Clifford elements in Lie algebras

Jose Brox, Antonio Fernández López and Miguel Gómez Lozano

Abstract. Let L be a Lie algebra over a field \mathbb{F} of characteristic zero or p > 3. An element $c \in L$ is called Clifford if $\operatorname{ad}_c^3 = 0$ and its associated Jordan algebra L_c is the Jordan algebra $\mathbb{F} \oplus X$ defined by a symmetric bilinear form on a vector space X over \mathbb{F} . In this paper we prove the following result: Let R be a centrally closed prime ring R of characteristic zero or p > 3 with involution * and let $c \in \operatorname{Skew}(R, *)$ be such that $c^3 = 0$, $c^2 \neq 0$ and $c^2kc = ckc^2$ for all $k \in \operatorname{Skew}(R, *)$. Then c is a Clifford element of the Lie algebra $\operatorname{Skew}(R, *)$. Mathematics Subject Classification 2000: 17B60, 17C50, 16N60.

Key Words and Phrases: Lie algebra, ring with involution, Jordan algebra, inner ideal, Jordan element.

1. Introduction

Let L be a Lie algebra over a field \mathbb{F} of characteristic not 2 or 3. An element $a \in L$ is called a *Jordan element* if $ad_a^3 L = 0$. In [10], a Jordan algebra was attached to any Jordan element $a \in L$. This Jordan algebra, denoted by L_a , inherits most of the properties of the Lie algebra L and in addition the nature of the Jordan element in question is reflected in the structure of the attached Jordan algebra. For instance, if L is nondegenerate $(ad_x^2 L = 0 \Rightarrow x = 0)$ so is the Jordan algebra L_a and, in this case, L_a is unital if and only if a is von Neumann regular $(a \in ad_a^2 L)$. Jordan techniques have proved to be very useful in some questions of Lie theory. Examples of the use of the Jordan-Lie connection can be found in the papers [3], [7], [11], [12] and [13].

By a Clifford element of L we mean a Jordan element $c \in L$ such that L_c is the Jordan algebra $J := \mathbb{F} \oplus X$ defined by a symmetric bilinear form on a vector space X over \mathbb{F} (we do not discard the case X = 0, i.e., $J = \mathbb{F}$). Suppose now that L is nondegenerate, $char(\mathbb{F}) = 0$ or p > 5 and c is a Clifford element of L. Since L_c is then unital, c is von Neumann regular, and hence, by the Jacobson-Morozov Lemma (see [6, Proposition 1.18]), L has a 5-grading $L = L_{-2} \oplus L_{-1} \oplus L_0 \oplus L_1 \oplus L_2$ such that the Jordan pair $V := (L_{-2}, L_2)$ is isomorphic to the Clifford Jordan pair defined by the Jordan algebra L_c , whose Tits-Kantor-Koecher algebra TKK(V)

^{*}The authors were partially supported by the MICINN and Fondos FEDER, MTM2010-15223, and by the Junta de Andalucía FQM-264. The first author was partially supported by Spanish MEC through the FPU grant AP2009-4848

is a finitary orthogonal Lie algebra (see [8, 5.11]), that is, $TKK(V) \cong \text{Skew}(R, *)$, where R is a simple ring coinciding with its socle containing at least three nonzero orthogonal idempotents, and * is an involution of *orthogonal type*, i.e., the adjoint involution associated to a nondegenerate symmetric bilinear form. Thus every Clifford element c actually lives in a ring, and in this associative context verifies $c^3 = 0$ and $c^2 \neq 0$ (see [9, Lemma 3.7(ii)]). In this paper we prove the following converse of the above result:

Let R be a centrally closed prime ring of characteristic not 2 or 3, let *be an involution of R and let c be a Jordan element of the Lie algebra K :=Skew(R,*) such that $c^3 = 0$ and $c^2 \neq 0$. Then R has nonzero socle and contains at least three orthogonal idempotents, * is of orthogonal type and c is a Clifford element of K.

The proof is rather constructive. We start by showing some elementary associative properties of the Clifford element c and its square c^2 . In particular, c^2 is von Neumann regular and can be paired with an element d that shares its properties; moreover, c is also von Neumann regular and can be paired with the element $\sqrt{d} := cd + dc$, which is also Clifford and will play the role of identity element in the Jordan algebra K_c . The element d helps to build a 3-grading of K in which $c \in K_{-1}$. We show that this component is actually independent of the choice of d, since it can be expressed just in terms of c in different ways, all important for our purposes. We also prove that $c^2Rc^2 = Cc^2$ and cKc = Cc (with C being the extended centroid of R), facts that serve to build a linear form and a bilinear symmetric form over K, which in turn help to prove the main result about the structure of K_c .

2. Preliminaries

Throughout this section Φ will denote a ring of scalars, i.e., a commutative ring with 1, and \mathbb{F} will stand for a field. An *algebra over* Φ (in short, a Φ -algebra) is a Φ -module A endowed with a product (bilinear operation). Thus no associativity condition is assumed; neither it is supposed the existence of a unit element in A. According to this definition, a ring is an associative \mathbb{Z} -algebra.

Jordan algebras and Lie algebras.

Suppose that 2 is invertible in Φ . A (linear) Jordan algebra is a Φ algebra J whose product, denoted by \bullet , is commutative and satisfies the identity $x^2 \bullet (y \bullet x) = (x^2 \bullet y) \bullet x$ for all $x, y \in J$, where $x^2 := x \bullet x$. For each $x \in J$, the U-operator $U_x : J \to J$ defined by $U_x y := 2x \bullet (x \bullet y) - x^2 \bullet y$, $y \in J$, satisfies the identity $U_{U_x y} = U_x U_y U_x$ for all $x, y \in J$. A Jordan algebra is said to be nondegenerate if $U_x = 0$ implies x = 0.

Suppose that 2 is invertible in Φ and A is an associative Φ -algebra, whose product is denoted by juxtaposition. In the Φ -module A we define a new product by $x \circ y := xy + yx$. The resulting algebra is a Jordan algebra denoted by A^+ , with $U_x y = 4xyx$. Note that A is semiprime if and only if A^+ is nondegenerate. A Jordan algebra J is called *special* if it is isomorphic to a subalgebra of A^+ for some associative algebra A. As usual, we denote by A^- the Lie algebra defined in the Φ -module A by the product [x, y] := xy - yx. Let \mathbb{F} be a field of characteristic not 2 and let X be an \mathbb{F} -vector space with a symmetric bilinear form \langle , \rangle . Then the vector space $\mathbb{F} \oplus X$ is endowed with a structure of Jordan algebra by defining

$$(\alpha, x) \bullet (\beta, y) := (\alpha\beta + \langle x, y \rangle, \ \beta x + \alpha y)$$

for $\alpha, \beta \in \mathbb{F}$ and $x, y \in X$. This Jordan algebra is unital, with (1,0) as unit element, and special; in fact, it is isomorphic to a Jordan subalgebra of the Clifford (associative) algebra defined by \langle , \rangle (see [14, II.3]). For this reason, $\mathbb{F} \oplus X$ is sometimes called a *Clifford* Jordan algebra.

Let L be a Lie Φ -algebra, with [x, y] denoting the product and ad_x the adjoint map determined by x. Sometimes we will use capital letters instead, i.e., X for ad_x . An *inner ideal* of L is a Φ -submodule B of L such that $[[B, L], B] \subseteq B$. An *abelian inner ideal* is an inner ideal B which is also an abelian subalgebra, i.e., such that [B, B] = 0. For example, if $L = \bigoplus_{\substack{-n \leq i \leq n \\ n = i \leq n}} L_i$ is a finite \mathbb{Z} -grading, then L_{-n} and L_n are easily checked to be abelian inner ideals of L. An element $a \in L$

 L_{-n} and L_n are easily checked to be abelian inner ideals of L. An element $a \in L$ is said to be a *Jordan element* whenever $ad_a^3L = 0$. Every element in an abelian inner ideal is easily shown to be a Jordan element, and conversely, if L is 3-torsion free and $a \in L$ is Jordan, then $\Phi a + ad_a^2 L$ is an abelian inner ideal of L (see [2, Lemma 1.8]).

The following identities (see [2, Lemma 1.7]) will be used in what follows. Let L be a 3-torsion free Lie algebra and let $a, x \in L$ with a being a Jordan element. Then

 $(JE1) \quad A^2 X A = A X A^2$

(JE2) $\operatorname{ad}_{A^2x}^2 = A^2 X^2 A^2$

where according to our notational convention A denotes the adjoint map ad_a and similarly X stands for ad_x .

Suppose that 2 and 3 are invertible in Φ . Let L be a Lie Φ -algebra and let $a \in L$ be a Jordan element. In the Φ -module L a new product is defined by $x \bullet y := [[x, a], y], x, y \in L$. Denote by $L^{(a)}$ the resulting algebra. Then $\operatorname{Ker}(a) := \{x \in L : \operatorname{ad}_a^2 x = 0\}$ is an ideal of $L^{(a)}$ and the quotient algebra $L_a := L^{(a)}/\operatorname{Ker}(a)$ is a Jordan algebra (with product $\overline{x} \bullet \overline{y} := \overline{[[x, a], y]}$, where \overline{x} stands for the coset of x for any $x \in L$), called the Jordan algebra of L at a (see [10, Theorem 2.4]).

Definition 2.1. If a is von Neumann regular, i.e., if a is Jordan and $a \in \operatorname{ad}_a^2 L$, then (1) L_a is unital with \overline{b} as unit element for any $b \in L$ such that a = [[a,b],a]. In this case, (2) L_a is isomorphic to the Jordan algebra J(a,b) defined in the Φ -module $\operatorname{ad}_a^2 L$ by the product $x \bullet y := [[x,b],y]]$ for all $x, y \in \operatorname{ad}_a^2 L$. We provide here a proof of these results under conditions less restrictive than those required in [10].

Proof. (1) a = [[a, b], a] implies $A = \operatorname{ad}_{[[a, b], a]} = [[A, B], A] = 2ABA - A^2B - BA^2$. Multiplying both members of this equation on the left by A and using (JE1)

we get $A^2 = 2A^2BA - ABA^2 = A^2BA$ (since $A^3 = 0$), which proves that L_a is unital with \bar{b} as unit element.

(2) The map $\varphi : L_a \to J(a, b)$ defined by $\varphi(\bar{x}) := -A^2 x$ is an algebra isomorphism. Clearly φ is a linear isomorphism, and since both algebras are commutative and $\frac{1}{2} \in \Phi$, it suffices to check that $\varphi(\bar{x})^2 = \varphi(\bar{x}^2)$:

 $\varphi(\bar{x})^2 = [[A^2x, b], A^2x] = -\operatorname{ad}_{A^2x}^2 b = -A^2X^2A^2b = A^2X^2a = -A^2XAx = \varphi(\bar{x}^2),$ where we have used (JE2), $A^2b = [a, [a, b]] = -ABa = -a$ and $XAx = -X^2a$.

Involutions.

If R is a ring, an involution on R is an additive map $*: R \to R$ such that $*^2 = \text{Id}_R$ and $(ab)^* = b^*a^*$ for all $a, b \in R$. If A is an algebra over a ring of scalars with involution $(\Phi, \bar{})$, then an involution * on A is an involution on the underlying ring of A which in addition satisfies $(\lambda a)^* = \bar{\lambda} a^*$ for every $\lambda \in \Phi$ and $a \in A$. If $\bar{}$ is trivial (i.e., if it is the identity map) then * is just an involution of A as a ring which is also a linear map.

Let A be an algebra with involution * over $(\Phi, \bar{})$. Denote by Γ the centroid of A as a ring. Denote by H (respectively by K) the set of the symmetric (respectively, skew-symmetric) elements of A, i.e., $H := \text{Sym}(A, *) = \{x \in A : x = x^*\}$ and $K := \text{Skew}(A, *) = \{x \in A : x = -x^*\}$. Then K is a subalgebra of the Lie algebra A^- restricted to $\text{Sym}(\Phi, \bar{})$ and, if $\frac{1}{2} \in \Gamma$, then H is a subalgebra of the Jordan algebra A^+ restricted to $\text{Sym}(\Phi, \bar{})$ (so it is a special Jordan algebra) and $A = H \oplus K$. Set $\kappa(x) := x - x^* \in K$ for every $x \in A$. Note that the mapping $x \mapsto \kappa(x)$ is linear and satisfies $\kappa(axa^*) = a\kappa(x)a^*$ for all $a, x \in A$. Note also that for $h \in H, k \in K$ we have

$$h \circ k = hk + kh = hk - (hk)^* = \kappa(hk) \in K,$$

a simple identity that will show up frequently.

If $\frac{1}{2} \in \Phi$ and M is a Φ -submodule of A which is *-invariant, i.e., such that $M^* = M$, then $\kappa(M) = \text{Skew}(M, *)$, since if $k \in \text{Skew}(M, *)$ then $k = \frac{1}{2}(k+k) = \frac{1}{2}(k-k^*) = \frac{1}{2}\kappa(k)$ and $\kappa(x) = x - x^* \in M \cap K = \text{Skew}(M, *)$ for every $x \in M$. In particular $\kappa(A) = K$. If M is not *-invariant, then $\kappa(M) = \kappa(M^*)$ implies that $\kappa(M) = \kappa(M) + \kappa(M^*) = \kappa(M + M^*) = (M + M^*) \cap K$.

Let R be a ring with involution *. If $a \in R$ is von Neumann regular, i.e, if a = axa for some $x \in R$, then by replacing x by b := xax we obtain a = abaand b = bab. If a is also symmetric and $\frac{1}{2} \in \Gamma$ then b can be chosen symmetric by replacing x by $\frac{1}{2}(x + x^*)$. The following lemma is a further step in the choice of b.

Lemma 2.2. Let R be a ring and let $c \in R$ be a von Neumann regular element such that $c^2 = 0$. Then there exists $d \in R$ such that c = cdc, d = dcd and $d^2 = 0$. Moreover, if R has involution, $\frac{1}{2} \in \Gamma$ and c is symmetric (skew-symmetric), then d can be chosen to be symmetric (respectively, skew-symmetric).

Proof. Let c be a von Neumann regular element of R. By the argument above, there exists $b \in R$ such that cbc = c and b = bcb. We claim that $d := b - b^2c$ satisfies c = cdc, d = dcd and $d^2 = 0$. Indeed,

$$\begin{aligned} d^2 &= (b - b^2 c)(b - b^2 c) = b^2 - b^3 c - b(bcb) + b(bcb)bc = b^2 - b^3 c - b^2 - b^3 c = 0\\ cdc &= c(b - b^2 c)c = cbc = c, \text{ and}\\ dcd &= (b - b^2 c)c(b - b^2 c) = bc(b - b^2 c) = bcb - (bcb)bc = b - b^2 c = d. \end{aligned}$$

Suppose now that c is symmetric. Since $\frac{1}{2} \in \Gamma$ we can take $b \in H$ such that cbc = b and b = bcb. We claim that

$$d := b - \frac{1}{2}(cb^2 + b^2c) + \frac{1}{4}cb^3c$$

satisfies the required properties. It is clear that $d^* = d$. Moreover, we have:

$$\begin{aligned} d^{2} &= \left(b - \frac{1}{2}(cb^{2} + b^{2}c) + \frac{1}{4}cb^{3}c\right) \left(b - \frac{1}{2}(cb^{2} + b^{2}c) + \frac{1}{4}cb^{3}c\right) = b^{2} - \frac{1}{2}(bcb)b \\ &- \frac{1}{2}b^{3}c + \frac{1}{4}(bcb)b^{2}c - \frac{1}{2}cb^{3} + \frac{1}{4}cb(bcb)b + \frac{1}{4}cb^{4}c - \frac{1}{8}cb(bcb)b^{2}c - \frac{1}{2}b(bcb) \\ &+ \frac{1}{4}b(bcb)bc + \frac{1}{4}cb^{2}(bcb) - \frac{1}{8}cb^{2}(bcb)bc = b^{2} - \frac{1}{2}b^{2} - \frac{1}{2}b^{3}c + \frac{1}{4}b^{3}c - \frac{1}{2}cb^{3} \\ &+ \frac{1}{4}cb^{3} + \frac{1}{4}cb^{4}c - \frac{1}{8}cb^{4}c - \frac{1}{2}b^{2} + \frac{1}{4}b^{3}c + \frac{1}{4}cb^{3} - \frac{1}{8}cb^{4}c = 0, \end{aligned}$$

$$cdc = c(b - \frac{1}{2}(cb^2 + b^2c))c = cbc = c$$
, and

$$dcd = \left(b - \frac{1}{2}(cb^2 + b^2c)\right)c\left(b - \frac{1}{2}(cb^2 + b^2c)\right)\left(b - \frac{1}{2}cb^2\right)c\left(b - \frac{1}{2}b^2c\right)$$
$$= bcb - \frac{1}{2}(bcb)bc - \frac{1}{2}cb(bcb) + \frac{1}{4}cb(bcb)bc = bcb - \frac{1}{2}b^2c - \frac{1}{2}cb^2 + \frac{1}{4}cb^3c = d.$$

If c is skew-symmetric, then the same d works taking $b \in K$.

Prime rings.

Let R be a prime ring. The extended centroid C of R (see ([1, Section 2.3]) is a field containing the centroid Γ , and the central closure CR of R is a prime associative algebra over the field C. A prime ring R is centrally closed if it coincides with its central closure. The following lemma (see [4, Theorem A.7]) plays a fundamental role in our work.

Lemma 2.3 (Martindale). Let R be a prime ring with extended centroid C. Let $a_i, b_i \in R$ with $b_1 \neq 0$ be such that $\sum_{i=1}^n a_i x b_i = 0$ for every $x \in R$. Then $a_1 \in \sum_{i=2}^n Ca_i$.

Let R be a centrally closed prime ring with involution *. Then * naturally extends to an involution of the extended centroid C of R, also denoted by *, so that R is an algebra with involution over (C, *). If * acts trivially on C then it is called *of the first kind*. In this case K can be regarded as a Lie algebra over C.

3. Clifford elements of a prime ring with involution

Throughout this section R will denote a centrally closed prime ring of characteristic not 2 or 3 which is endowed with an involution *. Then K, the set of skew-symmetric elements of R, is a Lie algebra over the field $\text{Sym}(\mathcal{C},*)$. It follows from [5, Proposition 6.2] (here characteristic greater than 5 is required) that if Kis not abelian and * is of the first kind, then for any Jordan element $a \in K$ we have $a^3 = 0$. This leads us to the following:

Definition 3.1. By a *Clifford element* of R we mean an element $c \in K$ such that $c^3 = 0$, $c^2 \neq 0$ and c is a Jordan element of the Lie algebra K: $\mathrm{ad}_c^3 k = c^3 k - 3c^2 k c + 3c k c^2 - k c^3 = 0$ for all $k \in K$.

The square of a Clifford element

Proposition 3.2. Let $c \in K$ be a Clifford element of R. Then:

- 1. $c^2kc = ckc^2$ for all $k \in K$.
- 2. $c^2 K c^2 = 0$.
- 3. $(c^2xc^2)^* = c^2x^*c^2 = c^2xc^2$ for all $x \in R$.
- 4. $c^2 R c^2 = \mathcal{C} c^2$.
- 5. The involution * is of the first kind.
- 6. R has nonzero socle with division ring isomorphic to C and * is of orthogonal type.

Proof. (1) Since c is a Jordan element of K, for every $k \in K$ we have $0 = ad_c^3k = c^3k - 3c^2kc + 3ckc^2 - kc^3 = -3(c^2kc - ckc^2)$. Since $char(R) \neq 3$ this implies that $ckc^2 = c^2kc$.

(2) By (1), $c^2kc^2 = c(ckc^2) = c(c^2kc) = c^3kc = 0$.

(3) Since $x - x^* \in K$ we have $c^2(x - x^*)c^2 = 0$ and hence $c^2xc^2 = c^2x^*c^2 = (c^2xc^2)^*$.

(4) Let $x, y \in R$. Since c^2 is symmetric it follows from (3) that

$$c^{2}xc^{2}yc^{2} = c^{2}(xc^{2}y)^{*}c^{2} = (c^{2}y^{*}c^{2})x^{*}c^{2} = c^{2}y(c^{2}x^{*}c^{2}) = c^{2}yc^{2}xc^{2}.$$

Thus, fixed x, for every $y \in R$ we get $(c^2xc^2)y(c^2) - (c^2)y(c^2xc^2) = 0$, with $c^2 \neq 0$. Then, by Martindale's Lemma (2.3), for each $x \in R$ there is a $\lambda_x \in \mathcal{C}$ such that $c^2xc^2 = \lambda_xc^2$. Since $c^2 \neq 0$ and R is prime, $c^2Rc^2 \neq 0$ and hence $c^2Rc^2 = \mathcal{C}c^2$, since \mathcal{C} is a field.

(5) By (4), given $\alpha \in \mathcal{C}$ there exists $a \in R$ such that $\alpha c^2 = c^2 a c^2$. Then, by (3), $\alpha^* c^2 = c^2 a^* c^2 = c^2 a c^2 = \alpha c^2$, so $\alpha^* = \alpha$, proving that * is of the first kind.

(6) By (4), $c^2 = c^2 a c^2$ for some $a \in R$ and hence $c^2 R = eR$, where $e = c^2 a$ is an idempotent of R. Then $eRe = c^2 R c^2 a = Cc^2 a = Ce$, which proves ([1,

Proposition 4.3.3]) that eR is a minimal right ideal of R, so R has nonzero socle with associated division ring isomorphic to the field C ([1, Theorem 4.3.7]). Now it follows from Kaplansky's Theorem ([1, Theorem 4.6.8]) that the involution * of R is either of transpose type or of symplectic type; but the latter cannot occur because c^2 is a symmetric rank-one element, so * is of transpose type.

Let $c \in K$ be a Clifford element of R. Since c^2 is a symmetric zero-square element which is also von Neumann regular (see 3.2(4)), we have by 2.2 that there exists $d \in R$ such that

$$d^* = d, d^2 = 0, c^2 dc^2 = c^2$$
 and $d = dc^2 d$.

Such an element d will be called a twin of c^2 . Then $e := dc^2$ is a *-orthogonal idempotent, i.e., $e^2 = e$ and $ee^* = e^*e = 0$.

Proposition 3.3. Let $c \in K$ be a Clifford element of R, let d be a twin of c^2 and put $e := dc^2$. Then:

- 1. dKd = 0.
- 2. dRd = Cd.
- 3. eRe = Ce, $e^*Re = Cc^2$, $eRe^* = Cd$ and $eKe^* = e^*Ke = 0$.
- 4. $ec = ce^* = 0$, $e^*c^2 = c^2e = c^2$ and $de^* = ed = d$.
- 5. $[K, K] \neq 0$.
- 6. $e + e^* \neq 1$ in the unital hull $\hat{R} = C1 + R$ of R.

Proof. Note that, by the proof of 3.2(4), $c^2Mc^2 = Cc^2$ for any C-subspace M of R such that $c^2Mc^2 \neq 0$, a fact that will be used in what follows without further mention.

(1) $dKd = dc^2(dKd)c^2d = 0$, where we have used 3.2(2) and the fact that dkd is skew-symmetric for every $k \in K$.

(2) $dRd = (dc^2d)R(dc^2d) = dc^2(dRd)c^2d = dCc^2d = Cdc^2d = Cd$, since $dc^2d = d$ and $c^2dc^2 = c^2$ imply that $c^2(dRd)c^2 \neq 0$.

(3) $eRe = dc^2(Rd)c^2 = d\mathcal{C}c^2 = \mathcal{C}e$, since $c^2 = c^2(dc^2d)c^2 \in c^2(Rd)c^2$ and therefore the latter is not zero. In a similar way it is proved that $e^*Re = \mathcal{C}c^2$ and $eRe^* = \mathcal{C}d$. Now $eKe^* = d(c^2Kc^2)d = 0$ by 3.2(2), and $e^*Ke = 0$ is obtained in a similar way.

(4) The identities of this item follow straightforwardly from the very definition of e.

(5) By (4), $[c, e-e^*] = ce + e^*c = cdc^2 + c^2dc \neq 0$. Otherwise $cdc^2 = -c^2dc$ would lead to the contradiction $c^2 = c^2dc^2 = -c^3dc = 0$. Since $[c, e-e^*] \in [K, K]$, $[K, K] \neq 0$.

(6) It follows from (3) and (4) that $(e + e^*)c(e + e^*) = 0$, so $e + e^* \neq 1$.

Remark 3.4. Twin d of c^2 are not unique. In fact, for any twin d of c and any $\lambda \in \mathcal{C}$, $\exp(\lambda \operatorname{ad}_c)d$ is a twin of c^2 .

As we have seen in the proposition above, any Clifford element c of R gives rise to two orthogonal elements e and e^* , associated to a twin d of c^2 . Moreover, the idempotent $e + e^*$ is not complete (see 3.3(6)), i.e., the symmetric idempotent $g := 1 - e - e^*$ of the unital hull $\hat{R} = C1 + R$ of R is not zero. We prove next that the complete system $\{e, e^*, g\}$ induces a 3-grading in the Lie algebra K.

Proposition 3.5. Let $c \in K$ be a Clifford element of R, $e := dc^2$ and $g := 1 - e - e^*$, where d is a twin of c^2 . Then $K = K_{-1} \oplus K_0 \oplus K_1$ is a 3-grading of K, with $K_{-1} = \kappa((1 - e)Ke) = \kappa((1 - e)Re) = \kappa(gRe)$, $K_0 = \kappa(eRe) \oplus gKg$ and $K_1 = \kappa(eK(1 - e)) = \kappa(eR(1 - e)) = \kappa(eRg)$.

Proof. Consider the complete system $\{e_0 := e^*, e_1 := g, e_2 := e\}$ of orthogonal idempotents of \hat{R} and put $R_i := \bigoplus_{m-n=i} e_m Re_n, -2 \le i \le 2$. Then (see [15, p.174])

for instance), $R = \bigoplus_{-2 \le i \le 2} R_i$ is an (associative) 5-grading of R. Explicitly,

$$R = e^* Re \oplus (e^* Rg \oplus gRe) \oplus (e^* Re^* \oplus gRg \oplus eRe) \oplus (gRe^* \oplus eRg) \oplus eRe^*.$$

Since all the components R_i are *-invariant subspaces, $K = \bigoplus_{\substack{-2 \leq i \leq 2 \\ -2 \leq i \leq 2}} K_i$, where $K_i := R_i \cap K = \text{Skew}(R_i, *)$ for each index i and $[K_i, K_j] \subseteq [R_i, R_j] \cap [K, K] \subseteq R_{i+j} \cap K = K_{i+j}$. Thus $K = \bigoplus_{\substack{-2 \leq i \leq 2 \\ -2 \leq i \leq 2}} K_i$ is (a priori) a 5-grading of the Lie algebra K. But $K_{-2} = \kappa(e^*Re) = e^*\kappa(R)e = e^*Ke = 0$ by 3.3(3) and similarly $K_2 = e^*Ke = 0$. Moreover, the *i*-th homogeneous component k_i of any $k \in K$ coincides with $\bigoplus_{m-n=i} \kappa(e_m ke_n)$, so $k \in K_{-1}$ if and only if

$$gke + e^{*}kg = (1 - e - e^{*})ke + e^{*}k(1 - e - e^{*}) = (1 - e)ke + e^{*}k(1 - e^{*}) = (1 - e)ke - ((1 - e)ke)^{*} = \kappa((1 - e)ke)$$

since $e^*Ke = 0$ by 3.3(3), which proves that $K_{-1} = \kappa(gRe) = \kappa((1-e)Ke)$. Similarly, $K_1 = \kappa(eRg) = \kappa(eK(1-e))$. Therefore

$$K = \kappa((1-e)Ke) \oplus (\kappa(eRe) \oplus gKg) \oplus \kappa(eK(1-e))$$

is a 3-grading of K. Now, for any $x \in R$,

$$\kappa(gxe) = \kappa((1-e)xe) - \kappa(e^*xe) = \kappa((1-e)xe) - e^*\kappa(x)e = \kappa((1-e)xe)$$

since $e^*\kappa(x)e \in e^*Ke = 0$, which proves that $K_{-1} = \kappa((1-e)Re)$. Similarly we obtain that $K_1 = \kappa(eR(1-e))$.

Although the 3-grading of K has been defined by choosing a twin d of c^2 , it will be seen now that the component K_{-1} only depends on the Clifford element c.

Proposition 3.6. Let $c \in K$ be a Clifford element of R, let $e := dc^2$ where d is a twin of c^2 and let $B := \kappa((1 - e)Ke)$. Then B is an abelian inner ideal of K and we have:

- 1. If $b \in B$ then eb = 0 and $b = e^*b + be = \kappa((1 e)be)$.
- 2. $B = c^2 \circ K$.
- 3. $c = e^*c + ce = c^2dc + cdc^2$.
- 4. $c \in B$.
- 5. cKc = Cc.

Proof. By Proposition 3.5, B is an extreme of a finite \mathbb{Z} -grading of K and hence an abelian inner ideal of K.

(1) Let $b = (1-e)ke + e^*k(1-e^*) \in B$. Then $eb = e((1-e)ke + e^*k(1-e^*)) = 0$ and $e^*b = e^*k(1-e^*)$, since $e^*e = 0$ and $e^*Ke = 0$. We also have that $be^* = 0$ and be = (1-e)ke. Hence $b = e^*b + be = e^*b(1-e^*) + (1-e)be = \kappa((1-e)be)$.

(2) $c^2 \circ k = \kappa(kc^2) = \kappa(ke^*c^2 - (eke^*)c^2) = \kappa((1-e)k(e^*c^2)) = \kappa((1-e)k(c^2e)) \in \kappa((1-e)Re) = \kappa((1-e)Ke) = B$ by 3.5. Conversely, let $b \in B$. Then

$$b = e^*b + be = (c^2d)b + b(dc^2) = c^2(d \circ b) + (d \circ b)c^2 = c^2 \circ (d \circ b) \in c^2 \circ K,$$

since $e^* = c^2 d$, $c^2 = c^2 e$ and $c^2 b = (c^2 e)b = c^2(eb) = 0$.

(3) Set $z := c - c^2 dc - c dc^2$. We must prove that z = 0. For any $k \in K$ we have

$$c^{2}kz = c^{2}kc - (c^{2}kc^{2})dc - (c^{2}kc)dc^{2} = ckc^{2} - ck(c^{2}dc^{2}) = ckc^{2} - ckc^{2} = 0$$

since $c^2kc = ckc^2$ and $c^2kc^2 = 0$ by 3.2, and d is a twin of c^2 (see 3). We also have $zkc^2 = (c^2kz)^* = 0$, and hence $c^2xz = c^2x^*z$ and $zxc^2 = zx^*c^2$ for every $x \in R$. Let $x, y \in R$. Then $c^2\kappa(xzy)c^2 = 0$ since $c^2Kc^2 = 0$. Thus $0 = c^2(xzy + y^*zx^*)c^2 = c^2xzyc^2 + c^2y^*zx^*c^2 = c^2xzyc^2 + c^2yzxc^2 = (c^2xz)y(c^2) + (c^2)y(zxc^2) = 0$, with $c^2 \neq 0$. By Martindale's Lemma (2.3), for every $x \in R$ there is $\lambda_x \in C$ such that $c^2xz = \lambda_xc^2$. But

$$z(1-e) = (c - e^*c - ce)(1-e) = c - ce - e^*c + e^*ce - ce + ce = c - ce - e^*c = z$$

since $e^*ce \in e^*Ke = 0$. Hence $c^2xz = c^2xz(1-e) = \lambda_x c^2(1-e) = 0$, so $c^2Rz = 0$. Since R is prime and $c^2 \neq 0$ this implies that z = 0. Thus $c = e^*c + ce = c^2dc + cdc^2$ as required.

(4) By (3), $c = c^2 dc + cdc^2 = c^2 (dc + cd) + (dc + cd)c^2 \in c^2 \circ K = B$ by (2).

(5) Note that $cd+dc = \kappa(cd) \in K$ and $c(cd+dc)c = c^2dc+cdc^2 = c$ by (3). Hence $Cc \subseteq cKc$. Conversely, for any $k \in K$ we have $ckc = (e^*c+ce)k(e^*c+ce) = e^*cke^*c + cekce$, since $eKe^* = 0$ by 3.3(3) and $ckc \in K$. Now, again by 3.3(3), $e(kc)e = \lambda e$ for some $\lambda \in C$, and hence $e^*(ck)e^* = (ekce)^* = (\lambda e)^* = \lambda e^*$, since the involution * is of the first kind by 3.2(5). Then $ckc = \lambda e^*c + \lambda ce = \lambda c$, which completes the proof.

The square root of d

Given a Clifford element c of R and a twin d of c^2 , we put $\sqrt{d} := cd + dc$. As will be seen now, the square-root notation is absolutely justified.

Proposition 3.7. Let $c \in K$ be a Clifford element of R and let d be a twin of c^2 . Then:

 1. $\sqrt{d} \in K_1$ in the 3-grading of 3.5. In particular \sqrt{d} is a Jordan element.

 2. $(\sqrt{d})^2 = d$.
 7. $c^2 \circ \sqrt{d} = c$.

 3. $(\sqrt{d})^3 = 0$.
 8. $d \circ c = \sqrt{d}$.

 4. $\sqrt{d}K\sqrt{d} = C\sqrt{d}$.
 9. $[[c, \sqrt{d}], c] = c$.

 5. $\sqrt{d}c\sqrt{d} = \sqrt{d}$.
 10. $[[\sqrt{d}, c], \sqrt{d}] = \sqrt{d}$.

 6. $c\sqrt{d}c = c$.
 11. $[[c, \sqrt{d}], b] = b$ for every $b \in B$.

Proof. (1) Since $c \in K$ and $d \in H$, $\sqrt{d} = cd + dc \in K$. We have

$$\begin{aligned} \kappa(e\sqrt{d}(1-e)) &= e(cd+dc)(1-e) + (1-e^*)(dc+cd)e^* \\ &= edc(1-e) + (1-e^*)cde^* = edc - edce + cde^* - e^*cde^* \\ &= (dc^2d)c - e(dcd)c^2 + c(dc^2d) - c^2(dcd)e^* = dc + cd = \sqrt{d} \end{aligned}$$

since ec = 0, $e = dc^2$, $dc^2d = d$ and $dcd \in dKd = 0$. We have thus proved (see 3.5) that $\sqrt{d} \in \kappa(eK(1-e)) = K_1$. Now since K_1 is an abelian inner ideal (because it is the extreme of a finite grading), \sqrt{d} is a Jordan element of K.

(2)
$$(\sqrt{d})^2 = (cd + dc)(cd + dc) = c(dcd) + cd^2c + dc^2d + (dcd)c = dc^2d = d.$$

(3) $(\sqrt{d})^3 = (\sqrt{d})^2 \sqrt{d} = d(cd + dc) = dcd + d^2c = 0.$

(4) If follows from (1), (2) and (3) that \sqrt{d} is a Clifford element of R. Hence, by 3.6(5), $\sqrt{d}K\sqrt{d} = C\sqrt{d}$.

(5) $\sqrt{dc}\sqrt{d} = (cd + dc)c(cd + dc) = c(dc^2d) + c(dcd)c + dc^3d + (dc^2d)c = cd + dc = \sqrt{d}.$ (6) $c\sqrt{dc} = c(cd + dc)c = c^2dc + cdc^2 = c$ by 3.6(3). (7) $c^2 \circ \sqrt{d} = c^2(cd + dc) + (cd + dc)c^2 = c^2dc + cdc^2 = c.$ (8) $d \circ c = dc + cd = \sqrt{d}.$ (9) $[[c, \sqrt{d}], c] = 2c\sqrt{dc} - c^2 \circ \sqrt{d} = 2c - c = c$ by (6) and (7). (10) $[[\sqrt{d}, c], \sqrt{d}] = 2\sqrt{dc}\sqrt{d} - (\sqrt{d})^2 \circ c = 2\sqrt{d} - \sqrt{d} = \sqrt{d}$ by (2), (5) and

(8).

(11) $[[c, \sqrt{d}], b] = [[c, cd + dc], b] = [c^2d - dc^2, b] = [e^* - e, b] = e^*b + be = b$ by 3.6(1).

4. Jordan algebra at a Clifford element

As in the previous section, R will denote a centrally closed prime ring of characteristic not 2 or 3 with involution *. We prove here that if c is a Clifford element **Remark 4.1.** By 3.6(5) there exists a linear map $\text{tr} : K \to C$, called the *trace*, such that

$$\operatorname{tr}(k)c = ckc$$

for every $k \in K$. Note that

- 1. $\operatorname{tr}(\sqrt{d}) = 1$ since $c\sqrt{d}c = c$ by 3.7(6), and hence
- 2. $K = \mathcal{C}\sqrt{d} \oplus \operatorname{Ker}(\operatorname{tr}).$

Remark 4.2. Since $c^2 R c^2 = C c^2$ (3.2(4)) with $c^2 k_1 k_2 c^2 = c^2 k_2 k_1 c^2$ for all $k_1, k_2 \in K$ (3.2(2)), we have a symmetric bilinear form $\langle , \rangle : K \times K \to C$ defined by

$$\langle k_1, k_2 \rangle c^2 = c^2 k_1 k_2 c^2$$

for all $k_1, k_2 \in K$.

Remark 4.3. The trace can be realized from the bilinear form and vice versa. Let $k, k' \in K$:

- 1. $\langle \sqrt{d}, k \rangle c^2 = c^2 \sqrt{dkc^2} = c^2 (cd + dc)kc^2 = c^3 dkc^2 + c^2 dckc^2 = c^2 dckc^2 = c^2 d(ckc)c = tr(k)c^2 dc^2 = tr(k)c^2$, since $c^3 = 0$ and $c^2 dc^2 = c^2$. Thus $tr(k) = \langle k, \sqrt{d} \rangle$.
- 2. $\operatorname{tr}(\kappa(ckk'))c^2 = (c\kappa(ckk')c)c = c^2kk'c^2 + ck'kc^3 = c^2kk'c^2 = \langle k, k'\rangle c^2$. Thus $\langle k, k'\rangle = \operatorname{tr}(\kappa(ckk'))$.

Proposition 4.4. Let $c \in K$ be a Clifford element of R and $B := c^2 \circ K$. Then:

- 1. $B = \mathcal{C}c \oplus X$, where $X := \{c^2 \circ k : k \in \text{Ker}(\text{tr})\}$.
- 2. $B = \operatorname{ad}_c^2 K$.

Proof. (1) By 4.1(2), $K = \text{Ker}(\text{tr}) \oplus \mathcal{C}\sqrt{d}$. Hence

$$B = c^{2} \circ K = c^{2} \circ \operatorname{Ker}(\operatorname{tr}) + \mathcal{C}c^{2} \circ \sqrt{d} = c^{2} \circ \operatorname{Ker}(\operatorname{tr}) + \mathcal{C}c$$

since $c^2 \circ \sqrt{d} = c$ by 3.7(7). But this sum is direct since $c^2 \circ k_0 = \alpha c$, with $\operatorname{tr}(k_0) = 0$ and $\alpha \in \mathcal{C}$, implies $\alpha c^2 = c(c^2k_0 + k_0c^2) = (ck_0c)c = \operatorname{tr}(k_0)c = 0$, and hence $\alpha = 0$ since $c^2 \neq 0$ by the very definition of Clifford element.

(2) For any $k \in K$ we have

$$ad_{c}^{2}k = c^{2}k - 2ckc + kc^{2} = c^{2} \circ k - 2\mathrm{tr}(k)c = c^{2} \circ k - 2\mathrm{tr}(k)(c^{2} \circ \sqrt{d}) = c^{2} \circ (k - 2\mathrm{tr}(k)\sqrt{d}) \in B$$

since $c = c^2 \circ \sqrt{d}$ by 3.7(7). Conversely, let $c^2 \circ k_0 + \alpha c \in B$, with $k_0 \in \text{Ker}(\text{tr})$ and $\alpha \in \mathcal{C}$. Then $c^2 \circ k_0 + \alpha c = \text{ad}_c^2 k_0 - \alpha \text{ad}_c^2 \sqrt{d} = \text{ad}_c^2 (k_0 - \alpha \sqrt{d})$ since $ck_0c = 0$ and $\text{ad}_c^2 \sqrt{d} = -c$ by 3.7(9).

Lemma 4.5. The symmetric C-bilinear form defined on X by

$$\langle c^2 \circ k, c^2 \circ k' \rangle_0 := -\langle k, k' \rangle$$

is well defined.

Proof. Suppose that $c^2 \circ k_1 = c^2 \circ k'_1$. By multiplying the two members of this equality on the right by k_2c^2 we obtain $c^2k_1k_2c^2 = c^2k'_1k_2c^2$ since $c^2Kc^2 = 0$. This proves that \langle , \rangle_0 is well defined.

Remark 4.6. Consider the 3-grading $K = K_{-1} \oplus K_0 \oplus K_1$ due to $e := dc^2$ (see 3.5), with $K_{-1} = B$, $K_0 = \kappa(eKe) \oplus gKg$ and $K_1 = \kappa(eKg)$.

- 1. Since the pair (d, \sqrt{d}) plays a role symmetric to that played by (c^2, c) , we also have that $K_1 = d \circ K = \{d \circ k : k \in K, \sqrt{dk}\sqrt{d} = 0\} \oplus Cc = ad_{\sqrt{d}}^2 K$.
- 2. X can be zero in 4.4 and therefore we can have B = Cc. Let $V := H \oplus \mathbb{F}z$ be the orthogonal sum of a hyperbolic plane $H = \mathbb{F}x \oplus \mathbb{F}y$ and the line $\mathbb{F}z = H^{\perp}$ with z being an anisotropic vector, and let R be the simple ring $\operatorname{End}(V)$ with the adjoint as involution. For any $u, v \in V$ let $u \otimes v$ be the linear map defined by $w(u \otimes v) = \langle w, u \rangle v$ for all $w \in V$. Then $(u \otimes v)^* = v \otimes u$ and hence $c := x \otimes z - z \otimes x$ lies in the Lie algebra $K = \operatorname{Skew}(R, *)$. It is easy to check that c is a Clifford element of R such that $\operatorname{ad}_c^2 K = \mathbb{F}c$.

Theorem 4.7. Let R be a centrally closed ring with involution of characteristic not 2 or 3 and let $c \in K$ be a Clifford element of R. Then K_c is a Clifford Jordan algebra.

Proof. Since $c = [[c, \sqrt{d}], c]$ (3.7(9)) we have by 2.1 that $K_c \cong J(c, \sqrt{d})$, the Jordan algebra defined on the C-vector space $\operatorname{ad}_c^2 K = c^2 \circ K = Cc \oplus X$ (see 4.4) by the product

$$(\alpha_1 c + c^2 \circ k_1) \bullet (\alpha_2 c + c^2 \circ k_2) = [[\alpha_1 c + c^2 \circ k_1, \sqrt{d}], \alpha_2 c + c^2 \circ k_2]$$

for all $\alpha_1, \alpha_2 \in \mathcal{C}$ and $k_1, k_2 \in K$ such that $ck_1c = ck_2c = 0$. Endow the \mathcal{C} -vector space X with the symmetric bilinear form \langle , \rangle_0 defined in 4.5 and consider the Clifford Jordan algebra $\mathcal{C} \oplus X$ defined by \langle , \rangle_0 (see 2). We claim that the linear isomorphism $(\alpha c + c^2 \circ k) \mapsto (\alpha, c^2 \circ k)$ of $J(c, \sqrt{d})$ onto $\mathcal{C} \oplus X$ is actually an isomorphism of Jordan algebras. Since $\frac{1}{2} \in \Phi$, it suffices to check the identity

$$[[\alpha c + c^2 \circ k, \sqrt{d}], \alpha c + c^2 \circ k] = \alpha^2 c + \langle c^2 \circ k, c^2 \circ k \rangle_0 + 2\alpha (c^2 \circ k).$$

The bilinearity of the Lie product reduces the check to three products: (i) scalar by scalar, (ii) scalar by vector, and (iii) vector by vector.

(i) $[[\alpha c, \sqrt{d}], \alpha c] = \alpha^2 [[c, \sqrt{d}], c] = \alpha^2 c$ by 3.7(9).

(ii) $[[\alpha c, \sqrt{d}], c^2 \circ k] = \alpha[[c, cd + dc], c^2k + kc^2] = \alpha[c^2d - dc^2, c^2k + kc^2] = \alpha(c^2 \circ k)$, where we have used $c^2dc^2 = c^2$, $c^4 = 0$ and $c^2kc^2 = c^2(dk + kd)c^2 = 0$, the latter because $c^2Kc^2 = 0$ and $(dk + kd)^* = -(kd + dk)$, since $d^* = d$ and $k^* = -k$.

(iii)
$$[[c^2 \circ k, \sqrt{d}], c^2 \circ k] = 2(c^2 \circ k)\sqrt{d}(c^2 \circ k) - (c^2 \circ k)^2 \circ \sqrt{d}$$

with

$$(c^{2} \circ k)\sqrt{d}(c^{2} \circ k) = (c^{2}k + kc^{2})(cd + dc)(c^{2}k + kc^{2}) = (c^{2}kdc + kc^{2}dc)(c^{2}k + kc^{2}) = 0,$$

since $c^3 = 0$ and ckc = 0 (tr(k) = 0), and

$$(c^{2} \circ k)^{2} \circ \sqrt{d} = c^{2}k^{2}c^{2}(cd + dc) + (cd + dc)c^{2}k^{2}c^{2} = c^{2}k^{2}c^{2}dc + cdc^{2}k^{2}c^{2} = \langle k, k \rangle (c^{2}dc + cdc^{2}) = \langle k, k \rangle c$$

since $c = c^2 dc + c dc^2$ by 3.6(1). Therefore $(c^2 \circ k) \bullet (c^2 \circ k) = -\langle k, k \rangle c = \langle c^2 \circ k, c^2 \circ k \rangle_0 c$, which completes the proof.

Remark 4.8. Since \sqrt{d} is a Clifford element of R (see 3.7), the theorem above also proves that $K_{\sqrt{d}}$ is a Clifford Jordan algebra. In fact, $K_{\sqrt{d}} \cong K_c$.

References

- K.I. Beĭdar, W.S. Martindale 3rd and A.V. Mikhalëv, *Rings with Generalized Identities*, Pure and Applied Mathematics; Marcel Dekker Inc., New York-Basel-Hong Kong, 1995.
- G. Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc., 232 (1977), 61–81.
- [3] G. Benkart and A. Fernández López, The Lie inner ideal structure of associative rings revisited, Comm. Algebra, 37 (2009), 3833-3850.
- [4] M. Brešar, M.A. Chebotar and W.S. Martindale 3rd, Functional Identities, Frontiers in Mathematics; Birkhäuser Verlag, Basel-Boston-Berlin, 2007.
- [5] J. Brox, A. Fernández López and M. Gómez Lozano, *Lie inner ideals of skew* elements of prime rings with involution. (Submitted).
- [6] C. Draper, A. Fernández López, E. García and M. Gómez Lozano, The socle of a nondegenerate Lie algebra, J. Algebra, 319 (2008), 2372–2394.
- [7] C. Draper, A. Fernández López, E. García and M. Gómez Lozano, The inner ideals of the simple finite dimensional Lie algebra J. Lie Theory, 22 (2012), 907–929.
- [8] A. Fernández López, E. García and M. Gómez Lozano, The Jordan socle and finitary Lie algebras, J. Algebra, 280 (2004), 635–654.

- [9] A. Fernández López, E. García and M. Gómez Lozano, Inner ideals of finitary simple Lie algebras, J. Lie Theory, 16 (2006), 97–114.
- [10] A. Fernández López, E. García and M. Gómez Lozano, The Jordan algebras of a Lie algebra J. Algebra, 308 (2007), 164–177.
- [11] A. Fernández López, E. García, M. Gómez Lozano and E. Neher, A construction of gradings of Lie algebras, Int. Math. Res. Not., 16 (2007), doi:10.1093/imrn/rmn051.
- [12] A. Fernández López and A. Yu Golubkov, Lie algebras with an algebraic adjoint representation revisited, Manuscripta Math, 140 (2013), 363–376.
- [13] J. Hennig, Simple, locally finite dimensional Lie algebras in positive characteristic, J. Algebra, 413 (2014), 270–288.
- [14] N. Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX; American Mathematical Society; Providence, R.I., 1968.
- [15] O.N. Smirnov, Simple associative algebras with finite Z-grading, J. Algebra, 196 (1997), 171–184.

Jose Brox Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain brox@agt.cie.uma.es Antonio Fernández López Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain emalfer@uma.es

Miguel Gómez Lozano Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain miggl@uma.es