
Qualitative Theory of Dynamical Systems (2022) 21:123
https://doi.org/10.1007/s12346-022-00656-0

Power Series Solutions of Non-linear q-Difference
Equations and the Newton–Puiseux Polygon

J. Cano1 · P. Fortuny Ayuso2

Received: 25 March 2022 / Accepted: 27 August 2022 / Published online: 14 September 2022
© The Author(s) 2022

Abstract
Adapting the Newton–Puiseux Polygon process to nonlinear q-difference equations
of any order and degree, we compute their power series solutions, study the properties
of the set of exponents of the solutions and give a bound for their q-Gevrey order in
terms of the order of the original equation.

Mathematics Subject Classification 39A13

1 Introduction

The Newton Polygon construction for solving equations in terms of power series and
its generalization by Puiseux has been successfully used countless times both in the
algebraic [18, 24, 25] and in the differential contexts [13], [14, Ch. V], [7, 9, 11, 16,
19, 31] (this is just a biased and brief sample, see also [10] and [12, Sec. 29] for an
interesting detailed historical narrative). We extend its use to q-difference equations.

Although this construction is primarily intended to give a method for computing
formal power series solutions, we will use it for proving the q-analog of some results
concerning the nature of power series solutions of non linear differential equations.
Namely, we show properties about the growth of the coefficients of a power series
solution (Maillet’s theorem) and about the set of exponents of a generalized power
series solution.
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The method allows us, first of all, to show that the set of exponents of power
series solutions with well-ordered exponents in R of a formal q-difference equation
is included in the translation by a constant of a finitely generated semigroup over
Z≥0 (in particular, it has finite rational rank and if the exponents are all rational, then
their denominators are bounded). This mirrors the results of Grigoriev and Singer
[16] for differential equations. When the q-difference equation is of first order and
first degree, we give a bound for this rational rank (see Theorem 3 for a precise
statement). We also study properties related to what we call “finite determination”
(Definition 4) of the coefficients of the solutions. This is one of the places in which
the case |q| = 1 is essentially different from the general case. For |q| �= 1, we prove
the finite determination of the coefficients.

Maillet’s theorem [22] is a classical results about the growth of the coefficients ai
of a formal power series solution of a (non-linear) differential equation: it states that
|ai | ≤ i !s Ri , for some constants R and s. Among the different proofs (for instance
[15, 21, 22]), Malgrange’s [23] includes a precise bound for s. This bound is optimal
except for one case: when the linearized operator along the solution has a regular
singularity and the solution is a “non-regular solution”, for which any s > 0 works
(see the last remark in Malgrange’s paper); we shall refer to it as the (RS-N) case.
In [7], the Newton Polygon method allows the author to prove Maillet’s result and to
show convergence (i.e. s = 0) in the (RS-N) case.

The first studies on convergence of solutions of non-linear q-difference equations
are due to Bézivin [4–6]. The q-analog of Maillet’s theorem states that when |q| > 1,
a formal power series solution of a q-difference equation with analytic coefficients is
q-Gevrey of some order s (see Definition 5). Zhang [32] proves this adapting Mal-
grange’s proof to the case of q-difference–differential convergent equations. In this
paper, the adaptation of the Newton Polygon to q-difference equations allow us to
give a new proof of the q-analogue of Maillet’s theorem and to extend it to the q-
Gevrey non-convergent case. The bounds obtained for convergent equations match
Zhang’s in general and are more accurate in the (RS-N) case. However, we cannot
prove convergence in this case unlike for differential equations.

The first version of this paper was uploaded to the arXiv as [8] in 2012. Parts
of the second section became a chapter of [3], a joint work with Ph. Barbe and W.
McCormick dealing with solutions of algebraic q-difference equations. In that joint
book, some results concerning the asymptotic behavior of solutions are provided, but
the ones here are previous,more general (power series) and stronger (due to the specific
technique). However, we remark that in [3] the topics are broader: analytic, entire and
formal solutions, the radius of convergence, conditions describing the possible poles
of analytic solutions, associated objects which provide information on the solution
(Borel-type transforms), and many exhaustive examples, among which: the colored
Jones equation for the figure 8 knot, the q-Painlevé I equation, and other combinatorial
equations. Thus, the present paper is transverse to the book, and the Newton Polygon
method applied to q-difference equations (which appears in both) was first used in
this work.

We note, also, that the “Newton Polygon” construction used in the case of linear
operators by Adams [1], Ramis [26], Sauloy [28] and others is different from the one
presented here. In the linear case, the Newton Polygon is used to find local invariants
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of the operator while our Newton Polygon is constructed with the aim of looking
for formal power series solutions. In Sect. 4 we describe the relation between Adams’
Newton Polygon and Zhang’s bounds. Adams’ construction is also used in [20] to give
conditions for the convergence of the solution(s) of analytic nonlinear q-difference
equations.

For the reader’s convenience, we include a final section with a detailed working
example describingmost of the constructions and the evolution of theNewton Polygon
as one computes the successive terms of a solution.

2 The Newton–Puiseux Polygon Process for q-Difference Equations

Let q be a nonzero complex number. For j ∈ Z, let us denote by σ j the automorphism
of the ringC[[x]] of formal power series in one variable given by σ j (y)(x) = y(q j x),
that is,

σ j

( ∞∑
i=0

ai x
i

)
=

∞∑
i=0

qi j ai x
i .

Let P(x,Y0,Y1, . . . ,Yn) ∈ C[[x,Y0, . . . ,Yn]] be a formal power series. For
y ∈ C[[x]], with ordx (y) > 0, the expression P(x, y, σ 1(y), . . . , σ n(y)) is a
well-defined element of C[[x]] that we will be denoted by P[y]. We associate to
P(x,Y0,Y1, . . . ,Yn) the q-difference equation

P(x, y, σ 1(y), . . . , σ n(y)) = 0. (1)

We will look for solutions of Eq. (1) as formal power series with real exponents.
We restrict ourselves to the Hahn field C((xR)) of generalized power series, that is,
formal power series of the form

∑
γ∈R cγ xγ whose support {γ | cγ �= 0} is a well-

ordered subset of R and cγ ∈ C. Hahn fields were essentially introduced in [17];
see [27] for a detailed proof of the ring structure and [30] for a modern study in the
context of functional equations. We fix a determination of the logarithm and extend
the automorphism σ to C((xR)) by setting

σ

⎛
⎝∑

γ∈R
cγ xγ

⎞
⎠ =

∑
γ∈R

qγ cγ xγ .

For y ∈ C((xR)), its order ord(y) is the minimum of its support if y �= 0 and
ord(0) = ∞. In Sect. 2.3, we shall see that if ord(y) > 0 then the expression
P(x, y, σ 1(y), . . . , σ n(y)) is awell-defined element ofC((xR)), henceEqs. (1)makes
sense in our setting.

Although we look for solutions in the Hahn field, their support has some finiteness
properties, as in the case for differential equations. We say that y ∈ C((xR)) is a
grid-based series if there exists γ0 ∈ R and a finitely generated semigroup � ⊆ R≥0
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such that the support of y is contained in γ0 +�. Puiseux series are the particular case
of grid-based series in which γ0 ∈ Q and � ⊆ Q. Puiseux series and grid-based series
form subfieds of the Hahn field denoted respectively by C((xQ))g and C((xR))g . We
have

C[[x]] ⊆ C((xQ))g ⊆ C((xR))g ⊆ C((xR)).

If Eq. (1) is algebraic, i.e. of the form P(x, y) = 0, then by Puiseux’s Theorem all
its formal power series solutions are of Puiseux type. This is no longer true if instead of
C, the base field is of positive characteristic, as the following example (due essentially
to Ostrowski) shows: the equation −y p + x y + x = 0 over the field Z/pZ has as
solution the generalized power series y = ∑∞

i=1 x
μi withμi = (pi − 1)/(pi+1 − pi ).

Notice that the exponents are rational but they do not have a common denominator
and moreover μ1 < μ2 < · · · < 1/(p − 1) so that they do not even go to infinity.
Hence y is neither a Puiseux series nor a grid-based series.

As in the case of differential equations, the number of generalized power series
solutions of a given Eq. (1) is not necessary finite, neither all of its solutios are of
Puiseux type. For instance, the q-difference equation Y0 Y2 − Y 2

1 = 0 has c xμ as
solutions for any c ∈ C and μ ∈ R.

2.1 The Newton Polygon

Let R = C[[xR≥0 ]] be the ring of generalized power series with non-negative order.
For a finitely generated semigroup of � ⊂ R≥0, the ring C[[x�]] formed by those
generalized power series with support contained in � is denoted by R� . Let P ∈
R[[Y0,Y1, . . . ,Yn]] be a nonzero formal power series in n + 1 variables over R.
For ρ = (ρ0, ρ1, . . . , ρn) ∈ N

n+1, we shall write Y ρ = Y ρ0
0 · Y ρ1

1 · · · Y ρn
n ; we shall

also write R[[Y ]] instead of R[[Y0,Y1, . . . ,Yn]]. The coefficient of Y ρ in P will be
denoted Pρ(x) ∈ R and, for α ∈ R, the coefficient of xα in Pρ(x) will be denoted
Pα,ρ ∈ C. Notice that, as P ∈ R[[Y0,Y1, . . . ,Yn]], each coefficient Pρ(x) belongs
to R, which means that Pρ(x) is a power series with well-ordered support contained
in R≥0. Thus, we can write:

P =
∑

ρ∈Nn+1

Pρ(x) Y ρ, and Pρ(x) =
∑
α∈�ρ

Pα,ρ xα,

where for each ρ, �ρ is a well-ordered subset of R≥0 (in general, the �ρ will all be
different). We associate to P its cloud of points C(P): the set of points (α, |ρ|) ∈ R

2

with |ρ| = ρ0 + ρ1 + · · · + ρn , for all (α, ρ) such that Pα,ρ �= 0.
The Newton Polygon N (P) of P is the convex hull of

C̄(P) = {(α + r , |ρ|) | (α, |ρ|) ∈ C(P), r ∈ R≥0}.
A supporting line L ofN (P) is a line such thatN (P) is contained in the closed right
half-plane defined by L , and L ∩ N (P) is not empty, that is a line meeting N (P) on
its border.
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Fig. 1 Cloud, Newton polygon and some supporting lines of P in (2)

Figure 1 shows the points in the cloud and the Newton polygon (bold lines) of the
following polynomial (which will be extensively studied in Sect. 5):

P = −x3 Y0
4 Y5

2 + 4 Y1
4 − 9Y0

2 Y1 Y2 + 2 Y0
3 Y2

+q−4xY0 Y2 − q−4x3 Y2 − x3 Y0 + x5. (2)

Notice that the ordinate axis corresponds to |ρ|.
It will be convenient to speak about the co-slope of a line as the opposite of the

inverse of its slope, the co-slope of a vertical line being 0. In order to deal with the
particular case in which P is a polynomial in the variables Y0,Y1, . . . ,Yn we define:

μ−1(P) =
{−∞ if P is a polynomial in Y0, . . . , Yn
0 otherwise

Finally, from now on we assume P �= 0 everywhere.

Lemma 1 Let P ∈ R[[Y ]]. For anyμ > μ−1(P) there exists a unique supporting line
of C̄(P) with co-slope μ and the Newton polygon N (P) has a finite number of sides
with co-slope greater or equal than μ. If P is a polynomial then N (P) has a finite
number of sides and vertices. If P ∈ R�[[Y ]] for some finitely generated semigroup
� ⊆ R≥0, then the Newton Polygon N (P) has a finite number of sides with positive
co-slope.

The unique supporting line with co-slopeμwill be denoted henceforward L(P;μ).

Proof If P is a polynomial, let h be its total degree in the variables Y0, . . . ,Yn . Oth-
erwise we define h as follows: since P �= 0 the set C(P) is nonempty; take a point
q ∈ C(P) and let L be the line passing through q with co-slope μ. Let (0, h) be
the intersection of L with the OY -axis. For each ρ ∈ N

n+1, write αρ = ord Pρ(x).
Only the finite number of points (αρ, |ρ|) with |ρ| ≤ h and Pρ(x) �= 0 are relevant
for the definition of the line L(P;μ) and for the construction of sides with co-slope
greater or equal than μ of N (P). This proves the two first statements, the last one is
a consequence of the fact that for a given α > 0, the set � ∩ {r < α} is finite. 
�
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For μ > μ−1(P), define the following polynomial in the variable C :

�(P;μ)(C) =
∑

(α,|ρ|)∈L(P;μ)

Pα,ρ q
μw(ρ) C |ρ|,

where w(ρ) = ρ1 + 2ρ2 + · · · + nρn . For a vertex v ofN (P), the indicial polinomial
is

�(P;v)(T ) =
∑

(α,|ρ|)=v

Pα,ρ Tw(ρ).

For P given in Eq. (2), some examples of initial and indicial polynomials are:
for v0 = (4, 6), �(P;v0)(T ) = −3T 10, and for v1 = (0, 4), �(P;v1)(T ) = T 2(T −
2)(4T − 1). As regards the sides, the one joining (3, 6) with (0, 4), has co-slope
γ1 = −3/2 and we have �(P;γ1)(C) = 2q−3C4 − 9q−9/2C4 + 4q−6C4 − q−15C6,
whereas the one joining (0, 4) and (1, 2) has co-slope γ2 = 1/2 and �(P;γ2)(C) =
C4(4q2 − 9q3/2 + 2q) + q−3C2.

2.2 A Rough Idea of theMethod

Newton’s algorithm is recursive in the following sense : assume s(x) = cxμ + s(x)
is a solution of P = P0 with ordx s(x) > μ. Then, on one side (see Lemma 2):

�(P;μ)(c) = 0, (3)

and on the other, s(x) is a solution of a new equation P1 derived from P0 and cxμ

(see Corollary 1). The Newton Polygon is a graphical tool to describe the necessary
condition (3) on c andμ: ifμ is the co-slope of a side ofN (P), then (3) is a polynomial
in c; ifμ is a co-slope of a supporting linemeetingN (P) at a vertex v, then (3) becomes
�(P;v)(qμ) = 0 (in this special cases, any coefficient is valid because �(P;μ) ≡ 0).

Iterating the above procedure, will allow us (see Proposition 1) to prove that S(x) ∈
R is a solution of P if and only if its support is countable (so that we can write
S(x) = ∑∞

i=0 ai x
μi ) and these conditions hold: μi → ∞, and if we denote S j (x) =∑

i< j ai x
μi , Pj = P(S j (x) + Y0, . . . , σ n(S j (x)) + Yn), then for all j ∈ Z≥0:

�(Pj ;μ j )(a j ) = 0. (4)

The geometricmeaning of (4) is precisely (see Fig. 2), that the point L(Pj ;μ j )∩{|ρ| =
0} is to the left of N (Pj+1) ∩ {|ρ| = 0}, whereas μi → ∞ implies that these points
go to infinity. Newton’s idea consists of: instead of trying to compute a complete
solution straightaway, reduce the problem to computing each μ j , a j iteratively, using
the structure ofN (Pj ) and Eq. (4) each time (which is Procedure 1). The fact that all
solutions of P can be found with this method is essentially Proposition 1.
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2.3 Composition

For s0, . . . , sn ∈ R, the expression P(s0, . . . , sn) can be given a precise meaning
under certain conditions. We consider on R the topology induced by the distance
d( f , g) = exp(− ord( f − g)) which is a complete topology: if ( fn) is a Cauchy
sequence, this means that given M > 0, there is NM with ord( fn − fm) > M for
any n,m ≥ NM ; hence, for any M > 0, the truncations of fn and fm up to order
M coincide, for n,m ≥ NM . Thus, there exists a single f ∈ R (defined inductively)
such that ord( fn − f ) > M for n ≥ NM . This f is the (unique limit) of the Cauchy
sequence.

If P is a polynomial, P(s0, . . . , sn) is well-defined because C((xR)) is a ring.
Otherwise, we impose ord(si ) > 0, for all i . Let μ = min0≤i≤n{ord(si )}. For M ∈ N,
consider the polynomial P≤M = ∑

|ρ|≤M Pρ(x) Y ρ . The sequence P≤M (s0, . . . , sn),
M ∈ N, is a Cauchy sequence because the order of Pρ(x)sρ0

0 · · · sρn
n is greater than or

equal to μ |ρ|. Its limit is precisely P(s0, . . . , sn). Notice that if P ∈ R�[[Y ]] and all
si ∈ R� , then P(s0, . . . , sn) ∈ R� .

Given s0, . . . , sn as above, we define the series

P(s0 + Y0, . . . , sn + Yn) :=
∑

ρ∈Nn+1

1

ρ!
∂ |ρ|P
∂Y ρ

(s0, . . . , sn) Y
ρ, (5)

where ρ! = ρ0! · · · ρn ! and ∂ |ρ|P
∂Y ρ = ∂ |ρ|P

∂Y
ρ0
0 ∂Y

ρ1
1 ...∂Y ρn

n
. For generalized power series

s̄0, . . . , s̄n with positive order it is straightforward to prove that the evaluation of the
right hand side of (5) at s̄0, . . . , s̄n is P(s0 + s̄0, . . . , sn + s̄n).

If y ∈ C((xR)) has ord(y) > μ−1(P), then P(y, σ (y), . . . , σ n(y)) is well defined
because ord(σ k(y)) = ord(y). We also remark that if y ∈ R� , then σ k(y) ∈ R� . The
following notations will be used in the rest of the paper:

P[y] = P(y, σ (y), . . . , σ n(y)),

P[y + Y ] = P(y + Y0, σ (y) + Y1, . . . , σ
n(y) + Yn). (6)

We are also going to make use of the little-o notation: o(xμ) will mean a generalized
formal power series with order greater than μ or the zero series if μ = ∞. The
following is essentially what motivates the Newton polygon construction:

Lemma 2 Let y = c xμ + o(xμ) ∈ C((xR)), and μ > μ−1(P). Let (ν, 0) be the
intersection point of L(P;μ) with the OX-axis. Then

P[y] = �(P;μ)(c) x
ν + o(xν),

In particular, if y is a solution of the q-difference Eq. (1) then

�(P;μ)(c) = 0.
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Proof If P is a polynomial, let M be its total degree; otherwise,μ > μ−1(P) = 0 and
we set M as any integer M such that Mμ > ν, say M = �ν/μ�+1, where �.� denotes
the integral part. The truncation of P[y] up to order ν is equal to that of P≤M [y] and
also �(P;μ)(C) = �(P≤M ;μ)(C).

Write αρ = ord Pρ for any multiindex ρ. Recall that L(P;μ) = {(α, b) | α +
μ b = ν} is a supporting line of C(P): this implies that for any Pρ �= 0, the point
(αρ, |ρ|)belongs to the closed right half-plane definedby L(P;μ), fromwhich follows
that ν is the minimum of αρ + μ |ρ|, for ρ ∈ N

n+1. The following chain of equalities
proves the result

P≤M [c xμ + o(xμ)]
=

∑
|ρ|≤M

Pρ(x) (c xμ + o(xμ))ρ0(qμc xμ + o(xμ))ρ1 · · · (qnμc xμ + o(xμ))ρn

=
∑

|ρ|≤M

{
Pαρ,ρ xαρ + o(xαρ )

} {
c|ρ| qμw(ρ) xμ|ρ| + o(xμ|ρ|)

}

=
∑

|ρ|≤M

{
Pαρ,ρ c

|ρ| qμw(ρ) xαρ+μ|ρ| + o(xαρ+μ|ρ|)
}

=
⎧⎨
⎩

∑
αρ+μ |ρ|=ν

Pαρ,ρ c|ρ| qμw(ρ)

⎫⎬
⎭ xν + o(xν) = �(P;μ)(c) + o(xν).

where the last equality holds because, again L(P;μ) = {α + μb = ν}. 
�
Let y ∈ C((xR)) be a generalized power series and S be its support. If S is finite,

denote byω(y) the cardinal of S, otherwiseω(y) = ∞. Consider the sequenceμi ∈ S
defined inductively as follows: μ0 is the minimum of S and for 0 ≤ i < ω(y), μi+1
is the minimum of S \ {μ0, μ1, . . . , μi }. Let ci ∈ C be the coefficient of xμi in y.

Definition 1 We shall call the first ω terms of y to the generalized power series∑
0≤i<ω(y) ci x

μi .

Notice that if the support of y is finite or has no accumulation points then y coincides
with its first ω terms.

Corollary 1 Let y be a solution of the q-difference Eq. (1) and let
∑

i ci x
μi be the first

ω terms of y. Let Pi be the series defined as:

P0 := P, and Pi+1 := Pi [ci xμi + Y ], 0 ≤ i < ω(y).

Then, for all 0 ≤ i < ω(y), one has

�(Pi ;μi )(ci ) = 0, and μi−1 < μi ,

where we denote μ−1 = μ−1(P).

Proof Let ȳk = y −∑k−1
i=0 ci x

μi , then Pk[ȳk] = 0 and the first term of ȳk is ck xμk . 
�
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Fig. 2 Cloud and Newton polygon N (P1) of P1 = P[x2 + Y ] where P is defined in (2). In dashed lines,
N (P). Observe how both polygons coincide at and above (1, 2), the topmost vertex of L(P; 2) ∩ N (P)

By way of example, consider, for P given by (2), the transformation with μ = 2 and
c = 1, which gives P1 = P[x2 +Y ] having 33 terms. The Newton polygon of P1 (and
its comparison to that of P) is given in Fig. 2. Observe how (this will be proved later
as Lemma 3) the Newton PolygonsN (P) andN (P1) coincide at and above the vertex
v = (1, 2), which is the topmost vertex of L(P; 2) ∩ N (P). Underneath that vertex
v, the point L(P; 2) ∩ {|ρ| = 0} = (5, 0) is to the left ofN (P1) ∩ {|ρ| = 0} = (8, 0).

At the same time, under v, the polygonN (P1) has only sides with co-slope greater
than or equal to 2 (in the example, just one with co-slope 7/2). As μ1 = 2, only
co-slopes μ j > 2 are chosen afterwards (see Sect. 5 and Fig. 3 for the complete
example).

Let P ∈ R�[[Y ]] and let
∑∞

i=0 ci x
μi be a series with μ−1(P) < μi < μi+1, for

all 0 ≤ i < ∞ (We do not impose that ci �= 0, but the sequence (μi )i∈N is strictly
increasing). Consider the series P0 := P and Pi+1 := Pi [ci xμi + Y ].
Definition 2 We say that

∑∞
i=0 ci x

μi satisfies the necessary initial conditions for P ,
in short NIC(P), if �(Pi ;μi )(ci ) = 0, for all i ≥ 0.

The above Corollary states that the first ω terms of a solution of P[y] = 0 satisfy
NIC(P). In this section and the next one we shall prove in Proposition 3 the reciprocal
statement for P ∈ R�[[Y ]]: if ∑∞

i=0 ci x
μi satisfies NIC(P), then limi→∞ μi = ∞

and
∑∞

i=0 ci x
μi is an actual solution of the q-difference equation P[y] = 0. This

implies in particular that solutions of P[y] = 0 coincide with their first ω terms.
A method for computing all the series satisfying NIC(P) with ci �= 0, for all i , is

the following one:

Procedure 1 (Computation of a power series satisfying NIC(P)) Set P0 := P and
μ−1 := μ−1(P).
For i = 0, 1, 2, . . . do either (a.1) or (a.2) and (b), where:

(a.1) If y = 0 is a solution of Pi [y] = 0, then return
∑i−1

k=0 ckx
μk .

(a.2) Choose μi > μi−1, and 0 �= ci ∈ C satisfying �(Pi ,μi )(ci ) = 0.
If neither (a.1) nor (a.2) can be performed then return fail.

(b) Set Pi+1(Y ) := Pi [ci xμi + Y ].
If fail is returned at step k of the above Procedure, this means that there are no

a solutions of P[y] = 0 having
∑k−1

i=0 ci x
μi as its first k terms. To prove this, assume

that z is a solution having
∑k−1

i=0 ci x
μi as its first k terms. Either z = ∑k−1

i=0 ci x
μi ,

in which case y = 0 would be a solution of Pk[y] = 0 and (a.1) would have been
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performed, or z − ∑k−1
i=0 ci x

μi would have a first term of the form ckxμk so that (a.2)
could have been performed.

In order to carry out (a.2) in the above Procedure, one has to deal with the following
formula with quantifiers

∃μ > μ′, ∃c ∈ C, c �= 0, �(P;μ)(c) = 0. (7)

The Newton Polygon provides a way to eliminate the quantifiers. Fix μ′ > μ−1(P);
by Lemma 1, N (P) has only a finite number of sides L1, L2, . . . , Lt with co-slopes
greater than μ′. Let γ1 < γ2 < · · · < γt be their respective co-slopes and denote by
vi−1 and vi the endpoints of Li . Take μ > μ′. Either μ = γ j for some 1 ≤ j ≤ t , or
γ j < μ < γ j+1 for some 0 ≤ j ≤ t (writing γ0 = μ′ and γt+1 = ∞). If μ = γ j ,
then L(P;μ) ∩N (P) = L j and �(P;μ)(C) depends only on the coefficients Pα,ρ of
P with (α, |ρ|) ∈ L j . Otherwise, γ j < μ < γ j+1 for some j and L(P;μ) ∩ N (P)

is just the vertex v j = (a, b), which implies that

�(P;μ)(C) = Cb · �(P;v j )(q
μ).

From this equality follows that in order for �(P;μ)(c) to be 0 for some c �= 0, the
co-slope μ must satisfy�P;v j (q

μ) = 0. In other words: there exists c �= 0 and μ with
γ j < μ < γ j+1 such that �(P;μ)(c) = 0 if and only if there exists μ, satisfying both
γ j < μ < γ j+1 and �(P;v j )(q

μ) = 0. This proves that Eq. (7) is equivalent to the
quantifier-free formula obtained by the disjunction of the following formulæ:

�(P;γ j )(c) = 0, 1 ≤ j ≤ t, (8)

�(P;v j )(T ) = 0, μ = log T / log q, γ j < μ < γ j+1, 0 ≤ j ≤ t . (9)

2.4 The Pivot Point

We prove in this subsection that if Q0 is the topmost vertex of L(P;μ0) ∩N (P) and
P1 = P1[y] is the first substitution, then Q0 is also the topmost vertex of L(P1;μ0)∩
N (P1), as exemplified in Fig. 2. This allows one to give a descent argument which
guarantees that, from some index j0 on, the point Q j (the topmost in L(Pj ;μ j ) ∩
N (Pj )) is equal to Q j0 for j ≥ j0 (i.e. Q j remains the same for j ≥ j0). This fixed
vertex will be called the pivot point, as for j > j0 on, each supporting line L(Pj ;μ j )

“hinges” around it when the substitution Pj → Pj+1 is carried out. The existence
of this pivot point (and what we call relative pivot points in Sect. 2.5) guarantees the
finiteness properties of Theorems 1 and 2.

In fact, we prove later that if s(x) is a solution of P , then either the pivot point
has ordinate equal to 1 or we can derive a new equation from P which also has s(x)
as a solution and whose pivot point with respect to s(x) has ordinate equal to 1. This
simplifies our arguments considerably because when this happens, (4) is linear in a j .

For P ∈ R�[[Y ]] and μ > μ−1(P), we shall denote by Q(P;μ) the point with
highest ordinate in L(P;μ) ∩ N (P). For P̄ = P[c xμ + Y ] [as in Eq. (6)], the
following Lemma describes the Newton Polygon of P̄:
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Lemma 3 Let h be the ordinate of Q(P;μ) and consider the half-planes h+ =
{(a, b) ∈ R

2 | b ≥ h}, h− = {(a, b) ∈ R
2 | b ≤ h}. If L(P;μ)+ is the closed

right half plane defined by L(P;μ) and (ν, 0) is the intersection of L(P;μ) with the
OX-axis, then

(1) N (P̄) ∩ h+ = N (P) ∩ h+, in particular Q(P;μ) ∈ N (P̄). Moreover, for any α

and ρ with (α, |ρ|) = Q(P;μ), the coefficients Pα,ρ and P̄α,ρ are equal.
(2) N (P̄) ∩ h− ⊆ L(P;μ)+ ∩ h−,
(3) The point (ν, 0) ∈ N (P̄) if and only if �(P;μ)(c) �= 0.

Proof Write Mρ(Y ) = Pρ(x)Y ρ and αρ = ord Pρ(x). It is straightforward to show
thatMρ[cxμ+Y ] = Mρ(Y )+V (Y ) for someV (Y ), whose cloud of points is contained
in the set Aρ = {(a, b) | b < |ρ|} ∩ L(Mρ;μ)+. This proves part (2). If Q = (α, ρ)

belongs to N (P) ∩ h+, then there are no points Q′ = (α′, ρ′) ∈ N (P), except Q
itself, such that Q ∈ Aρ′ . This proves part (1). Part (3) is a consequence of Lemma 2.


�
Corollary 2 Let μ̄ > μ. Then either Q(P;μ) = Q(P̄, μ̄) or the ordinate of Q(P̄, μ̄)

is less than the ordinate of Q(P;μ). If �(P;μ)(c) �= 0, then the ordinate of Q(P̄; μ̄)

is zero.

Proof The previous Lemma implies that Q(P;μ) is a vertex ofN (P̄) and L(P;μ) =
L(P̄;μ). Hence Q(P;μ) = Q(P̄;μ). Since μ̄ > μ, Q(P̄; μ̄) is a vertex with
ordinate less than or equal to the ordinate of Q(P̄;μ) = Q(P;μ). For the second
part, assume that �(P;μ)(c) �= 0. By the same Lemma, the point (ν, 0) ∈ N (P̄), so
that the segment whose endpoints are (ν, 0) and Q(P̄;μ) is the only side of N (P̄)

with co-slope greater than or equal to μ, from which follows that Q(P̄; μ̄) = (ν, 0).

�

Let P ∈ R�[[Y ]] and take a seriesψ(x) = ∑∞
i=0 ci x

μi withμ−1(P) < μi < μi+1
for all 0 ≤ i < ∞. (Notice that we do not impose that ci �= 0, but the sequence
(μi )i∈N must be strictly increasing). Writing P0 := P and Pi+1 := Pi [ci xμi +Y ], let
Qi = Q(Pi ;μi ). By the previous Corollary, the ordinate of Qi+1 is less than or equal
to the ordinate of Qi . Since these are natural numbers, there exists N such that for
i ≥ N , the ordinate of Qi is equal to the ordinate of QN (it stabilizes). By the same
Corollary, we know that actually QN = Qi , for all i ≥ N . This leads to the following

Definition 3 The pivot point of P with respect to ψ(x) is the point Q at which the
sequence Qi stabilizes and is denoted by Q(P;ψ(x)). We say that it is reached at step
N if QN = Q(P;ψ(x)).

Let QN = (α, h) be the pivot point just defined. From part (1) of Lemma 3 follows
that (PN )α,ρ = (Pi )α,ρ for all i ≥ N , and for all ρ with |ρ| = h. In particular,
the indicial polynomials �(Pi ;QN )(T ) are the same for all i ≥ N . We shall say that
the monomial Y ρ (resp. the variable Y j ) appears effectively in the pivot point if
(PN )α,ρ �= 0 (resp. for some ρ with ρ j > 0).

Proposition 1 Let P and ψ(x) = ∑∞
i=0 ci x

μi be as above. The following statements
are equivalent:
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(1) The ordinate of the pivot point of P with respect to
∑∞

i=0 ci x
μi is greater than or

equal to 1.
(2) The series

∑∞
i=0 ci x

μi satisfies NIC(P).

In case limμi = ∞, these statements are equivalent to

(3) The series ψ(x) is a solution of P[y] = 0.

Proof Assume statement (1). The ordinate of Qi+1 is non-zero and by the above
Corollary, �(Pi ;μi )(ci ) = 0, which proves (2). Assume now that statement (1) is false,
so that the ordinate of the pivot point is zero. This means that there exists some N
such that QN has ordinate zero. By definition of QN we have that L(PN ;μN ) ∩
N (PN ) is just the point QN = (α, 0). Then �(PN ;μN )(C) is a non-zero constant
(namely the coefficient of xα in PN ), therefore it has no roots, in contradiction with
�(PN ;μN )(cN ) = 0. This proves the equivalence between (1) and (2). By Corollary 1,
(3) implies (2).

Assume (1) holds and that limμi = ∞. Write ψk(x) = ∑k−1
i=0 ci x

μi and notice
that Pi = P[ψi (x) + Y ], in particular, P[ψi (x)] = Pi [0] = (Pi )0. Let Q = (α, h)

be the pivot point of P with respect to ψ(x). Since L(Pi ;μi ) contains the point Q,
ord(Pi )0 > α + hμi and since h ≥ 1, the sequence ord P[ψi (x)] tends to infinity and
we are done. 
�
Corollary 3 Let

∑∞
i=0 ci x

μi be the first ω-terms of a solution of P[y] = 0. Then the
pivot point of P with respect to

∑∞
i=0 ci x

μi has ordinate greater than or equal to 1.

2.5 Relative Pivot Points

The above construction of the pivot point can be made relative to any of the vari-
ables Y j , 0 ≤ j ≤ n, and more generally, relative to any monomial Yr , with
r = (r0, r1, · · · , rn) ∈ N

n+1, as follows:
Fix r ∈ N

n+1. The cloud of points of P relative to Yr is defined as the set Cr (P) =
{(α, |ρ|) | ∃ρ, with Pα,ρ �= 0, and r � ρ}, where r � ρ means that ri ≤ ρi , for all
0 ≤ i ≤ n. It is obvious that Cr (P) ⊆ C(P).

Assume that Cr (P) is not the empty set, then we may define the line Lr (P;μ) as
the leftmost line with co-slope μ having nonempty intersection with Cr (P). The point
Qr (P;μ) will be the one with greatest ordinate in Lr (P;μ) ∩ Cr (P).

If H denotes H = ∂ |r |P
∂Yr , the cloud Cr (P) is not the empty set if and only if H

is not the zero series. In this case, consider the translation map τ(a, b) = (a, b −
|r |). It is straightforward to prove that Cr (P) = τ−1(C(H)). Hence, Lr (P;μ) =
τ−1(L(H ;μ)), and Qr (P;μ) = τ−1(Q(H ;μ)).

Let ψ(x) = ∑∞
i=0 ci x

μi , with μ0 > μ−1(P). Denote H0 = H and Hi+1 =
Hi [ci xμi + Y ]. By the chain rule,

∂ |r |Pi
∂Yr

= Hi , i ≥ 0. (10)

The sequence of points Qr (Pi ;μi ) = τ−1(Q(Hi ;μi )) for i ≥ 0 stabilizes at some
point denoted Qr (P;ψ(x)) and which we call the pivot point of P with respect to
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ψ(x) relative to Y r . Therefore

Q(H ;ψ(x)) = τ(Qr (P;ψ(x))) (11)

Remark 1 Since H �= 0, then Hi �= 0, for i ≥ 0 so that Cr (Pi ) is not empty, for
i ≥ 0. This proves that Qr (P;μi ) and Qr (P;ψ(x)) are well-defined provided the
monomial Yr appears effectively in P .

From now on, we shall denote e j the vector (0, . . . , 0, 1, 0, . . . , 0) where the 1
appears at position j + 1, for j = 0, . . . , n. Thus, e j = (δi j )0≤i≤n ∈ N

n+1 where δi j
is the Kronecker symbol.

Proposition 2 Let Q = (a, h) be the pivot point of P with respect toψ(x). Assume that

the monomial Y r ′
appears effectively in Q. Let r ∈ N

n+1, with r � r ′, and H = ∂ |r |P
∂Yr .

Then the pivot point of H with respect toψ(x) is (a, h−|r |). In particular, if r = r ′−ei ,
for some i such that r ′

i ≥ 1, then the ordinate of the pivot point Q(H ;ψ(x)) is 1.
However, for r = r ′, one has Q(H ;ψ(x)) = (a, 0) and therefore ψ(x) is not a
solution of H [y] = 0.

Proof Assume the pivot point Q is reached at step N , thus Q ∈ Cr ′(Pi ) ⊆ Cr (Pi ) for
all i ≥ N . From Cr (Pi ) ⊆ C(Pi ) and the fact that Q = Q(Pi ;μi ) for all i > N , one
infers Q = Qr (Pi ;μi ) = Qr ′(Pi ;μi ) for all i > N . This means that Q is the pivot
point of P with respect to ψ(x) relative to Yr and also relative to Yr ′

. As we have
seen before, τr (Q) = (a, h − |r |) is the pivot point of H with respect to ψ(x). The
third statement is a consequence of Proposition 1. 
�
Corollary 4 Let ψ(x) = ∑∞

i=0 ci x
μi be a solution of P[y] = 0 with limμi = ∞. If

the pivot point (P;ψ(x)) has ordinate greater than 1, then there exists a non trivial

derivative H = ∂ |r |P
∂Yr of P, such that ψ(x) is a solution of H [y] = 0.

Proof Let Yr ′
be a monomial that appears effectively in the pivot point Q =

Q(P;ψ(x)). Since Q has ordinate greater that 1, r ′ can be chosen with |r ′| ≥ 2.
Let r be such that r � r ′ and 1 ≤ |r | < |r ′|. By the Proposition, the pivot point of H
with respect to ψ(x) has ordinate greater than or equal to 1. By Proposition 1, ψ(x)
is a solution of H [y] = 0. 
�
Lemma 4 Let Q(P;ψ(x)) = (a, b) and Qr (P;ψ(x)) = (a′, b′) be respectively the
general pivot point of ψ(x) and the pivot point of ψ(x) relative to Y r . If the sequence
μi of exponents of ψ(x) tends to infinity, then the following two statements hold:

• The ordinate of Qr (P;ψ(x)) is at least b: b′ ≥ b, and
• If b′ = b (both points are at the same height), then a′ ≥ a.

Proof Assume that both pivot points have been reached at step N . For any i ≥ N ,
the point (a′, b′) belongs to the closed right half plane L(Pi ;μi )

+ because Cr (Pi ) ⊆
C(Pi ). Since (a, b) ∈ L(Pi ;μi ) for all i ≥ N , and limμi = ∞, the intersection of
all the half planes L(Pi ;μi )

+ for i ≥ N , is the region R formed by the points in
L(PN ;μN )+ with ordinate greater than or equal to b. The result follows because
(a′, b′) ∈ R, and (a, b) is the most left point of R with ordinate equal to b. 
�



123 Page 14 of 31 J. Cano, P. Fortuny Ayuso

3 Finiteness Properties

Throughout this section, we assume that � is a finitely generated semigroup of R≥0
and that P is a nonzero element of R�[[Y ]]. We also assume that q �= 1: the case
q = 1 is reduced to the case n = 0 considering P(Y0,Y0, . . . ,Y0). This section is
devoted to proving the following results:

Theorem 1 If y ∈ C((xR)) is a solution of Eq. (1), then it is a grid-based formal
power series.

Proposition 3 If ψ(x) = ∑∞
i=0 ci x

μi satisfies NIC(P), then ψ(x) is a solution of
P[y] = 0.

Definition 4 Let y ∈ C((xR)) and P ∈ R�[[Y ]]. We say that y is finitely determined
by P if there exist positive integers k and h, such that if yk denotes the first k terms of
y then y is the only element z ∈ C((xR)) satisfying the following property: “zk = yk
and Q[y] = 0 if and only if: for any Q = ∂ |r |P

∂Yr , with |r | ≤ h, one has Q[z] = 0.”

Theorem 2 If |q| �= 1, then any solution y of Eq. (1) is finitely determined by P.

The hypothesis |q| �= 1 is necessary: let P = Y0 − Y1 and q = √−1. Any
series

∑∞
i=0 c4i x

4i (for arbitrary constants c4i ) is a solution of P[y] = 0. Since
∂P/∂Y0[y] = 0 and ∂P/∂Y1[y] = 0 have no solutions, and higher order derivatives
of P are zero, none of these solutions is finitely determined by P . If |q| = 1, qα = 1
for α > 0 irrational, and q �= 1, then

∑∞
i=0 ai x

iα is a also a solution of P[y] = 0 for
any sequence ai , and it is not finitely determined either.

Remark 2 Let � be a finitely generated semigroup of R≥0. For any real number k, the
set � ∩{r | r ≤ k} is finite. Hence � is a well-ordered set with no accumulation points
and its elements can be enumerated in increasing order: � = {γi }i≥0, with γi < γi+1
and lim γi = ∞. Let ψ(x) = ∑∞

i=0 ci x
μi be the first ω terms of an element y ∈ R.

If suppψ(x) is contained in � then either it is finite or limμi = ∞. In both cases,
y = ψ(x). In particular, any element ofR whose support is contained in � coincides
with its first ω terms.

3.1 Quasi Solved Form

Once we know that the pivot point Q corresponding to the solution s(x) can be
assumed to have ordinate 1, we perform a transformation on P sending Q to (0, 1).
Any equation whose pivot point with respect to a solution is at (0, 1) is very easy to
study, as the successive Newton polygons only change below that point. This, together
with the ease of computing their solutions is what makes this property relevant and
deserving its own name, quasi-solved form.

A special case of quasi-solved form, called solved form, guarantees also that P has
a unique solution s(x)with s(0) = 0. If P has integer exponents and is in solved form,
then it has a single solution s(x) with s(0) = 0 and its exponents are integer (i.e. s(x)
is a formal power series). As a side note, solutions to equations in solved form are
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studied in depth in our book [3] (their asymptotic properties, radius of convergence,
etc.). In fact, many power series arising from combinatorial problems are in (or are
easily turned into) solved form. We refer to [3] for the details.

We say that the equation

P[y] = 0, ord(y) > 0, (12)

is inquasi-solved form if the point (0, 1) is a vertexofN (P) and (0, 0) /∈ C(P). If this is
the case, let�(T ) be the indicial polynomial of P at (0, 1),� = {μ ∈ R | �(qμ) = 0}
and �+ = � ∩ R>0. We say that Eq. (12) is in solved form if �+ is the empty set.
One can verify (but it is irrelevant to our purposes) that an equation in solved form
has a unique grid-based power series solution.

For the sake of comparison, a linear equation Q = ∑
ai (x)σ j is in quasi-solved

form if a j (0) �= 0 for some j ≥ 1.
The proof of Theorems 1 and 2 is structured as follows. A technical lemma on

finitely generated semigroups allows us to introduce a change of variable z = xγ y
whichwill allowus to reduce the problem to quasi-solved form.Thenwe show (Lemma
7) that the solution is grid-based in this case. We also obtain in this case (Corollary 5)
a recursive formula for the coefficients of the solution. Finally, the proofs of Theorems
1 and 2 follow.

Remark 3 The polynomial �(T ) can be written �(T ) = P0,e0 + P0,e1 T + · · · +
P0,en T

n ∈ C[T ]. Its degree m is the largest index such that the variable Ym appears
effectively in the point (0, 1). If the equation is in quasi-solved form,�(T ) is a nonzero
polynomial because (0, 1) ∈ C(P). If |q| �= 1, then � is finite. If case |q| = 1 (and
q �= 1), then � is the finite union of the sets �r = arg(r)

arg(q)
+ 2π

arg(q)
Z, for those complex

roots r of ψ(T ) with modulus 1. Recall that we have fixed a determination of the
logarithm to compute qμ, hence arg(q) is also fixed. The following Lemma implies
that �r ∩R≥0 is contained in a finitely generated semigroup. Therefore �+ generates
a finitely generated semigroup of R≥0.

Lemma 5 Let γ ∈ R and γ1, γ2, . . . , γs positive real numbers. Then the semigroup �

of R≥0 generated by the set A = (γ + γ1N+ · · · + γsN) ∩R≥0 is finitely generated.

Proof Let � be the set of (n1, . . . , ns) ∈ N
s such that γ + ∑

niγi > 0. By Dickson’s
lemma, the number of minimal elements in�with respect the product order are finite.
Hence � is generated by γ1, . . . , γs and the family γ + ∑

niγi > 0 for all minimal
element (n1, . . . , ns) of �. 
�

We now introduce a change of variables which will allow us to simplify the expo-
nents of the x variable in an equation. Let P ∈ R�[[Y ]] and γ > μ−1(P). Define
P[xγ Y ] as the series

∑
ρ

qγ ω(ρ) xγ |ρ| Pρ(x) Y ρ0
0 Y ρ1

1 · · · Y ρn
n ∈ C((xR))g [[Y ]]. (13)

If (ν, 0) is the intersection point of L(P; γ )with the OX -axis, then all the coefficients
of the series P[xγ Y ] have order greater than or equal to ν. Define γP = x−ν P[xγ Y ].
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The coefficients of γP are in R�∗ , where �∗ is the semigroup of R≥0 generated by
(−ν + � + γN) ∩ R≥0. By Lemma 5, �∗ is a finitely generated semigroup of R≥0.

The transformation P �→ γP corresponds to the change of variable z = xγ y in
the following sense: for a series y, with ord y > γ + μ−1(P), one has γP[x−γ y] =
x−ν P[y], in particular, P[y] = 0 if and only if γP[x−γ y] = 0.

Let τ̄ (a, b) be the plane affine map τ̄ (a, b) = (a − ν + γ b, b), which satisfies
τ̄ (C j (P)) = C j (

γP) for 0 ≤ j ≤ n. In particular, τ̄ (N (P)) = N (γP), and τ̄ maps
vertices to vertices and sides of co-slope μ ≥ γ to sides of co-slope μ−γ . Moreover,
τ̄ (L(P;μ)) = L(γP;μ − γ ), in particular τ̄ (L(P; γ )) = L(γP; 0) is the vertical
axis. Therefore, Q(P;μ) and Q(γP;μ − γ ) have the same ordinate. Let

∑∞
i=0 ci x

μi

and Pi be as in the definition of pivot point (Definition 3). Assume γ < μ0 and set
H = γP , H0 = H and Hi+1 = Hi [ci xμi−γ + Y ]. It is straightforward to prove that
γPi = Hi , so that τ̄ (Q(Pi ;μi )) = Q(Hi ;μi − γ ) and, in particular, they have the
same ordinate. Then the image by τ̄ of the pivot point of P with respect to

∑∞
i=0 ci x

μi

is the pivot point of γP with respect to
∑∞

i=0 ci x
μi−γ and the same holds for relative

pivot points. By Proposition 1, this implies that
∑∞

i=0 ci x
μi satisfies NIC(P) if and

only if
∑∞

i=0 ci x
μi−γ satisfies NIC(γP).

Finally, if v ∈ C(P) then τ̄ (v) ∈ C(γP) and �(γP;τ̄ (v))(T ) = �(P;v)(qγ T ).

Lemma 6 Assume that ψ(x) = ∑∞
i=0 ci x

μi satisfies NIC(P). Then there exist a
finitely generated semigroup �∗, a series P∗ ∈ R�∗ [[Y0,Y1, . . . ,Yn]], an index N
and a rational number γ with μN−1 ≤ γ < μN , such that the equation

P∗[z] = 0, ord z > 0 (14)

is in quasi solved form and ψ∗(x) = ∑∞
i=N ci xμi−γ satisfies NIC(P∗).

Proof We may assume that the ordinate of the pivot point of ψ(x) with respect to P

is 1. Otherwise, by Proposition 2, we may replace P by any of its derivatives ∂ |r |P
∂Yr ,

where the monomial Y j Y r appears effectively in the pivot point, for some j . We
remark that the coefficients of any derivative of P also belong toR� . Let Q = (α, 1)
be the pivot point of P with respect to ψ(x) and use the notation of Definition 3:
P0 = P , Pi+1 = Pi [ci xμi + Y ] and so on. In particular, let the pivot point be reached
at step N ′ − 1 for some N ′. Consider any integer N ≥ N ′. Denote �0 = � and
�i+1 = �i + μi N. Notice that the coefficients of Pi belong toR�i .

Let γ be a rational number such that μN−1 ≤ γ < μN and set P∗ =
γPN ∈ R�∗

N
[[Y ]]. Since the pivot point Q has been reached at step N − 1,

Q ∈ L(PN−1;μN−1) ∩ L(PN ;μN ). By Lemma 3, Q ∈ L(PN ;μN−1). Hence
Q ∈ L(PN ;μN−1) ∩ L(PN ;μN ); since μN−1 < γ < μN , we conclude that
Q(PN ; γ ) = Q = (α, 1). So, as the change of variables (13) sends a point (a, b) to
τ(a, b) = (a − ν + γ b, b) for the corresponding ν, we get τ(α, 1) = (0, 1) and the
point (0, 1), so that is in C(P∗), the equation P∗[y] = 0 is in quasi solved form and
the pivot point of P∗ with respect ψ∗(x) is (0, 1). By Proposition 1, ψ∗(x) satisfies
NIC(P∗). 
�
Lemma 7 Assume Eq. (14) is in quasi-solved form and let ξ(x) = ∑∞

i=0 ci x
μi , with

μ0 > 0, be a series satisfying NIC(P∗). Then the support of ξ(x) is contained in the
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finitely generated semigroup �′ = �∗ + �+
N. In particular, either the support of

ξ(x) is finite or limμi = ∞ and in both cases ξ(x) is a solution of Eq. (14).

Proof Let P0 = P∗ and Pi+1 = Pi [ci xμi + Y ] for i ≥ 0. We first prove that
Q(Pi ;μi ) = (0, 1) for all i ≥ 0. We do this showing, by induction on i , that N (Pi )
is contained into the first quadrant of the plane and that the point (0, 1) ∈ C(Pi ).
This holds for P0 because of the hypotheses on P∗. Assume that the statement holds
for Pi . Since μi > 0, the line L(Pi ;μi ) either contains the point (0, 1), and then
Q(Pi ;μi ) = (0, 1), or L(Pi ;μi ) meets N (Pi ) at a single point with zero ordinate
which is Q(Pi ;μi ). If the latter happens, from Corollary 2, we infer that the pivot
point of P∗ with respect to ξ(x) has zero ordinate, in contradiction with the fact that
ξ(x) satisfies NIC(P∗). Hence Q(Pi ;μi ) = (0, 1). By Lemma 3, (0, 1) is a vertex
of N (Pi+1) and since Pi+1 ∈ R[[Y ]], its Newton polygon is contained in the first
quadrant. This proves the induction step and that Q(Pi ;μi ) = (0, 1), i ≥ 0.

The fact that Q(Pi ;μi ) = (0, 1) implies that the polynomial �(Pi ;μi )(C) is equal
to�(qμi )C+Coeff(Pi ; xμi Y 0), where�(T ) is the indicial polynomial of P at (0, 1)
and Coeff(Pi ; xμi Y 0) is the coefficient of xμi Y 0

0 Y
0
1 · · · Y 0

n in Pi .
Since �(Pi ;μi )(ci ) = 0 because ξ(x) satisfies NIC(P∗), the following equations

hold:

�(qμi ) ci + Coeff(Pi ; xμi Y 0) = 0, i ≥ 0. (15)

Let us prove, by induction, that Pi ∈ R�′ [[Y ]], for all i ≥ 0, and that the support of
ξ(x) is contained in �′. By hypothesis, P0 ∈ R�′ [[Y ]]. Assume that Pi ∈ R�′ [[Y ]].
If ci = 0, then Pi+1 = Pi ∈ R�′ [[Y ]] and μi /∈ supp(ξ(x)). If, on the contrary,
ci �= 0, we can prove by contradiction that μi ∈ �′: assume that μi /∈ �′, in particular
μi /∈ �+, hence �(qμi ) �= 0. From Eq. (15), Coeff(Pi ; xμi Y 0) �= 0, and therefore
μi ∈ supp((Pi )0) ⊆ �′. So Pi+1 = Pi [ci xμi + Y ] belongs toR�′ [[Y ]] which proves
the induction step.

The set supp ξ(x) has no accumulation points inR because�′ is a finitely generated
semigroup of R≥0 and supp ξ(x) ⊆ �′ and we are done. 
�
Corollary 5 Let y be a solution of Eq. (14) which is in quasi solved form. Let �′ =
{γi }∞i=0, with γi < γi+1 for all i . Then y = ∑∞

i=1 di x
γi with di satisfying the following

recurrent formula:

�(qγi ) di = −Coeff(P∗[d1xγ1 + · · · + di−1x
γi−1 ]; xγi ), i ≥ 1. (16)

If �+ is finite and z is another solution of Eq. (14) with ord(y − z) greater than any
element of �+, then y = z.

Proof Let ξ(x) be the first ω terms of y. Then supp ξ(x) ⊆ �′, and by Remark 2,
y = ξ(x) ∈ R�′ . Hencewemaywrite y = ∑∞

i=1 di x
γi because γ0 = 0 and ord y > 0.

Since ξ(x) satisfies NIC(P∗), the same reasoning as in Lemma 7 up to Eq. (15) holds.
The coefficient Coeff(Pi ; xγi Y 0) is equal to the coefficient of xγi in P∗[d1xγ1 +· · ·+
di−1xγi−1 ], which gives Eq. (16). To prove the last statement, write z = ∑∞

i=1 d
′
i x

γi .
If γi is greater than any element of �+, then �(qγi ) �= 0, and di is completely
determined by d1, . . . , di−1, so that y = z. 
�
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Proof of Proposition 3 Applying Lemma 6 to ψ(x) we obtain Eq. (14), and applying
Lemma 7 to ξ(x) = ∑∞

i=N ci xμi−γ we conclude that μi − γ ∈ �′, for i ≥ N . Since
γ ≥ μ0, the set (γ −μ0)+�′ is included inR≥0. Let�′′ be the semigroup generated by
(γ −μ0)+�′. By Lemma 5, �′′ is finitely generated. Let �′′′ be the finitely generated
semigroup �′′ + ∑N−1

i=0 (μi − μ0)N. The set suppψ(x) is contained in μ0 + �′′′, so
that limμi = ∞. By Proposition 1, ψ(x) is a solution of P[y] = 0. 
�

Proof of Theorem 1 Let ψ(x) = ∑∞
i=0 ci x

μi be the first ω terms of y. By Corollary 1,
ψ(x) satisfiesNIC(P). As in the proof of Proposition 3, there exists a finitely generated
semigroup � such that suppψ(x) is contained in μ0 + �. By Remark 2, y = ψ(x),
so that y is grid-based. 
�

Proof of Theorem 2 Let y be a solution of Eq. (1). By Theorem 1, y coincides with its
first ω terms. Write y = ∑∞

i=0 ci x
μi and let Q = (α, h) be the pivot point of P with

respect to y. Apply Lemmas 6 and 7 to y: let N and γ be as in Lemma 6; we may
assume that the pivot point Q is reached at step N − 1. Since |q| �= 1, �+ is finite by
Remark 3. Since limμi = ∞, there is k > N such that μk − γ is greater than any
element of �+.

Consider z ∈ C((xR)) with the same first k terms as y and satisfying that for any

H = ∂ |r |P
∂Yr , with |r | ≤ h, H [y] = 0 if and only if H [z] = 0. We have to show that

y = z.
Since P[y] = 0, then P[z] = 0, and z coincides with its first ω terms. Write

z = ∑∞
i=0 di x

δi . By hypothesis, ci = di and μi = δi for 0 ≤ i < k. Denote P ′
0 = P ,

P ′
i+1 = Pi [di xδi + Y ] and P0 = P and Pi+1 = Pi [ci xμi + Y ], for i ≥ 0. Obviously,

Pi = P ′
i , for 0 ≤ i ≤ k. In particular Q = Q(PN ;μN ) = Q(P ′

N ; δN ).
If the pivot point of P with respect to z is also Q, then apply Lemmas 6 and 7 to z

in the same way as to y: choose the same derivative ∂h−1P
∂Yr , the same N and the same

γ to obtain the same P∗. This can be done because Pi = P ′
i , for 0 ≤ i ≤ k. This

implies that ξ(x) = ∑∞
i=N ci xμi−γ and ξ̄ (x) = ∑∞

i=N di xδi−γ both satisfy NIC(P∗).
By Corollary 5, ξ(x) = ¯ξ(x), which implies y = z.

Let us showby contradiction that the pivot point Q′ of P with respect to zmust be Q.
Assume Q′ �= Q. The point Q′ is the stabilization point of the sequence Q(P ′

i ; δi ). On
the other hand, Q belongs to this sequence because Q = Q(PN ;μN ) = Q(P ′

N ; δN ).
Corollary 2 implies that either Q = Q′ or otherwise their ordinates satisfies h > h′.
Hence h ≥ h′.

Let Yr be a monomial that appears effectively in the pivot point of P with respect

to z, so that |r | = h′. Let H = ∂h
′
P

∂Yr . By Proposition 2, H [z] �= 0; in particular H �= 0.
We claim that H [y] = 0. By Remark 1, the pivot point Qr of P with respect to y
relative to Yr is well-defined. Since limμi = ∞, by Lemma 4, the ordinate of Qr is
h′′ ≥ h. The pivot point of H with respect to y has ordinate h′′ − h′ ≥ h − h′ ≥ 1.
By Proposition 1, y satisfies NIC(P) and so H [y] = 0, which proves our claim and
finishes the proof the the Theorem. 
�
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3.2 Bounding the Rational Rank in Order and Degree 1

In general, it is nice to know a priori how complex a solution of an equation can be.
Following Seidenberg [29], one can deduce that if s(x) is a solution of a differential
equation P = A(x, y) + B(x, y)y′ of order and degree 1 with A(x, y), B(x, y) ∈
C[[x, y]], then its support is included in theQ-vector spaceQ+αQ, for some α ∈ R.
Morally speaking, one can only have a single irrational exponent (and its Q-span)
in s(x). We pose here the same question (in all its generality, allowing P to have
exponents in a finitely generated semigroup) and reach the equivalent conclusion: the
dimension of the vector space generated by the support of a solution s(x) is at most 1
plus the dimension of the vector space generated by the support of P .

Recall that the rational rank of a semigroup S ⊆ R is the dimension of 〈S〉, the
Q-vectorial subspace of R generated by S. It is denoted rat. rk(S).

In what follows � denotes a finitely generated semigroup of R≥0, as above.

Theorem 3 Assume |q| �= 1. Let P = A(Y0) + B(Y0)Y1 be a nonzero series, where
A, B ∈ R�[[Y0]]. Let y be a solution of P[y] = 0, with ord y > μ−1(P). Then
rat. rk(supp y) ≤ rat. rk(�) + 1.

The inequality can be strict, as witness the equation P = Y1 − qπY0, which has as
solution y(x) = xπ .

Proof By the previous results, y coincides with its first ω terms ψ(x) = ∑∞
i=0 ci x

μi .
Taking a rational γ < μ0 and replacing P by γP we may assume that μ0 > 0 and that
γP ∈ R�∗ and rat. rk(�∗) = rat. rk(�), for another finitely generated semigroup �∗.

Define P0 = P , Pi+1 = Pi [ci xμi + Y ], �0 = �∗ and �i+1 = �i + μiN. The
coefficients of Pi belong to R�i . Notice that one has dim 〈�i+1〉 ≤ dim 〈�i 〉 + 1 and
the inequality holds only if μi /∈ 〈�i 〉.

For each index i , the line L(Pi ;μi ) corresponds either to a vertex or to a side
of N (Pi ). If it corresponds to a side, then there are two different points (α, a) and
(β, b) in C(Pi ) lying on L(Pi ;μi ). This implies that α, β ∈ �i , therefore μi =
(β − α)/(a − b) ∈ 〈�i 〉, and 〈�i 〉 = 〈�i+1〉. Hence it is enough to prove that if for an
index i , μi corresponds to a vertex of N (Pi ), then for all j > i , μ j corresponds to a
side of N (Pj ). this holds, iterating the above argument, we get dim 〈�0〉 = dim 〈�i 〉
and dim 〈�i+1〉 = dim 〈� j 〉, for j > i , which completes the proof because we have:

dim 〈 ∪∞
j=0 � j 〉 = dim 〈�i+1〉 ≤ 1 + dim 〈�i 〉 = 1 + dim 〈�0〉.

We now prove the statement above. Assume that for the index i , μi corresponds
to a vertex v = (a, h) of N (Pi ). By Corollary 1, we have that �(Pi ;μi )(ci ) = 0.
Applying next Lemma 8 to Pi we obtain that v′ = (ν − h, 1) is a vertex of N (Pi+1)

and that �(Pi+1;v′)(qμ) �= 0, for μ > μi . By Lemma 3, N (Pi+1) is contained in
the closed right half-plane defined by L(Pi ;μi ). Since v′ ∈ L(Pi ;μi ) and μi+1 >

μi , then the point Q(Pi+1;μi+1) is either v′ or a point with zero ordinate. The last
possibility would be in contradiction with the fact that ψ(x) is a solution of P = 0
and Proposition 1, hence Q(Pi+1;μi+1) = v′ and is ordinate is 1. But this implies
that Q(Pi+1;μi+1) is the pivot point of P with respect to ψ(x), from which follows
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that for j > i , Q(Pj ;μ j ) = v′ and �(Pj ;v′) = �(Pi+1;v′) (see Definition 3 and the
subsequent paragraph).

Let us prove, finally, that for any j > i , μ j corresponds to a side of N (Pj ). Were
this not the case, for some j > i , μ j would correspond either to a vertex v′ or to a
different vertex with zero ordinate, and both possibilities are absurd:

• If μ j corresponds to the vertex v′ then

�(Pj ;μ j )(c j ) = �(Pj ;v′)(q
μ j ) c j = �(Pi+1;v′)(q

μ) c j �= 0

which contradicts Proposition 1.
• If μ j corresponds to a vertex with zero ordinate, then �(Pj ;μ j ) is a non-zero
constant polynomial and has no roots, but by hypothesis a j is indeed a root.

Hence μ j corresponds to a side of N (Pj ), and we are done. 
�
Lemma 8 Let P = A(Y0) + B(Y0) Y1 where A(Y0), B(Y0) ∈ R�[[Y0]]. Let μ >

μ−1(P) such that L(P;μ) ∩ N (P) is a vertex v = (a, h) of N (P) and let c be a
nonzero constant such that �(P;μ)(c) = 0. Let P̄ = P[c xμ + Y ]. Then the point
v′ = (ν − h, 1), where ν = a + μ h, is a vertex of N (P̄). Moreover, for μ′ > μ we
have that �(P̄,v′)(q

μ′
) �= 0.

Proof Since L(P;μ) ∩ N (P) = {v}, we have that �(P;μ)(C) = �(P;v)(qμ)Ch . By
hypothesis, �(P;μ)(c) = 0 and c �= 0, hence �(P;v)(qμ) = 0. Let us denote M =
A xa Y h

0 + B xa Y h−1
0 Y1, A, B ∈ C, to be the sum of the terms of P corresponding

to the vertex v; in particular, either A or B is different from zero. Then �(P;v)(T ) =
A + B T and qμ is the unique root of �(P;v)(T ).

Lemma 3 describes N (P̄): The point (ν, 0) /∈ C(P̄) because �(P,μ)(c) = 0 and
N (P̄) is contained in the closed right-half plane defined by L(P;μ). Let us prove that
the point v′ = (ν−h, 1) ∈ C(P̄)whichwould prove that v′ is a vertex ofN (P̄) because
it belongs to L(P;μ). For that, we compute the monomials of P̄ corresponding to
the point v′. Again by Lemma 3, these are the monomials of M̄ = M[c xμ + Y ]
corresponding to v′. By direct computation these monomials are ch−1 xν−h (A Y0 +
B Y1). Since c �= 0 and either A �= 0 or B �= 0 then v′ ∈ C(P̄).Moreover�(P̄,v′)(T ) =
ch−1(A + B T ) and then qμ is the only root of �(P̄,v′)(T ). Since |q| �= 1, if μ′ > μ,

then qμ′ �= qμ and then �(P̄,v′)(q
μ′

) �= 0. 
�

4 q-Gevrey Order

Throughout this section we assume that |q| > 1 In this case, we prove some properties
about the growth of the coefficients of a formal power series solution of a q-difference
equation. Note that the case |q| < 1 follows from this one by considering the equation
P(q−nx, σ−n(y), . . . , y) = 0 which is equivalent to Eq. (1) because the operator
σ−1(y(x)) = y(q−1 x).
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Definition 5 A formal power series
∑∞

i=0 ci x
i is said to be of q-Gevrey order s ≥ 0

if the series
∑∞

i=0 ci |q|− 1
2 s i

2
xi has a positive radius of convergence.

We will say that a series P = ∑
α,ρ Pα,ρ xα Y ρ ∈ C[[x,Y0,Y1, . . . , Yn]] is of

q-Gevrey order s ≥ 0 if the series

∑
(α,ρ)∈N×Nn+1

Pα,ρ |q|− 1
2 s(α+|ρ|)2 xα Y ρ

has a positive radius of convergence at the origin of Cn+2.

We remark that q-Gervey of order 0 means convergence. This section is devoted to
proving the following result (the number s(P; y(x)) in the statement is introduced in
Definition 6 and can be computed from the relative pivot points of P with respect to
y(x)).

Theorem 4 Let P ∈ C[[x,Y0,Y1, . . . ,Yn]] be a non-zero formal power series of q-
Gevrey order t ≥ 0 and y(x) ∈ C[[x]] a solution of P[y] = 0. Then y(x) is of
q-Gevrey order t + s(P; y) (see the following definition).

Definition 6 Let Q = (a, h) be the pivot point of P with respect to y(x). The number
s(P; y) is defined as follows:

Case h = 1. Let Q j = (a j , h j ) be the pivot point of P with respect to y(x) relative
to the variable Y j (for 0 ≤ j ≤ n). Since Q has ordinate 1, Q = Q j for some j . Let
r = max{ j | Q j = Q}. There are three cases:
(RS-R) If r = n, then s(P; y(x)) = 0.
(RS-N) If r < n and h j > 1 for all r < j ≤ n, then s(P; y(x)) can be taken as any

positive number. In this case, Theorem 4 says that y(x) is of q-Gevrey order
t + ε for any ε > 0.

(IS) If r < n and h j = 1 for some r < j ≤ n, then s(P; y(x)) = max{ j−r
a j−ar

|
r < j ≤ n, h j = 1}.

Case h > 1. By Proposition 2 there exist derivatives H = ∂ |ρ|P
∂Y ρ , with |ρ| = h − 1,

such that the pivot point of H with respect to y(x) is equal to 1. Define s(P; y(x)) as
the minimum of all those s(H ; y(x))). If for some derivative H , the equation H = 0
and its solution y(x) fall in the (RS-N) case, then s(P; y(x)) can be taken as any
positive number.

Remark 4 When Q has ordinate h > 1, the number s(P; y(x)) can be described
directly in terms of the relative pivot points: let Q = (a, h) be the (general) pivot
point of P with respect to y(x), and Qρ(P; y(x)) = (aρ, hρ). Let A be the set formed
by those 3-tuples (ρ, i, j) satisfying the following properties: |ρ| = h, Qρ = Q,
0 ≤ i < j ≤ n, and hρ′ = h, where ρ′ = ρ − ei + e j , using the previous notation
e j = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at position j + 1 (as we need to account
for the case j = 0). If the set A is empty, we define s(P; y(x)) as any positive real
number. Otherwise, s(P; y(x)) is the minimum of j−i

aρ′−a , for those (ρ, i, j) ∈ A.
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Remark 5 Zhang’s paper [32] deals with the case in which P is a convergent series.
The bound given there for the q-Gevrey order of the solution coincides with the one
described here in cases (RS-R) and (IS), provided hn = 1. In the other cases, Zhang
proves that some bound exits but without a detailed control. In particular, our bound
in case (RS-N) is more accurate because we prove that the solution is of q-Gevrey
order s, for any s > 0. If hn = 1, the bound found in [32] is described with the aid of
the Newton-Adams Polygon (see [1, 2]) of the linearized operator along y(x):

Ly =
n∑
j=0

∂P

∂Y j
[y(x)] σ j ∈ C[[x]][σ ].

By Proposition 2, we know that Ly is not identically zero if and only if the pivot point
of P with respect to y(x) has ordinate 1. The Newton-Adams PolygonNq(Ly) of Ly

is defined as follows: for each 0 ≤ j ≤ n, let l j = ord ∂P
∂Y j

[y(x)] ∈ N ∪ {∞}. Notice
that l j = a j if h j = 1. Then Nq(Ly) is the convex hull of the set {( j, l j + r) | l j �=
∞, r ≥ 0}. It is easy to check that s(P; y(x)) is the reciprocal of the minimum of the
positives slopes of Nq(Ly).

Remark 6 The labels (RS-*) and (IS-*) in Definition 6 correspond to the singularity
type of the linearized operator Ly (regular or irregular). The labels (*-R) or (*-N)
denote whether the solution y(x) is a regular solution of P (i.e. hn = 1) or not.

4.1 Reduction to Solved Form

In order to prove Theorem 4, we first show (in the paragraphs below) that we may
assume that the equation P[y] = 0 is in solved form and that the general and all the
relative pivot points with respect to the variables Y j are reached at step 0.

Let y(x) = ∑∞
i=0 ci x

i ∈ C[[x]] be a solution of P[y] = 0. We apply the process
described in the proof of Lemma 6 to P and y(x) in three steps:

(a) Replace P by some of its derivatives H such that the ordinate of the pivot point
of H with respect to y(x) is equal to 1 and s(P; y(x)) = s(H ; y(x)).

(b) Let N be large enough so that all the relative points Q j (H ; y(x)), for 0 ≤ j ≤ n,
have been reached at step N − 1.

(c) Let γ = N − 1 and consider P∗ = γHN and y∗(x) = ∑∞
i=N ci xi−N+1. Then,

P∗[y] = 0 is in quasi-solved form and P∗[y∗(x)] = 0.

If ȳ(x) = ∑∞
i=N ci xi , then the relative pivot points of y(x) with respect to

H are the same as the relative pivot points of ȳ(x) with respect to HN . Hence,
s(H ; y(x)) = s(HN ; ȳ(x)). Finally, the change of variables (13) produces the
affine transformation τ on the (i, j) plane on which the Newton polygon is defined;
recall that this transformation satisfies τ(Q j (HN ; ȳ(x))) = Q j (P∗; y∗(x)), and
moreover, τ restricted to the line of points with ordinate 1 is a translation, so that
s(HN ; ȳ(x)) = s(P∗; y∗(x)). This proves that s(P; y(x)) = s(P∗; y∗(x)). More-
over, the general and relative pivot points Q j (P∗; y∗(x)) are reached at step 0. It is
straightforward to prove that if P is of q-Gevrey order t , then H , HN and P∗ are all
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of q-Gevrey order t . Also y∗(x) and y(x) have the same q-Gevrey order. This shows
that it is enough to prove Theorem 4 when the q-difference equation P[y] = 0 is in
quasi-solved form and the relative pivot points Q j (P; y(x)) are reached at step 0.

Finally, assuming that P[y] = 0 is in quasi-solved form, since |q| > 1, the set �+
is finite. Let N be an integer greater than the maximum of �+, P∗ = N(PN+1) and
y∗(x) = ∑

i=N+1 ci x
i−N . It is clear that s(P; y(x)) = s(P∗; y∗(x)), and also that

P∗ and y∗(x) are of the same q-Gevrey order as P and y(x) respectively. From this
we conclude that we may assume the q-difference equation P[y] = 0 is in solved
form.

4.2 Recursive Formula for the Coefficients

Let y(x) = ∑∞
i=1 ci x

i be a power series solution of the q-difference equation P[y] =
0, where

P =
∑

(α,ρ)∈N×Nn+1

Pα,ρ xα Y ρ ∈ C[[x,Y0,Y1, . . . ,Yn]].

Assume that it is in solved form and that the general pivot point Q with respect to
y(x) and the relative ones Q j = (a j , h j ) are all reached at step 0. Since the equation
is in solved form, Q = (0, 1). Let r be the maximum index j , 0 ≤ j ≤ n, such that
Q j = Q and let �(T ) be the indicial polynomial of P at point Q. From Eq. (15) one
has

�(qi ) ci = −Coeff(Pi ; xi Y 0), i ≥ 1. (17)

As usual Pi = P[c1x + · · · + ci−1xi−1 + Y ]. We are interested in computing
Coeff(Pi ; xi Y 0) in terms of c1, c2, . . . , ci−1. To this end, we shall consider for-
mal series Hi in the variables Tα,ρ , C j,l , x and Y0,Y1, . . . ,Yn , where α ∈ N,
ρ = (ρ0, . . . , ρn) ∈ N

n+1, 0 ≤ j ≤ n and 1 ≤ l ≤ i − 1, defined as follows

Hi =
∑

(α,ρ)∈Nn+2

Tα,ρ xα
∏

0≤ j≤n

(
i−1∑
l=1

C j,l x
l + Y j

)ρ j

.

For (β, γ ) ∈ N×N
n+1, let Hi

β,γ be the coefficient of xβY γ in Hi . It is a polynomial

with coefficients in N and in the variables Tα,ρ and C j,l . Denote Li = Hi
i,0, i.e. the

coefficient of xiY 0 in Hi . A simple computation shows that

Li =
∑

(α,ρ,d)∈Fi

Bi
α,ρ,d Tα,ρ

∏
0≤ j≤n

∏
1≤l≤i−1

C
dj,l
j,l ,

where Bi
α,ρ,d are non-negative integers and the summantion set Fi comprises those

(α, ρ, d), such that α ∈ N, ρ ∈ N
n+1, d = (d j,l) ∈ N

(n+1)(i−1), for 0 ≤ j ≤ n,
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1 ≤ l ≤ i − 1, for which the following formulæ hold:

α +
∑
j,l

l d j,l = i, (18)

∑
l

d j,l = ρ j , and so,
∑
j,l

d j,l = |ρ|. (19)

Remark 7 Notice that, substituting in Hi the variables Tα,ρ for Pα,ρ and C j,l for
c j,l := q j l cl , one obtains Pi . Hence,

Coeff(Pi ; xiY 0) = Li (Pα,ρ, c j,l).

However, in order to have an optimal control on the q-Gevrey growth, we need to be
more precise and use the position of the relative pivot points of P with respect to y(x),
and refine the summation set: let F ′

i be the subset of Fi composed by those (α, ρ, d)

satisfying the following properties:

If j > r , h j ≥ 2, and l > i/2 then d j,l = 0. (20)

If j > r , h j = 1, and l > i − a j then d j,l = 0. (21)

Let F ′′
i be the complement of F ′

i in Fi and let L ′
i (resp. L

′′
i ) be the sum of those terms

in Li corresponding to those (α, ρ, d) in F ′
i (resp. in F ′′

i ); obviously Li = L ′
i + L ′′

i .

Lemma 9 The following equality holds: Coeff(Pi ; xiY 0) = L ′
i (Pα,ρ, c j,l).

Proof Take l0 with 1 ≤ l0 ≤ i − 1, and consider Pl0 = P[∑l0−1
l=1 cl xl + Y ] (see (6)).

Let P̄l0 be the series obtained substituting in Pl0 the expression
∑i−1

l=l0 C j,l xl +Y j for
the variable Y j , 0 ≤ j ≤ n. By construction,

Pi = Pl0 [cl0 xl0 + · · · + ci−1 x
i−1 + Y ],

Li (Tα,ρ = Pα,ρ,C j,l = c j,l; 1 ≤ l < l0) = Coeff(P̄l0; xiY 0).

Write Pl0 = ∑
(α,ρ)∈N×Nn+1(Pl0)α,ρ xα Y ρ . Expanding P̄l0 as a series in the variables

C j,l , l0 ≤ l ≤ i − 1, x and Y j , 0 ≤ j ≤ n, let us denote, for r < j0 ≤ n, by A j0,l0 the
sum of terms of P̄l0 in which the variableC j0,l0 appears effectively. In order to compute
A j0,l0 , it is only necessary to take into account the terms of Pl0 in which the variable Y j0
appears effectively, that is, only consider the sum over the indices (α, ρ) ∈ C j0(Pl0).
Since we are assuming that the pivot point Q j0 = (a j0 , h j0) of P with respect to y(x)
relative to the variable Y j0 is reached at step 0, we may assume that the order in x of
A j0,l0 is greater than or equal to a j0 + h j0 l0. If j0, l0 satisfy the premise of either (20)
or (21), then a j0 + h j0 l0 > i and the variable C j0,l0 does not appear effectively in the
coefficient of xiY 0 in P̄l0 . From this one infers that L ′′

i (Pα,ρ, c j,l) = 0. 
�
From the definition of r , one has �(T ) = P0,e0 + P0,e1 T + · · · + P0,er T

r , with
P0,er �= 0. In particular, �(T ) has degree r . Moreover, since the equation P[y] = 0
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is in solved form, �(qi ) �= 0, for i ≥ 1. From Eq. (17) and Lemma 9, the following
recursive formula holds for all i ≥ 1:

ci = −1

�(qi )
L ′
i (Pα,ρ; c j,l), (22)

where c j,l = q j lcl , 1 ≤ l ≤ i − 1 and 0 ≤ j ≤ n.

4.3 AMajorant Series

Assume the hypotheses and notations of the previous sub-section and that P has q-
Gevrey order t ≥ 0. Let s = s(P; y(x)). Consider the equation in two variables x and
w:

w = |q|− s+t
2 |c1| x +

∑
(α,ρ)∈C′

Gα,ρ xα w|ρ|, (23)

where Gα,ρ = |Pα,ρ | |q|− t
2 (α+|ρ|)2+k1(α+|ρ|)+k2 , k1 and k2 are positive constants to be

specified later, and C′ is the setN×N
n+1 without the points (0, 0), (1, 0) and (0, e j ) for

0 ≤ j ≤ n. It is straightforward to prove that the right hand side of (23) is a convergent
series and that the equation has a unique power series solution w(x) = ∑∞

i=1 c
′
i x

i ,
whose coefficients c′

i satisfy the recursive formulae:

c′
1 = |q|− s+t

2 |c1|, c′
i = Li (Gα,ρ; {c′

j,l}), i ≥ 2,

where c′
j,l = c′

l , for 1 ≤ l ≤ i − 1, and 0 ≤ j ≤ n. In particular, c′
i ≥ 0, for all

i ≥ 1, since the coefficients of Li are non-negative. By Puiseux’s theorem, the series
w(x) is convergent. The following lemma finishes the proof of Theorem 4, because
by using the majorant criterion the series solution y(x) = ∑∞

i=1 ci x
i is of q-Gevrey

order s + t .

Lemma 10 With the above notations, there exist positive constants k1 and k2 such that
the coefficients c′

l of the solution of Eq. (23) satisfy

|cl | ≤ |q| s+t
2 l2 |c′

l |, l ≥ 1. (24)

Proof The above inequality holds trivially for l = 1. Assume that it holds for l =
1, 2, . . . , i −1. Using Eq. (22) and the fact that the coefficients of Li are non-negative,
one gets

|ci | ≤ 1

|�(qi )|
∑

(α,ρ,d)∈F ′
i

Bi
α,ρ,d |Pα,ρ |

∏
j,l

(|q| jl |cl |)d j,l

≤ 1

|�(qi )|
∑

(α,ρ,d)∈F ′
i

Bi
α,ρ,d Gα,ρ

|q| t2 (α+|ρ|)2

|q|k1(α+|ρ|)+k2

∏
j,l

(
|q| jl |q| s+t

2 l2 |c′
l |
)d j,l
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=
∑

(α,ρ,d)∈F ′
i

Ri (α, ρ, d) Bi
α,ρ,d Gα,ρ

∏
j,l

|c′
l |d j,l , (25)

where the indices j and l are 0 ≤ j ≤ n and 1 ≤ l ≤ i − 1, and

Ri (α, ρ, d) = 1

|�(qi )| |q|ri (α,ρ,d),

ri (α, ρ, d) =
∑
j,l

(
j l + s + t

2
l2

)
d j,l + t

2
(α + |ρ|)2 − k1(α + |ρ|) − k2.

Claim (proved below): there exist positive constants k1 and k2, such that

Ri (α, ρ, d) ≤ |q| s+t
2 i2 , (α, ρ, d) ∈ F ′

i . (26)

Assuming the claim and using Eqs. (25) and (26), one gets

|ci | ≤ |q| s+t
2 i2

∑
(α,ρ,d)∈F ′

i

Bi
α,ρ,d Gα,ρ

∏
j,l

|c′
l |d j,l = |q| s+t

2 i2L ′
i (Gα,ρ; {|c′

l |}).

Since the coefficients of Li , the elementsGα,ρ and c′
l are all non-negative real numbers,

then L ′′
i (Gα,ρ; {c′

l}) ≥ 0. Hence,

L ′
i (Gα,ρ; {|c′

l |}) ≤ L ′
i (Gα,ρ; {c′

l}) + L ′′
i (Gα,ρ; {c′

l}) = Li (Gα,ρ; {c′
l}) = |c′

i |,

which proves the Lemma. 
�
Proof of Claim Since the degree of �(T ) is r , |q| > 1 and �(qi ) �= 0 for i ≥ 1, there
exists a constant K2 > 1, such that |q|i r ≤ K2 |�(qi )|, for all i ≥ 1. Thus, it is
enough to prove that there exist k1 > 0 and k2 > ln K2/ ln |q| such that ri (α, ρ, d) ≤
s+t
2 i2 + ri , for all i ≥ 1 and all (α, ρ, d) ∈ F ′

i . Grouping the terms of ri and
rearranging, we divide the inequality above into two parts so that it is enough to prove
the existence of positive constants k1 and k2, such that for all (α, ρ, d) ∈ F ′

i and i ≥ 1,
the following inequalities hold:

s

2

∑
j,l

l2d j,l +
∑
j,l

j l d j,l ≤ s

2
i2 + r i + k2, (27)

t

2

∑
j,l

l2 d j,l + t

2
(α + |ρ|)2 ≤ t

2
i2 + k1(α + |ρ|). (28)

We first prove the existence of k2 such that inequality (27) holds and then we do the
same for k1 and Eq. (28).

Proof of inequality (27) Call r ′
i (α, ρ, d) the left hand side of (27). Let F ′

i = F1 ∪ F2,
where F1 is the subset formed by those (α, ρ, d) such that l > i/2 implies d j,l = 0,
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and F2 is its complement in F ′
i . We shall bound r ′

i in each of F1, F2 by a polynomial
r̄ ′(i) = r̄ ′

2i
2 + r̄ ′

1i + r̄ ′
0, such that, either r̄ ′

2 < s
2 or r̄ ′

2 = s
2 and r̄ ′

1 ≤ r . Adjusting k2
conveniently, one gets (27).

Let (α, ρ, d) ∈ F1. This implies that if d j,l �= 0, then l ≤ i/2. As j ≤ n, and∑
j,l l d j,l ≤ i (which follows form (18)), we conclude that

r ′
i = s

2

∑
j,l

l2d j,l +
∑
j,l

j l d j,l ≤ s i

4

∑
j,l

ld j,l + n
∑
j,l

l d j,l ≤ s

4
i2 + n i = r̄ ′(i).

If s �= 0, then r̄ ′
2 < s/2. Otherwise, s = 0, and by Definition 6, r = n, hence r̄1′ ≤ r .

This proves that the polynomial r̄(i) satisfies our requirements.
Let (α, ρ, d) ∈ F2. There exists a pair ( j0, l0) such that l0 > i/2 and d j0,l0 �= 1.

By inequality (18), this pair is unique and d j0,l0 = 1. In this case, Eq. (18) reads as

α +
∑
j,l �=l0

l d j,l + l0 = i, and in particular
∑
j,l �=l0

l d j,l ≤ a, (29)

where a = i − l0 < i/2. This implies also that for l �= l0 and d j,l �= 0 one has l ≤ a.
Therefore,

r ′
i = s

2

⎛
⎝ ∑

j,l �=l0

l2d j,l + l20

⎞
⎠ +

∑
j,l �=l0

j l d j,l + j0 l0

≤ s

2

⎛
⎝a

∑
j,l �=l0

l d j,l + (i − a)2

⎞
⎠ + n

∑
j,l �=l0

l d j,l + j0(i − a)

≤ s

2
(2a2 − 2a i + i2) + n a + j0(i − a)

= (s/2)i2 + ( j0 − s a)i + (s a2 + n a − a j0) := fi (a).

For a fixed i , the graph of fi (a) is either an upwards parabola (case s > 0) or an
straight line (case s = 0), so its maximum in an interval is reached at its endpoints. The
available range for a depends on j0. If j0 ≤ r , then there are no additional constrains
on l0, so a ∈ [1, i/2[, and we take r̄ ′(i) = s/2 i2 + r i + r̄ ′

0. We can chose r̄ ′
0 in

such a way that max{ fi (1), fi (i/2)} ≤ r̄ ′(i), for all i ≥ 1 and 0 ≤ j0 ≤ r , because
fi (i/2) ≤ (s/4) i2+n i and fi (1) ≤ (s/2) i2+r i+s+n. If, on the other hand, j0 > r ,
since l0 > i/2, case (20) does not hold, hence case (21) holds; so that h j0 = 1 and
l0 ≤ i −a j0 , and the range for a is [a j0 , i/2[. By definition of s, one has j0 − s a j0 ≤ r
and s > 0. Consider r̄ ′(i) = s/2 i2 + r i + r̄ ′

0, where r̄
′
0 is chosen in such a way that

max{ fi (i/2), fi (a j ); j > r , h j = 1} ≤ r̄ ′(i), for all i ≥ 1. Such an r̄ ′
0 exists because

as above fi (i/2) ≤ (s/4) i2 + n i and fi (a j ) ≤ (s/2)i2 + ( j − s a j )i + s a2j + na j

and j − sa j ≤ r for those j such that j > r and h j = 1.

Proof of inequality (28) For t = 0, the inequality holds trivially, so we may assume
that t > 0. Let (α, ρ, d) ∈ F ′

i . Denote dl = ∑n
j=0 d j,l , for 1 ≤ l ≤ i − 1 and let l0 be
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the maximum of the indices l such that dl �= 0. From Eqs. (18) and (19), the fact that
l0 ≥ 1 and dl0 ≥ 1, one gets:

i − |ρ| = α +
∑
l

l dl −
∑
l

dl = α +
∑
l �=l0

(l − 1)dl + (l0 − 1)dl0 ≥ α + l0 − 1.

From which i − l0 ≥ α + |ρ| − 1. Taking into account that α ≥ 0, Eq. (18), and the
fact that l0 ≥ l for any l with dl �= 0, we conclude that

i2 = (i − l0 + l0)
2 = (i − l0)

2 + l20 + 2 l0 (i − l0)

≥ (α + |ρ| − 1)2 + l20 + 2 l0

⎛
⎝∑

l �=l0

l dl + l0(dl0 − 1)

⎞
⎠

≥ (α + |ρ| − 1)2 + l20 +
∑
l �=l0

l2dl + l20(dl0 − 1)

≥ (α + |ρ|)2 − 2(α + |ρ|) +
∑
l

l2dl .

This gives inequality (28) for k1 ≥ t and finishes the proof of Theorem 4. 
�

5 Working Example

Let us consider the q-difference equation P[y] = 0 of order 5 and degree 6, where

P = 4 Y1
4 − 9Y0

2 Y1 Y2 + 2 Y0
3 Y2 − x3 Y0

4 Y5
2 + xY0 Y2

q4
− x3 Y2

q4
− x3 Y0 + x5,

and q = 4. Its Newton Polygon isN (P) in Fig. 3. It has four vertices v0 = (3, 6), v1 =
(0, 4), v2 = (1, 2), v3 = (5, 0) and three sides L1, L2 and L3 with respective co-slopes
γ1 = −3/2, γ2 = 1/2 and γ3 = 2. We apply some steps of Procedure 1 to P . As P is
a polynomial, μ−1(P) = −∞.

In order to find all the possible starting terms c0 xμ0 of a solution, we need to
consider all the vertices and sides of N (P) according as formulæ (8) and (9). For
the vertices, we get: �(P;v0)(T ) = −3 T 10, �(P;v1)(T ) = T 2(T − 2)(4T − 1),
�(P;v2)(T ) = T 2/q4, �(P;v3)(T ) = 1. Hence, for j = 0, 1, 2, 3 the only satisfi-
able formula in (9) is the one corresponding to vertex v1, that is �(P;v1)(qμ) = 0
and −3/2 < μ < 1/2. This gives μ = −1 for any nonzero c. For the sides, we
get: �(P;γ1)(c) = q−15c4(2 q12 − 9 q21/2 + 4 q9 − c2), �(P;γ2)(c) = c2/64, and
�(P;γ3)(c) = (c − 1)2. According as (8), the only possible starting terms related to
the sides are ±1024

√
15 x−3/2 and x2. Notice that L2 gives rise to no starting term.

Following Procedure 1 we choose x2, that is c0 = 1 and μ0 = 2. The polynomial
P1 = P[x2 + Y ] has 33 terms that we do not exhibit; its Newton Polygon is N (P1)
in Fig. 3. Since y = 0 is not a solution of P1[y] = 0 because C(P1) has points on the
OX -axis, we need to perform step (a.2) of Procedure 1, that is finding μ > μ0 = 2
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1 3 5 7

1

3

5

N (P )

1 3 5 7 9 11 13 15

1

3

5

N (P1)

1 3 5 7 9 11 13 15 17 19 21 23

1

3

5

N (P2)

Fig. 3 Newton polygonsN (P), N (P1) andN (P2)

and c �= 0 so that �(P1;μ)(c) = 0. Thus, we can only use the vertices v2 and v′
3 and

side L ′
3.

For formula (9) we get �(P1;v2)(T ) = �(P;v2) and that �(P1;v′
3)

(T ) is a constant,
hence those vertices do not give rise to subsequent terms. For side L ′

3, we getμ1 = 7/2
and�(P1;μ1)(c) = 64 c2+225792, so that there are two possibilities for c1.We choose
c1 = 21

√
8
√−1 and go on with Procedure 1.

Let us consider P2 = P1[c1xμ1 + Y ] whose Newton Polygon is N (P2) having
a side L ′′

3 of the same co-slope as L ′
3 and another L ′′

4 of co-slope 5. As vertex v′′
3

gives �(P2;v′′
3 )(q

μ) = q2μ + 16384 which has no real solutions, it is useless to find
μ2. Hence we must use L ′′

4 which gives μ2 = 5 and (after a trivial computation)
c2 = −88984/65.

Notice that, after performing the first two steps detailed above and getting x2 +
21

√
8
√−1 x7/2, the fact that v′′

3 gives rise to a formula which no μ > 7/2 can satisfy
and that it has ordinate 1 implies that, taking P∗ = μ1P2, the equation P∗[y] = 0 is
solved form. Therefore, by Lemma 7 there exists a unique solution of P[y] = 0 of
the form:

y(x) = x2 + 21
√
8
√−1 x7/2 + o(x7/2).

Notice also that as P∗ ∈ C[[x1/2]][Y ], Lemma 7 guarantees as well that y(x) ∈
C[[x1/2]].

The pivot point of P with respect to y(x) is Q(y(x); P) = v′′
3 = (4.5, 1). This

means that, from now on, for each transformation Pi [ci xμi + Y ], the supporting line
L(Pi ;μi ) will intersectN (Pi ) on its lowest side, and the topmost vertex of this side will
always be that point (4.5, 1). Moreover, Y2 is the highest order appearing effectively in
it, hence r = 2 in Definition 5. There being no monomials with Y3 or Y4 in P we only
need consider the pivot point relative to Y5 which is the point Qe5(y(x); P) = (13, 1)
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(notice that Ce5(P2) is in the region above and to the right of the dashed line). Applying
Definition 5 formally we would get s(y(x); P) = 5−2

13−4.5 = 6/17.
As regards the growth of the coefficients of y(x), we transform it into a formal

power series in order to apply Theorem 4. We do this by means of the ramification
x = t2. The series y(t) is a solution of a q̄-difference equation P̄[y] = 0 derived from
P with q̄ = q1/2. The ramification induces a horizontal homothecy of ratio 2 on the
cloud of points of P , P1 and P2. Hence s(y(t); P̄) = 5−2

2(13−4.5) = 3/17 is a bound for
the q̄-Gevrey order of y(t).
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