer P —maxiter I —mask M —c
example.c

where I is the maximum number of iterations that a speculative loop can execute
in the pro- gram, T is the number of threads we want to run the program with, B
is the size of the block of iterations, P is the maximum number of elements which
are speculative, and M is the size of the mask used. These parameters are set by the
programmer and they are not very tricky to set up, because they only need to know
some easy features of the target loop to set maxiter and maxpointer. For example, a
loop that speculatively reads from and write into an array of 1000 elements, and has
200 iterations sets the value of P to 1000, and I to 200. The other three parameters, the
number of threads, the block size, and the mask size are variable and programmers
can experiment with different values until obtaining the best performance to their
programs.

C.2.5 Running Example

The following steps resume the process of parallelizing an application with ATLaS.

1. Analyze the loop to be parallelized, classifying their variables into private,
shared or speculative. Any variable that could lead to a dependency violation
should be classified as speculative.

2. Add the OpenMP directive omp parallel for, with the corresponding clauses
private, shared, and the new speculative clause.

3. Add the function specbegin(N) before the parallel loop to specify the number
of iteration of the loop. This function initializes the structures needed for the
runtime module of ATLaS. In following versions of ATLaS, the addition of this
function will not be further necessary.

#define MAX 100

#define NITER 30000

int i, k, aux, wvarl, var2;
int array[MAX];

specbegin (NITER) ;

#pragma omp parallel for default (none) schedule(static) \
private (i, k, aux) \
shared (array) \
speculative (varl, var2)

for (1 =0 ; 1 < NITER ; i++ ) {

o N - Y T N VU R SR
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if (i == 3000) { k = var2; }
if (i == 600) { k = wvarl; }

for (k = 0; k < array[i % MAX] + NITER; k++) {
if (k >= 29900) { var2 = k + array[(i + k) % MAX]; }

if (k <= 200) { wvarl = array[i % MAX]; }
aux = (k + NITER) % 100000;

}
if (i == NITER—1) { wvar2 = varl; }

4. Execute ATLaS with the right values for each argument. Details for each argu-

O ® N AW N =

ment are found in the previous section.

$ ./atlas —threads 4 —block 500 —maxpointer 2 —maxiter 30000
—mask 7 —c synthetic_sequential.c

ATLaS produces the following output for the code example shown above:

3k ok ok ok koK ok K oK koK oK R K ok K ok koK oK R K K K oK koK oK K K K K K koK K R KOk K
Analyzing 'main()’ ...
3k ok ok ok oK ok K oK koK oKk oK ok K ok koK oK K K K ok koK oKk K K K ok koK oK K KOk K

OpenMP pragma omp PARALLEL detected in line 69!
Another kind of clause
Private Clause: ’1i’
Private Clause: 'k’
Private Clause: ’aux
Shared clause: ’array’
Speculative clause: ’j
Speculative clause: ’1’

’

’

Searching FOR directive associated with the PARALLEL directive...
Number of speculative variables = 2

Variable : j. Type: int.

Variable : 1. Type: int.
Replacing original FOR loop for a speculative version...

Reading from speculative variable: k = 1;

Reading from speculative variable: k = j;

Writing into speculative variable: 1 = D.3239 + k;
Writing into speculative variable: j = array[D.3242];
Reading from speculative variable: 1 = j;

Writing into speculative variable: 1 = D.3324;

Adding engine’s functions pre—loop

Plugin finished in function 'main()’.
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5. ATLaS generates a binary file functionally equivalent to the original applica-
tion, but its execution will run in parallel, using the number of threads specified
in the compilation.

The execution of this file prints in first place a resume of the values selected for
each option of ATLaS.




Appendix

Digital Support Contents

This appendix describes the contents of the digital support attached to this Ph.D. the-
sis. This is structured in several folders:

e ATLaS: It contains the source code of the ATLaS system, including the compile-
time system developed in this Ph.D. thesis, and the TLS runtime library used.

o auxiliaryTools: It contains all the auxiliary tools and programs developed to
reach the goals of this Ph.D. thesis.

e BFCA: It contains the source code of BFCA+.
e dissertation: It contains a PDF copy of this document.

e papers: It contains PDF versions of all the papers and contributions that this
Ph.D. has produced.

o tests-experiments: It contains all the regression tests and the experiments run
during the Ph.D. thesis.
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