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Abstract

In this work we analyze an inventory model for items whose demand is a bivariate function of price

and time. It is supposed that the demand rate multiplicatively combines the e¤ects of a time-power

function and a price-logit function. The aim is to maximize the pro�t per time unit, assuming that the

inventory cost per time unit is the sum of the holding, shortage, ordering and purchasing costs. An

algorithm is developed to �nd the optimal price, the optimal lot size and the optimal replenishment

cycle. Several numerical examples are introduced to illustrate the solution procedure.

Keywords: Inventory; Price and time-dependent demand; Backlogged demand; Pro�t optimization

1 Introduction

In the twenty-�rst century, with the globalization of the markets, there has been a considerable increase in

trade throughout the world. Firms produce, maintain and distribute goods on all continents. Customers

demand products that must be supplied quickly and e¢ ciently. The coordination of the production,

maintenance and distribution of the products to meet customer demand and not lose market share
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with respect to other �rms, requires an adequate planning and administration of the inventories. Thus,

Inventory Management has become a vital activity for companies to successfully compete in business.

Stock management models help to determine the optimal inventory policies that must be implemented

to minimize the inherent costs associated with the maintenance and management of products. Some of

the most common assumptions in the study of economic order quantity (EOQ) inventory models are

to consider a constant demand rate (independent of time and the unit selling price) and to allow no

shortages. However, in many real situations, the demand rate is not constant and may be dependent

on time and/or the selling price. Stockouts may also occur and this must be permitted in the inventory

model.

When demand is dependent on time, there are di¤erent ways by which products are withdrawn from

stock during the inventory cycle. These shapes are de�ned as demand patterns. A demand pattern is

known as a power pattern if the demand rate depends potentially on the quotient between time and the

length of the inventory cycle. Some Inventory systems with a power demand pattern were developed by

Naddor (1966). Later, Goel and Aggarwal (1981) and Datta and Pal (1988) studied inventory models

with a power demand pattern for deteriorating items. Lee and Wu (2002); Dye (2004); Singh, Singh and

Dutt (2009); Rajeswari and Vanjikkodi (2011) and Mishra and Singh (2013) developed inventory models

for deteriorating items with a power demand pattern while also allowing shortages.

In all the above works, the length of the inventory cycle is always known and �xed. However, Sicilia,

Febles-Acosta and Gonzalez-De la Rosa (2012) analyzed some inventory systems with power demand in

which the length of the inventory cycle was not constant but a decision variable. They determined the

optimal inventory policy for the system with backlogged shortages and for the system with lost sales.

Chen and Simchi-Levi (2012) described several price-dependent demand functions which may be used

in the study of inventory systems. An interesting review of demand functions in decision modeling is

published by Huang, Leng and Parlar (2013). They presented and commented several price-dependent

demand functions that have appeared in the literature.

There are several papers on inventory models where demand is a price-dependent function. Thus,

Smith, Martinez-Flores and Cardenas-Barron (2007) analyzed an EOQ inventory system with selling

price-dependent demand rate. They developed the optimal policy for three speci�c demand functions.

Kocab¬y¬ko¼glu and Popescu (2011) studied the newsvendor problem with price-sensitive demand. Soni
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(2013) analyzed an inventory model where the demand rate was additive with respect to the stock level

and the unit selling price. Wu, Skouri, Teng and Ouyang (2014) corrected some de�ciencies of Soni�s

model.

Some researchers have analyzed inventory systems where demand depends on time and price. The

demand rate is usually a separable function of time and unit selling price. Thus, Avinadav, Herbon

and Spiegel (2014) studied two inventory models with price and time-dependent demand, but without

shortages (one with multiplicative in�uence of price and time, and the other with additive e¤ect).

In this paper, we assume that shortages are allowed and completely backlogged. This assumption is

also considered in other papers on inventory systems. Thus, San-Jose and Garcia-Laguna (2009) presented

a composite lot size model with discounts in all units (constant demand) assuming full backlogging. Birbil,

Bulbul, Frenk and Mulder (2015) studied EOQ models with constant demand and purchase-price and

transportation cost functions, considering backlogged shortages. Jaksic and Fransoo (2015) developed a

dynamic programming model for a �nite horizon stochastic capacitated inventory system where shortages

are fully backlogged. Mishra, Gupta, Yadav and Rawat (2015) presented an EOQ inventory model with

full backlogging and deterioration in a fuzzy environment.

Economic order quantity replenishment models focus considerable attention in Inventory Control

nowadays. Thus, some recent papers on this topic are the following: Muriana (2016), Bakal, Bay¬nd¬r

and Emer (2017), Demirag, Kumar and Rao (2017), Dobson, Pinker and Yildiz (2017), Herbon and

Khmelnitsky (2017), and San-José, Sicilia, González-De-la-Rosa and Febles-Acosta (2017).

To the best of the authors�knowledge, there is no published model developing the optimal policy for

an inventory system with full backlogging, where the inventory cycle is a decision variable and demand

multiplicatively combines the e¤ects of selling price and a power demand pattern, assuming that the

demand rate is the product of a price-logit function and a power-time function.

The remainder of the paper is organized as follows. Section 2 presents the notation and the assump-

tions related to the inventory system here studied. In the next section, the development of the inventory

model and the formulation of the optimization problem is shown. Then, we prove several results that

derive to an algorithmic approach to optimally solve the inventory problem. Several numerical examples

are discussed to illustrate the procedure for solving the inventory problem. Next, a sensitivity analysis

on some input parameters associated with the demand rate of the inventory model is presented. Finally,
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the conclusions of the work are presented and future research areas are suggested.

2 Assumptions and notation

The notations used in this work are shown in Table 1.

Table 1. List of notations

�1 Time period where the net stock is positive (� 0).
�2 Time period where the net stock is less than or equal to zero (� 0).
T Length of the inventory cycle, that is, T = �1 + �2 (> 0; decision variable).

M Maximum level of the stock (� 0, decision variable).
b Maximum backlogged quantity per cycle (� 0).
Q Lot size per cycle, that is Q =M + b (> 0).

p Unit purchasing cost (> 0).

s Unit selling price (s � p; decision variable).
K Ordering cost per replenishment (> 0).

h Holding cost per unit and per unit time (> 0).

! Shortage cost per backordered unit and per unit time (> 0).

D(s; t) Demand rate at time t when the selling price is s, with 0 < t < T .

I(s; t) Inventory level at time t when the selling price is s, with 0 � t < T .
n Demand pattern index (> 0).

B(s;M; T ) Total pro�t per unit time.

In this work, an economic order quantity model is developed under the following assumptions:

1. The inventory system considers a single product.

2. The planning horizon is in�nite and the replenishment is instantaneous.

3. The lead time is zero or negligible.

4. The demand rate D(s; t) is a bivariate function of price and time. We suppose that D(s; t) =

d1(s)d2(t), where d1(s) is a known logit-funtion of price and d2(t) is a power time-dependent func-

tion. That is, the demand rate multiplicatively combines the e¤ects of selling price and a power

demand pattern.

5. The order cost is �xed regardless of the lot size.

6. The holding cost per unit is a linear function of time in storage.

7. The system allows shortages, which are completely backlogged.
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8. There is single procurement of size Q units to the start of inventory cycle and is equal to the total

demand throughout the inventory cycle.

3 Model development

In this work, a continuous review inventory system over an in�nite-horizon with deterministic demand is

analyzed. It is assumed that shortages are completely backlogged.

At the beginning of the inventory cycle there are M units in the stock. That amount meets demand

during the time period (0; �1]: Thus, we have

M =

Z �1

0

D(s; u)du:

Next, the inventory falls into shortage because there is not enough stock to meet demand. During the

time period (�1; T ), shortages are accumulated and fully backlogged. Thus, from t = 0 to T time units,

the inventory level decreases due to demand. So, the net stock level I(s; t) is a T�periodic function

de�ned on the interval [0;1). The net stock level at time t is given by

I(s; t) =M �
Z t

0

D(s; u)du =

Z �1

t

D(s; u)du = d1(s)

Z �1

t

d2(u)du:

We suppose that d1(s) is the logit function given by

d1(s) =
�e��s

1 + e��s
, with � > 0 and � > 0.

The parameter � represents the market size and the parameter � is a coe¢ cient of the price sensitivity.

The function d2(t) is a power time-dependent function given by

d2(t) =
1
n

�
t

T

�(1�n)=n
, with n > 0.

A justi�cation of the practical utility of these functions d1(s) and d2(t) to describe the demand for

certain products can be seen, respectively, in Sudhir (2001) and San-José, Sicilia, González-De-la-Rosa

and Febles-Acosta (2017).

Therefore, the net stock level at time t is

I(s; t) =
�e��s

1 + e��s
T

"��1
T

�1=n
�
�
t

T

�1=n#
=M � �e��s

1 + e��s
T

�
t

T

�1=n
. (1)

Thus, the maximum positive stock level is

M =
�e��s

1 + e��s
T
��1
T

�1=n
.
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The totally backordered shortage amount during the inventory cycle is given by

b =

Z T

�1

D(s; u)du =
�e��s

1 + e��s
T �M .

The lot size Q is

Q =M + b =
�e��s

1 + e��s
T .

For a �xed value of s, Figures 1 to 3 illustrate the behavior of the inventory system for di¤erent demand

pattern indexes.

Taking into account the above assumptions, the total pro�t per cycle of the inventory system is

obtained as the di¤erence between the revenue per cycle and the sum of the ordering cost, the purchasing

cost, the inventory holding cost and the backordering cost per cycle. Thus, the revenue per cycle is sQ,

the ordering cost is K, the purchasing cost is pQ, the holding cost is

h

Z �1

0

I(s; t)dt =
�h

(n+ 1) (1 + e�s)
T 2
��1
T

�1+1=n
=

h

n+ 1
TM

 �
1 + e�s

�
M

�T

!n
and the backordering cost is given by

!

Z T

�1

[�I(s; t)] dt = !
"

�n

(n+ 1) (1 + e�s)
T 2 �MT + 1

n+ 1
TM

 �
1 + e�s

�
M

�T

!n#
:

Consequently, the total pro�t per unit time is

B(s;M; T ) =
1

T

"
(s� p)Q�K � h

Z �1

0

I(s; t)dt+ !

Z T

�1

I(s; t)dt

#
(2)

= (s� p) �

1 + e�s
� K
T
� h+ !
n+ 1

M

 �
1 + e�s

�
M

�T

!n
� �!n

(n+ 1) (1 + e�s)
T + !M (3)

Thus, the optimization problem addressed in this work is given by

max
(s;M;T )2


B(s;M; T ), (4)

where 
 =
�
(s;M; T ) : T > 0; 0 < M � �T=

�
1 + e�s

�
and p � s

	
.

Fig. 1. Net stock level when n > 1
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Fig. 2. Net stock level when n < 1

Fig. 3. Net stock level when n = 1

4 Analysis and solution of the problem

For a �xed value of s, the bivariate function Bs(M;T ) = B(s;M; T ) is strictly concave and attains its

maximum value at the point (M�(s); T �(s)), solving the simultaneous equations @
@MBs(M;T ) = 0 and

@
@TBs(M;T ) = 0 (see Lemmas 1 and 2 in the Appendix). That is, the maximum point is given by

T �(s) =

vuuut (n+ 1)K (1 + e�s)

n�!

�
1�

�
!

h+!

�1=n� (5)

M�(s) =
�

1 + e�s

�
!

h+ !

�1=n
T �(s) =

�

(1 + e�s)

�
!

h+ !

�1=nvuuut (n+ 1)K (1 + e�s)

n�!

�
1�

�
!

h+!

�1=n� (6)

Hence, for a �xed selling price s, Eq. (5) provides the optimal inventory cycle and Eq. (6) gives the

optimal inventory level at the beginning of the inventory cycle.
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By evaluating the function Bs(M;T ) at the point (M�(s); T �(s)), we �nd the univariate function

P (s) = Bs(M
�(s); T �(s)) = (s� p) �

1 + e�s
� 2�

r
�

1 + e�s
, (7)

where, for simplicity, the parameter � is

� =

r
1 + e�s

�

K

T �(s)
=

vuut n

n+ 1
K!

 
1�

�
!

h+ !

�1=n!
: (8)

Thus, we have reduced the three-variable optimization problem (4) to the single optimization problem

max
s�p

P (s). (9)

Next, we shall show some interesting properties of the function P (s):

Proposition 1 Let P (s) be given by (7). Then:

1. We have P (p) < 0 and lims!1 P (s) = 0.

2. The function P (s) is continuously di¤erentiable on the interval (p;1) and sign(P 0(s)) =sign(f(s)),

where f(s) is a strictly convex function de�ned on the set R of real numbers and is given by

f(s) = 1 + e��s � �(s� p) + ��
r
1 + e�s

�
. (10)

3. The function P (s) is strictly increasing on the interval (p;1) in the cases: (i) f(so) � 0 and (ii)

p � so, where
so = args2R ff 0(s) = 0g . (11)

4. If p � so and f(so) < 0; then the function P (s) has a local maximum at the point

s1 = args2(p;so)ff(s)g: (12)

Proof. Please, see Appendix.

Figure 1 depicts the three possible behaviors of the function P (s).

Figure 1. Graphs of the function P (s)
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We can now provide a criterion for determining the optimal selling price s�, which is an important

consequence of the above proposition.

Theorem 2 Let P (s), f(s), so and s1 be given, respectively, by (7), (10), (11) and (12)

1. If p � so, then s� =1 and B� = P (s�) = 0.

2. If p < so and f(so) � 0, then s� =1 and B� = P (s�) = 0.

3. If p < so and f(so) < 0, then:

(a) s� =1 and B� = 0, when P (s1) < 0.

(b) s� = s1 and B� = P (s1), otherwise.

Proof. Please, see Appendix.

Remark 1 Note that the inventory system is pro�table only in the case (3.b) of the previous theorem.

Next, we formulate some of the conditions of the above theorem as a function of the input parameters

of the inventory system.

Proposition 3 Let �, so and s1 be given, respectively, by (8), (11) and (12).

1. The case (2) of Theorem 2 is satis�ed if

so �
2 + 3e�so

2
p
� (1 + e�so)

� � p

2. The case (3.a) of Theorem 2 is satis�ed if

s1 �
1

�
ln

 
�+

p
�2 + 4��2�2

2�2�2

!

Proof. Please, see Appendix.

As a consequence of the previous results, we provide a procedure to solve the problem analyzed in

this paper. The following algorithm develops the optimal inventory policy.

Algorithm 1 Step 1 Calculate so = args2R ff 0(s) = 0g.

Step 2 If so � p, then go to Step 7. Otherwise, go to Step 3.

Step 3 If so � 2+3e�so

2
p
�(1+e�so )

� � p, then go to Step 7. Otherwise, go to Step 4.

Step 4 Calculate s1 = args2[p;so]ff(s)g.
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Step 5 If s1 � 1
� ln

�
�+
p
�2+4��2�2

2�2�2

�
, then go to Step 7. Otherwise, go to Step 6.

Step 6 Take s� = s1:

From (5), calculate T � = T �(s1).

From (6), calculate M� =M�(s1).

From (7), calculate B� = P (s1). Stop.

Step 7 Consider s� =1. Put B� = 0, M� = 0 and T � =1. Stop.

5 Numerical examples

In this section, we present several numerical examples to show how the algorithm proposed in the previous

section can be applied to obtain the optimal inventory policy.

Example 1 Let us consider the inventory system with the following parameters: p = 8, K = 500,

h = 2, ! = 3:2, � = 2500, � = 0:2 and n = 2:5. We have � = 14:2030 and so = 35:6236. As so � p

and so � (2 + 3e�s1)�=
�
2
p
� (1 + e�s1)

�
= 20:6035 > p, we calculate s1 = 14:5202. Taking into account

that ln
h�
�+

p
�2 + 4��2�2

�
=
�
2�2�2

�i
=� = 28:6961 > s1, we conclude that s� = s1. From (5), we

obtain the optimal inventory cycle T � = T �(s1) = 3:08895 and, from (6), the maximum level of the stock

is M� = 330:390. Consequently, the maximum pro�t per unit time is B� = 523:144 and the economic

order quantity is Q� = 401:207.

Example 2 Suppose the same parameters as in Example 1, but change the value of � to � = 0:4. Now

so = 14:3640 > p and so � (2 + 3e�so)�=
�
2
p
� (1 + e�so)

�
= 6:82397 < p. Therefore, we fall into the

case described by step 3 of Algorithm 1. Therefore, the inventory system is non-pro�table for any unit

selling price.

Example 3 Assume the same parameters as in Example 2, but modify the value of � to � = 5000.

We have so = 16:0849, so � (2 + 3e�so)�=
�
2
p
� (1 + e�so)

�
= 8:56486 > p and s1 = 13:5167 >

ln
h�
�+

p
�2 + 4��2�2

�
=
�
2�2�2

�i
=� = 12:6232. So, we fall into the case described by step 5 of Algo-

rithm 1. As in the previous example, the inventory system is always non-pro�table.

Example 4 Now, we consider the same parameters as in Example 2, but change the values of �, p and

n to � = 1250, p = 12 and n = 0:5, respectively. We obtain � = 18:2033 and so = 11:4431 < p. Thus, we

fall into the case described by step 2 of Algorithm 1. Consequently, we obtain the same conclusion as in
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Example 2.

5.1 Sensitivity analysis

Let us suppose the following input data of the inventory system: p = 8, K = 500, h = 2 and ! = 3:2.

To study the impact of the parameters associated with the demand rate �, � and n, we provide four ta-

bles that show the behavior of s�, T �,M� and B�as functions of �, � and n. Tables 2 to 5 display computa-

tional results when � 2 f1875; 2500; 3125; 3750; 4375; 5000g, � 2 f0:05; 0:08; 0:12; 0:16; 0:2; 0:24; 0:28; 0:32g

and n 2 f0:25; 0:5; 1; 2:5g. These tables provide certain insights into the model studied. Some issues are

the following:

1. Fixed � and n, if the value of � is increasing, then there is a point, say e�, such that s�(�) is �nite
for all � � e� and s�(�) = 1 if � > e� and, moreover, P (s�(e�)) = 0. For example, if � = 1875

and n = 2:5, then e� = 0:31563877. When � � e�, the maximum level of the stock M� and the

maximum pro�t B� are strictly decreasing as � increases, while the optimal inventory cycle T � is

strictly increasing. However, the optimal selling price s� begins by decreasing and then increases

as the parameter � increases.

2. Fixed � and n, if the value of � is decreasing, then there is a point, say e�, such that s�(�) is �nite for
all � � e� and s�(�) =1 if � < e� and, moreover, P (s�(e�)) = 0. When � � e�, the optimal selling
price s� and the optimal inventory cycle T � are strictly increasing as the parameter � decreases,

while the maximum level of the stock M� and the maximum pro�t B� are strictly decreasing.

3. Fixed � and �, the maximum stock level M� increases as the demand pattern index n increases.

The optimal inventory cycle T � and the optimal pro�t B� start decreasing and then increase, while

the optimal selling price s� begins by growing and then decreases.

4. As conclusions, we have:

(i) In general, the optimal policy and the maximum pro�t are more sensitive to changes in the pa-

rameter � than to changes in the parameter �. Moreover, the sensitivities of these parameters

are greater when the value n is small.

(ii) The optimal pro�t B� is not very sensitive to changes in the pattern demand index n. The

same occurs with the optimal inventory policy.
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Table 2. E¤ects of � and � on optimal policy when n = 0:25

� � = 0:05 � = 0:08 � = 0:12 � = 0:16 � = 0:2 � = 0:24 � = 0:28 � = 0:32

1875 s� 32:8240 23:4626 18:4616 16:1655 15:0053 14:5087 14:6136 1

T � 1:73120 1:91434 2:22363 2:63584 3:20419 4:03839 5:44044 1

M� 75:5541 68:3260 58:8223 49:6234 40:8212 32:3889 24:0420 0

B� 6976:70 3325:87 1479:99 692:543 310:217 116:371 19:9850 0

2500 s� 32:7160 23:3373 18:3066 15:9688 14:7461 14:1442 14:0234 1

T � 1:49588 1:65068 1:90965 2:24957 2:70733 3:35226 4:34431 1

M� 87:4398 79:2395 68:4938 58:1440 48:3130 39:0182 30:1082 0

B� 9405:57 4528:01 2054:00 991:663 470:072 200:362 60:9003 0

3125 s� 32:6426 23:2525 18:2024 15:8382 14:5773 13:9150 13:6815 13:9267

T � 1:33590 1:47209 1:69847 1:99268 2:38301 2:91967 3:70761 5:04449

M� 97:9109 88:8528 77:0099 65:6397 54:8883 44:7993 35:2785 25:9291

B� 11845:3 5740:08 2636:80 1298:53 636:730 290:352 107:240 14:1856

3750 s� 32:5886 23:1903 18:1264 15:7437 14:4565 13:7544 13:4522 13:5414

T � 1:21813 1:34094 1:54415 1:80636 2:15061 2:61617 3:27995 4:33287

M� 107:377 97:5431 84:7064 72:4102 60:8195 49:9964 39:8784 30:1877

B� 14292:6 6959:19 3225:84 1610:89 808:204 384:571 157:342 38:4116

4375 s� 32:5468 23:1422 18:0678 15:6712 14:3648 13:6342 13:2851 13:2798

T � 1:12678 1:23940 1:42510 1:66342 1:97385 2:38865 2:96806 3:84921

M� 116:082 105:534 91:7826 78:6327 66:2659 54:7586 44:0689 33:9807

B� 16745:8 8183:65 3819:62 1927:41 983:322 481:978 210:257 65:2128

5000 s� 32:5131 23:1036 18:0209 15:6134 14:2921 13:5399 13:1567 13:0873

T � 1:05327 1:15781 1:32969 1:54935 1:83372 2:21018 2:72809 3:49298

M� 124:184 112:971 98:3678 84:4220 71:3300 59:1804 47:9453 37:4462

B� 19203:6 9412:34 4417:14 2247:22 1161:32 581:903 265:384 94:0026
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Table 3. E¤ects of � and � on optimal policy when n = 0:5

� � = 0:05 � = 0:08 � = 0:12 � = 0:16 � = 0:2 � = 0:24 � = 0:28 � = 0:32

1875 s� 32:9046 23:5564 18:5787 16:3160 15:2078 14:8059 15:1570 1

T � 1:57721 1:74680 2:03529 2:42434 2:97109 3:80244 5:33309 1

M� 181:151 163:564 140:380 117:852 96:1647 75:1397 53:5738 0

B� 6919:29 3273:98 1435:39 655:009 279:464 92:1512 2:34286 0

2500 s� 32:7854 23:4177 18:4059 16:0946 14:9111 14:3743 14:3881 1

T � 1:36250 1:50551 1:74621 2:06522 2:50129 3:13154 4:15428 1

M� 209:699 189:779 163:620 138:345 114:227 91:2375 68:7759 0

B� 9339:12 4467:82 2002:04 947:643 433:610 171:073 38:5520 0

3125 s� 32:7044 23:3239 18:2901 15:9481 14:7192 14:1072 13:9670 1

T � 1:21659 1:34220 1:55211 1:82721 2:19677 2:71536 3:50678 1

M� 234:848 212:870 184:081 156:367 130:061 105:221 81:4748 0

B� 11770:8 5672:58 2578:36 1248:80 595:260 256:651 80:9174 0

3750 s� 32:6449 23:2552 18:2057 15:8423 14:5825 13:9219 13:6916 13:9446

T � 1:10921 1:22234 1:41044 1:65496 1:97951 2:42607 3:08259 4:20012

M� 257:583 233:743 202:571 172:641 144:336 117:768 92:6865 68:0252

B� 14211:0 6885:08 3161:55 1556:01 762:219 346:907 127:495 16:1464

4375 s� 32:5987 23:2020 18:1407 15:7613 14:4790 13:7841 13:4939 13:6091

T � 1:02594 1:12959 1:30124 1:52303 1:81477 2:21051 2:77770 3:68770

M� 278:490 252:937 219:570 187:596 157:438 129:253 102:860 77:4776

B� 16657:6 8103:46 3749:94 1867:80 933:192 440:685 177:207 40:0123

5000 s� 32:5616 23:1593 18:0886 15:6968 14:3972 13:6765 13:3435 13:3696

T � :958934 1:05507 1:21379 1:41788 1:68446 2:04216 2:54537 3:32153

M� 297:950 270:800 235:390 201:508 169:617 139:908 112:249 86:0188

B� 19109:2 9326:49 4342:45 2183:21 1107:33 537:242 229:373 66:1337
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Table 4. E¤ects of � and � on optimal policy when n = 1

� � = 0:05 � = 0:08 � = 0:12 � = 0:16 � = 0:2 � = 0:24 � = 0:28 � = 0:32

1875 s� 32:8722 23:5186 18:5314 16:2550 15:1253 14:6833 14:9243 1

T � 1:63564 1:81036 2:10672 2:50446 3:05907 3:88998 5:35955 1

M� 305:691 276:188 237:336 199:644 163:448 128:535 93:2913 0

B� 6942:36 3294:82 1453:29 670:048 291:756 101:787 9:27609 0

2500 s� 32:7575 23:3853 18:3658 16:0437 14:8440 14:2800 14:2357 1

T � 1:41311 1:56059 1:80820 2:13510 2:57921 3:21434 4:22171 1

M� 353:830 320:392 276:518 234:182 193:858 155:553 118:435 0

B� 9365:82 4492:00 2022:89 965:290 448:200 182:753 47:4015 0

3125 s� 32:6796 23:2952 18:2548 15:9037 14:6616 14:0287 13:8488 14:2337

T � 1:26186 1:39148 1:60763 1:88994 2:26727 2:79231 3:58064 4:99825

M� 396:240 359:329 311:016 264:558 220:530 179:063 139:640 100:035

B� 11800:7 5699:69 2601:82 1268:74 611:864 270:109 91:3756 2:66748

3750 s� 32:6223 23:2291 18:1737 15:8024 14:5314 13:8537 13:5930 13:7739

T � 1:15054 1:26734 1:46116 1:71237 2:04432 2:49782 3:15605 4:24264

M� 434:579 394:527 342:194 291:993 244:580 200:175 158:426 117:851

B� 14243:8 6914:86 3187:36 1578:02 780:639 361:960 139:376 24:9264

4375 s� 32:5778 23:1779 18:1113 15:7249 14:4327 13:7231 13:4083 13:4713

T � 1:06420 1:17125 1:34823 1:57627 1:87505 2:27783 2:84897 3:74454

M� 469:835 426:893 370:857 317:204 266:660 219:507 175:502 133:528

B� 16693:0 8135:68 3777:92 1891:71 953:279 457:200 190:380 49:9855

5000 s� 32:5421 23:1369 18:0613 15:6631 14:3546 13:6210 13:2670 13:2523

T � :994727 1:09405 1:25776 1:46774 1:74103 2:10570 2:61400 3:38371

M� 502:650 457:016 397:531 340:659 287:187 237:450 191:278 147:767

B� 19147:1 9360:98 4372:44 2208:89 1128:97 555:111 243:739 77:1881
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Table 5. E¤ects of � and � on optimal policy when n = 2:5

� � = 0:05 � = 0:08 � = 0:12 � = 0:16 � = 0:2 � = 0:24 � = 0:28 � = 0:32

1875 s� 32:7094 23:3297 18:2972 15:9571 14:7308 14:1232 13:9912 1

T � 2:01320 2:22126 2:56912 3:02532 3:63881 4:50118 5:82170 1

M� 506:935 459:451 397:241 337:340 280:466 226:732 175:303 0

B� 7058:91 3400:29 1544:20 746:890 355:167 152:382 47:3056 0

2500 s� 32:6173 23:2233 18:1667 15:7937 14:5202 13:8388 13:5717 13:7379

T � 1:74012 1:91660 2:20931 2:58845 3:08895 3:77179 4:75993 6:38101

M� 586:488 532:486 461:936 394:274 330:390 270:585 214:407 159:937

B� 9500:69 4614:29 2128:71 1055:26 523:144 243:532 94:6796 17:9303

3125 s� 32:5546 23:1512 18:0788 15:6847 14:3818 13:6565 13:3158 13:3268

T � 1:55438 1:70999 1:96674 2:29658 2:72686 3:30306 4:11092 5:34858

M� 656:573 596:824 518:911 444:383 374:263 308:975 248:256 190:810

B� 11951:7 5836:80 2720:76 1370:26 696:935 339:779 146:572 43:8000

3750 s� 32:5085 23:0983 18:0145 15:6055 14:2822 13:5273 13:1396 13:0622

T � 1:41758 1:55814 1:78918 2:08424 2:46592 2:97058 3:66348 4:68300

M� 719:933 654:985 570:408 489:656 413:866 343:556 278:577 217:929

B� 14409:4 7065:36 3318:17 1689:98 874:846 439:627 201:631 72:5292

4375 s� 32:4727 23:0573 17:9649 15:5447 14:2062 13:4298 13:0092 12:8739

T � 1:31144 1:44052 1:65204 1:92098 2:26666 2:71944 3:33187 4:20891

M� 778:198 708:467 617:757 531:271 450:249 375:283 306:302 242:476

B� 16872:0 8298:50 3919:63 2013:26 1055:88 542:197 259:073 103:378

5000 s� 32:4439 23:0244 17:9252 15:4961 14:1459 13:3530 12:9078 12:7313

T � 1:22600 1:34595 1:54204 1:79047 2:10820 2:52136 3:07388 3:84973

M� 832:429 758:246 661:824 569:995 484:090 404:766 332:010 265:099

B� 19338:6 9535:27 4524:31 2339:38 1239:37 646:917 318:391 135:883
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6 Conclusions

We have analyzed an economic order quantity inventory model where demand is a bivariate function

dependent on price and time. More concretely, the demand rate is the product of a price-logit function

and a power-time function. Thus, the demand rate multiplicatively combines the e¤ects of selling price

and a power demand pattern. The replenishing of the inventory is instantaneously assumed and the lead

time is zero or negligible. Shortages are allowed and fully backlogged.

The objective is to maximize the pro�t per unit time, considering the sales revenue and assuming the

sum of the following costs: ordering cost, purchasing cost, holding cost and backordering cost.

We have developed several properties with the aim of characterizing the optimal inventory policy.

In this inventory system, it is not possible to obtain optimal policies in a closed form, but the optimal

solutions can be determined by using some classic numerical procedures, such as the Newton-Raphson

method or the bisection method.

We have provided an algorithmic approach to determine the optimal inventory policy. It can be

obtained by using an e¢ cient algorithm which �nds the optimal selling price, the maximum level of the

stock, the optimal inventory cycle and the maximum pro�t per unit time.

Several numerical examples are introduced to illustrate the solution procedure. Also, to study the im-

pact on the optimal solution of some parameters associated with demand rate, we provide computational

results which permits a sensitivity analysis of the inventory policy to be established.

Some directions for future research are as follows: to include in the demand rate other functions

that depend on the selling price, to assume partial backlogging, to consider the possibility that the item

deteriorates over time or to suppose non-linear holding cost in the model.
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Appendix

Lemma 1 For a �xed value of s, the bivariate function Bs(M;T ) = B(s;M; T ) given by (3) is strictly

concave on the set 
s =
�
(M;T ) : T > 0; 0 < M � �T=

�
1 + e�s

�	
.

Proof. Since the function Bs(M;T ) is twice-di¤erentiable, we only need to prove that the Hessian matrix

is negative de�nite on the set 
s.

The �rst partial derivatives of Bs(M;T ) are

@Bs(M;T )

@M
= ! � (h+ !)

 �
1 + e�s

�
M

�T

!n
(13)

@Bs(M;T )

@T
=

K

T 2
+
n (h+ !)

n+ 1

M

T

 �
1 + e�s

�
M

�T

!n
� �!n

(n+ 1) (1 + e�s)
(14)

Therefore, the second partial derivatives are given by

@2Bs(M;T )

@M2
= �

n(h+ !)
�
1 + e�s

�
�T

 �
1 + e�s

�
M

�T

!n�1
@2Bs(M;T )

@T 2
= �2K

T 3
� n (h+ !)M

T 2

 �
1 + e�s

�
M

�T

!n
@2Bs(M;T )

@M@T
=

(h+ !)n

T

 �
1 + e�s

�
M

�T

!n

and the Hessian matrix is

H =

0BB@ �n(h+!)(1+e�s)
�T

�
(1+e�s)M

�T

�n�1
(h+!)n

T

�
(1+e�s)M

�T

�n
(h+!)n

T

�
(1+e�s)M

�T

�n
� 2K
T 3 �

n(h+!)M
T 2

�
(1+e�s)M

�T

�n
1CCA

Since H11 = @2Bs(M;T )=@M
2 < 0 for all (M;T ) 2 
s, if we prove that the determinant of the

Hessian matrix is positive, the assertion follows. Indeed,

det(H) =
2(h+ !)Kn

MT 3

 �
1 + e�s

�
M

�T

!n
> 0

for all (M;T ) 2 
s.

Lemma 2 For a �xed value of s, the function Bs(M;T ) attains its maximum value at the point (M�(s); T �(s))

given by

M�(s) =
�

(1 + e�s)

�
!

h+ !

�1=nvuuut (n+ 1)K (1 + e�s)

n�!

�
1�

�
!

h+!

�1=n�

T �(s) =

vuuut (n+ 1)K (1 + e�s)

n�!

�
1�

�
!

h+!

�1=n�
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Proof. By the previous lemma, it is su¢ cient to show that the point (M�(s); T �(s)) 2 
s and that the

gradient at that point rBs(M�(s); T �(s)) = 0, which is easy to check.

Proof of Proposition 1.

1. It is immediate.

2. Indeed, taking the �rst derivative of the function P (s), we have

P 0(s) =

"
1� �e�s

1 + e�s

 
s� p�

r
1 + e�s

�
�

!#
�

1 + e�s

=

"
e��s + 1� �(s� p) + ��

r
1 + e�s

�

#
�e�s

(1 + e�s)
2

= f(s)
�e�s

(1 + e�s)
2 ,where f(s) = 1 + e

��s � �(s� p) + ��
r
1 + e�s

�
.

From this, we conclude that sign(P 0(s)) =sign(f(s)).

On the other hand, it is easy to check that the two �rst derivatives of the function f(s) are

f 0(s) = ��
�
e��s + 1

�
+

�2e�s

2
p
�
p
1 + e�s

� (15)

f 00(s) = �2e��s +
�3e�s(2 + e�s)

4
p
�

q
(1 + e�s)

3
�:

Therefore, f 00(s) > 0, which proves the convexity of f(s).

3. Since lims!1 f(s) = 1, lims!�1 f(s) = 1 and f(s) is a strictly convex function, there exists a

real point so in which f attains its minimum value. Moreover, as f is a di¤erentiable function on

R, this point so can be calculated by (11), that is, solving the equation f 0(s) = 0.

The case (i) is obvious, because f(s) > f(so) � 0 for all s 6= so and, according to the previous

property, we have P 0(s) > 0 for all s � p. Hence P (s) is strictly increasing in (p;1). To prove the

other case, consider s > p. Since p � so, we have 0 = f 0(so) � f 0(p) < f 0(s), which implies that

the function f(s) is strictly increasing in the interval (p;1). Therefore, f(s) > f(p) > 0. The rest

of the proof runs as before.

4. We can assert the existence of only one root s1 of the function f(s) in the interval (p; so) because

f(s) is strictly decreasing in such interval and, moreover, f(p)f(so) < 0. Thus, we have f(s) > 0

for s 2 (p; s1) and f(s) < 0 for s 2 (s1; so), which implies that P (s) has a relative maximum at s1.

Proof of Theorem 2.

It is obvious by Proposition 1.
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Proof of Proposition 3.

1. From (15), f 0(so) = 0 implies that 1 + e��so = ��e�so=
�
2
p
� (1 + e�so)

�
. Substituting the left-

hand side into (10), yields

f(so) =
��e�so

2
p
� (1 + e�so)

� �(so � p) + ��
r
1 + e�so

�

= �

 
p� so +

2 + 3e�so

2
p
� (1 + e�so)

�

!
:

The rest is immediate.

2. From (10) and (12), we have p = s1� (1+ e��s1)=�� �
p
(1 + e�s1)=�. Substituting this value into

(7), an easy computation shows that

P (s1) =
�e��s1

�
�
r

�

1 + e�s1
�.

Hence P (s1) < 0 if �=(��)2 < e2�s1=(1 + e�s1) and so �2�2(e�s1)2 � �e�s1 � � > 0. The rest is

straightforward.
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