Clifford elements in Lie algebras

Jose Brox, Antonio Fernández López and Miguel Gómez Lozano

Abstract

Let L be a Lie algebra over a field \mathbb{F} of characteristic zero or $p>3$. An element $c \in L$ is called Clifford if $\mathrm{ad}_{c}^{3}=0$ and its associated Jordan algebra L_{c} is the Jordan algebra $\mathbb{F} \oplus X$ defined by a symmetric bilinear form on a vector space X over \mathbb{F}. In this paper we prove the following result: Let R be a centrally closed prime ring R of characteristic zero or $p>3$ with involution * and let $c \in \operatorname{Skew}(R, *)$ be such that $c^{3}=0, c^{2} \neq 0$ and $c^{2} k c=c k c^{2}$ for all $k \in \operatorname{Skew}(R, *)$. Then c is a Clifford element of the Lie algebra $\operatorname{Skew}(R, *)$. Mathematics Subject Classification 2000: 17B60, 17C50, 16N60. Key Words and Phrases: Lie algebra, ring with involution, Jordan algebra, inner ideal, Jordan element.

1. Introduction

Let L be a Lie algebra over a field \mathbb{F} of characteristic not 2 or 3 . An element $a \in L$ is called a Jordan element if $\operatorname{ad}_{a}^{3} L=0$. In [10], a Jordan algebra was attached to any Jordan element $a \in L$. This Jordan algebra, denoted by L_{a}, inherits most of the properties of the Lie algebra L and in addition the nature of the Jordan element in question is reflected in the structure of the attached Jordan algebra. For instance, if L is nondegenerate $\left(\operatorname{ad}_{x}^{2} L=0 \Rightarrow x=0\right)$ so is the Jordan algebra L_{a} and, in this case, L_{a} is unital if and only if a is von Neumann regular $\left(a \in \operatorname{ad}_{a}^{2} L\right)$. Jordan techniques have proved to be very useful in some questions of Lie theory. Examples of the use of the Jordan-Lie connection can be found in the papers [3], [7], [11], [12] and [13].

By a Clifford element of L we mean a Jordan element $c \in L$ such that L_{c} is the Jordan algebra $J:=\mathbb{F} \oplus X$ defined by a symmetric bilinear form on a vector space X over \mathbb{F} (we do not discard the case $X=0$, i.e., $J=\mathbb{F}$). Suppose now that L is nondegenerate, $\operatorname{char}(\mathbb{F})=0$ or $p>5$ and c is a Clifford element of L. Since L_{c} is then unital, c is von Neumann regular, and hence, by the Jacobson-Morozov Lemma (see [6, Proposition 1.18]), L has a 5-grading $L=L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{1} \oplus L_{2}$ such that the Jordan pair $V:=\left(L_{-2}, L_{2}\right)$ is isomorphic to the Clifford Jordan pair defined by the Jordan algebra L_{c}, whose Tits-Kantor-Koecher algebra TKK V)

[^0]is a finitary orthogonal Lie algebra (see $[8,5.11])$, that is, $T K K(V) \cong \operatorname{Skew}(R, *)$, where R is a simple ring coinciding with its socle containing at least three nonzero orthogonal idempotents, and $*$ is an involution of orthogonal type, i.e., the adjoint involution associated to a nondegenerate symmetric bilinear form. Thus every Clifford element c actually lives in a ring, and in this associative context verifies $c^{3}=0$ and $c^{2} \neq 0$ (see [9, Lemma 3.7(ii)]). In this paper we prove the following converse of the above result:

Let R be a centrally closed prime ring of characteristic not 2 or 3 , let * be an involution of R and let c be a Jordan element of the Lie algebra $K:=$ $\operatorname{Skew}(R, *)$ such that $c^{3}=0$ and $c^{2} \neq 0$. Then R has nonzero socle and contains at least three orthogonal idempotents, * is of orthogonal type and c is a Clifford element of K.

The proof is rather constructive. We start by showing some elementary associative properties of the Clifford element c and its square c^{2}. In particular, c^{2} is von Neumann regular and can be paired with an element d that shares its properties; moreover, c is also von Neumann regular and can be paired with the element $\sqrt{d}:=c d+d c$, which is also Clifford and will play the role of identity element in the Jordan algebra K_{c}. The element d helps to build a 3 -grading of K in which $c \in K_{-1}$. We show that this component is actually independent of the choice of d, since it can be expressed just in terms of c in different ways, all important for our purposes. We also prove that $c^{2} R c^{2}=\mathcal{C} c^{2}$ and $c K c=\mathcal{C} c$ (with \mathcal{C} being the extended centroid of R), facts that serve to build a linear form and a bilinear symmetric form over K, which in turn help to prove the main result about the structure of K_{c}.

2. Preliminaries

Throughout this section Φ will denote a ring of scalars, i.e., a commutative ring with 1 , and \mathbb{F} will stand for a field. An algebra over Φ (in short, a Φ-algebra) is a Φ-module A endowed with a product (bilinear operation). Thus no associativity condition is assumed; neither it is supposed the existence of a unit element in A. According to this definition, a ring is an associative \mathbb{Z}-algebra.

Jordan algebras and Lie algebras.

Suppose that 2 is invertible in Φ. A (linear) Jordan algebra is a Φ algebra J whose product, denoted by \bullet, is commutative and satisfies the identity $x^{2} \bullet(y \bullet x)=\left(x^{2} \bullet y\right) \bullet x$ for all $x, y \in J$, where $x^{2}:=x \bullet x$. For each $x \in J$, the U-operator $U_{x}: J \rightarrow J$ defined by $U_{x} y:=2 x \bullet(x \bullet y)-x^{2} \bullet y, y \in J$, satisfies the identity $U_{U_{x} y}=U_{x} U_{y} U_{x}$ for all $x, y \in J$. A Jordan algebra is said to be nondegenerate if $U_{x}=0$ implies $x=0$.

Suppose that 2 is invertible in Φ and A is an associative Φ-algebra, whose product is denoted by juxtaposition. In the Φ-module A we define a new product by $x \circ y:=x y+y x$. The resulting algebra is a Jordan algebra denoted by A^{+}, with $U_{x} y=4 x y x$. Note that A is semiprime if and only if A^{+}is nondegenerate. A Jordan algebra J is called special if it is isomorphic to a subalgebra of A^{+}for some associative algebra A. As usual, we denote by A^{-}the Lie algebra defined in the Φ-module A by the product $[x, y]:=x y-y x$.

Let \mathbb{F} be a field of characteristic not 2 and let X be an \mathbb{F}-vector space with a symmetric bilinear form \langle,$\rangle . Then the vector space \mathbb{F} \oplus X$ is endowed with a structure of Jordan algebra by defining

$$
(\alpha, x) \bullet(\beta, y):=(\alpha \beta+\langle x, y\rangle, \beta x+\alpha y)
$$

for $\alpha, \beta \in \mathbb{F}$ and $x, y \in X$. This Jordan algebra is unital, with $(1,0)$ as unit element, and special; in fact, it is isomorphic to a Jordan subalgebra of the Clifford (associative) algebra defined by \langle,$\rangle (see [14, II.3]). For this reason, \mathbb{F} \oplus X$ is sometimes called a Clifford Jordan algebra.

Let L be a Lie Φ-algebra, with $[x, y]$ denoting the product and ad_{x} the adjoint map determined by x. Sometimes we will use capital letters instead, i.e., X for ad_{x}. An inner ideal of L is a Φ-submodule B of L such that $[[B, L], B] \subseteq B$. An abelian inner ideal is an inner ideal B which is also an abelian subalgebra, i.e., such that $[B, B]=0$. For example, if $L=\bigoplus_{-n \leq i \leq n} L_{i}$ is a finite \mathbb{Z}-grading, then L_{-n} and L_{n} are easily checked to be abelian inner ideals of L. An element $a \in L$ is said to be a Jordan element whenever $a d_{a}^{3} L=0$. Every element in an abelian inner ideal is easily shown to be a Jordan element, and conversely, if L is 3 -torsion free and $a \in L$ is Jordan, then $\Phi a+\operatorname{ad}_{a}^{2} L$ is an abelian inner ideal of L (see [2, Lemma 1.8]).

The following identities (see [2, Lemma 1.7]) will be used in what follows. Let L be a 3 -torsion free Lie algebra and let $a, x \in L$ with a being a Jordan element. Then
(JE1) $A^{2} X A=A X A^{2}$
(JE2) $\operatorname{ad}_{A^{2} x}^{2}=A^{2} X^{2} A^{2}$
where according to our notational convention A denotes the adjoint map ad_{a} and similarly X stands for ad_{x}.

Suppose that 2 and 3 are invertible in Φ. Let L be a Lie Φ-algebra and let $a \in L$ be a Jordan element. In the Φ-module L a new product is defined by $x \bullet y:=[[x, a], y], x, y \in L$. Denote by $L^{(a)}$ the resulting algebra. Then $\operatorname{Ker}(a):=\left\{x \in L: \operatorname{ad}_{a}^{2} x=0\right\}$ is an ideal of $L^{(a)}$ and the quotient algebra $L_{a}:=L^{(a)} / \operatorname{Ker}(a)$ is a Jordan algebra (with product $\bar{x} \bullet \bar{y}:=\overline{[[x, a], y]}$, where \bar{x} stands for the coset of x for any $x \in L$), called the Jordan algebra of L at a (see [10, Theorem 2.4]).

Definition 2.1. If a is von Neumann regular, i.e., if a is Jordan and $a \in \operatorname{ad}_{a}^{2} L$, then (1) L_{a} is unital with \bar{b} as unit element for any $b \in L$ such that $a=[[a, b], a]$. In this case, (2) L_{a} is isomorphic to the Jordan algebra $J(a, b)$ defined in the Φ-module $\operatorname{ad}_{a}^{2} L$ by the product $\left.x \bullet y:=[[x, b], y]\right]$ for all $x, y \in \operatorname{ad}_{a}^{2} L$. We provide here a proof of these results under conditions less restrictive than those required in [10].

Proof. (1) $a=[[a, b], a]$ implies $A=\operatorname{ad}_{[[a, b], a]}=[[A, B], A]=2 A B A-A^{2} B-$ $B A^{2}$. Multiplying both members of this equation on the left by A and using (JE1)
we get $A^{2}=2 A^{2} B A-A B A^{2}=A^{2} B A\left(\right.$ since $\left.A^{3}=0\right)$, which proves that L_{a} is unital with \bar{b} as unit element.
(2) The map $\varphi: L_{a} \rightarrow J(a, b)$ defined by $\varphi(\bar{x}):=-A^{2} x$ is an algebra isomorphism. Clearly φ is a linear isomorphism, and since both algebras are commutative and $\frac{1}{2} \in \Phi$, it suffices to check that $\varphi(\bar{x})^{2}=\varphi\left(\bar{x}^{2}\right)$:

$$
\varphi(\bar{x})^{2}=\left[\left[A^{2} x, b\right], A^{2} x\right]=-\operatorname{ad}_{A^{2} x}^{2} b=-A^{2} X^{2} A^{2} b=A^{2} X^{2} a=-A^{2} X A x=\varphi\left(\bar{x}^{2}\right),
$$

where we have used (JE2), $A^{2} b=[a,[a, b]]=-A B a=-a$ and $X A x=-X^{2} a$.

Involutions.

If R is a ring, an involution on R is an additive map $*: R \rightarrow R$ such that $*^{2}=\operatorname{Id}_{R}$ and $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in R$. If A is an algebra over a ring of scalars with involution ($\Phi,{ }^{-}$), then an involution $*$ on A is an involution on the underlying ring of A which in addition satisfies $(\lambda a)^{*}=\bar{\lambda} a^{*}$ for every $\lambda \in \Phi$ and $a \in A$. If ${ }^{-}$is trivial (i.e., if it is the identity map) then $*$ is just an involution of A as a ring which is also a linear map.

Let A be an algebra with involution $*$ over $\left(\Phi,^{-}\right)$. Denote by Γ the centroid of A as a ring. Denote by H (respectively by K) the set of the symmetric (respectively, skew-symmetric) elements of A, i.e., $H:=\operatorname{Sym}(A, *)=\{x \in A$: $\left.x=x^{*}\right\}$ and $K:=\operatorname{Skew}(A, *)=\left\{x \in A: x=-x^{*}\right\}$. Then K is a subalgebra of the Lie algebra A^{-}restricted to $\operatorname{Sym}\left(\Phi,^{-}\right)$and, if $\frac{1}{2} \in \Gamma$, then H is a subalgebra of the Jordan algebra A^{+}restricted to $\operatorname{Sym}\left(\Phi,{ }^{-}\right)$(so it is a special Jordan algebra) and $A=H \oplus K$. Set $\kappa(x):=x-x^{*} \in K$ for every $x \in A$. Note that the mapping $x \mapsto \kappa(x)$ is linear and satisfies $\kappa\left(a x a^{*}\right)=a \kappa(x) a^{*}$ for all $a, x \in A$. Note also that for $h \in H, k \in K$ we have

$$
h \circ k=h k+k h=h k-(h k)^{*}=\kappa(h k) \in K,
$$

a simple identity that will show up frequently.
If $\frac{1}{2} \in \Phi$ and M is a Φ-submodule of A which is $*$-invariant, i.e., such that $M^{*}=M$, then $\kappa(M)=\operatorname{Skew}(M, *)$, since if $k \in \operatorname{Skew}(M, *)$ then $k=\frac{1}{2}(k+k)=$ $\frac{1}{2}\left(k-k^{*}\right)=\frac{1}{2} \kappa(k)$ and $\kappa(x)=x-x^{*} \in M \cap K=\operatorname{Skew}(M, *)$ for every $x \in M$. In particular $\kappa(A)=K$. If M is not $*$-invariant, then $\kappa(M)=\kappa\left(M^{*}\right)$ implies that $\kappa(M)=\kappa(M)+\kappa\left(M^{*}\right)=\kappa\left(M+M^{*}\right)=\left(M+M^{*}\right) \cap K$.

Let R be a ring with involution $*$. If $a \in R$ is von Neumann regular, i.e, if $a=a x a$ for some $x \in R$, then by replacing x by $b:=x a x$ we obtain $a=a b a$ and $b=b a b$. If a is also symmetric and $\frac{1}{2} \in \Gamma$ then b can be chosen symmetric by replacing x by $\frac{1}{2}\left(x+x^{*}\right)$. The following lemma is a further step in the choice of b.

Lemma 2.2. Let R be a ring and let $c \in R$ be a von Neumann regular element such that $c^{2}=0$. Then there exists $d \in R$ such that $c=c d c, d=d c d$ and $d^{2}=0$. Moreover, if R has involution, $\frac{1}{2} \in \Gamma$ and c is symmetric (skew-symmetric), then d can be chosen to be symmetric (respectively, skew-symmetric).

Proof. Let c be a von Neumann regular element of R. By the argument above, there exists $b \in R$ such that $c b c=c$ and $b=b c b$. We claim that $d:=b-b^{2} c$ satisfies $c=c d c, d=d c d$ and $d^{2}=0$. Indeed,

$$
\begin{aligned}
& d^{2}=\left(b-b^{2} c\right)\left(b-b^{2} c\right)=b^{2}-b^{3} c-b(b c b)+b(b c b) b c=b^{2}-b^{3} c-b^{2}-b^{3} c=0, \\
& c d c=c\left(b-b^{2} c\right) c=c b c=c, \text { and } \\
& d c d=\left(b-b^{2} c\right) c\left(b-b^{2} c\right)=b c\left(b-b^{2} c\right)=b c b-(b c b) b c=b-b^{2} c=d
\end{aligned}
$$

Suppose now that c is symmetric. Since $\frac{1}{2} \in \Gamma$ we can take $b \in H$ such that $c b c=b$ and $b=b c b$. We claim that

$$
d:=b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)+\frac{1}{4} c b^{3} c
$$

satisfies the required properties. It is clear that $d^{*}=d$. Moreover, we have:

$$
\begin{aligned}
d^{2}= & \left(b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)+\frac{1}{4} c b^{3} c\right)\left(b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)+\frac{1}{4} c b^{3} c\right)=b^{2}-\frac{1}{2}(b c b) b \\
& -\frac{1}{2} b^{3} c+\frac{1}{4}(b c b) b^{2} c-\frac{1}{2} c b^{3}+\frac{1}{4} c b(b c b) b+\frac{1}{4} c b^{4} c-\frac{1}{8} c b(b c b) b^{2} c-\frac{1}{2} b(b c b) \\
& +\frac{1}{4} b(b c b) b c+\frac{1}{4} c b^{2}(b c b)-\frac{1}{8} c b^{2}(b c b) b c=b^{2}-\frac{1}{2} b^{2}-\frac{1}{2} b^{3} c+\frac{1}{4} b^{3} c-\frac{1}{2} c b^{3} \\
+ & \frac{1}{4} c b^{3}+\frac{1}{4} c b^{4} c-\frac{1}{8} c b^{4} c-\frac{1}{2} b^{2}+\frac{1}{4} b^{3} c+\frac{1}{4} c b^{3}-\frac{1}{8} c b^{4} c=0, \\
& c d c=c\left(b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)\right) c=c b c=c, \text { and } \\
d c d= & \left(b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)\right) c\left(b-\frac{1}{2}\left(c b^{2}+b^{2} c\right)\right)\left(b-\frac{1}{2} c b^{2}\right) c\left(b-\frac{1}{2} b^{2} c\right) \\
& =b c b-\frac{1}{2}(b c b) b c-\frac{1}{2} c b(b c b)+\frac{1}{4} c b(b c b) b c=b c b-\frac{1}{2} b^{2} c-\frac{1}{2} c b^{2}+\frac{1}{4} c b^{3} c=d .
\end{aligned}
$$

If c is skew-symmetric, then the same d works taking $b \in K$.

Prime rings.

Let R be a prime ring. The extended centroid \mathcal{C} of R (see ($[1$, Section 2.3]) is a field containing the centroid Γ, and the central closure $\mathcal{C} R$ of R is a prime associative algebra over the field \mathcal{C}. A prime ring R is centrally closed if it coincides with its central closure. The following lemma (see [4, Theorem A.7]) plays a fundamental role in our work.

Lemma 2.3 (Martindale). Let R be a prime ring with extended centroid \mathcal{C}. Let $a_{i}, b_{i} \in R$ with $b_{1} \neq 0$ be such that $\sum_{i=1}^{n} a_{i} x b_{i}=0$ for every $x \in R$. Then $a_{1} \in \sum_{i=2}^{n} \mathcal{C} a_{i}$.

Let R be a centrally closed prime ring with involution $*$. Then $*$ naturally extends to an involution of the extended centroid \mathcal{C} of R, also denoted by $*$, so that R is an algebra with involution over $(\mathcal{C}, *)$. If $*$ acts trivially on \mathcal{C} then it is called of the first kind. In this case K can be regarded as a Lie algebra over \mathcal{C}.

3. Clifford elements of a prime ring with involution

Throughout this section R will denote a centrally closed prime ring of characteristic not 2 or 3 which is endowed with an involution $*$. Then K, the set of skew-symmetric elements of R, is a Lie algebra over the field $\operatorname{Sym}(\mathcal{C}, *)$. It follows from [5, Propostion 6.2] (here characteristic greater than 5 is required) that if K is not abelian and $*$ is of the first kind, then for any Jordan element $a \in K$ we have $a^{3}=0$. This leads us to the following:

Definition 3.1. By a Clifford element of R we mean an element $c \in K$ such that $c^{3}=0, c^{2} \neq 0$ and c is a Jordan element of the Lie algebra K : $\operatorname{ad}_{c}^{3} k=c^{3} k-3 c^{2} k c+3 c k c^{2}-k c^{3}=0$ for all $k \in K$.

The square of a Clifford element

Proposition 3.2. Let $c \in K$ be a Clifford element of R. Then:

1. $c^{2} k c=c k c^{2}$ for all $k \in K$.
2. $c^{2} K c^{2}=0$.
3. $\left(c^{2} x c^{2}\right)^{*}=c^{2} x^{*} c^{2}=c^{2} x c^{2}$ for all $x \in R$.
4. $c^{2} R c^{2}=\mathcal{C} c^{2}$.
5. The involution * is of the first kind.
6. R has nonzero socle with division ring isomorphic to \mathcal{C} and $*$ is of orthogonal type.

Proof. (1) Since c is a Jordan element of K, for every $k \in K$ we have $0=a d_{c}^{3} k=c^{3} k-3 c^{2} k c+3 c k c^{2}-k c^{3}=-3\left(c^{2} k c-c k c^{2}\right)$. Since $\operatorname{char}(R) \neq 3$ this implies that $c k c^{2}=c^{2} k c$.
(2) $\operatorname{By}(1), c^{2} k c^{2}=c\left(c k c^{2}\right)=c\left(c^{2} k c\right)=c^{3} k c=0$.
(3) Since $x-x^{*} \in K$ we have $c^{2}\left(x-x^{*}\right) c^{2}=0$ and hence $c^{2} x c^{2}=c^{2} x^{*} c^{2}=$ $\left(c^{2} x c^{2}\right)^{*}$.
(4) Let $x, y \in R$. Since c^{2} is symmetric it follows from (3) that

$$
c^{2} x c^{2} y c^{2}=c^{2}\left(x c^{2} y\right)^{*} c^{2}=\left(c^{2} y^{*} c^{2}\right) x^{*} c^{2}=c^{2} y\left(c^{2} x^{*} c^{2}\right)=c^{2} y c^{2} x c^{2} .
$$

Thus, fixed x, for every $y \in R$ we get $\left(c^{2} x c^{2}\right) y\left(c^{2}\right)-\left(c^{2}\right) y\left(c^{2} x c^{2}\right)=0$, with $c^{2} \neq 0$. Then, by Martindale's Lemma (2.3), for each $x \in R$ there is a $\lambda_{x} \in \mathcal{C}$ such that $c^{2} x c^{2}=\lambda_{x} c^{2}$. Since $c^{2} \neq 0$ and R is prime, $c^{2} R c^{2} \neq 0$ and hence $c^{2} R c^{2}=\mathcal{C} c^{2}$, since \mathcal{C} is a field.
(5) By (4), given $\alpha \in \mathcal{C}$ there exists $a \in R$ such that $\alpha c^{2}=c^{2} a c^{2}$. Then, by (3), $\alpha^{*} c^{2}=c^{2} a^{*} c^{2}=c^{2} a c^{2}=\alpha c^{2}$, so $\alpha^{*}=\alpha$, proving that $*$ is of the first kind.
(6) $\mathrm{By}(4), c^{2}=c^{2} a c^{2}$ for some $a \in R$ and hence $c^{2} R=e R$, where $e=c^{2} a$ is an idempotent of R. Then $e R e=c^{2} R c^{2} a=\mathcal{C} c^{2} a=\mathcal{C} e$, which proves $([1$,

Proposition 4.3.3]) that $e R$ is a minimal right ideal of R, so R has nonzero socle with associated division ring isomorphic to the field \mathcal{C} ([1, Theorem 4.3.7]). Now it follows from Kaplansky's Theorem ($[1$, Theorem 4.6.8]) that the involution $*$ of R is either of transpose type or of symplectic type; but the latter cannot occur because c^{2} is a symmetric rank-one element, so $*$ is of transpose type.

Let $c \in K$ be a Clifford element of R. Since c^{2} is a symmetric zero-square element which is also von Neumann regular (see 3.2(4)), we have by 2.2 that there exists $d \in R$ such that

$$
d^{*}=d, d^{2}=0, c^{2} d c^{2}=c^{2} \text { and } d=d c^{2} d
$$

Such an element d will be called a twin of c^{2}. Then $e:=d c^{2}$ is a $*$-orthogonal idempotent, i.e., $e^{2}=e$ and $e e^{*}=e^{*} e=0$.

Proposition 3.3. Let $c \in K$ be a Clifford element of R, let d be a twin of c^{2} and put $e:=d c^{2}$. Then:

1. $d K d=0$.
2. $d R d=\mathcal{C} d$.
3. $e R e=\mathcal{C} e, e^{*} R e=\mathcal{C} c^{2}, e R e^{*}=\mathcal{C} d$ and $e K e^{*}=e^{*} K e=0$.
4. $e c=c e^{*}=0, e^{*} c^{2}=c^{2} e=c^{2}$ and $d e^{*}=e d=d$.
5. $[K, K] \neq 0$.
6. $e+e^{*} \neq 1$ in the unital hull $\hat{R}=\mathcal{C} 1+R$ of R.

Proof. Note that, by the proof of $3.2(4), c^{2} M c^{2}=\mathcal{C} c^{2}$ for any \mathcal{C}-subspace M of R such that $c^{2} M c^{2} \neq 0$, a fact that will be used in what follows without further mention.
(1) $d K d=d c^{2}(d K d) c^{2} d=0$, where we have used $3.2(2)$ and the fact that $d k d$ is skew-symmetric for every $k \in K$.
(2) $\quad d R d=\left(d c^{2} d\right) R\left(d c^{2} d\right)=d c^{2}(d R d) c^{2} d=d \mathcal{C} c^{2} d=\mathcal{C} d c^{2} d=\mathcal{C} d$, since $d c^{2} d=d$ and $c^{2} d c^{2}=c^{2}$ imply that $c^{2}(d R d) c^{2} \neq 0$.
(3) $e R e=d c^{2}(R d) c^{2}=d \mathcal{C} c^{2}=\mathcal{C} e$, since $c^{2}=c^{2}\left(d c^{2} d\right) c^{2} \in c^{2}(R d) c^{2}$ and therefore the latter is not zero. In a similar way it is proved that $e^{*} R e=\mathcal{C} c^{2}$ and $e R e^{*}=\mathcal{C} d$. Now $e K e^{*}=d\left(c^{2} K c^{2}\right) d=0$ by $3.2(2)$, and $e^{*} K e=0$ is obtained in a similar way.
(4) The identities of this item follow straightforwardly from the very definition of e.
(5) By (4), $\left[c, e-e^{*}\right]=c e+e^{*} c=c d c^{2}+c^{2} d c \neq 0$. Otherwise $c d c^{2}=-c^{2} d c$ would lead to the contradiction $c^{2}=c^{2} d c^{2}=-c^{3} d c=0$. Since $\left[c, e-e^{*}\right] \in[K, K]$, $[K, K] \neq 0$.
(6) It follows from (3) and (4) that $\left(e+e^{*}\right) c\left(e+e^{*}\right)=0$, so $e+e^{*} \neq 1$.

Remark 3.4. Twin d of c^{2} are not unique. In fact, for any twin d of c and any $\lambda \in \mathcal{C}, \exp \left(\lambda \mathrm{ad}_{c}\right) d$ is a twin of c^{2}.

As we have seen in the proposition above, any Clifford element c of R gives rise to two orthogonal elements e and e^{*}, associated to a twin d of c^{2}. Moreover, the idempotent $e+e^{*}$ is not complete (see 3.3(6)), i.e., the symmetric idempotent $g:=1-e-e^{*}$ of the unital hull $\hat{R}=\mathcal{C} 1+R$ of R is not zero. We prove next that the complete system $\left\{e, e^{*}, g\right\}$ induces a 3 -grading in the Lie algebra K.

Proposition 3.5. Let $c \in K$ be a Clifford element of $R, e:=d c^{2}$ and $g:=$ $1-e-e^{*}$, where d is a twin of c^{2}. Then $K=K_{-1} \oplus K_{0} \oplus K_{1}$ is a 3-grading of K, with $K_{-1}=\kappa((1-e) K e)=\kappa((1-e) R e)=\kappa(g R e), K_{0}=\kappa(e R e) \oplus g K g$ and $K_{1}=\kappa(e K(1-e))=\kappa(e R(1-e))=\kappa(e R g)$.

Proof. Consider the complete system $\left\{e_{0}:=e^{*}, e_{1}:=g, e_{2}:=e\right\}$ of orthogonal idempotents of \hat{R} and put $R_{i}:=\bigoplus_{m-n=i} e_{m} R e_{n},-2 \leq i \leq 2$. Then (see [15, p.174] for instance), $R=\bigoplus_{-2 \leq i \leq 2} R_{i}$ is an (associative) 5-grading of R. Explicitly,

$$
R=e^{*} R e \oplus\left(e^{*} R g \oplus g R e\right) \oplus\left(e^{*} R e^{*} \oplus g R g \oplus e R e\right) \oplus\left(g R e^{*} \oplus e R g\right) \oplus e R e^{*}
$$

Since all the components R_{i} are $*$-invariant subspaces, $K=\bigoplus_{-2 \leq i \leq 2} K_{i}$, where $K_{i}:=R_{i} \cap K=\operatorname{Skew}\left(R_{i}, *\right)$ for each index i and $\left[K_{i}, K_{j}\right] \subseteq\left[R_{i}, R_{j}\right] \cap[K, K] \subseteq$ $R_{i+j} \cap K=K_{i+j}$. Thus $K=\bigoplus_{-2 \leq i \leq 2} K_{i}$ is (a priori) a 5 -grading of the Lie algebra K. But $K_{-2}=\kappa\left(e^{*} R e\right)=\bar{e}^{*} \kappa(R) e=e^{*} K e=0$ by 3.3(3) and similarly $K_{2}=e^{*} K e=0$. Moreover, the i-th homogeneous component k_{i} of any $k \in K$ coincides with $\bigoplus_{m-n=i} \kappa\left(e_{m} k e_{n}\right)$, so $k \in K_{-1}$ if and only if

$$
\begin{aligned}
g k e+e^{*} k g= & \left(1-e-e^{*}\right) k e+e^{*} k\left(1-e-e^{*}\right)=(1-e) k e+e^{*} k\left(1-e^{*}\right)= \\
& (1-e) k e-((1-e) k e)^{*}=\kappa((1-e) k e)
\end{aligned}
$$

since $e^{*} K e=0$ by $3.3(3)$, which proves that $K_{-1}=\kappa(g R e)=\kappa((1-e) K e)$. Similarly, $K_{1}=\kappa(e R g)=\kappa(e K(1-e))$. Therefore

$$
K=\kappa((1-e) K e) \oplus(\kappa(e R e) \oplus g K g) \oplus \kappa(e K(1-e))
$$

is a 3 -grading of K. Now, for any $x \in R$,

$$
\kappa(g x e)=\kappa((1-e) x e)-\kappa\left(e^{*} x e\right)=\kappa((1-e) x e)-e^{*} \kappa(x) e=\kappa((1-e) x e)
$$

since $e^{*} \kappa(x) e \in e^{*} K e=0$, which proves that $K_{-1}=\kappa((1-e) R e)$. Similarly we obtain that $K_{1}=\kappa(e R(1-e))$.

Although the 3 -grading of K has been defined by choosing a twin d of c^{2}, it will be seen now that the component K_{-1} only depends on the Clifford element c.

Proposition 3.6. Let $c \in K$ be a Clifford element of R, let $e:=d c^{2}$ where d is a a twin of c^{2} and let $B:=\kappa((1-e) K e)$. Then B is an abelian inner ideal of K and we have:

1. If $b \in B$ then $e b=0$ and $b=e^{*} b+b e=\kappa((1-e) b e)$.
2. $B=c^{2} \circ K$.
3. $c=e^{*} c+c e=c^{2} d c+c d c^{2}$.
4. $c \in B$.
5. $c K c=\mathcal{C} c$.

Proof. By Proposition 3.5, B is an extreme of a finite \mathbb{Z}-grading of K and hence an abelian inner ideal of K.
(1) Let $b=(1-e) k e+e^{*} k\left(1-e^{*}\right) \in B$. Then $e b=e\left((1-e) k e+e^{*} k\left(1-e^{*}\right)\right)=$ 0 and $e^{*} b=e^{*} k\left(1-e^{*}\right)$, since $e^{*} e=0$ and $e^{*} K e=0$. We also have that $b e^{*}=0$ and $b e=(1-e) k e$. Hence $b=e^{*} b+b e=e^{*} b\left(1-e^{*}\right)+(1-e) b e=\kappa((1-e) b e)$.
(2) $c^{2} \circ k=\kappa\left(k c^{2}\right)=\kappa\left(k e^{*} c^{2}-\left(e k e^{*}\right) c^{2}\right)=\kappa\left((1-e) k\left(e^{*} c^{2}\right)\right)=\kappa((1-$ $\left.e) k\left(c^{2} e\right)\right) \in \kappa((1-e) R e)=\kappa((1-e) K e)=B$ by 3.5. Conversely, let $b \in B$. Then

$$
b=e^{*} b+b e=\left(c^{2} d\right) b+b\left(d c^{2}\right)=c^{2}(d \circ b)+(d \circ b) c^{2}=c^{2} \circ(d \circ b) \in c^{2} \circ K,
$$

since $e^{*}=c^{2} d, c^{2}=c^{2} e$ and $c^{2} b=\left(c^{2} e\right) b=c^{2}(e b)=0$.
(3) Set $z:=c-c^{2} d c-c d c^{2}$. We must prove that $z=0$. For any $k \in K$ we have

$$
c^{2} k z=c^{2} k c-\left(c^{2} k c^{2}\right) d c-\left(c^{2} k c\right) d c^{2}=c k c^{2}-c k\left(c^{2} d c^{2}\right)=c k c^{2}-c k c^{2}=0
$$

since $c^{2} k c=c k c^{2}$ and $c^{2} k c^{2}=0$ by 3.2 , and d is a twin of c^{2} (see 3). We also have $z k c^{2}=\left(c^{2} k z\right)^{*}=0$, and hence $c^{2} x z=c^{2} x^{*} z$ and $z x c^{2}=z x^{*} c^{2}$ for every $x \in R$. Let $x, y \in R$. Then $c^{2} \kappa(x z y) c^{2}=0$ since $c^{2} K c^{2}=0$. Thus $0=c^{2}\left(x z y+y^{*} z x^{*}\right) c^{2}=c^{2} x z y c^{2}+c^{2} y^{*} z x^{*} c^{2}=c^{2} x z y c^{2}+c^{2} y z x c^{2}=$ $\left(c^{2} x z\right) y\left(c^{2}\right)+\left(c^{2}\right) y\left(z x c^{2}\right)=0$, with $c^{2} \neq 0$. By Martindale's Lemma (2.3), for every $x \in R$ there is $\lambda_{x} \in \mathcal{C}$ such that $c^{2} x z=\lambda_{x} c^{2}$. But
$z(1-e)=\left(c-e^{*} c-c e\right)(1-e)=c-c e-e^{*} c+e^{*} c e-c e+c e=c-c e-e^{*} c=z$
since $e^{*} c e \in e^{*} K e=0$. Hence $c^{2} x z=c^{2} x z(1-e)=\lambda_{x} c^{2}(1-e)=0$, so $c^{2} R z=0$. Since R is prime and $c^{2} \neq 0$ this implies that $z=0$. Thus $c=e^{*} c+c e=c^{2} d c+c d c^{2}$ as required.
(4) By (3), $c=c^{2} d c+c d c^{2}=c^{2}(d c+c d)+(d c+c d) c^{2} \in c^{2} \circ K=B$ by (2).
(5) Note that $c d+d c=\kappa(c d) \in K$ and $c(c d+d c) c=c^{2} d c+c d c^{2}=c$ by (3). Hence $\mathcal{C} c \subseteq c K c$. Conversely, for any $k \in K$ we have $c k c=\left(e^{*} c+c e\right) k\left(e^{*} c+c e\right)=$ $e^{*} c k e^{*} c+c e k c e$, since $e K e^{*}=0$ by 3.3(3) and $c k c \in K$. Now, again by 3.3(3), $e(k c) e=\lambda e$ for some $\lambda \in \mathcal{C}$, and hence $e^{*}(c k) e^{*}=(e k c e)^{*}=(\lambda e)^{*}=\lambda e^{*}$, since the involution $*$ is of the first kind by 3.2(5). Then $c k c=\lambda e^{*} c+\lambda c e=\lambda c$, which completes the proof.

The square root of d

Given a Clifford element c of R and a twin d of c^{2}, we put $\sqrt{d}:=c d+d c$. As will be seen now, the square-root notation is absolutely justified.

Proposition 3.7. Let $c \in K$ be a Clifford element of R and let d be a twin of c^{2}. Then:

1. $\sqrt{d} \in K_{1}$ in the 3 -grading of 3.5. In particular \sqrt{d} is a Jordan element.
2. $(\sqrt{d})^{2}=d$.
3. $(\sqrt{d})^{3}=0$.
4. $\sqrt{d} K \sqrt{d}=\mathcal{C} \sqrt{d}$.
5. $\sqrt{d} c \sqrt{d}=\sqrt{d}$.
6. $c \sqrt{d} c=c$.
7. $c^{2} \circ \sqrt{d}=c$.
8. $d \circ c=\sqrt{d}$.
9. $[[c, \sqrt{d}], c]=c$.
10. $[[\sqrt{d}, c], \sqrt{d}]=\sqrt{d}$.
11. $[[c, \sqrt{d}], b]=b$ for every $b \in B$.

Proof. (1) Since $c \in K$ and $d \in H, \sqrt{d}=c d+d c \in K$. We have

$$
\begin{aligned}
\kappa(e \sqrt{d}(1-e)) & =e(c d+d c)(1-e)+\left(1-e^{*}\right)(d c+c d) e^{*} \\
& =e d c(1-e)+\left(1-e^{*}\right) c d e^{*}=e d c-e d c e+c d e^{*}-e^{*} c d e^{*} \\
& =\left(d c^{2} d\right) c-e(d c d) c^{2}+c\left(d c^{2} d\right)-c^{2}(d c d) e^{*}=d c+c d=\sqrt{d}
\end{aligned}
$$

since $e c=0, e=d c^{2}, d c^{2} d=d$ and $d c d \in d K d=0$. We have thus proved (see 3.5) that $\sqrt{d} \in \kappa(e K(1-e))=K_{1}$. Now since K_{1} is an abelian inner ideal (because it is the extreme of a finite grading), \sqrt{d} is a Jordan element of K.
(2) $(\sqrt{d})^{2}=(c d+d c)(c d+d c)=c(d c d)+c d^{2} c+d c^{2} d+(d c d) c=d c^{2} d=d$.
(3) $(\sqrt{d})^{3}=(\sqrt{d})^{2} \sqrt{d}=d(c d+d c)=d c d+d^{2} c=0$.
(4) If follows from (1), (2) and (3) that \sqrt{d} is a Clifford element of R. Hence, by $3.6(5), \sqrt{d} K \sqrt{d}=\mathcal{C} \sqrt{d}$.
(5) $\sqrt{d} c \sqrt{d}=(c d+d c) c(c d+d c)=c\left(d c^{2} d\right)+c(d c d) c+d c^{3} d+\left(d c^{2} d\right) c=$ $c d+d c=\sqrt{d}$.
(6) $c \sqrt{d} c=c(c d+d c) c=c^{2} d c+c d c^{2}=c$ by 3.6(3).
(7) $c^{2} \circ \sqrt{d}=c^{2}(c d+d c)+(c d+d c) c^{2}=c^{2} d c+c d c^{2}=c$.
(8) $d \circ c=d c+c d=\sqrt{d}$.
(9) $[[c, \sqrt{d}], c]=2 c \sqrt{d} c-c^{2} \circ \sqrt{d}=2 c-c=c$ by (6) and (7).
(10) $[[\sqrt{d}, c], \sqrt{d}]=2 \sqrt{d} c \sqrt{d}-(\sqrt{d})^{2} \circ c=2 \sqrt{d}-\sqrt{d}=\sqrt{d}$ by (2), (5) and
(11) $[[c, \sqrt{d}], b]=[[c, c d+d c], b]=\left[c^{2} d-d c^{2}, b\right]=\left[e^{*}-e, b\right]=e^{*} b+b e=b$ by $3.6(1)$.

4. Jordan algebra at a Clifford element

As in the previous section, R will denote a centrally closed prime ring of characteristic not 2 or 3 with involution $*$. We prove here that if c is a Clifford element
of R, then the abelian inner ideal $c^{2} \circ K=\kappa((1-e) K e)$ (see 3.6) can be endowed with a Jordan algebra structure of Clifford type (see 2), which happens to be isomorphic to K_{c}. We begin by defining a linear form and a symmetric bilinear form on the \mathcal{C}-vector space K (recall that $*$ is of the first kind by $3.2(5)$).

Remark 4.1. By 3.6(5) there exists a linear map $\operatorname{tr}: K \rightarrow \mathcal{C}$, called the trace, such that

$$
\operatorname{tr}(k) c=c k c
$$

for every $k \in K$. Note that

1. $\operatorname{tr}(\sqrt{d})=1$ since $c \sqrt{d} c=c$ by $3.7(6)$, and hence
2. $K=\mathcal{C} \sqrt{d} \oplus \operatorname{Ker}(\operatorname{tr})$.

Remark 4.2. Since $c^{2} R c^{2}=\mathcal{C} c^{2}$ (3.2(4)) with $c^{2} k_{1} k_{2} c^{2}=c^{2} k_{2} k_{1} c^{2}$ for all $k_{1}, k_{2} \in K$ (3.2(2)), we have a symmetric bilinear form $\langle\rangle:, K \times K \rightarrow \mathcal{C}$ defined by

$$
\left\langle k_{1}, k_{2}\right\rangle c^{2}=c^{2} k_{1} k_{2} c^{2}
$$

for all $k_{1}, k_{2} \in K$.
Remark 4.3. The trace can be realized from the bilinear form and vice versa. Let $k, k^{\prime} \in K$:

1. $\langle\sqrt{d}, k\rangle c^{2}=c^{2} \sqrt{d} k c^{2}=c^{2}(c d+d c) k c^{2}=c^{3} d k c^{2}+c^{2} d c k c^{2}=c^{2} d c k c^{2}=$ $c^{2} d(c k c) c=\operatorname{tr}(k) c^{2} d c^{2}=\operatorname{tr}(k) c^{2}$, since $c^{3}=0$ and $c^{2} d c^{2}=c^{2}$. Thus $\operatorname{tr}(k)=\langle k, \sqrt{d}\rangle$.
2. $\operatorname{tr}\left(\kappa\left(c k k^{\prime}\right)\right) c^{2}=\left(c \kappa\left(c k k^{\prime}\right) c\right) c=c^{2} k k^{\prime} c^{2}+c k^{\prime} k c^{3}=c^{2} k k^{\prime} c^{2}=\left\langle k, k^{\prime}\right\rangle c^{2}$. Thus $\left\langle k, k^{\prime}\right\rangle=\operatorname{tr}\left(\kappa\left(c k k^{\prime}\right)\right)$.

Proposition 4.4. Let $c \in K$ be a Clifford element of R and $B:=c^{2} \circ K$. Then:

1. $B=\mathcal{C} c \oplus X$, where $X:=\left\{c^{2} \circ k: k \in \operatorname{Ker}(\operatorname{tr})\right\}$.
2. $B=\mathrm{ad}_{c}^{2} K$.

Proof. (1) By 4.1(2), $K=\operatorname{Ker}(\operatorname{tr}) \oplus \mathcal{C} \sqrt{d}$. Hence

$$
B=c^{2} \circ K=c^{2} \circ \operatorname{Ker}(\operatorname{tr})+\mathcal{C} c^{2} \circ \sqrt{d}=c^{2} \circ \operatorname{Ker}(\operatorname{tr})+\mathcal{C} c
$$

since $c^{2} \circ \sqrt{d}=c$ by 3.7(7). But this sum is direct since $c^{2} \circ k_{0}=\alpha c$, with $\operatorname{tr}\left(k_{0}\right)=0$ and $\alpha \in \mathcal{C}$, implies $\alpha c^{2}=c\left(c^{2} k_{0}+k_{0} c^{2}\right)=\left(c k_{0} c\right) c=\operatorname{tr}\left(k_{0}\right) c=0$, and hence $\alpha=0$ since $c^{2} \neq 0$ by the very definition of Clifford element.
(2) For any $k \in K$ we have
$a d_{c}^{2} k=c^{2} k-2 c k c+k c^{2}=c^{2} \circ k-2 \operatorname{tr}(k) c=c^{2} \circ k-2 \operatorname{tr}(k)\left(c^{2} \circ \sqrt{d}\right)=c^{2} \circ(k-2 \operatorname{tr}(k) \sqrt{d}) \in B$
since $c=c^{2} \circ \sqrt{d}$ by $3.7(7)$. Conversely, let $c^{2} \circ k_{0}+\alpha c \in B$, with $k_{0} \in \operatorname{Ker}(\operatorname{tr})$ and $\alpha \in \mathcal{C}$. Then $c^{2} \circ k_{0}+\alpha c=\operatorname{ad}_{c}^{2} k_{0}-\alpha \operatorname{ad}_{c}^{2} \sqrt{d}=\operatorname{ad}_{c}^{2}\left(k_{0}-\alpha \sqrt{d}\right)$ since $c k_{0} c=0$ and $\operatorname{ad}_{c}^{2} \sqrt{d}=-c$ by $3.7(9)$.

Lemma 4.5. The symmetric \mathcal{C}-bilinear form defined on X by

$$
\left\langle c^{2} \circ k, c^{2} \circ k^{\prime}\right\rangle_{0}:=-\left\langle k, k^{\prime}\right\rangle
$$

is well defined.
Proof. Suppose that $c^{2} \circ k_{1}=c^{2} \circ k_{1}^{\prime}$. By multiplying the two members of this equality on the right by $k_{2} c^{2}$ we obtain $c^{2} k_{1} k_{2} c^{2}=c^{2} k_{1}^{\prime} k_{2} c^{2}$ since $c^{2} K c^{2}=0$. This proves that \langle,\rangle_{0} is well defined.

Remark 4.6. Consider the 3-grading $K=K_{-1} \oplus K_{0} \oplus K_{1}$ due to $e:=d c^{2}$ (see 3.5), with $K_{-1}=B, K_{0}=\kappa(e K e) \oplus g K g$ and $K_{1}=\kappa(e K g)$.

1. Since the pair (d, \sqrt{d}) plays a role symmetric to that played by $\left(c^{2}, c\right)$, we also have that $K_{1}=d \circ K=\{d \circ k: k \in K, \sqrt{d} k \sqrt{d}=0\} \oplus \mathcal{C} c=a d_{\sqrt{d}}^{2} K$.
2. X can be zero in 4.4 and therefore we can have $B=\mathcal{C} c$. Let $V:=H \oplus \mathbb{F} z$ be the orthogonal sum of a hyperbolic plane $H=\mathbb{F} x \oplus \mathbb{F} y$ and the line $\mathbb{F} z=H^{\perp}$ with z being an anisotropic vector, and let R be the simple ring $\operatorname{End}(V)$ with the adjoint as involution. For any $u, v \in V$ let $u \otimes v$ be the linear map defined by $w(u \otimes v)=\langle w, u\rangle v$ for all $w \in V$. Then $(u \otimes v)^{*}=v \otimes u$ and hence $c:=x \otimes z-z \otimes x$ lies in the Lie algebra $K=\operatorname{Skew}(R, *)$. It is easy to check that c is a Clifford element of R such that $\operatorname{ad}_{c}^{2} K=\mathbb{F} c$.

Theorem 4.7. Let R be a centrally closed ring with involution of characteristic not 2 or 3 and let $c \in K$ be a Clifford element of R. Then K_{c} is a Clifford Jordan algebra.

Proof. Since $c=[[c, \sqrt{d}], c](3.7(9))$ we have by 2.1 that $K_{c} \cong J(c, \sqrt{d})$, the Jordan algebra defined on the \mathcal{C}-vector space $\operatorname{ad}_{c}^{2} K=c^{2} \circ K=\mathcal{C} c \oplus X$ (see 4.4) by the product

$$
\left(\alpha_{1} c+c^{2} \circ k_{1}\right) \bullet\left(\alpha_{2} c+c^{2} \circ k_{2}\right)=\left[\left[\alpha_{1} c+c^{2} \circ k_{1}, \sqrt{d}\right], \alpha_{2} c+c^{2} \circ k_{2}\right]
$$

for all $\alpha_{1}, \alpha_{2} \in \mathcal{C}$ and $k_{1}, k_{2} \in K$ such that $c k_{1} c=c k_{2} c=0$. Endow the \mathcal{C}-vector space X with the symmetric bilinear form \langle,\rangle_{0} defined in 4.5 and consider the Clifford Jordan algebra $\mathcal{C} \oplus X$ defined by \langle,\rangle_{0} (see 2). We claim that the linear isomorphism $\left(\alpha c+c^{2} \circ k\right) \mapsto\left(\alpha, c^{2} \circ k\right)$ of $J(c, \sqrt{d})$ onto $\mathcal{C} \oplus X$ is actually an isomorphism of Jordan algebras. Since $\frac{1}{2} \in \Phi$, it suffices to check the identity

$$
\left[\left[\alpha c+c^{2} \circ k, \sqrt{d}\right], \alpha c+c^{2} \circ k\right]=\alpha^{2} c+\left\langle c^{2} \circ k, c^{2} \circ k\right\rangle_{0}+2 \alpha\left(c^{2} \circ k\right) .
$$

The bilinearity of the Lie product reduces the check to three products: (i) scalar by scalar, (ii) scalar by vector, and (iii) vector by vector.
(i) $[[\alpha c, \sqrt{d}], \alpha c]=\alpha^{2}[[c, \sqrt{d}], c]=\alpha^{2} c$ by 3.7(9).
(ii) $\left[[\alpha c, \sqrt{d}], c^{2} \circ k\right]=\alpha\left[[c, c d+d c], c^{2} k+k c^{2}\right]=\alpha\left[c^{2} d-d c^{2}, c^{2} k+k c^{2}\right]=$ $\alpha\left(c^{2} \circ k\right)$, where we have used $c^{2} d c^{2}=c^{2}, c^{4}=0$ and $c^{2} k c^{2}=c^{2}(d k+k d) c^{2}=0$, the latter because $c^{2} K c^{2}=0$ and $(d k+k d)^{*}=-(k d+d k)$, since $d^{*}=d$ and $k^{*}=-k$.
(iii) $\left[\left[c^{2} \circ k, \sqrt{d}\right], c^{2} \circ k\right]=2\left(c^{2} \circ k\right) \sqrt{d}\left(c^{2} \circ k\right)-\left(c^{2} \circ k\right)^{2} \circ \sqrt{d}$,
with

$$
\left(c^{2} \circ k\right) \sqrt{d}\left(c^{2} \circ k\right)=\left(c^{2} k+k c^{2}\right)(c d+d c)\left(c^{2} k+k c^{2}\right)=\left(c^{2} k d c+k c^{2} d c\right)\left(c^{2} k+k c^{2}\right)=0
$$

since $c^{3}=0$ and $c k c=0(\operatorname{tr}(k)=0)$, and

$$
\begin{aligned}
& \left(c^{2} \circ k\right)^{2} \circ \sqrt{d}=c^{2} k^{2} c^{2}(c d+d c)+(c d+d c) c^{2} k^{2} c^{2}= \\
& c^{2} k^{2} c^{2} d c+c d c^{2} k^{2} c^{2}=\langle k, k\rangle\left(c^{2} d c+c d c^{2}\right)=\langle k, k\rangle c
\end{aligned}
$$

since $c=c^{2} d c+c d c^{2}$ by 3.6(1). Therefore $\left(c^{2} \circ k\right) \bullet\left(c^{2} \circ k\right)=-\langle k, k\rangle c=$ $\left\langle c^{2} \circ k, c^{2} \circ k\right\rangle_{0} c$, which completes the proof.

Remark 4.8. Since \sqrt{d} is a Clifford element of R (see 3.7), the theorem above also proves that $K_{\sqrt{d}}$ is a Clifford Jordan algebra. In fact, $K_{\sqrt{d}} \cong K_{c}$.

References

[1] K.I. Beĭdar, W.S. Martindale $3^{\text {rd }}$ and A.V. Mikhalëv, Rings with Generalized Identities, Pure and Applied Mathematics; Marcel Dekker Inc., New York-BaselHong Kong, 1995.
[2] G. Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc., 232 (1977), 61-81.
[3] G. Benkart and A. Fernández López, The Lie inner ideal structure of associative rings revisited, Comm. Algebra, 37 (2009), 3833-3850.
[4] M. Brešar, M.A. Chebotar and W.S. Martindale $3^{\text {rd }}$, Functional Identities, Frontiers in Mathematics; Birkhäuser Verlag, Basel-Boston-Berlin, 2007.
[5] J. Brox, A. Fernández López and M. Gómez Lozano, Lie inner ideals of skew elements of prime rings with involution. (Submitted).
[6] C. Draper, A. Fernández López, E. García and M. Gómez Lozano, The socle of a nondegenerate Lie algebra, J. Algebra, 319 (2008), 2372-2394.
[7] C. Draper, A. Fernández López, E. García and M. Gómez Lozano, The inner ideals of the simple finite dimensional Lie algebra J. Lie Theory, 22 (2012), 907-929.
[8] A. Fernández López, E. García and M. Gómez Lozano, The Jordan socle and finitary Lie algebras, J. Algebra, 280 (2004), 635-654.
[9] A. Fernández López, E. García and M. Gómez Lozano, Inner ideals of finitary simple Lie algebras, J. Lie Theory, 16 (2006), 97-114.
[10] A. Fernández López, E. García and M. Gómez Lozano, The Jordan algebras of a Lie algebraJ. Algebra, 308 (2007), 164-177.
[11] A. Fernández López, E. García, M. Gómez Lozano and E. Neher, A construction of gradings of Lie algebras, Int. Math. Res. Not., 16 (2007), doi:10.1093/imrn/rmn051.
[12] A. Fernández López and A. Yu Golubkov, Lie algebras with an algebraic adjoint representation revisited, Manuscripta Math, 140 (2013), 363-376.
[13] J. Hennig, Simple, locally finite dimensional Lie algebras in positive characteristic, J. Algebra, 413 (2014), 270-288.
[14] N. Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX; American Mathematical Society; Providence, R.I., 1968.
[15] O.N. Smirnov, Simple associative algebras with finite Z-grading, J. Algebra, 196 (1997), 171-184.

[^1]Antonio Fernández López
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain emalfer@uma.es

[^0]: *The authors were partially supported by the MICINN and Fondos FEDER, MTM2010-15223, and by the Junta de Andalucía FQM-264. The first author was partially supported by Spanish MEC through the FPU grant AP2009-4848

[^1]: Jose Brox
 Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain brox@agt.cie.uma.es

 Miguel Gómez Lozano
 Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain
 miggl@uma.es

