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Abstract: 

Background: Machine-learning approaches have enabled promising results in efforts to 

simplify the diagnosis of pediatric obstructive sleep apnea (OSA). A comprehensive 

review and analysis of such studies increase the confidence level of practitioners and 

healthcare providers in the implementation of these methodologies in clinical practice.  

Objective: To assess the reliability of machine-learning- based methods to detect pediatric 

OSA. 

Data Sources: Two researchers conducted an electronic search on the Web of Science 

and Scopus using term, and studies were reviewed along with their bibliographic 

references.  

Eligibility Criteria: Articles or reviews (year 2000 onwards) that applied machine 

learning to detect pediatric OSA; reported data included information enabling derivation 

of true positive, false negative, true negative, and false positive cases; polysomnography 

served as diagnostic standard.  

Appraisal and Synthesis Methods: Pooled sensitivities and specificities were computed 

for three apnea-hypopnea index (AHI) thresholds: 1 event/hour (e/h), 5 e/h, and 10 e/h. 

Random-effect models were assumed. Summary receiver-operating characteristics 

(SROC) analyses were also conducted. Heterogeneity (I2) was evaluated, and publication 

bias was corrected (trim and fill). 

Results: Nineteen studies were finally retained, involving 4,767 different pediatric sleep 

studies. Machine learning improved diagnostic performance as OSA severity criteria 

increased reaching optimal values for AHI=10 e/h (0.652 sensitivity; 0.931 specificity; 

and 0.940 area under the SROC curve). Publication bias correction had minor effect on 

summary statistics, but high heterogeneity was observed among the studies. 
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Conclusions: Machine learning can reliably detect severe OSA. However, further steps 

are needed to improve diagnostic performance for less severe pediatric OSA, and thus 

increase the confidence levels when using these approaches. 
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1. INTRODUCTION 

Pediatric obstructive sleep apnea (OSA) has been the focus of increasing scientific 

interest during the last several decades. Since it was initially described by Guilleminault 

and colleagues1, the cumulative evidence regarding OSA high prevalence2, sub-optimal 

diagnostic rates3, and potential long-term cardiovascular, neurocognitive, and behavioral 

associated morbidities2, have driven substantial research efforts in two major directions, 

namely finding effective treatments4 and enabling simplified objective and less costly 

diagnostic methods3. In this respect, whereas both surgical and non-surgical interventions 

have successfully been developed and validated4,5, the gold standard for reaching the 

diagnosis of OSA in children remains overnight polysomnography (PSG), and due to its 

complexity, costs and access delay problems, it has become obvious that PSG is far from 

being the ideal diagnostic solution for habitually snoring children at risk for OSA6. 

Several approaches have been proposed to overcome such PSG limitations and simplify 

the diagnostic methodology. For example, sleep-related questionaries7,8, symptoms-based 

scores9, and automated single-channel recordings10–12 have been frequently assessed but 

have not yielded the accuracy thresholds that would be acceptable for widespread 

adoption13. In contrast, machine-learning techniques have elicited increasingly growing 

interest due to their prominent impact in a wide range of healthcare processes14. Indeed, 

promising results have also been reported in studies involving machine-learning 

approaches that facilitate automated OSA diagnosis using pediatric recordings15–33. 

However, a substantial level of skepticism remains among the sleep specialists and 

clinical practitioners alike, regarding the clinical use of these automatic tools34.  

There is little doubt that availability of a reliable, automated, and simplified alternative 

to PSG would improve OSA diagnosis in children from several different perspectives. On 

the one hand, less need for equipment requirements, particularly those related to the 
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number of sensors, would improve patient comfort. It would also open the door to home 

testing,6 and consequently, reduce the long waiting lists currently in place around the 

world for a child to undergo a PSG. On the other hand, an automated methodology would 

decrease the time and effort by sleep specialists spent on the visual inspection of PSG-

derived overnight physiological signals6, thus accelerating the diagnostic process. Taken 

together, these advantages would facilitate earlier diagnosis and access to treatment for 

the affected children. 

Based on the aforementioned considerations, we conducted a systematic review and 

meta-analysis to shed light on the reliability of machine-learning studies focused on the 

diagnosis of pediatric OSA. Accordingly, we have summarized the main methodological 

steps undertaken to systematically select the extant set of published studies and compare 

them with current standards and performance expectations in the field. To this effect, we 

assessed the type of machine-learning methods used, the validation strategy followed, and 

the explainability of the models obtained. Moreover, we gathered the pooled sensitivity 

and specificity statistics from the studies in a meta-analysis, thus providing a more 

accurate perspective on the clinical usefulness of machine-learning approaches in the 

context of the diagnosis of pediatric OSA.  
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2. METHODS 

2.1. Eligibility criteria 

Table 1 summarizes the eligibility criteria used to include studies in the systematic 

review and meta-analysis. These criteria were selected by consensus from all the authors. 

Only articles and reviews from the year 2000 onwards (until February 1st, 2021) and 

written in English were considered. This span embraces the boom experimented by 

machine-learning methods applied to health problems. Documents in both ‘published’ 

and ‘early access’ stages were accepted, thus accounting for the latest findings on 

machine-learning applied to pediatric OSA. They were required to be focused on pediatric 

OSA diagnosis and also that machine-learning methods were used to either directly derive 

an automatic diagnosis or detect the respiratory events (apneas and hypopneas) that are 

clinically used to reach a diagnosis. However, only those studies reporting performance 

metrics from automatic subject-based diagnosis were considered. Here, the term ‘machine 

learning’ was adopted in the wide sense, i.e., any classification or regression automatic 

method that requires a training process to derive a predictive model potentially using 

multiple variables. In this way, we can analyze the use and performance of the simplest 

models if needed. Moreover, the studies were required to report sufficient data to enable 

extraction or computation of the number of true positive, false negative, true negative, 

and false positive subjects for at least one specifically defined apnea-hypopnea index 

(AHI) threshold. Importantly, the performance of the methods was required to be reported 

in comparison with the overnight PSG-derived diagnosis.  

 

2.2. Information sources and bibliography search 

The advanced search functionality of the Web of Science (WoS) and Scopus electronic 

databases was used to conduct the initial literature screening. Table 2 shows the query 
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strings included within the searching boxes for each of the databases. The eligibility 

criteria related terms were searched in the title, abstract, and keywords. These terms were 

chosen by agreement of all the authors of the study to include suitable vocabulary on both 

machine learning and pediatric OSA. Those terms with different spelling in British and 

American English were duplicated to embrace both options. The searches were conducted 

by two independent researchers (GCG-T and DA), who also conducted subsequent 

reviews of the studies found using both electronic databases. These studies were assessed 

for duplicates, as well as for meeting the eligibility criteria shown in Table 1. Each 

researcher proposed a selection of studies to be included in the systematic review/meta-

analysis. Discordances were resolved by consensus. As a secondary data source, those 

papers referenced in this initial set of studies were also reviewed by each researcher to 

check for eligibility and to form the final set. This was also obtained by consensus after 

this last step. 

 

2.3. Data collection 

Table 3 shows the data extracted from each of the studies selected after completion of 

the bibliographic search. The studies are gathered in four main categories: general 

information from the studies, applied methods, population, and meta-analysis data. 

General information was directly obtained from the search in the electronic databases 

(WoS and Scopus) and automatically exported to a spreadsheet. The remaining data were 

manually introduced in the same spreadsheet after careful review of each of the studies.  

 

2.4. Meta-analysis 

The mada and meta R packages35,36 were used to perform meta-analysis of diagnostic 

performance-based studies. Total effect size for univariate sensitivity and specificity 
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diagnostic metrics was estimated using a random-effects model with a logit 

transformation of the input data, i.e., TP, FN, TN, and FP obtained from each study. The 

Higgins’ I2 and the p-value of the Cochrane Q statistics were computed to characterize 

heterogeneity. In addition, a bivariate diagnostic random-effects meta-analysis was 

performed using summarized receiver-operating characteristics (SROC) curves to 

account for the interdependence of sensitivity and specificity. Funnel plots were used to 

assess the influence of publication bias. The trim and fill method37 from the metaphor R 

package was subsequently applied to adjust for this source of bias and correct the effect 

sizes derived from the forest plots. 
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3. RESULTS 

3.1. Study selection and characteristics 

Figure 1 displays a flowchart with the number of studies selected after each step of the 

bibliographic search. Sixty-three documents were found after the electronic automatic 

search, either using WoS (47) or Scopus (16). A total of 10 duplicated studies were 

identified within the search results from both databases, and duplicates were removed 

from subsequent analyses. The remaining 53 documents were assessed for meeting 

eligibility criteria, with only 17 studies deems as eligible. Up to 25 references from these 

studies were also reviewed, and 2 more eligible studies were added to the final set. 

Table 4 summarizes the main data obtained from the 19 selected studies. All of them 

were original articles. For those studies reporting results from more than one machine-

learning method, and without any other methodological difference, only the one 

highlighted by the authors as the top performing method was considered. In contrast, 

results derived using different data sources (e.g., different biomedical signals) but using 

equal machine-learning methods were all included even though they were reported in the 

same study. The following subsections are devoted to the data analysis included in Table 

4. 

 

3.2. Population characteristics 

The studies reported a cumulative sample size of 11,200 children. Among them, 7,891 

were used to obtain the metrics to evaluate the diagnostic performance of their models 

and are included in Table 4. However, we were able to identify that some studies analyzed 

totally or partially the same subjects, and that there were only 4,767 unique subjects. In 

addition, individual sample sizes varied greatly between studies. Overall, the studies 

covered the entire non-adult age range. In particular, the two studies with the largest 
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databases (Hornero et al.16 3,602 and Vaquerizo-villar et al.24 935 subjects) covered the 

ranges 2-18 and 0-18 years, respectively. However, Calderón et al. covered only children 

between 5-10 years23. There was consistency among the studies concerning gender, 

showing a higher prevalence of male subjects in the range of 52.0% to 65.3%, 

commensurate with the previous literature showing no differences in pediatric OSA 

prevalence between males and females or slightly increased prevalence in male subjects2. 

This same pattern appears was replicated in the selected studies herein, whereby 11 of 19 

papers reported less than 60.0% of male prevalence and the remaining 8 reported 60.0% 

to 65.3% males. Finally, 18 out of the 19 studies involved symptomatic children, that is, 

showing high pre-test probability of suffering from OSA. Only the study by Skotko et al. 

did not recruit subjects on the basis of related symptoms22. However, their study focused 

on predicting OSA within a cohort of subjects suffering from Down syndrome, which is 

a group at high risk for OSA due to craniofacial and neuromuscular tone abnormalities. 

 

3.3. Data used to train the machine-learning models 

Despite not including any search term related to biomedical signal processing in the 

query strings of Table 2, most of the selected studies used data from overnight 

physiological signals to train and develop the machine-learning models. Peripheral blood 

oxygen saturation signal (SpO2) was the predominant signal recorded, with 16 out of 19 

studies using it alone (9)16,19,20,23–26,29,30 or associated with another type of  physiological 

data (8)17,18,27–29,31–33. Airflow signal (AF) was used in 3 studies17,28,29, pulse rate 

variability (PRV) in 231,32, and ECG and actigraphy in one18,21 each. Non-biomedical 

signal data (clinical variables, anthropometrics, and demographics) were also included in 

the analyses corresponding to 5 studies15,18,22,27,33. However, only 3 of these studies 

reported results of models trained exclusively with this information15,18,22. 
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3.4. Machine-learning methods 

A heterogeneous range of machine-learning methods was used among the selected 

studies. Logistic regression was the most frequent (6 studies)17,19,20,25,32,33, whereas  multi-

layer perceptron (MLP) artificial neural network was used in 4 studies16,26–28, and support 

vector machine (SVM)18,30 and ensemble-learning adaptive boosting (AdaBoost)23,29 in 

two each. Multivariate linear regression (MLR)15, logic learning machine (LLM)22, linear 

discriminant analysis (LDA)31, and quadratic discriminant analysis (QDA)21 appeared in 

1 each. Interestingly, only one study followed a deep learning approach (convolutional 

neural network, CNN)24, which has demonstrated superior performances in health-related 

problems in the last several years38. 

Efforts to explain the machine-learning predictions were also evaluated. Noticeably, 

only 5 out of the 19 studies reported quantitative data indicating further analysis to try to 

explain the decisions of their models15,18,20,22,32. However, no studies attempted to explain 

decisions of the most complex models or use the latest approaches on ‘explainable 

artificial intelligence’39. 

 

3.5. Validation strategies 

All the studies compared their results against the apnea-hypopnea index (AHI) derived 

from the full PSG, i.e., the standard method used to diagnose pediatric OSA40,41. AHI 

values were used to establish four severity categories of OSA (no OSA: AHI < 1e/h; mild: 

1 e/h ≤ AHI < 5 e/h; moderate: 5 e/h ≤ AHI < 10 e/h; and severe: 10 e/h ≤ AHI)42. 

Consequently, most of the studies (n=17) reported results for one or more of these AHI 

thresholds. However, several studies showed results from other less frequently used 

thresholds, such as 2 e/h and 3 e/h, and 8 studies only reported data for a single AHI 

threshold15,17,19,21,23,30,31,33. 
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Several approaches were used to validate the machine-learning methods. Two 

(Training/Test) or three (Training/Validation/Test) subgroups were used depending on 

whether the machine-learning method required hyperparameters to be tuned. These 

strategies were applied directly, i.e., with real 2 or 3 subgroups, or including subgroup 

simulation methods such as leave-one-out cross-validation (loo-cv), bootstrapping, or k-

fold cross-validation (k-fold-cv). Only three exceptions were found to the use of a third 

real or simulated subgroup due to hyperparameter tunning. Two of them were the studies 

of Calderon et al.23 and Bertoni et al.18, whose corresponding AdaBoost and SVM models 

usually require hyperparameter tuning to reach an optimum performance (e.g., penalty 

parameters such as learning rate or C, respectively).  In contrast, Xu et al.26 applied the 

same exact MLP than the one previously internally validated by Hornero et al.16.  

 

3.6. Meta-analysis: Forest plots and summary ROC curves 

True positive, false negative, true negative, and false positive subjects obtained from the 

studies were included in the meta-analysis. Only data from the AHI thresholds 1 e/h, 5 

e/h, and 10 e/h were used as there was insufficient number of studies reporting data on 2 

e/h and 3 e/h. This action resulted in 17 out of 19 studies being included in the meta-

analysis. 

Figures 3-5 show the forest plots corresponding to the analyses of sensitivity and 

specificity for the 3 above-mentioned AHI thresholds. Individual and composite results 

are provided for each statistic, including 95% confidence intervals. Results for studies 

involving and not involving SpO2 are provided separately in 2 subgroups as well. 

Heterogeneity measures are also displayed. As can be observed, pooled sensitivity 

decreases as AHI threshold increases, showing values of 0.921 [0.866; 0.955], 0.762 

[0.722; 0.798], and 0.682 [0.564; 0.780] for 1 e/h, 5 e/h, and 10 e/h respectively. An 



13 
 

increasing opposite tendency is displayed for pooled specificity, which shows 0.386 

[0.232; 0.566], 0.851 [0.765; 0.909], and 0.958 [0.934; 0.973], respectively. In all cases, 

heterogeneity is significantly high according to the p-value of Cochrane Q (< 0.01) and 

Higgins’ I2 values, which ranges 72%-95% thus justifying the choice of the random-

effects model to conduct the meta-analysis. All the pooled sensitivity and specificity 

values are higher when considering only those results involving SpO2 data except in the 

cases of the sensitivity for the AHI thresholds 1 e/h and 5 e/h. In these 2 instances, the 

statistics were slightly higher for the results not involving SpO2 at the cost of notably 

wider 95% confidence intervals. Still, the pooled overall performance when using SpO2 

data is clearly higher for both moderate and severe pediatric OSA. Similarly, 

heterogeneity decreases in all statistics when considering only results involving SpO2 data 

(64%-93%). As anticipated by the pooled metrics, the top performance methods were 

reported for moderate and severe OSA and in studies involving SpO2 data. Accordingly, 

the deep learning approach (a convolutional neural network) using only SpO2 data, 

proposed by Vaquerizo-Villar et al.24, reached the highest overall figures for moderate 

OSA in their 935 test subjects (73.4% sensitivity, 94.3% specificity, 88.3% accuracy), 

with the proposal by Garde et al.31 (linear discriminant analysis on SpO2 + pulse rate 

variability data) reaching slightly lower overall values in their 146 subjects (89.3% 

sensitivity, 83.3% specificity, 85.6% accuracy). On the other hand, Bertoni et al.18 

proposed a support vector machine method applied to clinical, actigraphy, and SpO2 data 

that reached the highest performance for severe OSA in their 187 subjects (93.9% 

sensitivity, 100.0% specificity, 98.4% accuracy). Similarly, the above-mentiuoned 

proposal by Vaquerizo-Villar et al.24 reached the next highest results (76.6% sensitivity, 

97.3% specificity, 93.9% accuracy).   
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Figure 5 displays the SROC curves for bivariate analysis, which account for 

interdependencies between sensitivity and specificity at each AHI threshold. The shape 

of the curves agrees with the values of the pooled sensitivity/specificity pairs shown 

above for each case. Moreover, an increase in the area under the SROC curves (AUC) is 

observed as the AHI threshold is higher, reaching values of 0.791, 0.826, and 0.940 for 1 

e/h, 5 e/h, and 10 e/h, respectively.  

 

3.7. Publication bias 

Figure 6 shows the funnel plots of sensitivities (left column) and specificities (right 

column) for each of the three AHI thresholds (1 e/h, 5 e/h, and 10 e/h from upper to lower 

rows). Filled black dots represent data from real studies, whereas blank dots represent 

simulated studies added by means of the trim and fill method to correct for possible 

publication bias. Accordingly, for AHI = 1 e/h, 5 studies were added to sensitivity and 2 

to specificity; for AHI = 5 e/h, 6 studies were added to sensitivity and none to specificity; 

and for AHI = 10 e/h, 1 study was added to sensitivity and 5 to specificity. All the added 

studies represent proportions in the range 0%-26% among the sum of real and simulated 

results for each case. 

Table 5 summarizes the corrected pooled sensitivities, specificities, and Higgins’ I2 

values for each AHI threshold when considering the added studies. The number of these 

and the total number of results are also shown for each case. All the sensitivity and 

specificity values from all AHI thresholds are reduced compared to those originally 

reported in forest plots, except for the specificity in 1 e/h that increased by 11 decimal 

points. The decreased decimal points of the remaining results are in the range 2 to 7. 

Moreover, all the heterogeneity values were slightly higher than the original. 
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4. DISCUSSION 

In this work, we conducted a systematic review and meta-analysis on the reliability of 

machine-learning methods to diagnose pediatric OSA. Nineteen studies spanning the 

period between 2004-2021 were included and involved 4,767 unique pediatric subjects. 

We found decreasing pooled sensitivities and increasing pooled specificities as OSA 

severity worsened, thus reflecting the well-known threshold effect of diagnostic test 

accuracy meta-analyses43. Very high pooled specificity (0.931 [0.894; 0.955]) was 

reached for the severe OSA AHI threshold (10 e/h), which was accompanied by a 

moderate sensitivity (0.652 [0.530; 0.758]). Concurrently, this moderate sensitivity and 

the very low number of false positives reflected in the specificity value, reveals high 

reliability when machine-learning methods assign a subject to the severe OSA group. This 

result is also supported by the SROC analysis conducted, in which the area under the 

curve reached 0.940 when evaluating the same severity degree. Moreover, if only results 

involving SpO2 data are considered, both sensitivity and specificity of severe OSA 

notably rise (0.745 and 0.964, respectively), and improve the diagnostic accuracy of 

moderate OSA (AHI = 5 e/h) to nearly the same reliability level (0.751 sensitivity and 

0.895 specificity). These are meaningful and highly encouraging findings since  moderate 

to severe children are those who are at higher risk of cardiovascular and neurocognitive 

morbidity44,45 and they benefit the most of an early diagnosis and access to treatment46. 

However, important efforts are still needed to improve the performance of these 

approaches to encompass less severe disease criteria, as well as enhance the level of   

confidence of healthcare providers and reduce their reluctance to implement the use of 

machine learning-derived tools in clinical practice.  
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4.1. Risk of within-studies biases 

Several potential biases were detected among the studies included in this work. 

However, the roots of many of these biases reside in the sampled population. Machine-

learning methods have increased their data requirements as a natural consequence of the 

evolution of the mathematical techniques47. At the same time, they have also increased 

their performance47. However, insufficient sample sizes have forced several of the 

published studies to use simple and relatively older and less performant machine-learning 

methods such as logistic regression (n=6 studies), even though these studies were 

published in the last 5 years (2015-2019). Noticeably, only one study used the much more 

powerful deep-learning approach38. Eventually, the use of outdated methods may be 

hindering the progression and utility of machine-learning algorithms in their ability to 

reach higher reliability and consequently adoption into the clinical realm. Of note, a 

similar problem concerns the methodology used to validate the machine-learning models. 

Scarcity of data greatly affects the number of subgroups in which the sample can be split, 

which should be ideally related to the degrees of freedom of the models and, in practice, 

being a minimum of three (Training/Validation/Test) if the machine-learning method 

requires hyperparameter tuning48. Many studies included in this review, however, needed 

to use techniques such as leave-one-out cross-validation, k-fold cross-validation or 

bootstrapping to simulate additional groups, thus biasing their results, and consequently, 

potentially affecting the accuracy of the estimates of disease severity. We would expect 

that involving more subjects would lead to the use of more precise machine-learning 

techniques as well as proper validation strategies, which could increase the performance 

and decrease the heterogeneity shown in this study. Another potential bias relates to the 

cohorts used, since several studies included the same subjects in more than one study (of 

7,891 subjects in the studies, only 4,767 were not involved in more than one study). This 
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is due to the fact that two studies from different research groups23,24 used the Children 

Adenotonsillectomy Trial (CHAT) public database49. Second, 14 out of the 19 studies 

shared at least one of their authors, thus potentiating the above-mentioned overlap. 

Although duplicates may bias the results, we surmise that 4,767 unique subjects provide 

sufficient statistical power to reach valid conclusions. 

We would like to point out two additional sources of bias. First, none of the studies 

included a control group of healthy children from the general population. All but one 

study involved children manifesting OSA-related symptoms regardless of whether they 

were ultimately diagnosed as suffering from OSA. Also, another study involved a cohort 

of children suffering from Down syndrome. The inclusion of control subjects might affect 

the performance of machine-learning methods. However, it would be expected that the 

possible misclassification were focused on more mild OSA, thus not affecting the 

conclusions about the reliability to diagnose more severe OSA.  Secondly, the prevalence 

of OSA among male and female subjects is still under discussion2. However, all the 

studies reported higher proportion of male children, and some of them remarkably higher. 

These two issues need to be addressed in future studies to further assess reliability of 

machine-learning methods. 

Finally, we should remark that only a minority of studies reported further analyses to 

try to explain the decisions taken by their associated machine-learning models. Similarly, 

these were conducted only when simpler decision algorithms were adopted, and did not 

follow the latest standards on ‘explainable artificial intelligence’, such as the model-

agnostic method Shapley Additive Explanations (SHAP)39, which unifies most of its 

precursors. Although this issue may not bias the performance assessment of our analyses, 

we think that not explaining the principles operating in the context of automated processes 
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contributes to the traditional ‘black box’ perception of machine learning50 and has an 

important negative impact on the confidence of healthcare providers. 

 

4.2. Heterogeneity and risk of biases across studies 

Several sources of heterogeneity among the studies were detected and may explain the 

high Higgings’ I2 values reached. We have detected 10 different machine-learning 

algorithms among the studies reviewed, and several of these have been used to implement 

different approaches (e.g., classification vs. regression; binary classification vs. multiclass 

classification). Moreover, the physiological information used to train and obtain the 

machine-learning models also varied among studies. SpO2 data predominated, but there 

were also data from AF, actigraphy, ECG, clinical variables, anthropometrics, and 

demographics. The effect of these different approaches on I2 was shown explicitly when 

comparing the noticeably lower heterogeneity degree reached by the studies involving 

SpO2 data with those not involving it. Other potential heterogeneity precursors have been 

already mentioned. Issues such as the different sample sizes, validation strategies, and 

sex distribution may have influenced as well. However, according to the size of the 95% 

confidence intervals reached in our analyses, heterogeneity appears to have less effect in 

the results from moderate and severe OSA.   

Two potential across-studies risk of biases have been also identified. First, we have 

already mentioned the threshold effect described in the literature for diagnostic accuracy 

testing using meta-analyses43. Univariate sensitivity/specificity analyses are common 

approaches, but bivariate SROC analysis should be also provided to conduct a more 

complete assessment of the test under study51. Cautions are needed with SROC 

interpretation when studies are not homogeneous. However, the derived area under the 

curve statistic has been shown to be a useful upper bound approximation even in the 
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presence of heterogeneity51. Finally, we assessed publication bias by means of the trim 

and fill method supported by funnel plots. In this regard, the small proportion of simulated 

results added, along with the minor changes in the pooled sensitivity and specificity 

values produced, lead us to think that the bibliography, as include, reflects a reliable 

sample of the results under study.    

 

4.3. Other limitations 

Other limitations need to be considered in our study. First, the eligibility criteria for the 

studies were chosen using consensus by the authors, which include both machine-learning 

engineers and sleep physicians. We followed the PICOS recommendation (participants, 

interventions, comparisons, outcomes, and study design)52. However, it is possible that 

other researchers may have selected different eligibility criteria. Similarly, the terms used 

to conduct the initial search, as well as the data collected from the studies agreed with 

these criteria and the purpose of our study. However, machine-learning terminology is 

not always homogeneous across the related fields, and it is possible that scientists from 

other research areas could have used different nomenclatures and collected different data. 

Moreover, we have used two different electronic databases to conduct the initial search 

(WoS and Scopus). Although these are two of the largest electronic databases, it is 

possible that other bibliographic sources may index more suitable studies. Finally, 

documents not written in English were not included.  

 

 



21 
 

5. CONCLUSIONS AND RECOMMENDATIONS 

We found a high reliability of machine-learning methods to automatically diagnose 

severe pediatric OSA, thus benefiting those children at higher risk of suffering 

comorbidities. Pooled univariate and bivariate statistics derived from a representative 

sample of results strongly supported this conclusion. We have also shown that, 

unsurprisingly, the performance of the machine-learning models is dependent on the 

source of the data used to obtain them, and that overnight SpO2 information increases its 

reliability. Thirdly, we consider deep-learning approaches as more advanced options with 

a greater potential for improved performance. However, we also identified some 

problems that may preclude the implementation of these techniques in real environments. 

In order to try to solve such constraints, we propose the following recommendations: 

1. Future studies should address the size and characteristics of the cohort. Control 

groups of asymptomatic healthy children should be included in the training, 

validation, and test stages of the machine-learning methods. Additionally, the 

number of subjects involved should be large enough to let researchers use the latest 

data-demanding machine-learning approaches, as well as properly evaluate them. 

Larger databases would also help cope with different phenotypes in pediatric OSA53. 

2. Inclusion of deep-learning techniques is needed. Deep-learning architectures and 

algorithms should be considered in future studies. Currently, there exists a range of 

these methods that are showing remarkable performances in several healthcare 

issues38. They are particularly useful in detecting hidden patterns from temporary or 

spatially related data, such as biomedical signals or medical images.38 Therefore, 

these techniques may improve the results reported in this meta-analysis, provided 

that sufficient high quality data are available to implement them. 
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3. Efforts should be made to explain the outcomes of the machine-learning methods. 

Beyond increasing the performance of the machine-learning methods, addressing 

the ‘black box’ issue will be crucial to boost the confidence and implementation of 

these diagnostic approaches in healthcare settings. A new computer science field is 

growing fast under the term ‘explainable artificial intelligence’ as a response to the 

demand of explainable models from science, industry, and administration due to the 

need to justify decisions taken based on automated algorithms50. New developments 

in these techniques not only allow for understanding automated decisions but also 

facilitate discovery of new knowledge in the fields of application50, especially when 

combined with deep-learning methods. 

4. Sources of OSA related information other than SpO2 should be further assessed. 

Although SpO2 has demonstrated superiority as source of patient relevant 

information in this study, there is a clear imbalance with the studies using other types 

of physiological data. Future studies should therefore explore other relevant 

measures and examine whether combinatorial datasets lead to further accuracy 

enhancements.   
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