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ABSTRACT 

Overnight pulse oximetry has shown usefulness to simplify obstructive sleep apnea 

(OSA) diagnosis when combined with machine-learning approaches. However, the 

development and evaluation of a single model with ability to reach high diagnostic 

performance in both community-based non-referral and clinical referral cohorts are still 

pending. Since ensemble-learning algorithms are known for their generalization ability, 

we propose a least-squares boosting (LSBoost) model aimed at estimating the apnea-

hypopnea index (AHI), as the correlate clinical measure of disease severity. A thorough 

characterization of 8,762 nocturnal blood-oxygen saturation signals (SpO2) obtained at 

home was conducted to extract the oximetric information subsequently used in the 

training, validation, and test stages. The estimated AHI derived from our model 

achieved high diagnostic ability in both referral and non-referral cohorts reaching intra-

class correlation coefficients within 0.889-0.924, and Cohen’s  within 0.478-0.663 

when considering the four OSA severity categories. These resulted in accuracies 

ranging 87.2%-96.6%, 81.1%-87.6%, and 91.6%-94.6% when assessing the three 

typical AHI severity thresholds, 5 events/hour (e/h), 15 e/h, and 30 e/h, respectively. 

Our model also revealed the importance of the SpO2 predictors, thereby minimizing the 

‘black box’ perception traditionally attributed to the machine-learning approaches. 

Furthermore, a decision curve analysis emphasized the clinical usefulness of our 

proposal. Therefore, we conclude that the LSBoost-based model can foster 

development of clinically applicable and cost saving protocols for detection of patients 

attending primary care services, or to avoid full polysomnography in specialized sleep 

facilities, thus demonstrating the diagnostic usefulness of SpO2 signals obtained at 

home. 



1. INTRODUCTION 

Simplification of obstructive sleep apnea (OSA) diagnosis has become a major research 

priority in the past years. The OSA diagnostic gold standard, the nocturnal 

polysomnography (PSG), is intended to detect the typical overnight recurrence of 

apneas (complete cessations of airflow) and hypopneas (significant reductions of 

airflow) [1], which lead to inadequate gas-exchange, namely intermittent hypoxia, as 

well as fragmented sleep [2]. These events are associated in a severity-dependent 

fashion with a number of cardiovascular and metabolic morbidities [3], with frequency 

in co-morbidities estimated in 46.4%-59.5% for hypertension [4,5], 29.0%-56.8% for 

heart diseases [5,6], and 14.7%-19.5% for diabetes mellitus [4,5]. Moreover, high 

presence of other respiratory (6.4%-16.0%) and psychiatric (5.0%-14.5%) diseases has 

been also reported [4,6]. The overnight application of continuous positive airway 

pressure (CPAP) is the first and most widely used choice for treatment. It has been 

shown to reduce apneic events, blood pressure, and daytime somnolence, as well as 

improve some physical and sleep-related quality of life indicators [7]. However, PSG 

complexity, high costs, intensive labor, and patient discomfort [8–10], along with the 

large number of undiagnosed OSA cases estimated at nearly 1 billion worldwide [11], 

lead to limited availability of facilities and delayed access to diagnosis and treatment.  

 

Studies predicated on the use of the single-channel blood oxygen saturation signal 

(SpO2) have been popular approaches to overcome these PSG drawbacks [12,13]. SpO2 

is easily recorded during the night using a pulse-oximeter, and the potential 

development of automated analyses contrasts with the labor-intensive visual inspection 

of multiple channels required in PSG [1]. The promising results of a combination of  

automatically extracted information from pulse oximetry data coupled with machine-



learning approaches suggest that SpO2 could serve as a suitable and valid candidate to 

simplify OSA diagnosis [14–22]. More specifically, recent studies have shown the 

usefulness of combining information from unsupervised at-home overnight oximetry 

with ensemble-learning methodologies [17,18], but have also exposed several serious 

limitations. Among these, there is a need for deeper evaluation of the SpO2 information 

using additional analytical approaches, which was coupled with inability to generalize 

the findings due to relatively restricted datasets. Furthermore, none of the studies 

evaluated the diagnostic ability of their predictive models in both non-referral and 

clinical referral cohorts, i.e., in community dwellers and in symptomatic patients being 

referred to sleep specialists by their primary care physicians due to clinical suspicion 

of OSA, respectively.  

 

The current study focused on automatically detecting OSA using at-home oximetry. 

We hypothesized that the information contained in the overnight SpO2 signal can be 

used to diagnose OSA in all comers, i.e., including both referral and non-referral 

cohorts. Accordingly, our main objective was to obtain, and evaluate in both types of 

cohorts, a novel unified approach that can accurately estimate the apnea-hypopnea 

index (AHI), as it is commonly used to determine the presence of OSA and its severity 

[1]. Thus, our first step was to expand the analytical approaches previously applied to 

the SpO2 signal to further characterize it. Then, we applied the least-squares boosting 

(LSBoost) ensemble-learning algorithm with stumps to derive a regression model that 

allows for estimation of the AHI from the SpO2 information [23]. Ensemble-learning 

has been applied and shown promise in a wide range of fields, including OSA detection 

[17,18,24–27]. Here, we use LSBoost for the first time with this purpose as it retains 

the robustness against overfitting of boosting ensemble-learning algorithms, and has 



proven preserved effectiveness in regression problems without the cost of intensive 

computation requirements [28,29]. Additionally, the combined use of LSBoost and 

stumps as base classifiers enable us to explain its predictions based on the relative 

importance of the SpO2 data used [23,30], thereby maximizing the interpretability of 

the model. Finally, the LSBoost regression model was assessed in terms of agreement 

with the actual AHI. Furthermore, the agreement between the OSA severity categories 

derived from the estimated AHI and the actual AHI was also evaluated. This latter 

evaluation included the diagnostic performance in common AHI thresholds as well as 

a decision curve analysis, thus providing a more complete view of the potential clinical 

usefulness of our proposal. 

 

We think that a model that accurately assigns an estimate of AHI as a correlated of OSA 

severity in cohorts with both high (clinical-referred) and low (community-based) pre-

test probability would be of great value to help physicians in their decisions. Indeed, 

such tool would enable its use in both primary and specialized healthcare centers, with 

increased efficiency, reduced costs, and most importantly maximal benefit for patients 

when combined with e-health systems [31,32].  

  

2. MATERIALS AND METHODS 

Next subsections detail the databases and methods used in our study. Figure 1 shows a 

general flowchart of the methodology conducted.  

 



Figure 1. Flowchart with the main methodological steps of the study. At-home overnight SpO2 

recordings are pre-processed and comprehensively characterized using different analytical approaches. 

The features extracted from SpO2 are used to train multiple LSBoost-based regression models with ability 

to estimate AHI. The validation step is used to select the model with the optimum hyperparameters, 

which is subsequently assessed in independent test sets from both non-referral and referral cohorts. The 

AHI estimated by this selected model is used to measure the agreement with actual AHI, as well as the 

actual OSA severity categories that are commonly derived from it. Its diagnostic performance is also 

assessed, and decision curves are provided. Finally, the relative importance of each SpO2 extracted 

feature in the AHI estimation is analyzed. 

 2.1 Databases description and validation strategy 

Two distinctly different databases were included in the study. Subjects and data from 

the Sleep Heart Health Study (SHHS) were used as a community-based non-referral 

sample [32,33]. SHHS is a publicly available dataset in which subjects are at least 40 

years old and were recruited from several previously established cohorts aimed at 

assessing cardiovascular risks. A total of 5,804 individuals underwent unattended at-

home overnight PSG, to then assess whether OSA is an independent risk factor for 

developing cardiovascular morbidity [33]. As part of these PSGs, data from 5,793 SpO2  

recordings were available for this study (SHHS1 subset). A follow-up PSG was then 

administered to 2,647 subjects from the original sample five years later, using the same 

procedures (SHHS2 subset) [33]. These PSGs and their corresponding SpO2 recordings 

were also exploited. Further details on the composition and characteristics of the SHHS 

dataset can be obtained from the original studies [33,34].  
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A second dataset, a clinical cohort, was composed of 322 adult symptomatic patients 

referred to the sleep unit of the Rio Hortega University Hospital (Valladolid, Spain) due 

to clinical suspicion of OSA (RHUH dataset). They all underwent at-home PSG 

(Embletta MPR with the ST + proxy, Embla Systems, Natus Medical Inc. CA, USA) 

and a simultaneous overnight portable oximetry (Nonin WristOx2 3150, Nonin 

Medical, Inc,MN, USA), from which the SpO2 recordings were obtained. The Ethics 

and Clinical Research Committee of the Hospital approved the protocol (CEIC 47/16). 

 

In both samples, apneas and hypopneas were scored by specialized personnel following 

the current recommendations of the American Academy of Sleep Medicine (AASM) 

[1,35], based on which, AHI was determined for each subject, and subsequently 

classified into one of the four OSA severity categories: no OSA (AHI < 5 events/hour), 

mild OSA (5 e/h ≤ AHI < 15 e/h), moderate OSA (15 e/h ≤ AHI < 30 e/h), and severe 

OSA (AHI ≥ 30 e/h). 

 

The datasets were divided into five groups, as delineated in Figure 2 and in accordance 

with following criteria: 

i) The training and validation sets (SHHS1tr and SHHS1v, respectively) are only 

composed of subjects from the SHHS1 subset that was not a participant in the follow-

up sleep study 5 years later. Thus, we avoid the bias caused by the inclusion of 

recordings from the same subject in the development and the testing of the model. 

ii) SHHS1tr and SHHS1v are composed of the same number of subjects in each of the 

four OSA severity categories. This approach served to ensure balanced distribution 

of severity groups, thereby not favoring a model with biased final diagnosis towards 

one of the categories. 



 

Figure 2. Distribution of the subjects involved in the study to conduct the validation strategy. The 

total number of subjects included in SHHS1tr or SHHS1v is limited by the criterion of same size of the 

four OSAS severity degrees and the size of the OSAS degree less represented (no OSAS: 526 subjects). 

Among those subjects included in SHHS1tr or SHHS1v, 75% (1,576) were heuristically assigned to 

training and 25% (528) to validation. The remaining subjects from SHHS1 (3,689), all SHHS2 (2,647), 

and all RHUH (322), were assigned to test sets. SHHS: Sleep Heart Health Study dataset; RHUH: Rio 

Hortega University Hospital dataset.    

iii) There are three test sets, two non-referral and one referral. SHHS1t (non-referral), 

composed of those subjects from SHHS1 not included in SHHS1tr or SHHS1v; all 

the recordings from SHHS2 subset (non-referral); and all the patients from the Rio 

Hortega University Hospital (RHUH, clinical referral). 

Table 1 summarizes sociodemographic and clinical data of the subjects. As expected, 

all non-referral groups showed statistically significant differences in AHI, age, sex, and 

race distribution with those in referral RHUH cohort (p < 0.01 after Bonferroni’s 

correction). Furthermore, all non-referral groups except SHHS2 showed statistically 

significant differences with referral RHUH in body mass index (BMI). Minor 

differences were found in the proportion of black subjects of SHHS1tr compared with 

SHHS1t and SHHS2, as well as of SHHS1v compared with SHHS2. Finally, all groups 

showed statistically significant differences in age with SHHS2, as anticipated by the 

SHHS study design. 



Table 1. Sociodemographic and clinical data of each subgroup. Median and interquartile range for Age, 

BMI, and AHI (p-values obtained with Mann-Whitney non-parametric U test). Number of subjects for males 

(M), females (F), white (W), black (B), and other (O) (p-values obtained with Fisher’s exact test). Statistical 

differences in race refer only to the proportion of black subjects, as no differences were found in the 

proportion of the ‘other’ category. Category names for race were those originally reported in the SHHS 

dataset.  

Data 
SHHS1tr 

(N = 1,576) 

SHHS1v 

(N = 528) 

SHHS1t 

(N = 3,689) 

SHHS2 

(N = 2,647) 

RHUH 

(N = 322) 
p<0.01* 

Age (years) 
63.0  

(55.0, 73.0) 

64.5  

(55.0, 74.0) 

63.0  

(55.0, 71.0) 

68.0  

(60.0, 76.0) 
57.0  

(46.0, 66.0) 

c, d, f, g, h, 

i, j 
Sex (M/F) 811/765 255/273 1,967/1,722 1,422/1,225 220/102 d, g, i, j 

Race (W/B/O) 1,248/174/118 432/62/34 3,183/278/228 2,307/181/159 322/0/0 
b, c, d, f, g, 

i, j 

BMI (kg/m2) 
27.4  

(24.5, 30.8) 

27.1  

(24.5, 30.5) 

27.5  

(24.7, 30.7) 

27.7  

(24.8, 31.1) 
28.4  

(25.8, 32.1) 
d, g, i 

AHI (e/h) 
15.0  

(5.0, 30.0) 

15.0  

(5.0, 29.8) 

12.6  

(7.4, 21.5) 

13.5  

(6.8, 24.6) 
26.2  

(12.9, 46.6) 
d, g, i, j 

AHI: apnea-hypopnea index, BMI: body mass index,*p-value after Bonferroni’s correction, aSHHS1tr vs. SHHS1v, 

bSHHS1tr vs. SHHS1t, cSHHS1tr vs. SHHS2, dSHHS1tr vs. RHUH, eSHHS1v vs. SHHS1t, fSHHS1v vs. SHHS2, gSHHS1v 

vs. RHUH, hSHHS1t vs. SHHS2, iSHHS1t vs. RHUH, jSHHS2 vs. RHUH. 

2.2 Information obtained from the SpO2 signal 

All SpO2 signals were acquired at a sampling rate of 1 Hz. Artifacts were removed as 

reported in previous studies [17,36]. Up to 32 features were obtained to conduct a  

thorough characterization from different approaches, thus minimizing the limitations of  

previous studies (see Table 2) [17,18]. Three different analytical methodologies were 

conducted: classic oximetry-based clinical features, non-clinical features in time domain 

(including non-linear analysis), and non-clinical features in frequency domain. All these 

features were proposed because they can help characterize information derived from 

biomedical signals [14,17,43–49,24,36–42]. However, they have never been used 

concurrently. Moreover, obtaining a higher number of features than in previous works 

favors the performance of the LSBoost approach adopted in this study [29]. 

 

2.3 Least-squares Boosting algorithm 

LSBoost is an ensemble-learning boosting algorithm intended for estimation of a 

continuous target variable y [23]. Its output is obtained as a combination of estimations  



Table 2. Features extracted from each of the overnight SpO2 recordings. 

Features Description 

 Classic clinical features 

ODI3 3% oxygen desaturation index. Number of 3% desaturation events per hour of 

sleep.[36] 

CT90 Overnight cumulative time of blood oxygen saturation under 90%.[36] 

 Statistics and Non-linear measures in Time Domain 

Mt1-Mt4 First (mean), second (standard deviation), third (skewness), and fourth (kurtosis) 

statistical moments of the overnight signals in time domain.[14] 

CTM Central tendency measure to measure variability in a time series.[37,42] 

LZC Lempel-Ziv complexity to measure the complexity degree of a time series.[40,43] 

SampEn Sample entropy to measure irregularity in a time series. [38,44] 

msEnt 

Multiscale entropy analysis, which extends SampEn to different time scales.[39,45] 

Five features were extracted from up to 50 scales: 

- msEntmax: the maximum SampEn value of the scales. 

- msEntscale: the scale at which the maximum SampEn value is reached.  

- msEntarea: the area under the curve formed by the SampEn values of all the scales.  

- msEntslp1: the average slope of the lower scales (1 to 23).  

- msEntslp2: the average slope of the higher scales (24 to 50). 

 Frequency Domain Analysis 

Mf1-Mf4 First (mean), second (standard deviation), third (skewness), and fourth (kurtosis) 

statistical moments of the full spectrum.[14] 

SpecEn Spectral entropy to measure the full spectrum flatness. [17,46] 

MF Median frequency to estimate the distribution of the power of the full spectrum. [17] 

ED Euclidian distance to directly estimate the statistical distance between the full 

spectrum and a uniform distribution.[41,47] 

WD Wootter’s distance to estimate the statistical distance between the full spectrum and a 

uniform distribution based on counting all the intermediate states between the 

distributions.[24,48] 

MABOI
* Maximum of the spectrum amplitude within the SpO2 band of interest.[49] 

mABOI Minimum of the spectrum amplitude within the SpO2 band of interest. [49] 

Mf1BOI -Mf4BOI First, second, third, and fourth statistical moment of the spectral band of interest. [17] 

SpecEnBOI Spectral entropy applied to the spectral band of interest. [17,46] 

MFBOI Median frequency applied to the spectral band of interest.[17] 

EDBOI Euclidian distance applied to the spectral band of interest.[41,47] 

WDBOI Wootter’s distance applied to the spectral band of interest. [24,48] 

The OSA-related band of interest (BOI) in the SpO2 signal comprises 0.014-0.033 Hz (events lasting 30-

70 seconds) [14,50]. 

from several base learners (h). These are sequentially obtained so that each new learner 

is trained to fit the remaining residual error (�̃�𝑚) after combining the outputs from all 

previous learners.[29] Formally, the algorithm can be described as follows [23,29]: 

i) Set m = 0 and initialize the estimated output 𝑓0(𝐱). 

ii) Increase m by 1 and compute the residuals  �̃�𝑖
𝑚 = 𝑦𝑖 − 𝑓𝑚−1(𝐱𝑖), 𝑖 = 1,2, . . , 𝑁  

iii)  Fit the residuals using least squares loss function along with learner h and the 



predictors for each subject xi: (𝜐𝑚 , 𝐚𝑚) = argmin𝐚,𝜐 ∑ [�̃�𝑖
𝑚 − 𝜐ℎ(𝐱𝑖; 𝐚)]2𝑁

𝑖=1  , with a 

being the set of parameters of h, and 𝜐 a regularization factor ranging 0 <  𝜐 ≤ 1. 

iv)  Update 𝑓𝑚(𝐱) =  𝑓𝑚−1(𝐱) + 𝜐𝑚ℎ(𝐱; 𝐚𝑚). 

v) Iterate ii) to iv) until m = M, being M the maximum number of learners to be used. 

In the current study, y was the actual AHI, 𝑓𝑚  (𝐱) was the estimated AHI, xi the set of 

features extracted from each i SpO2 recording, and N the number of recordings in the 

training set. Both M and υ are tuning parameters [17]. We used our validation group 

(SHHS1v) for this purpose. Regression trees of one parent and two children nodes 

(stumps) were used as the base learners h. In this way, every new ℎ(𝐱; 𝐚𝑚) is a function 

of a single predictive variable [28,29], thus conducting a default feature selection 

procedure at each iteration. The relative importance 𝐼𝑗
2 of a variable xj can be estimated 

on the basis of its squared error empirical improvement along all the trees in which it 

has been involved [23,30]: 

𝐼𝑗
2 =

1

𝑀
∑ 𝑀𝑆𝐸𝑚(𝐱𝑗) ∙ 𝑤𝑚 − (𝑀𝑆𝐸𝑚

𝑙 (𝐱𝑗) ∙ 𝑤𝑚
𝑙 + 𝑀𝑆𝐸𝑚

𝑟 (𝐱𝑗) ∙ 𝑤𝑚
𝑟 )

𝑀

𝑚=1
,              (1)    

where 𝑀𝑆𝐸𝑚 is the mean squared error for the m stump associated to xj, 𝑤𝑚 a weight 

accounting for the parent node probability, and 𝑙 − 𝑟 denoting the corresponding 

parameters for the two child nodes. The relative 𝐼𝑗
2 values of the features in this study 

were subsequently scaled to sum 100, with higher values denoting a higher influence in 

the ensemble output [51]. 

 

 2.4 Statistical analyses 

The agreement between the actual AHI and the AHI estimated by our regression model 

was evaluated by means of the intra-class correlation coefficient (ICC) and Bland-

Altman plots [52,53]. Furthermore, as four severity categories based on the AHI are 



commonly used by clinicians in OSA context (no OSA: AHI < 5 e/h; mild:  5 e/h ≤ AHI 

< 15 e/h; moderate: 15 e/h ≤ AHI < 30 e/h; and severe: 30 e/h ≤ AHI), Cohen’s kappa, 

, and confusion matrices were used to measure agreement between the actual OSA-

severity categories and those obtained from our AHI estimation [54]. The diagnostic 

usefulness of our model was also assessed in each of the common thresholds used to 

set the OSA-severity degrees: 5 e/h, 15 e/h, and 30 e/h. This was conducted in terms of 

sensitivity (Se, percentage of subjects with a true diagnosis above the corresponding 

threshold that are rightly classified by our model), specificity (Sp, percentage of 

subjects with a true diagnosis below the corresponding threshold that are rightly 

classified by our model), accuracy (Acc, total percentage of subjects rightly classified 

by our model), positive predictive value (PPV, percentage of subjects with a true 

diagnosis above the corresponding threshold among all those that our model classify 

above that threshold), negative predictive value (NPV, percentage of subjects with a 

true diagnosis below the corresponding threshold among all those that our test classify 

below that threshold), positive likelihood ratio (LR+, ratio of the true positive rate to 

the false positive rate), and negative likelihood ratio (LR-, ratio of the false negative 

rate to the true negative rate). The diagnostic metrics for these thresholds can be 

computed as follows: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100,                                                                                                          (2)    

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100,                                                                                                          (3)    

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100,                                                                                 (4)    

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100,                                                                                                       (5)    

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
∗ 100,                                                                                                     (6)    



𝐿𝑅+=
𝑆𝑒

1 − 𝑆𝑝
,                                                                                                                       (7)    

𝐿𝑅−=
1 − 𝑆𝑒

𝑆𝑝
,                                                                                                                       (8)    

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false 

negatives for each threshold, respectively. Decision curves were also used to further 

assess the clinical value of our proposal [55,56]. Accordingly, net benefit (NB) for each 

possible “threshold probability” was computed as follows [55,56]: 

𝑁𝐵 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
−

𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (

𝑝𝑡

1 − 𝑝𝑡
),                            (9)    

where pt is the threshold probability considered at each case. Moreover, as our model 

is aimed at estimating a continuous variable, logistic regression was applied prior to the 

decision curve analysis to transform the estimated AHI into a probability [57]. Finally, 

a two-tailed p-value less than 0.01 was considered as achieving statistical significance. 

Matlab™ 2018b and 2020b were used to conduct all the analyses of this study. 

 

3.  RESULTS 

3.1 Model training and validation 

The original paper presenting the LSBoost method established m and 𝜐 as tuning 

hyperparameters [23]. It also offered the ranges among they were more likely to 

produce lower error rates. The main idea, confirmed in subsequent studies [28,29], was 

to choose a low 𝜐 value and vary m. Here, we chose to evaluate the same low 𝜐 values 

than in the original paper, i.e., 𝜐 = 0.031, 0.062, and 0.125 [23]. Also, it was shown that 

evaluating m values beyond 200 produced models with very similar behaviors [23]. 

Hence, we also chose to vary m from 1 to 200 in steps of 1. All the models resulting 

from the combination of the different values of  𝜐 and m were obtained from the training 

group and subsequently evaluated in the validation group to choose the optimum (𝜐, m) 



pair. Figure 3 shows the results of hyperparameter tuning on SHHS1v. According to 

Cohen’s , the optimum values for 𝜐 and m were 0.125 and 199, respectively. 

 

Each of the 199 regression stumps used a single feature to provide its contribution to the 

final ensemble output. Twenty five out of the 32 extracted features were used at least 

once. However, 9 of them (ODI3, M4t, M1fBOI, MABOI, msEntscale, LZC, msEntarea, WD, 

and SampEn) were selected 132 times and gathered 99.0% of the total relative 

importance 𝐼2, thus highlighting the relevance of all the analytical approaches conducted 

(clinical features, statistics and non-linear features, and frequency domain analysis), as 

well as the minimum effect on the final AHI estimation of 23 features. Moreover, ODI3 

alone accounted for 85.7% of 𝐼2 and was selected 43 times. 

 

3.2 Agreement and diagnostic performance 

Figure 4 shows the Bland-Altman plots of actual and estimated AHIs for the three test 

sets: SHHS1t, SHHS2, and RHUH. The smallest bias can be observed for SHHS1t, 

whereas SHHS2 and RHUH show mild overestimation and underestimation of actual  

 

Figure 3. Number of base learners (m) and regularization parameter (υ) tuned according 

to Cohen’s  in the validation set SHHS1v. 



AHI, respectively. Furthermore, ICC is embedded in each corresponding plot, showing 

high agreement in the three groups. The referral dataset reached slightly higher ICC  

(0.924 RHUH) than the two non-referral ones (0.900 SHHS1t; 0.889 SHHS2). 

 

Figure 5 shows the confusion matrices that compare the actual OSA severity degrees 

and the corresponding assignation using the estimated AHI. Cumulated accuracy in the 

four classes reached 70.02%, 62.30%, and 77.02% for SHHS1t, SHHS2, and RHUH 

datasets, respectively. Moreover, their confusion matrices correspond to 0.561, 0.478,  

 

 

Figure 4. Bland-Altman plots and intra-class correlation coefficient (ICC) of the test sets 

A) SHHS1t, B) SHHS2, and C) RHUH. SHHS1t shows a small bias (mean = 0.31) and the 

tiniest difference in the 95% confidence interval (23.35). Higher overestimation (mean = 3.05) 

and 95% confidence interval (27.04) is reached in SHHS2. Actual AHI presents a small 

underestimation in RHUH (mean = -3.37), which also reaches the widest 95% confidence 

interval (32.59). 



Figure 5. Confusion matrices with the true OSA severity classes against the predicted ones 

for A) SHHS1t, B) SHHS2, and C) RHUH. The main diagonal indicates the number and 

proportion of rightly assigned subjects for each severity degree, whereas the remaining cells 

are misclassified subjects. Darker colors are shown as more proportion of subjects of the same 

actual class are assigned to a cell. 

and 0.663 four-class . An increased proportion of subjects correctly diagnosed can be 

observed in the main diagonal of SHHS1t as OSA severity increases, with a good 

balance between overestimate and underestimate findings, as anticipated by the 

corresponding Bland-Altman plot. In contrast, the confusion matrix from SHHS2 

shows a tendency for overestimation that decreases with the severity degree. Finally, 

the confusion matrix from RHUH shows small overestimation and underestimation for 

no OSA and moderate OSA, respectively, yet not obscuring the very high diagnostic 

ability reached in the referral database. 

 

Table 3 displays the diagnostic statistics for each AHI threshold that defines OSA 

severity. They are directly derived from the confusion matrices in Figure 5. Accuracies 

(Acc) are above 80% in all cases, and only 15 e/h in SHHS2 is below 85%. Results in 

SHHS1t are generally higher than in SHHS2 because of remarkable higher Sp values at 

the cost of mild lower Se. Actually, Sp values in SHHS2 are relatively low for 5 e/h  



Table 3. Diagnostic performance on the clinical AHI thresholds used to demarcate OSA severity 

categories (5 e/h, 15 e/h, and 30 e/h).  

 
SHHS1t SHHS2 RHUH 

5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 

Se (%) 93.77 87.03 82.21 98.70 95.17 89.83 99.00 85.47 86.49 

Sp (%) 58.28 84.06 96.34 32.80 69.50 92.01 63.64 93.18 96.55 

PPV (%) 93.89 79.26 76.26 87.44 72.16 71.99 97.38 97.09 95.52 

NPV (%) 58.16 90.25 97.43 84.36 95.54 97.54 82.35 70.69 89.36 

LR+ 2.25 5.46 22.46 1.47 3.12 11.24 2.72 12.53 25.07 

LR- 0.11 0.15 0.18 0.04 0.07 0.11 0.02 0.16 0.14 

Acc (%) 89.18 85.28 94.58 87.23 81.14 91.61 96.58 87.58 91.93 

Acc: accuracy, LR+/LR-: positive and negative likelihood ratio, PPV/NPV: positive and negative predictive 

value, Se/Sp: sensitivity and specificity. 

and 15 e/h, in accordance with the overestimated AHI scenario previously observed. 

The highest diagnostic performance, however, is obtained in the clinically referred high 

pre-test probability database RHUH, reaching the most favorable values for OSA 

diagnosis in most of the statistics. 

 

3.3 Decision curve analysis 

Figure 6A shows the decision curves corresponding to the SHHS1t and SHHS2 groups, 

i.e., the non-referral subjects. Solid lines represent the net benefit curves of our 

LSBoost-based model. In a non-referral cohort, one would expect to use our proposal 

as a screening test to send patients to the standard diagnostic test, the PSG. Therefore, 

our proposal is compared to the option of sending all subjects to the PSG, (colored thin 

lines with triangles), and sending no one to PSG (gray horizontal thin line with 

triangles), since PSG is the next natural intervention for non-referral subjects. The curve 

shows higher net benefit for our model than for sending no one to the PSG for almost 

all probability thresholds. The model also shows higher net benefit than sending all 

subjects to PSG from the threshold probability = 0.39 onwards. 

 

Figure 6B represents the decision curves corresponding to the RHUH group, i.e., the 



referral subjects. As they have previous suspicious of OSA, this is a high OSA pre-test 

probability group. Therefore, the LSBoost-based model (colored solid lines) is 

compared to ‘treat all’ subjects for OSA and ‘treat no one’ for OSA (gray lines), since 

treatment is the next natural intervention for these subjects. As in the previous case, our 

model (purple solid line) reaches higher net benefit than ‘treat no one’, for all 

probability thresholds, and also higher net benefit than ‘treat all’ from 0.39 probability 

threshold onwards. In addition, we compare our model to the performance of the PSG 

(colored dashed lines). PSG produces no false positive results if no other drawback is 

considered. Consequently, its net benefit is maximum, as reflected by the dashed purple 

line at the top of the graphic. However, equation (9) can be reformulated to account for 

other issues, such as health risk or economic costs, by subtracting a penalty term called 

“test harm”, (NBtest-harm= NB-“test arm”) [55]. The test harm represents the negative 

implications caused by taking the test (i.e, conducting the intervention) and can be 

explained as the reciprocal of the number of tests that a clinician is willing to conduct 

in order to find one true positive subject provided that the test were perfectly accurate 

[56,58]. The pink and blue dashed lines represent the PSG performance if a clinician 

would do no more than 2 and 5 PSGs to identify one true positive, i.e., if the test harm 

is 1/2 and 1/5, respectively. To compare our model with PSG, we assumed that, in the 

absence of any other harm, a clinician would do more of our tests in the same proportion 

as the decreased cost of at-home oximetry with respect to standard PSG. Previous 

studies reported that standard PSG (810.8 $/test) is 3.87 times more expensive than at-

home single-channel oximetry (209.2 $/test) [59], which is a sustained proportion over 

time [60]. Accordingly, the pink and blue solid lines represent the net benefit of our 

model when the test harm is 1/(2*3.87) and 1/(5*3.87). As observed, the orange 

rectangles represent the upper limits of the range in which our model achieves higher  



Figure 6. Decision curves for the groups A) SHHS1t and SHHS2, and B) RHUH. A logistic 

regression transformation was conducted on the AHI to present it as the probability of having 

any OSA degree. In panel A), the LSBoost-based model is compared to the strategy of “sending 

all to PSG” and “sending no one to PSG”. In panel B the model is compared to “sending all to 

treatment”, “sending no one to treatment”, and the benefit of PSG under several “test harm” 

effects. Correspondence between threshold probability and the AHI thresholds 5 e/h, 15 e/h and 

30 e/h are also shown. 

net benefit than PSG. This range is larger as less tests a clinician is willing to conduct 

to find a true positive. 

 

Finally, the black rectangles represent the bottom limits of the range in which our model 

shows higher net benefit than the ‘treat all’ strategy. For each PSG ‘test harm’ different 

from 0, the range between the black and orange rectangles are the ranges in which our 

model achieves higher net benefit than all other options: 0.64-0.79 for a PSG test harm 

of 1/5 and 0.81-1.00 for a PSG test harm of 1/2. 

 

3.4 Performance of other machine-learning approaches 

Table 4 shows the performance of 3 additional machine-learning models that were 

obtained using the same training/validation/test strategy. Two of them are regression 



approaches (regression trees, RT; and regression support vector machines, SVMr), and 

another one a multi-class approach (multiclass adaptive boosting, AdaBoost.M2). 

These methods have shown its usefulness in several biomedical signal processing 

problems, including OSA automatic detection [17,18,24,61]. Consequently, they are 

used for comparison purposes. As observed, the other models outperformed our 

proposal in some discrete statistics (values in bold) when evaluating individual 

databases or AHI thresholds (SVMr in 27 out of 63 statistics, and AdaBoost.M2 and 

RT in 23). However, when considering the overall performance measurements (four-

class accuracy and Cohen’s ) of our LSBoost model, it clearly outperformed the other 

methods in our three test sets (SHHS1t, SHHS2, and RHUH), except for the  value of 

the RT model in SHHS2. In this unique case our LSBoost model reached  = 0.478 and 

RT reached  = 0.479. Moreover, in 23 out of 27 of the accuracies corresponding to 

each AHI threshold our proposal also reached the highest values. These figures 

highlight the superiority of our proposal comparing to the models from the other 

machine-learning approaches.  

  

4. DISCUSSION 

In this study, we have accomplished substantial advances in SpO2 characterization by 

extracting up to 32 overnight features from different analytical approaches. They serve  

to develop a novel OSA-specific LSBoost-based model that has the ability to accurately 

estimate AHI from single-channel oximetry data obtained in the patients’ home. 

Furthermore, this model displays a high level of agreement with the actual PSG-derived 

AHI, and high diagnostic performance in both referral and non-referral cohorts. Our 

analytical approaches not only allowed us to develop a clinically useful tool, but also 

explain the model through the SpO2 data used by each of the 199 base classifiers of the 



ensemble, thus decreasing the common ‘black box’ perception of automatic models. 

Table 4. Performance of three machine-learning alternatives in our test sets.  

 

SHHS1t SHHS2 RHUH 

5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 5 e/h 15 e/h 30 e/h 

AdaBoost.M2 

Se (%) 87.32 88.67 84.81 96.11 95.34 92.07 90.00 85.47 85.81 

Sp (%) 70.23 79.44 94.24 48.80 63.07 89.28 100.00 92.05 97.13 

PPV (%) 95.18 75.12 67.76 89.90 68.20 66.23 100.00 96.62 96.21 

NPV (%) 45.15 90.93 97.75 72.58 94.21 98.01 42.31 70.43 88.95 

LR+ 2.93 4.31 14.72 1.88 2.58 8.59 Inf 10.74 29.86 

LR- 0.18 0.14 0.16 0.08 0.07 0.09 0.10 0.16 0.15 

Acc (%) 85.12 83.25 93.06 87.87 77.71 89.80 90.68 87.27 91.93 

Acc4 (%) 63.40 58.86 73.60 

Cohen’s  0.489 0.443 0.622 

 SVMr 

Se (%) 96.01 91.97 84.60 99.18 97.92 90.45 100.00 96.15 89.86 

Sp (%) 46.54 74.10 95.17 21.26 57.47 89.51 50.00 67.04 91.38 

PPV (%) 92.36 71.31 71.43 85.66 65.66 66.32 96.46 88.58 89.86 

NPV (%) 63.43 92.95 97.74 84.48 97.08 97.62 100.00 86.76 91.38 

LR+ 1.80 3.55 17.51 1.26 2.30 8.62 2.00 2.92 10.42 

LR- 0.09 0.11 0.16 0.04 0.04 0.11 0.00 0.06 0.11 

Acc (%) 89.62 81.46 93.85 85.60 75.82 89.69 96.58 88.20 90.68 

Acc4 (%) 65.65 53.42 76.09 

Cohen’s  0.501 0.364 0.639 

 RT 

Se (%) 87.02 83.61 84.38 95.88 93.76 91.06 90.00 84.62 85.14 

Sp (%) 70.65 84.00 95.26 49.46 69.78 90.62 100.00 94.32 97.13 

PPV (%) 95.23 78.54 71.77 90.00 72.04 68.92 100.00 97.54 96.18 

NPV (%) 44.70 87.98 97.71 71.70 93.08 97.80 42.31 69.75 88.48 

LR+ 2.96 5.23 17.80 1.90 3.10 9.71 Inf 14.89 29.63 

LR- 0.18 0.20 0.16 0.08 0.09 0.10 0.10 0.16 0.15 

Acc (%) 84.90 83.84 93.90 87.80 80.66 90.71 90.68 87.27 91.61 

Acc4 (%) 64.46 61.80 73.29 

Cohen’s  0.498 0.479 0.618 

Acc: accuracy, Acc4: four-class accuracy, LR+/LR-: positive and negative likelihood ratio, PPV/NPV: 

positive and negative predictive value, Se/Sp: sensitivity and specificity. Bold values correspond to figures 

higher than our proposal. 

 

4.1 Explaining the AHI estimation 

ODI3 accounted for 85.7% of the relative importance, i.e., the contribution to the final 

overall AHI estimation. This is consistent with previous studies in which ODI3 reflected 

the principal OSA-related informative component regarding SpO2 [17,49]. However, 

ODI3 alone underestimates AHI as not all apneic events lead to a desaturation 



[17,18,35]. Underestimation is not generally observed in our model, suggesting that the 

information contained in the remaining features is counteracting this effect. This would 

be supported by the similarity between the relative importance accounted by these 

features (14.3%) and the average amount of apneic events not accompanied by a 3% 

desaturation in SHHS dataset (11.5%) [18]. Most of this remaining relative importance 

is composed of the eight features mentioned in Results section, which are related to 

signal complexity (LZC, msEntarea), irregularity (mSEntscale, SampEn), SpO2 values 

distribution over time (M4t) and frequencies (WD), and the number and amplitude of 

recursive desaturations lasting 30 to 70 seconds irrespective of specific percentages of 

decrease (M1fBOI, MABOI). Therefore, we posit that the overnight patterns characterized 

by these features reflect additional information about OSA, regardless of whether it is 

related to other events involved in AHI definition (e.g. arousals) or not (e.g. hypoxic 

burden). However, further research will be required to define the specific relationships 

between these parameters and other OSA-related effects.  

 

4.2 A longitudinal perspective 

A comparison of the results in SHHS1t and SHHS2 revealed that the latter shows a 

higher degree of OSA severity overestimation. As shown in Figure 7, this behavior 

remains when the 2,647 exact same subjects from SHHS1t (SHHS1t-fu) are compared 

with their follow-up test five years later (SHHS2). As age was the only characteristic in  



 

Figure 7. Confusion matrices achieved in A) the subjects from SHHS1t with a follow up PSG 

and B) the same subjects 5 years later (SHHS2). 

Table 1 that showed statistically significant differences between SHHS1t and SHHS2, 

we further analyzed our results to assess whether it is somehow influencing our 

predictions. For each SHHS1t-fu and SHHS2, the non-parametric Mann-Whitney U test 

was used to assess potential differences between the ages of subjects rightly or wrongly 

predicted within the same actual OSA group. Among the 12 comparisons for each of the 

datasets, age was only found significantly different (p-value < 0.01) in 2 for SHHS2 (no 

OSA vs. mild OSA and vs. moderate OSA within the actual class no OSA) and 2 more 

for SHHS1t-fu (no OSA vs. mild OSA within no OSA; and mild-OSA vs. no OSA within 

mild OSA). Therefore, we conclude that age is not directly influencing the estimation of 

our model. 

 

Night-to-night variability could underlie some of the different results found in SHHS1t-

fu and SHHS2 [62]. However, since there is a clear tendency only towards 

overestimation, we hypothesize that the main reason may be that other morbidities 

developed during the 5-year span are influencing SpO2 signals, thus increasing the 

estimated severity prediction in some subjects. This idea would be supported by the 

previously described rise in cardiovascular and respiratory diseases between SHHS1 and 



SHHS2, yet without significantly increasing AHI [63]. Although the diagnostic ability 

reached in the SHHS2 database is high, particularly for severe OSA, the future 

assessment of our model using cohorts with co-morbidities affecting oxygen saturation 

would potentially improve the accuracy of the application of our model. It would also 

provide more qualitative information to help clinicians in their therapeutic decisions. 

 

4.3 Diagnostic ability and comparison with the state-of-the-art studies 

Our OSA-specific LSBoost model reached high diagnostic ability in both non-referral 

and referral datasets. It additionally outperformed other regression and classification 

machine-learning methods evaluated on the same datasets. Previous studies also 

focused on the analysis of at-home SpO2 to automate OSA detection (Table 5). Some 

of these models also reached high diagnostic ability, yet only assessed either one of the 

two cohort types. 

 

Five studies have focused on non-referral cohorts. All but one used the SHHS dataset, 

at least partially. In contrast, Chung et al. directly evaluated different thresholds of 4% 

ODI to determine OSA severity in a sample of 475 surgical patients [64]. Accuracies 

were high at the cost of unbalanced Se/Sp pairs, which differed for more than 20 

percentage points in all cases. Schlotthauer et al. and Rolón et al. (2018 and 2020) used 

a subset of the SHHS2 database to respectively evaluate estimations of ODI3 and AHI  

in the 15 e/h severity threshold [19–21]. Schlotthauer et al. used empirical mode  

 

 

 

 

 

 



Table 5. State-of-the-art studies focused on analysing SpO2 recordings acquired at home or using 

SHHS database with other signals.  

Study # Subjects Purpose and main predictor 
AHI  

(e/h) 

Se 

(%) 

Sp  

(%) 

Acc 

(%) 

Four 

class  

Non-referral 

Chung et al. 

(2012) [64] 
475  

ODI4 direct assessment 

(univariate) 

5 96.3 67.3 87.0 

nd+ 15 70.0 92.5 84.0 

30 76.0 97.2 93.7 

Schlotthauer et 

al. (2014) [19] 

996  

(SHHS2) 

ODI3 estimation and evaluation 

using Empirical Mode 

Decomposition (univariate) 

15 83.8 85.5 nd nd 

Rolón et al. 

(2018) [20] 

954  

(SHHS2) 

AHI estimation using Discrepancy 

Measures and Extreme Learning 

Machine 

15 81.9 87.3 84.6 nd 

Deviaene et al. 

(2019)[18] 

5793  

(SHHS1) 

 AHI estimation using Random 

Forest to detect apneic events and 

Robust Regression to correct bias 

5 83.5 88.0 84.3 

0.547 15 75.6 95.8 87.0 

30 77.3 97.7 94.3 

2651  

(SHHS2) 
5 94.4 67.5 89.7 

0.612 15 88.8 87.7 88.2 

30 87.8 94.4 93.2 

Rolón et al. 

(2020) [21] 

954  

(SHHS2) 

AHI estimation after using 

structured dictionary learning and 

Multi-layer perceptron to detect 

apneic events 

15 89.1 86.7 87.9 nd 

This study 

5793  

(SHHS1) 

AHI estimation using LSBoost 

5 93.8 56.3 89.2 

0.561 15 87.0 84.1 85.3 

30 82.2 96.3 94.6 

2647  

(SHHS2) 
5 98.7 32.8 87.2 

0.478 15 95.2 69.5 81.1 

30 89.8 92.0 91.6 

Referral 

Olson et al. 

(1999) [62] 
793 

Classification of sleep apnea using 

Delta index (univariate) 

5 82.7 54.2 nd 

nd 15 88.5 39.6 67.1* 

30 92.6 34.1 nd 

Rofail et al. 

(2010) [65] 
72 

ODI3 direct assessment 

(univariate) 

5 63.0 83.0 69.5* 

nd 
30 90.0 88.0 88.9* 

Gumb et al. 

(2018) [22] 
178 

ODI4 direct assessment 

(univariate) 
5 88.0 74.5 nd nd 

Gutiérrez-Tobal 

et al. (2019) [17] 
320 

OSA severity classification using 

AdaBoost.M2 

5 96.6 50.0 92.9 

0.479 15 92.5 73.5 87.4 

30 88.9 65.5 78.7 

Álvarez et al. 

(2020) [61] 
239 

AHI estimation using Support 

Vector Machines 

5 97.8 16.7 92.7 

0.610 15 97.3 54.6 87.5 

30 89.4 95.9 92.7 

This study 
322  

(RHUH) 
AHI estimation using LSBoost 

5 99.0 63.6 96.6 

0.663 15 85.5 93.2 87.6 

30 86.5 96.6 91.9 

SHHS evaluation using other signals (non-referral) 

Van Steenkiste 

et al. (2019)[66] 

Abd. Respiration 

2100 

(SHHS1) 

AHI estimation after using Long-

short Term Memory networks to 

detect apneic events 

5 99.3 5.9 97.8 

0.329 15 91.0 37.6 78.8 

30 67.2 81.5 76.0 

Olsen et al. 

(2020) [67] 

ECG 

9704 

(SHHS and 

others) 

AHI estimation after using Gated 

Recurrent Units networks to detect 

apneic events 

5 99.1 32.0 95.7 
nd 

30 69.1 95.5 89.2 

Uddin et al. 

(2021) [68] 

Airflow and 

SpO2 

988 

(SHHS1) 

AHI estimation after using a new 

ad-hoc automatic algorithm to 

detect apneic events 

5 98.9 60.0 90.7 

nd 15 94.7 88.5 91.0 

30 87.8 98.2 96.7 

         +nd: not enough data to estimate; *estimated from reported data. 



decomposition as the main analytical tool, whereas Rolón et al. applied discrepancy 

measures (2018) and structured dictionary learning (2020). The three studies reported 

high Acc with balanced Se/Sp. Finally, Deviaene et al. used the whole SHHS dataset to 

develop a random forest model focused on detecting 3% desaturations caused by apneic 

events [14]. They subsequently estimated AHI by counting these events and applied a 

robust regression methodology to correct biases. Their results reached lower  than our 

LSBoost model in SHHS1, mainly due to our high Acc and more balanced Se/Sp in 15 

e/h and 30 e/h. In contrast, they reported higher  in SHHS2, where our model suffers 

from the aforementioned overestimation. However, their methodology to select the 

training set led them to include 223 subjects from SHHS1 that have a corresponding 

recording in SHHS2 [14]. No bias was found towards correct predictions in these 

subjects for the 15 e/h threshold, but this was not evaluated for 5 e/h and 30 e/h [14]. 

 

Five additional studies have focused on clinical referral databases. Olson et al., Rofail 

et al. and Gumb et al. used univariate approaches evaluating delta index, ODI3, and 

ODI4, respectively [22,62,65]. Rofail et al. reached high Acc and balanced Se/Sp for 

30 e/h, but the remaining figures were moderate in the three studies. Gutiérrez-Tobal et 

al. used AdaBoost.M2 to directly classify subjects into four OSA severity degrees 

without AHI estimation prior to the class assignment [12]. Their results were noticeably 

less performant than in the current study probably due to the need for splitting their 

smaller sample into training and testing, a less deep characterization of SpO2, and the 

use of a reference in-hospital AHI obtained in a different night than SpO2 [12]. This 

latter drawback was corrected by Álvarez et al., resulting in a high four class  after 

estimating AHI with support vector machines [61]. However, the performance in 5 e/h 

and 15 e/h suffered from unbalanced Se/Sp.  



 

In summary, the single LSBoost model proposed performed similarly to all other 

methods that exhibited the highest diagnostic ability among non-referral cohorts, while 

clearly outperforming all the proposed approaches focused on referral databases. 

Additionally, our model also outperformed the two studies that used the SHHS dataset 

with other signals [66,67], thus suggesting the superiority of SpO2 when following a 

single-channel approach to simplify OSA diagnosis. Uddin et al., however, followed a 

two-channel approach by the jointly use of airflow and SpO2 [68]. They involved 988 

subjects from the SHHS1 dataset to develop and test a new ad-hoc detection algorithm. 

Their method, when evaluated in the 15 e/h AHI threshold, reached clearly higher 

performance than the results of our model in our SHHS1 test group. Moreover, very 

similar figures were reached when comparing the results from 5 e/h and 30 e/h AHI 

thresholds, with their proposal increasing the complexity of the test due to the extra 

airflow channel.  

 

4.4 Clinical usefulness of the proposal 

Our OSA-specific model offers high diagnostic capability regardless of whether the 

strategy used focuses on primary care services (low pre-test probability) or specialized 

sleep facilities (high pre-test probability). In a context in which approximately 80% of 

moderate and severe patients remain undiagnosed [69], a reasonable purpose in a 

primary care setting is to conduct a protocol to screen as many hidden OSA positive 

subjects as possible. The high Se (>93%) and PPV (>87%) reached by our model in 5 

e/h for both SHHS1t and SHHS2 groups suggest the suitability of our model for this 

task. Moreover, the decision curves showed that, when used to establish the non-referral 

subjects that should undergo PSG, our model produces higher net benefit than not 



conducting any protocol for almost any probability threshold a clinician would 

consider. This is an important result as sending no one to PSG is the current strategy 

for non-referral subjects in most healthcare systems [70]. It also showed that our model 

reaches higher net benefit than sending all the subjects to PSG for any probability 

thresholds above 0.39. However, this result is more trivial as sending all non-referral 

subjects to PSG is a unapproachable strategy due to the limited availability of sleep 

facilities and the high prevalence of the disease [11]. Notice that, when using our model 

to screen patients in non-referral populations, the costs associated to the diagnostic tests 

would not be reduced but increased by the costs of at-home oximetry. Further studies 

should address whether these costs may be compensated by a potential less utilization 

of healthcare systems by patients who would not develop morbidities associated to 

OSA.   

 

On the other hand, in a specialized sleep unit, a reasonable purpose for our model would 

be to use it as a surrogate for the PSG, as determined by the high OSA probability 

context. The appropriateness of our proposal for this goal is first supported by the high 

values reached in both Se and Sp in our RHUH group, especially for the AHI thresholds 

15 e/h and 30 e/h (Se > 85% and Sp >93%). Moreover, in the decision curve analysis, 

to surrogate PSG is equivalent to recommend medical treatment for the referral subjects 

that the model considers they are suffering from the disease. In this way, above a 

probability threshold of 0.39, our model achieves higher net benefit than a strategy 

based on ‘treat all’ subjects. As expected, it also reached higher net benefit than ‘treat 

no one’ for all thresholds, however this would be an impractical approach in this high 

pretest probability scenario. Moreover, we introduced in the analysis the relative cost 

of the standard PSG and the at-home oximetry test used to obtain the data for our 



proposal. Importantly, the LSBoost-based model showed higher net benefit than PSG 

in the most realistic scenarios, that is, when a clinician would be willing to conduct few 

PSGs to confirm that a high pretest probability subject is finally positive. No other ‘test 

harms’ were considered as they are difficult to measure objectively. However, we 

hypothesize that adding aspects such as patient discomfort during the test, need to move 

to specialized sleep units, accelerated patient access to diagnosis and treatment, and in-

lab lack of representativeness of the habitual sleep environment, would increase the 

relative net benefit of our proposal comparing to PSG. Contrary, unnecessary treatment 

for false positive subjects would act in the opposite sense. In this regard, it is noteworthy 

to mention that only mild or moderate side effects are usually reported in the most 

widespread treatment approaches [71]. Nevertheless, future ad-hoc studies should focus 

on providing a more comprehensive view on all these aspects. 

 

4.5 Limitations and future work 

We have already discussed the need for future evaluation of the performance of our 

model in the presence of co-morbidities, and the need for further analysis of the 

extracted SpO2 information to find associations with other common OSA events. 

Another limitation is the sample size of the referred database. Although it is one of the 

largest among the studies focused on SpO2 recordings, it is remarkably smaller than the 

SHHS dataset. Therefore, future assessment of larger referral databases would help 

match the statistical power of our results on referral and non-referral cohorts. In 

addition, our validation strategy led to a smaller proportion of subjects for training than 

for testing. It was the result of trying to avoid biases in the model AHI estimation. 

However, using more training instances could derive into even more accurate models. 

There is also a need for assessing recordings from younger subjects as only 25% of 



those included in RHUH dataset are less than 46 years old and none from the SHHS 

dataset are less than 40 years of age. However, OSA is known to increase its prevalence 

with age, with only around 1.2% of subjects below 44 years old presenting AHI ≥ 5 e/h 

[72]. Similarly, although the SHHS dataset provides race data, it is only detailed for 

white and black subjects. Moreover, only white subjects were included in the RHUH 

dataset as a result of the natural demographics in the area of Valladolid (Spain). 

Therefore, a comprehensive assessment of our proposal involving subjects from other 

ethnicities is still pending. In this sense, despite significant differences in the proportion 

of black subjects included in our SHHS1 training set comparing with our SHHS1 test 

set, our model rightly classified a similar proportion of black and all other races subjects 

(65.5% vs. 70.3%), showing non-significant p-values (> 0.01 in Fisher’s exact test). 

The current use of the AHI thresholds to predict OSA-related adverse outcomes or 

mortality is also under discussion [73,74]. Although it is accepted as the main 

diagnostic option to establish OSA and its different severity categories [73], it is also 

as true that there is an active search for improving the AHI capability to predict the 

related risks [73,74]. In this regard, one strength of our regression model is that changes 

in AHI thresholds could be easily adopted in our AHI estimations. Future research, 

however, would be needed to assess to what extent our estimated AHI is sensitive to 

OSA-related negative consequences different from respiratory events. In addition, a 

comprehensive cost-effectiveness study would be also useful to complement our 

findings. Finally, the investigation of new automated diagnostic techniques is another 

future goal. Deep learning algorithms could be interesting alternatives at the cost of 

reduced model interpretability.  

 

 



5. CONCLUSIONS 

Our LSBoost-based model exhibits very high performance in automatic OSA diagnosis 

when compared with the extant literature focused on referral or non-referral cohorts. 

The model also informed that some of the characteristics of the SpO2 signal can 

counteract the tendency of the ODI3 to underestimate OSA severity. According to our 

findings, we conclude that our approach can be used to derive clinically valuable 

protocols to screen OSA patients attending primary care services or avoid full PSGs in 

specialized sleep facilities, thus demonstrating the usefulness of the SpO2 signal 

obtained at home.  
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