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Clifford elements in Lie algebras

Jose Brox, Antonio Fernández López and Miguel Gómez Lozano

Abstract. Let L be a Lie algebra over a field F of characteristic zero or
p > 3. An element c ∈ L is called Clifford if ad3

c = 0 and its associated Jordan
algebra Lc is the Jordan algebra F⊕X defined by a symmetric bilinear form on
a vector space X over F . In this paper we prove the following result: Let R be
a centrally closed prime ring R of characteristic zero or p > 3 with involution
∗ and let c ∈ Skew(R, ∗) be such that c3 = 0, c2 6= 0 and c2kc = ckc2 for all
k ∈ Skew(R, ∗). Then c is a Clifford element of the Lie algebra Skew(R, ∗).
Mathematics Subject Classification 2000: 17B60, 17C50, 16N60.
Key Words and Phrases: Lie algebra, ring with involution, Jordan algebra, inner
ideal, Jordan element.

1. Introduction

Let L be a Lie algebra over a field F of characteristic not 2 or 3. An element
a ∈ L is called a Jordan element if ad3

aL = 0. In [10], a Jordan algebra was
attached to any Jordan element a ∈ L . This Jordan algebra, denoted by La ,
inherits most of the properties of the Lie algebra L and in addition the nature of
the Jordan element in question is reflected in the structure of the attached Jordan
algebra. For instance, if L is nondegenerate (ad2

xL = 0 ⇒ x = 0) so is the Jordan
algebra La and, in this case, La is unital if and only if a is von Neumann regular
(a ∈ ad2

aL). Jordan techniques have proved to be very useful in some questions of
Lie theory. Examples of the use of the Jordan-Lie connection can be found in the
papers [3], [7], [11], [12] and [13].

By a Clifford element of L we mean a Jordan element c ∈ L such that Lc

is the Jordan algebra J := F⊕X defined by a symmetric bilinear form on a vector
space X over F (we do not discard the case X = 0, i.e., J = F). Suppose now that
L is nondegenerate, char(F) = 0 or p > 5 and c is a Clifford element of L . Since
Lc is then unital, c is von Neumann regular, and hence, by the Jacobson-Morozov
Lemma (see [6, Proposition 1.18]), L has a 5-grading L = L−2⊕L−1⊕L0⊕L1⊕L2

such that the Jordan pair V := (L−2, L2) is isomorphic to the Clifford Jordan pair
defined by the Jordan algebra Lc , whose Tits-Kantor-Koecher algebra TKK(V )
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is a finitary orthogonal Lie algebra (see [8, 5.11]), that is, TKK(V ) ∼= Skew(R, ∗),
where R is a simple ring coinciding with its socle containing at least three nonzero
orthogonal idempotents, and ∗ is an involution of orthogonal type, i.e., the adjoint
involution associated to a nondegenerate symmetric bilinear form. Thus every
Clifford element c actually lives in a ring, and in this associative context verifies
c3 = 0 and c2 6= 0 (see [9, Lemma 3.7(ii)]). In this paper we prove the following
converse of the above result:

Let R be a centrally closed prime ring of characteristic not 2 or 3, let ∗
be an involution of R and let c be a Jordan element of the Lie algebra K :=
Skew(R, ∗) such that c3 = 0 and c2 6= 0. Then R has nonzero socle and contains
at least three orthogonal idempotents, ∗ is of orthogonal type and c is a Clifford
element of K .

The proof is rather constructive. We start by showing some elementary
associative properties of the Clifford element c and its square c2 . In particular,
c2 is von Neumann regular and can be paired with an element d that shares its
properties; moreover, c is also von Neumann regular and can be paired with the
element

√
d := cd + dc , which is also Clifford and will play the role of identity

element in the Jordan algebra Kc . The element d helps to build a 3-grading of
K in which c ∈ K−1 . We show that this component is actually independent of
the choice of d , since it can be expressed just in terms of c in different ways, all
important for our purposes. We also prove that c2Rc2 = Cc2 and cKc = Cc (with
C being the extended centroid of R), facts that serve to build a linear form and
a bilinear symmetric form over K , which in turn help to prove the main result
about the structure of Kc .

2. Preliminaries

Throughout this section Φ will denote a ring of scalars, i.e., a commutative ring
with 1, and F will stand for a field. An algebra over Φ (in short, a Φ-algebra) is a
Φ-module A endowed with a product (bilinear operation). Thus no associativity
condition is assumed; neither it is supposed the existence of a unit element in A .
According to this definition, a ring is an associative Z-algebra.

Jordan algebras and Lie algebras.

Suppose that 2 is invertible in Φ. A (linear) Jordan algebra is a Φ-
algebra J whose product, denoted by • , is commutative and satisfies the identity
x2 • (y • x) = (x2 • y) • x for all x, y ∈ J , where x2 := x • x . For each x ∈ J , the
U-operator Ux : J → J defined by Uxy := 2x • (x • y) − x2 • y , y ∈ J , satisfies
the identity UUxy = UxUyUx for all x, y ∈ J . A Jordan algebra is said to be
nondegenerate if Ux = 0 implies x = 0.

Suppose that 2 is invertible in Φ and A is an associative Φ-algebra, whose
product is denoted by juxtaposition. In the Φ-module A we define a new product
by x ◦ y := xy + yx . The resulting algebra is a Jordan algebra denoted by A+ ,
with Uxy = 4xyx . Note that A is semiprime if and only if A+ is nondegenerate.
A Jordan algebra J is called special if it is isomorphic to a subalgebra of A+ for
some associative algebra A . As usual, we denote by A− the Lie algebra defined
in the Φ-module A by the product [x, y] := xy − yx .
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Let F be a field of characteristic not 2 and let X be an F-vector space with
a symmetric bilinear form 〈 , 〉 . Then the vector space F ⊕X is endowed with a
structure of Jordan algebra by defining

(α, x) • (β, y) := (αβ + 〈x, y〉, βx + αy)

for α, β ∈ F and x, y ∈ X . This Jordan algebra is unital, with (1, 0) as unit
element, and special; in fact, it is isomorphic to a Jordan subalgebra of the Clifford
(associative) algebra defined by 〈 , 〉 (see [14, II.3]). For this reason, F ⊕ X is
sometimes called a Clifford Jordan algebra.

Let L be a Lie Φ-algebra, with [x, y] denoting the product and adx the
adjoint map determined by x . Sometimes we will use capital letters instead, i.e., X
for adx . An inner ideal of L is a Φ-submodule B of L such that [[B, L], B] ⊆ B .
An abelian inner ideal is an inner ideal B which is also an abelian subalgebra, i.e.,

such that [B, B] = 0. For example, if L =
⊕

−n≤i≤n

Li is a finite Z-grading, then

L−n and Ln are easily checked to be abelian inner ideals of L . An element a ∈ L
is said to be a Jordan element whenever ad3

aL = 0. Every element in an abelian
inner ideal is easily shown to be a Jordan element, and conversely, if L is 3-torsion
free and a ∈ L is Jordan, then Φa + ad2

aL is an abelian inner ideal of L (see [2,
Lemma 1.8]).

The following identities (see [2, Lemma 1.7]) will be used in what follows.
Let L be a 3-torsion free Lie algebra and let a, x ∈ L with a being a Jordan
element. Then

(JE1) A2XA = AXA2

(JE2) ad2
A2x = A2X2A2

where according to our notational convention A denotes the adjoint map ada and
similarly X stands for adx .

Suppose that 2 and 3 are invertible in Φ. Let L be a Lie Φ-algebra and
let a ∈ L be a Jordan element. In the Φ-module L a new product is defined
by x • y := [[x, a], y] , x, y ∈ L . Denote by L(a) the resulting algebra. Then
Ker(a) := {x ∈ L : ad2

ax = 0} is an ideal of L(a) and the quotient algebra
La := L(a)/Ker(a) is a Jordan algebra (with product x̄ • ȳ := [[x, a], y] , where x̄
stands for the coset of x for any x ∈ L), called the Jordan algebra of L at a (see
[10, Theorem 2.4]).

Definition 2.1. If a is von Neumann regular, i.e., if a is Jordan and a ∈ ad2
aL ,

then (1) La is unital with b̄ as unit element for any b ∈ L such that a = [[a, b], a] .
In this case, (2) La is isomorphic to the Jordan algebra J(a, b) defined in the
Φ-module ad2

aL by the product x • y := [[x, b], y]] for all x, y ∈ ad2
aL . We provide

here a proof of these results under conditions less restrictive than those required
in [10].

Proof. (1) a = [[a, b], a] implies A = ad[[a,b],a] = [[A,B], A] = 2ABA − A2B −
BA2 . Multiplying both members of this equation on the left by A and using (JE1)
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we get A2 = 2A2BA − ABA2 = A2BA (since A3 = 0), which proves that La is
unital with b̄ as unit element.

(2) The map ϕ : La → J(a, b) defined by ϕ(x̄) := −A2x is an algebra
isomorphism. Clearly ϕ is a linear isomorphism, and since both algebras are
commutative and 1

2
∈ Φ, it suffices to check that ϕ(x̄)2 = ϕ(x̄2):

ϕ(x̄)2 = [[A2x, b], A2x] = −ad2
A2xb = −A2X2A2b = A2X2a = −A2XAx = ϕ(x̄2),

where we have used (JE2), A2b = [a, [a, b]] = −ABa = −a and XAx = −X2a .

Involutions.

If R is a ring, an involution on R is an additive map ∗ : R → R such that
∗2 = IdR and (ab)∗ = b∗a∗ for all a, b ∈ R . If A is an algebra over a ring of
scalars with involution (Φ, )̄ , then an involution ∗ on A is an involution on the
underlying ring of A which in addition satisfies (λa)∗ = λ̄a∗ for every λ ∈ Φ and
a ∈ A . If ¯ is trivial (i.e., if it is the identity map) then ∗ is just an involution of
A as a ring which is also a linear map.

Let A be an algebra with involution ∗ over (Φ, )̄ . Denote by Γ the centroid
of A as a ring. Denote by H (respectively by K ) the set of the symmetric
(respectively, skew-symmetric) elements of A , i.e., H := Sym(A, ∗) = {x ∈ A :
x = x∗} and K := Skew(A, ∗) = {x ∈ A : x = −x∗} . Then K is a subalgebra of
the Lie algebra A− restricted to Sym(Φ, )̄ and, if 1

2
∈ Γ, then H is a subalgebra

of the Jordan algebra A+ restricted to Sym(Φ, )̄ (so it is a special Jordan algebra)
and A = H⊕K . Set κ(x) := x−x∗ ∈ K for every x ∈ A . Note that the mapping
x 7→ κ(x) is linear and satisfies κ(axa∗) = aκ(x)a∗ for all a, x ∈ A . Note also that
for h ∈ H, k ∈ K we have

h ◦ k = hk + kh = hk − (hk)∗ = κ(hk) ∈ K,

a simple identity that will show up frequently.

If 1
2
∈ Φ and M is a Φ-submodule of A which is ∗-invariant, i.e., such that

M∗ = M , then κ(M) = Skew(M, ∗), since if k ∈ Skew(M, ∗) then k = 1
2
(k +k) =

1
2
(k − k∗) = 1

2
κ(k) and κ(x) = x − x∗ ∈ M ∩K = Skew(M, ∗) for every x ∈ M .

In particular κ(A) = K . If M is not ∗-invariant, then κ(M) = κ(M∗) implies
that κ(M) = κ(M) + κ(M∗) = κ(M + M∗) = (M + M∗) ∩K .

Let R be a ring with involution ∗ . If a ∈ R is von Neumann regular, i.e,
if a = axa for some x ∈ R , then by replacing x by b := xax we obtain a = aba
and b = bab . If a is also symmetric and 1

2
∈ Γ then b can be chosen symmetric

by replacing x by 1
2
(x + x∗). The following lemma is a further step in the choice

of b .

Lemma 2.2. Let R be a ring and let c ∈ R be a von Neumann regular element
such that c2 = 0. Then there exists d ∈ R such that c = cdc, d = dcd and d2 = 0.
Moreover, if R has involution, 1

2
∈ Γ and c is symmetric (skew-symmetric), then

d can be chosen to be symmetric (respectively, skew-symmetric).

Proof. Let c be a von Neumann regular element of R . By the argument above,
there exists b ∈ R such that cbc = c and b = bcb . We claim that d := b − b2c
satisfies c = cdc , d = dcd and d2 = 0. Indeed,
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d2 = (b−b2c)(b−b2c) = b2−b3c−b(bcb)+b(bcb)bc = b2−b3c−b2−b3c = 0,

cdc = c(b− b2c)c = cbc = c , and

dcd = (b− b2c)c(b− b2c) = bc(b− b2c) = bcb− (bcb)bc = b− b2c = d .

Suppose now that c is symmetric. Since 1
2
∈ Γ we can take b ∈ H such

that cbc = b and b = bcb . We claim that

d := b− 1

2
(cb2 + b2c) +

1

4
cb3c

satisfies the required properties. It is clear that d∗ = d . Moreover, we have:

d2 =

(
b− 1

2
(cb2 + b2c) +

1

4
cb3c

)(
b− 1

2
(cb2 + b2c) +

1

4
cb3c

)
= b2 − 1

2
(bcb)b

− 1

2
b3c +

1

4
(bcb)b2c− 1

2
cb3 +

1

4
cb(bcb)b +

1

4
cb4c− 1

8
cb(bcb)b2c− 1

2
b(bcb)

+
1

4
b(bcb)bc +

1

4
cb2(bcb)− 1

8
cb2(bcb)bc = b2 − 1

2
b2 − 1

2
b3c +

1

4
b3c− 1

2
cb3

+
1

4
cb3 +

1

4
cb4c− 1

8
cb4c− 1

2
b2 +

1

4
b3c +

1

4
cb3 − 1

8
cb4c = 0,

cdc = c(b− 1
2
(cb2 + b2c))c = cbc = c , and

dcd =

(
b− 1

2
(cb2 + b2c)

)
c

(
b− 1

2
(cb2 + b2c)

)
(b− 1

2
cb2)c(b− 1

2
b2c)

= bcb− 1

2
(bcb)bc− 1

2
cb(bcb) +

1

4
cb(bcb)bc = bcb− 1

2
b2c− 1

2
cb2 +

1

4
cb3c = d.

If c is skew-symmetric, then the same d works taking b ∈ K .

Prime rings.

Let R be a prime ring. The extended centroid C of R (see ([1, Section
2.3]) is a field containing the centroid Γ, and the central closure CR of R is a
prime associative algebra over the field C . A prime ring R is centrally closed if
it coincides with its central closure. The following lemma (see [4, Theorem A.7])
plays a fundamental role in our work.

Lemma 2.3 (Martindale). Let R be a prime ring with extended centroid C .
Let ai, bi ∈ R with b1 6= 0 be such that

∑n
i=1 aixbi = 0 for every x ∈ R . Then

a1 ∈
∑n

i=2 Cai .

Let R be a centrally closed prime ring with involution ∗ . Then ∗ naturally
extends to an involution of the extended centroid C of R , also denoted by ∗ , so
that R is an algebra with involution over (C, ∗). If ∗ acts trivially on C then it is
called of the first kind. In this case K can be regarded as a Lie algebra over C .
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3. Clifford elements of a prime ring with involution

Throughout this section R will denote a centrally closed prime ring of charac-
teristic not 2 or 3 which is endowed with an involution ∗ . Then K , the set of
skew-symmetric elements of R , is a Lie algebra over the field Sym(C, ∗). It follows
from [5, Propostion 6.2] (here characteristic greater than 5 is required) that if K
is not abelian and ∗ is of the first kind, then for any Jordan element a ∈ K we
have a3 = 0. This leads us to the following:

Definition 3.1. By a Clifford element of R we mean an element c ∈ K
such that c3 = 0, c2 6= 0 and c is a Jordan element of the Lie algebra K :
ad3

ck = c3k − 3c2kc + 3ckc2 − kc3 = 0 for all k ∈ K .

The square of a Clifford element

Proposition 3.2. Let c ∈ K be a Clifford element of R . Then:

1. c2kc = ckc2 for all k ∈ K .

2. c2Kc2 = 0.

3. (c2xc2)∗ = c2x∗c2 = c2xc2 for all x ∈ R .

4. c2Rc2 = Cc2 .

5. The involution ∗ is of the first kind.

6. R has nonzero socle with division ring isomorphic to C and ∗ is of orthogonal
type.

Proof. (1) Since c is a Jordan element of K , for every k ∈ K we have
0 = ad3

ck = c3k − 3c2kc + 3ckc2 − kc3 = −3(c2kc − ckc2). Since char(R) 6= 3
this implies that ckc2 = c2kc .

(2) By (1), c2kc2 = c(ckc2) = c(c2kc) = c3kc = 0.

(3) Since x−x∗ ∈ K we have c2(x−x∗)c2 = 0 and hence c2xc2 = c2x∗c2 =
(c2xc2)∗ .

(4) Let x, y ∈ R . Since c2 is symmetric it follows from (3) that

c2xc2yc2 = c2(xc2y)∗c2 = (c2y∗c2)x∗c2 = c2y(c2x∗c2) = c2yc2xc2.

Thus, fixed x , for every y ∈ R we get (c2xc2)y(c2)−(c2)y(c2xc2) = 0, with c2 6= 0.
Then, by Martindale’s Lemma (2.3), for each x ∈ R there is a λx ∈ C such that
c2xc2 = λxc

2 . Since c2 6= 0 and R is prime, c2Rc2 6= 0 and hence c2Rc2 = Cc2 ,
since C is a field.

(5) By (4), given α ∈ C there exists a ∈ R such that αc2 = c2ac2 . Then,
by (3), α∗c2 = c2a∗c2 = c2ac2 = αc2 , so α∗ = α , proving that ∗ is of the first kind.

(6) By (4), c2 = c2ac2 for some a ∈ R and hence c2R = eR , where e = c2a
is an idempotent of R . Then eRe = c2Rc2a = Cc2a = Ce , which proves ([1,
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Proposition 4.3.3]) that eR is a minimal right ideal of R , so R has nonzero socle
with associated division ring isomorphic to the field C ([1, Theorem 4.3.7]). Now
it follows from Kaplansky’s Theorem ([1, Theorem 4.6.8]) that the involution ∗ of
R is either of transpose type or of symplectic type; but the latter cannot occur
because c2 is a symmetric rank-one element, so ∗ is of transpose type.

Let c ∈ K be a Clifford element of R . Since c2 is a symmetric zero-square
element which is also von Neumann regular (see 3.2(4)), we have by 2.2 that there
exists d ∈ R such that

d∗ = d, d2 = 0, c2dc2 = c2 and d = dc2d.

Such an element d will be called a twin of c2 . Then e := dc2 is a ∗-orthogonal
idempotent, i.e., e2 = e and ee∗ = e∗e = 0.

Proposition 3.3. Let c ∈ K be a Clifford element of R , let d be a twin of c2

and put e := dc2 . Then:

1. dKd = 0.

2. dRd = Cd.

3. eRe = Ce, e∗Re = Cc2 , eRe∗ = Cd and eKe∗ = e∗Ke = 0.

4. ec = ce∗ = 0, e∗c2 = c2e = c2 and de∗ = ed = d.

5. [K,K] 6= 0.

6. e + e∗ 6= 1 in the unital hull R̂ = C1 + R of R .

Proof. Note that, by the proof of 3.2(4), c2Mc2 = Cc2 for any C -subspace M
of R such that c2Mc2 6= 0, a fact that will be used in what follows without further
mention.

(1) dKd = dc2(dKd)c2d = 0, where we have used 3.2(2) and the fact that
dkd is skew-symmetric for every k ∈ K .

(2) dRd = (dc2d)R(dc2d) = dc2(dRd)c2d = dCc2d = Cdc2d = Cd , since
dc2d = d and c2dc2 = c2 imply that c2(dRd)c2 6= 0.

(3) eRe = dc2(Rd)c2 = dCc2 = Ce , since c2 = c2(dc2d)c2 ∈ c2(Rd)c2 and
therefore the latter is not zero. In a similar way it is proved that e∗Re = Cc2 and
eRe∗ = Cd . Now eKe∗ = d(c2Kc2)d = 0 by 3.2(2), and e∗Ke = 0 is obtained in
a similar way.

(4) The identities of this item follow straightforwardly from the very
definition of e .

(5) By (4), [c, e−e∗] = ce+e∗c = cdc2 +c2dc 6= 0. Otherwise cdc2 = −c2dc
would lead to the contradiction c2 = c2dc2 = −c3dc = 0. Since [c, e−e∗] ∈ [K,K] ,
[K, K] 6= 0.

(6) It follows from (3) and (4) that (e+ e∗)c(e+ e∗) = 0, so e+ e∗ 6= 1.
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Remark 3.4. Twin d of c2 are not unique. In fact, for any twin d of c and
any λ ∈ C , exp(λadc)d is a twin of c2 .

As we have seen in the proposition above, any Clifford element c of R gives
rise to two orthogonal elements e and e∗ , associated to a twin d of c2 . Moreover,
the idempotent e+ e∗ is not complete (see 3.3(6)), i.e., the symmetric idempotent
g := 1 − e − e∗ of the unital hull R̂ = C1 + R of R is not zero. We prove next
that the complete system {e, e∗, g} induces a 3-grading in the Lie algebra K .

Proposition 3.5. Let c ∈ K be a Clifford element of R , e := dc2 and g :=
1− e− e∗ , where d is a twin of c2 . Then K = K−1 ⊕K0 ⊕K1 is a 3-grading of
K , with K−1 = κ((1− e)Ke) = κ((1− e)Re) = κ(gRe), K0 = κ(eRe)⊕ gKg and
K1 = κ(eK(1− e)) = κ(eR(1− e)) = κ(eRg).

Proof. Consider the complete system {e0 := e∗, e1 := g, e2 := e} of orthogonal

idempotents of R̂ and put Ri :=
⊕

m−n=i

emRen , −2 ≤ i ≤ 2. Then (see [15, p.174]

for instance), R =
⊕

−2≤i≤2

Ri is an (associative) 5-grading of R . Explicitly,

R = e∗Re⊕ (e∗Rg ⊕ gRe)⊕ (e∗Re∗ ⊕ gRg ⊕ eRe)⊕ (gRe∗ ⊕ eRg)⊕ eRe∗.

Since all the components Ri are ∗-invariant subspaces, K =
⊕

−2≤i≤2

Ki , where

Ki := Ri ∩K = Skew(Ri, ∗) for each index i and [Ki, Kj] ⊆ [Ri, Rj] ∩ [K, K] ⊆
Ri+j ∩ K = Ki+j . Thus K =

⊕
−2≤i≤2

Ki is (a priori) a 5-grading of the Lie

algebra K . But K−2 = κ(e∗Re) = e∗κ(R)e = e∗Ke = 0 by 3.3(3) and similarly
K2 = e∗Ke = 0. Moreover, the i-th homogeneous component ki of any k ∈ K

coincides with
⊕

m−n=i

κ(emken), so k ∈ K−1 if and only if

gke + e∗kg = (1− e− e∗)ke + e∗k(1− e− e∗) = (1− e)ke + e∗k(1− e∗) =

(1− e)ke− ((1− e)ke)∗ = κ((1− e)ke)

since e∗Ke = 0 by 3.3(3), which proves that K−1 = κ(gRe) = κ((1 − e)Ke).
Similarly, K1 = κ(eRg) = κ(eK(1− e)). Therefore

K = κ((1− e)Ke)⊕ (κ(eRe)⊕ gKg)⊕ κ(eK(1− e))

is a 3-grading of K . Now, for any x ∈ R ,

κ(gxe) = κ((1− e)xe)− κ(e∗xe) = κ((1− e)xe)− e∗κ(x)e = κ((1− e)xe)

since e∗κ(x)e ∈ e∗Ke = 0, which proves that K−1 = κ((1 − e)Re). Similarly we
obtain that K1 = κ(eR(1− e)).

Although the 3-grading of K has been defined by choosing a twin d of c2 ,
it will be seen now that the component K−1 only depends on the Clifford element
c .
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Proposition 3.6. Let c ∈ K be a Clifford element of R , let e := dc2 where d
is a a twin of c2 and let B := κ((1− e)Ke). Then B is an abelian inner ideal of
K and we have:

1. If b ∈ B then eb = 0 and b = e∗b + be = κ((1− e)be).

2. B = c2 ◦K .

3. c = e∗c + ce = c2dc + cdc2 .

4. c ∈ B .

5. cKc = Cc.

Proof. By Proposition 3.5, B is an extreme of a finite Z-grading of K and
hence an abelian inner ideal of K .

(1) Let b = (1−e)ke+e∗k(1−e∗) ∈ B . Then eb = e((1−e)ke+e∗k(1−e∗)) =
0 and e∗b = e∗k(1− e∗), since e∗e = 0 and e∗Ke = 0. We also have that be∗ = 0
and be = (1− e)ke . Hence b = e∗b + be = e∗b(1− e∗) + (1− e)be = κ((1− e)be).

(2) c2 ◦ k = κ(kc2) = κ(ke∗c2 − (eke∗)c2) = κ((1 − e)k(e∗c2)) = κ((1 −
e)k(c2e)) ∈ κ((1− e)Re) = κ((1− e)Ke) = B by 3.5. Conversely, let b ∈ B . Then

b = e∗b + be = (c2d)b + b(dc2) = c2(d ◦ b) + (d ◦ b)c2 = c2 ◦ (d ◦ b) ∈ c2 ◦K,

since e∗ = c2d , c2 = c2e and c2b = (c2e)b = c2(eb) = 0.

(3) Set z := c − c2dc − cdc2 . We must prove that z = 0. For any k ∈ K
we have

c2kz = c2kc− (c2kc2)dc− (c2kc)dc2 = ckc2 − ck(c2dc2) = ckc2 − ckc2 = 0

since c2kc = ckc2 and c2kc2 = 0 by 3.2, and d is a twin of c2 (see 3). We
also have zkc2 = (c2kz)∗ = 0, and hence c2xz = c2x∗z and zxc2 = zx∗c2

for every x ∈ R . Let x, y ∈ R . Then c2κ(xzy)c2 = 0 since c2Kc2 = 0.
Thus 0 = c2(xzy + y∗zx∗)c2 = c2xzyc2 + c2y∗zx∗c2 = c2xzyc2 + c2yzxc2 =
(c2xz)y(c2) + (c2)y(zxc2) = 0, with c2 6= 0. By Martindale’s Lemma (2.3), for
every x ∈ R there is λx ∈ C such that c2xz = λxc

2 . But

z(1− e) = (c− e∗c− ce)(1− e) = c− ce− e∗c + e∗ce− ce + ce = c− ce− e∗c = z

since e∗ce ∈ e∗Ke = 0. Hence c2xz = c2xz(1− e) = λxc
2(1− e) = 0, so c2Rz = 0.

Since R is prime and c2 6= 0 this implies that z = 0. Thus c = e∗c+ce = c2dc+cdc2

as required.

(4) By (3), c = c2dc+ cdc2 = c2(dc+ cd)+ (dc+ cd)c2 ∈ c2 ◦K = B by (2).

(5) Note that cd+dc = κ(cd) ∈ K and c(cd+dc)c = c2dc+cdc2 = c by (3).
Hence Cc ⊆ cKc . Conversely, for any k ∈ K we have ckc = (e∗c+ce)k(e∗c+ce) =
e∗cke∗c + cekce , since eKe∗ = 0 by 3.3(3) and ckc ∈ K . Now, again by 3.3(3),
e(kc)e = λe for some λ ∈ C , and hence e∗(ck)e∗ = (ekce)∗ = (λe)∗ = λe∗ , since
the involution ∗ is of the first kind by 3.2(5). Then ckc = λe∗c + λce = λc , which
completes the proof.
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The square root of d

Given a Clifford element c of R and a twin d of c2 , we put
√

d := cd + dc .
As will be seen now, the square-root notation is absolutely justified.

Proposition 3.7. Let c ∈ K be a Clifford element of R and let d be a twin of
c2 . Then:

1.
√

d ∈ K1 in the 3-grading of 3.5. In particular
√

d is a Jordan element.

2. (
√

d)2 = d.

3. (
√

d)3 = 0.

4.
√

dK
√

d = C
√

d.

5.
√

dc
√

d =
√

d.

6. c
√

dc = c.

7. c2 ◦
√

d = c.

8. d ◦ c =
√

d.

9. [[c,
√

d], c] = c.

10. [[
√

d, c],
√

d] =
√

d.

11. [[c,
√

d], b] = b for every b ∈ B .

Proof. (1) Since c ∈ K and d ∈ H ,
√

d = cd + dc ∈ K . We have

κ(e
√

d(1− e)) = e(cd + dc)(1− e) + (1− e∗)(dc + cd)e∗

= edc(1− e) + (1− e∗)cde∗ = edc− edce + cde∗ − e∗cde∗

= (dc2d)c− e(dcd)c2 + c(dc2d)− c2(dcd)e∗ = dc + cd =
√

d

since ec = 0, e = dc2 , dc2d = d and dcd ∈ dKd = 0. We have thus proved
(see 3.5) that

√
d ∈ κ(eK(1 − e)) = K1 . Now since K1 is an abelian inner ideal

(because it is the extreme of a finite grading),
√

d is a Jordan element of K .

(2) (
√

d)2 = (cd + dc)(cd + dc) = c(dcd) + cd2c + dc2d + (dcd)c = dc2d = d .

(3) (
√

d)3 = (
√

d)2
√

d = d(cd + dc) = dcd + d2c = 0.

(4) If follows from (1), (2) and (3) that
√

d is a Clifford element of R .
Hence, by 3.6(5),

√
dK

√
d = C

√
d .

(5)
√

dc
√

d = (cd + dc)c(cd + dc) = c(dc2d) + c(dcd)c + dc3d + (dc2d)c =
cd + dc =

√
d .

(6) c
√

dc = c(cd + dc)c = c2dc + cdc2 = c by 3.6(3).

(7) c2 ◦
√

d = c2(cd + dc) + (cd + dc)c2 = c2dc + cdc2 = c .

(8) d ◦ c = dc + cd =
√

d .

(9) [[c,
√

d], c] = 2c
√

dc− c2 ◦
√

d = 2c− c = c by (6) and (7).

(10) [[
√

d, c],
√

d] = 2
√

dc
√

d− (
√

d)2 ◦ c = 2
√

d−
√

d =
√

d by (2), (5) and
(8).

(11) [[c,
√

d], b] = [[c, cd + dc], b] = [c2d− dc2, b] = [e∗ − e, b] = e∗b + be = b
by 3.6(1).

4. Jordan algebra at a Clifford element

As in the previous section, R will denote a centrally closed prime ring of charac-
teristic not 2 or 3 with involution ∗ . We prove here that if c is a Clifford element
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of R , then the abelian inner ideal c2 ◦K = κ((1− e)Ke) (see 3.6) can be endowed
with a Jordan algebra structure of Clifford type (see 2), which happens to be iso-
morphic to Kc . We begin by defining a linear form and a symmetric bilinear form
on the C -vector space K (recall that ∗ is of the first kind by 3.2(5)).

Remark 4.1. By 3.6(5) there exists a linear map tr : K → C , called the trace ,
such that

tr(k)c = ckc

for every k ∈ K . Note that

1. tr(
√

d) = 1 since c
√

dc = c by 3.7(6), and hence

2. K = C
√

d⊕Ker(tr).

Remark 4.2. Since c2Rc2 = Cc2 (3.2(4)) with c2k1k2c
2 = c2k2k1c

2 for all
k1, k2 ∈ K (3.2(2)), we have a symmetric bilinear form 〈 , 〉 : K ×K → C defined
by

〈k1, k2〉c2 = c2k1k2c
2

for all k1, k2 ∈ K .

Remark 4.3. The trace can be realized from the bilinear form and vice versa.
Let k, k′ ∈ K :

1. 〈
√

d, k〉c2 = c2
√

dkc2 = c2(cd + dc)kc2 = c3dkc2 + c2dckc2 = c2dckc2 =
c2d(ckc)c = tr(k)c2dc2 = tr(k)c2 , since c3 = 0 and c2dc2 = c2 . Thus
tr(k) = 〈k,

√
d〉 .

2. tr(κ(ckk′))c2 = (cκ(ckk′)c)c = c2kk′c2 + ck′kc3 = c2kk′c2 = 〈k, k′〉c2 . Thus
〈k, k′〉 = tr(κ(ckk′)).

Proposition 4.4. Let c ∈ K be a Clifford element of R and B := c2 ◦ K .
Then:

1. B = Cc⊕X , where X := {c2 ◦ k : k ∈ Ker(tr)}.
2. B = ad2

cK .

Proof. (1) By 4.1(2), K = Ker(tr)⊕ C
√

d . Hence

B = c2 ◦K = c2 ◦Ker(tr) + Cc2 ◦
√

d = c2 ◦Ker(tr) + Cc

since c2 ◦
√

d = c by 3.7(7). But this sum is direct since c2 ◦ k0 = αc , with
tr(k0) = 0 and α ∈ C , implies αc2 = c(c2k0 + k0c

2) = (ck0c)c = tr(k0)c = 0, and
hence α = 0 since c2 6= 0 by the very definition of Clifford element.

(2) For any k ∈ K we have

ad2
ck = c2k−2ckc+kc2 = c2◦k−2tr(k)c = c2◦k−2tr(k)(c2◦

√
d) = c2◦(k−2tr(k)

√
d) ∈ B
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since c = c2 ◦
√

d by 3.7(7). Conversely, let c2 ◦ k0 + αc ∈ B , with k0 ∈ Ker(tr)
and α ∈ C . Then c2 ◦ k0 + αc = ad2

ck0 − αad2
c

√
d = ad2

c(k0 − α
√

d) since ck0c = 0
and ad2

c

√
d = −c by 3.7(9).

Lemma 4.5. The symmetric C -bilinear form defined on X by

〈c2 ◦ k, c2 ◦ k′〉0 := −〈k, k′〉

is well defined.

Proof. Suppose that c2 ◦ k1 = c2 ◦ k′1 . By multiplying the two members of this
equality on the right by k2c

2 we obtain c2k1k2c
2 = c2k′1k2c

2 since c2Kc2 = 0. This
proves that 〈 , 〉0 is well defined.

Remark 4.6. Consider the 3-grading K = K−1 ⊕ K0 ⊕ K1 due to e := dc2

(see 3.5), with K−1 = B , K0 = κ(eKe)⊕ gKg and K1 = κ(eKg).

1. Since the pair (d,
√

d) plays a role symmetric to that played by (c2, c), we
also have that K1 = d ◦K = {d ◦ k : k ∈ K,

√
dk
√

d = 0} ⊕ Cc = ad2√
d
K .

2. X can be zero in 4.4 and therefore we can have B = Cc . Let V := H⊕Fz be
the orthogonal sum of a hyperbolic plane H = Fx⊕Fy and the line Fz = H⊥

with z being an anisotropic vector, and let R be the simple ring End(V )
with the adjoint as involution. For any u, v ∈ V let u⊗ v be the linear map
defined by w(u ⊗ v) = 〈w, u〉v for all w ∈ V . Then (u ⊗ v)∗ = v ⊗ u and
hence c := x⊗ z − z ⊗ x lies in the Lie algebra K = Skew(R, ∗). It is easy
to check that c is a Clifford element of R such that ad2

cK = Fc .

Theorem 4.7. Let R be a centrally closed ring with involution of characteristic
not 2 or 3 and let c ∈ K be a Clifford element of R . Then Kc is a Clifford Jordan
algebra.

Proof. Since c = [[c,
√

d], c] (3.7(9)) we have by 2.1 that Kc
∼= J(c,

√
d), the

Jordan algebra defined on the C -vector space ad2
cK = c2 ◦K = Cc⊕X (see 4.4)

by the product

(α1c + c2 ◦ k1) • (α2c + c2 ◦ k2) = [[α1c + c2 ◦ k1,
√

d], α2c + c2 ◦ k2]

for all α1, α2 ∈ C and k1, k2 ∈ K such that ck1c = ck2c = 0. Endow the C -vector
space X with the symmetric bilinear form 〈 , 〉0 defined in 4.5 and consider the
Clifford Jordan algebra C ⊕X defined by 〈 , 〉0 (see 2). We claim that the linear
isomorphism (αc + c2 ◦ k) 7→ (α, c2 ◦ k) of J(c,

√
d) onto C ⊕ X is actually an

isomorphism of Jordan algebras. Since 1
2
∈ Φ, it suffices to check the identity

[[αc + c2 ◦ k,
√

d], αc + c2 ◦ k] = α2c + 〈c2 ◦ k, c2 ◦ k〉0 + 2α(c2 ◦ k).

The bilinearity of the Lie product reduces the check to three products: (i) scalar
by scalar, (ii) scalar by vector, and (iii) vector by vector.
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(i) [[αc,
√

d], αc] = α2[[c,
√

d], c] = α2c by 3.7(9).

(ii) [[αc,
√

d], c2 ◦ k] = α[[c, cd + dc], c2k + kc2] = α[c2d− dc2, c2k + kc2] =
α(c2 ◦ k), where we have used c2dc2 = c2 , c4 = 0 and c2kc2 = c2(dk + kd)c2 = 0,
the latter because c2Kc2 = 0 and (dk + kd)∗ = −(kd + dk), since d∗ = d and
k∗ = −k .

(iii) [[c2 ◦ k,
√

d], c2 ◦ k] = 2(c2 ◦ k)
√

d(c2 ◦ k)− (c2 ◦ k)2 ◦
√

d ,

with

(c2◦k)
√

d(c2◦k) = (c2k+kc2)(cd+dc)(c2k+kc2) = (c2kdc+kc2dc)(c2k+kc2) = 0,

since c3 = 0 and ckc = 0 (tr(k) = 0), and

(c2 ◦ k)2 ◦
√

d = c2k2c2(cd + dc) + (cd + dc)c2k2c2 =

c2k2c2dc + cdc2k2c2 = 〈k, k〉(c2dc + cdc2) = 〈k, k〉c
since c = c2dc + cdc2 by 3.6(1). Therefore (c2 ◦ k) • (c2 ◦ k) = −〈k, k〉c =
〈c2 ◦ k, c2 ◦ k〉0c , which completes the proof.

Remark 4.8. Since
√

d is a Clifford element of R (see 3.7), the theorem above
also proves that K√

d is a Clifford Jordan algebra. In fact, K√
d
∼= Kc .
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elements of prime rings with involution. (Submitted).
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