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ABSTRACT Biocooperative control uses both biomechanical and physiological information of the user
to achieve a reliable human-robot interaction. In the context of neuromotor rehabilitation, such control can
enhance rehabilitation experience and outcomes. However, the high cost and large volume of the commercial
systems for physiological signal acquisition are major limitations for the development of such control.
We present a highly versatile, low-cost and wearable embedded system that integrates the most commonly
used sensors in this field: inertial measurement unit (IMU), electrocardiography (ECG), electromyography
(EMG), galvanic skin response (GSR) and skin temperature (SKT) sensors. Additionally, the compact
system combines wireless communication for data transmission and a high-efficiency microcontroller for
real-time signal processing and control. We tested the system in two common neuromotor rehabilitation
scenarios. The first is an upper-limb rehabilitation VR-based exergame, in which the patient must collect as
many coins as possible. Movement recognition of the hand and arm is performed based on EMG and IMU
information, respectively. The second is adaptive assistive control that adjusts the level of assistance of a
wrist rehabilitation robot according to the physiological state and motor performance of the patient using
GSR, ECG and SKT data. The quality of the recorded signals and the processing capacity of the systemmeet
the needs of the two upper-limb rehabilitation applications. The wearable system is highly versatile, open,
configurable and low cost, and it could promote the development of real-time biocooperative control for a
wide range of neuromotor rehabilitation applications.

INDEX TERMS Biocooperative control, embedded system, neuromotor rehabilitation, real-time signal
processing, wearable sensors.

I. INTRODUCTION
The concept of bio-cooperative control emerged in the field of
robotics, specifically in rehabilitation robotics, during the last
years of the first decade of the 21st century. The first formal
appearance of the term biocooperative came from Riener,
who proposed the integration of a human into the control
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loop not only by using biomechanical information but also
by considering psycho-physiological parameters [1], [2].

This ‘‘human-in-the-loop’’ integration, from a biomechan-
ical viewpoint, is usually performed by integrating position
and force sensors into a mechatronic device. It ensures safety
and enables the human to influence themovement of the robot
(user-cooperative). The inclusion of physiological-related or
psychological information in the loop allows the determina-
tion of the physical effort and emotional state of the patient,
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so the robot assistance can be challenging while ensuring that
not stress or physical harm is caused, leading to an enhanced
rehabilitation experience.

A current trend in the field of rehabilitation is the devel-
opment of multimodal human-robot interfaces (HRIs) [3],
which are able to fuse and interpret data captured by multiple
sensors, either physiological or biomechanical or a combina-
tion of both. In this sense, an extended strategy to drive reha-
bilitation robots is to recognize the intention of the movement
of the user. Zhang et al. developed a human-machine inter-
face using electrooculography (EOG), electroencephalogra-
phy (EEG) and electromyography (EMG) signals to control a
soft robotic hand in real time [4]. EMG has also been used in
combination with inertial measruement units (IMUs) [5], [6]
or accelerometers [7] to control assistive devices.

Another strategy commonly used is implementation of an
assist-as-needed (AAN) paradigm. It is commonly used since
it has been shown to increase the efficacy of rehabilitation.
It adjusts the level of assistance of the robot to the patient’s
condition: the robot assists the human with just the necessary
force so that the patient can complete the desired movement.
The level of robot assistance is automatically adjusted to the
user’s state by evaluating their performance through physio-
logical and/or biomechanical information.

AAN controllers have been implemented using biome-
chanical information of the subject extracted from accelerom-
eters [8] or force sensors [9]. The torque applied by the
subject has also been estimated by analyzing EMG signals
to adapt the level of assistance of a robot by implementing
EMG-based AAN controls [10], [11], [12].

Luzio et al. [13] adapted the level of assistance of an
end-effector upper-limb rehabilitation robot considering the
patient’s performance and fatigue. The level of patient perfor-
mance was determined using the biomechanical information
extracted from an IMU sensor, while the level of muscular
fatigue was estimated using EMG signals. Novak et al. [14]
adjusted the difficulty of an upper extremity rehabilitation
task by using biomechanics (force and movement), task per-
formance and multiple features extracted from physiological
signals, such as electrocardiography (ECG), galvanic skin
response (GSR), respiration (RESP) and skin temperature
(SKT) signals.

Mihelj et al. [15] generated the next action primitives of an
upper extremity rehabilitation device using a two-stage fuzzy
logic model. The first stage calculated motor performance
from position and force, arousal from RESP signal and GSR
features, specifically the skin conductance level (SCL) and
response (SCR), and valence from the RESP rate and SKT.
The second stage selected the action primitives (e.g. next
haptic stage, keep visual stage, previous acoustic stage) based
on the physical effort associated with the motor performance,
arousal and valence.

AAN control has also been implemented by only iden-
tifying physiological states, such as emotions, affective
states, or level of stress, without considering biomechanical
information. For example, Guerrero et al. [16] modulated the

assistance provided by a haptic controlled robot as a func-
tion of user emotions. Emotions were estimated considering
the 3-dimensional emotion model (arousal, dominance, and
valence) using the HR mean, SCL mean and SCR frequency
as inputs of a fuzzy logic model.

Emotion recognition (pleasant, neutral, or unpleasant) was
addressed using both gradient boosting machines (GBMs)
and convolutional neural networks (CNNs) based on EEG,
blood volume pulse (BVP), SKT and SCL recordings [17].
An emotion recognition model was also developed con-
sidering six basic emotions (anger, sadness, fear, disgust,
happiness and surprise) using EEG, EMG, electrooculog-
raphy (EOG), BVP, SCL and interbeat intervals (IBI) sig-
nals. A weighted linear fusion model was proposed, and
different combinations of features and classificationmethods,
such as support vector machine (SVM) and k-nearest neigh-
bors (KNN), were tested, obtaining accuracies ranging from
65-82% [18]. Detection of basic emotions, considering two,
three or four states (regret, rejoice, blended, and none),
was also investigated using heart rate (HR) and SCL
measurements. The study compared the emotion detection
accuracy when implementing different classification and
regression algorithms and using different sliding window
lengths, obtaining a maximum accuracy of 67% for binary
classification using the classification and regression trees
(CART) algorithm [19].

Koelstra et al. [20] used EOG, four EMG signals, 32 EEG
electrodes, and GSR, BVP, SKT and RESP data to map
emotions in a two-dimensional model (arousal and valence).
J. Kim et al. acquired EMG, SC, ECG and RESP signals
for determining arousal and valence [21]. Mandryk and
Atkins [22] also identified these two emotions using normal-
ized GSR, HR and EMG signals as inputs to a fuzzy logic
control scheme characterized by 22 rules.

Liu et al. [23] developed a model for affection recognition
considering three target affective states (anxiety, engagement
and liking) with an accuracy rate of 69-82%. The SVM-
based recognizer model used different features derived from
electrocardiography (EEG), photoplethysmography (PPG),
heart sound, bioimpedance, GSR, EMG and SKT signals.
Picard et al. [24] used KNN to classify eight emotions using
features extracted from EMG, GSR, RESP and BVP wave-
forms.

Differentiation of stress and normal states was carried out
using SVMwith an 80% accuracy using features derived from
BVP, GSR and pupil diameter (PD) signals [25]. A classifica-
tion method to detect three different levels of stress (relaxed,
medium level and overstress) was developed using the pulse
rate, the RESP rate, the SKT and SCL and SCR features of
the GSR using different learning algorithms with an accuracy
of up to 91%. The detected level of stress was used to
adaptively and dynamically modify the level of difficulty
of an end-effector upper-limb robotic device and a virtual
reality (VR) system [26]. The evolution of HRIs in this field
is going toward using multimodal information, combining
different sensors to acquire physiological and/or
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biomechanical data [27]. Although there is great diversity
in the selection of physiological signals and their features in
HRI studies, to estimate cognitive or emotional aspects, ECG,
GSR, SKT and EMG signals are commonly used.

However, one of the main challenges of using physio-
logical signals, in addition to the complexity of designing
a reliable control loop, is the high cost and volume of the
required acquisition systems. It is important to remark that
only a very few studies have developed their own sensing plat-
form [28], and the vast majority of previous works integrate
costly and bulky commercial products such as the MP150
system (BIOPAC, CA, USA) [12], [16], [23], Neuroscan
NuAmps Express system (Compumedics Ltd., Australia) [4],
ActiveTwo system (Biosemi, Netherlands) [20] and Pro-
Comp/FlexComp Infiniti System (Thought Technology Ltd.,
Canada) [17], [18], [21], [22], [24].

An approach for minimizing the volume is to integrate the
sensors into the system itself. Jakopin et al. [29] integrated an
ECG sensor, a GSR sensor, an NTC thermistor (temperature
sensor), a pulse sensor (PPG) and a force cell into the han-
dle of an end-effector rehabilitation robot. Postolache et al.
[30] embedded ECG and skin conductivity (SCK) measur-
ing channels, an accelerometer and flexible force sensors
on a wheelchair. Heuer et al. [31] proposed an in-vehicle
physiological data acquisition system that integrated direct
contact sensors on a steering wheel to measure ECG, GSR,
SpO2 level and SKT signals. Faisal et al. [32] developed a
wearable device to monitor and assess the knee joint and
mobility, which integrated IMU, temperature, pressure and
GSR sensors. However, this approach not only minimizes the
volume but also reduces the flexibility.

Although the vast majority of analyzed works have been
developed using costly and bulky commercial systems with-
out any processing capabilities, emerging multimodal fusion
strategies require wearable sensing devices with high com-
putational power, a small size, and a low cost to detect
human physical activity and emotions [33]. Considering the
portability and comfort of sensor wearing, it is necessary to
carefully choose the number of sensors so that the system can
be fast, energy efficient and convenient. Furthermore, a small
set of sensors with the proper location can enhance the user’s
acceptance [33].

For this reason, a compact embedded system that integrates
different low-cost sensors for implementation of a wide range
of neurorehabilitation training exercises is presented in this
paper. The system includes IMU, ECG, EMG, GSR and SKT
sensors, which are some of the most commonly used sensors
in biocooperative systems but can also be embedded such
that they can be worn as an armband so that they will be
comfortable. The small-sized system is wearable and features
Bluetooth technology for data transmission. Furthermore,
the system is open and highly configurable and integrates
a high computational performance microcontroller to enable
developers to implement signal processing and control algo-
rithms in real time without the need for additional computing
systems.

FIGURE 1. Block diagram of the proposed embedded platform.

II. METHODS
The proposed embedded sensor wearable device combines
various sensors along with a high-efficiency real-time micro-
controller (MCU) and wireless communication, providing
high flexibility and processing capacities for implementing
biocooperative controllers. The high-level block diagram is
shown in Fig. 1. The device is battery powered and includes
five sensors (IMU, ECG, EMG, GSR, and SKT), which
are directly connected to a 32-bit TMS320F28069M MCU
(Texas Instruments, TX, USA) for real-time data processing
and control. The acquired and processed data can be transmit-
ted by a Bluetooth low energy (BLE) MCU CC2650 (Texas
Instruments, TX, USA). Temporary access to the MCUs
is allowed using a JTAG connection. Snap-lead pre-gelled
electrodes are used for recording biopotentials (EMG and
ECG), and two finger electrodes allow GSR collection. For
movement and SKT measurements, the device must rest on
the user.

A. SIGNAL ACQUISITION FRONT-END
The main component that allows identifying user move-
ments is an ICM-20948 9-axisMEMSmotion tracking device
(InvenSense, CA, USA). It consists of a 3-axis gyroscope,
an accelerometer and a compass with programmable filters
and sensitivities. It also incorporates a digital motion pro-
cessor (DMP) that offloads computation of the motion pro-
cessing algorithm from the TMS320F28069M, improving the
system power performance. The ICM-20948 is powered at
1.8 V, and it interfaces with the TMS320F28069M via Fast
Mode i2C.

ECG measurements can be performed with the fully inte-
grated single-lead ECG front-end AD8232 (Analog Devices
Inc., MA, USA). It amplifies and filters the ECG sig-
nals, which are then analog-to-digital converted in the
TMS320F28069M with 12-bit resolution. The AD8232 chip
also includes an AC lead-off detectionmode to checkwhether
both electrodes are properly connected. Using two digital
signals, the AD8232 indicates the status of the electrode con-
nection. The AD8232 is powered by 3.3 V, and the electrodes
are connected using a jack connector.

A 2-channel electromyographic data acquisition unit is
integrated into the printed circuit board. The two differ-
ential EMG signals are amplified and filtered prior to
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sampling using the analog front-end (AFE) MCP3912
(Microchip Technology Inc., AZ, USA). Compensation of
differential input offset has also been considered in the
design. The MCP3912 analog-to-digital converter (ADC) is
fully configurable and interfaces with the TMS320F28069M
using SPI communication [34]. The GSR is measured by
attaching two electrodes to two hand fingers. The GSR
module uses a low constant voltage technique; an electri-
cal potential is applied between two skin contact points,
and the resulting current flow between them is measured.
The module is mainly composed of an LM324 quadruple
operational amplifier (Texas Instruments, TX, USA). The
analog output, which is the amplified and filtered voltage
difference of the two electrodes, is transmitted to the ADC
of the TMS320F28069M.

The body temperature is measured by an MLX90614
infrared (IR) thermometer (Melexis, Belgium). The advan-
tage of IR technology is that there is no need for physical con-
tact; therefore, skin temperature can be easily continuously
monitored. The MLX90614 integrates an IR-sensitive ther-
mopile detector chip and a signal conditioning application-
specific standard product, which counts with a low-noise
amplifier, a 17-bit ADC and a digital signal processing
unit, resulting in a measurement resolution of 0.02 ◦C. The
thermometer is powered at 3.3 V and interfaces with the
TMS320F28069M via i2C.

B. SYSTEM LEVEL DESIGN
The real-time TMS320F28069MMCU is responsible for data
processing and interfacing with the sensors, and its Harvard
architecture is optimized to perform real-time tasks. It has
a high-efficiency 32-bit CPU that runs at up to 90 MHz, a
floating-point unit and a programmable control law accelera-
tor (CLA), which executes code independently from the main
CPU. This MCU allows efficient processing of the acquired
signals and implementation of the required algorithms. It is
equipped with 100 KB of flash, 100 KB of RAM and 2 KB
of one-time programmable ROM. It has a built-in 12-bit
ADC allowing sampling up to 3.46 MSPS (mega samples per
second), several serial port communication peripherals (SPI,
i2C, UART. . . ) and timers, which are used to interface with
the other elements of the proposed wearable solution. This
powerful MCU has been chosen to allow advanced onboard
processing of the acquired data with a normal current con-
sumption of 245 mA, although it allows low-power operating
modes.

To obtain a wireless and wearable device, the CC2650
MCU was incorporated into the proposed system. This
system-on-chip provides an ultralow power BLE solution
using a 2.4 GHz RF transceiver. The device is built on an
ARM®Cortex®-M3 processor that handles the application
layer and BLE protocol stack and an autonomous radio core
centered on an ARM Cortex®-M0 processor that handles
all the low-level radio control and processing associated
with the physical layer and parts of the link layer. This

single-chip interfaces with the TMS320F28069Musing serial
communication (i2C, SPI or UART) and transmits the pro-
cessed data to a central device. The printed circuit board
(PCB) integrates a BLE antenna, which was designed based
on the TI specifications and built on the top copper layer of the
board. Hence, there is no need to externally add an antenna.
The board integrates 11 pads to simply and independently
access the JTAG ports of the two MCUs for debugging and
programming purposes.

The device is powered by a rechargeable lithium ion poly-
mer battery with a capacity of 3500 mAh at 3.7 V (68× 55×

7 mm). The battery life is approximately 5 hours, considering
that the estimated total maximum power of the device is
approximately 1250 mW. The battery is recharged from a
USB-C port using an MCP73831 dedicated integrated circuit
(Microchip Technology Inc., AZ, USA). It uses a constant
current followed by a constant voltage charging method.
While the battery is recharging, the circuit is still powered by
a USB port. The linear charge management controller auto-
matically detects if the battery is present and continuously
monitors the voltage to recharge the battery if the voltage
drops below the recharge threshold.

The 2-layer PCB has been designed to maximize the signal
integrity. It has split power planes (separated analog and
digital signals), and the trace width is 12 mils except for the
traces of the power signals, which are 24 mils wide. SMD
components are used to reduce the board size, placing 0402
(1005 metric) SMD passive components on it. All discrete
components are placed on the top layer to reduce assembly
costs, with the exception of the thermometer. Three holes are
included in the board to attach it to a cover box. The layout
of the components was designed considering the different
submodules (Fig. 2.a), resulting in a board size of 63×83mm.
In summary, a versatile compact wireless embedded solu-

tion has been designed. The system incorporates several
sensors and the AFE necessary to acquire different sig-
nals (ECG, EMG, GSR, SKT and motion). The processing
of the recorded signals can be carried out on either the
TMS320F28069M or the CC2650 or by combining both
MCUs. The resulting data can be transmitted using BLE
4.1 to a central device. Furthermore, the developed solution
has a relatively small size and a very low cost considering
the large number of sensors and components (MCU; BLE
communication, GSR, ECG, and EMG components; position
sensor; thermometer; and power system). The final solution
(Fig. 2.b) is housed in a 3D printed box and can be adjusted
on the user arm using Velcro straps.

III. RESULTS
One of the requirements of the presented system is that it
should be versatile so that it can be used in multiple applica-
tions in the field of neuromotor rehabilitation. In this section,
two different rehabilitation scenarios are proposed. The first
is based on the recognition of hand and armmovements using
a VR-based exergame (Fig. 3.a). The second is an implemen-
tation of adaptive assistance control based on the emotional
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FIGURE 2. System design. (a) Layout of the components (b) Top view of the assembled PCB.

FIGURE 3. Proposed rehabilitation scenarios (a) Upper-limb
rehabilitation using VR-based exergames (b) Rehabilitation setup for
adaptive control using a wrist rehabilitation robot.

state andmotor performance using a wrist rehabilitation robot
(Fig. 3.b). Additionally, a detailed analysis of the system
power consumption is carried out in this section.

A. MOVEMENT RECOGNITION CONTROL
The first scenario is a VR-based exergame for upper-limb
rehabilitation. The aim of the exergame is to collect as many
coins as possible in a predefined time. For this purpose, the
participant must move their arm and hand to interact with
the environment. Specifically, to collect a coin, the user must
move the arm to position the open or resting hand over the
coin and then close the hand.

The exergame is designed to recognize arm and hand
movements, allowing interaction with the target coins in
the virtual environment. The arm orientation is computed
from data measured by the ICM-20948, which is located
on the user’s arm. The hand gesture (open, rest or close)
is determined from the EMG signals captured from the
flexor digitorum superficialis (FDS) and extensor digito-
rum (ED) muscles, which are the muscles responsible for

FIGURE 4. Integration of the proposed system with the virtual VR-based
exergame for hand and arm rehabilitation.

hand opening and closing. Arm orientation estimation and
hand gesture recognition are performed in real time in the
TMS320F28069M MCU and transmitted to the PC via BLE
to update the VR scenario according to the estimated sub-
ject movements (Fig. 4). The VR scenario, which is mainly
composed of a human arm and a coin, was designed in Unity
and receives the processed data from the wearable system.
Hence, the human arm orientation is updated using the esti-
mated orientation, while the hand finger positions are updated
according to the recognized gesture.

Additionally, the exergame provides real-time adaptation
of the difficulty to avoid frustration and maintain user moti-
vation. The difficulty level is updated after collecting a coin
and is based on the time spent collecting the last coin. The
difficulty is modified by the degree of hand closure required
to collect the coin and by the size and position relative to the
current position of the new coin.

Fig. 3.a shows user rehabilitation with the VR-based
exergame. The embedded platform is placed on the arm of
the user, and two pairs of surface electrodes for recording the
EMG signals are attached to the ED and FDS muscles, while
the reference electrode is attached to the olecranon.

1) ACCELERATION AND GYROSCOPE READINGS
The ICM-20948 includes a 16-bit 3-axis gyroscope and an
accelerometer. The gyroscope and accelerometer are config-
ured to work with a full-scale range of ±250 dps (degrees
per second) and ±2 g (19.6 m/s2), respectively. Hence, the
ADC resolution is 131 LSB/dps and 16384 LSB/g. Linear
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FIGURE 5. Signal processing for the proposed motion recognition control (a) Linear acceleration, angular velocity and estimated orientation (b) Raw EMG
and rectified signals of ED and FDS muscles.

acceleration and angular velocity are sampled at 100 Hz and
transmitted to the MCU via 400 kHz Fast Mode i2C.

The orientation is estimated using a model whose inputs
are the accelerometer and gyroscope readings. The model
integrates an indirect Kalman filter, and it tracks the errors
in the orientation, linear acceleration and gyroscope offset.
The software code used to calculate the orientation is based
on [35]. The recorded linear acceleration and angular velocity
and the estimated orientation of the arm of the user are shown
in Fig. 5.a.

2) ELECTROMYOGRAPHY
The implemented hand gesture recognition algorithm is the
same as that presented in [34]. Before starting the rehabilita-
tion exercise, the subjects are asked to perform a calibration
to determine the maximum voluntary contraction (MVC)
values and two EMG threshold values. The MVC values of
each muscle (MVCED and MVCFDS) are computed as the
maximum value of the corresponding rectified EMG signal
(rEMG) during the calibration. The flexor (µ) and extensor
(ε) thresholds are the maximum limit values corresponding
to muscular deactivation of the FDS and EDmuscles, respec-
tively. The raw EMG signals are sampled at 200 Hz and
transmitted to the TMS320F28069M MCU via i2C commu-
nication. The signals are filtered with a notch filter (50 Hz
center frequency) and a high-pass filter (0.01 Hz stopband
frequency and 10 Hz passband frequency) (Fig. 5.b). The
filtered signals are rectified by calculating the root mean
square (RMS) with a 10-point window and low-pass filtered
(1 Hz passband edge frequency). The rectified signals are
normalized (nEMG) with respect to their MVC.

The determination of the hand gesture depends on the
instantaneous values of the nEMG signals and the thresh-
olds. The closed hand gesture is recognized when nEMGFDS
crosses over the flexor threshold µ while nEMGFDS is larger
than nEMGED if it exceeds ε. Similarly, the open hand ges-
ture is recognized when nEMGED crosses over the extensor
threshold ε while nEMGED is larger than nEMGFDS if it
exceeds µ. The rest gesture is determined when both EMG
normalized signals are lower than their respective threshold.

FIGURE 6. Two-stage fuzzy logic model for mapping physiological (GSR,
ECG and SKT) and biomechanical (motion and force) information to the
assistance level of the rehabilitation robot.

B. ADAPTIVE CONTROL
The second proposed rehabilitation scenario is the implemen-
tation of an AAN strategy that adjusts the level of assistance
of a wrist rehabilitation robot according to the emotional
state of the patient and the motor performance. The 3-DoF
wrist rehabilitation robot has one encoder for each degree
and a cylindrical handle with a force sensor [36] for biome-
chanical measurements and thus determination of the user
performance.

Previous studies have shown that the HR increases as a
response to physical effort, the SCL and SCR frequency
increase with arousal or emotional excitement and mental
workload, and the SKT decreases as a result of cognitive
workload and anxiety [37]. Considering this, the applica-
tion uses three different physiological signals (ECG, GSR
and SKT) to estimate the user’s emotional state in the two-
dimensional model (arousal and valence).

A two-stage fuzzy logic approach based on [16] and [22]
was developed to adaptatively estimate the level of assistance
considering the user emotion andmotor performance (Fig. 6).

First, arousal and valence changes (increase, constant,
or decrease) are determined based on the variations in the
HR, SCL, SCR frequency and SKT signals normalized with
respect to their resting values (previously determined in a
calibration process). The motor performance is evaluated
considering the biomechanical information provided by the
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FIGURE 7. ECG signal including R events detection.

sensors embedded in the robot: user motion and applied
forces.

The second stage of the fuzzy logic approach determines
whether to increase, maintain or decrease the level of assis-
tance of the wrist rehabilitation platform considering the
arousal and valence values in combination with motor per-
formance.

The AAN paradigm is based on a robot closed-loop admit-
tance controller [38]. The M, B, and K parameters, which
characterize the admittance controller, are updated (increase,
decrease, or no change) every second according to the fuzzy
logic output.

GSR, ECG and SKT analyses are computed in the real-time
microcontroller. Then, the extracted features (SCL, SCR, HR,
and SKT) are sent via BLE to the PC. Hence, these features
along with the force and motion are used to run the fuzzy
logic control in the PC to estimate the level of assistance and
to send the K, B, and M variables back to the robot to update
the admittance controller.

User training with the wrist rehabilitation robot is shown
in Fig. 3.b. Disposable pre-gelled electrodes are attached to
the user for ECG recording (two electrodes on the torso and
one on the umbilical region). Additionally, two electrodes are
placed at the fingertips of the index and middle fingers for
GSRmeasurements. The IR thermometer that sits underneath
the embedded platform is used for determining the SKT.

1) ELECTROCARDIOGRAM
The ECG signal is analog-to-digital converted in the
TMS320F28069M with a sampling frequency of 500 Hz.
The heart rate is determined from the RR intervals of the
ECG signal, which are detected using the well-known real-
time algorithm developed by Pan and Tompkins [39]. The
processed ECG signal indicating the R events of a person at
rest is shown in Fig. 7.

2) GALVANIC SKIN RESPONSE
The GSR signal can be split into two main components: the
tonic component or SCL and phasic component or SCR.
The SCL changes slightly over time and is known to be
related to hydration, skin dryness and automatic regulation.
It reflects general changes in autonomic arousal. The SCR
shows faster changing elements of the signal and is sensitive
to emotionally arousing stimulus events.

The output of the GSR module is analog-to-digital con-
verted in the TMS320F28069M with a sampling frequency
of 225 Hz. The raw SC signal is filtered (10 Hz low-pass

FIGURE 8. Raw and filtered SC signal, tonic skin conductance level (SCL)
and phasic skin conductance response (SCR).

filter) to reduce high-frequency noise and thus decrease false-
positive detection of phasic events. Then, the SCL (baseline
of the SC) and SCR (evoked changes in skin conductance)
components are calculated based on [40], in which a decon-
volution technique is implemented. The raw and filtered SC
signal and its tonic and phasic components of a person under
different visual stimuli are shown in Fig. 8.

C. POWER CONSUMPTION
An important feature of the presented system is its compu-
tational capabilities and power consumption. As previously
mentioned, the battery lasts for 5 hours with a maximum
power consumption of approximately 1250 mW. In this sec-
tion, the system consumption is analyzed in detail. For this,
the system is divided into three main parts: sensor modules,
TMS320F28069M MCU and CC2650 MCU.

The EMG, IMU, ECG, GSR and TEMP modules when
active and configured with the specifications previously
defined have a power consumption of 40.6 mW, 5.6 mW,
0.6mW, 3.3mWand 5.6mW, respectively. On the other hand,
their power consumption in sleep mode is 9.6 mW, 0.02 mW,
0.001 mW, 2.6 mW and 0.01 mW.

Furthermore, the power consumption of the
TMS320F28069M microcontroller was analyzed for the two
proposed scenarios. The breakdown of the average power
consumption of each peripheral for each application is
detailed in Fig. 9. During data acquisition from the sensors
(using ADC, SPI or i2C interfaces), the DMA is triggered
and used to transfer sampled data to the internal memory.
The CLA module is used to carry out the signal processing
independently of the main core. The DMA energy con-
sumption depends on the number of active channels, and
it is proportional to the amount of data and transfer rate,
while the CLA energy consumption is proportional to the
computational load, i.e., to the algorithm complexity.

The power consumption of the system is highly influenced
by the application and, consequently, theMCU configuration.
Additionally, the energy consumption of the microcontroller
is extremely variable according to the computational load.
The microcontroller can be programmed to go into an IDLE
mode (main CPU is halted while peripherals and other clocks
remain active) when the desired computation is over, which
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FIGURE 9. Breakdown of the microcontroller power consumption for the
two proposed scenarios: (a) motion recognition control and (b) adaptive
control.

drastically decreases the power consumption from 272.3 mW
to only 82.5mW. Since the signal processing ismainly carried
out in the CLA, the MCU spends more than 80% of its duty
cycle (90 MHz) in IDLE mode. We found a 203 mW power
consumption for motion recognition control and 249 mW for
adaptive control.

The power consumption of the CC2650 module is mostly
due to BLE communication. The average power consumption
of the BLE communication is proportional to the amount
of sent data and can reach a maximum of 32.7 mW when
streaming the raw data from the five sensor modules simul-
taneously at 1 kHz. In the proposed scenarios, the CC2650
MCU only receives information through the i2c interface
to send it to a central node using BLE. Therefore, neither
additional modules nor data processing is carried out, which
would increase the power consumption of this module.

IV. DISCUSSION
We have presented a low-cost wearable embedded platform
for implementation of biocooperative control in the context
of neuromotor rehabilitation. The compact platform is highly
versatile in terms of the diversity of the sensors that it inte-
grates (IMU, EMG, SKT, GSR, and ECG). Although some
low-cost wearable platforms have been previously proposed,
they did not integrate so many sensors since they were not
developed with this approach. For instance, [41], [42], [43]
only integrated EMG sensors, [44], [45] only developed an
ECG sensor and [46] only used IMU sensors. Reference [47]
incorporated ECG and GSR sensors, [48] integrated IMU and
ECG sensors, and [49] incorporated GSR, SKT and IMU
sensors.

The selection of these five sensors is based on a review of
the related literature. The detection of motion based on data
collected from IMUs has been widely used for rehabilitation
purposes. In [50], [51], [52], [53], [54], and [55], a wire-
less IMU was used for stroke rehabilitation in combination
with or without motion-sensitive games based on VR (IMU-
based exergames). IMU information has also been used for
biomechanical analysis [56], [57], [58], [59], [60], such as
gait analysis, which can be used to evaluate motor recovery.
It can also be used with assistive devices [61], [62], [63], [64]
and in combination with other sensors, such as EMG

sensors [5], [7]. Features extracted from EMG signals have
been used as inputs of the control loop of rehabilitation robots
[65], [66], [67], [68]. EMG has also been used to identify
fatigue during rehabilitation [13], [69] and even emotional
states [17], [19], [20], [21]. Although there is no consensus as
to which physiological signals are the best to use to determine
the psychophysiological state, measurements of the SCR fre-
quency, SCL, HR and SKT can give reliable information
about the psychophysiological state of the patient [36], [70].

The presented system is open and configurable so that
researchers can easily develop new biocooperative control
strategies as well as modify and optimize existing algorithms.
The high-efficiency real-time microcontroller provides high
processing capabilities for implementing this kind of bioco-
operative control, which requires complex signal processing.
Additionally, its high flexibility regarding the diversity of
sensors and wireless communication allows the development
of a multitude of rehabilitation applications.

Two possible applications have been proposed. The appli-
cations use different signals, and the training approaches are
different; while the first one does not require an assistive
robotic device and uses EMG and IMU information, the
second one needs an assistive robot and uses GSR, ECG
and SKT data. It has been verified that even though the
system is low cost, the quality of the acquired signals is
reliable for implementing biocooperative control algorithms.
Raw and processed data from all sensors have been shown:
motion has been identified using IMU measurements, hand
gestures have been recognized using EMG signals, the HR
has been detected from ECG signals, the SCL and SCR have
been acquired from recorded GSR data and the SKT has
been continuously monitored.

Additionally, the power consumption of the system has
been carefully analyzed for the two scenarios, which are fully
compliant with the energy constraints of the wearable system.
Furthermore, the high-efficiency processing capabilities of
the platform have been tested. This platform supports the
real-time execution of more complex algorithms than those
presented for the two rehabilitation scenarios.

In summary, an embedded platform for implementing
real-time biocooperative control in the context of neurore-
habilitation has been presented. The open and highly cus-
tomizable system is more convenient for developers than
proprietary solutions; it can be used for any purposes (from
only physiological signal acquisition for later offline analysis
to implementation of complex biocooperative control) since
researchers can freely modify the program and add new fea-
tures and capabilities without any restrictions. The platform
includes a high diversity of sensors and wireless communica-
tion while being low cost, compact, and comfortable to wear.
For these reasons, the quality level of its signals will never
reach that of the signals recorded by commercial acquisition
systems. On the other hand, it has been verified that the
quality of the signals is reliable enough for the two proposed
scenarios, and therefore, good performance is expected in
other related applications.
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The design of the presented wearable system was based
on a trade-off between complexity, price, and performance:
volume, flexibility, energy consumption, onboard processing,
signal quality, etc. The final solution can record and process
real-time multimodal information with a decent quality for at
least 5 hours. However, it is not suitable for applications that
require a high signal quality or a long-term life battery, but
these requirements are not expected in most of the potential
applications related to neurorehabilitation.

V. CONCLUSION
The presented platform is low-cost, wearable, customizable
and open for implementing real-time biocooperative con-
trol. The high versatility of the system along with the high-
efficiency real-time microcontrollers will enable researchers
to translate biocooperative control strategies that rely on
physiological signals into affordable real-word solutions.
Furthermore, the quality of the recorded signals meets the
needs of two common use cases in the context of upper-limb
neuromotor rehabilitation. The accessibility of this technol-
ogy may promote research and development of biocoopera-
tive control since one of the main limitations is the high cost
of the necessary signal acquisition systems.

REFERENCES
[1] R. Riener, A. Koenig, M. Bolliger, M. Wieser, A. Duschau-Wicke, and

H. Vallery, ‘‘Bio-cooperative robotics: Controlling mechanical, physiolog-
ical and mental patient states,’’ in Proc. IEEE Int. Conf. Rehabil. Robot.,
Jun. 2009, pp. 407–412.

[2] R. Riener and M. Munih, ‘‘Guest editorial special section on rehabilitation
via bio-cooperative control,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 18, no. 4, pp. 337–338, Aug. 2010.

[3] N. Garcia-aracil, C. Perez-vidal, J. M. Sabater, and E. Papaleo, ‘‘Patient-
tailored assistance: A new concept of assistive robotic device that adapts to
individual users,’’ IEEE Robot. Automat. Mag., vol. 21, no. 3, pp. 123–133,
Sep. 2014.

[4] J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang,
‘‘An EEG/EMG/EOG-based multimodal human-machine interface
to real-time control of a soft robot hand,’’ Frontiers Neurorobot., vol. 13,
p. 7, Mar. 2019.

[5] A. Krasoulis, S. Vijayakumar, and K. Nazarpour, ‘‘Multi-grip
classification-based prosthesis control with two EMG-IMU sensors,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 2, pp. 508–518,
Feb. 2020.

[6] M. Landgraf, I. S. Yoo, J. Sessner, M. Mooser, and D. Kaufmann, ‘‘Ges-
ture recognition with sensor data fusion of two complementary sensing
methods,’’ in Proc. 7th IEEE Int. Conf. Biomed. Robot. Biomechatronics
(Biorob), Aug. 2018, pp. 795–800.

[7] A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and. Ø. Stavdahl,
‘‘Resolving the limb position effect in myoelectric pattern recognition,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 6, pp. 644–651,
Dec. 2011.

[8] G. Chen, J. Ye, Q. Liu, L. Duan, W. Li, Z. Wu, and C. Wang, ‘‘Adaptive
control strategy for gait rehabilitation robot to assist-when-needed,’’ in
Proc. IEEE Int. Conf. Real-time Comput. Robot. (RCAR), Aug. 2018,
pp. 538–543.

[9] J. C. Fraile, J. Perez-Turiel, and E. Baeyens, ‘‘E2Rebot: A robotic platform
for upper limb rehabilitation in patients with neuromotor disability,’’ Adv.
Mech. Eng., vol. 8, no. 8, pp. 1–13, 2016.

[10] T. Teramae, T. Noda, and J. Morimoto, ‘‘EMG-based model predictive
control for physical human–robot interaction: Application for assist-as-
needed control,’’ IEEE Robot. Automat. Lett., vol. 3, no. 1, pp. 210–217,
Jan. 2018.

[11] K. Gui, U.-X. Tan, H. Liu, and D. Zhang, ‘‘Electromyography-driven
progressive assist-as-needed control for lower limb exoskeleton,’’ IEEE
Trans. Med. Robot. Bionics, vol. 2, no. 1, pp. 50–58, Feb. 2020.

[12] A. Cisnal, R. Alonso, J. P. Turiel, J. C. Fraile, V. Lobo, and V. Moreno,
‘‘EMG based bio-cooperative direct force control of an exoskeleton for
hand rehabilitation: A preliminary study,’’ in Proc. ICNR BIOSYSROB,
vol. 21, 2019, pp. 390–394.

[13] F. Scotto di Luzio, D. Simonetti, F. Cordella, S. Miccinilli, S. Sterzi,
F. Draicchio, and L. Zollo, ‘‘Bio-cooperative approach for the human-in-
the-loop control of an end-effector rehabilitation robot,’’ Frontiers Neuro-
robot., vol. 12, pp. 1–12, Oct. 2018.

[14] D. Novak, M. Mihelj, J. Ziherl, A. Olensek, and M. Munih, ‘‘Psychophys-
iological measurements in a biocooperative feedback loop for upper
extremity rehabilitation,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19,
no. 4, pp. 400–410, Aug. 2011.

[15] M. Mihelj, D. Novak, and M. Munih, ‘‘Emotion-aware system for upper
extremity rehabilitation,’’ in Proc. Virtual Rehabil. Int. Conf., Jun. 2009,
pp. 160–165.

[16] C. R. Guerrero, J. C. Fraile Marinero, J. P. Turiel, and V. Muñoz, ‘‘Using
‘human state aware’ robots to enhance physical human–robot interaction
in a cooperative scenario,’’ Comput. Methods Programs Biomed., vol. 112,
no. 2, pp. 250–259, 2013.

[17] E. Gümüslü, D. Erol Barkana, and H. Köse, ‘‘Emotion recognition using
EEG and physiological data for robot-assisted rehabilitation systems,’’ in
Proc. Companion Publication Int. Conf. Multimodal Interact., Oct. 2020,
pp. 379–387.

[18] M. Khezri, M. Firoozabadi, and A. R. Sharafat, ‘‘Reliable emotion recog-
nition system based on dynamic adaptive fusion of forehead biopotentials
and physiological signals,’’Comput. Methods Programs Biomed., vol. 122,
no. 2, pp. 149–164, Nov. 2015.

[19] A. Hariharan and M. T. P. Adam, ‘‘Blended emotion detection for decision
support,’’ IEEE Trans. Human-Mach. Syst., vol. 45, no. 4, pp. 510–517,
Aug. 2015.

[20] S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, ‘‘DEAP: A database for emotion analysis;
Using physiological signals,’’ IEEE Trans. Affect. Comput., vol. 3, no. 1,
pp. 18–31, Jun. 2012.

[21] J. Kim and E. André, ‘‘Emotion recognition based on physiological
changes in music listening,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 12, pp. 2067–2083, Feb. 2008.

[22] R. L. Mandryk andM. S. Atkins, ‘‘A fuzzy physiological approach for con-
tinuously modeling emotion during interaction with play technologies,’’
Int. J. Hum.-Comput. Stud., vol. 65, no. 4, pp. 329–347, Apr. 2007.

[23] C. Liu, K. Conn, N. Sarkar, andW. Stone, ‘‘Physiology-based affect recog-
nition for computer-assisted intervention of children with autism spectrum
disorder,’’ Int. J. Human-Comput. Stud., vol. 66, no. 9, pp. 662–677,
Sep. 2008.

[24] R. W. Picard, E. Vyzas, and J. Healey, ‘‘Toward machine emotional intel-
ligence: Analysis of affective physiological state,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 10, pp. 1175–1191, Oct. 2003.

[25] J. Zhai, A. B. Barreto, C. Chin, and C. Li, ‘‘Realization of stress detection
using psychophysiological signals for improvement of human-computer
interactions,’’ in Proc. IEEE SoutheastCon, Apr. 2005, pp. 415–420.

[26] F. J. Badesa, R. Morales, N. Garcia-Aracil, J. M. Sabater, A. Casals,
and L. Zollo, ‘‘Auto-adaptive robot-aided therapy using machine learn-
ing techniques,’’ Comput. Methods Programs Biomed., vol. 116, no. 2,
pp. 123–130, Sep. 2014.

[27] D. Novak and R. Riener, ‘‘A survey of sensor fusion methods in wearable
robotics,’’ Robot. Auto. Syst., vol. 73, pp. 155–170, Nov. 2015.

[28] I. Herrera-Luna, E. J. Rechy-Ramirez, H. V. Rios-Figueroa, and A. Marin-
Hernandez, ‘‘Sensor fusion used in applications for hand rehabilitation:
A systematic review,’’ IEEE Sensors J., vol. 19, no. 10, pp. 3581–3592,
May 2019.

[29] B. Jakopin, M. Mihelj, and M. Munih, ‘‘An unobtrusive measurement
method for assessing physiological response in physical human–robot
interaction,’’ IEEE Trans. Human-Mach. Syst., vol. 47, no. 4, pp. 474–485,
Aug. 2017.

[30] O. Postolache, V. Viegas, J. M. Dias Pereira, D. Vinhas, P. S. Girao, and
G. Postolache, ‘‘Toward developing a smart wheelchair for user physio-
logical stress and physical activity monitoring,’’ in Proc. IEEE Int. Symp.
Med. Meas. Appl. (MeMeA), Jun. 2014, pp. 1–6.

[31] S. Heuer, B. Chamadiya, A. Gharbi, C. Kunze, and M. Wagner, ‘‘Unob-
trusive in-vehicle biosignal instrumentation for advanced driver assistance
and active safety,’’ inProc. IEEEEMBSConf. Biomed. Eng. Sci. (IECBES),
Nov. 2010, pp. 252–256.

35734 VOLUME 11, 2023



A. Cisnal et al.: Versatile Embedded Platform for Implementation of Biocooperative Control

[32] A. I. Faisal, S. Majumder, R. Scott, T. Mondal, D. Cowan, and M. J. Deen,
‘‘A simple, low-cost multi-sensor-based smart wearable knee monitoring
system,’’ IEEE Sensors J., vol. 21, no. 6, pp. 8253–8266, Mar. 2021.

[33] S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, and H.
Zhao, ‘‘Multi-sensor information fusion based on machine learning for
real applications in human activity recognition: State-of-the-art and
research challenges,’’ Inf. Fusion, vol. 80, pp. 241–265, Apr. 2022, doi:
10.1016/j.inffus.2021.11.006.

[34] A. Cisnal, J. Perez-Turiel, J.-C. Fraile, D. Sierra, and E. de la Fuente, ‘‘Rob-
Hand: A hand exoskeleton with real-time EMG-driven embedded Control.
Quantifying hand gesture recognition delays for bilateral rehabilitation,’’
IEEE Access, vol. 9, pp. 137809–137823, 2021.

[35] Open Source Sensor Fusion. Accessed: Jul. 20, 2022. [Online]. Available:
https://github.
com/memsindustrygroup/Open-Source-Sensor-Fusion

[36] A. Cisnal, V. Martínez-Cagigal, G. Alonso-Linaje, S. Moreno-Calderón,
J. Pérez-Turiel, R. Hornero, and J. C. Fraile, ‘‘An overview of M3Rob,
a robotic platform for neuromotor and cognitive rehabilitation using aug-
mented reality,’’ in Proc. XL Congreso Annual de la Sociedad Española de
Ingeniería Biomédica, Nov. 2022, pp. 180–183.

[37] D. Novak, J. Ziherl, A. Olensek, M. Milavec, J. Podobnik, M. Mihelj,
and M. Munih, ‘‘Psychophysiological responses to robotic rehabilitation
tasks in stroke,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 4,
pp. 351–361, Aug. 2010.

[38] C. D. R. Guerrero, J. C. F. Marinero, and J. P. Turiel, ‘‘Robot adaptive
behavior to suit patient needs and enable more intensive rehabilitation
tasks,’’ in Proc. IEEE Int. Conf. Mechatronics, Apr. 2009, pp. 1–6.

[39] J. Pan and W. J. Tompkins, ‘‘A real-time QRS detection algorithm,’’ IEEE
Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230–236, Mar. 1985.

[40] J. E. Muñoz, E. R. Gouveia, M. S. Cameir?o, and S. B. I. Badia,
‘‘PhysioLab—A multivariate physiological computing toolbox for ECG,
EMG and EDA signals: A case of study of cardiorespiratory fitness assess-
ment in the elderly population,’’ Multimedia Tools Appl., vol. 77, no. 9,
pp. 11511–11546, 2018.

[41] S. Benatti, F. Casamassima, and B. Milosevic, ‘‘A versatile embedded plat-
form for EMG acquisition and gesture recognition,’’ IEEE Trans. Biomed.
Circuits Syst., vol. 9, no. 5, pp. 620–630, Oct. 2015.

[42] S. Örücü and M. Selek, ‘‘Design and validation of multichannel wireless
wearable SEMG system for real-time training performance monitoring,’’
J. Healthcare Eng., vol. 2019, pp. 1–15, Sep. 2019.

[43] D. Brunelli, E. Farella, D. Giovanelli, B. Milosevic, and I. Minakov,
‘‘Design considerations for wireless acquisition of multichannel sEMG
signals in prosthetic hand control,’’ IEEE Sensors J., vol. 16, no. 23,
pp. 8338–8347, Dec. 2016.

[44] C. Athavipach, S. Pan-Ngum, and P. Israsena, ‘‘A wearable in-ear EEG
device for emotion monitoring,’’ Sensors, vol. 19, no. 18, p. 4014,
Sep. 2019, doi: 10.3390/s19184014.

[45] A. Nguyen, R. Alqurashi, Z. Raghebi, F. Banaei-Kashani,
A. C. Halbower, and T. Vu, ‘‘LIBS: A lightweight and inexpensive
in-ear sensing system for automatic whole-night sleep stage monitoring,’’
GetMobile: Mobile Comput. Commun., vol. 21, no. 3, pp. 31–34,
Nov. 2017, doi: 10.1145/3161587.3161596.

[46] G. Marta, F. Simona, C. Andrea, and B. Dario, ‘‘Wearable biofeedback
suit to promote and monitor aquatic exercises: A feasibility study,’’ IEEE
Trans. Instrum. Meas., vol. 69, no. 4, pp. 1219–1231, Apr. 2020, doi:
10.1109/TIM.2019.2911756.

[47] B. Villar, A. C. de la Rica, M. Vargas, J. Turiel, and J. Marinero, ‘‘A low
cost IoT enabled device for the monitoring, recording and communication
of physiological signals,’’ in Proc. 14th Int. Joint Conf. Biomed. Eng. Syst.
Technol., vol. 1, 2021, pp. 135–143.

[48] Y. D’Mello, J. Skoric, S. Xu, P. J. R. Roche, M. Lortie, and D. V. Plant,
‘‘Real-time cardiac beat detection and heart rate monitoring from com-
bined seismocardiography and gyrocardiography,’’ Sensors, vol. 19, no. 16,
p. 3472, Aug. 2019.

[49] J. Huan, J. S. Bernstein, P. Difuntorum, N. V. R. Masna, N. Gravenstein,
S. Bhunia, and S. Mandal, ‘‘A wearable skin temperature monitoring
system for early detection of infections,’’ IEEE Sensors J., vol. 22, no. 2,
pp. 1670–1679, Jan. 2022.

[50] K. Kadir, Z. M. Yusof, M. Z. M. Rasin, M. M. Billah, and Q. Salikin,
‘‘Wireless IMU: A wearable smart sensor for disability rehabilitation
training,’’ in Proc. 2nd Int. Conf. Smart Sensors Appl. (ICSSA), Jul. 2018,
pp. 53–57.

[51] Z.-X. Yin and H.-M. Xu, ‘‘A wearable rehabilitation game controller using
IMU sensor,’’ in Proc. IEEE Int. Conf. Appl. Syst. Invention (ICASI),
Apr. 2018, pp. 1060–1062.

[52] A. Romano, M. Favetta, S. Summa, T. Schirinzi, E. S. Bertini, E. Castelli,
G. Vasco, and M. Petrarca, ‘‘Upper body physical rehabilitation for chil-
dren with ataxia through IMU-based exergame,’’ J. Clin. Med., vol. 11,
no. 4, p. 1065, Feb. 2022.

[53] M. Lapresa, C. Tamantini, F. Scotto di Luzio, F. Cordella, M. Bravi,
S. Miccinilli, and L. Zollo, ‘‘A smart solution for proprioceptive rehabili-
tation through M-IMU sensors,’’ in Proc. IEEE Int. Workshop Metrology
for Ind. 4.0 & IoT, Jun. 2020, pp. 591–595.

[54] C.-J. Chen, Y.-T. Lin, C.-C. Lin, Y.-C. Chen, Y.-J. Lee, and C.-Y. Wang,
‘‘Rehabilitation system for limbs using IMUs,’’ in Proc. 21st Int. Symp.
Quality Electron. Design (ISQED), Mar. 2020, pp. 285–291.

[55] M. Kim, J. Cho, S. Lee, and Y. Jung, ‘‘IMU sensor-based hand ges-
ture recognition for human-machine interfaces,’’ Sensors, vol. 19, no. 18,
p. 3827, 2019.

[56] J. W. Seo and H. S. Kim, ‘‘Biomechanical analysis in five bar link-
age prototype machine of gait training and rehabilitation by IMU
sensor and electromyography,’’ Sensors, vol. 21, no. 5, p. 1726,
2021.

[57] M. Mundt, A. Koeppe, S. David, T. Witter, F. Bamer, W. Potthast, and
B. Markert, ‘‘Estimation of gait mechanics based on simulated and mea-
sured IMU data using an artificial neural network,’’ Frontiers Bioeng.
Biotechnol., vol. 8, pp. 1–16, Feb. 2020.

[58] H. Lim, B. Kim, and S. Park, ‘‘Prediction of lower limb kinetics
and kinematics during walking by a single IMU on the lower
back using machine learning,’’ Sensors, vol. 20, no. 1, p. 130,
Dec. 2019.

[59] D. Stanev, D. Tsaopoulos, and K. Moustakas, ‘‘Real-time musculoskeletal
kinematics and dynamics analysis using marker-and IMU-based solutions
in rehabilitation,’’ Sensors, vol. 21, no. 5, p. 1804, 2021.

[60] A. Talitckii, E. Kovalenko, A. Shcherbak, and A. Anikina, ‘‘Comparative
study of wearable sensors, video, and handwriting to detect parkinson’s
disease,’’ IEEE Trans. Instrum. Meas., vol. 71, 2022, Art. no. 2509910,
doi: 10.1109/TIM.2022.3176898.

[61] K. Little, C.W. Antuvan,M. Xiloyannis, B. A. P. S. de Noronha, Y. G. Kim,
L.Masia, andD. Accoto, ‘‘IMU-based assistancemodulation in upper limb
soft wearable exosuits,’’ in Proc. IEEE 16th Int. Conf. Rehabil. Robot.
(ICORR), Jun. 2019, pp. 1197–1202.

[62] D. A. Bennett and M. Goldfarb, ‘‘IMU-based wrist rotation control of
a transradial myoelectric prosthesis,’’ IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 26, no. 2, pp. 419–427, Feb. 2018.

[63] S. Yu, T. H. Huang, D. Wang, B. Lynn, D. Sayd, V. Silivanov,
Y. S. Park, Y. Tian, and H. Su, ‘‘Design and control of a quasi-direct
drive soft exoskeleton for knee injury prevention during squatting,’’
IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4579–4586, 2019, doi:
10.1109/LRA.2019.2931427.

[64] C. Shi, L. Qi, D. Yang, J. Zhao, and H. Liu, ‘‘A novel method of combin-
ing computer vision, eye-tracking, EMG, and IMU to control dexterous
prosthetic hand,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO),
Dec. 2019, pp. 2614–2618.

[65] N. Lotti, M. Xiloyannis, F. Missiroli, C. Bokranz, D. Chiaradia, A. Frisoli,
R. Riener, and L. Masia, ‘‘Myoelectric or force control? A compara-
tive study on a soft arm exosuit,’’ IEEE Trans. Robot., vol. 38, no. 3,
pp. 1363–1379, Jun. 2022.

[66] F. Missiroli, N. Lotti, M. Xiloyannis, L. H. Sloot, R. Riener, and L. Masia,
‘‘Relationship between muscular activity and assistance magnitude for a
myoelectric model based controlled exosuit,’’ Frontiers Robot. AI, vol. 7,
pp. 1–13, Dec. 2020.

[67] S. Yao, Y. Zhuang, Z. Li, and R. Song, ‘‘Adaptive admittance control
for an ankle exoskeleton using an EMG-driven musculoskeletal model,’’
Frontiers Neurorobot., vol. 12, p. 16, Apr. 2018.

[68] A. Cisnal, V. Moreno-SanJuan, D. Sierra, J. P. Turiel, and J. C. Fraile, ‘‘An
embedded implementation of EMG-driven control for assisted bilateral
therapy,’’ inConverging Clinical and Engineering Research on Neuroreha-
bilitation IV. ICNR 2020 (Biosystems&Biorobotics), vol. 28, D. Torricelli,
M. Akay, and J. L. Pons, Eds. Cham, Switzerland: Springer, 2020, doi:
10.1007/978-3-030-70316-5_130.

[69] H. Xu and A. Xiong, ‘‘Advances and disturbances in sEMG-based inten-
tions and movements recognition: A review,’’ IEEE Sensors J., vol. 21,
no. 12, pp. 13019–13028, Mar. 2021.

[70] C. Rodriguez Guerrero, J. Fraile Marinero, J. Perez Turiel, and P. Rivera
Farina, ‘‘Bio cooperative robotic platform for motor function recovery of
the upper limb after stroke,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol., Aug. 2010, pp. 4472–4475.

VOLUME 11, 2023 35735

http://dx.doi.org/10.1016/j.inffus.2021.11.006
http://dx.doi.org/10.3390/s19184014
http://dx.doi.org/10.1145/3161587.3161596
http://dx.doi.org/10.1109/TIM.2019.2911756
http://dx.doi.org/10.1109/TIM.2022.3176898
http://dx.doi.org/10.1109/LRA.2019.2931427
http://dx.doi.org/10.1007/978-3-030-70316-5_130


A. Cisnal et al.: Versatile Embedded Platform for Implementation of Biocooperative Control

ANA CISNAL (Graduate Student Member, IEEE)
received the B.S. degree in industrial electronics
and automation engineering and the M.S. degree
in industrial engineering from the University of
Valladolid, Spain, in 2017 and 2019, respectively,
where she is currently pursuing the Ph.D. degree
in industrial engineering.

In 2016, she participated in quality internships
with the Technology Center CARTIF, Valladolid,
Spain, and Fraunhofer IBMT, Sankt Ingbert,

Germany. Since 2017, she has been with the Advanced Production Tech-
nologies Institute (ITAP), University of Valladolid, as a Research Fellowship
and a Contract Researcher. Her research interest includes the development
of control strategies for biocooperative controls for robotic neuromotor
rehabilitation platforms.

DANIEL ANTOLÍNEZ received the B.S. degree
in industrial electronics and automation engineer-
ing from the University of Valladolid, Valladolid,
Spain, in 2021, where he is currently pursuing
the M.S. degree in research of information and
communications technologies (ICT).

In 2019, he had an internship with the Technol-
ogy Center CARTIF. Since 2021, he has been with
the Institute of Advanced Production Technologies
(ITAP), University of Valladolid, as a Research

Fellow. His current research interest includes the electronic design of printed
circuit boards, focused mainly on biomedical applications.

JAVIER P. TURIEL received the Ph.D. degree in
control engineering from the University of Val-
ladolid, Spain, in 1994.

In 1999, he was a Visiting Professor with
the Electrical Engineering and Computer Sci-
ence Department (EECS), University of Michi-
gan, USA. He was the Head of the Biomedical
Engineering Division, Technology Center CAR-
TIF, from 2000 to 2014. He is currently an Asso-
ciate Professor with the Department of Systems

Engineering, University of Valladolid. He is also a member of the Medical
Robotics Group, Institute of Advanced Production Technologies (ITAP). His
research interests include surgical and rehabilitation robots.

JUAN CARLOS FRAILE received the Ph.D.
degree in control engineering from the Faculty
of engineering, University of Valladolid, Spain,
in 1987. Since 1992, he has been an Associate
Professor of control and robotics with the Faculty
of Engineering, University of Valladolid. In 1998,
he held a visiting professor position with the Insti-
tute of Complex Engineering Systems (ICES),
Carnegie Mellon University, Pittsburgh, USA.
He is currently a Leader of the ITAP-Medical

Robotics Group, University of Valladolid. His current research interests
include rehabilitation robotics and robots for surgery.

EUSEBIO DE LA FUENTE received the M.Sc.
degree in electronic engineering and automatic
control and the Ph.D. degree from theUniversity of
Valladolid, Spain, in 1991 and 1997, respectively.

Since 1999, he has been an Associate Profes-
sor of computer science with a specialization in
computer vision with the Industrial Engineering
School, Valladolid, Spain. His current research
interests include the field of medical image pro-
cessing and real-time video analysis for rehabil-

itation and surgical robot applications. He is especially interested in deep
learning techniques for object detection in medical images and classification.

35736 VOLUME 11, 2023


