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Abstract: The control of crop diseases caused by fungi remains a major problem and there is a need
to find effective fungicides that are environmentally friendly. Plants are an excellent source for this
purpose because they have developed defense mechanisms to cope with fungal infections. Among
the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes
obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as
antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential
use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on
RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain
fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral
and insecticidal activity, which makes them very versatile tools for crop protection.

Keywords: adenine polynucleotide glycosylase; antifungal protein; fungus-resistant transgenic
plants; plant pathogenic fungi; ribosome-inactivating protein (RIP); rRNA glycosylase (EC 3.2.2.22)

Key Contribution: Ribosome-inactivating proteins (RIPs) can be very useful in the fight against
fungal crop diseases.

1. Introduction

Diseases caused by plant pathogens are continuously increasing, causing severe losses
in agricultural production, as disease prevalence can reach 70–80% of the total plant popu-
lation and yields can decrease in some cases up to 80–98% [1]. The main phytopathogens
are viruses, bacteria, and fungi [1]. Fungi are responsible for 80% of plant diseases [2]
and fungal epidemics have had significant social and economic repercussions throughout
history and today [3]. To control these diseases, chemical-based fungicides are used, which
are very effective but bring with them problems such as environmental contamination,
development of resistance, and residual toxicity [2,4,5]. Therefore, the fight against fungal
diseases remains a major challenge and there is a need to find effective fungicides that
are environmentally friendly. In this context, the search for more effective and safer fungi-
cides continues to be a field of intense research. Plants are one of the most widely used
sources, as they have developed various protein-based defense mechanisms to cope with
fungal infections. However, the control of crop diseases using this type of fungicides has
drawbacks, such as the instability of many of these agents in the field [6] and their high
cost of production [2]. A solution to these drawbacks may be the use of transgenic plants
carrying genes that code for antifungal proteins. Antifungal proteins include chitinases,
glucanases, thaumatin-like proteins, thionins, cyclophilin-like proteins, lectins, ribonu-
cleases, deoxyribonucleases, peroxidases, protease inhibitors, and ribosome-inactivating
proteins [7,8]. Ribosome-inactivating proteins (RIPs) may be an excellent choice, as they
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have been attributed a defense role in plants and have been shown to have great potential
against viruses, fungi, and insects [9–12].

In this review, we summarize and discuss the potential use of ribosome-inactivating
proteins (RIPs) for agricultural applications from a bioengineering and biotechnology
perspective, with special emphasis on RIP/fungus specificity, possible mechanisms of
antifungal action, and the use of RIP genes to obtain transgenic plants resistant to fungi.

2. Ribosome-Inactivating Proteins

Ribosome-inactivating proteins (RIPs) are a group of proteins that inactivate ribosomes,
leading to irreversible inhibition of protein synthesis (with IC50 values, i.e., concentration
inhibiting protein synthesis by 50%, for animal cell-free systems in the range of 0.015 to
3.5 nM) and, consequently, cell death [13–17]. RIPs have been classified according to their
structure into type 1 RIPs, consisting of a polypeptide chain with enzymatic activity, and
type 2 RIPs, made up of two polypeptide chains, an A chain with enzymatic activity and a
B chain with lectin activity that can bind to cell surface receptors facilitating RIP entry [13].
In addition, a third class of RIPs, termed type 3 RIPs, has been recognized, which includes
a few members, such as jasmonate-induced protein (JIP60) and maize b-32 protein, which
are activated by proteolysis [13,14,16,17]. Some type 2 RIPs such as ricin and abrin are
extremely toxic (with IC50 values for cell cultures between 0.3 and 8 pM), while others have
low toxicity, because the binding of the B-chain to oligosaccharides on the cell surface is less
efficient and because, once internalized, the RIP follows a different intracellular pathway
than ricin [16]. The toxicity of type 1 RIPs is lower (with IC50 values for cell cultures
between 2 and 34 µM) since they lack the lectin part and are therefore unable to bind to cells
as type 2 RIPs do. The structure, activity, and mode of action of RIPs have been studied
over the last decades, but their biological function has not been demonstrated, although
there is a broad consensus that these proteins play an important role in the defense of plants
against viruses, fungi, and insects [9,12,18].

Due to their diverse activities, RIPs, alone or as part of conjugates, are good candidates
for developing selective antiviral and anticancer agents [12,19–22]. Conjugates consist of a
targeting moiety, such as an antibody, lectin, or growth factor, linked to a toxic moiety. RIPs
have been used as the toxic part in several conjugates that have been tested in experimental
therapies against various malignancies. In agriculture, RIPs have been shown to increase
resistance against viruses, fungi, and insects in transgenic plants [9,12,21].

RIPs are present in a large number of angiosperm plants, both monocotyledonous
and dicotyledonous, although in some plant families it is more common to find RIPs
than in others, thus there are families such as the Poaceae, Euphorbiaceae, Cucurbitaceae,
Caryophyllaceae, Amaranthaceae, and Phytolacaceae, where several species have been
found with RIPs, and other families where they have never been found [13,14,23]. Some
bacteria possess toxins with rRNA N-glycosylase activity whose sequence is homologous
to plant RIPs [24]. The best known are Shiga toxin and related proteins consisting of an
A chain with N-glycosylase activity and a B subunit, which is a pentamer that binds to
specific glycolipids of the plasma membrane facilitating their endocytosis [25].

Although RIPs were initially studied as inhibitors of mammalian ribosomes, they can
also inactivate ribosomes from other animals [26] and fungi [27–30], and, in some cases,
ribosomes from bacteria [9] and plants [31]. The ability to inactivate plant ribosomes is, as
we will discuss later, of particular significance in the defense against pathogens. Table 1
identifies the RIPs that inactivate or do not inactivate ribosomes of various plant species.

The inhibitory activity of RIPs on plant ribosomes is very diverse. It appears that
RIPs from Poaceae do not inhibit protein synthesis in plants, or, if they do (OsRIP1 in the
germ system of wheat or tritin-L in wheat and tobacco), it is at very high concentrations.
Neither type 2 RIPs from Abrus precatorius L. or Viscum album L., nor RIPs from the genus
Sambucus, whether type 1 or 2, inhibit protein synthesis in plants. Type 2 RIPs from Ricinus
comunis L. (ricin and RCA) inhibit protein synthesis in different plant germ systems but do
so at very high concentrations. The case of cucurbits is inconclusive because only bryodin
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has been tested in the germ-derived system of Cucumis sativus L. However, type 1 RIPs
from the Phytolaccaceae, Amaranthaceae, and Caryophyllaceae families inhibit protein
synthesis in practically all systems in which they have been tested in the nM range, a
concentration which, given the reported yield for purification of many RIPs, could easily
be achieved in vivo. The reason for not inactivating their ribosomes is that RIPs of dicots,
like those of monocots of the family Asparagaceae, have a leader peptide, are synthesized
in the endoplasmic reticulum and exported to the apoplast, thus avoiding contact with
ribosomes [32]. In this regard, it should be noted that the RIPs from Phytolacca americana L.
and Phytolacca dodecandra L’Hér. have been tested on their ribosomes, which are sensitive
to the toxins [33].

Table 1. Sensitivity of plant ribosomes to ribosome-inactivating proteins. The families and species of
both the RIP source (rows) and the ribosome source (columns) are indicated.

RIP
IC50 * (nM)

References
Cucurbitaceae Brassicacea Euphorbiaceae Fabaceae Phytolaccaceae Poaceae Solanaceae

AMARANTHACEAE
Beta vulgaris L.

BE27 Yes ** (VS) [30,34]

ASPARAGACEAE
Agave tequilana F.A.C.Weber

Mayahuelin 10.43 (TA) [35]
Asparagus officinalis L.

Asparin 1 1333 (CM) No * (VS) [36,37]
Muscari armeniacum H.J.Veitch

Musarmins 1-2-3 No * (VS) No * (TA) [38]

CARYOPHYLLACEAE
Dianthus caryophyllus L.

Dianthin 30 No * (CM) [37]
Dianthin 32 Yes ** (NT) [39]

Saponaria officinalis L.

Saporin-L1 26.7 (CM)
17.3 (CS) 0.99 (VS) 40 (TA) [37,40]

Saporin-L2 31 (CS) 20.91 (VS) 23.7 (TA) [40]
Saporin-R1 1105 (CS) 0.22 (VS) 582 (TA) [40]
Saporin-R2 55.7 (CS) 0.97 (VS) 3.1 (TA) [40]
Saporin-R3 959 (CS) 0.02 (VS) 176 (TA) [40]

Saporin-S5 10 (CM)
0.03 (CS) 0.34–0.48 (VS) 772 (TA) [31,37,40,41]

Saporin-S6 3606 (CS) 0.31 (VS) 32 (TA) [40]
Silene glaucifolia Lag. (=Petrocoptis glaucifolia Boiss.)

Petroglaucin 1 219 (CS) 49 (VS) 30 (TA) [42]
Petroglaucin 2 27–29 (CS) 0.2–6 (VS) 127 (VL) 30–73 (TA) [36,42,43]

Silene laxipruinosa Mayol and Rosselló (=Petrocoptis grandiflora Rothm.)
Petrograndin 186 (CS) 5 (VS) 100(TA) [42]

CUCURBITACEAE
Bryonia dioica Sessé and Moc.

Bryodin No * (CS) [41]

EUPHORBIACEAE
Ricinus communis L.

Ricin 1473 (CL) 1470 (RC) 923 (PS) 1700 (PA) 1313 (TA)
980 (HV) Yes ** (NT) [33,39,44]

RCA No * (CM)
3767 (CL) 8167 (RC) No * (VS) 7500 (PS) 19,333 (TA)

7567 (HV) [44,45]

FABACEAE
Abrus precatorius L.

APA No * (CM) No * (VS) No * (TA) [45]

PHYTOLACCACEAE
Phytolacca americana L

PAP (PAP I) 1.1–2.9 (PA) 0.3 (TA) Yes ** (NT) [33,39]
PAP II 3.9 (PA) [33]
PAP-S 54–500 (CS) 0.26–0.38 (VS) 6.7 (PA) 4.5 (TA) [31,33,36,41,46]

Phytolacca dioica L.
PD L4-S2, Dioicin 2 Yes ** (VS) [30]
Phytolacca dodecandra L’Hér.

Dodecandrin 0.8–3.1 (PD) 0.2 (TA) [33]
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Table 1. Cont.

RIP
IC50 * (nM)

References
Cucurbitaceae Brassicacea Euphorbiaceae Fabaceae Phytolaccaceae Poaceae Solanaceae

POACEAE
Hordeum vulgare L.

Barley RIP 30 No ** (NT) [39]
Oryza sativa L.

OsRIP1 1500 (TA) [47]
Triticum aestivum L.

Tritin (Tritin-S) No ** (AT) No ** (LJ) No ** (TA) No ** (NT) [39,48]
Tritin-L Yes ** (AT) Yes ** (LJ) Yes ** (TA) Yes ** (NT) [48]

Zea mays L.
pro-RIP, αβ RIP No ** (ZM) [49]

SANTALACEAE
Viscum album L.

VAA No * (CM) No * (VS) No * (TA) [45]

VIBURNACEAE
Sambucus ebulus L.

Ebulin f No * (CS) No * (VS) No * (TA) [50]
Ebulin r1–r2 No * (CM) No * (VS) No * (TA) [50]

α-β-γ-Ebulitin No * (CM) No * (VS) No * (TA) [50]
Sambucus nigra L.

Nigrin b No * (CS) No * (VS) No * (TA) [50]
Nigrin f No * (CS) No * (VS) No * (TA) [50]

basic Nigrin b No * (TA) [50]
Nigritin f1–f2 No * (CS) No * (VS) No * (TA) [50]

The table lists both protein synthesis inhibition assays (IC50 is indicated, i.e., concentration inhibiting protein
synthesis by 50%) * and N-glycosylase activity assays ** on ribosomes of the following species: Arabidopsis thaliana
(L.) Heynh (AT); Citrullus lanatus (Thunb.) Matsum. and Nakai (CL); Cucumis melo L. (CM); Cucumis sativus L.
(CS); Hordeum vulgare L. (HV); Lotus japonicus (Regel) K. Larsen (LJ); Nicotiana tabacum L. (NT); Phytolacca americana
L. (PA); Phytolacca dodecandra L’Hér. (PD); Pisum sativum L. (PS); Ricinus communis L. (RC); Triticum aestivum L.
(TA); Vicia lens (L.) Coss. and Germ. (VL); Vicia sativa L. (VA); Zea mays L. (ZM).

3. Mechanism of Ribosome Inactivation by RIPs

The mechanism of ribosome inactivation by RIPs has been known since 1987 [51,52].
RIPs are 28S rRNA N-glycosylases (EC 3.2.2.22) that catalyze the hydrolysis of the N-
glycosidic bond of adenosine 4324 in the sarcin-ricin loop (SRL) of the large RNA of the 60S
subunit of rat ribosomes or the equivalent in sensitive ribosomes of other organisms [30].
The SRL is part of the GTPase-associated center (GAC), which is the landing platform for
translational GTPases (trGTPases) such as the prokaryote elongation factors EF-Tu and
EF-G, and their eukaryote counterparts eEF1A and eEF2 [53]. The GAC consists of the SRL
and the ribosomal stalk. The ribosomal stalk consists of a base made up of two ribosomal
proteins and the lateral elements that are made up of several copies of proteins. The SRL
and the base of the ribosomal stalk are conserved in prokaryotes and eukaryotes, while
the lateral proteins are not conserved and are precisely the docking points of trGTPases
and RIPs [54,55]. This may be the basis for the different specificity of RIPs for ribosomes
of different species. The removal of adenine from the SRL, which is essential for the
binding of trGTPases and even appears to be involved in the catalysis process, irreversibly
inactivates ribosomes and has been reported to prevent eEF2 binding and GTP hydrolysis
in eukaryotes [54].

A similar effect is caused by ribotoxins, such as α-sarcin, which are a group of extracel-
lular ribonucleases that show cytotoxic activity towards animal cells [56,57]. These proteins
are highly specific rRNA endonucleases (EC 4.6.1.23) that catalyze the hydrolysis of the
phosphodiester bond between guanosine 4325 and adenosine 4326 in the SRL of rat 28S
rRNA [58] (or the equivalent phosphodiester bond in ribosomes of other organisms), which
prevents the binding of elongation factors [59]. Ribotoxins are produced by a few species of
ascomycetes, mostly from the genus Aspergillus [57]. Due to the translation inhibitory and
apoptotic activities of ribotoxins, they have been used as components of immunotoxins [57].

Finally, it should be noted that some RIPs can also remove more than one adenine
from rRNA and many of them can catalyze the deadenylation not only of rRNA but also of
other polynucleotide substrates such as DNA, poly(A), mRNA, tRNA, and viral RNA, and
because of this, the name adenine polynucleotide glycosylase (or polynucleotide: adenosine
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glycosidase) was proposed for RIPs [12,60]. In addition, other activities have been reported
for RIPs that could play a role in their possible function as defense elements [12,17].

4. RIP-like Proteins and Ribotoxin-like Proteins

There are plant proteins that have rRNA N-glycosylase activity but do not show
homology or structural similarity to type 1 RIPs [61], and have been classified under
various names (e.g., “small RIPs”, “small RIP 1 candidates”, or “RIP-Like Proteins”). These
proteins could therefore exhibit all or at least some of the biological properties of RIPs
and could also be used as crop defense tools. However, it should be noted that, although
they inhibit protein synthesis, the N-glycosylase assay has not been performed on all of
them, so some may have a different enzymatic activity. In fungi, some proteins with rRNA
N-glycosylase activity have also been found without homology or structural similarity to
plant RIPs [62,63], some of which have shown antifungal activity.

Ribotoxins have been found exclusively in ascomycetes; however, recently, proteins
with the same activity have been found in basidiomycetes, and because they are not
homologous with ascomycete ribotoxins they have been named Ribotoxin-Like Proteins
(RLPs) [64]. As will be discussed later, some of them have shown antifungal activity.

5. Endocytosis of Ribosome-Inactivating Proteins

A very important question is how RIPs enter cells to carry out their enzymatic activity
on ribosomes, since cytotoxic activity depends more on their ability to access ribosomes than
on their catalytic power [16,28]. RIPs must interact with the cell membrane, and, following
initial internalization, they are transported within the cell to the particular membrane
where toxin translocation to the cytosol occurs. In addition, to enter fungal cells, RIPs must
pass through the fungal cell wall. The internalization routes of RIPs have been studied
in animal cells, where it has been observed that they can follow different internalization
routes. In this respect, the most studied is ricin, a type 2 RIP that is highly toxic to animal
cells. At picomolar concentrations, it binds to plasma membrane glycoproteins and is
internalized into the cell [16,65]. Some protein molecules are recycled back to the plasma
membrane, others undergo degradation in lysosomes, and a small number are transported
first to the Golgi network and then to the endoplasmic reticulum. In the endoplasmic
reticulum, the disulfide bridge is reduced, and the A-chain is translocated to the cytosol
via the endoplasmic reticulum-associated degradation (ERAD) pathway. Finally, in the
cytosol, the A-chain inactivates ribosomes, leading to cell death. Nigrin b and other type
2 RIPs from species of the genus Sambucus, which are thousands of times less toxic than
ricin, can bind to plasma membrane glycoproteins other than ricin and internalize into
the cell. All protein molecules are recycled back to the plasma membrane or transported
to lysosomes for degradation. However, at a much higher extracellular concentration
(40,000-fold), saturation of the endosome with nigrin b can lead to spontaneous release of
nigrin b into the cytosol, causing inactivation of the ribosomes [16]. Type 1 RIPs such as
saporin, trichosanthin, and curcins enter by binding to receptors of the LDLR (low-density
lipoprotein receptor) family [66,67] and also follow different routes to those of ricin, most
of them being located in endosomal compartments, which causes them to only reach the
ribosomes at much higher concentrations than those required for ricin [66,68,69].

The internalization routes of RIPs have not been studied in fungi, but, given that they
also possess endocytic mechanisms similar to those of animal cells [70,71], it would be
expected that the routes of access to ribosomes would be similar to those discovered in
animal cells. In addition, the cell wall represents an important barrier to the passage of
macromolecules [72], which, given the diversity of the composition and structure of the
cell walls of different fungi [73], could be an important element explaining, in part, the
different sensitivities of fungi to different RIPs.
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6. Inhibition of Fungal Growth by RIPs

At least 34 fungal species are sensitive to some RIPs or RIP-Like Proteins (Table 2).
This includes a wide variety of species belonging to various families of basidiomycetes and
ascomycetes. Furthermore, three species of fungus-like organisms are also sensitive to RIPs;
thus, it has been reported that ME1 and ME2 from the roots of Mirabilis expansa (Ruiz and
Pav.) Standl. slightly inhibit the growth of Globisporangium irregulare (Buisman) Uzuhashi,
Tojo and Kakish, and Phytophthora drechsleri Tucker [27], and that the RIP isolated from
the sarcocarp of Cucurbita moschata Duchesne strongly inhibits the growth of Phytophthora
infestans (Mont.) de Bary [74]. Therefore, growth inhibition by the different RIPs could
cover a spectrum that practically encompasses the entire fungal kingdom. The fungi on
which RIPs have been tested are plant pathogens, although some of them, such as those of
the genus Aspergillus, may be opportunistic pathogens in humans [75].

The antifungal activity of at least 20 RIPs obtained from 17 different species has been
demonstrated (Tables 3 and 4). This includes type 1 RIPs from two Poaceae (barley and
maize) and several dicots and a type 2 RIP from the dicot Sambucus nigra L.

The antifungal activity of RIPs has been demonstrated both in vitro assays (Table 3)
and, as discussed later, in transgenic plants (Table 4). Different types of in vitro assays have
been used, thus, the RIP 30 from barley has been tested on microtiter plates and by different
types of assay on agar plates. Sensitivity seems to be higher on microtiter plates than on
agar plates [76]. Thus, inhibition of Trichoderma reesei E. G. Simmons growth was seen with
a concentration of 11 µg/mL of RIP 30 on microtitre plates, whereas discs impregnated
with 15 times more concentration are needed to obtain the same result [77]. In any case,
RIP 30 was shown to inhibit the growth of several fungi: Rhizoctonia solani J.G. Kühn [76],
T. reesei [76,77], Fusarium sporotrichioides Sherb. [76], and Botrytis cinerea Pers. [76]. However,
about 16 fungal species have shown resistance to this RIP when tested on agar plates,
including Phycomyces blakesleeanus Burgeff, Alternaria alternariae (Cooke) Woudenb. and
Crous, and Neurospora crassa Shear and B.O. Dodge [77].

Table 2. Fungi that have been described as sensitive to RIPs or RIP-Like Proteins.

Order Family Species References

Division Basidiomycota

CLASS AGARICOMYCETES

Cantharellales Ceratobasidiaceae Rhizoctonia solani J.G. Kühn [28,76,78–87]

Polyporales Polyporaceae Ganoderma boninense Pat. [88]

Agaricales Agaricaceae Coprinus comatus (O.F. Müll.) Pers. [89,90]

Division Ascomycota

CLASS LEOTIOMYCETES

Helotiales

Erysiphaceae Blumeria graminis (DC.) Speer [91]
Sclerotiniaceae Botrytis cinerea Pers. [76,87,92]

Clarireedia homoeocarpa (F.T. Benn.) L.A. Beirn,
B.B. Clarke, C. Salgado and J.A. Crouch [93]

Sclerotinia sclerotiorum (Lib.) de Bary [94]

CLASS SORDARIOMYCETES

Amphisphaeriales Pestalotiopsidaceae Pestalotia sp. [95]

Diaporthales Cryphonectriaceae Cryphonectria parasitica (Murrill) M.E. Barr [96]
Valsaceae Cytospora sp. * [95]

Glomerellales Plectosphaerellaceae Verticillium dahliae Kleb. [27]
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Table 2. Cont.

Order Family Species References

Hypocreales

Hypocreaceae Trichoderma reesei E.G. Simmons [27,95]
Trichoderma harzianum Rifai [27]

Nectriaceae Fusarium culmorum (Wm.G. Sm.) Sacc. [97]
Fusarium fujikuroi Nirenberg [98,99]

Fusarium graminearum Schwabe [94]
Fusarium oxysporum Schltdl. [27,90,95,100–102]

F. proliferatum (Matsush.) Nirenberg ex
Gerlach and Nirenberg [27]

Fusarium sporotrichioides Sherb. [76]

Magnaporthales Pyriculariaceae Pyricularia grisea Cooke ex Sacc. [103]
Pyricularia oryzae Cavara [104,105]

Sordariales Sordariaceae Neurospora crassa Shear and B.O. Dodge ** [77]

Xylariales Hyponectriaceae Physalospora pyricola Nose [89,90]

CLASS EUROTIOMYCETES

Eurotiales

Aspergillaceae Aspergillus flavus Link [94,106]
Aspergillus nidulans (Eidam) G. Winter [106]

Aspergillus niger Tiegh. [94,107]
Penicillium digitatum (Pers.) Sacc. [29,30,108,109]

CLASS DOTHIDEOMYCETES

Pleosporales

Corynesporascaceae Corynespora cassiicola (Berk. and M.A. Curtis)
C.T. Wei [110]

Didymellaceae Didymella arachidicola (Khokhr.) Tomilin [90,101]
Phoma sp. [95]

Pleosporaceae Alternaria alternata (Fr.) Keissl. [92]
Alternaria brassicae (Berk.) Sacc. [111]

Alternaria solani Sorauer [27,102]
Cochliobolus heterostrophus (Drechsler)

Drechsler [94]

* Sensitive only to RIP-Like Proteins; ** Mutant os-1. Synonyms used in the cited articles: Blumeria graminis (DC.)
Speer (=Erysiphe graminis DC.); Fusarium fujikuroi Nirenberg (=Fusarium verticillioides (Sacc.) Nirenberg); Clarireedia
homoeocarpa (F.T. Benn.) L.A. Beirn, B.B. Clarke, C. Salgado and J.A. Crouch (=Sclerotinia homoeocarpa F.T. Benn.);
Pyricularia grisea Cooke ex Sacc. (=Magnaporthe grisea (T.T. Hebert) M.E. Barr); Cytospora sp. (Cytospora canker);
Globisporangium irregulare (Buisman) Uzuhashi, Tojo and Kakish. (=Pythium irregulare Buisman); Fusarium oxyspo-
rum Schltdl. (=Fusarium oxysporum var. solani Raillo); Cochliobolus heterostrophus (Drechsler) Drechsler (=Bipolaris
maydis (Y. Nisik. and C. Miyake) Shoemaker); Aspergillus flavus Link (=Aspergillus oryzae (Ahlb.) Cohn); Cucumis
melo L. (=Luffa cylindrica M.Roem.); Didymella arachidicola (Khokhr.) Tomilin (=Mycosphaerella arachidicola Khokhr.).

Table 3. Ribosome-inactivating proteins that inhibit fungal growth in vitro. The RIPs, the families
and species from which they have been obtained, and the fungi in which this activity has been
demonstrated are shown.

Species and RIP Fungi Ref.

POACEAE
Hordeum vulgare L.

Barley RIP30

Botrytis cinerea, Fusarium
sporotrichioides, Neurospora crassa *,

Rhizoctonia solani,
Trichoderma reesei

[76,77]

Zea mays L.

Maize b-32 (MOD1) Aspergillus flavus, A. nidulans,
R. solani [80,106]
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Table 3. Cont.

Species and RIP Fungi Ref.

AMARANTHACEAE
Salsola soda L.

Sodin 5 Penicillium digitatum [109]
Chenopodium quinoa Willd.

Quinoin Cryphonectria parasitica,
P. digitatum [96,109]

Beta vulgaris L.
BE27 P. digitatum [29,108]

PHYTOLACCACEAE
Phytolacca dioica L.

Dioicin 2 P. digitatum [30]
PD-S2 P. digitatum [30]

Phytolacca heterotepala H.Walter
PhRIP I B. cinerea [92]

NYCTAGINACEAE
Mirabilis expansa (Ruiz and Pav.)

Standl.

ME1 and ME2

Alternaria solani, Fusarium
oxysporum, F. proliferatum,
Globisporangium irregulare,

Phytophthora drechsleri, R. solani,
Trichoderma harzianum, T. reesei,

Verticillium dahliae

[27,28]

CUCURBITACEAE
Momordica charantia L.

Alpha-momorcharin (α-MMC)

A. flavus, A. niger, Cochliobolus
heterostrophus, Fusarium

graminearum, F. oxysporum,
F. solani, Pyricularia oryzae,

Sclerotinia sclerotiorum

[94,100,105]

Momordica balsamina L.
MbRIP-1 Aspergillus niger [107]

Benincasa hispida Cogn.

Hispin
Coprinus comatus, Didymella

arachidicola, F. oxysporum,
Physalospora pyricola

[90]

SOLANACEAE
Nicotiana tabacum L.

TRIP
C. heterostrophus, Cytospora sp.,

F. oxysporum, Pestalotia sp.,
Phoma sp., T. reesei

[95]

ARECACEAE
Elaeis guineensis Jacq.

EgRIP-1a and EgRIP-1b Ganoderma boninense [88]
VIBURNACEAE

Sambucus ebulus L.
Pebulin A. solani, F. oxysporum [102]

* Mutant os-1.

Notably, the protoplast-forming mutant os-1 of N. crassa was sensitive to RIP 30,
indicating that, at least in this organism, the presence of an intact cell wall protects against
the antifungal activity of the RIP [77]. N. crassa ribosomes were approximately 10 times
more sensitive to inactivation than ribosomes from ascites cells [77], indicating that it is not
the sensitivity of the ribosomes to RIP that determines their toxicity but rather their ability
to reach the ribosomes. The inhibition of T. reesei growth by RIP 30 was enhanced in the
presence of both chitinase and barley β-1,3-glucanase, whereas with F. sporotrichioides it was
only enhanced in the presence of chitinase [76]. This synergistic inhibition suggests that
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inhibition by RIP 30 is enhanced when hyphal cell walls are permeabilized by the action of
these hydrolases.

Table 4. Transgenic fungus-resistant plants bearing RIP genes.

RIP Host Pathogen Ref.

Barley RIP30 Nicotiana tabacum L. Rhizoctonia solani [78,79]
Triticum aestivum L. Blumeria graminis [91]

Solanum tuberosum L. R. solani [86,112]
Brassica juncea (L.) Czern. Alternaria brassicae [111]
Vigna mungo (L.) Hepper Corynespora cassiicola [110]

Maize b-32 N. tabacum R. solani [80]
T. aestivum L Fusarium culmorum [97]
Zea mays L. Fusarium fujikuroi [98]

MOD1 Oryza sativa L. R. solani [84]
Z. mays F. fujikuroi [99]

PAP (PAP I) N. tabacum R. solani [81,83]
PAPII N. tabacum R. solani [82]

Agrostis stolonifera L. Clarireedia homoeocarpa [93]
PhRIP I N. tabacum Botrytis cinerea, Alternaria alternata [92]

S. tuberosum B. cinerea, R. solani [87]
TCS O. sativa Pyricularia oryzae [104]

α-MMC O. sativa Pyricularia grisea [103]
Curcin 2 N. tabacum R. solani [85]

Aspergillus flavus Link (which is not an aggressive pathogen of maize, but has a great
economic impact due to its production of aflatoxin) and Aspergillus nidulans (Eidam) G.
Winter were sensitive to MOD1 (RIP1), i.e., an engineered form of maize RIP b-32 (proRIP1)
that does not require proteolytic activation [106]. MOD1 not only affected the growth of
the fungi but also altered their morphology. The growth inhibition was concentration-
dependent, being evident at 200 µg/mL, and above. R. solani was more sensitive to RIP
b-32; from 0.6 µg/mL, the growth inhibition was shown in a microtiter plate assay [80].

In dicotyledons, type 1 RIPs with antifungal activity have been found in species of the
families Amaranthaceae, Phytolaccaceae, Nyctaginaceae, Cucurbitaceae, Solanaceae, and
Arecaceae (Table 3).

Penicillium digitatum (Pers.) Sacc. was very sensitive to different type 1 RIPs: sodin
5 [109], quinoin [109], BE27 [29,108], dioicin 2 [30], and PD-S2 [30]. The one that exerted
the greatest effect was BE27 since the growth inhibition was evident at 0.6 µg/mL [29].
The other RIPs mentioned inhibited fungal growth from concentrations of 5–10 µg/mL;
however, PD-L4 did not inhibit fungal growth at 30 µg/mL [30]. Notably, like sodin
5, quinoin, BE27, diocin 2, and PD-S2, PD-L4 also have N-glycosylase activity on yeast
ribosomes [30,109]. BE27, diocin 2, PD-S2, and PD-L4 have also been reported to be active
against P. digitatum ribosomes [30].

The fact that PD-L4 does not show antifungal activity [30] despite showing high
homology with PD-S2 [113] suggests that entry into cells may be the limiting step for
the fungicidal capacity of RIPs, and it has been suggested that the amphipathicity of the
carboxyl-terminal domain could play a relevant role in the different degrees of toxicity of
RIPs towards fungi [30]. In fact, BE27, which is the most toxic to P. digitatum, is the one with
the highest degree of amphipathicity in the carboxyl-terminal domain and has been shown
to be able to internalize and depurinate fungal ribosomes [29]. This is in agreement with the
studies reported with RIPs obtained from M. expansa. ME1 and ME2 are two RIPs, obtained
from the root of M. expansa, which showed both rRNA N-glycosylase activity on yeast
ribosomes and antifungal activity in an agar plate assay against various fungi (Table 3), but
were shown to be inactive against others [27]. Park et al. [28] compared the activity of three
RIPs (ricin A-chain, saporin-S6, and ME from M. expansa) on fungal ribosomes and their
antifungal activity. Ricin A-chain and saporin-S6 were much more active on ribosomes of
Alternaria solani Sorauer, R. solani, T. reesei, and Candida albicans (C.P. Robin) Berkhout than
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the RIP of M. expansa; however, this was the only one able to inhibit the growth of R. solani
because it was the only one able to enter the fungus.

Quinoin also induced a slight inhibition of the growth of Cryphonectria parasitica
(Murrill) M.E. Barr [96]. Another RIP from Phytolacaceae, PhRIP I, was able to inhibit the
germination of B. cinerea spores [92].

Alpha-momorcharin (α-MMC), a RIP from Momordica charantia L. seeds, inhibited
sporulation [94] or mycelial growth [100,105] of a wide variety of pathogenic fungi (Table 3);
however, it was ineffective in inhibiting the growth of C. albicans [100], supporting the
hypothesis that antifungal activity also depends on the fungus studied. Interestingly,
α-MMC, in addition to antifungal activity, also has antibacterial [100] and antiviral [12]
activity, making it an excellent tool for crop protection against a wide variety of pathogens.
Two other RIPs obtained from cucurbits, MbRIP-1 [107] and hispin [90], have antifungal
activity. The latter, despite inhibiting the growth of several fungi (Table 3), was shown to
be ineffective against B. cinerea [90].

The other type 1 RIPs that have shown antifungal activity are TRIP from tobacco [95]
and two isoforms, EgRIP-1a and EgRIP-1b, obtained from oil palm (Elaeis guineensis
Jacq.) [88]. TRIP showed rRNA N-glycosylase activity against yeast and T. resei ribo-
somes and presented growth inhibitory activity against T. resei and other fungi in agar plate
assays [95]. The activity was different in different fungal species and, in some cases, was
ineffective. Partially purified oil palm RIPs showed rRNA N-glycosylase activity on yeast
ribosomes and inhibited the growth of Ganoderma boninense Pat., an oil palm pathogen
causing basal stem rot (BSR) [88]. The only type 2 RIP reported to have antifungal activity
is pebulin, a recombinant protein from Sambucus ebulus L. This protein was able to com-
pletely inhibit the germination of A. solani and Fusarium oxysporum Schltdl. spores at a
concentration of 5 µg/mL [102].

In addition, peptides of around 10 kDa obtained from the cucurbits Cucumis melo L.
and Benincasa hispida Cogn. have been reported as RIPs with antifungal activity [89,101]. On
the other hand, the ribotoxin α-sarcin [108] and the RLPs ageritin [114,115] and eryngitins
3 and 4 [116] have also shown antifungal activity, indicating that, although never used for
that purpose, these proteins could also be tools to defend crops against fungal diseases.

7. Mechanisms of Antifungal Activity

Several mechanisms have been proposed for the antifungal action of RIPs (Figure 1).
Since many RIPs inactivate plant ribosomes (Table 1), it has been proposed that they

could be part of a “suicide mechanism” [32,33,117]. The RIPs that have been reported to
have antifungal activity are, except pebulin, type 1 RIPs (Tables 3 and 4). RIPs from Poaceae
do not have a leader peptide [118] and are localized in the cytoplasm [47,49]. However, it
seems that these RIPs do not affect the ribosomes of the same plant (Table 1). Some are
synthesized as precursors and subsequently undergo processing, but this does not appear to
significantly increase enzymatic activity against their own plant ribosomes [49]. Many type
1 RIPs from dicots are potent inhibitors of protein synthesis in plants (Table 1), but, having
leader peptides [118], they are synthesized in the endoplasmic reticulum, and are located in
the apoplast, the space between the plasma membrane and the cell wall [34,117,119], thus
avoiding contact with ribosomes. Therefore, it has been assumed that pathogen infection
would alter the permeability of the host cell membrane, allowing RIPs access to ribosomes
and leading to the arrest of protein synthesis and cell death. This would prevent the spread
of the pathogen throughout the rest of the plant [32,33,117]. In addition, RIP expression
could be increased by the presence of the pathogen, since infection causes the release of
pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition
receptors (PRRs) and damage-associated molecular patterns (DAMPs) that are recognized
by wall-associated kinases (WAKs) leading to the increase of defense signal molecules
such as hydrogen peroxide, salicylic acid, or jasmonic acid [120]. Hydrogen peroxide and
salicylic acid have been shown to increase BE27 expression [29,34], jasmonic acid has been
shown to increase the expression of α-momorcharin (α-MMC) [121], and methyl jasmonate
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and salicylic acid have been shown to increase curcin-L expression [122]. These are type 1
RIPs that are expressed in Beta vulgaris leaves, in different tissues of M. charantia, and in
Jatropha curcas L. leaves, respectively.

Toxins 2024, 16, x FOR PEER REVIEW 11 of 20 
 

 

7. Mechanisms of Antifungal Activity 

Several mechanisms have been proposed for the antifungal action of RIPs (Figure 1). 

 

Figure 1. Proposed mechanisms for the antifungal activity of RIPs. The infection causes the release 
of PAMPs that are recognized by PRRs and DAMPs which, in turn, are recognized by WAKs, lead-
ing to an increase in signal molecules, inducing RIP expression. Type 1 RIPs from dicots are synthe-
sized in the endoplasmic reticulum and are localized in the apoplast. Infection by pathogens can 
alter the permeability of the host cell membrane, allowing RIP to enter the cytoplasm and inactivate 
ribosomes, leading to cell death, which prevents the spread of the pathogen. RIP can also pass 
through the cell wall and membrane of the fungus, inactivating its ribosomes and causing its death. 
In the case of cytosolic RIPs (Poaceae), these may be released as a consequence of fungal damage to 
the cell membrane. Chitinases and glucanases can degrade the fungal cell wall and favor RIP entry. 
RIP can also trigger fungal defense signaling pathways. The activation of these pathways could be 
a consequence of ribotoxic stress caused by RIPs. 

Since many RIPs inactivate plant ribosomes (Table 1), it has been proposed that they 
could be part of a “suicide mechanism” [32,33,117]. The RIPs that have been reported to 
have antifungal activity are, except pebulin, type 1 RIPs (Tables 3 and 4). RIPs from Po-
aceae do not have a leader peptide [118] and are localized in the cytoplasm [47,49]. How-
ever, it seems that these RIPs do not affect the ribosomes of the same plant (Table 1). Some 
are synthesized as precursors and subsequently undergo processing, but this does not 
appear to significantly increase enzymatic activity against their own plant ribosomes [49]. 
Many type 1 RIPs from dicots are potent inhibitors of protein synthesis in plants (Table 
1), but, having leader peptides [118], they are synthesized in the endoplasmic reticulum, 
and are located in the apoplast, the space between the plasma membrane and the cell wall 
[34,117,119], thus avoiding contact with ribosomes. Therefore, it has been assumed that 
pathogen infection would alter the permeability of the host cell membrane, allowing RIPs 
access to ribosomes and leading to the arrest of protein synthesis and cell death. This 
would prevent the spread of the pathogen throughout the rest of the plant [32,33,117]. In 
addition, RIP expression could be increased by the presence of the pathogen, since infec-
tion causes the release of pathogen-associated molecular patterns (PAMPs) that are rec-
ognized by pattern recognition receptors (PRRs) and damage-associated molecular pat-

Figure 1. Proposed mechanisms for the antifungal activity of RIPs. The infection causes the release of
PAMPs that are recognized by PRRs and DAMPs which, in turn, are recognized by WAKs, leading to
an increase in signal molecules, inducing RIP expression. Type 1 RIPs from dicots are synthesized in
the endoplasmic reticulum and are localized in the apoplast. Infection by pathogens can alter the
permeability of the host cell membrane, allowing RIP to enter the cytoplasm and inactivate ribosomes,
leading to cell death, which prevents the spread of the pathogen. RIP can also pass through the
cell wall and membrane of the fungus, inactivating its ribosomes and causing its death. In the case
of cytosolic RIPs (Poaceae), these may be released as a consequence of fungal damage to the cell
membrane. Chitinases and glucanases can degrade the fungal cell wall and favor RIP entry. RIP
can also trigger fungal defense signaling pathways. The activation of these pathways could be a
consequence of ribotoxic stress caused by RIPs.

A second mechanism Involves a direct effect on pathogen ribosomes. Many, but not
all, RIPs inhibit the growth of various fungi in vitro (Table 3). Such inhibition appears to be
related to the ability of the RIP to reach ribosomes by traversing the fungal cell wall and
membrane [28,29]. Chitinases and glucanases can degrade the fungal cell wall and favor
RIP entry, as these enzymes have been shown to enhance the antifungal capacity of some
RIPs [76].

The third proposed mechanism involves the generation of signaling molecules that
defend the plant from attack by fungi and other pathogens [120,123]. Not all RIPs generate
the same signals and different results have been obtained depending on the RIP and the
plant studied. Thus, it has been reported that α-MMC, in Nicotiana benthamiana Domin
plants sprayed with a solution of the RIP, up-regulates the expression of genes related to
the scavenging of reactive oxygen species (ROS), modulating ROS homeostasis, and some
defense-related genes responsive to salicylic acid [94,124], and that in Nicotiana tabacum
L. plants it induces an increase in both jasmonic acid and salicylic acid [125]. In contrast,
the same RIP sprayed on M. charantia plants increases jasmonic acid biosynthesis and ROS
induction without a relevant increase in salicylic acid [121]. PAP and PAPII (two type 1
RIPs, obtained from spring and early summer leaves of P. amaricana, respectively) generate
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a signal leading to overexpression of pathogenesis-related proteins in the absence of in-
creased salicylic acid levels, making transgenic tobacco plants resistant to virus and fungal
infection [81–83,126].

The relationship between the enzymatic activity of RIPs and their ability to induce
the production of signaling molecules in plants has not been studied. In animals, ricin,
α-sarcin, and Shiga toxin, as a consequence of their enzymatic action on the sarcin-ricin loop
(SRL), activate signaling pathways through the mitogen-activated protein kinases (MAPKs)
p38 and JNK [127]. Deoxynivalenol (DON) and T-2 toxin (both trichothecene mycotoxins)
inhibit protein synthesis and induce ERK1/2 and p38 MAPK activation in several cell
lines, followed by increased cytokine production [128]. This ribosome-mediated MAPK
activation is termed “ribotoxic stress response” [128]. In Arabidopsis thaliana (L.) Heynh.,
DON, and T-2 toxin induce the expression of MPK3 and MPK6, which are implicated as
positive regulators of the hypersensitive response through ethylene and ROS signaling [128].
It is therefore possible that the generation of signaling compounds by plants is a response
to the ribotoxic stress produced by RIPs.

In conclusion, RIPs could exert their antifungal action through various mechanisms.
Probably, depending on the RIP and the pathogen, one mechanism could predominate over
the others or the effect could be a combination of several of them.

8. Transgenic Plants Resistant to Fungal Infection

Genetic engineering has proved to be an excellent method for obtaining fungus-
resistant plants [120,129,130]. In this way, plants expressing genes that protect the plant
from fungal infections have been obtained. Using this strategy, transgenic plants have been
designed that carry the gene for a RIP and are resistant to pathogenic fungi that cause
disease (Table 4). The most commonly used model is the tobacco plant (N. tabacum), but
plants have also been obtained from some important crops such as wheat (Triticum aestivum
L.), potato (Solanum tuberosum L.), Indian mustard (Brassica juncea (L.) Czern.), black gram
(Vigna mungo (L.) Hepper), maize (Zea mays L.), rice (Oryza sativa L.), or creeping bentgrass
(Agrostis stolonifera L.), widely used as turf (Table 4).

The most commonly used method to obtain these transgenic plants is Agrobacterium
tumefaciens-mediated transformation, although direct methods such as biolistics [91,93,97,104]
and polyethylene glycol-mediated transfer [98] have also been used. Different RIPs have
been constitutively expressed under the control of a strong promoter such as the cauliflower
mosaic virus promoter (CaMV 35S) (Figure 2), since there is a strong correlation between
the level of RIP expression and the level of resistance against the fungi [85]. Genes confer-
ring resistance to kanamycin and neomycin, hygromycin, or glufosinate (Figure 2), also
controlled by strong promoters, are used as selection marker genes.

Although cases have been reported in which the transgenic plants show a normal
phenotype [85,87,91,104], or at most a slightly smaller size [97], in other cases the constitu-
tively expressed RIPs were toxic to the plants, probably due to their ability to inactivate
host plant ribosomes [81,83,93]. This major drawback has been overcome by using the
RIP gene with the sequence that directs it to the apoplast [85], by introducing mutations
that reduce RIP toxicity without affecting its antifungal activity [81,83,93], or by using RIP
genes that are less toxic to plants [82]. The latter may depend on the RIP and the host,
e.g., PAPII has been reported to be toxic to creeping bentgrass [93], but not to tobacco [82].
This is also true for the RIP-pathogen relationship, so it has been reported that transgenic
plants resistant to one fungus are not resistant to others [84,112]. Another strategy is to
use inducible promoters that respond to the damage caused by the fungus in the plant
(Figure 2) so that RIP is only expressed when the plant is attacked by the fungus without
affecting its development [78,80,87,92].

To enhance the antifungal activity of RIPs, genes encoding chitinases have also been
introduced [79,84,86,99,110,111], which as we have seen exert a synergistic effect with RIPs,
and even the lectin WGA [99] (Figure 2). In addition, some transgenic plants carrying RIPs
are also resistant to viruses and insects [9,12], which adds even more interest to this type of
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strategy. For example, tobacco plants carrying the PAP II gene are resistant to the fungus
R. solani and the viruses TMV and PVX [82]; those carrying curcin 2 are resistant to R. solani
and TMV [85]; and maize plants carrying maize ribosome-inactivating protein (MRIP),
tobacco hornworm chitinase (THWC), and wheat germ agglutinin (WGA) are resistant to
the fungus Fusarium fujikuroi Nirenberg and the insects Spodoptera frugiperda Walker and
Helicoverpa zea Boddie [99].
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Figure 2. Strategies used for the construction of the T-DNA region of binary vectors for plant
transformation with A. tumefaciens. Vectors with constitutive promoters, inducible promoters, and
vectors expressing RIPs and chitinases or wheat germ agglutinin (WGA) have been designed. LB: left
border, RB: right border, NOS: nopaline synthase, rbcS: rice rbcS gene, 35S: cauliflower mosaic virus
(CMV), CFDV: coconut foliar decay virus, Ubi: ubiquitin, BAR: bar gene (resistance to glufosinate),
NPT II: neomycin phosphotransferase II (resistance to kanamycin and neomycin), hph: hygromycin
phosphotransferase gene (hygromycin resistance), Act1: rice actin 1, pwun1: promoter of the potato
wun1 gene (wound-inducible), PGIP: bean polygalacturonase gene I promoter, PinII: 3’ region of the
potato proteinase inhibitor II gene, CHI: chitinase, WGA: wheat germ agglutinin, HBT: HBT promoter
(of the C4PPDK gene). The most used elements are written in bold.

9. Conclusions

The use of ribosome-inactivating proteins (RIPs) is a promising alternative to chemical-
based fungicides, which cause problems such as environmental contamination, resistant
development, and residual toxicity. The fact that RIPs also possess antiviral and insecticidal
activities makes them an ideal tool for disease and pest control in crops.

In view of the published results, it seems that the most efficient way to use these
proteins would be to construct transgenic plants carrying genes for RIPs and genes for
other defense proteins with which they show a synergistic effect.

However, in order to use these proteins effectively, further studies are still needed to
shed light on the toxicity of the different RIPs to the host plants, the efficacy of each RIP on
the fungi causing the diseases to be controlled, the synergistic effect with other fungicidal
agents, as well as the mechanisms of antifungal action.
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