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Abstract

In this Doctoral Thesis, Magnetoencephalogram (MEG) background activ-

ity from 36 patients with a diagnosis of probable Alzheimer’s Disease (AD)

and 26 healthy elderly control subjects has been analysed with Blind Source

Separation (BSS) methods. Our aim was to apply BSS techniques to help in

the analysis and interpretation of this kind of brain activity, paying special

attention to AD.

The MEG is the non-invasive recording of the tiny magnetic fields gener-

ated by the neurons. This neurophysiological technique measures the brain

cortex activity directly, without interpreting the information on the basis of

vascular or metabolic changes. Its temporal resolution is high and the mag-

netic recordings neither depend on any reference point nor are affected by the

resistive properties of extra-cerebral tissues. On the other hand, the MEG

apparatus needs superconductive materials and magnetically shielded rooms

to properly acquire the brain signals. This has prevented any widespread use

of this technique to record the brain activity. Despite the fact that difficulties

are faced in the analysis of these signals, the MEG could provide relevant

information about diverse brain states and diseases, such as AD.

AD is a progressive neurodegenerative disorder. It causes memory loss

and other cognitive and behavioural symptoms that impair the activities of

daily living. AD is the most common dementia in the Western World as it

accounts for 50% to 60% of all cases. It shows an almost exponential increase

with age. As a result, its prevalence in people over 85 years is between 24%

and 33%. In clinical practice, AD must be differentiated from other demen-

tias, though a definite diagnosis can only be made by necropsy. The criteria

for AD diagnosis largely depend on the exclusion of other disorders. Of note
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is that the accuracy in the clinical diagnosis is limited, with sensitivity of

around 80% and specificity of 70%. Thus, it is important to develop new

approaches that might help in AD detection.

The term BSS denotes a set of techniques useful to decompose multi-

channel recordings into their constituent underlying components. The BSS

defines a generative model for the measurements and it tries to estimate the

inner components (or sources) by making a few general assumptions about

the data. The most important hypothesis is that the BSS components are

mutually independent or, alternatively, that they are mutually decorrelated

over time. BSS extracts the sources by exploiting this assumption. Thanks

to this ability, the application of BSS techniques to MEGs can help to inspect

and analyse these biomedical signals from new perspectives. Thus, this could

provide us with both novel methodologies to deal with problems encountered

in the processing of these recordings and relevant information about brain

activity.

For these reasons, in this Doctoral Thesis, MEG data were processed with

BSS techniques in the context of four different applications:

• The decompositions of real MEGs computed with five common BSS al-

gorithms were compared to assess their degree of similarity. The results

showed that the most consistent (i.e., similar) pair of algorithms was

AMUSE–SOBI, followed by JADE–FastICA. Additionally, the overall

level of similarity increased as longer signals were decomposed.

• The ability of several combinations of BSS algorithm, epoch length

and artefact detection metric to automatically reduce the cardiac, oc-

ular and power line artefacts in the MEGs was assessed. The results

indicated that a Constrained Blind Source Separation (cBSS) approach

was suitable to remove the cardiac activity. Additionally, a combina-

tion of artefact detection metrics based on entropy or power criteria

with AMUSE or SOBI could help to reduce the ocular contamination.

Finally, the electrical noise could be reduced by means of a spectral

metric and AMUSE.
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• The ability of a BSS preprocessing to improve the separation between

AD patients and controls’ spectral and non-linear features from MEGs

was measured. Ordering criteria were defined to straightforwardly com-

pare the BSS components of different subjects. The comparisons be-

tween the classifications derived from the unpreprocessed and the BSS

preprocessed MEG signals revealed rises in the areas under the ROC

curves associated with the features between 0.023 and 0.227 and accu-

racy increases of up to 22.6% in the best cases. These corresponded

to preprocessings developed using AMUSE and SOBI with a spectral

ordering of the components.

• An adaptive framework to extract rhythmical brain activity from di-

verse scalp regions was introduced. This employed the local adaptive-

ness of an Empirical Mode Decomposition to estimate oscillating brain

activity in several bands and a cBSS to extract the actual brain rhythms

from each region. The statistical analysis suggested that AD might af-

fect the Spectral Coherence (Coh(f)) between regions, although the

results were not significant. However, a leave-one-out classification

analysis based on the Coh(f) computed from spectral bands classified

the AD patients versus the elderly control subjects with an accuracy

equal to 96.8%.

In summary, the findings of this Doctoral Thesis suggest utility of BSS to

help in the processing of MEG background activity and in the identification

and characterisation of AD. Therefore, BSS may be an important tool to

analyse this kind of biomedical recordings. Nevertheless, further investiga-

tions are needed to confirm our results.
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6.2.2 Datos sintéticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Métodos de separación ciega de fuentes . . . . . . . . . . . . . . . . . . . . . . . . .145
6.3.1 SOS-BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.2 HOS-BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.3 cBSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Evaluación de la consistencia de diversos métodos de BSS . . . . . . 148
6.4.1 Métrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Eliminación de artefactos con BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.1 Métricas de detección de artefactos . . . . . . . . . . . . . . . . . . . . . . . .151
6.5.2 Evaluación de la eliminación de artefactos . . . . . . . . . . . . . . . . . 160
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B.1 Caṕıtulo 1: Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
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2 Chapter 1. Introduction

This Chapter introduces the rest of this document by presenting the con-

cept of biomedical signal processing and its importance. Then, the basic

ideas that lie at the core of this Doctoral Thesis are described. These in-

clude the magnetoencephalogram recordings, the Alzheimer’s Disease and

the blind source separation framework. Afterwards, the hypotheses beneath

this Doctoral Thesis are listed and the aims pursued in this work, enumer-

ated. In order to achieve those aims, a schedule of activities is proposed.

Finally, the structure of the rest of this PhD dissertation is described.

1.1 Context: Biomedical Signal Processing

The field of this Doctoral Thesis is Biomedical Engineering and, to be more

precise, biomedical signal processing. While the general term ‘Bioengineer-

ing’ comprises the research-oriented activity closely related to biotechnology

and genetic engineering, the concept of ‘Biomedical Engineering’ is specifi-

cally associated with the development of new medical technology (Bronzino,

2006). This important multidisciplinary field aims at designing, develop-

ing and applying methods, materials and devices for clinical research and

practice (Bronzino, 2006). Hence, biomedical engineers apply engineering

principles and methodologies to understand, model and solve problems as-

sociated with medicine and biology. Despite the fact that its origins were

mainly associated with the development of medical instruments, the range

of activity of Biomedical Engineering is nowadays extremely varied. Among

others, it includes (Bronzino, 2006):

• The detection, acquisition and monitoring of physiological signals.

• The diagnostic interpretation of biomedical recordings using signal pro-

cessing techniques.

• The application of engineering system analysis (including modelling,

simulation and control) to biologic and physiological problems.

• The computational analysis of data to help in clinical decision making

and screening.
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• The development of procedures and devices for rehabilitation and re-

placement or augmentation of bodily functions.

• The graphical display of anatomic or physiological information.

• The growth of artificial tissues and organs.

Thus, it is clear that Biomedical Engineering encompasses such different

branches of expertise that close collaboration and interplay between diverse

specialists, such as engineers, biologists and physicians, are needed (Bronzino,

2006).

As it was previously mentioned, this Doctoral Thesis falls into the field

of biomedical signal processing. This scientific area deals with the acquisi-

tion and mathematical processing of informative signals derived from living

systems or biological structures (Onaral, 2006).

Biomedical signals may originate from a variety of sources. Consider-

ing their origin, they can be classified into different groups such as bio-

electric signals — such as Electroencephalogram (EEG), Electrocardiogram

(ECG), Electrooculogram (EOG) and electromyogram —; biomagnetic sig-

nals — for instance, Magnetoencephalogram (MEG) and magnetocardiogram

—; bioacoustic signals — for example, phonocardiogram and ecography—;

biomechanical signals — e.g., mechanomyogram and aerial flux pressure—;

biochemical signals — for instance, partial pressures of oxygen and carbon

dioxide—; biooptical signals — for example, blood oxygen saturation—; etc.

In addition to the former categorization, biomedical signals can also be di-

vided according to their field of application (such as, neurology and cardiol-

ogy) and their characteristics (like continuous and discrete, stationary and

non-stationary signals; Cohen, 2006).

Most often in biomedical applications, the mere signal acquisition is not

enough to obtain the information enclosed in it. Hence, specific actions must

be applied to extract its relevant features. These procedures may be as simple

as visual inspection of the signal or as complex as applying advanced signal

processing techniques (Cohen, 2006). Hence, one of the major objectives of

biomedical signal processing is to compute and extract signal characteristics.
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Diverse signal processing techniques can help to characterise and under-

stand physiological recordings. They are also essential to uncover signal

components that may be very difficult, if not impossible, to observe by the

naked eye (Laguna and Sörnmo, 2009). Biomedical signal processing also

aims at reducing the subjectivity of the manual measurements. It must be

noted that manual measurements made on biomedical recordings often lack

accuracy, are time-consuming and depend completely on the specialist. This

can reduce the accuracy of the diagnosis. By automating the measurement

of the signal characteristics, subjectivity is reduced and reliability and re-

producibility are increased. Finally, another major goal of biomedical signal

processing is to reduce the noise present in the signals (Laguna and Sörnmo,

2009).

Generally, the recorded measurements are contaminated with undesired

signals, which can interfere with the relevant physiological activity and bias

the analyses. This contamination comes from both errors in the measure-

ments produced by sensor imperfections and recorded activities from other

biological systems that interfere with the desirable signal. The latter are

commonly refereed as artefacts (Escudero et al., 2007b; Jung et al., 2000).

Hence, it is important to filter out undesired signal components of technical

or physiological origin so that the Signal-to-Noise Ratio (SNR) is increased

and further analysis are facilitated (Laguna and Sörnmo, 2009).

Taking into account that today’s recording equipment and computers

are powerful and relatively affordable, it is expected that the role of signal

processing in those and other tasks will further increase in the future (Laguna

and Sörnmo, 2009).

Generally speaking, the development of a typical biomedical measurement

and processing system involves the following steps (Najarian and Splinter,

2006):

1. Identification of the relevant physical properties in biomedical system

that will be measured by sensors.

2. Recording of a biomedical signal with a set of suitable sensors.
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3. Filtering and processing of the biomedical signal to reduce the amount

of noise and artefacts that contaminate it.

4. Extraction of features that represent or describe the status and condi-

tions of the biomedical system. These features can be either based on

the medical characteristics of the signal under study or defined using

signal processing techniques.

5. Classification of the extracted features to obtain information about the

system.

6. Finally, in some applications, other steps can be needed, such as a

suitable visualisation of the information.

The biomedical signals that will be analysed in this Doctoral Thesis are

known as Magnetoencephalogram (MEG) recordings. These discrete signals

reflect the magnetic fields generated by the neural activity in the brain. Their

main fields of application are neurology, psychiatry and psychology. Several

Blind Source Separation (BSS) techniques will be applied to MEG signals

acquired from patients with a diagnosis of probable Alzheimer’s Disease (AD)

and healthy elderly subjects with the following main objectives:

• To compare the similarity of the decompositions provided by several

BSS algorithms for real MEG signals.

• To automatically and objectively assess the BSS-based removal of arte-

factual cardiac and ocular activities, as well as the power electrical

noise, which contaminate the MEG recordings.

• To improve the classification of MEG signals acquired from AD patients

against those recorded from healthy elderly subjects by means of a BSS

preprocessing.

• To adaptively extract, with BSS methods, rhythmic brain activity suit-

able to be analysed with connectivity measurements from the MEG

recordings.
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1.2 Magnetoencephalography

The Magnetoencephalogram (MEG) is the non-invasive recording of the

weak magnetic fields generated by the brain neural activity. In addition to

the Electroencephalogram (EEG), it is the only neurophysiological technique

able to directly measure the activity of the brain cortex without having to

interpret the information on the basis of vascular or metabolic changes (Hari,

2004).

The recording of MEG signals is relatively new. Whereas the first EEG

signal was acquired 80 years ago (Sanei and Chambers, 2007), the first mea-

surement of MEG activity dates from just 1968 (Vrba and Robinson, 2001).

It consisted of α-related activity recorded using a one-million-turn coil (Co-

hen, 1968). In fact, this measurement was carried out before any kind of

superconductive sensor was available, thus resulting in poor-quality signals.

However, superconductive sensors were soon available (Zimmerman et al.,

1970) and the quality of the following MEG recordings was significantly im-

proved (Cohen, 1972). The first MEG measurements were performed with

a one-channel system. Hence, the equipment had to be moved to measure

activity over different parts of the scalp. Eventually, novel instrumentation

equipped with gradiometers was launched. These systems were able to simul-

taneously record the activity of one brain hemisphere with several channels

(Hämäläinen et al., 1993). Of note is that current MEG systems are made

of hundreds of channels (Stam, 2010; Vrba and Robinson, 2001).

Considering that EEG and MEG record the electromagnetic activity gen-

erated by the same primary currents in the brain, similarities between their

waveforms are to be expected. The distributions of the electric potential

and the magnetic field generated by a current dipole in a spherical volume

conductor are dipolar, but they are rotated by 90◦ with respect to each other

(Hari, 2004). Hence, there are differences in the sensitivity of both techniques

to the orientation of the currents. MEG is mostly sensitive to tangential cur-

rents (Hämäläinen et al., 1993), whereas some current sources (very deep and

radial) are more reliably picked up by EEG than MEG (Hari, 2004).

Both EEG and MEG can record the brain oscillations simultaneously all
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over the scalp. Moreover, their temporal resolution is high, up to the mil-

lisecond time-scale (Hämäläinen et al., 1993). For MEG, this high temporal

resolution can be accompanied of good spatial resolution in locating cortical

events (Hari, 2004; Hari and Forss, 1999). Although both techniques are

complementary to study the brain activity, the MEG recording offers some

important advantages over the EEG. These include the facts that the mag-

netic recordings do not depend on any reference point (Hämäläinen et al.,

1993; Hari et al., 2000; Najarian and Splinter, 2006) and that the resis-

tive properties of the extra-cerebral tissues do not affect the magnetic fields

(Hämäläinen et al., 1993; Hari et al., 2000).

On the other hand, the MEG recording is subjected to some considerable

limitations, including the need for superconductive materials and magneti-

cally shielded rooms to properly record the signals (Hari, 2004; Hari et al.,

2000). Hence, the investment cost in the MEG system and shielded room is

high, which has prevented any widespread use of this technique to acquire

the brain activity (Sternickel and Braginski, 2006).

The MEG sensors are made of superconductive materials — called Su-

perconductive QUantum Interference Devices (SQUIDs) — based on the

Josephson Effect (Zimmerman et al., 1970). Moreover, the extremely weak

amplitude of the brain magnetic fields needs the application of additional

procedures to attenuate the noisy signals produced by extra-cerebral sources

that affect these signals (Hari et al., 2000). This poses strong restrictions on

the recording process and makes the MEG non-portable (Hari, 2004).

The most important noise affecting the MEG signals is that produced

by outside disturbances caused by moving magnetic objects or electrical

equipment (Hari et al., 2000; Vrba and Robinson, 2001). Bodily organs and

movements also introduce artefacts in MEG signals. This includes the eye

movements and blinks and the cardiac activity (Hämäläinen et al., 1993).

Normal brain activity generates magnetic fields whose amplitude ranges

from 10 fT to 500 fT for evoked responses to a few pT (pico-Teslas) for

epileptic spikes. However, the heart produces a significantly stronger field

(Jousmäki and Hari, 1996). Obviously, the magnetic shielding does not help

to reduce the Cardiac Artefact (CA) since the subject is within the shielded
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room.

Furthermore, significant contamination can be caused by eye blinks and

movements (Antervo et al., 1985). Both types of Ocular Artefacts (OAs)

may be time-locked to the stimuli, specially if they are strong or infrequent

(Hämäläinen and Hari, 2004). It must be noticed that the amplitude of the

artefacts caused by eye movements can be about 3 pT to 4 pT above the

lateral aspects of the orbits (Antervo et al., 1985).

Apart from the biological artefacts, the Power Line Noise (PLN) may

also be a strong source of contamination in brain recordings (Escudero et al.,

2007b; Iriarte et al., 2003; Jung et al., 2000). Moreover, removal of the PLN

and its harmonics with notch filters may not be a satisfactory solution if the

frequency band of the disturbances overlaps that of the signals (Hämäläinen

et al., 1993; Sternickel and Braginski, 2006). In any case, prevention is always

the best way to deal with artefacts.

It must be taken into account that MEG is not the only technique to

study the brain activity. Other methods are available, such as the Positron

Emission Tomography (PET), the Single Photon Emission Computed To-

mography (SPECT), the Functional Magnetic Resonance Imaging (fMRI),

the Magnetic Resonance Spectroscopy (MRS) and the EEG. However, EEG

and MEG avoid not only the need for opening the skull to examine the

subject’s brain but also to be exposed to X rays, radioactive tracers or time-

varying and strong static magnetic fields (Hämäläinen et al., 1993).

1.3 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a slowly progressive and fatal neurodegenerative

disorder with insidious onset. In addition to the well-known memory loss, AD

also results in other cognitive and behavioural symptoms that progressively

impair the activities of daily living. The cognitive deficit manifest itself

as disorientation and problems with reasoning and thinking, whereas the

behavioural symptoms include anxiety, delusions, depression, insomnia and

wandering (Blennow et al., 2006; Cummings, 2004; Lahiri et al., 2002).

AD is the most common type of dementia in the Western World. It ac-
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counts for 50% to 60% of all cases (Blennow et al., 2006). AD is one of the

most disabling and burdensome health conditions worldwide. Its prevalence

is below 1% in subjects aged 60 to 64 years, but it shows an almost exponen-

tial increase with age. The prevalence roughly doubles with every five years

of age (Cummings, 2004). As a result, the prevalence of AD in people aged

85 years or older is between 24% and 33% (Blennow et al., 2006). In 2001,

more than 24 million people had dementia and it is expected that this figure

will double every 20 years up to 81 million in 2040 (Blennow et al., 2006).

Moreover, it is estimated that 4.6 million new cases of dementia appear each

year (Ferri et al., 2006).

It is clear that AD is a very important economic and social problem.

It has been recently shown that dementia contributed more than 10% of

years lived with disability in people over 60 (Ferri et al., 2006). This ac-

counts for more cases than stroke (9.5%), musculoskeletal disorders (8.9%),

cardiovascular disease (5.0%), and all forms of cancer (2.4%) (Ferri et al.,

2006). Furthermore, the disability weight for dementia was higher than for

any other health condition except for spinal-cord injury and terminal can-

cer (Ferri et al., 2006). It is expected that diagnostic testing for this demen-

tia will contribute only marginally to this cost. Hence, the development of

methods to help in the diagnosis may likely improve the care of patients and

allow more accurately targeted future therapies. Eventually, this may lead

to reduce the costs associated with this disorder (Lahiri et al., 2002).

AD patients usually die within 7 to 10 years after diagnosis (Masters

et al., 2006). However, it is estimated that the neurodegeneration begins

between 20 and 30 years before clinical onset (Blennow et al., 2006). During

this preclinical phase, the number of microscopical lesions increases and, at a

certain threshold, the first symptoms appear and gradually worsen (Blennow

et al., 2006; Nestor et al., 2004). In the last stages of the dementia, AD

patients are utterly dependent on their caregivers and cannot perform almost

any task without assistance (Jeong, 2004; National Institute on Aging, 2008).

At the microscopic level, the hallmark lesions of AD are senile plaques

(also known as neuritic plaques) and neurofibrillary tangles (Mattson, 2004).

Additionally, the neurons and synapses degenerate (Blennow et al., 2006).
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This process produces the characteristic cognitive deficit in AD. There is in-

creasing consensus that the production and accumulation of Amyloid β pep-

tide (Aβ ) is central to the pathogenesis of this dementia (Cummings, 2004;

Masters et al., 2006). The generation and deposition of Aβ has been related

to the formation of neurofibrillary tangles, oxidation and lipid peroxidation,

glutamatergic excitotoxicity, inflammation and cell death (Cummings, 2004).

A definite diagnosis of AD can only be made by necropsy (the microscop-

ical analysis of the patient’s brain tissue after death; Blennow et al., 2006).

In clinical practice, AD must be differentiated from other pathologies though.

In fact, the criteria for detection of probable AD largely depend on the ex-

clusion of other dementias. The AD diagnosis is usually based on the criteria

developed by the National Institute of Neurological and Communicative Dis-

orders and Stroke – Alzheimer’s Disease and Related Disorders Association

(NINCDS-ADRDA) according to which the diagnosis is classified as definite,

probable or possible (McKhann et al., 1984).

Nevertheless, the accuracy in the clinical diagnosis is limited. Even in

patients who have been followed up clinically for several years at expert

research centres, the diagnostic accuracy is relatively low, with sensitivity of

around 80% and specificity of 70% (Blennow et al., 2006). Some authors even

suggested lower typical sensitivity and specificity values for the diagnosis of

probable AD (Cummings, 2004) and that these sensitivity and specificity

figures may be significantly lower in primary care settings and in patients

with mild AD (Blennow et al., 2006; Knopman et al., 2001).

The medical history together with the clinical, neurological, and psychi-

atric examination serves as the basis in the diagnostic work-up. Laboratory

studies are necessary to identify secondary causes of dementia and coexisting

disorders that are common in elderly people (Blennow et al., 2006; Cum-

mings, 2004). Neuroimaging, including Computerised Axial Tomography

(CAT) and Magnetic Resonance Imaging (MRI), is useful to exclude alter-

native causes of dementia (Cummings, 2004; Knopman et al., 2001). Addi-

tionally, tests are used to screen for cognitive impairment (Folstein et al.,

1975). Moreover, new biomarkers would be of great value as diagnostic tools

for the clinical diagnosis of AD (Blennow et al., 2006).
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1.4 Blind Source Separation

The application of Blind Source Separation (BSS) in the field of biomedical

signal processing has become popular in the last years (James and Hesse,

2005; Onton et al., 2006; Vigário and Oja, 2008). These techniques are

helpful to separate multi-channel biomedical recordings into their constituent

underlying components (James and Hesse, 2005; Vigário and Oja, 2008).

Their use in biomedical signal processing frequently involves the separation

or extraction of statistically independent sources underlying the multivariate

recorded biomedical signals (James and Hesse, 2005; Vigário and Oja, 2008).

As it was describe in Section 1.1, biomedical signal processing deals with

the recording and mathematical processing of informative signals derived

from living systems (Onaral, 2006). Although biomedical signals may origi-

nate from a wide variety of sources, we focus now on electromagnetic measure-

ments. Most often, the recorded signals are at least temporally or spatially

correlated. Additionally, the informative components of the signal may be

contaminated with noise and artefacts making them difficult to observe by

the naked eye (Laguna and Sörnmo, 2009). That is, the recorded data contain

measurements of a finite set of separate but overlapping in space and time

activities. As a result, the Signal-to-Noise Ratio (SNR) of the interesting

signal is generally poor (James and Hesse, 2005). While the clinicians may

be able to visually extract the useful information from the signals, it would

be extremely helpful to automate the analysis and isolate the constituent

inner components of interest in the signals (James and Hesse, 2005).

BSS denotes a set of data-driven approaches that aim at extracting a set

of underlying sources or components from a number of measurements or ran-

dom variables. Very frequently, the term Independent Component Analysis

(ICA) is also used to refer to the BSS techniques that are strictly based on

Higher-Order Statistics (HOS) and attempt to minimise the statistical de-

pendence of the data (Vigário and Oja, 2008). The BSS techniques define

a generative model for the observed measurements and try to estimate the

inner components from a large set of observed multivariate recordings (James

and Hesse, 2005).



12 Chapter 1. Introduction

A few strong general assumptions must be made about the data at hand

before applying the BSS algorithms and proceeding to properly interpret

the results (James and Hesse, 2005). The most important hypothesis is the

assumption that the sources are mutually independent or, alternatively, that

they are mutually decorrelated at any time delay (James and Hesse, 2005;

Onton et al., 2006). BSS extracts the sources, or components, by exploiting

their independence or spatio-temporal decorrelation (Cichocki and Amari,

2002; Hyvärinen et al., 2001).

BSS is, indeed, a more powerful technique than classical decomposition

methods such as Principal Component Analysis (PCA) and Factor Analysis

(FA) (James and Hesse, 2005). For instance, the aim of PCA is to find

temporally orthogonal directions that each successively explain as much of

the remaining data variance as possible, where BSS tries to find directions in

the joint data whose activities are as distinct from one another as possible.

For this reason, PCA will lump whilst BSS will split the source activities

across the resultant signal components (Onton et al., 2006).

The most well-known BSS algorithms were developed about 10 to 15

years ago (Cichocki and Amari, 2002; Hyvärinen et al., 2001). Soon after

their development, these techniques were applied to diverse fields, includ-

ing the study of cardiac and neurophysiologic recordings (James and Hesse,

2005). One of the most fruitful applications of BSS algorithms is the artefact

rejection in EEG and MEG recordings. This is based on the hypothesis that

the artefacts are independent from the brain activity (James and Hesse, 2005;

Onton et al., 2006). Thus, the artefactual activity can be isolated into a few

BSS components (Barbati et al., 2004; Cichocki and Amari, 2002; Delorme

et al., 2007; Escudero et al., 2007b; Ting et al., 2006; Vorobyov and Cichocki,

2002). Nonetheless, this is not the only application of BSS to brain activity.

These techniques have also been used to extract specific brain activity (Hung

et al., 2007; Jin et al., 2002; Kobayashi et al., 1999). Despite these and other

successful applications, it must be noticed that certain ambiguities exist in

the BSS model and that the results must be interpreted carefully (James and

Hesse, 2005).
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1.5 Hypothesis

The different studies performed in this Doctoral Thesis are based on the cor-

responding hypotheses, which are introduced and discussed in the following

lines.

1. Firstly, although the MEG measures the synchronous oscillations of the

cortex directly and non-invasively, some problems arise when analysing

these recordings (Hari, 2004). BSS algorithms are useful tools to over-

come these some of these difficulties (Hyvärinen et al., 2001; James and

Hesse, 2005; Onton et al., 2006). These techniques are able to decom-

pose the observations assuming the mutual independence of the sources

(James and Hesse, 2005; Onton et al., 2006; Vigário and Oja, 2008).

Therefore, they have been widely applied to brain signals in various

applications (James and Hesse, 2005; Onton et al., 2006; Vigário and

Oja, 2008).

However, not all BSS algorithms are based on the same principles. On

the one hand, this wide variety of techniques provides the researchers

with very diverse approaches to perform the signal decomposition. On

the other, it may make difficult to a priori select the most appropriate

algorithm for a particular application (Fitzgibbon et al., 2007; Zavala

Fernández et al., 2006).

A few studies have compared some BSS algorithms (see Klemm et al.,

2009, and references therein). However, most of these analyses were

based on artificially created signals. As a consequence, a detailed study

on the similarity of the decompositions for real brain recordings com-

puted with different algorithms is lacking (Onton et al., 2006). Thus,

it can be hypothesised that the comparison of the outcomes provided

by diverse BSS algorithms applied to the same real MEG signals can

yield important information to further understand the relationships

and similarities between BSS techniques.

2. Secondly, the MEG captures the neural activity with high temporal

and spatial resolution by measuring the brain magnetic fields. This
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technique is not invasive, it does not depend on any reference point and

the recordings are less distorted than the EEG by the extra-cerebral

tissues (Hämäläinen et al., 1993; Hari, 2004). However, non-cerebral

sources (i.e., artefacts) always appear mixed with the desired brain

signals in the MEG recordings (Hämäläinen et al., 1993; Hari, 2004).

The artefacts can bias the analyses, since their power may be larger

than that of the brain sources (James and Hesse, 2005). For instance,

the CA is very noticeable in MEG data (Jousmäki and Hari, 1996). OAs

can also be visible in these signals (Antervo et al., 1985). Additionally,

MEG data may have strong PLN contamination (Hari, 2004). Several

methods have been used to remove these artefacts from MEG data,

including: epoch rejection, spectral filtering, regression techniques and

PCA. However, all these methods pose important problems (Jung et al.,

2000).

An alternative is BSS, which has been used recently in the artefact re-

jection problem (Escudero et al., 2007b; James and Hesse, 2005; Vigário

and Oja, 2008). Furthermore, the assumptions made about the data by

BSS seem to be suitable for MEG recordings (James and Hesse, 2005;

Onton et al., 2006; Vigário and Oja, 2008). Thus, it can be hypothe-

sised that the application of BSS, together with some specific features

designed to detect artefacts, can help to reduce the CA, OA and PLN

in MEG background activity.

3. Thirdly, AD produces progressive and irreversible impairment of men-

tal functions (Blennow et al., 2006; Cummings, 2004). This dementia

is characterised by neural loss. Moreover, neuritic plaques and neu-

rofibrillary tangles also appear in the patient’s brain (Blennow et al.,

2006; Mattson, 2004). The only definitive method for AD diagnosis

is the direct pathological examination of brain tissue (Blennow et al.,

2006). Nevertheless, a probable diagnosis based on neuroimaging, med-

ical history studies and several mental tests is attempted (Blennow

et al., 2006; Cummings, 2004).

Due to its relevance and difficult diagnosis, the utility of the EEG and
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MEG brain activity in the detection of AD has been widely researched

in the last decades (Hornero et al., 2009b; Jeong, 2004; Stam, 2005,

2010). Nevertheless, there is room for further improvement (Cichocki

et al., 2005; Henderson et al., 2006). A technique that may improve

the subject classification based on features extracted from MEG data

is BSS (Cichocki et al., 2005; Escudero et al., 2008d, 2009b).

Considering the intrinsic complexity of the brain recordings, some BSS

components may have certain features that could make them more sen-

sitive to particular brain states, such as AD (Cichocki et al., 2005; Escu-

dero et al., 2008d, 2009b). Hence, the most relevant components may be

selected and the brain recordings may be partially reconstructed using

only these components (Cichocki et al., 2005; Escudero et al., 2008d,

2009b). Thus, it can be hypothesised that a preprocessing based on

BSS may help to differentiate AD patients’ MEG background activity

from that of control subjects when features such as Median Frequency

(MF), Spectral Entropy (SpecEn), Lempel-Ziv Complexity (LZC) and

Sample Entropy (SampEn) are used in the analysis.

4. Finally, it is important to note that AD not only modifies the sig-

nal spectrum and the non-linear properties of EEG and MEG signals

(Hornero et al., 2009b; Jeong, 2004; Stam, 2005), but also is charac-

terised by a ‘disconnection syndrome’ (Delbeuck et al., 2003; Jeong,

2004). Although several connectivity measures exist (Pereda et al.,

2005), one of the most commonly applied measures is coherence, which

quantifies the correlation between two signals as a function of frequency

(Jeong, 2004). It has been found that AD patients show decreased co-

herence levels in α and β bands (Jeong, 2004).

Nevertheless, the domain where the brain recordings are analysed may

be, at least, as important as the actual connectivity measure applied

to the data. In addition to study the channels of the EEG and MEG

recordings, the equivalent current dipoles can be analysed (Rossini

et al., 2007). However, other approaches are possible. For example,

the activity of interest within a particular spectral band located on a
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particular scalp region may be extracted with Constrained Blind Source

Separation (cBSS) techniques (James and Hesse, 2005).

In order to provide a suitable reference for the extraction, the Intrinsic

Mode Functions (IMFs) derived from the Empirical Mode Decompo-

sition (EMD) could be considered (Huang et al., 1998). The EMD

decomposes complex signals into a reduced number of IMFs. Further-

more, this decomposition method is adaptive and, therefore, highly

efficient (Huang et al., 1998). Thus, it can be hypothesised that the

IMFs derived from a EMD can be suitable references to extract rhyth-

mic activity from AD patients and healthy elderly subjects’ MEGs with

a cBSS. It can also be hypothesised that this extracted activity can be

characterised by connectivity techniques.

1.6 Aims of the Doctoral Thesis

The MEG is the non-invasive technique that records the tiny magnetic fields

produced by the brain neural activity. Moreover, it does not require the inter-

pretation of the brain activity on the basis of vascular or metabolic changes

(Hari, 2004). This recording is closely related to the EEG since both tech-

niques acquire the electromagnetic activity generated by the same primary

currents in the brain (Hari, 2004). The EEG and MEG are complementary to

study the brain activity. However, the MEG recording has some important

advantages over the EEG. For example, it does not depend on any reference

point and it is less affected by extra-cerebral tissues (Hämäläinen et al., 1993;

Hari, 2004; Hari et al., 2000).

AD is a slowly progressive and fatal neurodegenerative disorder. It is

characterised by memory loss and cognitive and behavioural symptoms that

progressively impair the activities of daily living (Blennow et al., 2006; Cum-

mings, 2004; Lahiri et al., 2002). In the last stages of the dementia, the

patients are utterly dependent on their caregivers and cannot perform al-

most any task without assistance (Jeong, 2004). AD is the most common

type of dementia in the Western World (Blennow et al., 2006). Moreover, a
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definite diagnosis of AD can only be made by necropsy and the accuracy in

the clinical diagnosis is limited (Blennow et al., 2006). Hence, it is impor-

tant to improve the diagnostic testing for this dementia. The development

of methods able to help in the the diagnosis may likely improve the care of

patients and allow more accurately targeted future therapies (Lahiri et al.,

2002).

The processing of MEG recordings may be helpful in the detection of AD

(Hornero et al., 2009b; Stam, 2005, 2010). However, some difficulties are

encountered in the analysis of these signals. BSS techniques may be very

useful tools to solve these problems (James and Hesse, 2005; Vigário and

Oja, 2008). For instance, BSS could remove the artefact that contaminate

brain recordings (Escudero et al., 2006c,d, 2007b, 2008c). These methods

could also be applied as a preprocessing step to increase the accuracy in the

classification of AD patients versus healthy elderly subjects (Escudero et al.,

2006e, 2007c,d, 2008d, 2009b,c). Nevertheless, there is a wide variety of BSS

techniques and it may be difficult to select a priori the most appropriate

technique for a particular analysis. Hence, it is important to compare their

outcomes when applied to the same real data (Escudero et al., 2009d). Fi-

nally, it can be expected that the extraction of rhythmic activity by means

of cBSS techniques (Huang and Mi, 2007; Lu and Rajapakse, 2005) could

offer relevant information for the connectivity analysis of the brain in this

dementia.

Therefore, the main objective of this Doctoral Thesis is to apply BSS

techniques to help in the analysis and interpretation of MEG back-

ground activity from AD patients and elderly control subjects. The

basic assumption beneath this Doctoral Thesis is that some characteristics

of the MEG signals may be more easily identified using the underlying com-

ponents than in the actual recorded MEG channels. For example, the arte-

factual activity that contaminates the MEG channels and is overlapped in

frequency with the brain signals may be isolated into single components by

BSS. Similarly, some specific features of AD may be enhanced when a BSS

preprocessing is applied to the MEG signals or when specific brain rhythms

are extracted with BSS. In order to achieve these major objectives, the fol-
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lowing partial objectives must be fulfilled:

1. To create a database containing MEG background activity recordings

from AD patients and healthy elderly subjects.

2. To research into the state of the art of BSS techniques.

3. To select signal processing techniques suitable to decompose biomedical

signals and, particularly, MEG background activity.

4. To process the MEG recordings with the selected BSS methods to:

• Compare the outcome of several BSS algorithms when applied to

real MEG background signals.

• Automatically and objectively assess the removal of the CA, OAs

and PLN that contaminate the magnetic brain activity.

• Improve the discrimination between features extracted from con-

trol subjects and AD patients’ MEG background activity record-

ings.

• Extract rhythmic activity from the MEG recordings over diverse

scalp regions to study the coherence between them.

5. To study using appropriate statistical tools and objective measure-

ments:

• The similarity between the decomposition provided by diverse BSS

techniques.

• The performance of the artefact removal in MEG recordings.

• The improvement in the discrimination of AD patients and control

subjects.

• The differences in the spectral coherence patterns of both subject

groups.

6. To publish the results of this Doctoral Thesis, if possible, in interna-

tional scientific journals with high impact factors indexed in the Science

Citation Index – Journal Citation Reports R© (SCI–JCR).
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1.7 Schedule of Activities

In order to achieve the objectives pursued in this Doctoral Thesis, the fol-

lowing schedule of activities is defined:

1. Selection of patients with probable AD and healthy elderly

control subjects. The AD patients came from the “Asociación de

Familiares Enfermos de Alzheimer” (Madrid) while the control sub-

jects were voluntary recruited to participate in this research among

the elderly subjects attending the “Unidad de Geriatŕıa del Hospital

Cĺınico Universitario San Carlos” (Madrid). The subject groups were

carefully matched for age in order to minimise the influence of this

parameter in the analyses.

2. Recording of MEG signals from AD patients and control sub-

jects. Recordings are acquired with a 148-channels whole-head mag-

netometer (MAGNES 2500 WH de 4D Neuroimaging) placed in a

magnetically shielded room of the “Centro de Magnetoencefalograf́ıa

Dr. Pérez-Modrego” at Complutense University of Madrid. The signals

are recorded while the subjects were lying on a patient bed, with eyes

closed and in a relaxed state. Moreover, the participants were asked

to avoid movements to minimise the number of artefacts. For each

subject, five minutes of MEG background activity were recorded at a

sampling rate of 678.17 Hz using a hardware filter with cut-off frequen-

cies at 0.1 Hz and 200 Hz. Afterwards, data were down-sampled by a

factor of four, resulting in an effective sampling frequency of 169.54 Hz.

3. Development of a database with the MEG signals. All MEG

recordings, together with sociodemographic data (age and sex) and

neuropsychological tests — Global Deterioration Scale / Functional

Assessment Staging (GDA/FAST) and Mini-Mental State Examination

(MMSE) — were stored in a database.

4. Bibliographic research about methodologies based on BSS.

The aim is to compare the outcome of diverse BSS algorithms, remove
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artefactual contamination of MEG signals, improve the classification of

AD patients and healthy elderly subjects and extract rhythmic activity

from MEG signals. It must be borne in mind that the algorithms will

be applied to noisy biomedical signals composed of a large number of

channels, such as the MEG recordings. Diverse techniques and analysis

methods will be applied and compared at each stage in order to provide

a comprehensive perspective of the analyses and their performance.

5. Selection of the most suitable approaches on the basis of the

previous bibliographic research to assess their utility in the com-

parison of algorithms, artefact removal, classification of demented pa-

tients and study of connectivity in MEG signals.

6. Processing of the MEG background activity recordings from

healthy elderly control subjects and patients with probable AD with the

selected methods. It is expected that the application of BSS techniques

will allow to:

• Provide a comparison based on real brain signals of the similarity

between the decompositions of diverse BSS algorithms.

• Remove or minimise the amount of CA, OAs and PLN contami-

nating the MEG activity.

• Improve the classification between signal features extracted from

AD patients and control subjects’ MEG signals.

• Extract rhythmic activity with useful information about the co-

herence of diverse scalp regions from the MEG signals1.

7. Statistical analysis of the performance provided by the meth-

ods included in this Doctoral Thesis. The main tools applied in this

step will be ANalysis Of VAriance (ANOVA), Receiver Operating Char-

acteristic (ROC) curves, box-plots and Linear Discriminant Analysis

(LDA).

1This study about the adaptive extraction of brain rhythms with EMD and cBSS and
their connectivity was carried out during the PhD candidate’s research stay at Cardiff
University from 15 July 2009 to 31 October 2009 under the supervision of Dr. Sanei.
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8. Drawing of conclusions from the obtained results and comparison

with previously published research.

9. Publication of the results derived from these studies in national

and international conferences and in international journals with high

impact factor indexed in the SCI–JCR.

1.8 Structure of this Dissertation

Once the context of this Doctoral Thesis, the hypotheses beneath it and its

main aims have been introduced, the structure of the rest of this dissertation

is outlined. It comprises eight more chapters and three appendices. Their

contents, in addition to the present Chapter 1, is described in the following

lines:

• Chapter 2: Magnetoencephalography. The second Chapter begins ex-

plaining the basic principles beneath the generation of the brain mag-

netic field. Then, the particular details of the MEG recording equip-

ment are explained and justified. Additionally, the nature of the main

artefacts contaminating this kind of signals and its effects are presented.

This Chapter finishes by comparing the MEG with other commonly

used neuroimaging techniques.

• Chapter 3: Alzheimer’s Disease. This part of the dissertation sum-

marises the concepts associated with AD. First of all, the social impor-

tance of this dementia is highlighted. Then, the main characteristics

of AD are presented. This includes information about its evolution,

pathophysiology, risk factors and diagnostic techniques. Finally, cur-

rent and possible future treatments for AD are discussed.

• Chapter 4: Blind Source Separation. The fundamentals of the BSS

are detailed in this Chapter. After an introduction about this topic,

the classical projection techniques of PCA and FA are described for

the sake of comparison with BSS. Afterwards, the principles of this

framework are explained, considering both the Second-Order Statistics
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(SOS)- and HOS-based approaches, as well as the cBSS. Next, the

relationships and similarities among algorithms are briefly reviewed.

Finally, the state of the art relevant to the applications considered in

this Doctoral Thesis is detailed.

• Chapter 5: MEG Recordings. This Chapter describes the sociodemo-

graphic data of the 36 AD patients and 26 healthy elderly subjects

included in this study and the diagnosis criteria. Additionally, the

MEG recording process and basic preprocessing is explained.

• Chapter 6: Methods. Account of the methods and techniques applied in

this Doctoral Thesis is given in this Chapter. It starts providing details

about the preprocessing and dimension reduction techniques applied to

the MEG data when needed. Additionally, the selection of the input

parameters employed in the BSS algorithms is justified. Afterwards,

the methodology used to compare the outcomes of the BSS is described.

Finally, the metrics, features and signal processing techniques used in

the other applications and analyses carried out in this Doctoral Thesis

are explained.

• Chapter 7: Results. This Chapter presents the most relevant results

obtained from the studies and methodology described in the previous

Chapter.

• Chapter 8: Discussion. On the basis of the previously reported results,

this Chapter discussed the main finding of this Doctoral Thesis consid-

ering the state of the art in the application of BSS techniques to MEG

recordings and AD. It also acknowledges the main limitations of the

studies carried out in this Doctoral Thesis

• Chapter 9: Conclusions and Future Research Lines. In this final Chap-

ter, the main conclusions of this Doctoral Thesis are drawn. Addition-

ally, the main contributions of this Thesis to the state of the art are

pointed out and future research lines are suggested.
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• Appendix A: Publications. This Appendix details the publications in

journals, books and conferences in which the PhD candidate has col-

laborated thanks to his work in this Doctoral Thesis.

• Appendix B: Resúmenes en Español. This Appendix contains a sum-

mary, written in Spanish, of the first eight chapters of this dissertation.

• Appendix C: Conclusiones en Español. This Appendix is a translation

into Spanish of the Chapter 9: Conclusions and Future Research Lines.
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This Chapter starts with a historical introduction about MEG. Then,

the fundamentals of the brain magnetic fields generation are described. Ad-

ditionally, the basic techniques supporting the recording of this signal are

explained and the nature of the main artefacts contaminating the recordings

is pinpointed. Finally, a comparison between MEG and other neuroimaging

techniques is offered.

2.1 Introduction

The MEG is the non-invasive recording of the tiny magnetic fields gener-

ated by the brain neural activity. In addition to the EEG, it is the only

neurophysiologic technique able to directly measure the activity of the brain

cortex, without having to interpret the information on the basis of vascular

or metabolic changes (Hari, 2004).

The recording of MEG signals is relatively new. Whereas the first EEG

signal was acquired 80 years ago (Sanei and Chambers, 2007), the first mea-

surement of MEG activity dates from just 1968 (Cohen, 1968). It consisted

of α-related activity recorded using a one-million-turn coil (Cohen, 1968). In

fact, this measurement was carried out before any kind of superconductive

sensor was available, thus resulting in poor-quality signals. However, super-

conductive sensors were soon available (Zimmerman et al., 1970) and the

quality of the following MEG recordings was significantly improved (Cohen,

1972).

The first MEG measurements were performed with a one-channel system.

Hence, the equipment had to be moved to measure activity over different

parts of the scalp. Eventually, novel instrumentation equipped with gra-

diometers was launched. These systems were able to simultaneously record

the activity of one brain hemisphere with several channels (Hämäläinen et al.,

1993). Current MEG systems contain hundreds of channels in a helmet-

shaped array and they can operate while the subject is either seated or

supine (Stam, 2010; Vrba and Robinson, 2001). Moreover, MEG is now

being accepted in routine clinical practice throughout the world since it can

be useful in pre-surgical mapping of epilepsy and patients with brain tu-
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mours. Additionally, MEG can also help to reveal how the brain processes

information (Stufflebeam et al., 2009).

2.2 Generation of the Brain Magnetic Fields

MEG signals are recorded on the surface of the scalp. Although they reflect

the currents generated in the functioning part of the brain, most of the signal

comes from the cerebral cortex. This part of the brain contains well-aligned

pyramidal cells, which consist of dendrites, the cell body and an axon. A set

of axons composes the nerve fibres which interconnect diverse regions of the

brain. The information is transmitted from the dendrites to the cell body

through the synapses. Of note is that there are approximately 105 to 106

cells in an area of 10 mm2 of cortex. In the whole brain, there are approx-

imately 1011 cells and about 1014 synaptic connections (National Institute

on Aging, 2008; Vrba and Robinson, 2001). The number of synapses per

neuron increases with age, whereas the number of neurons decreases (Sanei

and Chambers, 2007).

2.2.1 Nervous System

The nervous system is a complex network that communicates diverse nervous

tissues whose function is to transmit information in order to control the

bodily activities and functions. It enables the body to detect and react to

changes in the environment and to interpret the resulting nervous impulses.

Attending to anatomical and physiological criteria, the nervous system can

be divided into two systems (Carr and Brown, 2001; National Institute on

Aging, 2008):

• Central Nervous System (CNS). It is the largest part of the nervous

system. It is contained in the skull and spinal cavity, which protect the

brain and the spinal cord, respectively.

• Peripheral Nervous System (PNS). It is composed of the nervous tissue

that extend from or arrive at the skull and spinal cavity. The PNS
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Figure 2.1: View of the brain showing some of its main parts. Adapted from
(National Institute on Aging, 2008).

extends through the limbs and the flesh of the torso. It can be divided

into:

– Somatic nervous system: responsible for coordinating voluntary

body movements.

– Autonomic nervous system: responsible for coordinating involun-

tary functions.

2.2.2 Brain

The brain is the largest part of the CNS. As shown in Fig. 2.1, it is composed

of several structures, which will be introduced in the following lines.

• The brain stem sits at the base of the brain. It connects the spinal cord

with the rest of the brain, transmitting the nervous impulses between
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them (National Institute on Aging, 2008). It controls involuntary func-

tions such as respiration, heart regulation, biorhythms, hormone secre-

tions and the sleep cycle (National Institute on Aging, 2008; Sanei and

Chambers, 2007).

• The cerebellum lays above the brain stem (National Institute on Aging,

2008). It coordinates voluntary movements of muscles and maintains

balance (Sanei and Chambers, 2007). The cerebellum receives informa-

tion about the body’s movements and position to process it and send

instructions to the body through the rest of the CNS. It is also involved

in motor learning (National Institute on Aging, 2008).

• The cerebrum is the most evolved part of the brain. It is divided

into two cerebral hemispheres connected by nerves at the corpus cal-

losum (National Institute on Aging, 2008). The cerebrum includes

the regions for movement initiation, conscious awareness of sensation,

complex analysis and expression of emotions and behaviour (Sanei and

Chambers, 2007). The outer layer of the hemispheres is the cortex,

which plays a key role in memory, attention, thought, language and

other cognitive functions (National Institute on Aging, 2008). Attend-

ing at the most prominent fissures of the cortex, each hemisphere can

be divided into four lobes, each of which has different roles (National

Institute on Aging, 2008):

– The frontal lobe, which lays at the front of the brain, controls

executive functions like thinking, planning, and problem solving,

as well as memory, attention and movement.

– The parietal lobe, which sits behind the frontal lobe, deals with

the perception and integration of stimuli from the senses.

– The temporal lobe, which runs along the side of the brain under

the frontal and parietal lobes, deals with the senses of smell, taste

and sound and the formation and storage of memories.

– The occipital lobe, which is at the back of the brain, is concerned

with vision.
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Other important parts of the brain lie deep inside the cerebral hemi-

spheres forming a network of structures called the limbic system, which con-

nects the brain stem with the cognitive elements of the cerebral cortex. The

limbic system plays a key role in developing and carrying out instinctive be-

haviours and emotions. The limbic system includes (National Institute on

Aging, 2008):

• The amygdala, involved in processing and remembering strong emo-

tions such as fear.

• The hippocampus, which is important for learning and short-term

memory as it is hypothesised that this part of the brain converts short-

term into long-term memories for storage in other brain areas.

• The thalamus, which receives and processes sensory and limbic infor-

mation to send it to the cerebral cortex.

• The hypothalamus, which monitors activities such as body temperature

and food intake and controls the body’s internal clock.

After briefly explaining the basic structure of the most important parts

of the CNS, Section 2.2.3 will provide information about its basic unit, the

neuron, and the electrical activity associated with it.

2.2.3 Neurons and Neural Activity

Generally speaking, the CNS is composed of glial and nerve cells (Sanei and

Chambers, 2007). The glial cells are located between neurons, holding them

in place and supporting them with nutrients. They also remove damaged

cells and other debris and provide insulation to the neurons. However, the

transmission and processing of the information in the nervous system is only

carried out by the neurons (National Institute on Aging, 2008).

Typically, each neuron consists of axon, cell body (or soma) and den-

drites (National Institute on Aging, 2008):

• The neuron’s cell body has a single nucleus and contains most of the

cell metabolism.
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• The dendrites are branched projections of the cell body that transmits

the stimulation between other neurons cells and the soma (National

Institute on Aging, 2008). The dendrites are connected to either the

axon or dendrites of other cells. In the human brain, each nerve is con-

nected to approximately 10000 other neurons, mostly through dendritic

connections (Sanei and Chambers, 2007).

• The axon is a long cylinder, which transmits an electrical impulse. Its

length may vary from a fraction of a millimetre to more than a metre

(Sanei and Chambers, 2007). Axons are covered with an insulating

layer called myelin, which is produced by glial cells. Myelin is essential

to the proper functioning of the nervous system as it increases the speed

of nerve signal transmissions through the axon (National Institute on

Aging, 2008).

Of note is that the activity recorded in the EEG and MEG is the ul-

timate result of the transmission of the nerve impulse or action potential.

Action potentials are temporary changes in the neuron membrane potential

which are transmitted along the axon. They are produced as a result of

an exchange of ions across the neuron membrane and the stimulus for their

creation is the chemical activity of neurotransmitters at the synapses. The

conduction velocity of action potentials ranges from 1 m/s to 100 m/s (Sanei

and Chambers, 2007).

A schematic of an action potential is shown in Fig. 2.2. After the peak

of the previous nerve impulse, the membrane repolarises. That is, it be-

comes more negative than the resting potential. After approximately two

milliseconds, the potential returns to normal and another stimulus may be

presented (Sanei and Chambers, 2007). This is called refractory period.

Then, in the presence of a stimulus from an excitatory synapse, an Exci-

tatory Post-Synaptic Potential (EPSP) occurs and the membrane potential

may depolarise (become more positive), producing a spike (Sanei and Cham-

bers, 2007).

It must be noted that the stimulus must be above a certain threshold

level to produce an action potential. Weak stimuli can cause a small local
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Figure 2.2: Example of action potential in a neuron.

electrical disturbance, but this does not produce a transmitted impulse. As

soon as the stimulus strength is big enough, an action potential appears and

travels down the nerve. On the contrary, if the fibre ends in an inhibitory

synapse, hyperpolarisation will occur, indicating an Inhibitory Post-Synaptic

Potential (IPSP). The action potentials of most nerves last between 5 and

10 milliseconds (Sanei and Chambers, 2007).

Changes in the membrane permeability produce the opening or closing

of ionic channels in the cell membrane. This alters its resting state, where

the membrane potential is about −80 mV. This potential is supported by

a non-uniform distribution of ions sodium (Na+) and chlorine (Cl−) outside

the neuron and ions potassium (K+) and certain proteins inside it (Carr

and Brown, 2001). The Na pump produces gradients of the ions Na+ and

K+. These ions are used in the mechanism that creates the action potential.

Neurons have special Na+ and K+ voltage-gated channels. When the ionic

Na+ channel opens, the positively charged Na+ ions rush into the cell. This

makes the membrane potential positive (depolarisation), producing the spike

(Sanei and Chambers, 2007). As a consequence, the polarity reverses and this

provokes the opening of the K+ channel. Then, the ions K+ move out of the

cell in order to equalise the concentration of charges and reach again the
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resting state. However, as these K+ channels are much slower to open, the

depolarisation has time to be completed (Sanei and Chambers, 2007).

The repolarisation typically overshoots the resting potential. This hy-

perpolarisation is important in the transmission of the information as raises

the neural threshold for any new stimulus and prevents any stimulus already

sent up an axon from triggering an impulse in the opposite direction (Sanei

and Chambers, 2007). This is the reason why the pulse propagates in only

one direction: from the dendrites to the end of the axon. There, the neuro-

transmitters are segregated which cause the opening of the ionic channels in

the post-synaptic cell after moving across a tiny gap (or synapse) to specific

receptors on the receiving, or post-synaptic, end of dendrites of nearby neu-

rons (National Institute on Aging, 2008). This stimulus produces another

action potential in the next neuron (Carr and Brown, 2001).

2.2.4 Electromagnetic Brain Signals and Rhythms

When neurons are activated, the synaptic currents are produced within the

dendrites and propagated through the soma and axon. This current generates

a magnetic field measurable by MEG equipment and a secondary electrical

field over the scalp measurable by EEG equipment. These fields usually

lie below 100 Hz (Sanei and Chambers, 2007). However, only when large

populations of active neurons are simultaneously active, a sufficiently large

signal is generated to be recorded on the scalp (Sanei and Chambers, 2007).

The cortex can generate electromagnetic activity spontaneously. This ac-

tivity is composed of superimposed rhythms. It must be noticed that, the

higher the synchronisation of nearby neurons, the larger the amplitude and

lower the frequency of the resulting activity. In healthy adults, the ampli-

tudes and frequencies of such signals change from one state of a human to

another, such as wakefulness or sleep (Sanei and Chambers, 2007). The char-

acteristics of the waves also change with age. Usually, five major brain waves

are distinguished by their frequency range in the brain activity: δ (0.5 Hz –

4 Hz), θ (4 Hz – 8 Hz), α (8 Hz – 13 Hz), β (13 Hz – 30 Hz) and γ (over

30 Hz) (Sanei and Chambers, 2007).
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The δ activity ranges from about 0.5 Hz to 4 Hz. It is mainly associated

with deep sleep but it may also be present in the waking state. Sometimes,

this activity may be confused with artefact signals caused by large muscles

of the neck and jaw (Sanei and Chambers, 2007).

The θ waves lie within the range of 4 Hz to 8 Hz. They have been

linked with access to unconscious material, creative inspiration and deep

meditation. The θ wave is often accompanied by other frequencies and seems

to be related to the level of arousal. It plays an important role in infancy

and childhood. Large amounts of θ activity in the waking adult are abnormal

and it may indicate pathological problems (Sanei and Chambers, 2007). It is

also remarkable that changes in the θ rhythms are analysed for maturational

and emotional studies (Sanei and Chambers, 2007).

The α waves appear in the posterior half of the head. Moreover, they

are dominant over the occipital region of the brain. Their frequency lies

within the range of 8 Hz to 13 Hz. These waves usually appear as a round or

sinusoidal shaped signal (Sanei and Chambers, 2007). This rhythm has been

related to both a relaxed awareness without any attention and concentration.

Most subjects produce α waves with their eyes closed. For this reason, it has

been argued that it actually is a waiting or scanning pattern produced by

the visual regions of the brain. α activity is greatly reduced by opening the

eyes, hearing unfamiliar sounds, anxiety or attention (Sanei and Chambers,

2007).

The β rhythm denotes the brain electromagnetic activity varying between

13 Hz and 30 Hz. It is the usual waking rhythm of the brain associated with

active thinking, active attention or solving problems (Sanei and Chambers,

2007). β activity is found in normal adults, mainly over the frontal and

central regions. It may also be enhanced around tumoural regions (Sanei

and Chambers, 2007).

The γ range corresponds to frequencies over 30 Hz. The amplitude of

this rhythm is very low and its occurrence is rare. However, detection of this

activity can be used for confirmation of certain brain diseases (Sanei and

Chambers, 2007).



2.2. Generation of the Brain Magnetic Fields 35

2.2.5 Biomagnetism

The generation of MEG signals has some close similarities to that of EEG ac-

tivity. The exchange of ions through the cell membrane produces an electric

field with its corresponding magnetic field. Due to the ionic exchange between

the cell and its environment, the equilibrium between diffusion processes and

electrical forces is reached at a negative potentials of about −70 mV within

the cell (Vrba and Robinson, 2001). As previously explained, cell stimula-

tion can alter this potential and produce cell depolarization (or hyperpolar-

ization). Due to the conductivity of the cell, this generates a current flow

within the cell, which is known as impressed or intracellular current, and a

return current outside the cell, called volume or extracellular current (Vrba

and Robinson, 2001).

The extra- and intra-cellular currents flow towards the region with less

electrical resistance. The former flow from the dendrites to the soma, and

then they are radially distributed, which decreases their intensity. On the

other hand, intracellular currents flow from the soma to the dendrites to

close the loop. Hence, their intensity is kept constant. As a consequence,

the intra-cellular currents are considered the ultimate cause of the mag-

netic field acquired with the MEG. This is illustrated in Fig. 2.3, where the

recorded magnetic field is mainly due to the intra-cellular current, whereas

the EEG measures the volume currents and, to a lesser extent, the intra-

cellular ones (Maestú et al., 1999; Rampp and Stefan, 2007; Vrba and Robin-

son, 2001).

It must also be considered that, although the flow of the dendritic current

due to cell depolarization (or hyperpolarization) is approximately perpendic-

ular to the cortex, this is convoluted with multiple sulci and gyri. Hence, the

current flow may be either radial or tangential to the surface depending on

where it occurs, as it is exemplified by Fig. 2.4 (Vrba and Robinson, 2001).

The magnetic field generated by the current flow of a single cell is too

small to be measured outside the brain. Only if, approximately, 105 to 106

cells are simultaneously activated, the field can be detected (Maestú et al.,

1999; Vrba and Robinson, 2001).
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Figure 2.3: Orthogonality between EEG and MEG signals as illustrated by
Vrba and Robinson (2001).

Figure 2.4: Origin of the MEG. (a) Section of the human brain. (b) The
sulci and gyri of the cortex produce either tangential or radial currents. (c)
Tangential currents produce magnetic fields observable outside the head. (d)
Radial currents do not produce magnetic fields outside the head. (e) Mag-
netic fields due to cortical sources will exit and re-enter the scalp. Taken
from (Vrba and Robinson, 2001).

2.3 MEG Recording Systems

When recording the subject’s brain magnetic activity, the position of the

head must be known exactly. In order to do so, an instrument called Head-

Position Indicator (HPI) is used. The HPI provides information about the

exact measurement sites and the orientations of the sensors with respect to

the head. These data are obtained by placing three or more small coils on

known sites on the scalp. Then, the field produced by currents led through

these coils is measured by the MEG equipment. As an alternative, the HPI

may be composed of a transmitter connected to magnetic sensors, which are

fixed on the dewar, and three receivers are placed on the subject’s head. In

either case, the HPI provides information about the position of the MEG
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equipment with respect to the head with 2- to 3-mm accuracy (Hari, 2004).

Once the position of the head is known, the helmet that contains the array

of sensors is placed over the subjects’ scalp while they are typically sitting on

a chair or lying on a patient bed (Hari, 2004). The main sensory organs of the

head remain uncovered by the helmet so that the magnetic brain responses

to certain external stimuli can be acquired in addition to the recording of the

brain background activity. Nevertheless, it is of utter importance to keep the

head immobile during the recording process. Hence, MEG activity cannot

be measured during major motor seizures. Similarly, tasks involving head

movements and long-term monitoring are not feasible. Problems can also

appear in studies with uncooperative subjects who either cannot keep still

during the recording or are unwilling to perform the tasks (Hari, 2004; Hari

et al., 2000).

As it was previously mentioned, the MEG sensors are made of super-

conductive materials — called SQUIDs — based on the Josephson Effect

(Zimmerman et al., 1970). These devices are extremely sensitive to tiny

magnetic fields such as those produced by the neurons. However, their con-

figuration is not best suited for the direct detection of the brain magnetic

fields. Thus, superconductive flux transformers are needed to couple the

brain fields into the SQUIDs sensors, thus increasing the system sensitivity

(Vrba and Robinson, 2001).

The temperature of the sensors must be kept close to the absolute zero

in order to ensure their proper performance. Therefore, these devices are

immersed in liquid helium at −269◦C (Hämäläinen and Hari, 2004; Vrba and

Robinson, 2001). The thermally insulated container (known as dewar) must

be refilled periodically to replace the evaporating helium, approximately once

every week (Hari, 2004). Obviously, the dewar must be electromagnetically

transparent so that the signals can reach the superconductive equipment. Fi-

nally, the signals recorded by the SQUIDs are amplified and processed. The

whole set-up can also include a video-recorder and an intercom for observa-

tion and communication with the subject in the magnetically shielded room

(Vrba and Robinson, 2001). These elements are represented in Fig. 2.5.

In addition to requiring superconductive materials in the MEG sensors,
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Figure 2.5: Block diagram of a MEG system. Adapted from (Sternickel and
Braginski, 2006).

the extremely weak amplitude of the brain magnetic fields needs the appli-

cation of additional procedures to attenuate the noisy signals produced by

extra-cerebral sources that can affect these signals. It should be noticed that

the MEG signals are usually in the fT (10−15 T) range whereas, for example,

the steady magnetic field of the Earth is about 5×10−5 T (Hari et al., 2000),

as it is shown in Fig. 2.6. This poses strong restrictions on the recording

process and makes the MEG non-portable. In addition, the installation and

maintenance of an MEG equipment is costly (Hari, 2004).

2.3.1 SQUIDs and Flux Transformers

The SQUID sensor are at the core of a MEG recording system. They are

essential to provide the high sensitivity to detect the tiny magnetic fields

generated by the brain. The most popular types of SQUIDs are the dc

and the rf SQUIDs. These names come from the methods of their biasing,

which stand for direct current and radio frequency, respectively (Vrba and

Robinson, 2001).

A dc SQUID is a ring of superconductive material interrupted by two

resistively shunted Josephson junctions, which are based on the Josephson

effect (Vrba and Robinson, 2001). This effect relies on the properties that

exhibit two pieces of superconductive material separated by a thin film of
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Figure 2.6: Power of undesired components (external noise and artefacts)
and brain signals as a function of frequency. Adapted from (Hämäläinen and
Hari, 2004).

isolating material. This film acts as a barrier which opposes to the current.

Hence, the ring operates as a resistive component. However, if the current is

small enough, the ring behaves as a superconductive material. Moreover, the

level of this current is modified by magnetic fields. Thus, the SQUIDs are

able to detect changes in the magnetic activity (Maestú et al., 1999; Vrba

and Robinson, 2001).

On the other hand, the rf SQUIDs were popular in the early days of mag-

netometry. This was due to the fact that they only required one Josephson

junction instead of two, like the dc SQUIDs. Nevertheless, rf SQUIDs have

been displaced by dc SQUIDs in modern MEG equipment since the sensibil-

ity of the latter to the magnetic field is 10 times higher (Vrba and Robinson,

2001). Recently, there has been some interest in rf SQUIDs as a result of

research in high temperature superconductivity (Vrba and Robinson, 2001).

Furthermore, flux transformers are necessary to help coupling SQUID

sensors to the measured signals. In this way, the overall magnetic field sen-

sitivity is increased. Flux transformers are superconductive devices made of

one or more pick-up coils exposed to the measured fields and a coupling coil

which inductively couples the flux transformer to the SQUID ring. Thanks

to the fact that the flux transformers are superconductive, they do not add
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noise to the system (Vrba and Robinson, 2001).

The flux transformer pick-up coils may have diverse configurations, in-

cluding radial and tangential magnetometers, and diverse types of gradiome-

ters, which are composed of two magnetometers connected in series but wired

in opposition. This configuration is sensitive only to changes in the magnetic

field across the device dimension. These devices are called first-order gra-

diometers, which can be combined with opposing polarity to form second-

order gradiometers, and so on (Hämäläinen et al., 1993; Vrba and Robinson,

2001).

An important function of flux transformers is to help reduce environmen-

tal noise. For this reason, the most commonly used flux transformers are the

gradiometers instead of magnetometers, since the former help to attenuate

the signals produced by distant noise sources (Vrba and Robinson, 2001).

2.3.2 Cryogenic Container

The MEG sensors and their associated equipment are built with supercon-

ductive materials. Nowadays, the commercial equipment using this type of

devices needs to keep the temperature of these elements close to the absolute

zero. These temperatures can be achieved either with cryocoolers or with a

cryogenic bath in contact with the superconductive components.

Although the cryocoolers may be an attractive solution because they elim-

inate the need for periodic refilling of the cryogenic container (Vrba and

Robinson, 2001), they contribute to electromagnetic interference. Hence,

they are not suitable for MEG systems. Therefore, current commercial sys-

tems rely on cooling the devices by placing them in a bath of liquid He in

a dewar. The dewar itself is a complex device that is composed of several

layers, both thermally insulating and heat-conductive (Vrba and Robinson,

2001).

Due to the fact that the thermal difference between the environment and

the He liquid is about 300◦C, tens of layers are needed to isolate the contain

of the dewar from the room temperature. The cold gases resulting from

the evaporating He transport energy that is captured in the dewar neck and
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Figure 2.7: Cyogenic container as part of a MEG system.

conducted back into the dewar vacuum space to reduce the thermal gradient

between inside and outside the dewar. Current designs are highly efficient

and MEG systems only consume about 10 litres of liquid He per day (Vrba

and Robinson, 2001). A cryogenic container as part of a MEG recording

system is illustrated in Fig 2.7.

2.3.3 Magnetically Shielded Room

The most straightforward and reliable way to reduce the importance of the

external noise is to enclose the MEG equipment in a magnetically shielded

room (Hämäläinen et al., 1993; Vrba and Robinson, 2001). One example

of this kind of room is shown in Fig 2.8. The walls of these rooms are

composed of several sheets of µ-metal (an alloy of nickel and iron with a

high magnetic permeability) and high conductivity aluminium (Sternickel

and Braginski, 2006; Vrba and Robinson, 2001). These rooms are able to

attenuate the external noise by factor of at least 100 at 0.1 Hz and well over

105 for frequencies higher than 100 Hz (Sternickel and Braginski, 2006).
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Figure 2.8: Example of magnetically shielded room.

2.3.4 Removal of the Magnetic Noise

As a consequence of the extremely weak amplitude of the brain magnetic

fields and the different sources of noise and artefacts that can contaminate

the signals (illustrated in Fig. 2.6), diverse procedures are needed to attenuate

this undesirable contamination . There are mainly three types of approaches

to reduce the influence of these noise sources in the MEG signals (Sternickel

and Braginski, 2006; Vrba and Robinson, 2001):

• Electromagnetic shielding. As it was mentioned in Section 2.3.3, the

most straightforward and reliable way of reducing the importance of

external magnetic disturbances is to perform the measurements in mag-

netically shielded rooms (Hämäläinen et al., 1993). As a complement

to the passive magnetic shielding, active shielding can be used to in-

crease the attenuation at low frequencies. Typically, this consists of

reference sensors used to measure the residual noise. Their output is

employed to cancel this noise with opposing fields of large orthogonal

coils via suitable negative feedback circuitry (Hämäläinen and Hari,

2004; Sternickel and Braginski, 2006).
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• Gradiometer systems. As explained in Section 2.3.1, these devices try

to reject the external magnetic disturbances (Hämäläinen and Hari,

2004). For instance, an axial first-order gradiometer consists of a pick-

up (lower) coil and a compensation (upper) coil. They are identical in

area and are connected in series, but wound in opposition. The pick-

up coil is closer to the desired, useful source to be measured (i.e., the

brain) whereas the other is at least 3 cm to 4 cm away. Both sensors

record a measurement composed of the signal of interest plus some

background noise. While the amplitude of signal of interest is much

stronger at the coil close to the source than at the remote one, the

environmental noise can be considered similar at both recording places

(Hämäläinen and Hari, 2004; Hämäläinen et al., 1993). The difference

of both measurements allows to reject the uniform noise by a factor

of 102 to 104, thus resulting into the desired magnetic activity. Hence,

this system of two coils is insensitive to spatially uniform changes in the

background field, but it responses to inhomogeneous changes. However,

noise gradients shall not be subtracted (Sternickel and Braginski, 2006).

• Signal processing methods. A straightforward solution to reduce the

effect of the environmental noise is to apply a hardware or software

band-pass filter. When studying the brain response to external stimuli

or the background activity, low-pass filters with a cut-off frequency

about 40 Hz or 50 Hz can be used (Hämäläinen et al., 1993). However, it

is important to realise that the use of non-adaptive filtering techniques

may distort the signals or lead to information loss. For instance, the

notch filters commonly used to remove the PLN at 50 Hz or 60 Hz

distort the signal (Sternickel and Braginski, 2006).

Another alternative is to compute ensemble averages of the MEG sig-

nals to reduce the uncorrelated noise and improve the SNR. Never-

theless, this procedure can only be applied when recording responses

to stimuli and it is not suitable for background activity (Hämäläinen

et al., 1993; Sternickel and Braginski, 2006). Moreover, it removes the

subtle individual variations that may appear in the individual responses
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(Vigário and Oja, 2008).

In addition to the aforementioned approaches, there are mathematical

and signal processing techniques to decompose the recordings into their

inner components so that the artefactual activity can be isolated and

removed from the rest of the signal. Examples of these methods are the

PCA (Sadasivan and Dutt, 1996), the Wavelet Transform (WT) (Sanei

and Chambers, 2007) and, specially, the BSS techniques, including the

so-called ICA algorithms (Sternickel and Braginski, 2006).

2.4 Artefacts

The most important noise affecting the MEG signals is that produced by

outside disturbances. This can be caused by moving magnetic objects (i.e.,

moving vehicles, people and trains) or electrical equipment, such as comput-

ers (Hari et al., 2000; Vrba and Robinson, 2001). Medical equipment also

generates strong noise interferences, as shown in Fig. 2.6. For instance, the

superconductive magnets used in MRI produce magnetic fields which are 14

or 15 orders of magnitude stronger than the brain activity (Hämäläinen et al.,

1993). Finally, bodily organs and movements also introduce artefacts in the

MEG signals. This includes the eye movements and blinks and the cardiac

activity (Hämäläinen et al., 1993).

In any case, prevention is always the best way to deal with artefacts. It

often works for external magnetic noise, stimulation-related artefacts, etc. It

is also possible to reject all traces coinciding with some biological artefacts,

such as OA. However, this procedure can bias the results in some experi-

ments because certain states of the subject are not included to the analysis

(Hämäläinen and Hari, 2004). Moreover, it may imply a significant data

loss and it does not work for artefacts that are always present in the MEG

signals, such as the CA (Castellanos and Makarov, 2006; Fatourechi et al.,

2007; Jung et al., 2000).
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2.4.1 Cardiac

Normal brain activity generates magnetic fields whose amplitude ranges from

10 fT to 500 fT for evoked responses to a few pT (pico-Teslas) for epileptic

spikes. However, the heart produces a significantly stronger field. Its am-

plitude reaches a few hundred pT over the chest and might, therefore, be of

considerable magnitude around the head (Jousmäki and Hari, 1996).

Obviously, the magnetic shielding does not help to reduce the CA since

the subject is within the shielded room. The use of gradiometers is partially

helpful since, unlike distant environmental noise contributions, the heart is

not very far from the sensors (Samonas et al., 1997).

The CA is produced by the electric activity of the heart (Jousmäki and

Hari, 1996). The number of significantly contaminated channels tends to be

higher over the left than the right hemisphere and depends on the position

of the head with respect to the heart (Hämäläinen and Hari, 2004). These

artefacts may have a considerable effect on recordings of spontaneous brain

activity, and thus should be considered in the analysis (Jousmäki and Hari,

1996). The magnitude of the CA varies from subject to subject and it may be

stronger in children due to the shorter heart-to-brain distance (Hämäläinen

and Hari, 2004; Jousmäki and Hari, 1996).

It has been shown that the P wave, which is related to the atrial depolar-

ization, is more prominent in the Electrocardiogram (ECG) than in MEG.

This might be due to the fact that the current distribution is more complex

during atrial than during ventricular depolarization. Hence, the magnetic

field of such a complex pattern may attenuate more rapidly with distance

than that of a dipolar current (Jousmäki and Hari, 1996).

Other artefacts related to the cardiac cycle are the blood-flow-related sus-

ceptibility artefacts and the ballistocardiogram artefacts (Hämäläinen and

Hari, 2004; Jousmäki and Hari, 1996). It has been shown that the former

are negligible in healthy subjects (Jousmäki and Hari, 1996). The latter are

caused by body movements related to heart beats and their main peak lags

the QRS complex by several hundred milliseconds. They may exist in MEG

recordings if the subject’s lung, skin, or clothes contain magnetic contami-
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nants (Jousmäki and Hari, 1996). Hence, all magnetic materials on the sub-

ject must be removed before entering into the recording room (Hämäläinen

et al., 1993).

2.4.2 Ocular

Furthermore, significant contamination can be caused by eye blinks and

movements (Antervo et al., 1985). Both types of OAs may be time-locked to

the stimuli, specially if they are strong or infrequent (Hämäläinen and Hari,

2004). The origin of the OAs can be explained considering a simplified model

where each eye is represented by a small electrical dipole oriented from the

negatively charged retina to the positively charged cornea (Croft and Barry,

2000). Obviously, any eye movement modifies the orientation of such dipole,

thus altering the associated electromagnetic fields near the eyes. As for the

artefacts caused by blinks, these are due to a change in the intensity of the

dipole created by the movement of the eyelid over the eyeball (Croft and

Barry, 2000; Hämäläinen and Hari, 2004).

It must be noticed that the amplitude of the artefacts caused by eye

movements can be about 3 pT to 4 pT above the lateral aspects of the orbits

and that the polarity of the magnetic fields is opposite over both hemispheres

(Antervo et al., 1985). The amplitude of these artefacts increases with light

and decreases with darkness in a similar way for eye blinks and movements

(Antervo et al., 1985).

2.4.3 Power Line Noise

Apart from the biological artefacts, the PLN may also be a strong source of

contamination in brain recordings (Escudero et al., 2007b; Jung et al., 2000).

Moreover, removal of the PLN and its harmonics with notch filters may not

be a satisfactory solution if the frequency band of the disturbances overlaps

that of the signals (Hämäläinen et al., 1993; Iriarte et al., 2003; Sternickel

and Braginski, 2006).
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2.4.4 Other Artefacts

Muscle contractions in the neck and face areas can also produce artefacts in

MEG signals, although they seem to be weaker than in EEG measurements.

This may be due to the fact that the distance to the muscular sources is sig-

nificantly larger for MEG sensors than for EEG electrodes (Hämäläinen and

Hari, 2004). As it was previously mentioned, magnetic lung-contamination

can cause respiration-related slow shifts (Hari, 2004).

2.5 Comparison With Other Neuroimaging

Methods

It must be taken into account that the MEG is not the only technique to

study the brain activity. Other methods are available, such as the PET,

SPECT, fMRI, MRS and EEG. However, EEG and MEG avoid not only

the need for opening the skull to examine the subject’s brain but also for

being exposed to X rays, radioactive tracers or strong time-varying magnetic

fields (Hämäläinen et al., 1993).

These techniques have dissimilar characteristics. However, it is impor-

tant to regard them as complementary techniques rather than competitors.

For instance, changes in synchrony of the spontaneous firing or in time-

and phase-locking of the signals with respect to external stimuli are seen

with MEG and EEG but may be invisible for fMRI or PET. On the other

hand, MEG and EEG can be blind to the slowly rising or sustained neu-

ronal activity that is related to with metabolic changes (Hari et al., 2000).

Moreover, all of them share the important feature of not needing any kind

of surgery (Hämäläinen et al., 1993).

The structural information provided by MRI can be merged with that

offered by MEG to perform a non-invasive cartographic study of the brain

function (Hari, 2004). Additionally, MEG information can also be combined

with other neuroimaging techniques, such as CAT. The advantage of combin-

ing these techniques is that, whereas MEG provides high temporal resolution,

MRI and CAT are able to offer accurate images of the brain anatomy with
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millimetre resolution (Hämäläinen et al., 1993). This combination of MEG

and neuroimaging techniques can be helpful to estimate the current sources

by imposing constraints derived from the brain anatomy (Hari, 2004). Fi-

nally, the study of the brain can be complemented with SPECT or PET,

which measure the functional activity of the brain (Hämäläinen et al., 1993;

Hari and Forss, 1999).

This Section briefly describes the main characteristics, advantages and

limitations of the most commonly used techniques in the functional study of

the brain. These techniques can be classified as follows (Maestú et al., 1999):

• Techniques that measure the radiation emitted by particles and ra-

dioisotopes: SPECT and PET.

• Techniques that acquire signals produced by electromagnetic sources.

– Methods that apply external electromagnetic sources to produce

a image of the brain: fMRI and MRS.

– Methods that record the electromagnetic activity generated by the

brain: EEG and MEG.

Fig. 2.9 shows a classification of these techniques in terms of their tem-

poral and spatial resolution as well as their degree of invasiveness (Maestú

et al., 1999).

2.5.1 SPECT and PET

Both SPECT and PET are nuclear medicine tomographic imaging techniques

that provide diagnostic information about the brain by analysing the tridi-

mensional distribution of the electromagnetic radiation produced by a ra-

dioisotope (Knoll, 1983). They differ from CAT scanning in the sense that

the source of the electromagnetic radiation, instead of being an external X-

ray tube, is a radioisotope distributed within the body (Knoll, 1983). Hence,

while CAT displays absorption properties related to anatomy, SPECT and

PET reveal the distribution of radioactive tracers that can often indicate

various aspects of physiological function (Knoll, 1983). This information is
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Figure 2.9: Diagram comparing diverse techniques for functional brain anal-
ysis in terms of their temporal and spatial resolution and their degree of
invasiveness.

provided as a set of thin two-dimensional sections (or slices) along a partic-

ular axis (Knoll, 1983).

In CAT, the source of X-rays is a well-focussed spot on the anode of an X-

ray tube. With this information, the detection point uniquely defines a single

ray of interest. In SPECT and PET, the situation is more complicated as the

position of the source point is not known a priori. Actually, the knowledge

of this position is the general goal of the measurement. SPECT and PET

differ in the methods used to define the ray direction (Knoll, 1983).

PET is limited to those radioisotopes that decay by emitting a positron.

This positron travels a short distance (a few millimetres at most) before

annihilating with a normal electron from the subject’s tissue. The resulting

annihilation radiation consists of two electromagnetic photons emitted in

time coincidence and are oppositely directed along exactly the same line. By

placing two detectors on opposite sides of the subject, it is possible to define

the ray (Knoll, 1983). This technique, because of the short half lives of the

isotopes involved, requires that a expensive cyclotron production facility be

located within the hospital (Knoll, 1983). PET is able to measure the tissue

metabolic activity in terms of regional glucose uptake. It is particularly

useful to study the functional activity of the central nervous system when a

high temporal resolution is not needed (Maestú et al., 1999).

SPECT differs from PET in that any radioisotope that emits γ rays may
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be used. These γ rays are emitted as single individual photons. Thus, SPECT

allows a much broader range of applications. The agents usually have rela-

tively long half lives and are available at low cost (Knoll, 1983). The maps

offered by SPECT represent the regional perfusion, the density of neuro-

receptors or the metabolic activity of a brain region depending on which

radiopharmaceutical was taken (Knoll, 1983). Hence, SPECT is a helpful

technique to measure the brain blood flow with a relatively low cost. More-

over, it can be used to carry out semi-functional studies, where diverse acti-

vated brain areas can be recorded for a limited period of time (Maestú et al.,

1999). However, its spatial resolution is lower than that of PET (Maestú

et al., 1999). Similarly to the PET, its use is limited by the fact that it does

involve exposure to ionizing radiation (Maestú et al., 1999).

2.5.2 fMRI and MRS

fMRI is a procedure that employs MRI images to measure small metabolic

changes due to the activation of small cerebral regions. It has very high

spatial resolution, but it cannot follow the changes in activity in real time.

Moreover, it is necessary to wait for a short period of time before acquiring

the measurement again. It is extremely useful to perform functional studies

of the brain, largely innocuous, relatively fast and comfortable for the sub-

ject. Nevertheless, similarly to the previously mentioned techniques, it does

not measure the neural activity directly, but the fMRI must interpret it in

terms of vascular and metabolic changes. Furthermore, some types of mental

activities, brain disorders and malfunctions of the brain cannot be recorded

using fMRI since their effect on the level of oxygenated blood is low (Sanei

and Chambers, 2007).

On the other hand, MRS is a technique based on similar principles to

those of the fMRI. The main difference is the way in which the data are

shown. Instead of the anatomic image, a spectrum related to several bio-

chemical compounds is shown. MRS can analyse volumes of up to 10 cm3 and

its temporal resolution is of about tens of seconds. It is used to obtain bio-

chemical information about the tissues of the human body in a non-invasive
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way (without the need for a biopsy; Maestú et al., 1999).

Both fMRI and MRS have the important advantage over the SPECT and

PET of not requiring ionising radiation to perform the recordings. Addi-

tionally, there is no accumulative effect due to the repetitive performance

of measurements. Hence, fMRI and MRS studies can be repeated as many

times as necessary. However, in fMRI and MRS the subject is exposed to

very strong magnetic fields (between 20 and 80000 times the Earth magnetic

field, depending of the equipment) whose effects on the human body are not

completely clear. Thus, its use is not recommended in certain cases, such as

pregnancy (Maestú et al., 1999).

2.5.3 EEG

EEG is a physiological techniques that records the electrical brain activ-

ity originated by the neurons with a set of electrodes located on the scalp

(Sanei and Chambers, 2007). It must be noticed that the EEG varies no-

tably depending on the location of the electrodes. Hence, it is necessary

to standardise the electrode placement. The most frequent setting is the

International 10–20 System, recommended by the International Federation

of Societies for Electroencephalography and Clinical Neurophysiology (Sanei

and Chambers, 2007).

EEG recordings are able to reflect the changes in the electrical brain

activity due to several physiological and pathological causes. Hence, they are

commonly employed in clinical practice, including monitoring of comma and

brain death, studying brain lesions and tumours and assessing anaesthesia

depth (Sanei and Chambers, 2007). Moreover, their utility in diverse brain

disorders, including AD has been studied (Jeong, 2004).

It is important to note that EEG and MEG record the electromagnetic

activity generated by the same primary currents in the brain (Hari, 2004).

Hence, similarities between their waveforms are to be expected. The dis-

tributions of the electric potential and the magnetic field generated by a

current dipole in a spherical volume conductor are dipolar (i.e., they display

two extrema of opposite polarities) but they are rotated by 90◦ with respect
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to each other (Hari, 2004). Moreover, both signals provide complementary

information (Rampp and Stefan, 2007) and this notion of complementarity

can be mathematically defined (Dassios et al., 2007). In a spherical head

model, the part of the neuronal current that generates the electric poten-

tial is complementarily orthogonal to the part of the current creating the

magnetic induction field. Thus, for a continuously distributed neuronal cur-

rent, information missing in EEG is available in the MEG data, and vice

versa (Dassios et al., 2007).

There are differences, though, in the sensitivity of both techniques to the

orientation of the currents. MEG is mostly sensitive to tangential currents

(Hämäläinen et al., 1993). Actually, this sensitivity to tangential currents

in the presence of several simultaneous sources is an important advantage

in practical work, whereas some current sources (very deep and radial) are

more reliably picked up by EEG than MEG (Hari, 2004).

When comparing these techniques, it should be kept in mind that both

signals can record the brain oscillations simultaneously all over the scalp.

Moreover, their temporal resolution is high. It is possible to follow the

dynamics of the brain oscillations on a millisecond time-scale (Hämäläinen

et al., 1993). For MEG, this high temporal resolution can be accompanied

of good spatial resolution in locating cortical events if the dipoles are just a

few millimetres away of each other and their temporal waveforms differ (Hari,

2004; Hari and Forss, 1999). Although both techniques are complementary

to study the brain activity, the MEG recording offers some important advan-

tages over the EEG:

1. The magnetic recordings do not depend on any reference point due

to the fact that MEG is not a differential measure between two dif-

ferent channels. On the other hand, reference-free EEG signals can

be obtained by computing the surface Laplacians. However, even in

this case, it is difficult to make a reasonable guess of the source loca-

tions and the Laplacians cannot be computed for the outermost elec-

trodes (Hämäläinen et al., 1993; Hari et al., 2000; Najarian and Splinter,

2006; Rampp and Stefan, 2007).
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2. The resistive properties of the skull and other extra-cerebral tissues do

not affect the magnetic fields in contrast to the significant distortion

and smearing that they produce in the electric potentials (Hämäläinen

et al., 1993; Hari et al., 2000).

3. Measurements from a very large numbers of sensors are more easily

done with MEG than with EEG, thanks to the fact that the time-

consuming application of electrodes on the scalp is not needed (Rampp

and Stefan, 2007; Stam, 2010).

On the other hand, the MEG recording is subjected to some considerable

limitations (Hari, 2004; Hari et al., 2000; Rampp and Stefan, 2007):

1. The only technology able to produce good-quality measurements of

the extremely weak brain magnetic fields is based on superconductive

materials.

2. The recording process must take place in a magnetically shielded room

to minimise ambient magnetic field variations.

Hence, the investment cost in the MEG system and shielded room is high,

which has prevented any widespread use of this technique to acquire the

brain activity (Sternickel and Braginski, 2006).
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This Chapter of the PhD dissertation presents the main concepts related

to AD. It begins with a brief introduction about this dementia and pointing

out its social importance in the Western World. Then, the main character-

istics of AD are introduced. This includes information about its evolution,

pathophysiology, risk factors and diagnostic techniques. Finally, current and

possible future treatments for AD are discussed.

3.1 Introduction

AD is a slowly progressive and fatal neurodegenerative disorder with insidious

onset. The first case, a 51 year-old woman named Auguste D. with a 5-year

history of progressive cognitive impairment, was first described in 1906 by

Dr. Alois Alzheimer during a congress in Tübingen, Germany (Blennow et al.,

2006; Ferri et al., 2006; Samanta et al., 2006). In this first case, Dr. Alzheimer

introduced the typical clinical characteristics of the dementia that now bears

his name, including the memory disturbances and instrumental signs. He also

identified the plaques and tangles that are known today as the hallmarks of

the disease (Blennow et al., 2006).

In addition to the very well-known memory loss, AD also results in other

cognitive and behavioural symptoms that progressively impair the activities

of daily living. The cognitive deficit manifest itself as disorientation, con-

fusion and problems with reasoning and thinking, whereas the behavioural

symptoms include agitation, anxiety, delusions, depression, hallucinations,

insomnia and wandering (Blennow et al., 2006; Cummings, 2004; Lahiri et al.,

2002).

Ageing is the most obvious risk factor for AD. Additionally, several epi-

demiological studies have pinpointed possible associations of AD with a de-

creased reserve brain capacity, which is determined by the number of neurons

and their synaptic and dendritic density (Blennow et al., 2006). Other risk

factors are related to vascular disease, including, among others, hypertension,

atherosclerosis, smoking and obesity (Blennow et al., 2006; Lahiri et al., 2002)

although these associations have recently been questioned by Purnell et al.

(2009). Dietary habits, such as the intake of vitamin B12 or antioxidants,
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have also been linked with a reduced risk of AD, but they are not conclusive

enough to make any dietary recommendations (Blennow et al., 2006).

Moreover, AD has a significant genetic background (Blennow et al., 2006)

in its both forms: familiar and sporadic (Blennow et al., 2006). The familiar

form has been related to mutations in the Amyloid Precursor Protein (APP),

Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes (Blennow et al., 2006;

Reitz and Mayeux, 2009; van Es and van den Berg, 2009). On the other hand,

the much more common sporadic form is associated with the Apolipoprotein

E (APOE) ε4 allele (Blennow et al., 2006; Reitz and Mayeux, 2009). Ad-

ditionally, it has been shown that the SOrtilin-Related receptor (SORL1),

Clusterin (CLU), Phosphatidylinositol-binding Clathrin Assembly Protein

(PICALM) and Complement Component (3b/4b) Receptor 1 (CR1) genes

are also associated with AD (Harold et al., 2009; Lambert et al., 2009; Na-

tional Institute on Aging, 2008).

3.2 Social Importance of AD

AD is the most common type of dementia in the Western World. It accounts

for 50% to 60% of all cases (Blennow et al., 2006). It is, indeed, one of the

most disabling and burdensome disorders worldwide. It is 1.5 times more

common than stroke or epilepsy and as common as congestive heart failure

(Samanta et al., 2006). Its prevalence is below 1% in subjects aged 60 to 64

years, but it shows an almost exponential increase with age. Approximately,

the prevalence doubles with every five years of age (Cummings, 2004). As a

result, the prevalence of AD in people aged 85 years or older is between 24%

and 33% (Blennow et al., 2006). In 2001, more than 24 million people had

dementia. Due to the anticipated increase in life expectancy, it is expected

that this figure will double every 20 years up to 81 million in 2040 (Blennow

et al., 2006). Moreover, it is estimated that about 4.6 million new cases of

dementia appear each year (Ferri et al., 2006). Hence, it is clear that AD is

a very important economic and social problem.

It has been recently shown that dementia contributed more than 10% of

years lived with disability in people over 60 (Ferri et al., 2006). This ac-
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counts for more cases than stroke (9.5%), musculoskeletal disorders (8.9%),

cardiovascular disease (5.0%) and all forms of cancer (2.4%) (Ferri et al.,

2006). Furthermore, the disability weight for dementia was higher than for

any other health condition except for spinal-cord injury and terminal can-

cer (Ferri et al., 2006).

People with dementia cause high costs as a result of their use of the

health system and the community and residential care (Ferri et al., 2006).

For instance, it has been estimated that, in 2005, nearly half of the elderly

people with cognitive impairment in the UK live in institutions at a cost of

£4.6 billion per year. This represented the 0.6% of the UK gross domestic

product (Ferri et al., 2006). Furthermore, the care and attention needed by

the patients is exceedingly intensive. The national direct and indirect costs

of caring for people with AD are estimated to be more than $100 billion per

year in USA (National Institute on Aging, 2008).

It is expected that diagnostic testing for this dementia will contribute only

marginally to this cost. Hence, the development of methods able to help in

the the diagnosis may likely improve the care of patients and allow more

accurately targeted future therapies. Eventually, this may lead to reduce the

costs associated with this disorder (Lahiri et al., 2002).

3.3 Main Characteristics of AD

3.3.1 Evolution of the Disease

AD is a slowly progressive and fatal neurodegenerative brain disorder. It is

characterised by memory disturbances and other cognitive and behavioural

symptoms that progressively impair the activities of daily living (Blennow

et al., 2006). AD patients usually die within 7 to 10 years after diagnosis

(Masters et al., 2006). However, it is estimated that the neurodegeneration

begins between 20 and 30 years before clinical onset (Blennow et al., 2006).

AD starts near the hippocampus and eventually affects it. As it was indi-

cated in Section 2.2.2, the hippocampus plays a major role in learning and

converting short-term memories to long-term memories (National Institute
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on Aging, 2008). During this preclinical phase, the number of microscopical

lesions increases and at a certain threshold the first symptoms appear and

gradually worsen (Blennow et al., 2006; Nestor et al., 2004). Once the cogni-

tive deficits become global and severe enough to interfere with normal living,

established criteria for a clinical diagnosis of AD are met (Nestor et al., 2004).

Subjects in the pre-dementia stage of AD are considered to be cognitively

impaired but do not meet criteria for dementia. This stage is commonly

known as Mild Cognitive Impairment (MCI). This is due to the fact that the

subjects’ cognitive deficits are only limited to memory and/or their everyday

life activities are preserved (Nestor et al., 2004). MCI usually precedes the

formal diagnosis of AD (Masters et al., 2006) and it is defined on the basis

of reports of memory loss verified by objective tests (Blennow et al., 2006).

The concept of MCI represents a transitional period before the develop-

ment of full-blown AD (National Institute on Aging, 2008). About 40% to

60% of carefully characterised subjects with MCI will progress to meet crite-

ria for AD within 3 or 4 years (Masters et al., 2006). This rate of conversion

to AD is about ten times higher than that for the general population (Nestor

et al., 2004). The current view on evolution from healthy ageing to MCI and,

eventually, AD is shown in Fig. 3.1. However, the narrow defintion of MCI

as an amnesic syndrome may fail to capture the heterogeneity of clinical AD

presentations (Nestor et al., 2004).

Once the patient has reached the state of early dementia, the most obvious

symptom is memory loss, such as difficulty in remembering recently learned

facts. However, episodic, semantic and implicit memory are less affected

than new facts or memories. Additionally, the language deteriorates due

to a decreased vocabulary and word fluency, but the AD patient can still

communicate basic ideas. A mild apraxia may also appear at this stage

(Gwyther, 2001; National Institute on Aging, 2008). Eventually, AD patients

may need assistance or supervision with the most cognitively demanding

activities (Gwyther, 2001; National Institute on Aging, 2008).

At some point, the progressive deterioration of mental functions hinders

independence. Then, the patients are unable to perform most common ac-

tivities of daily living (Gwyther, 2001; National Institute on Aging, 2008).



60 Chapter 3. Alzheimer’s Disease

Figure 3.1: View on the evolution from healthy ageing to AD by National
Institute on Aging (2008).

Speech difficulties become more evident and complex motor sequences be-

come less coordinated. At this phase of moderate dementia, memory prob-

lems worsen (e.g., the person cannot recognise close relatives) and long-term

memory begins to be affected by the disease (Gwyther, 2001; National Insti-

tute on Aging, 2008). Moreover, behavioural and neuropsychiatric changes

become more prevalent, including wandering, irritability or crying. In some

cases, delusional symptoms may also appear (Gwyther, 2001).

Finally, as the disease advances, the symptoms include confusion, ir-

ritability and a more generalised loss of language and long-term memory

(Cummings, 2004; Gwyther, 2001; National Institute on Aging, 2008). How-

ever, patients can often understand and return emotional signals. In the last

stages, the previous aggressiveness tends to be replaced by apathy. The pa-

tients are utterly dependent on their caregivers and cannot perform almost

any task without assistance (Jeong, 2004). Eventually, an external factor

produces the death of the AD patient (Gwyther, 2001).
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Figure 3.2: Plaques and tangles in the cortex as shown by Blennow et al.
(2006).

3.3.2 Pathophysiology

At the microscopic level, the hallmark lesions in AD are senile plaques (also

known as neuritic plaques) and neurofibrillary tangles, which are shown in a

histological sample in Fig. 3.2 (Blennow et al., 2006; Mattson, 2004). How-

ever, the mechanism whereby the formation of these lesions leads to neuro-

degeneration is poorly understood (van Es and van den Berg, 2009).

In addition to the appearance of plaques and tangles, AD is also char-

acterised by degeneration of neurons and synapses (Blennow et al., 2006).

This process produces the typical cognitive deficit in AD. There is increas-

ing consensus that the production and accumulation of Aβ is central to

the pathogenesis of this dementia (Cummings, 2004; Masters et al., 2006).

The generation and deposition of Aβ has been related to the formation of
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neurofibrillary tangles, oxidation and lipid peroxidation, glutamatergic ex-

citotoxicity, inflammation, and activation of the cascade of apoptotic cell

death (Cummings, 2004).

The senile plaques are extracellular deposits of Aβ surrounded by dys-

trophic neurites, reactive astrocytes, and activated microglia (Blennow et al.,

2006; Masters et al., 2006). Aβ is derived from the APP gene on chromo-

some 21 (Masters et al., 2006). Additionally, there is an association of the

APOE ε4 allele with AD (Blennow et al., 2006) as it is a risk factor for the

disease. APOE acts as a cholesterol transporter in the brain with APOE ε4

being less efficient than the other variants (ε2 and ε3) in neural repair and

reuse of membrane lipids (Blennow et al., 2006). APOE ε4 enhances Aβ

aggregation and reduces Aβ clearance (Mattson, 2004). It is also essential

for Aβ deposition, promoting Aβ fibrillisation and plaque formation. The

APOE ε4 allele has been estimated to account for most of the genetic risk in

sporadic AD (Blennow et al., 2006; Masters et al., 2006).

The other important histo-pathological hallmark of AD is the neuro-

fibrillary tangles. They are intracellular bundles of a hyper-phosphorylated

form of the microtubule-associated protein tau (Blennow et al., 2006). Tau

is a normal axonal protein found in the neurons. It binds to microtubules

through its microtubule-binding domains. This promotes microtubule as-

sembly and stability, which helps in the axonal transport (Blennow et al.,

2006). In AD, tau is hyper-phosphorylated inside the neurons. This leads to

sequestration of normal tau and other microtubule-associated proteins, caus-

ing disassembly of microtubules. As a consequence, the axonal transport is

impaired and this compromises the neuronal and synaptic function (Blennow

et al., 2006). Tau also becomes prone to aggregation into insoluble fibrils

in tangles, further compromising neuronal function. Tau pathology starts

early in the AD process in neurons in the transentorhinal region, spreads

to the hippocampus and amygdala, and later to the neo-cortical association

areas (Blennow et al., 2006).

The finding of a correlation between plaque counts and dementia severity

suggests that the plaques are involved in the pathogenesis of the disease

(Blennow et al., 2006). However, whether tau hyper-phosphorylation and
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tangle formation are a cause or consequence of AD is unknown (Blennow

et al., 2006). Additionally, brain regions involved in learning and memory

processes, including the temporal and frontal lobes, are reduced in size in AD

patients as the result of degeneration of synapses and neural death (Mattson,

2004).

To sum up, the central hypothesis for the cause of AD is the amyloid

cascade hypothesis (Blennow et al., 2006; Masters et al., 2006). This indicates

that an imbalance between the production and clearance of Aβ (a product

of APP processing) in the brain is the initiating event, eventually leading to

neuronal degeneration and dementia (Blennow et al., 2006; Masters et al.,

2006; van Es and van den Berg, 2009).

This hypothesis is supported by the facts that the genes relevant to the

familial form of AD are related to Aβ generation (Blennow et al., 2006). Sol-

uble Aβ is thought to suffer a conformational change to high β-sheet content,

thus becoming prone to aggregate into soluble oligomers and larger insoluble

fibrils in plaques (Blennow et al., 2006). In this process, the fibrillogenic

Aβ42 isoform provokes the misfolding of other Aβ species.

Furthermore, tau hyper-phosphorylation in AD starts intracellularly. It

causes sequestration of normal tau and other microtubule-associated pro-

teins. This produces disassembly of microtubules and thus impaired axonal

transport, compromising neuronal and synaptic function. Additionally, insol-

uble tangles composed of abnormally hyper-phosphorylated tau protein are

developed, further compromising neuronal function (Blennow et al., 2006;

Masters et al., 2006). The mechanism of neural death is graphically sum-

marised in Fig. 3.3 (Samanta et al., 2006).

3.3.3 Risk Factors

In addition to ageing, which is the most obvious risk factor for AD, epi-

demiological studies have pinpointed several possible associations of diverse

factors with AD. Some of them are reduced brain size, low educational and

occupational attainment, low mental ability during early life, and reduced

mental and physical activity in late life (Blennow et al., 2006; National In-
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Figure 3.3: Mechanism of neural death in AD.

stitute on Aging, 2008; Reitz and Mayeux, 2009). All this factors have to do

with a decreased reserve brain capacity, which is determined by the number

of neurons and their synaptic and dendritic density. A low reserve capacity

has been associated with early onset of the disease (Blennow et al., 2006;

Reitz and Mayeux, 2009). Additionally, head injury can be another risk fac-

tor (Lahiri et al., 2002). However, it is unclear whether this may lead to

creation of plaques and tangles or whether it just reduces the brain reserve

capacity (Blennow et al., 2006).

Cardiovascular factors have also been related to AD. They include, among

others, hypertension, atherosclerosis, atrial fibrillation, smoking and obesity

(Blennow et al., 2006; Lahiri et al., 2002). Nevertheless, it has not been

established whether they lead to plaque and tangle formation or whether they

produce cerebrovascular pathology which adds to a pre-existing dementia

(Blennow et al., 2006). What is more, a recent study suggests that there is

limited evidence supporting the fact that single cardiovascular risk factors
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affect AD risk and that the strength of the measured association is affected

by the interactions between single factors (Purnell et al., 2009).

Finally, other dietary habits, such as the intake of vitamin B12, antioxi-

dants or unsaturated fatty acids, have been linked with a reduced risk of AD

(National Institute on Aging, 2008), but they are not conclusive enough to

make any dietary recommendations (Blennow et al., 2006).

Nevertheless, AD has a significant genetic background (Blennow et al.,

2006). This dementia is a heterogeneous disorder with both familial and

sporadic forms (Blennow et al., 2006). The onset of the familiar type occurs

before age 65 years. The first mutation producing this form of AD was iden-

tified in the APP gene on chromosome 21 and several additional mutations

of this gene have been found. However, most of the familiar cases are ex-

plained by mutations in the PSEN1 and PSEN2 genes (Blennow et al., 2006;

Reitz and Mayeux, 2009; van Es and van den Berg, 2009). These genes are

thought to increase Aβ production (van Es and van den Berg, 2009). In any

case, it must be noted that the prevalence of the familiar form of the disease

with autosomal dominant inheritance is very rare, about 1% (Blennow et al.,

2006; van Es and van den Berg, 2009).

On the other hand, it is well-known that there exists an association be-

tween the APOE ε4 allele and the sporadic form of AD (Blennow et al., 2006;

Reitz and Mayeux, 2009). This link was discovered in 1993, and subsequent

studies have shown that APOE may account for up to half the genetic risk

for AD (van Es and van den Berg, 2009). Additionally, the gene SORL1 is

another risk-factor for AD. SORL1 has to do with the recycling of APP an

underexpression of SORL1 increases Aβ levels (National Institute on Aging,

2008; Reitz and Mayeux, 2009). Recently, other additional risk factors for AD

have been discovered (Carrasquillo et al., 2009; Harold et al., 2009; Lambert

et al., 2009). For instance, a gender-linked susceptibility gene for late-onset

AD has been found in the PCDH11X gene of the X chromosome (Carrasquillo

et al., 2009). Women with two copies of this gene are at considerably greater

risk of developing AD (Carrasquillo et al., 2009). Other three additional risk

factors for AD have been discovered even more recently (Harold et al., 2009;

Lambert et al., 2009). Of note is that these genes — CLU, PICALM and
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CR1 — may be involved in pathways regulating Aβ clearance from the brain

for the following reasons (Harold et al., 2009; Lambert et al., 2009; van Es

and van den Berg, 2009):

• CLU has some similarities in common with APOE. They are related to

major brain apolipoproteins and amyloid plaques. Moreover, they in-

teract with Aβ in its conversion into insoluble forms. Finally, CLU and

APOE seem to cooperate in reducing Aβ deposition and in modifying

Aβ clearance (Harold et al., 2009; Lambert et al., 2009).

• There is evidence that CR1 has a protective role for the brain via the

generation and binding of C3b, which may contribute to Aβ clear-

ance (Lambert et al., 2009).

• PICALM has to do with the intracellular trafficking of proteins, lipids,

growth factors and neurotransmitters. It has been shown that PICALM

is involved in retrieving APP from the cell surface and that an aberrant

processing leads to altered Aβ levels (Harold et al., 2009).

3.3.4 Clinical Diagnosis

A definite diagnosis of AD can only be made by necropsy (the microscopical

analysis of the patient’s brain tissue after death; Blennow et al., 2006). In

clinical practice, AD must be differentiated from other dementias though.

In fact, the criteria for detection of probable AD largely depend on the ex-

clusion of other dementias. The diagnosis of AD is usually based on the

criteria developed by the NINCDS-ADRDA according to which it is classi-

fied as (McKhann et al., 1984):

• Definite AD:

– Clinical criteria of probable AD.

– Histologic confirmation via autopsy or biopsy.

• Probable AD: typical clinical syndrome without histologic confirma-

tion. This requires the following:
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– Diagnosis of dementia established with a clinical examination and

supported by a mental state test.

– Diagnosis of dementia confirmed with a neuropsychological test.

– Cognitive impairment in two or more areas of cognition.

– Progressive impairment of memory and other cognitive functions.

– Absence of alterations in the conscience.

– Onset of the deficits between the ages of 40 and 90 years.

– Absence of other diseases capable of causing dementia.

• Possible AD: atypical clinical features but no alternative diagnosis ap-

parent and no histologic confirmation. This refers to:

– Presence of a disease or mental disorder capable of producing de-

mentia without being able to confirm it as the cause of the cogni-

tive impairment.

– Progressive impairment of only one cognitive function without any

other known cause.

The accuracy of clinical diagnosis is limited. Even in patients who have

been followed up clinically for several years at expert research centres, the

diagnostic accuracy is relatively low, with sensitivity of around 80% and

specificity of about 70% (Blennow et al., 2006). Some authors even suggest

lower typical sensitivity and specificity values for the diagnosis of probable

AD (Cummings, 2004) and that these sensitivity and specificity figures may

be significantly lower in primary care settings and in patients with mild

AD (Blennow et al., 2006; Knopman et al., 2001).

The medical history together with clinical, neurological, and psychiatric

examinations serves as the basis in the diagnostic work-up. In very early

cases, neuropsychological testing can help to obtain objective signs of mem-

ory disturbances. Laboratory studies, such as thyroid-function and serum

vitamin B12 tests , are necessary to identify secondary causes of dementia

and coexisting disorders that are common in elderly people (Blennow et al.,

2006; Cummings, 2004). Neuroimaging, including CAT and MRI, is useful
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to exclude alternative causes of dementia, such as brain tumour and subdu-

ral haematoma (Cummings, 2004; Knopman et al., 2001). Cerebral atrophy,

visualised as enlarged ventricles and cortical sulci, is also identified by those

neuroimaging techniques, but the overlap with normal ageing and other de-

mentias is too large to confirm their diagnostic value (Blennow et al., 2006).

However, neuroimaging is valuable to detect cerebrovascular disease, such

as cerebral infarcts and white-matter lesions, which is important to iden-

tify Vascular Dementia (VaD) or mixed dementia (AD/VaD; Blennow et al.,

2006).

Additionally, tests are used to screen for cognitive impairment. The most

commonly used test is the MMSE (Folstein et al., 1975). It includes 30 short

questions (35 in its Spanish version; Lobo et al., 1979) that sample some

cognitive functions including arithmetic, memory and orientation (Folstein

et al., 1975). Moreover, new biomarkers would be of great value as diagnostic

tools, both for the clinical diagnosis of AD and the prediction of incipient AD

in MCI cases (Blennow et al., 2006). It must be borne in mind that the low

rates of recognition of dementia by family members and physicians constitute

a major barrier to appropriate care for many patients with AD (Cummings,

2004).

3.3.5 Possible Biomarkers

As it was previously mentioned, new biomarkers would be of great value as

diagnostic tools for the clinical diagnosis of AD (Blennow et al., 2006). An

ideal biomarker for this dementia should detect a fundamental characteristic

of the neuropathology and be validated in neuropathologically confirmed

cases, with sensitivity and specificity no lower than 80% (Blennow et al.,

2006).

The utility of some methods in this setting has been studied. For in-

stance, the levels of Aβ and tau proteins in the CerebroSpinal Fluid (CSF)

have been widely researched (Blennow et al., 2006). The brain imaging tech-

niques PET and MRI can also complement other biomarkers. This is due to

the fact that PET images may be useful to reveal the progressive reduction
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Figure 3.4: FDG-PET scans in an elderly woman at baseline (1989) and over
9 years, while the patient declined to MCI and AD. Progressive reductions
in glucose metabolism are illustrated by Blennow et al. (2006).

in glucose metabolism associated with AD, as Fig. 3.4 shows. Additionally,

MRI images similar to that plotted in Fig. 3.5 can illustrate that the hip-

pocampus and entorhinal cortex typically get smaller, while the ventricle

increases in size with disease progression. However, few studies have ad-

dressed the differentiation of AD from other dementias, and there are few

autopsy confirmation data available (Blennow et al., 2006).

In spite of the possible useful information that the aforementioned tech-

niques may provide, their use in clinical practice is not recommended yet.

This is due to the fact that more exhaustive clinical trials are needed to con-

firm their utility and performance in AD diagnosis (Blennow et al., 2006).

The analysis of MEG recordings is not included in the clinical diagnosis

of AD. This is due to the facts that the availability of such systems is still

reduced and to their limited diagnostic value. However, in recent years, the

availability of whole-head MEG equipment has increased (Stam, 2010). This

technique can record brain activity directly, and has several advantages over

the conventional EEG (see Section 2.5.3; Hari, 2004). Therefore, MEG may

offer a more accurate image of ongoing neural activity. Furthermore, signifi-

cant advances have been made in neuroscience regarding the understanding

of oscillatory and synchronized brain activities and abnormal patterns asso-

ciated with various brain disorders, including AD (Stam, 2010). Hence, it is

possible that these changes, which reflect abnormalities in specific networks

and neurotransmitter systems, and could be useful in future AD diagnosis

and monitoring (Stam, 2010).
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Figure 3.5: MRI scans in an elderly man at baseline (1993) and over 10 years,
while he declined to MCI and AD. The reduction in size of the hippocampus
(red) and entorhinal cortex (yellow) and the increase of the ventricle (green)
with disease progression are illustrated by Blennow et al. (2006).

3.4 Current Treatment

Current therapies for AD are able to deal with the symptoms, temporally

improving the quality of life for the patients and their caregivers. Nowa-

days, four different approaches are being considered to treat AD: symp-

tomatic treatments, drug candidates with potential disease-modifying effects,

treatments based on epidemiological studies and orientation to the caregiver

(Blennow et al., 2006; Cummings, 2004; National Institute on Aging, 2008).

Each of them has, or might have, its own effect on the neuropsychiatric symp-

toms, subject’s cognitive functions or evolution of the disease (Cummings,

2004).
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3.4.1 Symptomatic Treatments

Thanks to the knowledge about the neurotransmitter disturbances in AD,

several drugs with symptomatic effects have been developed (Blennow et al.,

2006). They treat the cognitive loss temporarily to improve the quality of life.

However, none cure AD, nor do they halt disease progression (Lahiri et al.,

2002). This section describes some of these treatments (Blennow et al., 2006).

Acetylcholinesterase Inhibitors

The cholinergic hypothesis suggests that AD is caused by degeneration of

cholinergic neurons in the basal forebrain nuclei. This affects the pre-synaptic

cholinergic terminals in the hippocampus and neo-cortex, which are impor-

tant for cognitive processes such as memory (Blennow et al., 2006). Hence,

it is assumed that the symptoms of AD can be temporarily mitigated by

enhancing cholinergic neurotransmission. In order to do so, one tries to in-

crease the availability of acetylcholine by inhibiting acetylcholinesterase, the

enzyme that degrades acetylcholine in the synaptic cleft (Blennow et al.,

2006).

The acetylcholinesterase inhibitors donepezil, rivastigmine, and galan-

tamine are approved for clinical use in AD following this approach (Blennow

et al., 2006; Doody et al., 2001; National Institute on Aging, 2008). Donepezil

and galantamine are selective acetylcholinesterase inhibitors, while rivastig-

mine can also inhibit acetylcholinesterase and buturylcholinesterase. Finally,

galantamine can modulate pre-synaptic nicotinic receptors as well (Blennow

et al., 2006; Doody et al., 2001).

Clinical trials have shown that these drugs produce modest positive ef-

fects on cognitive symptoms. They are also beneficial for functional and be-

havioural symptoms, without conclusive differences between their efficiency

(Blennow et al., 2006). Moreover, their side-effects are usually limited to

gastrointestinal symptoms such as nausea, vomiting and diarrhoea, which

can often be reduced by taking these drugs with food and starting their

prescription with low doses (Blennow et al., 2006).
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Memantine

Memantine is a non-competitive N -methyl-D-aspartate (NMDA) receptor

antagonist (Cummings, 2004). These receptors are related to memory and

other cognitive functions. Memantine decreases the excitotoxicity produced

by the glutamate, one of the major excitatory neurotransmitters in the brain

(Blennow et al., 2006). Under healthy conditions, glutamate and the NMDA

receptors are key for cognitive processes. Nevertheless, in AD, an increased

glutamatergic activity can lower the activation of NMDA receptors, thus

impairing the neuronal function (Blennow et al., 2006).

Memantine is slightly helpful for cognitive and behavioural symptoms in

AD and improves the ability to carry out daily living activities in patients

with moderate to severe AD (Cummings, 2004; National Institute on Aging,

2008). Moreover, it has been shown that the combination on memantine with

donepezil or memantine produces more positive effects on the symptoms than

the latter alone (Cummings, 2004). However, there is no conclusive evidence

indicating that memantine is beneficial in mild disease. Of note is that this

drug is generally well tolerated in general, with few side-effects (Blennow

et al., 2006).

Treatment of Behavioural Signs

AD patients very frequently suffer from behavioural symptoms such as ag-

gression, psychomotor agitation, hallucinations and delusions. These signs

of AD are common in the late stages of the disease (Blennow et al., 2006).

They not only worsen the patients’ quality of life of life, but also increase

the burden of their caregivers. Hence, it is important to manage these be-

havioural signs. Atypical antipsychotic drugs can be used to deal with psy-

chosis or agitation (Blennow et al., 2006; Doody et al., 2001). Alternative

treatments include anticonvulsants and short-acting benzodiazepines. Fur-

thermore, the treatment with acetylcholinesterase inhibitors can also help to

improve behavioural symptoms, which can be partially due to the cholinergic

deficit (Blennow et al., 2006).
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3.4.2 Modifying-Disease Drug Candidates

Due to the key role that Aβ plays in AD important efforts have been devoted

to inhibiting its production in the brain and increasing its clearance (Blennow

et al., 2006). This has led to several research lines, which are listed in the

following lines (Blennow et al., 2006).

Secretase Modulators

Secretases are enzymes that snip pieces off the APP. α-secretase enhances

the non-amyloidogenic pathway of the APP. Hence, one possible approach is

trying to stimulate this pathway in order to reduce Aβ production (Blennow

et al., 2006). On the other hand, β-secretase inhibitors have been developed

to reduce brain Aβ concentrations in AD transgenic mice (Blennow et al.,

2006; Cummings, 2004). Finally, the inhibition of the γ-secretase might be

another useful approach to decrease the amyloidogenic pathway of the APP.

Moreover, γ-secretase can be more easily modulated than β-secretase. Nev-

ertheless, there may be adverse effects when inhibiting γ-secretase (Blennow

et al., 2006).

Aβ Immunotherapy

The principle of Aβ immunotherapy is trying to provoke an immunoresponse

against the peptide deposits responsible for AD. This effect might be achieved

by antibodies for Aβ that bind to Aβ plaques and induce Aβ clearance by

microglia or bind soluble Aβ in the periphery, thus driving an Aβ efflux away

from the brain (Blennow et al., 2006). Clinical trials with active immunisa-

tion started a few years ago, but they had to be interrupted because 6% of

cases developed encephalitis (Blennow et al., 2006; Cummings, 2004). Cur-

rent research attempts at developing a second generation of immunotherapy

with reduced side-effects (Blennow et al., 2006).
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Aβ Fibrillisation Inhibitors

This research line study small peptides that interfere with Aβ-Aβ or Aβ-

APOE interactions to prevent Aβ fibrillisation. It has been found that two

peptides are able to reduce Aβ fibrillisation in vitro and brain Aβ load in

AD transgenic mice, without inducing an immune response (Blennow et al.,

2006). Some of these compounds are subject to clinical trials (Blennow et al.,

2006).

Inhibitors of the Hyperphosphorilation of Tau Protein

Drug candidates that reduce tau phosphorylation by inhibiting tau kinases

are in the preclinical phase (Blennow et al., 2006). However, since tau phos-

phorylation is regulated by the balance between multiple kinases and phos-

phates, inhibition of a single kinase might be insufficient to normalise tau

phosphorylation (Blennow et al., 2006).

3.4.3 Possible Drugs Based on Epidemiological Studies

Epidemiological studies have provided the theoretical foundations for several

treatment approaches. Observational studies have suggested a protective

effect of different types of drugs or supplements. Nevertheless, when tested in

randomised well-controlled clinical trials, beneficial effects have been difficult

to prove (Blennow et al., 2006). Some of these approaches are listed below.

Anti-Inflammatory Drugs

Inflammatory characteristics accompany the plaques in AD. Nevertheless, it

is unclear whether this inflammation has neurotoxic effects or only constitutes

a secondary reaction to Aβ deposition (Blennow et al., 2006). Epidemiolog-

ical studies indicate that the risk of this dementia is reduced in patients

treated with non-steroidal anti-inflammatory drugs, which, in some cases,

reduce brain Aβ burden in AD transgenic mice. Nevertheless, clinical trials

on anti-inflammatory drugs showed no effects on cognition in AD (Blennow

et al., 2006; Cummings, 2004). This can be due to the fact that these drugs
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might be protective only if given during mid-life, but will not reverse the

degenerative process in patients with established pathology (Blennow et al.,

2006).

Oestrogens

Epidemiological studies pointed out a link between reduced risk of dementia

and postmenopausal oestrogen supplementation (Doody et al., 2001; Reitz

and Mayeux, 2009). Additionally, animal studies suggested that oestrogens

could have beneficial effects on neuronal function (Blennow et al., 2006).

However, large well-controlled clinical trials have not shown a reduced

risk of the disease (Blennow et al., 2006). Moreover, it has been suggested

that therapy with a combination of oestrogens and progesterone may increase

the risk of AD (Samanta et al., 2006).

Antioxidants

Observational studies suggest that dietary intake of antioxidants (e.g., vi-

tamin E) could reduce the risk of the AD. It was found that vitamin E

supplementation showed only marginal effects on time to institutionalisation

and need of care in AD patients (Blennow et al., 2006; Doody et al., 2001).

However, another study found no link between this supplementation and the

rate of progression from MCI to AD (Blennow et al., 2006).

Cholesterol-Lowering Drugs

Several studies have been devoted to analysing the link between cholesterol

and AD. However, this topic is still open to question, as both reduced and

increased brain Aβ load has been reported when feeding AD transgenic mice

a high-cholesterol diet (Blennow et al., 2006). In the past, retrospective

studies suggesting that treatment with cholesterol-lowering drugs reduce the

incidence of the dementia and the brain Aβ load received much attention.

However, more recent studies have shown no association between the use of

such drugs and reduced risk of AD. Moreover, a recent study suggests that
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the relationship between cholesterol as a risk factor and AD may be more

complex than expected, if not even inconsistent (Purnell et al., 2009).

3.4.4 Orientation to caregivers

In the early stages of AD, the clinician should encourage health maintenance

activities, including exercise, the control of hypertension and other medical

conditions (Doody et al., 2001). In later phases of the dementia, it is im-

portant to address basic requirements such as nutrition, hydration, and skin

care (Cummings, 2004). Moreover, an alliance between the clinician and the

caregiver is essential in treating patients with AD (Cummings, 2004).

Caregivers are responsible for supervising patients, administering medi-

cation, implementing non-pharmacologic treatment, and promoting the pa-

tient’s general health, well-being and meaningful quality of life. Studies have

shown that caregivers of patients with this dementia rated their own health

as relatively poor (Cummings, 2004). Furthermore, they endured a greater

number of illnesses, had more somatic symptoms, depression and anxiety,

used more health care, and engaged in fewer preventive-health activities than

people who were not AD caregivers. Interventions such as self-help groups,

skill training, counselling and psychotherapy may help caregivers and reduce

their psychological distress, yet they have failed to reduce the caregiver’s

burden (Cummings, 2004; Doody et al., 2001; National Institute on Aging,

2008).
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This Chapter details the fundamentals of BSS techniques. After an in-

troduction about this topic and its utility, the classical techniques of PCA

and FA are explained for the sake of comparison with BSS. Then, the ba-

sic ideas beneath this set of techniques are presented, attending at the SOS

or HOS nature of the methods. The cBSS methodology is also considered.

Afterwards, the relationships among diverse algorithms are briefly reviewed.

Finally, the state of the art in the applications studied in this Doctoral Thesis

is detailed.

4.1 Introduction

The application of BSS in the field of biomedical signal processing has be-

come popular in the last years (James and Hesse, 2005; Onton et al., 2006;

Vigário and Oja, 2008). These techniques are helpful to separate multi-

channel biomedical recordings into their constituent underlying components

(James and Hesse, 2005; Vigário and Oja, 2008). Their use in biomedical

signal processing frequently involves the separation or extraction of statis-

tically independent sources underlying the multivariate recorded biomedical

signals (James and Hesse, 2005; Vigário and Oja, 2008).

As it was describe in Section 1.1, biomedical signal processing deals with

the recording and mathematical processing of informative signals derived

from living systems (Onaral, 2006). Although biomedical signals may origi-

nate from a wide variety of sources, we will focus on electromagnetic measure-

ments. Most often, the recorded signals are at least temporally or spatially

correlated (James and Hesse, 2005).

Additionally, the informative components of the signal may be contami-

nated with noise and artefacts making them difficult to observe by the naked

eye (Laguna and Sörnmo, 2009). That is, the recorded data contain measure-

ments of a finite set of separate but overlapping in space and time activities.

As a result, the SNR of the interesting signal is generally poor (James and

Hesse, 2005). While the clinicians may be able to visually extract the use-

ful information from the signals, it would be extremely helpful to automate

the analysis and isolate the constituent inner components of interest in the
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signals (James and Hesse, 2005).

BSS denotes a set of data-driven approaches whose aim is to extract a

set of underlying sources or components from a number of measurements or

random variables. Very frequently, the term ICA is also used to refer to

the BSS techniques that are strictly based on HOS and try to minimise the

statistical dependence of the data (Vigário and Oja, 2008). BSS techniques

define a generative model for the observed measurements and attempt to

estimate the inner components from a large set of observed, multivariate

recordings (James and Hesse, 2005).

A few strong general assumptions must be made about the data at hand

before applying the BSS algorithms and interpreting the results (James and

Hesse, 2005). The most important hypothesis is that the sources are mutu-

ally independent or, alternatively, that they are mutually decorrelated at any

time delay. BSS extracts the sources, or components, by exploiting this in-

dependence, or spatio-temporal decorrelation (Hyvärinen et al., 2001; James

and Hesse, 2005; Onton et al., 2006).

BSS is, indeed, a more powerful technique than classical decomposition

methods such as PCA and FA (Hyvärinen et al., 2001; James and Hesse,

2005). For instance, the aim of PCA is to find temporally orthogonal direc-

tions that each successively explain as much of the remaining data variance

as possible, where BSS tries to find directions in the joint data whose activ-

ities are as distinct from one another as possible. For this reason, PCA will

lump whilst BSS will split the source activities across the resultant signal

components (Onton et al., 2006).

The most well-known BSS algorithms were developed about 10 to 15

years ago (Cichocki and Amari, 2002; Comon, 1994; Hyvärinen et al., 2001).

Soon after their development, these techniques were applied to diverse fields,

including the study of cardiac and neurophysiologic recordings (James and

Hesse, 2005).

One of the most fruitful applications of BSS algorithms is the artefact

rejection in EEG and MEG recordings. This is based on the hypothesis that

the artefacts are independent from the brain activity (James and Hesse, 2005;

Onton et al., 2006). Thus, the artefactual activity can be isolated into a few
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BSS components (Barbati et al., 2004; Cichocki and Amari, 2002; Delorme

et al., 2007; Escudero et al., 2007b; Ting et al., 2006; Vorobyov and Cichocki,

2002). Nonetheless, this is not the only application of BSS to brain activity.

These techniques have also been used to extract specific brain activity (Hung

et al., 2007; Jarchi et al., 2009; Jin et al., 2002; Kobayashi et al., 1999).

In spite of those and other successful applications, certain ambiguities

exist in the BSS model and that the results must be interpreted carefully

(James and Hesse, 2005). Hence, it is important to know the fundamentals

of BSS techniques to be able to properly apply these techniques and interpret

the results.

4.2 Classical Projection Techniques

BSS techniques tend to produce more reliable and meaningful decompositions

of multi-channel signals than classical decomposition methods, such as PCA

and FA (James and Hesse, 2005). This is due to the principle of independence

(or time-spatial decorrelation) beneath the former type of methods (James

and Hesse, 2005). Nevertheless, the latter techniques are commonly applied

as a preprocessing stage before the actual BSS algorithms (James and Hesse,

2005). Furthermore, some ideas and techniques are shared by PCA, FA and

BSS (Cichocki and Amari, 2002; Hyvärinen et al., 2001). Hence, the classical

methods of PCA and FA are briefly introduced in this Section.

4.2.1 Principal Component Analysis

PCA is one of the oldest and most well-known techniques in multivariate

analysis and data-mining (Cichocki and Amari, 2002). Its objective is to

find orthogonal directions that successively explain as much data variance as

possible (Onton et al., 2006). This means that it tries to derive a relatively

small number of decorrelated linear combinations (i.e., principal components)

whilst retaining the maximum of the original variance (i.e., it attempts to

reduce the data redundancy; Cichocki and Amari, 2002; Hyvärinen et al.,

2001). It is used in data decomposition, classification, filtering and whitening,
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which is a frequent preprocessing step in connection with BSS (Hyvärinen

et al., 2001; Sanei and Chambers, 2007).

It is important to note that PCA, as well as FA and BSS, produce a

transformation which depends on the data themselves. PCA is characterised

by being efficient in terms of energy compaction (Hyvärinen et al., 2001;

Sanei and Chambers, 2007). Usually, the principal components with the

largest variance are supposed to have important signal information, whereas

those with the smallest variance tend to be associated with noise (Cichocki

and Amari, 2002).

The solution of PCA is based on the eigenstructure of the data covariance

matrix by computing its eigenvectors and eigenvalues (Cichocki and Amari,

2002). Let x (t) = [x1 (t) , x2 (t) , . . . , xm (t)]T denote a multidimensional sig-

nal composed of m simultaneous measurements at a particular time instant t.

Here T denotes transposition. For the sake of simplicity, x (t) is supposed to

have zero mean but no other explicit assumptions on the probability distri-

butions of the data are made in PCA (Hyvärinen et al., 2001). PCA is based

on computing the eigenvectors and eigenvalues of the estimated covariance

matrix, C0
xx, following (Cichocki and Amari, 2002):

C0
xx = E

{
x (t) xT (t)

}
= VΛVT ∈ <m×m, (4.1)

where Λ = diag {λ1, λ2, . . . , λm} is a diagonal matrix with the m eigenval-

ues sorted in descending order and V = [v1,v2, . . . ,vm] ∈ <m×m is the

corresponding unitary matrix containing the principal eigenvectors. It is im-

portant to note that all random variables are assumed to have zero mean (Ci-

chocki and Amari, 2002).

The n first principal components of x (t), which are denoted as yP (t) =

[y1 (t) , y2 (t) , . . . , yn (t)]T, are computed using the following linear transfor-

mation (Cichocki and Amari, 2002):

yP (t) = VT
nx (t) , (4.2)

where Vn = [v1,v2, . . . ,vn] ∈ <m×n is the subset of the first n eigenvectors.
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The principal components yi are mutually uncorrelated and that their vari-

ances are the corresponding eigenvalues of the decomposition (Cichocki and

Amari, 2002; Hyvärinen et al., 2001).

A central issue in PCA is the selection of the number of principal com-

ponents to be retained (Cichocki and Amari, 2002; Hyvärinen et al., 2001).

Since the principal components are characterised by retaining the maximum

variance of the data, the usual approaches set a threshold in the sequence of

eigenvalues that allows to divide them into the ‘signal’ and ‘noise’ subspaces

of the data (Cichocki and Amari, 2002). However, this criterion may pose

some problems when applied to brain recordings as a preprocessing step pre-

vious to a BSS, as it will be shown in Section 4.3.2 (Escudero et al., 2007b;

James and Hesse, 2005).

It is remarkable that the estimation of the inner components in the BSS

(or ICA) problem is often greatly simplified if the observed mixture vectors

are first whitened (or sphered). A zero-mean random vector is ‘white’ if its

elements zi are uncorrelated and have unit variances:

E {zizj} = δij, (4.3)

which is equivalent to

E
{
zzT
}

= I, (4.4)

where I is the unitary matrix (Hyvärinen et al., 2001).

PCA is helpful to whiten the data, which can be achieved, for instance,

by means of:

z = Qx, (4.5)

with

Q = Λ−1/2VT, (4.6)

where Λ−1/2 = diag
{
λ
−1/2
1 , λ

−1/2
2 , . . . , λ

−1/2
m

}
and λi and V were defined in

Eq. (4.1) (Hyvärinen et al., 2001).
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4.2.2 Factor Analysis

Although PCA does not assume any particular statistical model for the

data, it can also be derived from the following generative latent model of

FA (Hyvärinen et al., 2001):

x = Az + n, (4.7)

where z is gaussian, zero-mean and white (i.e, E
{
zzT
}

= I) and n represents

zero-mean gaussian white noise.

Assuming this model, if z is gaussian, so is x. In this case, the likelihood

function can be formulated and the rows of A can be estimated from the

maximum likelihood solution when the noise power tends to zero (Hyvärinen

et al., 2001). This approach, which is called principal factor analysis, is one

of the methods for the statistical technique FA. Nevertheless, the goal in

FA is usually different from that of PCA. FA generally tries to find relevant

and meaningful factors able to explain the observations x using the model

(4.7) instead of to reduce the redundancy in the data. In the FA case, the

elements of A are the factor loadings whereas n is usually interpreted as

vector of specific factors instead of noise (Hyvärinen et al., 2001).

Let us assume that the variances of z can be incorporated into A and

that the elements of n are uncorrelated with each other and with the factors

z. Hence, Ψ = E
{
nnT

}
is a diagonal matrix without restrictions on the

values of the elements in the diagonal: ψii. The covariance matrix of the

observations x is given by (Hyvärinen et al., 2001):

E
{
xxT

}
= C0

xx = AAT + Ψ. (4.8)

Unfortunately, there is no close analytic solution for A and Ψ (Hyvärinen

et al., 2001).

Nevertheless, if an estimation of Ψ is available, one might try to find A

from:

AAT =
(
C0

xx −Ψ
)
. (4.9)

However, Eq. (4.9) cannot be solved exactly either due to the fact that the
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number of factors (n) is constrained to be smaller than the number of original

dimensions in the data (m). Therefore, a least-square approach can be used.

Nevertheless, this solution is not unique since any orthogonal transformation

or rotation A→ AT, with TTT = I, will also produce (C0
xx −Ψ) (Hyvärinen

et al., 2001). Thus, additional constraints, typically in the form of sparsity

in the mixing matrix, are taken (Hyvärinen et al., 2001).

4.2.3 Differences Among PCA, FA and BSS

At this point, it may be convenient to clarify some key differences between

these classical projection techniques, PCA and FA, and BSS.

First of all, PCA does not assume any generative model of the data, al-

though it can be derived from one. Additionally, only if all the principal

components are retained, the PCA is a completely invertible linear transfor-

mation of the data (Hyvärinen et al., 2001).

Additionally, FA does assume a generative latent variable model, but the

values of the factors cannot be directly calculated from the observations due

to the term of specific factors, or noise, n (Hyvärinen et al., 2001). The rows

of A are not directly given by the eigenvectors of C0
xx (Hyvärinen et al.,

2001).

Finally, both FA and PCA rely on the covariance of the observed variables

at time lag τ = 0 to estimate the components or factors (Hyvärinen et al.,

2001). On the other hand, BSS methods have an underlying generative model

similar to that of FA but they remove the rotational redundancy of the FA

model by imposing the independence of non-gaussinan variables or using the

temporal structure of the data (Hyvärinen et al., 2001; James and Hesse,

2005).

To sum up, BSS techniques can be seen as an extension of PCA and

FA which is capable of finding the inner factors in situations where those

techniques fail (Hyvärinen et al., 2001). The differences in the outputs of

this variables are illustrated in Fig. 4.1, which shows two mixed random

variables with uniform distributions and the outcome of a PCA and an ICA.
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Figure 4.1: Example of the differences between PCA and ICA. The scale of
the plots is arbitrary. (a) Mixed random variables with uniform distribution.
(b) PCA. (c) ICA.

4.3 BSS Fundamentals

The concept of BSS refers to a set of statistical and computational tech-

niques for revealing hidden components that underlie sets of random vari-

ables, measurements or signals (Hyvärinen et al., 2001). Here, source refers

to an original signal while blind indicates that very little, if any, information

is known about the mixing process of those sources (Hyvärinen et al., 2001).

BSS defines a generative model of the observed data and tries to estimate

the constituent inner components assuming that they are independent of

each other (Hyvärinen et al., 2001). A set of variables is strictly independent

from a statistical point of view if its joint probability distribution, pX (x) is

the product of the marginal distributions, px (xi) (Comon, 1994; Sanei and

Chambers, 2007):

pX (x) =
∏
i

px (xi) . (4.10)

However, the actual probability distributions are exceedingly difficult to esti-

mate. Thus, alternative approaches must be taken (Hyvärinen et al., 2001).
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4.3.1 Model and Validity of the Assumptions

The problem that BSS techniques (Cichocki and Amari, 2002; Hyvärinen

et al., 2001) attempt to solve is stated in the following lines. Likewise Sec-

tion 4.2.1, let the m-dimensional vector x (t) = [x1 (t) , x2 (t) , . . . , xm (t)]T

denote a set of m data samples at a particular time instant t. x (t) is sup-

posed to be a combination of n underlying, inner components, or sources,

s (t) = [s1 (t) , s2 (t) , . . . , sn (t)]T. In the simplest case, the mixing process is

assumed to be linear and the external noise is disregarded, which leads to:

x (t) = As (t) , (4.11)

where A is a full rank m×n mixing matrix. Additionally, it is assumed that

m ≥ n (Hyvärinen et al., 2001; James and Hesse, 2005; Vigário and Oja,

2008).

BSS algorithms compute an estimation, ŝ (t), where ˆ denotes an esti-

mated variable, of the real underlying components s (t) from the measure-

ments x (t) by means of:

ŝ (t) = Bx (t) , (4.12)

where B is the estimated separating, or de-mixing, matrix, which is the

pseudo-inverse of A (Cichocki and Amari, 2002; Hyvärinen et al., 2001).

The model presented in Eq. (4.11) is actually a simplification made for the

ease of implementation (Cichocki and Amari, 2002; James and Hesse, 2005).

A more general mixing model would include non-linearity in the system and

external noise, resulting in:

x (t) = f [s (t)] + n (t) , (4.13)

where f [·] denotes a function and n (t) is the additive external noise (James

and Hesse, 2005).

Some assumptions are needed to tackle the estimation of the inner com-

ponents if no information is available about f [·], s (t) or n (t) (Cichocki and

Amari, 2002; Hyvärinen et al., 2001). Hence, the following hypotheses, which

are feasible in most biomedical signal processing applications, are assumed to
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make the problem more tractable (James and Hesse, 2005; Sanei and Cham-

bers, 2007).

Instantaneous Linear Mixing

The assumption of linear mixing is essential to simplify the model. This

transform Eq. (4.13) into:

x (t) = As (t) + n (t) . (4.14)

The linear and instantaneous mixing hypothesis implies that the recorded

measurements are a superposition of attenuated sources at each channel (Ci-

chocki and Amari, 2002; James and Hesse, 2005). This assumption holds for

electromagnetic brain signals, where the signals have narrow bandwidths and

the sampling frequency is relatively low (Sanei and Chambers, 2007). Never-

theless, it may pose problems for other kind of signals, such as sound signals

measured via microphones, which may involve convolutive mixtures (James

and Hesse, 2005; Sanei and Chambers, 2007).

Stationary Mixing

This is another common hypothesis. It consists of assuming that the mixing

matrix A does not change with time (Cichocki and Amari, 2002; Hyväri-

nen et al., 2001). This implies that the physical properties of the mixing

process remain stable. For instance, this hypothesis may not hold when

ECG is recorded on chest electrodes which move over time due to breath-

ing (James and Hesse, 2005). Fortunately, the situation for electromagnetic

brain recordings is simpler. For these signals, the assumption of a stationary

mixing matrix can be interpreted as the biophysical structure of the brain

itself is fixed while the sources that are activated within this structure may

change their intensity over time (James and Hesse, 2005; Onton et al., 2006).
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Independence and Temporal Decorrelation

The most important assumption made in BSS is that the sources are mutu-

ally statistically independent or, alternatively, that they are decorrelated at

any time delay (Cichocki and Amari, 2002). This is a stronger assumption

than mere uncorrelatedness at time lag zero. While statistically independent

sources are necessarily uncorrelated, the converse does not hold (Hyvärinen

et al., 2001).

As is was shown in Eq. (4.10), the general condition for two random

variables to be statistically independent is that their joint distribution equals

the product of their marginal probability functions (Comon, 1994; Hyvärinen

et al., 2001; James and Hesse, 2005). This implies that independent variables

are not only uncorrelated at time lag zero but also that they have no higher

order correlations and that they are uncorrelated for any time lag (Cichocki

and Amari, 2002). This hypothesis is quite plausible in some situations

(James and Hesse, 2005). For instance, artefacts in EEG and MEG signals

can be considered independent from the brain activity (Vigário and Oja,

2008).

It is important to notice that the algorithms based on the statistical

independence require all components but one to have non-gaussian proba-

bility distributions. This need for non-gaussian probability distributions can

be intuitively justified considering the Central Limit Theorem (Hyvärinen

et al., 2001). Briefly, this theorem states that the distribution of a sum

of independent random variables tends towards a gaussian distribution un-

der certain conditions. Thus, it can be hypothesised that a sum of two or

more independent random variables is often more gaussian than any of the

original variables and that, when looking for the components of this sum,

the least gaussian estimated component is likely to be an actual original

source (Hyvärinen et al., 2001).

On the other hand, in order for the methods based on the temporal struc-

ture of the data to work properly, the sources must have different frequency

spectra so that their temporal structure capture by a set of covariances ma-

trices differs (Hyvärinen et al., 2001).
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Justification of the Previous Assumptions

The main assumptions of linear, instantaneous and stationary mixing process

have been validated for EEG and MEG recordings (Cichocki and Amari,

2002; Hyvärinen et al., 2001; James and Hesse, 2005; Vigário and Oja, 2000,

2008).

The hypothesis that mixing process is linear and instantaneous is sup-

ported by the Maxwell Equations (Hyvärinen et al., 2001; Vigário and Oja,

2000, 2008). This is due to the fact that the quasi-static approximation is

valid as the spectral content of the signals lies below 1 kHz (Hämäläinen

et al., 1993).

The stationarity of the mixture can be justified since the populations of

neurons do not move in relation to the sensors (Vigário and Oja, 2008). In

some cases, there exists rapid cortical signal propagation. This violates the

stationarity assumption (Vigário and Oja, 2008). Nevertheless, a set of mul-

tiple consecutive stationary components may be considered instead (Vigário

and Oja, 2008).

It is clear that the different nature and origin of artefacts and brain signals

justifies the important assumption of independence in this case (Vigário and

Oja, 2008). Within brain activity, the independence assumption is consis-

tent with the fact that cortex is organized into compact regions of specialized

function (Onton et al., 2006). Consider the fact that the density of long-range

cortical connections is low compared with the density of local connections.

Thus, it can be hypothesised that, over sufficient time, locally synchronous

activities within particular regions of the cortex are, indeed, nearly tem-

porally independent of each other. Hence, they may be viewed as single,

distinct, temporally independent sources of activity (Onton et al., 2006). On

the other hand, locally synchronized activities in a pair of cortical regions

that are densely connected to each other may form a single effective source

(Onton et al., 2006). Therefore, the recorded brain activity may be modelled

as a sum of distinct, nearly-independent, signals (Onton et al., 2006).
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Further Assumptions: Noiseless and Square Mixing

Some other assumptions can be made in order to further simplify the problem.

However, these are more problematic in the context of electromagnetic brain

signal analysis (James and Hesse, 2005):

• Noiseless mixing. A commonly made assumption is that the observa-

tions x (t) are noiseless or, at least, that the power of the external noise

vector n (t) is negligible (Hyvärinen et al., 2001; James and Hesse, 2005;

Vigário and Oja, 2008). Thus, Eq. (4.14) becomes Eq. (4.11). This hy-

pothesis is not realistic from the point of view that biomedical record-

ings are always measured with some additive noise. Nevertheless, this

assumption still allows the techniques to decompose the signals even if

the actual separate components themselves are contaminated by some

measurement noise (James and Hesse, 2005).

• Square mixing. The general model for BSS assumes that m ≥ n. Thus,

A may be non-square (Cichocki and Amari, 2002; James and Hesse,

2005). Actually, from a physiological point of view, it is likely that

the number of significant inner meaningful components (n) is less than

the number of measured channels, m (James and Hesse, 2005). Never-

theless, many BSS algorithms assume that the number of components

is equal to the number of recorded signals (m = n). This simplifies

the decomposition problem (Hyvärinen et al., 2001; James and Hesse,

2005). Nevertheless, high-density measurements are sometimes made

during short time periods. In these cases, this assumption is less likely

(James and Hesse, 2005). Due to this reason, dimensionality-reduction

techniques are usually applied as a preprocessing before the BSS tech-

niques (James and Hesse, 2005; Vigário and Oja, 2008).

4.3.2 Limitations of BSS

Despite the increasing popularity of BSS techniques in the biomedical signal

processing field, it is important to recall that these techniques make a few

strong, but plausible, assumptions about the data. Hence, careful attention
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must be paid to the fulfilment of these hypotheses and to the interpretation of

the results (James and Hesse, 2005). It is also necessary to consider whether

the data at hand are suitable to be fed into a particular kind of BSS algorithm

or whether some preprocessing is needed (Hyvärinen et al., 2001). To sum

up, the application of BSS techniques as ‘black-box’ method may degrade the

quality of the results (James and Hesse, 2005). Therefore, some limitations

foreseen in the application of BSS techniques to biomedical recordings are

presented in this Section.

Ambiguities

It must also be noticed that, due to the fact that neither A nor s (t) are

known, some ambiguities appear in the BSS decomposition (Comon, 1994;

James and Hesse, 2005). These indeterminacies are not insurmountable,

thought. They do not pose serious limitations on the accuracy and appli-

cability of the BSS analysis (James and Hesse, 2005; Sanei and Chambers,

2007). They are the following:

• Neither the energies nor signs of the components can be computed. The

reason is that, both s (t) and A being unknown, any scalar multiplier in

the one of the sources, si can always be cancelled by dividing the corre-

sponding column ai of A by the same scalar (Comon, 1994; Hyvärinen

et al., 2001). To solve this ambiguity, either each component com-

puted in ŝ (t) or every column of the estimated mixing matrix Â may

be normalised to, for example, unit variance and the remaining factor

may be incorporated into the corresponding term (James and Hesse,

2005). Thus, neither the sign of the scalp maps nor the sign of the ac-

tivations are meaningful in themselves, but only their product, which

determines the sign of the signal acquired at each scalp channel (Onton

et al., 2006).

• There is no fixed ordering between the sources a priori. The reason

is the following. Again, both s (t) and A are unknown. Hence, it is

possible to change the order of the terms in Eq. (4.11) using a permu-

tation matrix P to give x = (AP−1) (Ps) (Comon, 1994; Hyvärinen



4.3. BSS Fundamentals 93

et al., 2001). However, the components may be ranked a posteriori

following any particular suitable criterion, such as their power (James

and Hesse, 2005), temporal structure (Vorobyov and Cichocki, 2002)

or spectral content (Escudero et al., 2008d, 2009b).

Interpretation

Despite the fact that the previous ambiguities do not pose insoluble problems

in the analysis of the BSS results, caution should always be taken in their

interpretation (James and Hesse, 2005).

First of all, it should be noted that the BSS components are not neces-

sarily equivalent current dipoles or fMRI activated zones. Instead, they are

concurrent, spatially and temporally decorrelated electromagnetic activities

which were added over the scalp to originate the measured recordings (Ci-

chocki and Amari, 2002; Vorobyov and Cichocki, 2002).

Secondly, the real components underlying the measured recordings are

almost never known in biomedical signal processing applications. Therefore,

the interpretation of the results may sometimes be based on subjective cri-

teria related to the expected outcomes of the analysis (James and Hesse,

2005).

Finally, HOS-BSS techniques are regarded as very helpful in finding arte-

facts in EEG and MEG signals, but Hyvärinen et al. (2010) have suggested

that they are less so in finding components related to brain activity. This

might be due to the fact that ICA looks for components with maximum non-

gaussian distributions, while the ‘interesting’ sources in EEG and MEG are

sometimes not very far from gaussian (Hyvärinen et al., 2010). Another sug-

gested problem may be the implicit assumption that each oscillatory source

is observed in all the channels at the same phase (or with π radian phase

shift). This is true for a single current dipole source but it may not be the

case for more distributed sources (Hyvärinen et al., 2010).
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Model Order Selection

As for the restriction m ≥ n, it is obvious that the total number of possible

cortical activity generators far exceeds the number of channels recorded in

EEG or MEG. Yet, brain activity can only be measured over the scalp if

post-synaptic activity from millions synapses is synchronously active. As a

consequence, the number of effective sources is considerably small in compar-

ison with the number of channels in the EEG and, specially, MEG equipment

(Hesse, 2008; Vigário and Oja, 2008). Thus, the selection of model order (n)

may be a challenging task in the case of MEG recordings, where hundreds

of channels are simultaneously recorded (James and Hesse, 2005). Despite

the attention that BSS has received in recent years, the correct estimation of

this parameter has been somewhat disregarded considering that an accurate

estimation of n can have major impact on the quality of the decomposi-

tion (James and Hesse, 2005).

Therefore, it can be useful to apply a dimensionality reduction before

BSS. Firstly, when high-density recording equipment is used, the number

of macroscopic inner components may be less than the number of available

channels for analysis (Ikeda and Toyama, 2000; James and Hesse, 2005).

Secondly, a dimensionality reduction can sometimes be needed to avoid

‘overfitting’ or ‘overlearning’ (Hyvärinen et al., 2001; Vigário and Oja, 2008),

which can lead to the extraction of meaningless components (James and

Hesse, 2005). ‘Overfitting’ may occur if a too high value is assigned to n.

This would imply that the number of free parameters in the model is too

high in comparison with the available sample size (Hyvärinen et al., 2001;

James and Hesse, 2005; Vigário and Oja, 2008). ‘Overfit’ components of HOS

techniques have a single spike or bump and are practically zero everywhere

while for SOS algorithms they are characterised by various periodic solutions,

mostly sinusoidal (Vigário and Oja, 2008).

Finally, it must be considered that computing the BSS with fewer com-

ponents than the optimal value will result in some or all of the extracted

components summing activity from more than one underlying source. Nev-

ertheless, even in this case, the algorithms should efficiently produce mixtures
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with minimal mutual information (Onton et al., 2006). Additionally, the di-

mensionality reduction helps to diminish the importance of the outer noise

if this is considered in the model (Ikeda and Toyama, 2000).

Usually, the dimensionality reduction is performed by standard PCA

(Hyvärinen et al., 2001; James and Hesse, 2005). The number of sources

is supposed to be equal to the number of dominant eigenvalues, which is

defined as the number of them that account for a certain fraction of the total

observed variance (for example, 95% or 99%) or the number of eigenvalues

with a contribution larger than a threshold (for instance, 1%) to the total

variance (Hesse, 2008; Hyvärinen et al., 2001; James and Hesse, 2005; Ting

et al., 2006). However, this approach has some major drawbacks. First of all,

this criterion involves some arbitrariness and there is no theoretical guide-

lines supporting one choice or another (Hyvärinen et al., 2001; James and

Hesse, 2005). Moreover, it assumes that the power of the additive is close to

zero (Hyvärinen et al., 2001), something that may not be true in un-averaged

MEG data (Cao et al., 2003; Hesse, 2008).

To overcome this problem, the eigenvalue spectrum may be split into ‘sig-

nal’ and ‘noise’ subspaces by a power threshold (Cichocki and Amari, 2002;

Hyvärinen et al., 2001). Then, the external noise power is estimated from

the noise subspace and it is subtracted from the signal subspace (Barbati

et al., 2004; Hesse, 2008; Ting et al., 2006). However, this method assumes

that all MEG channels have the same noise power, and it retains the afore-

mentioned subjectivity. Moreover, there is no a priori reason to suppose that

the sources of interest are contained in the signal subspace spanned by the

dominant principal components (James and Hesse, 2005).

4.4 Second Order Statistics Methods for BSS

There are different approaches to perform the BSS of multi-dimensional time

series (Cichocki and Amari, 2002; Hyvärinen et al., 2001). Whereas some

methods are based on HOS of the source waveform distribution (commonly

known as ICA; Vigário and Oja, 2008), other consider the temporal (i.e., spec-

tral) structure of the signals and are known as SOS-based techniques (James
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and Hesse, 2005).

The assumption that the components are independent implies that they

have no spatial temporal or spatial time-frequency correlations (James and

Hesse, 2005). Hence, it is possible to capture the temporal dependency of

the measurements using a stack of square matrices to, afterwards, estimate

the de-mixing matrix of the BSS model as the approximate joint diagonaliser

of the stack (James and Hesse, 2005). Actually, these techniques are able to

estimate the model where methods based on HOS fail since, for example, the

sources are correlated over time but gaussian (Hyvärinen et al., 2001).

4.4.1 Fundamentals

The simple zero-lagged covariance does not contain enough information to

estimate the independent sources. Actually, diagonalising this covariance

produce white, but not independent, signals (Hyvärinen et al., 2001). How-

ever, the matrices A in Eq. (4.11) and B in Eq. (4.12) can be estimated if

the temporal structure is taken into account in the form of a set of lagged

covariances (Hyvärinen et al., 2001).

The simplest type of time structure is given by autocovariances. Let Cτ
xx

be the τ -th covariance matrix of the measurements x (t), that is, Cτ
xx =

E
{

x (t) x (t− τ)T
}

. Likewise, Cτ
ss is the τ -th covariance matrix for the

components s (t). In this formulation, τ indicates a matrix in the stack and

represents the time lags (τ = 0, 1, 2, . . . , L) at which the cross-covariances

were computed (James and Hesse, 2005). All random variables and signals

are assumed to have zero mean.

They are related to each other via:

Cτ
xx = ACτ

ssA
T, (4.15)

where A represents the mixing matrix as in Eq. (4.11) (James and Hesse,

2005). Therefore, the covariance of the components is obtained from Cτ
xx

with the inversion:

Cτ
ss = BCτ

xxBT, (4.16)
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where B is the de-mixing matrix (James and Hesse, 2005).

The most common approach is to estimate the de-mixing matrix (B)

first. This is based on the idea that Cτ
ss must be diagonal. Thus, B can be

estimated so that the matrix BCτ
xxBT is as diagonal as possible (James and

Hesse, 2005), where the matrix ‘diagonality’ may be quantified, for example,

as the weight of the off-diagonal elements (James and Hesse, 2005). These

methods require the components to have unique power spectra (Cichocki and

Amari, 2002). On the other hand, they can deal with with gaussian sources

and they are robust in the presence of white noise (James and Hesse, 2005;

Sanei and Chambers, 2007).

Actually, this approach is conceptually simple. It was originally proposed

for only two time lags on the basis of two consecutive eigenvalue decompo-

sitions, resulting in the Algorithm for Multiple Unknown Signals Extrac-

tion (AMUSE) which is described in Section 4.4.2 (Tong et al., 1991). This

methodology can be extended to several time lags, although in this cases

iterative techniques must be used, such as in the Second-Order Blind Iden-

tification (SOBI) algorithm introduced in Section 4.4.3 (Belouchrani et al.,

1997; Ziehe and Muller, 1998).

4.4.2 AMUSE

In the simplest case, only two time lags are considered. AMUSE is a very

simple algorithm which cancels the instantaneous covariances at those time

lags (Hyvärinen et al., 2001; Tong et al., 1991). Since only two time delays are

considered, its computational complexity is low (Cichocki and Amari, 2002).

Furthermore, AMUSE always offers the same separation when it is applied

to the same input data set and it orders the components by decreasing linear

predictability (Cichocki et al., 2005).

First of all, AMUSE decorrelates the signals at τ0 = 0 by applying a PCA

to the input data, x (t). The result is a whitened signal (Cichocki and Amari,

2002; Hyvärinen et al., 2001; Tong et al., 1991). This whitening process can

be done by:

z (t) = Qx (t) , (4.17)
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where Q = [C0
xx]
−1/2

(Escudero et al., 2008d, 2009b).

Afterwards, the signals are decorrelated at another time delay, τ1 (usually

τ1 = 1 sample; Cichocki and Amari, 2002; Escudero et al., 2009b; Hyvärinen

et al., 2001; Ting et al., 2006). A time-delayed covariance matrix is computed

as Cτ1
xx = E

{
x (t) x (t− τ1)T

}
and the eigenvalue decomposition of:

C̄τ1
xx =

Cτ1
xx + Cτ1

xx
T

2
(4.18)

is calculated (Cichocki and Amari, 2002; Escudero et al., 2008d, 2009b).

If Vτ1 denotes the eigenmatrix computed from this decomposition, the

demixing matrix B is estimated as (Tong et al., 1991):

B = VT
τ1

Q. (4.19)

As it has been described, AMUSE consists of a whitening process followed

by a singular value decomposition. Thus, the computational complexity of

this algorithm is low (Cichocki et al., 2005; Hyvärinen et al., 2001). However,

this method requires the eigenvectors of C̄τ1
xx to be uniquely defined, which

might restrict the applicability of this method (Hyvärinen et al., 2001).

4.4.3 SOBI

An extension of the AMUSE technique that improves the quality of the

separation is to consider more than two several time lags: τ = 0, 1, 2, . . . , L.

In this way, it is enough that the components’ covariances for one of those

time lags are different to estimate the components (Hyvärinen et al., 2001).

However, the simultaneous diagonalisation of the corresponding covariance

matrices cannot be computed exactly (Belouchrani et al., 1997; Hyvärinen

et al., 2001; James and Hesse, 2005).

The matrices Cτ
ss must be diagonal. Therefore, B is estimated so that

those matrices are as diagonal as possible (Belouchrani et al., 1997; James

and Hesse, 2005). The ‘diagonality’ of a matrix M can be measured with the
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operator (Belouchrani et al., 1997; Hyvärinen et al., 2001):

off (M) =
∑
i 6=j

|mij|2 . (4.20)

Hence, the sources are estimated by minimising the sum of the off-diagonal

elements of several lagged covariances of y = Wz, where z represents the

already whitened signals. This leads to the following objective function, J ,

where S denotes the set of considered time lags, τ (Belouchrani et al., 1997;

Hyvärinen et al., 2001):

J (W) =
∑
τ∈S

off
(
WC̄τ

zzW
T
)
, (4.21)

with C̄τ
zz computed as in Eq. (4.18) (Hyvärinen et al., 2001).

The estimation method consists of minimising J under the constraint

that W is orthogonal. This is the principle of SOBI (Belouchrani et al.,

1997).

It must be noted that, if the components have identical autocovariances

(i.e., identical power spectra), they cannot be estimated by either AMUSE or

SOBI (Hyvärinen et al., 2001). This contrasts to HOS methods, which allow

the components to have identical power spectra or even equal distributions

as long as they are non-gaussian (Hyvärinen et al., 2001).

4.5 Higher Order Statistics Methods for BSS

Other algorithms employ HOS to solve the BSS problem, an approach usually

known as ICA. This methodology assumes that the recordings x (t) are obser-

vations of random variables linearly mixed through A, where the temporal

structure is irrelevant (Cichocki and Amari, 2002; Hyvärinen et al., 2001;

James and Hesse, 2005). Thus, these are the only methods that can be ap-

plied to purely random variables without any temporal structure (Hyvärinen

et al., 2001).

The probability distributions of the sources must be non-gaussian. This



100 Chapter 4. Blind Source Separation

procedure relies on the Central Limit Theorem: sums of non-gaussian random

variables are closer to gaussian than the original ones (Hyvärinen et al., 2001).

Hence, searching for non-gaussian sources is equivalent to searching for more

independent sources (Hyvärinen et al., 2001; James and Hesse, 2005).

It must be borne in mind that these methods will provide successful

decomposition only if all independent sources but one have non-gaussian dis-

tributions (Hyvärinen et al., 2001; James and Hesse, 2005). Despite this

limitation, this approach is exceedingly popular in the biomedical signal pro-

cessing field and some of the most commonly employed BSS techniques imple-

ment it: Hyvärinen–Oja’s FastICA Algorithm (FastICA), Bell & Sejnowski’s

Information Maximisation Algorithm (InfoMax) and Joint Approximate Di-

agonalization of Eigenmatrices (JADE).

4.5.1 Fundamentals

These techniques assess the independence of the estimated components re-

lying on statistics such as kurtosis and negentropy (Hyvärinen et al., 2001).

Therefore, these metrics will be introduced in the following lines.

The kurtosis, kurt (·), is the fourth-order cumulant of a random variable

and can be computed as (Hyvärinen et al., 2001):

kurt (x) = E
{
x4
}
− 3

(
E
{
x2
})2

. (4.22)

Kurtosis can be either positive or negative. The random variables as-

sociated with positive and negative kurtoses are called supergaussian and

subgaussian, respectively (Hyvärinen et al., 2001). Supergaussian random

variables typically have a ‘spiky’ probability distribution with heavy tails,

whereas subgaussian ones tend to be ‘flat’ with small tails (Hyvärinen et al.,

2001). Thanks to the fact that kurtosis is identically zero for gaussian dis-

tributed signals, maximising the magnitude of this cumulant is equivalent to

make the inner components as non-gaussian (i.e., as independent) as possi-

ble (James and Hesse, 2005).

Negentropy in a statistic based on the concept of differential entropy

(Hyvärinen et al., 2001). Negentropy, J (x), is zero only for a gaussian vari-
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able and always non-negative. It is defined as (Comon, 1994; Hyvärinen

et al., 2001):

J (x) = H (xgauss)−H (x) , (4.23)

where H (·) represents the entropy of a variable and xgauss is a gaussian

random vector with the same covariance matrix, C0
xx, as x. It is impor-

tant to note that negentropy is invariant for invertible linear transformations

and that, for a standardised random variable, the following approximation

holds (Hyvärinen et al., 2001, p. 115):

J (x) ≈ 1

12
E
{
x3
}2

+
1

48
kurt (x)2 , (4.24)

which gives an idea of its utility as a non-gaussianity measure.

4.5.2 FastICA

FastICA (Hyvärinen, 1999; Hyvärinen and Oja, 1997) tries to decompose the

signals on the basis of their non-gaussianity (Hyvärinen et al., 2001). It is a

fast fixed-point iterative algorithm which searches projections that maximize

the non-gaussianity of components by their kurtosis (Hyvärinen and Oja,

1997).

The simplest cost function for an algorithm based on the kurtosis, J (W),

is defined as (Sanei and Chambers, 2007):

J (W) = −1

4
|kurt (y)| = −β

4
kurt (y) , (4.25)

where y is an estimated component and β is the sign of the kurtosis (Sanei

and Chambers, 2007).

This cost function can be minimised using the standard gradient descent

approach, which leads to:

W (k + 1) = W (k)− µ ∂J (W)

∂W

∣∣∣∣
W(k)

= W (k) + µ (k)ϕ (y (k)) x (k) ,

(4.26)

where µ (k) is the learning rate and φ (y (k)) depends on the second, third and
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fourth order moments of y (Sanei and Chambers, 2007). Since this algorithm

extracts one source at a time, a deflationary process must be followed to

exclude the extracted source from the remaining mixtures (Hyvärinen, 1999).

This kind of gradient descent approach enables a fast adaptation in a

non-stationary environment. However, its convergence is slow and depends

on a good choice of the learning rate sequence. Therefore, other approaches

are needed to solve these problems. A possible alternative is the fixed-point

iteration algorithm (Hyvärinen, 1999; Hyvärinen and Oja, 1997; Hyvärinen

et al., 2001).

In order to derive a more efficient fixed-point iteration, it is important

to note that, at a stable point of the gradient algorithm, the gradient must

point in the same direction of w. Then, adding the gradient to w does not

change its direction, and we can have convergence. This means that:

w ∝
[
E
{

z
(
wTz

)3
}
− 3 ‖w‖2 w

]
, (4.27)

which leads to the following algorithm for estimating w (Hyvärinen and Oja,

1997; Hyvärinen et al., 2001):

w← E
{

z
(
wTz

)3
}
− 3w. (4.28)

The vector w must be divided by its norm after each iteration. The final

value of w provides one of the independent components via wTz (Hyvärinen

and Oja, 1997; Hyvärinen et al., 2001).

This is the basic principle beneath the FastICA algorithm. It must be

noticed that the convergence of this algorithm is cubic and it does not depend

on adjusting any learning rate (Hyvärinen, 1999; Hyvärinen et al., 2001).

Nonetheless, kurtosis is not robust against outliers in the data since its

value may depend on only very few observations on the tails of the distribu-

tions, which may be irrelevant or even erroneous (Hyvärinen, 1999; Hyvärinen

et al., 2001). Hence, other metrics are often used instead of the kurtosis in

the fixed-point iteration. These metrics are derived as approximations to

negentropy. Actually, they may not be very accurate approximations, but
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still they can be used to build a measure of non-gaussianity consistent in the

sense that it is always non-negative and zero only for gaussian distributions

(Hyvärinen et al., 2001). Under certain circumstances, negentropy, J , may

be approximated using a non-quadratic function, G (y), according to:

J (y) ∝ [E {G (y)} − E {G (ν)}]2 , (4.29)

where ν denotes a standardised gaussian random variable (Hyvärinen, 1999;

Hyvärinen et al., 2001).

Taking G (y) = y4, the previous version of the algorithm is retrieved.

However, by selecting G (y) functions that do not grow too fast, it is possible

to obtain more robust algorithms. The following choices have proven to be

adequate:

G1 (y) =
1

a1

log [cosh (a1y)] , (4.30)

G2 (y) = − exp
(
−y2/2

)
, (4.31)

where 1 ≤ a1 ≤ 2 is a constant (Hyvärinen, 1999; Hyvärinen et al., 2001). A

illustration of these functions is shown in Fig. 4.2. It must be noticed that

G1 and G2 grow less fast than the kurtosis-based function.

These functions have several advantages. G1 is a good general-purpose

function and G2 is appropriate for highly supergaussian components or when

robustness is very important. On the other hand, kurtosis is justified only

for subgaussian components without outliers (Hyvärinen, 1999; Hyvärinen

et al., 2001). Moreover, these functions are conceptually simple and fast to

compute. Hence, they are used in the FastICA algorithm, which actually

includes the derivative of the non-quadratic function G (·).
The algorithm including the aforementioned approximations can be de-

rived by means of an approximate Newton method (Hyvärinen et al., 2001).

Nevertheless, this algorithm only estimates one independent component.

Thus, some decorrelation scheme must be used to estimate more compo-

nents since the vectors wi are orthogonal in the whitened space (Hyvärinen,

1999; Hyvärinen et al., 2001).
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Figure 4.2: The functions G1 and G2 compared with the fourth power, as
used in kurtosis.

4.5.3 InfoMax

The InfoMax approach implements a neural network gradient-based algorithm

where the learning rule relies on the information maximization principle (Bell

and Sejnowski, 1995). InfoMax maximises the output entropy of a neural net-

work with non-linear outputs. It has been shown that this methodology is

equivalent to the maximization of the non-gaussianity of the sources (Hyväri-

nen et al., 2001; James and Hesse, 2005). Actually, this principle is closely

related to the maximum likelihood of the BSS model. From Eq. (4.11), the

density pX of the mixture vector can be formulated as (Hyvärinen et al.,

2001):

pX (x) = |detB| pS (s) = |detB|
∏
i

pi (si) , (4.32)

where B = [b1,b2, . . . ,bn]T is the separating matrix.

Denoting by T the total number of samples, the likelihood can be ob-

tained as the product of the density given by Eq. (4.32) evaluated at the T

points (Hyvärinen et al., 2001):

L (B) =
T∏
t=1

n∏
i=1

pi
(
bT
i x (t)

)
|detB| , (4.33)
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which, after some operations and taking logarithms, leads to (Hyvärinen

et al., 2001):

1

T
log [L (B)] = E

{
n∑
i=1

log pi
(
bT
i x
)}

+ log |detB| . (4.34)

However, this model does not only need to estimate B, but also the den-

sities of the components. This makes the estimation much more complicated,

because the estimation of the densities is a non-parametric problem. This

difficulty may be avoid by, for example, approximating them by a family of

densities specified by a limited number of parameters. Actually, only two ap-

proximations of the density of an independent component are enough since

it is only necessary to decide which of the two approximations is better for

each component. This choice is based on the information whether the inde-

pendent components are super-gaussian or sub-gaussian (Hyvärinen et al.,

2001).

The simplest algorithms for maximising likelihood are obtained by gra-

dient methods. The stochastic gradient of the log-likelihood in Eq. (4.34)

is (Hyvärinen et al., 2001):

1

T

∂ logL

∂B
=
[
BT
]−1

+ E
{
g (Bx) xT

}
, (4.35)

where g (y) is a component-wise vector function that is composed of the score

functions gi which are defined on the basis of the two families of densities

approximating the space of distributions. As a result, the following algorithm

is obtained (Bell and Sejnowski, 1995; Hyvärinen et al., 2001):

∆B ∝
[
BT
]−1

+ E
{
g (Bx) xT

}
, (4.36)

which constitutes the algorithm first derived by Bell and Sejnowski (1995),

although the seminal derivation was based on the InfoMax principle. This

is based on maximising the output entropy, or information flow, of a neural

network with non-linear outputs (Bell and Sejnowski, 1995). If the non-

linearities used in the neural network are chosen as the cumulative distribu-
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tion functions corresponding to the densities pi, the output entropy is equal

to the likelihood. This means that the InfoMax approach is equivalent to

maximum likelihood estimation (Hyvärinen et al., 2001).

The original InfoMax can only extract super-gaussian sources. For this

reason, it was soon modified to include an ‘extended’ mode able to estimate

sub-gaussian sources (e.g., sinusoids). The resulting technique is the Lee

& Sejnowski’s Extended Information Maximisation Algorithm (eInfoMax)

by Lee et al. (1999).

4.5.4 JADE

Finally, another usual approach to HOS-BSS is the JADE algorithm (Cardoso

and Souloumiac, 1993, 1996), which is sometimes referred as ICA by tensorial

methods using higher-order cumulant tensors (Hyvärinen et al., 2001; James

and Hesse, 2005). Where as the covariance matrix is the second-order cumu-

lant tensor, the fourth-order tensor is defined by the fourth-order cumulants :

cum (xi, xj, xk, xl) (Cardoso and Souloumiac, 1993; Hyvärinen et al., 2001;

James and Hesse, 2005).

Whereas an eigenvalue decomposition of the second-order cumulant ten-

sor is helpful to decorrelate the variables, making the fourth-order cumulants

zero or as close to zero as possible implies statistical independence of the

sources (Cardoso and Souloumiac, 1993; James and Hesse, 2005). It is im-

portant to note that, if the xi are independent, all the cumulants with at

least two different indices are zero (Hyvärinen et al., 2001). These are the

basic principles of the JADE algorithm, which jointly diagonalises a set of

matrices (Cardoso and Souloumiac, 1993, 1996).

The JADE algorithm uses certain matrices Qz (M) formed by the inner

product of the fourth-order cumulant tensor of the outputs with the arbitrary

matrix M (Cardoso and Souloumiac, 1993; Hyvärinen et al., 2001; Sanei and

Chambers, 2007):

{Qz (M)}ij =
∑
k

∑
l

Cum
(
zi, z

∗
j , zk, z

∗
l

)
mlk, (4.37)
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where mlk denotes an element of the M matrix and ∗ represents complex

conjugate. Qz (M) is diagonalised by the correct rotation matrix U, which

implies that UHQU = ΛM. Here, ΛM is a diagonal matrix whose diagonal

elements depend on M and z (Sanei and Chambers, 2007). Therefore, ap-

plying Eq. (4.37) for a set of different matrices M, a set of Qz (M) can be

computed. The rotation matrix U that approximately jointly diagonalises

those cumulants provides the solution to the decomposition of z (Cardoso

and Souloumiac, 1993; Hyvärinen et al., 2001; Sanei and Chambers, 2007).

The problem of this joint diagonalisation can be stated as the minimisa-

tion of J (u) given by Eq. (4.38) (Hyvärinen et al., 2001; Sanei and Cham-

bers, 2007):

J (u) =
∑
i

∑
j

off
(
uHQiju

)
, (4.38)

where off (·) is a measure of the importance of the off-diagonal terms as in

Eq. (4.20).

A natural choice for this set of matrices is to take the eigenmatrices of

the cumulant tensor. In this way, this set of n matrices provide all the rele-

vant information on the cumulants since they span the same subspace as the

cumulant tensor (Cardoso and Souloumiac, 1993; Hyvärinen et al., 2001). Fi-

nally, it must be noticed that this method may have computational problems

when applied to high dimensional problems since the memory requirements

grow quite rapidly with n (Hyvärinen et al., 2001).

4.6 Constrained BSS Algorithms

The algorithms introduced in Section 4.4 and Section 4.5 are able to de-

compose the measurements into a set of sources (Cichocki and Amari, 2002;

Hyvärinen et al., 2001). FastICA is even able to extract the components one

by one and each estimated component is characterised, at least in theory, by

having the least gaussian distribution among the set of all possible remaining

sources (Hyvärinen, 1999; James and Hesse, 2005). Nevertheless, the algo-

rithms may not be guaranteed to converge to the global optimum due to their

random initialization and other computational factors (James and Gibson,
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2003; Lu and Rajapakse, 2005).

In some particular cases, one may desire to extract only one particular

component which does not correspond with that of maximum negentropy

(James and Hesse, 2005). What is more, if the BSS algorithm extracts the

components one at each time errors committed at each step are propagated

through to the following estimates (Vigário and Oja, 2008). It must be

noticed that reducing the dimension of the data with PCA is not helpful in

this situation since the source of interest may be lost (James and Gibson,

2003).

To solve these problems, the source separation may be guided using cBSS

techniques so that the first components are close to a particularly source

(or reference) of interest (Vigário and Oja, 2008). Obviously, this requires

to have access to a fair estimate of the activity of interest, but there are

some cases in neurophysiological analysis where this a priori information

does exist (James and Gibson, 2003; Vigário and Oja, 2008). However, if

this is the case, the application of a cBSS algorithm removes the need for

manual identification and labelling of the components, which may be highly

laborious and subjective (James and Gibson, 2003).

Diverse implementations of cBSS have been proposed (Huang and Mi,

2007; Lu and Rajapakse, 2005, 2006). These cBSS algorithms convert the

constrained problem to an unconstrained one by introducing a regularisation

parameter (e.g., an augmented Lagrange function; Hyvärinen et al., 2001),

in the decomposition algorithm (Huang and Mi, 2007; Lu and Rajapakse,

2005; Sanei and Chambers, 2007). In this way, it is possible to obtain a

component that is statistically independent of other sources and closest to

some reference signal r (t) (James and Hesse, 2005). This constrain reference

signal does not need to be perfectly identical to the source of interest, but

it should be similar enough to drive the algorithm into the direction of the

desired component (James and Hesse, 2005).

The closeness constrain between the reference, r (t), and the estimated

component, ye (t) may be written as (Huang and Mi, 2007; James and Gib-

son, 2003):

g (ye, r) = ε (ye, r)− ξ ≤ 0, (4.39)
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where ξ is some convergence threshold and ε (ye, r) measures the closeness

between the reference and the current output, which is computed as ye (t) =

wTx with w being the de-mixing vector (Huang and Mi, 2007; James and

Gibson, 2003; Lu and Rajapakse, 2006). This closeness function may be

formulated in several ways, including (Huang and Mi, 2007):

ε (ye, r) = E
{

(ye − r)2} , (4.40)

ε (ye, r) = 1/ (E {yer})2 . (4.41)

Thanks to this modelling of the constraint, the cBSS problem can be

formulated in the context of Lagrange multipliers (Hyvärinen et al., 2001).

This means that the optimisation of any of the cost functions, J , derived for

ICA algorithms — see, for example, Eq. (4.25) — is subject to (James and

Gibson, 2003; Lu and Rajapakse, 2005):

g (ye, r) ≤ 0, (4.42)

E
{
y2
e

}
− 1 = 0 and (4.43)

E
{
r2
}
− 1 = 0. (4.44)

These conditions are necessary to fix the amplitude of the output and

assure its similarity to the reference (James and Gibson, 2003).

4.7 Relationships Among BSS Algorithms

As it has been previously explained, there is a relatively wide variety of

BSS algorithms with different theoretical foundations and practical imple-

mentations (Cichocki and Amari, 2002; Hyvärinen et al., 2001). This makes

important to think about the different suitability of these techniques to anal-

yse the data at hand. The selection of the BSS algorithm to be applied must

consider a few aspects.

First of all, one has to decide between SOS and HOS methods. As it

has been explained in Section 4.4 and Section 4.5 the assumptions beneath

these two types of algorithms differ substantially (Cichocki and Amari, 2002).
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Hence, the choice of the criterion should depend on the type of data to be

studied, including whether the variables have temporal structure or not and

if the inner components are assumed non-gaussian (Hyvärinen et al., 2001).

Afterwards, one has to opt for one particular algorithm. This decision is

influenced by certain issues, such as the need to estimate all components in

parallel or one by one, the type of metric on which the algorithm is based,

and other parameters (Hyvärinen et al., 2001). Obviously, the knowledge

of reference signal can be helpful to constrain the extraction (James and

Gibson, 2003).

In the following lines, the theoretical relationships among different BSS

methods will be briefly reviewed.

Mutual information, MI (·), provides a unifying perspective to compare

the fundamentals of diverse HOS techniques. It is a concept derived from

entropy which measures both linear and non-linear dependences in data by

evaluating the information that members of a set of random variables have

on the other random variables in the set (Comon, 1994; Escudero et al.,

2008b, 2009a; Hyvärinen et al., 2001). For a set of variables yi that are

uncorrelated and have unit variance, the following straightforward relation

between mutual information and negentropy, J (·), holds (Hyvärinen et al.,

2001):

MI (y1, y2, . . . , yn) = constant−
∑
i

J (yi) . (4.45)

Hence, if the variables yi are the estimated components by an ICA al-

gorithm via y = Bx, the transformation B that minimises the mutual

information between the outputs also provides the directions in which the

negentropy is maximised (Hyvärinen et al., 2001). Since negentropy is a

measurement of non-gaussianity, Eq. (4.45) shows that maximising the sum

of non-gaussianities of the estimated components is equivalent to minimising

their mutual information (Hyvärinen et al., 2001). Moreover, from Eq. (4.34),

if the pi were equal to the real probability density functions of bT
i x, the like-

lihood would be equal, up to an additive constant given by the total entropy

x, to the negative of the mutual information (Hyvärinen et al., 2001).

In summary, mutual information relates to the principles of estimating the
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independent components both by means of maximising the non-gaussianity

and the likelihood. Hence, it becomes clear that the fundamental ideas be-

neath FastICA and InfoMax are mostly equivalent (Hyvärinen et al., 2001).

The connection of these principles to cumulant-based criteria is revealed

taking into account the approximation of negentropy by cumulants shown by

Eq. (4.24), where the first term may be omitted for symmetrical probability

distributions (Hyvärinen et al., 2001). Furthermore, considering Eq. (4.24)

and Eq. (4.45), the following approximating of MI (·) may be derived:

MI (y) ≈ constant− constant
∑
i

kurt (yi)
2 , (4.46)

which suggests that the maximisation of the cumulants produces the min-

imisation of mutual information (Hyvärinen et al., 2001). Despite these sim-

ilarities, it must be borne in mind that there are several differences among

the algorithms, including the actual form of the objective functions of the

techniques and the need to estimate the sub- or super-gaussian nature of the

components (Hyvärinen et al., 2001).

On the other hand, both AMUSE and SOBI use the temporal informa-

tion of the signal to find the inner components. They diagonalise a set of

covariance matrices to minimise the time dependencies among the sources.

However, an important difference between those techniques is the number of

time lags, τ , considered in the analysis. Whereas only two time delays are

considered in AMUSE (usually τ = 0 and τ = 1 sample), SOBI employs

several time delays (up to a few tens in some cases; Tang et al., 2005). This

makes the algorithm more robust against noise but increases its complexity

(Cichocki and Amari, 2002). Actually, the principle of joint diagonalisation

(of cumulants or variance matrices) is shared between the SOBI and JADE

algorithms (Belouchrani et al., 1997; Cardoso and Souloumiac, 1993).

The theoretical principles of HOS techniques, which relies on concepts of

Information Theory, and SOS methods, which employs the temporal struc-

ture of the signals can be unified under the perspective of the Kolmogorov

complexity (Hyvärinen et al., 2001). The Kolmogorov complexity allows to

quantify the structure of the data by measuring the length of the shortest
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possible code for it (Hyvärinen et al., 2001). Therefore, this generalisation

implies that the BSS can be seen as transformations that minimise the sum

of the coding lengths of the signals (Hyvärinen et al., 2001). This leads to

a principle closely related to the Minimum Description Length (MDL). If

the signals have no time structure, their Kolmogorov complexities are given

by their entropies. This concept is also related to the time structure of the

signals. However, this measure is a rather theoretical and its optimisation is

difficult to perform in practice (Hyvärinen et al., 2001).

4.7.1 Consistency of BSS Algorithms for Real Signals

As it was mentioned in Section 2.5.3, both EEG and MEG are the only tech-

niques that measure the synchronous oscillations of the cortex directly and

non-invasively (Hari, 2004). Although these recordings have slightly differ-

ent characteristics, the primary generating currents of the EEG and MEG

are the same (Hari, 2004) and similar problems are faced when analysing

both recordings. BSS is useful to overcome some of these difficulties (James

and Hesse, 2005; Onton et al., 2006; Vigário and Oja, 2008). Hence, these

techniques have been widely applied to EEG and MEG data in very diverse

applications (James and Hesse, 2005; Onton et al., 2006; Vigário and Oja,

2008).

There is a wide variety of BSS techniques available and not all algorithms

are based on the same principles (for a review see, for example, Cichocki and

Amari, 2002; Hyvärinen et al., 2001; James and Hesse, 2005). Some theoret-

ical relationships exist among the metrics used to measure the independence

of the signals but it might be difficult to a priori select the most appropri-

ate algorithm for a particular application (Fitzgibbon et al., 2007; Zavala

Fernández et al., 2006).

A few studies have compared some BSS algorithms (see Klemm et al.,

2009, and references therein). However, most of these analyses were based

on artificially created signals. For instance, FastICA, JADE and InfoMax

were compared by Li et al. (2001). However, some of the basic hypotheses

in ICA were violated in the design of the experiments, which can limit the
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reliability of the results. Moreover, the analysis focused on acoustic signals,

making the extension of the results to brain electromagnetic recordings not

straightforward at all (Li et al., 2001).

Computational and statistical comparisons among diverse HOS methods

were performed in (Hyvärinen et al., 2001). The results were based again on

synthetic signals, which turned out to be super-gaussian. The main conclu-

sions of this study support the robustness of HOS techniques under slight

violations of the assumptions and suggest that different techniques may re-

veal different components when applied to real signals (Hyvärinen et al.,

2001).

Other studies have compared diverse BSS algorithms bearing in mind

their application to the rejection of artefacts in EEG recordings (Crespo-

Garcia et al., 2008; Fitzgibbon et al., 2007; Romero et al., 2008, 2009). The

independence of the extracted components was checked by Krishnaveni et al.

(2005, 2006) in the removal of OA although the most commonly used al-

gorithms were left out of the analysis. The evaluation was done in terms

of mutual information. This fact might bias the analysis in favour of those

algorithms directly based on this parameter. Moreover, the significance of

the differences among algorithms were not tested (Krishnaveni et al., 2006).

Other analyses have evaluated the performance of diverse BSS algorithms

on the terms of the quality of the artefact removal achieved with them (De-

lorme et al., 2007). Recently, an extensive study oriented to the analysis of

EEG data has been published (Klemm et al., 2009). Nevertheless, it was en-

tirely based on synthetic data (Klemm et al., 2009). Even more recently, the

outputs of FastICA, JADE and SOBI were compared against a new approach

to BSS based on the short-time Fourier transform of the signals (Hyvärinen

et al., 2010). This study suggests that, in the case of spontaneous activity,

HOS methods tend to focus on the extraction of artefacts whereas SOBI failed

since it tended to extract components with very similar spectra (Hyvärinen

et al., 2010). However, this analysis was mainly carried out in specific the

framework of the study of the phase differences between components with

data from only one subject (Hyvärinen et al., 2010).

To sum up, most comparisons among different BSS algorithms were car-
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ried out with only simulated signals or in very particular contexts, such

as artefact removal. Those studies tried to assess the quality of the brain

recordings after a BSS-based artefact removal procedure or the quality of the

artefactual signals isolated by BSS (Fitzgibbon et al., 2007; Romero et al.,

2008, 2009; Zavala Fernández et al., 2006). This may limit the applicability

of the results to other settings and a detailed study on the similarity of the

decompositions for real brain recordings computed with different algorithms

is lacking (Onton et al., 2006).

It must be noticed that these methods are data-driven and, by their own

nature, exploratory (Vigário and Oja, 2008). If the generating process is

known, an objective evaluation is possible. However, this is not the case in

almost all cases, hence the term blind (Vigário and Oja, 2008).

Therefore, it is important to study the consistency (i.e., similarity) of

the separations estimated from real electromagnetic recordings so that the

relationships among algorithms applied to the same real brain data can be

further understood. This could help to decide a priori which particular algo-

rithms provide more similar results, thus limiting the search for appropriate

techniques for each case (Escudero et al., 2009d). To achieve this goal, in

this Doctoral Thesis MEG background activity will be blindly decomposed

using five of the most common used BSS algorithms in the analysis of electro-

magnetic brain background activity: AMUSE, SOBI, JADE, eInfoMax and

FastICA.

4.8 BSS Applications to EEG and MEG Ac-

tivity

Although EEG and MEG have slightly different characteristics, similar prob-

lems are faced when analysing both recordings. BSS is useful to overcome

some of these difficulties (James and Hesse, 2005; Onton et al., 2006; Vigário

and Oja, 2008). Thus, BSS has been widely applied to EEG and MEG data in

very diverse applications (James and Hesse, 2005; Onton et al., 2006; Vigário

and Oja, 2008).
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For instance, the signals acquired at a particular sensor are a weighted

linear mixture of the underlying brain activity (Onton et al., 2006). There-

fore, the isolation and analysis of the electromagnetic activity generated by a

specific source of interest is a complex task in which the BSS methods may be

helpful (Jarchi et al., 2009; Jin et al., 2002; Klemm et al., 2009; Onton et al.,

2006). Moreover, the brain activity is usually recorded together with unde-

sired signals (i.e., artefacts) of physiological or environmental origin (James

and Hesse, 2005; Onton et al., 2006). BSS methods have been used to de-

tect and remove artefactual activity from brain signals (Delorme et al., 2007;

Escudero et al., 2007b; Fitzgibbon et al., 2007). BSS can also help in the

identification of diverse brain diseases (Cichocki et al., 2005; Escudero et al.,

2008d, 2009b).

Thus, this Section reviews the state of the art in the applications of BSS

techniques to EEG and MEG signals that are related to the studies carried

out in this Doctoral Thesis.

4.8.1 Artefact Removal

MEG captures the neural activity with high spatial resolution by measuring

the brain magnetic fields. This technique is not invasive and it does not

depend on any reference point (Hari, 2004). Moreover, magnetic fields are

less distorted than electric ones by the skull and the scalp (Hari, 2004).

However, MEG data must be recorded in magnetically shielded rooms with

SQUID sensors to reduce external noise (Hari, 2004).

As it was explained in Section 2.4, external noise is not the only unde-

sired signal in MEG data. In these recordings, non-cerebral sources (i.e.,

artefacts) always appear mixed with brain signals (Hyvärinen et al., 2001).

The artefacts could bias the analyses, since their power may be larger than

that of the brain sources (James and Hesse, 2005). For instance, the CA

is usually noticeable in MEG data (Jousmäki and Hari, 1996). OAs can

also be visible in these signals (Antervo et al., 1985). Although they can be

partially controlled by the subject in short data epochs, these artefacts are

likelier to appear in long recordings or when the MEG is recorded from non-
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collaborative subjects. In addition to these artefacts, MEG data may have

strong PLN (Hari, 2004). Furthermore, some authors have even claimed that

any inner source without time structure should be removed, since it provides

no information about the brain activity (Vorobyov and Cichocki, 2002).

Several methods have been used to remove artefacts from EEG and MEG

data: epoch rejection, regression techniques (Croft and Barry, 2000), PCA

(Sadasivan and Dutt, 1996) or BSS (Cichocki and Amari, 2002; James and

Hesse, 2005; Vigário and Oja, 2008). The main characteristics of each of

these methodologies will be introduced in the following lines.

Epoch Rejection

The simplest method to avoid artefacts in EEG and MEG data is epoch

rejection, which discards raw data epochs highly contaminated by artefacts.

Usually, the assessment is performed individually for each signal epoch, which

may be very time-consuming (Fatourechi et al., 2007). Nevertheless, auto-

matic techniques may be used. These are often based on detecting fragments

of the signal whose amplitude is higher than a certain threshold. This ap-

proach is useful to perform a preliminary screening of the data (Osipova

et al., 2003, 2005, 2006a,b; Pekkonen et al., 1999, 2005).

However, epoch rejection has some major drawbacks. First of all, it may

produce significant data loss (Castellanos and Makarov, 2006; Fatourechi

et al., 2007; Jung et al., 2000; Vigário and Oja, 2000). Additionally, both

automatic and manual evaluations of the epochs are intrinsically subjective

(Castellanos and Makarov, 2006; Fatourechi et al., 2007). Finally, in some

applications, it may cause problems associated with the stationarity of the

recordings as this technique produces discontinuous segments of data (Castel-

lanos and Makarov, 2006) or it may bias the analyses by removing activity

related to the rejected artefacts (Fatourechi et al., 2007; Vigário, 1997).

Regression Techniques

Other method to remove artefacts from MEG and, specially, EEG signals

is removing the projection of a reference signal from the brain recordings
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(Fatourechi et al., 2007; Jung et al., 2000; Samonas et al., 1997; Vigário

and Oja, 2000). This technique has been widely applied to remove the OA

from EEG recordings (Croft and Barry, 2000; Schlögl et al., 2007). The

projection of a reference signal — e.g., Electrooculogram (EOG) — on the

signals of interest is computed either in the time or frequency domain. Then,

this projection is subtracted from the brain recordings to obtain artefact-free

signals (Croft and Barry, 2000; Schlögl et al., 2007). Similarly, adaptive

filtering may be used to remove the PLN (Wesson et al., 2009).

Nevertheless, this technique may introduce new unexpected artefacts in

the brain recordings (Jung et al., 2000; Vigário and Oja, 2000). This is due

to the fact that the reference signal, which is most often the EOG, may be

‘contaminated’ with brain activity (i.e., bidirectional contamination), which

would be removed from the EEG or MEG by this procedure (Fatourechi

et al., 2007; Vigário, 1997). Moreover, this technique needs to record the

reference signal and the brain data simultaneously, which may not always be

possible (Fatourechi et al., 2007; Jung et al., 2000; Li et al., 2006). Hence,

there is some evidence that the artefact rejection based on BSS is superior to

regression techniques (Hoffmann and Falkenstein, 2008; Romero et al., 2008,

2009), although some studies have claimed the opposite (Schloegl et al., 2009;

Wallstrom et al., 2004).

Principal Component Analysis

In contrast, PCA can be applied to reject any kind of artefact without ref-

erence signals (Fatourechi et al., 2007; Sadasivan and Dutt, 1996). This

technique finds orthogonal directions of greatest variance in data. Princi-

pal components are uncorrelated with each other, but not really statistically

independent (Hyvärinen et al., 2001).

PCA can detach artefacts from brain signals completely only when they

are orthogonal to each other, their amplitudes are dissimilar, and the additive

noise power is low enough. These hypotheses are difficult to fulfil for EEG

and MEG data (Fatourechi et al., 2007; Jung et al., 2000; Shoker et al., 2005b;

Vorobyov and Cichocki, 2002). Nevertheless, other authors have suggested
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that PCA might reject artefacts in EEG signals successfully and that, in some

cases, it might even be a better approach than some BSS techniques (Kierkels

et al., 2006; Wallstrom et al., 2004).

Blind Source Separation

BSS (Cichocki and Amari, 2002) has been used in the artefact rejection

problem (Delorme et al., 2007; Escudero et al., 2007b; Jung et al., 2000;

Sander et al., 2002; Ting et al., 2006; Vigário and Oja, 2008; Vorobyov and

Cichocki, 2002). BSS needs neither previous information nor orthogonality

between artefacts and brain signals (James and Hesse, 2005; Vigário and Oja,

2008).

The assumptions made about the data by BSS (or ICA) seem to be suit-

able for MEG recordings (James and Hesse, 2005; Vigário and Oja, 2008).

This kind of procedure needs neither an accurate model of the process that

generated the artefacts nor indicating signal intervals that mainly contain

artefacts nor additional inputs (Hyvärinen et al., 2001). However, the use of

reference signals or any other a priori information may help to extract the

artefacts from the brain recordings by means of a cBSS (James and Gibson,

2003; Nazarpour et al., 2008; Shoker et al., 2005b).

A major problem in this artefact rejection method is the recognition of

the undesired activity. Despite the fact that BSS can isolate artefactual

activity into one or a few components (James and Hesse, 2005), the manual

identification of the contaminating signals is a very time-consuming process.

This was the approach taken in the first artefact removal studies based on

BSS (Iriarte et al., 2003; Jung et al., 2000; Vigário, 1997; Vigário and Oja,

2000).

Afterwards, several studies have introduced automatic or semi-automatic

criteria to mark diverse artefacts in order to simplify this process. For in-

stance, the use of statistical moments and metrics (such as skewness, kurto-

sis and entropy) has been proposed to identify artefacts in EEG and MEG

recordings (Barbati et al., 2004; Dammers et al., 2008; Delorme et al., 2007;

Escudero et al., 2006c,d, 2007b, 2008c; LeVan et al., 2006; Mammone and
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Morabito, 2008; Mantini et al., 2008; Rong and Contreras-Vidal, 2006; Shoker

et al., 2005a).

In addition to being used in a cBSS setting (James and Gibson, 2003;

Shoker et al., 2005b), reference signals like the EOG can help to identify

the components corresponding to artefacts. The most common approach is

to mark as artefacts the components whose correlation with the reference

is above a particular threshold (Barbati et al., 2004; Dammers et al., 2008;

Flexer et al., 2005; Joyce et al., 2004; Shoker et al., 2005a) although ap-

proaches based on mutual information have also been used (Nicolaou and

Nasuto, 2007).

Other approaches have been suggested. For instance, the BSS compo-

nents can be sorted depending on their time structure (Vorobyov and Ci-

chocki, 2002). Additionally, the scalp topography was used to remove OAs

from data since most of the ocular activity is located near the eyes (Cam-

pos Viola et al., 2009; Escudero et al., 2007b; Li et al., 2006; Okada et al.,

2007; Romero et al., 2008; Rong and Contreras-Vidal, 2006). Amplitude

thresholds have also been applied to the components to decide which sources

are contaminated by artefacts such as the ocular blinks (Castellanos and

Makarov, 2006; Delorme et al., 2007; Ting et al., 2006). In some cases, such

as OAs and PLN, spectral features of the components may also be helpful

in the identification of the artefacts (Joyce et al., 2004; LeVan et al., 2006;

Nicolaou and Nasuto, 2007; Romero et al., 2008).

Finally, it is important to note that some of the aforementioned criteria

have been combined to detect various types of artefacts (Barbati et al., 2004;

Escudero et al., 2007b; Joyce et al., 2004; LeVan et al., 2006; Romero et al.,

2008; Shao et al., 2008).

Of note is that the BSS-based artefact rejection cleans the data in such a

way that the classification of different pathological groups is less affected by

those undesired sources, this being improved (Melissant et al., 2005; Vialatte

et al., 2009). However, in these studies, the selection of the rejected com-

ponents was done manually (Melissant et al., 2005; Vialatte et al., 2009).

Moreover, it has been recently shown that this type of BSS artefact removal

does not denature the electromagnetic brain recordings. By reducing the
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amount of artefacts in the data, the subjects’ data included in the analysis

became closer to the corresponding group’s centres (Vialatte et al., 2009). A

more consistent topographical distribution of the EEG power was also found

after the artefact rejection (Vialatte et al., 2009). All these findings sug-

gest that the artefact rejection based on BSS does not denature the signals.

Instead, it improves their quality (Vialatte et al., 2009).

Another open issue is how to select the appropriate number of BSS com-

ponents (n) when a large number of channels (m) are available. Traditionally,

few statistical criteria have been used to estimate this parameter (Cao et al.,

2003; Ikeda and Toyama, 2000). Some studies have set m = n (Castel-

lanos and Makarov, 2006; Flexer et al., 2005; Joyce et al., 2004; Li et al.,

2006; Romero et al., 2008; Sander et al., 2002). Nevertheless, as previously

explained, a dimensionality reduction can be needed to avoid ‘overfitting’,

which can lead to the extraction of components without physiological mean-

ing (James and Hesse, 2005; Vigário and Oja, 2008). Hence, some authors

have set a threshold on the spectrum of eigenvalues of the data covariance

matrix (Barbati et al., 2004; Ting et al., 2006). Nevertheless, this approach

is subjective and statistical criteria may be more suitable (Escudero et al.,

2007b; Hesse, 2007, 2008; Ikeda and Toyama, 2000).

Despite the relatively large number of metrics proposed to detect artefac-

tual activity in EEG and MEG signals (Barbati et al., 2004; Castellanos and

Makarov, 2006; Dammers et al., 2008; Delorme et al., 2007; Escudero et al.,

2006c,d, 2007b, 2008c; Joyce et al., 2004; LeVan et al., 2006; Li et al., 2006;

Mantini et al., 2008; Okada et al., 2007; Romero et al., 2008; Shao et al., 2008;

Ting et al., 2006), few comparative studies are available in the literature. The

evaluation of the artefact rejection has quite often been made on subjective

bases and few quantitative measurements have been used to objective quan-

tify the amount of artefacts in the recordings before and after the method-

ology. Furthermore, most of these efforts have been devoted to the ocular

artefact in EEG signals (Castellanos and Makarov, 2006; Fitzgibbon et al.,

2007; Joyce et al., 2004; Romero et al., 2008, 2009; Shao et al., 2008; Ting

et al., 2006), with the MEG recordings receiving less attention (Dammers

et al., 2008; Escudero et al., 2007b; Mantini et al., 2008). In order to clarify
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the state of the art in the artefact removal from MEGs with BSS, Table 4.1

shows the most relevant studies on this topic.

Therefore, this Doctoral Thesis seeks to apply diverse straightforward

criteria for the detection of CA, OAs and PLN and to compare their perfor-

mance in the artefact rejection for MEG background activity. Additionally,

this Doctoral Thesis also aims at developing a robust dimensionality reduc-

tion scheme able to estimate the number of components to be extracted.

4.8.2 Feature Enhancement With BSS

EEG and MEG have been analysed with several signal processing techniques

to gain insight into AD (Hornero et al., 2009b; Jeong, 2004; Rossini et al.,

2007; Stam, 2005, 2010). For instance, spectral features have been used

to quantify the abnormalities in the frequency distribution of AD patients’

EEG and MEG signals (Hornero et al., 2008; Jeong, 2004; Stam, 2010). Ad-

ditionally, non-linear analysis methods can offer useful information about

the brain dynamics in this dementia (Escudero et al., 2006a; Hornero et al.,

2009b; Stam, 2005). Nevertheless, it is desirable to develop novel strate-

gies to help in AD detection from the analysis of the electromagnetic brain

activity (Cichocki et al., 2005; Henderson et al., 2006; Woon et al., 2007).

Techniques based on spatial filtering can help in the recognition of par-

ticular brain states, such as dementia. This is due to the fact that these

algorithms offer additional perspectives to examine EEG and MEG signals

(Cichocki et al., 2005; Escudero et al., 2008d; Woon et al., 2007). For in-

stance, Common Spatial Patterns (CSP) have been applied to enhance char-

acteristics of EEG recordings in MCI patients who eventually developed AD

(Woon et al., 2007). CSP finds spatial filters which maximise the difference

in signal power between two classes to be discriminated (e.g., patients and

controls) (Woon et al., 2007).

Obviously, another type of spatial filtering techniques is BSS (Cichocki

and Amari, 2002; Hyvärinen et al., 2001; James and Hesse, 2005). BSS

methods estimate the underlying components of the EEG and MEG signals

without a priori information about those components (Cichocki and Amari,
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2002; James and Hesse, 2005; Vigário and Oja, 2008). Since these techniques

isolate specific physiological activities into different components, they have

been used to reject artefacts, as it was explained in Section 4.8.1 (Escudero

et al., 2007b; James and Hesse, 2005; Vigário and Oja, 2008).

EEG and MEG data can also be processed with BSS methods to help

in the recognition of neurological disorders and states. For example, BSS

can help to separate specific brain activity related to epilepsy or Creutzfeldt-

Jakob Disease (CJD) as shown by Jarchi et al. (2009); Kobayashi et al. (1999)

and Hung et al. (2007), respectively. Considering these research studies and

the intrinsic complexity of brain recordings, it can be hypothesised that the

application of BSS, together with features extracted from electromagnetic

brain activity recordings, may enhance features associated with particular

brain states such as AD (Cichocki et al., 2005) or audio-visual stimulation

(Jin et al., 2002). This is due to the fact that some BSS components of

the EEG and MEG signals may be more sensitive to those brain states than

others (Cichocki et al., 2005; Escudero et al., 2008d, 2009b; Vialatte et al.,

2005).

Therefore, the most relevant components may be selected and the brain

recordings may be partially reconstructed using only those components (Ci-

chocki et al., 2005). As a consequence, diverse brain states (e.g., AD) might

be better differentiated in comparison to the situation where BSS is not used.

Nevertheless, despite the advantages that this approach may provide, few

studies have implemented it (Escudero et al., 2008d, 2009b). For instance, a

subset of five AMUSE components extracted from 21 EEG channels were re-

tained to improve the accuracy of the classification of 22 MCI patients who

later proceeded to AD against 38 control subjects up to of 10% when six

spectral features of the EEG were used in the classification (Cichocki et al.,

2005). A later study used the partially reconstructed EEGs obtained by Ci-

chocki et al. (2005) to further improve the classification of the MCI patients

(Vialatte et al., 2005). This subsequent study achieved an additional rise

of about 13% over the accuracy reported by Cichocki et al. (2005) using a

‘bump modelling’ of the WT computed from the EEGs and a neural net-

work classifier (Vialatte et al., 2005). A summary of relevant studies on this
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application of spatial filtering techniques is displayed in Table 4.2.

It must be borne in mind that the approach taken in this part of the Doc-

toral Thesis is different from the artefact rejection framework. Now, we did

not aim to remove artefacts from MEG recordings with minimal brain activ-

ity distortion. Instead, we attempted to emphasise the differences between

AD patients and control subjects’ MEG recordings by retaining only the

components which account for the most relevant differences between groups.

Of course, this will produce some distortion in the signals, but the resulting

data should increase the separability between the subject groups. That is,

the partially reconstructed MEG recordings do not reflect the brain activity

accurately as in Melissant et al. (2005) and Vialatte et al. (2009). Instead,

they should provide a more efficient separation between both subject groups

than the MEG data this BSS procedure (Escudero et al., 2006e, 2007c,d,

2008d, 2009b,c).

In this Doctoral Thesis, we applied diverse BSS algorithms (AMUSE,

SOBI, eInfoMax and FastICA) to background MEG recordings from AD

patients and control subjects. Two spectral, MF and SpecEn, and two non-

linear variables, LZC and SampEn (Escudero et al., 2008a), were used to

characterise every MEG channel and BSS component. The components of

both groups will be analysed to assess how those four variables varied within

them and to decide which provided the most relevant information to classify

the subjects. In addition, the separation between AD patients and elderly

control subjects achieved with and without the BSS preprocessing will be

compared. Additionally, we also aim at determining whether the subsets of

BSS components with significant differences between demented patients and

controls notably differ for the four variables considered.

4.8.3 Extraction of Brain Rhythms With BSS

It is well known that AD causes the electromagnetic brain activity to slow

down. This dementia is related to an increase of power in the low-frequency

range (δ and θ) and a decrease of power in the high-frequency range (α and

β) (Jeong, 2004; Stam, 2010). Abnormalities in the non-linear dynamics of
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the recordings also appear (Hornero et al., 2009b; Stam, 2005). Additionally,

the brain activity of AD patients tend to be less coherent than in control

patients (Jeong, 2004). Thus, several neuropathological, electrophysiological

and neuroimaging studies have suggested that AD may also be characterised

by a ‘disconnection syndrome’ (Delbeuck et al., 2003; Jeong, 2004). How-

ever, these effects are not always easily detectable (Dauwels et al., 2010).

Furthermore, there is some consensus that a lower synchronization level in

α and β bands is associated with AD but contradictory results have been

found in the other frequency bands (Jeong, 2004).

To assess the ‘disconnection syndrome’, different connectivity measures

have been applied to the EEG and MEG signals. Nevertheless, it is important

to note that the MEG recordings may be more suitable than the EEG signals

to evaluate the brain connectivity for the following reasons (Gómez et al.,

2009c; Hämäläinen et al., 1993; Hari, 2004):

• EEG signals are strongly influenced by methodological issues such as

sensor placement.

• MEG has higher spatial resolution than the EEG.

• MEG provides reference-free recordings, which are not distorted by the

extra-cerebral tissues.

Bearing this in mind, it should be noticed that several approaches are

available to study the connectivity of the brain recordings (Pereda et al.,

2005). Spectral Coherence (Coh(f)) is the most widely used measure to as-

sess connectivity. It is a normalised linear measure of the correlation between

two signals as a function of frequency. It is computed as the square of the

cross-spectrum of the two signals divided by the product of the power spectra

of each individual recording (Jeong, 2004; Nunez et al., 1997, 1999; Pereda

et al., 2005). Diverse studies have found a decrease in the Coh(f) of AD

patients’ brain activity in α and β bands (Jeong, 2004).

Due to the fact that Coh(f) is a linear measure, it may fail to detect non-

linear interdependencies in the data. To overcome this limitation, several

other non-linear connectivity measures have been proposed (Pereda et al.,
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2005). However, it is not clear that all of them are superior to Coh(f) to

distinguish AD or MCI (Dauwels et al., 2010; Gómez et al., 2009c).

Nevertheless, it is important to note that the ‘domain’ where the brain

activity is analysed may be, at least, as important as the actual connectivity

measure applied to the data. The most straightforward approach is to analyse

the signals acquired at each particular EEG or MEG channel (Dauwels et al.,

2010; Gómez et al., 2009c; Osipova et al., 2003). In other cases, the equiv-

alent current dipoles are localised and analysed (Rossini et al., 2007; Stam,

2010). Nevertheless, other approaches are possible. Instead of analysing all

the numerous channels recorded or trying to localise the equivalent current

dipoles, one may think of characterising the rhythmic brain activities from

diverse scalp regions out of the the whole set of EEG or MEG channels (Stam

et al., 2006). This approach allows to study the connectivity relationships

between different sets of channels, or regions (Stam et al., 2006). In order to

do so, a channel-wise procedure may be undertaken. In this way, the analysis

is carried out channel by channel, and the the results from different sets of

channels are grouped together (Stam et al., 2006). Instead, a useful alterna-

tive may be to apply BSS techniques to extract the activity that characterises

a particular scalp region and spectral band.

To be more precise, cBSS can extract the physiological activity of interest

without having to compute the whole decomposition of the brain recordings

(James and Gibson, 2003; James and Hesse, 2005). Thus, it could be used

to extract the typical brain rhythms (δ, θ, α and β activity) from the set

channels located together over a specific region.

It must be noted that a suitable reference is needed to perform the cBSS

(Huang and Mi, 2007; James and Gibson, 2003; Lu and Rajapakse, 2005).

If the objective is to extract activity related to the well-known δ, θ, α and

β brain rhythms, one possibility is to constrain the extraction to be similar

to noise filtered in the band of interest (James and Hesse, 2005). However,

this approach is not adaptive as it needs to fix bandpass cut-off frequencies a

priori. Hence, other approaches should be employed instead. One alternative

is the EMD recently introduced by Huang et al. (1998).

The EMD allows to decompose any complicated signal into a finite, and



128 Chapter 4. Blind Source Separation

often small, number of IMFs that can be well analysed by means of the

Hilbert spectrum (Huang et al., 1998). It is important to note that, in

contrast to the BSS techniques (Cichocki and Amari, 2002; Hyvärinen et al.,

2001), the EMD provides a scale decomposition of one uni-dimensional signal.

In this sense, it is relatively similar to, for example, the WT (Huang et al.,

1998). The main difference between them is that the EMD only uses the

information available in the data, thus being completely adaptive. On the

other hand, the WT employs a set of pre-fixed filters based on the selection of

the mother wavelet (Andrade et al., 2006). The EMD is highly adaptive and,

therefore, efficient. Since it is based on the local characteristic time-scale of

the data, it is applicable to complex signals, such as biomedical recordings

(Andrade et al., 2006; Blanco-Velasco et al., 2008; Wu and Hu, 2006; Ye et al.,

2007; Zhang et al., 2008). Moreover, the IMFs provide accurate information

about the frequency content of the signal (Huang et al., 1998) and the phase-

locking between them can help to evaluate brain synchronisation (Sweeney-

Reed and Nasuto, 2009).

Therefore, the rhythmic activity obtained from the adaptive EMD (Huang

et al., 1998) of the MEGs could be used to constrain a BSS applied to the

recordings themselves. Hence, the cBSS could be able to extract brain rhyth-

mic activity belonging to the spectral bands of interest (δ, θ, α and β) from

diverse scalp regions. Afterwards, the activity extracted thanks to the cBSS

can be studied using connectivity measures, such as Coh(f), to study the

connectivity between scalp regions for each spectral band in AD.
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This Chapter describes the sociodemographic data of the 36 patients with

a diagnosis of probable AD and 26 healthy elderly control subjects who par-

ticipated in the studies of this Doctoral Thesis. The diagnostic criteria are

also defined. Additionally, the MEG recording process is described and the

basic preprocessing of the recordings is is explained.

5.1 Subjects’ Sociodemographic Data

MEG background activity signals recorded from 62 subjects were analysed in

this Doctoral Thesis. The AD group consisted of 36 patients with probable

AD — 12 male and 24 female; age = 74.06 ± 6.95 years; mean ± Standard

Deviation (SD). All of them fulfilled the criteria of probable AD according to

the guidelines provided by the NINCDS-ADRDA (McKhann et al., 1984) and

were recruited from the “Asociación de Familiares de Enfermos de Alzhei-

mer” in Madrid. To diagnose the dementia, brain scans (SPECT and MRI)

and thorough medical, physical, neurological, psychiatric and neurophysio-

logic examinations were performed. Finally, MMSE and GDA/FAST tests

(Folstein et al., 1975; Reisberg, 1988) were used to evaluate the cognitive

impairment in this group.

The Spanish version of the MMSE (Lobo et al., 1979) was applied. The

MMSE is a simple test to assess the patient’s global cognitive state (Folstein

et al., 1975). On the other hand, the patients’ functional impairment was

evaluated with the GDA/FAST (Reisberg, 1988). The GDA/FAST consists

of a scale of seven levels that allows to evaluate the progressive impairment

of mental functions, from normal to severe deterioration associated with AD.

The average scores for these tests were 18.06±3.36 and 4.17±0.45 for MMSE

and GDA/FAST, respectively. None of them was receiving medication that

could affect the MEG activity.

The diagnosis of the AD was complemented with:

• Neuropsychological evaluation. The Spanish versions of the following

tests were applied: Wechsler Memory Scale 3rd Edition, Boston Nam-

ing Test, Stroop Test, Wisconsin Card Shorting Test and Silhouettes
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Test of the Visual Object and Space Battery.

• Neuroimaging techniques: SPECT and MRI.

• Blood tests. These include thyroid-function, serum vitamin B12, folic

acid, creatine, glucose, phosphorus and potassium tests. Proteino-

graphic, bilirubin, alkaline phosphatase, blood plasma transaminase

and serum tumour marker studies were also carried out.

Additionally, 26 healthy elderly subjects formed the control group (9

males and 17 females; age = 71.77 ± 6.38 years; MMSE = 28.88 ± 1.18;

GDA/FAST = 1.73± 0.45). There was no significant difference between the

mean age of both subject groups (p = 0.1911 > 0.05). Informed consent

was obtained from all control subjects and AD patients’ caregivers for par-

ticipation in the study, which was approved by the local ethics committee.

Table 5.1 and Table 5.2 show the sociodemographic data for the AD patients

and control subjects included in this Doctoral Thesis, respectively.

In order to objectively evaluate the improvement in the classification of

AD patients versus control subjects’ MEG data achieved with the BSS pre-

processing (see Section 6.6), the population was divided randomly into a

training set (18 AD patients and 13 control subjects) and a test set (formed

by other 18 demented patients and 13 controls). The training set was used

to develop the BSS preprocessing and to find the classification rules for each

case. Then, these algorithms were applied, without further modification,

to the test set to independently assess the improvement in the separation

between AD patients and control subjects due to the BSS preprocessing.

The demographic data and clinical features of training and test sets are also

summarized in Table 5.3.

5.2 MEG Recording and Preprocessing

The MEG signals studied in this Doctoral Thesis were recorded using a 148-

channel whole-head magnetometer (MAGNES 2500WH, 4D Neuroimaging)

placed in a magnetically shielded room of the “Centro de Magnetoencefalo-
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Table 5.1: AD patients’ sociodemographic data.

Identifier Gender Age MMSE FAST

Alz-01 Female 71 15 4
Alz-02 Male 67 12 4
Alz-03 Female 56 14 4
Alz-04 Female 64 15 4
Alz-05 Female 59 20 4
Alz-06 Male 60 16 4
Alz-07 Female 72 15 4
Alz-08 Female 71 15 4
Alz-09 Female 75 22 4
Alz-10 Female 82 21 4
Alz-11 Female 72 17 4
Alz-12 Male 80 24 4
Alz-13 Male 83 10 5
Alz-14 Female 77 21 4
Alz-15 Male 82 19 4
Alz-16 Female 83 20 4
Alz-17 Female 73 23 4
Alz-18 Male 79 19 4
Alz-19 Male 83 16 4
Alz-20 Female 72 23 3
Alz-21 Female 69 16 5
Alz-22 Male 77 21 4
Alz-23 Female 74 16 5
Alz-24 Female 81 21 5
Alz-25 Female 81 17 4
Alz-26 Female 78 15 5
Alz-27 Male 68 21 4
Alz-28 Female 78 15 5
Alz-29 Female 72 22 4
Alz-30 Male 79 15 5
Alz-31 Female 78 18 4
Alz-32 Male 71 20 4
Alz-33 Male 78 18 4
Alz-34 Female 75 16 4
Alz-35 Female 78 21 4
Alz-36 Female 68 21 4
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Table 5.2: Control subjects’ sociodemographic data.

Identifier Gender Age MMSE FAST

Con-01 Female 68 30 2
Con-02 Female 61 29 2
Con-03 Female 70 30 2
Con-04 Female 64 30 1
Con-05 Male 60 30 1
Con-06 Female 63 30 1
Con-07 Male 73 29 1
Con-08 Female 69 29 1
Con-09 Male 79 29 2
Con-10 Male 79 30 2
Con-11 Female 75 29 2
Con-12 Male 67 29 2
Con-13 Female 68 29 2
Con-14 Male 84 29 2
Con-15 Female 68 27 2
Con-16 Male 73 30 2
Con-17 Female 71 29 1
Con-18 Male 74 30 2
Con-19 Male 78 27 2
Con-20 Female 76 29 2
Con-21 Female 83 26 2
Con-22 Female 68 28 2
Con-23 Female 68 30 1
Con-24 Female 72 27 2
Con-25 Female 77 29 2
Con-26 Female 78 27 2

graf́ıa Dr. Pérez-Modrego” at the Complutense University of Madrid. In

order to minimise the amount of artefacts occurring in the MEG background

activity, the recordings were acquired while the subjects were lying on a

patient bed, awake and in a relaxed state with their eyes closed.

The sampling frequency of the recording process was 678.17 Hz. A hard-

ware band-pass filter with cut-off frequencies at 0.1 Hz and 200 Hz was ap-

plied. Additionally, a notch filter at 50 Hz was used to reduce the power level

of the electrical power interference. Using this setting, five minutes of MEG

background activity were acquired for each subject. Afterwards, the record-
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Table 5.3: Demographic and clinical features for all participants, and for the
training and test sets. Data are given as mean±SD.

All subjects

AD patients Control Subjects

Number of subjects 36 26
Number of females 24 17

Age 74.06±6.95 71.77±6.38
MMSE 18.06±3.36 28.88±1.18
FAST 4.17±0.45 1.73±0.45

Training set

AD patients Control Subjects

Number of subjects 18 13
Number of females 12 9

Age 74.11±7.38 71.38±4.84
MMSE 17.72±3.63 28.92±1.04
FAST 4.17±0.38 1.85±0.38

Test set

AD patients Control Subjects

Number of subjects 18 13
Number of females 12 8

Age 74.00±6.70 72.15±7.82
MMSE 18.39±3.15 28.85±1.34
FAST 4.17±0.51 1.62±0.51

ings were down-sampled by a factor of four to reduce their length. Finally,

the MEG signals were stored in American Standard Code for Information

Interchange (ASCII) for further analysis.

Finally, the Filter Design & Analysis Tool included in Matlab was used

to design band-pass Finite Impulse Response (FIR) filters with a Hamming

window. These filters were used to limit the bandwidth of the MEG signals

in the different applications. For instance, the cut-off frequencies of this filter

were set at 0.5 Hz and 60 Hz for the comparison of diverse BSS techniques

and the artefact removal. This setting allowed us to study the broad-band

spectral content of the signals. On the other hand, in the study of the BSS
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techniques as a preprocessing to improve the classification of AD patients

and controls, the cut-off frequencies were set at 1.5 Hz and 40 Hz. The lower

cut-off frequency allows to reduce the importance of the OAs while the upper

one minimises the number of muscular artefacts and removes the PLN. It is

important to note that linear filtering is allowed before the application of

BSS and ICA techniques because it does not change the generative model.

However, it may be possible that a low-pass filtering reduce the information in

the data which might lead to a reduction of independence. On the other hand,

high-pass filtering may be useful in certain cases to increase the independence

of the components by removing slow fluctuations from the signals (Hyvärinen

et al., 2001).

5.3 Epoch Selection

The presence of artefacts in the MEG recordings may bias the results of the

analysis. One possible application of BSS techniques is the artefact removal

in brain recordings (James and Hesse, 2005; Vigário and Oja, 2008). However,

this approach was not applied in the study of the classification improvement

due to BSS (Section 6.6) or in the extraction of rhythmic activity with BSS

(Section 6.7). Instead, previously to the analyses, the MEG epochs with the

most clear artefacts were rejected. The epoch rejection method was applied

in order to avoid surplus complexity in these analyses and to assess the

performance of these approaches without any other kind of preprocessing.

When needed, the artefactual epochs were rejected on the basis of a semi-

automatic procedure which combined a visual inspection of the recordings

with an amplitude-thresholding method to detect spurious activity. Several

specialists, without previously knowing the subject’s diagnosis, visually dis-

carded the signal epochs contaminated with noise and strong artefacts. Addi-

tionally, the specialists were helped by the amplitude-thresholding procedure

to pinpoint noisy signal epochs. This kind of process has been previously used

in MEG studies on dementia (Osipova et al., 2003, 2005, 2006a,b; Pekkonen

et al., 1999, 2005). In the case of this Doctoral Thesis, this consisted of

setting a variable threshold for each channel, defined as the median of the



136 Chapter 5. MEG Recordings

maximum values computed for windows of 100 data samples. Empirically, it

was determined that setting the threshold to four times the median of the

maximum values automatically marked a large fraction of the artefactual

epochs.



Chapter 6

Methods

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 139

6.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Selection of the Number of Components . . . . . . 141

6.2.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . 142

6.3 Blind Source Separation Methods . . . . . . . . 145

6.3.1 SOS-BSS . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.2 HOS-BSS . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.3 cBSS . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Consistency Evaluation of BSS Methods . . . . 148

6.4.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Artefact Removal With BSS . . . . . . . . . . . . 150

6.5.1 Artefact Detection Metrics . . . . . . . . . . . . . 151

6.5.2 Evaluation of the Artefact Rejection . . . . . . . . 160

6.6 Feature Enhancement With BSS . . . . . . . . . 163

6.6.1 Description . . . . . . . . . . . . . . . . . . . . . . 163

6.6.2 Signal Features . . . . . . . . . . . . . . . . . . . . 165

6.7 Extraction of Brain Rhythms With cBSS . . . . 171

6.7.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . 171

6.7.2 Empirical Mode Decomposition . . . . . . . . . . . 172

6.7.3 Frequency Characterisation of the IMFs . . . . . . 173

6.7.4 Regional Extraction of Brain Rhythms . . . . . . . 174

137



138 Chapter 6. Methods

6.7.5 Coherence . . . . . . . . . . . . . . . . . . . . . . . 176

6.8 Statistical Analysis Tools . . . . . . . . . . . . . . 177

6.8.1 Visual Information Tools . . . . . . . . . . . . . . 177

6.8.2 Statistical Significance Tests . . . . . . . . . . . . . 177

6.8.3 Classification Analysis . . . . . . . . . . . . . . . . 178



6.1. Introduction 139

This Chapter details the methods and techniques applied in each of the

studies carried out in this Doctoral Thesis. Firstly, the preprocessing used to

determine the number of components to be extracted from the recordings is

explained. Next, the selection of the input parameters employed in the BSS

algorithms is justified. Afterwards, it is described how the outcomes of di-

verse BSS methods are compared to reveal their similarities and differences.

The framework used to assess the artefact removal with BSS techniques is

also detailed. Then, the use of BSS as a preprocessing to improve the classi-

fication of features computed from AD patients and control subjects’ MEGs

is described. Finally, the methodology developed to adaptively extract brain

rhythms in certain frequency bands and scalp regions is presented.

6.1 Introduction

For the sake of clarity, let us recall the basic ideas behind the BSS tech-

niques. The m MEG channels, x (t) = [x1 (t) , x2 (t) , . . . , xm (t)]T are con-

sidered a linear mixture of of n underlying, inner components, or sources,

s (t) = [s1 (t) , s2 (t) , . . . , sn (t)]T. Here T denotes transposition and all the

variables are assumed to have zero mean. As it was already shown in

Eq. (4.11), the simplest model is:

x (t) = As (t) , (6.1)

where A is a full rank m × n mixing matrix with m ≥ n (Hyvärinen et al.,

2001; James and Hesse, 2005; Vigário and Oja, 2008).

This simplified model can be suitable if additive sensor noise is low enough

(James and Hesse, 2005). However, a more realistic model may be used to

consider external noise, which is modelled as an m-dimensional vector of

additive spatially uncorrelated gaussian noise, n (t), (Barbati et al., 2004;

Escudero et al., 2007b; Ting et al., 2006; Vorobyov and Cichocki, 2002).

Thus, the model becomes:

x (t) = As (t) + n (t) . (6.2)
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In this setting, only the observations, x (t), are available. Thus, x (t) and

A, have to be estimated blindly from x (t). Using the assumptions described

in Section 4.3.1, the estimation of the components, ŝ (t), is done as:

ŝ (t) = Bx (t) = B [As (t) + n (t)] = s (t) + Bn (t) , (6.3)

where B is the BSS demixing matrix which must fulfil B = Â+ (Cichocki

and Amari, 2002). Here, ˆ and + denote a pseudo-inverse matrix and an

estimated variable, respectively.

6.2 Preprocessing

In some cases, it may be helpful to preprocess the data to reduce the prob-

lem dimensionality and to estimate m (Escudero et al., 2007b; Hesse, 2008;

Hyvärinen et al., 2001). Ideally, this preprocessing should be robust to ex-

ternal noise (Escudero et al., 2007b; Hesse, 2007, 2008).

It can be useful to apply a dimensionality reduction before BSS for sev-

eral reasons. Firstly, when high-density recording equipment is used, the

number of inner meaningful components may be less than the number of

available channels for analysis (Ikeda and Toyama, 2000; James and Hesse,

2005). Secondly, a dimensionality reduction can sometimes be needed to

avoid ‘overfitting’ (Vigário and Oja, 2000, 2008). Finally, the dimensionality

reduction helps to reduce the importance of the external noise (Ikeda and

Toyama, 2000).

Ordinarily, the preprocessing is performed by standard PCA (James and

Hesse, 2005). However, this approach has some drawbacks, including some

arbitrariness and the assumption that the power of n (t) is negligible, which

may not be true in un-averaged MEG data (Cao et al., 2003). To overcome

this problem, the eigenvalue spectrum may be split into signal and noise

subspaces by a power threshold so that the external noise power is estimated

from the noise subspace (Barbati et al., 2004; Cichocki and Amari, 2002; Ting

et al., 2006). However, this method assumes that all MEG channels have the

same noise power, and it retains the aforementioned subjectivity (Escudero
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et al., 2007b).

In contrast to those techniques, we used the preprocessing with noise re-

duction proposed in (Cao et al., 2003): the unweighted least squares method

of FA. This method takes into account the diagonal elements in the covari-

ance of the external noise: Ψ = E
{

n (t) n (t)T
}

(Cao et al., 2003).

Let Âpr be the estimated preprocessing mixing matrix that relates the

preprocessed data, z (t), to x (t):

x (t) = Âprz (t) + n (t) (6.4)

and let C0
xx = E

{
x (t) xT (t)

}
. Âpr is iteratively computed from the eigen-

value decomposition of (C0
xx −Ψ), and Ψ is also iteratively estimated as the

diagonal elements of
(
C0

xx − ÂprÂ
T
pr

)
. The full process is detailed in (Cao

et al., 2003).

Once Âpr and Ψ̂ have reached stable values, we calculate the whitening

matrix, Q, as the pseudo-inverse of Âpr. Since pseudo-inverse matrices are

not unique, we used (Cao et al., 2003; Ikeda and Toyama, 2000):

Q =
(
ÂT

prΨ̂
−1Âpr

)−1

ÂT
prΨ̂

−1, (6.5)

which considers Ψ̂.

Using Q, the preprocessed data are obtained by means of (Cao et al.,

2003; Escudero et al., 2007b):

ẑ (t) = Qx (t) . (6.6)

6.2.1 Selection of the Number of Components

The preprocessing previously detailed assumes that n is known. However, n is

a parameter that must also be estimated blindly from the data. Considering

n ≤ m and the number of free parameters, a bound for the number of

components (nmax) in this model can be found as (Cao et al., 2003; Ikeda
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and Toyama, 2000):

nmax =

⌊
1

2

(
2m+ 1−

√
8m+ 1

)⌋
, (6.7)

where bac denotes the integer part of a.

In order to determine the optimum value of n, we used a method derived

from FA based on statistical model selection with information criteria. We

estimated Âpr and Ψ̂ for each 1 ≤ n ≤ nmax. Then, the MDL was computed

for each n value as follows (Ikeda and Toyama, 2000):

MDL (n) =
1

2
tr

[
C0

xx

(
Ψ̂ + ÂprÂ

T
pr

)−1
]

+

1

2
log
[
det
(
Ψ̂ + ÂprÂ

T
pr

)]
+

m

2
log (2π) +

logN

N

[
m (n+ 1)− n (n− 1)

2

]
, (6.8)

where N is the number of signal samples, and tr (·) denotes the trace of a

matrix. Finally, the data were preprocessed with the matrix Q corresponding

to the value of n that minimises the MDL (Escudero et al., 2007b; Ikeda and

Toyama, 2000).

This preprocessing and component selection procedure was applied in the

analyses carried out in Section 6.4 and Section 6.5. On the other hand, by

the own nature of the studies performed in Section 6.6 and Section 6.7, this

kind of procedure was not used.

6.2.2 Synthetic Data

We used simulated data to test the performance of the preprocessing (Escu-

dero et al., 2007b). These data were composed by 11 sources. Four of them

(S1 to S4) were considered artefactual components, whereas the other seven

(S5 to S11) simulated ‘useful’ signals. These signals had the same sample

frequency (169.54 Hz) as the real MEG signals analysed in this Doctoral

Thesis. Their length was set to 50 s, a signal epoch length previously used

in artefact removal studies (Escudero et al., 2006c,d, 2007b, 2008c).
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Fig. 6.1 depicts one example of each synthetic source. Their time plot,

Normalised Power Spectral Density (PSDn) and histogram are shown. Their

description follows (Escudero et al., 2007b):

1. S1 corresponds to a real ECG signal.

2. S2 is an inner white gaussian noise source.

3. S3 is a real EOG.

4. S4 simulated PLN (a sine wave at 50 Hz).

5. S5 is a real MEG epoch recorded at a central position of the head. It

was selected to have minimal ocular and cardiac activity. The PLN was

reduced using a Q-notch digital filter. Moreover, in order to remove any

possible remainder of cardiac activity, the projection of a simultaneous

ECG recording onto the epoch was computed. Then, this projection

was removed from S5 (Escudero et al., 2007b; Samonas et al., 1997).

6. S6 is a 1/f noise source. Similarly to the EOG, this noise has most of

its power in low frequencies.

7. Likewise the ECG, S7 is a skewed and supergaussian signal. It is a

white exponential noise source with the parameter λ = 1.

8. Finally, S8 to S11 represented rhythmic activity. Their main frequen-

cies are 7 Hz, 14 Hz, 21 Hz and 28 Hz, respectively, and their bandwidth

is 1 Hz.

From these 11 source components, 52 mixed signals were created using

mixing matrices randomly generated by a gaussian process with zero mean

and SD equal to 1 (Barbati et al., 2004; Escudero et al., 2007b).

If the simulated artefacts (S1 to S4) and the useful sources (S5 to S11)

were considered inner noise and useful signal, respectively, the inner SNR

would be about −5.5 dB. Moreover, additive gaussian noise with different

power was added to each of the 52 mixed signals. The additive noise power

was varied, and the source delay (or phase) was changed in every realisation
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Figure 6.1: One example of synthetic sources. S1–S4: simulated undesired
signals, S5–S11: simulated ‘useful’ signals.
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of the data set (Escudero et al., 2007b). Finally, all the mixtures were fil-

tered using a the same band-pass FIR filter (Hamming window) with cut-off

frequencies at 0.5 Hz and 60 Hz that was applied to the real MEG data in the

evaluation of the BSS algorithms consistency and artefact removal (Escudero

et al., 2007b, 2009d).

As it has been previously mentioned, these synthetic data were used to

test the performance of preprocessing. This includes the accuracy in the

estimation of the number of inner components and the external noise power

(Escudero et al., 2007b). To assess the latter, the following approach was

taken. Let Ψ be the actual covariance matrix of the additive external noise

added to the mixtures and Ψ̂ denote the estimation of Ψ provided by the

preprocessing. The error in the estimation of the external noise power Enorm

was defined as (Escudero et al., 2007b):

Enorm =

∑
abs

[
tr
(
Ψ̂
)
− tr (Ψ)

]
∑

tr (Ψ)
, (6.9)

where tr (·) and abs (·) denote trace of a matrix and absolute value, respec-

tively.

6.3 Blind Source Separation Methods

This Section describes the selection of the parameters and the particular de-

tails of the BSS algorithms used in this Doctoral Thesis. These are: AMUSE

(detailed in Section 4.4.2; Tong et al., 1991), SOBI (described in Section 4.4.3;

Belouchrani et al., 1997), FastICA (presented in Section 4.5.2; Hyvärinen,

1999; Hyvärinen and Oja, 1997), eInfoMax (introduced in Section 4.5.3; Lee

et al., 1999), JADE (explained in Section 4.5.4; Cardoso and Souloumiac,

1993, 1996) and the cBSS algorithm by Huang and Mi (2007) whose basic

ideas were outlined in Section 4.6.

The implementations of these algorithm are available at the EEGLAB

(Delorme and Makeig, 2004), FastICA (Gävert et al., 2009) and ICALAB

(Cichocki et al., 2009) toolboxes or upon request (Huang and Mi, 2007).
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6.3.1 SOS-BSS

AMUSE and SOBI employ SOS. They are time structure based methods

(Hyvärinen et al., 2001), which assume that the sources have no spatial-

temporal correlations (James and Hesse, 2005). Thus, these techniques try

to diagonalise a set of cross-covariance matrices computed from x (t) (James

and Hesse, 2005).

AMUSE (Tong et al., 1991) only considers two time delays — usually

τ = 0 and τ = 1 sample (Cichocki and Amari, 2002). It is important to

note that AMUSE orders the components by decreasing linear predictability

(Cichocki et al., 2005), a criterion which is closely related to the spectral

content of the signals (Escudero et al., 2008d, 2009b).

On the other hand, SOBI (Belouchrani et al., 1997) uses iterative proce-

dures to simultaneously diagonalise multiple temporal lags (Hyvärinen et al.,

2001; James and Hesse, 2005). Considering the results reported by Suther-

land et al. (2004) and Tang et al. (2005) about the ‘standard set’ of time

delays for application of SOBI to brain activity, and similarly to (Crespo-

Garcia et al., 2008), SOBI was applied with 50 consecutive time lags from

τ = 1 sample to τ ≈ 300 ms (Escudero et al., 2009d). Moreover, this choice

is supported by the fact that this set of delays covers a wide time interval

without extending beyond the support of the autocorrelation function (Tang

et al., 2005), as it can be seen in Fig. 6.2.

6.3.2 HOS-BSS

On the other hand, JADE, eInfoMax and FastICA rely on HOS or statistical

parameters like negentropy. They look for non-gaussian sources assuming

that x (t) contains observations of random variables where the temporal order

is irrelevant (Hyvärinen et al., 2001; James and Hesse, 2005).

In this Doctoral Thesis, FastICA was applied with tanh (·) as the non-

linearity (Escudero et al., 2009d), which corresponds to the function G1 (y) =
1
a1

log [cosh (a1y)]. This function was selected for being a good general-

purpose function (Hyvärinen, 1999; Hyvärinen et al., 2001). It has been

used in previous artefact removal studies (Frank and Frishkoff, 2007; Halder
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Figure 6.2: Average autocorrelation function of the controls’ MEGs for epoch
lengths of 10 s, 20 s, 40 s, 60 s and 90 s.

et al., 2007). The deflation approach (i.e., estimation of the components one-

by-one) was used in the comparison of BSS algorithms (Section 6.4) and in

the artefact removal (Section 6.5). This is due to the fact that the CA and

OAs are usually characterised by extreme values of HOS (Escudero et al.,

2007b). Hence, the deflation approach may be helpful to extract this kind

of components more reliably (Hyvärinen et al., 2001). On the other hand,

the symmetric approach was applied in the BSS preprocessing studied in

Section 6.6 in order to assure that the possible errors in the estimation of

the components were distributed among all components (Hyvärinen et al.,

2001). Moreover, this approach is faster if all components are to be esti-

mated (Halder et al., 2007).

The extended version of InfoMax was used in order to estimate both sub-

and super-gaussian sources (Escudero et al., 2009d). This version of the

algorithms has been widely applied in the artefact removal problem (Crespo-

Garcia et al., 2008; Fitzgibbon et al., 2007; Hoffmann and Falkenstein, 2008;

Romero et al., 2008; Rong and Contreras-Vidal, 2006). The number of each

type of components was automatically determined (Lee et al., 1999).

JADE has no tunable parameters (Escudero et al., 2009d; Hyvärinen

et al., 2001; Zavala Fernández et al., 2006). Additionally, it is important
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to note that JADE could not be used in the BSS preprocessing described

in Section 6.6. The reason was that the high dimensionality of the data

(n = 148) produces a extremely high memory requirement.

6.3.3 cBSS

The cBSS algorithm applied in this Doctoral Thesis was developed by Huang

and Mi (2007) as a modification of the method originally introduced by Lu

and Rajapakse (2005, 2006). This framework incorporates a priori informa-

tion from a reference signal into the negentropy contrast function as inequal-

ity and equality constrained terms by means of an augmented Lagrangian

function (Huang and Mi, 2007; Lu and Rajapakse, 2006).

The algorithm by Huang and Mi (2007) improves the performance and

the quality of the separation of the original one by Lu and Rajapakse (2006).

The norm used to measure the similarity between the extracted component

and the reference was the mean square error: E
{

[y (t)− r (t)]2
}

, which has

been suggested to be appropriate for brain recordings (Huang and Mi, 2007).

Finally, it must be noticed that the reference signal was calculated as the sign

function of the activity supposed to follow the activity of interest (Huang and

Mi, 2007; James and Gibson, 2003).

6.4 Consistency Evaluation of BSS Methods

A completely accurate quantification of the performance provided by a BSS

algorithm q can only be done if either the original mixing matrix, A, or the

set of sources, s (t), is known (Hyvärinen et al., 2001; Melissant et al., 2005).

In this case, the evaluation can be carried out using a framework like the one

proposed by Vincent et al. (2006). In the case of real EEG and MEG record-

ings, these data are not available. However, the consistency (i.e., similarity)

of various BSS algorithms can still be precisely computed (Cichocki et al.,

2009).

In order to achieve this goal, two different BSS algorithms (algorithm q

and algorithm r) must be applied to the same data in order to estimate the
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corresponding mixing matrices: Aq and Ar (Cichocki et al., 2009). Then, the

columns of these matrices are normalized to unit length vectors and a matrix

Pqr is computed as:

Pqr = (Aq)−1 Ar. (6.10)

If the two algorithms q and r provide exactly the same separation, Pqr

will be a generalized permutation matrix. Similarly, the closer Pqr is to a

permutation matrix, the more consistent (i.e., similar) the separations of the

algorithms q and r are (Cichocki et al., 2009).

6.4.1 Metric

In the aforementioned methodology, it is necessary to define a metric to

assess the degree to which Pqr is close to a permutation matrix. Hence, we

introduce the metric F as:

F =
F1 + F2

2
, (6.11)

with F1 and F2 computed as in (Escudero et al., 2009d; Melissant et al.,

2005):

F1 =
1

n

n∑
i=1

[
1

n− 1

(
n∑
j=1

|pij|
maxk |pik|

− 1

)]
, (6.12)

and

F2 =
1

n

n∑
j=1

[
1

n− 1

(
n∑
i=1

|pij|
maxk |pkj|

− 1

)]
, (6.13)

where pij denotes an element of Pqr and n is the number of components.

F1 measures the average coupling of other sources into one particular com-

ponent, whereas F2 accounts for the fact that two or more estimated com-

ponents represent exactly the same original source (Melissant et al., 2005).

It is worth noting that F1 and F2 are normalized so that their values do not

depend on the dimensions of Pqr. Since F1 and F2 are bounded between

0 (for a perfect generalized permutation matrix) and 1, F also ranges be-

tween 0 and 1. Hence, the lower the value of F for a pair of algorithms,

the more consistent they are (i.e., the outcomes of both algorithms are more

similar) (Escudero et al., 2009d).
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6.5 Artefact Removal With BSS

BSS may be useful in the artefact removal problem, since it decomposes the

recordings into components with minimal dependence between them. Then,

these components can be inspected to find out which are responsible for

the artefacts (Barbati et al., 2004; Escudero et al., 2007b; Ting et al., 2006;

Vigário, 1997).

The marked artefactual components can be removed from the record-

ings to reduce the importance of the artefacts in brain signals. Criteria to

determine which sources are artefacts will be described in Section 6.5.1.

Once the artefactual components have been identified, the artefact-free

signals can be reconstructed by two approaches (Mantini et al., 2008; Ting

et al., 2006):

1. The first one is done by re-mixing the artefact-free components:

xclean (t) =
∑
i∈I

aisi (t) , (6.14)

where xclean (t) denotes the reconstructed, artefact-free, MEG signals

and I represents the set of components not being rejected.

2. As an alternative, the identified artefact sources can be subtracted from

the observed signals:

xclean (t) = x (t)−
∑
j∈J

ajsj (t) , (6.15)

where J denotes the indices of all artefactual components.

The second approach is adopted in this Doctoral Thesis. This is due to

the fact that the noise term n (t) in Eq. (6.2) can be considered as a modelling

error (Ting et al., 2006). Hence, the second approach tries to minimize the

distortion to the true brain activity by the artefact removal process (Ting

et al., 2006). Moreover, the second approach can be used together with a

cBSS algorithm. Typically, these techniques only extract one component
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with collects the artefactual activity. Hence, the first reconstruction intro-

duced in Eq. (6.14) cannot be applied, whereas the term aj in Eq. (6.15)

can be estimated as the correlation coefficients between the original recorded

channels and the extracted components (Huang and Mi, 2007).

Only the MEG recordings of the subjects in the control group have been

studied in this part of the Doctoral Thesis. The objective was to compare

the performance of diverse artefact removal procedures avoiding the possible

influences that AD could produce. In order to analyse the effect of different

epoch lengths on the performance of the artefact removal, the BSS algorithms

were applied to signal epochs of 10 s, 20 s, 40 s, 60 s and 90 s.

6.5.1 Artefact Detection Metrics

In this Section, we present the metrics used in this Doctoral Thesis to detect

the considered artefacts: CA, OA and PLN.

Before describing each of the metrics implemented in this study, it is

important to notice that a ‘segment’ approach was taken to compute the

metrics based on statistical properties from the signals. This procedure con-

sists of dividing the components estimated from the corresponding signal

epochs into non-overlapping segments (also known as trials) of 1 s (169 data

samples) (Dammers et al., 2008; Mammone and Morabito, 2008). For the

sake of clarity, it is recalled that the signal epoch length considered in this

study are: 10 s, 20 s, 40 s, 60 s and 90 s. Then, within each component, the

parameter is computed for each segment (or trial) separately, as proposed by

Barbati et al. (2004); Dammers et al. (2008); Greco et al. (2006) and Mam-

mone and Morabito (2008). In case a certain fraction of the segments of a

BSS component exceeds a predefined threshold, that component is marked

for rejection (Barbati et al., 2004; Dammers et al., 2008; Greco et al., 2006;

Mammone and Morabito, 2008).

All distributions derived from this ‘segment’ approach were normalized to

zero mean and SD equal to 1 with respect to all components of the database

extracted with the same BSS algorithm and epoch length (Barbati et al.,

2004; Dammers et al., 2008; Greco et al., 2006; Mammone and Morabito,
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2008). Then, a component was marked as artefact if 30% or more of its

segments exceeded a threshold value of ±2.0 (Dammers et al., 2008). This

criterion is more restrictive than the commonly used consisiting of mark-

ing a BSS source if 20% or more of its trials exceeded a value of ±1.64

(Barbati et al., 2004), and it aims at minimising the false positive artefact

detection (Dammers et al., 2008).

When the probability distribution needed to be computed, the recom-

mendation by Delorme et al. (2007) was followed so that the number of bins

of the histogram was set to the number of data samples divided by five.

Cardiac Artefact

The following metrics were used in the detection of cardiac components.

Kurtosis Excess Kurtosis has been used in several studies to recognise

diverse artefacts, including cardiac and ocular ones (Barbati et al., 2004;

Dammers et al., 2008; Escudero et al., 2006c, 2007b; Mammone and Mora-

bito, 2008).

Let mn = E {(x− E {x})n} the nth central moment of the amplitude

distribution of the signal x. Kurtosis Excess (KrE) is defined as (Escudero

et al., 2006c, 2007b):

KrE =
m4

(m2)2 − 3. (6.16)

KrE is is negative for sub-gaussian amplitude distributions (‘flatter’ than

the gaussian one). However, if the samples are highly gathered around the

central values and the distribution has ‘heavy tails’, KrE is positive (super-

gaussian distribution) (Barbati et al., 2004; Delorme et al., 2007; Escudero

et al., 2007b). Thus, large KrE values are associated with super-gaussian

components, which may be due to the CA and OA (Barbati et al., 2004;

Escudero et al., 2007b).

This metric was applied to the components following the segment ‘ap-

proach’ previously introduced and it has been tested in the rejection of all

kind of artefacts considered in this Doctoral Thesis.
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Skewness Likewise KrE, Skewness (Skew) has been proposed to detect

artefactual activity isolated in BSS components (Dammers et al., 2008; Es-

cudero et al., 2006c, 2007b; Shao et al., 2008; Shoker et al., 2005a).

Using the same notation as in Eq. (6.16), Skew is computed as (Dammers

et al., 2008; Escudero et al., 2007b; Shoker et al., 2005a):

Skew =
m3

(m2)
3
2

. (6.17)

Skew measures the asymmetry degree of a distribution. Only if the ampli-

tude distribution is symmetrical, Skew is zero (Escudero et al., 2007b). Thus,

large abs (Skew) values, where abs (·) denotes absolute value, are associated

with asymmetric components, which may be due to ocular and, specially,

cardiac activity (Escudero et al., 2007b; Shoker et al., 2005a). Hence, this

metric, which was computed in segments of the BSS components, was applied

to assess the reduction of cardiac activity in the data.

Shannon Entropy The detection of artefacts in BSS components from

brain activity was also carried out using Shannon Entropy (HSh) (Barbati

et al., 2004; Greco et al., 2006; Rong and Contreras-Vidal, 2006).

Here, the HSh is computed as (Dammers et al., 2008):

HSh = −
∑
i

pi (x) log [pi (x)] , (6.18)

where the probabilities were estimated from the signal histogram calculated

with a number of bins equal to the number of samples divided by five (De-

lorme et al., 2007).

Entropy is a measure of disorder or irregularity. Higher entropy val-

ues correspond to more unstructured signals. On the other hand, small

entropy values correspond to components whose amplitude distributions are

contained in a few limited intervals with high probabilities, as it happens in

certain types of artefacts with ‘spiky’ probability densities (Barbati et al.,

2004; Dammers et al., 2008). Thus, HSh was used to mark BSS components

with all types of artefacts considered in this Doctoral Thesis.
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Rényi Entropy HSh can be replaced with Rényi Entropy (HRé) in the de-

tection of artefactual components (Greco et al., 2006; Mammone and Mora-

bito, 2008). The computation of HRé depends on an entropic index, q. Ac-

tually, HRé is linked to the distribution of the signals through q. A high

q value emphasises super-gaussian distributions whereas a low q emphasises

the sub-gaussian ones (Mammone and Morabito, 2008). If the mixtures be-

long to different kurtosis classes, a quadratic entropy (q = 2) can be used

to put equal emphasis on all data points regardless of their probability den-

sity (Greco et al., 2006; Mammone and Morabito, 2008).

The HRé is computed as follows (Greco et al., 2006; Mammone and Mora-

bito, 2008):

HRé =
1

1− q
log
∑
i

pqi (x) , (6.19)

with q = 2 (Greco et al., 2006; Mammone and Morabito, 2008). This metric

was tested in the detection of CA, OA and PLN.

Approximate Entropy Another entropic measure is Approximate En-

tropy (ApEn). The use of ApEn as a metric to detect artefactual components

in MEG activity was proposed by Mantini et al. (2008). It was shown that

this metric could classify the components extracted with FastICA into three

groups corresponding to cerebral activations, non-cerebral biological signals

and environmental disturbances (Mantini et al., 2008). ApEn is expected

to be small for non-cerebral biological signals, such as cardiac and ocular

activities (Mantini et al., 2008).

ApEn is a family of statistics introduced to quantify the regularity of a

sequence (Pincus, 2001). It assigns a non-negative number to a time series,

with larger values corresponding to more irregularity in the data. A run

length m and a tolerance window r must be specified to compute it (Pincus,

2001). Given N points, ApEn(m, r,N) measures the logarithmic likelihood

that runs of patterns that are close (within r) for m contiguous observations

remain close (within the same tolerance width r) on subsequent incremental

comparisons (Pincus, 2001).

Given N data points from a time series {x(n)} = {x(1), x(2), . . . , x(N)},
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one should follow these steps to compute ApEn (Pincus, 2001):

1. Form N − m + 1 vectors X(1), X(2), . . . , X(N − m + 1) defined by:

X(i) = [x(i), x(i + 1), . . . , x(i + m − 1)], i = 1, . . . , N −m + 1. These

vectors represent m consecutive x values, commencing with the ith

point.

2. Define the distance between X(i) and X(j), d[X(i), X(j)], as the max-

imum norm:

d[X(i), X(j)] = max
k=1,...,m

(|x(i+ k − 1)− x(j + k − 1)|). (6.20)

3. For a given X(i), count the number of j (j = 1, . . . , N −m+ 1) so that

d[X(i), X(j)] ≤ r, denoted as Nm(i). Then, for i = 1, . . . , N −m+ 1,

Cm
r (i) =

Nm(i)

N −m+ 1
(6.21)

Cm
r (i) measures, within a tolerance r, the frequency of patterns similar

to a given one of window length m.

4. Compute the natural logarithm of each Cm
r (i), and average it over i,

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
r (i). (6.22)

5. Increase the dimension to m+ 1. Repeat steps 1 to 4 and find Cm+1
r (i)

and φm+1(r).

6. ApEn is defined by:

ApEn (m, r,N) = φm(r)− φm+1(r). (6.23)

ApEn was computed with the values of m = 2 and r = 0.2 times the

SD of the analysed signal, as proposed by Mantini et al. (2008) and this

parameter was applied following the ‘segment’ procedure.
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In this Doctoral Thesis, ApEn has been tested in the removal of CA, OAs

and PLN.

Variance of the scalp distribution The Variance of the Scalp Distribu-

tion (VarSc) is introduced as feature able to detect CAs in a BSS compo-

nent since it has been suggested that the scalp distributions associated with

cardiac activity gives smaller variance compared to other types of compo-

nents (Shao et al., 2008).

This metric is computed as (Shao et al., 2008):

VarSc = var

(
ai
‖ai‖

)
, (6.24)

where var (·) represents the variance and ai is the scalp distribution coeffi-

cients in the mixing matrix corresponding to the component i (Shao et al.,

2008).

Due to the facts that this metric intends to detect components whose scalp

distribution has extremely low variance and that the cardiac contamination

always appears in this recordings (Escudero et al., 2007b), the component

with the minimum value of VarSc for each signal epoch was marked for

rejection.

Constrained Blind Extraction of the Cardiac Artefact In addition

to applying a BSS method and characterising the extracted components,

a cBSS approach can be taken to reduce the cardiac contamination in the

MEGs (James and Gibson, 2003). This is due to the fact that cBSS extracts

components that are characterised by having minimal dependence of the

other underlying sources and being similar to some reference signal (Huang

and Mi, 2007; James and Gibson, 2003). However, this reference should be

derived from the data or from some a priori knowledge (Huang and Mi, 2007;

James and Gibson, 2003).

In this Doctoral Thesis, a suitable reference for the extraction of the

CA has been computed tanking into account that the MEG signals contain

background activity. Thus, an average of all MEG channels tends to cancel
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Figure 6.3: Example of the cardiac activity that appears over the scalp and
the reference extracted from it.

the brain activity while the only synchronous activity (the CA) remains in

the average signal (Escudero et al., 2007b). This is illustrated in Fig. 6.3,

which shows the average of a 10 s MEG epoch.

It is more important for the reference to capture the temporal features of

interest than follow the relative morphology of the activity to be extracted

(James and Gibson, 2003). Moreover, the average of all MEG channels may

not be a pure cardiac signal since some other activities might also appear in it.

Hence, the actual reference introduced to the cBSS algorithm was computed

as a series of positive and/or negative pulses synchronised with the R-peaks of

the cardiac activity (James and Gibson, 2003). This reference is also plotted

in Fig. 6.3. Finally, the extracted activity is projected to the MEG channels

space and subtracted from the recorded signals (Huang and Mi, 2007; James

and Gibson, 2003).

Ocular Artefact

This Doctoral Thesis also aims at reducing the importance of the OAs in the

MEG recordings. The ocular components share some characteristics with
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the CA (e.g., both are usually characterised by extreme values of kurtosis

or entropy). Therefore, some of the metrics proposed to detect the cardiac

components can be also used to mark ocular sources. These are (Barbati

et al., 2004; Dammers et al., 2008; Mammone and Morabito, 2008; Mantini

et al., 2008; Rong and Contreras-Vidal, 2006):

• KrE.

• HSh.

• HRé.

• ApEn.

Similarly to the case of the CA, these features were calculated using

the ‘segment’ approach and the criterion for rejection was also that 30% or

more of the segments in a component have a normalised value that exceeds

±2.0 (Dammers et al., 2008).

Additionally, a couple of metrics specially focused on the detection of

the OA were also tested in this Doctoral Thesis. They are detailed in the

following lines.

Power near the eyes The power of the OA is mainly gathered near the

eyes. Hence, the scalp distribution has already been used to help in the

detection of this artefact (Escudero et al., 2007b; Fatourechi et al., 2007;

Frank and Frishkoff, 2007; Li et al., 2006; Rong and Contreras-Vidal, 2006).

Therefore, the metric Power near the Eyes (PEY ES) is proposed (Escudero

et al., 2006d, 2007b). This is computed as the fraction of the power located

on the 13 frontal peripheral channels nearer to the eyes, which are depicted

in Fig. 6.4.

For a component sj, this metric can be computed as follows (Escudero

et al., 2007b):

PEY ES =
∑

k∈KEY ES

a2
kj/
∑
k

a2
kj, (6.25)

where akj is an element of the mixing matrix A and KEY ES denotes the set

of channels considered.
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Figure 6.4: Location of the 13 MEG channels considered in the PEY ES metric.

This metric intends to detect components whose PEY ES is extremely high.

Moreover, not all signal epoch are contaminated by OAs. Therefore, in order

to minimise the removal of non-artefactual activity, the values of PEY ES were

normalized to zero mean and SD = 1 with respect to all components derived

from the same BSS method and epoch length and the detection threshold

was set to +3.5 (Dammers et al., 2008).

Power in Low Frequencies The energy of the OAs tends to be centred

in lower frequencies than in brain or cardiac signals (Escudero et al., 2007b;

Fatourechi et al., 2007; Joyce et al., 2004). The low frequency content of the

OAs can be helpful to mark these undesired components (Escudero et al.,

2006d, 2007b). Thus, we computed the fraction of the Power Spectral Density

(PSD) that each BSS component has from 0.5 Hz to 2.5 Hz: the Power in

Low Frequencies (PLF ) (Escudero et al., 2007b).

Similarly to PEY ES, the values of PLF were normalized to mean = 0 and

SD = 1 with respect to all the relevant components. Then, the detection

threshold was set to +3.5 to try to minimise the amount of brain activity

lost (Dammers et al., 2008).
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Power Line Noise

Finally, we introduce the metrics employed to mark components that mainly

contain PLN. It has been suggested that ApEn might be able to detect this

kind of contamination (Mantini et al., 2008). Additionally, the amplitude

distribution of an harmonic component may be different from that of a brain

signal. Hence, the kurtosis and entropic metrics will also be used. In addition,

the following metric has been tested in this Doctoral Thesis.

Power at the Line Frequency If a BSS component could isolate PLN, its

spectrum would be centred at the power line frequency (50 Hz in this case)

(Escudero et al., 2006c, 2007b; Iriarte et al., 2003; Jung et al., 2000; LeVan

et al., 2006; Nicolaou and Nasuto, 2007). Hence, we calculate a spectral

metric, Power at the Line Frequency (P50Hz), which measures the fraction of

the PSD contained from 49.5 Hz to 50.5 Hz for each component (Escudero

et al., 2007b).

Large values of P50Hz are due to BSS components that have most of

their energy round 50 Hz. The same normalisation procedure and detection

criterion as PEY ES and PLF (threshold at +3.5 of the normalised values) is

applied in this case.

6.5.2 Evaluation of the Artefact Rejection

Most often, the quality of the artefact detection and removal based on BSS

has been evaluated using some sort of synthetic signals (Barbati et al., 2004;

Delorme et al., 2007; Kierkels et al., 2006; Romero et al., 2008, 2009; Wall-

strom et al., 2004) or by means of a visual inspection of the recordings (Flexer

et al., 2005; Greco et al., 2006; Joyce et al., 2004; Jung et al., 2000; LeVan

et al., 2006; Li et al., 2006; Mammone and Morabito, 2008; Shoker et al.,

2005a; Ting et al., 2006; Vigário, 1997; Vorobyov and Cichocki, 2002). How-

ever, it is desirable to carry out objective evaluations of the artefact removal

as done by Dammers et al. (2008); Escudero et al. (2007b) or Mantini et al.

(2008). Thus, this Section describes the measurements used to try to au-

tomatically and objectively assess the artefact removal from the MEG back-
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ground activity.

Cardiac Artefact

In order to assess the CA removal, we detected the QRS-complexes in the

average of all 148 MEG channels before the artefact rejection method (Escu-

dero et al., 2007b). This approach is motivated by the fact that the only syn-

chronous activities in the MEG recordings are the CA and the PLN. There-

fore, it is possible to locate the clear R-peaks in this average signal (before

the artefact rejection process) and estimate an average QRS-complex for each

case (Escudero et al., 2007b). The importance of the CA can be characterised

with the Peak-to-Peak Amplitude (APtP ) (Escudero et al., 2007b; Mantini

et al., 2008) or the Root Mean Square (RMS) value (Dammers et al., 2008)

of this ‘typical’ QRS complex. By comparing these values with the corre-

sponding parameters once the BSS-based artefact removal has been applied,

it is possible to evaluate the amount of cardiac activity removed.

Ocular Artefact

The evaluation of the OA removal is far more complex than the cases of

the CA and PLN. This is due to the fact that the ocular activity is not

always present in the MEG recordings and it is not as well localised in the

frequency spectrum as the PLN. However, the effects of the BSS artefact

rejection procedure on the MEG signals can still be quantified.

For instance, for every signal epoch, the average PSD can be computed

at the subset of 18 MEG channels located over the anterior part of the head

and close to the eyes and at the remaining set of 130 channels. These two

subsets of channels are shown in Fig 6.5. It is important to note that the first

subset of channels is not equal to that used in the metric PEY ES, in order to

avoid biasing the results.

The subtraction of those two PSDs, computed over completely disjoint

sets of channels, shows the difference between the MEG activity recorded

over those two areas as a function of the frequency. Hence, one can compare

a discrepancy measure before and after the OA removal to evaluate its effect.
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Figure 6.5: Subsets of channels used in the spectral evaluation of the OA
removal.

This is done by quantifying the difference between the PSDs between 0.5 Hz

and 6.5 Hz. These frequencies are selected since it has been shown that most

of the OA energy is located at low frequencies (Romero et al., 2008, 2009;

Schlögl et al., 2007).

Additionally, an amplitude threshold was set in the MEG recordings to

count the number of peaks in the signals whose amplitude was above ±2 pT

before and after the artefact removal. This measurement was compared as an

indication the suppression of peaks in the recordings (Mantini et al., 2008).

Power Line Noise

Thanks to the fact that the spectral location of the PLN is very well defined,

it was possible to assess the reduction of this interference by calculating the

mean of the PSD of the MEG epochs before and after the artefact rejection

and inspecting the amount of power contained between 49 Hz and 51 Hz (Es-

cudero et al., 2007b).
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6.6 Feature Enhancement With BSS

This applications tries to improve the discrimination between AD patients

and control subjects based on spectral and non-linear signal features by

means of a BSS preprocessing.

This is based on the hypothesis that the application of BSS may enhance

the separation of those subject groups since some BSS components of the

EEG and MEG signals may be more sensitive to AD than others (Cichocki

et al., 2005; Escudero et al., 2008d, 2009b; Vialatte et al., 2005). Hence, the

most relevant components may be selected and the electromagnetic brain sig-

nals may be partially reconstructed using only these components to achieve a

better discrimination between AD patients and healthy elderly subjects (Es-

cudero et al., 2008d, 2009b).

In this Doctoral Thesis, we wanted to evaluate whether a BSS prepro-

cessing (using the algorithms AMUSE, SOBI, FastICA and eInfoMax) might

enhance the separation between AD patients and elderly control subjects

based on spectral and non-linear features of MEG signals. Additionally, we

aimed at determining whether the range of BSS components with significant

differences between demented patients and controls differed when both kinds

of features (spectral and non-linear ones) or BSS techniques were considered.

6.6.1 Description

The methodology is described in the following lines:

1. Firstly, MEG epochs with minimal artefactual contamination were se-

lected for analysis. Then, the signals were decomposed with four BSS

algorithms: AMUSE (Tong et al., 1991), SOBI (Belouchrani et al.,

1997), FastICA (Hyvärinen and Oja, 1997) and eInfoMax (Lee et al.,

1999).

AMUSE and SOBI were applied to the signal epochs of 10 s. In con-

trast, FastICA and eInfoMax were applied to the whole MEG record-

ings of five minutes in order to have enough data samples for a reliable
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estimation of the decomposition (Cichocki and Amari, 2002). After-

wards, the same signal epochs as in the SOS case were selected for the

HOS algorithms (Escudero et al., 2009d).

For simplicity, we assume that m = n thanks to the fact that only the

most relevant components will be retained to partially reconstruct the

MEG signals. Moreover, considering m = n allows us to consistently

compare the same number of extracted components instead of estimat-

ing different values of n for each signal epoch (Escudero et al., 2008d,

2009b).

2. Secondly, for every algorithm, the extracted components were ordered

to perform objective comparisons between different subjects (Escudero

et al., 2008d, 2009b). Two kinds of ordering were used:

• The MF. This is due to the fact that previous results have shown a

direct relationship between the AMUSE ranking used in the sem-

inal paper by Cichocki et al. (2005) and the components’ MF (Es-

cudero et al., 2008d, 2009b).

• The kurtosis. This ordering is considered as a comparison with the

previous one based on MF, which can be considered a a summary

of the signal spectral content (Poza et al., 2007b). On the other

hand, the kurtosis is representative of HOS (Hyvärinen et al.,

2001).

Hence, by ordering the components by their MF and kurtosis, we are

considering metrics related to both SOS and HOS techniques.

3. Thirdly, on the basis of the previous orderings, the features (MF,

SpecEn, LZC and SpecEn) of the AD patients and control subjects’

components was compared to define, for each algorithm, the range

of components with the most significant differences between subject

groups.

4. Afterwards, the MEG signals were partially reconstructed using only

the ranges of components with the most significant differences (Ci-
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chocki et al., 2005; Escudero et al., 2008d, 2009b). That is, if ŝrange (t)

denotes the range of the most sensitive components to AD, a partial

reconstruction of the MEG signals — xpartial (t) — that may have en-

hanced features of AD is computed using the estimated mixing matrix

Â = B−1:

xpartial (t) = Âŝrange (t) . (6.26)

5. Finally, the signal features (MF, SpecEn, LZC and SpecEn) were com-

puted from the partially reconstructed MEGs — xpartial (t) — and the

original recordings without the BSS preprocessing: x (t). The classifi-

cation results obtained in each case were compared to decide which BSS

preprocessing improved the discrimination between subject groups.

In order to test these BSS preprocessing on completely unseen data, the

selection of the most sensitive components to AD was performed using the

training set of subjects, whereas the assessment of the improvement in the

separation between AD patients and controls was carried out with the test

set (Escudero et al., 2009b). It is recalled that the demographic data and

clinical features of these subsets of subjects are shown in Table 5.3.

In contrast to the applications of BSS in the artefact removal from EEG

and MEG signals, now we do not aim at isolating specific physiological activ-

ity (Escudero et al., 2007b). Instead, we apply BSS as a preprocessing step

to enhance the differences between AD patients and controls’ brain activity

(Cichocki et al., 2005; Escudero et al., 2008d, 2009b). Thus, xpartial (t) does

not intend to resemble the brain activity accurately, but it may provide a

better separation between subject groups than the MEG data without the

BSS preprocessing (Escudero et al., 2008d, 2009b).

6.6.2 Signal Features

In this application, every MEG channel and BSS component was charac-

terised with two spectral (MF and SpecEn) and two non-linear features (LZC

and SampEn). These features were selected on the basis of previous studies

that showed their usefulness to distinguish AD patients’ EEGs and MEGs
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from those of healthy elderly subjects (Abásolo et al., 2006c; Escudero et al.,

2008d; Gómez et al., 2006a; Hornero et al., 2008, 2009b; Poza et al., 2007b).

Moreover, since two of them are spectral features (MF and SpecEn) and the

other two (LZC and SampEn) are non-linear analysis methods, the useful-

ness of the BSS and component selection procedure could be tested with both

types of techniques (Escudero et al., 2009b).

Median Frequency

MF has been used to study the electromagnetic brain activity in AD (Hornero

et al., 2008; Poza et al., 2007b) since this dementia is associated with a

slowing of brain frequencies (Jeong, 2004). This feature summarises the

signal spectrum. It provides information about the relative power of low-

and high-frequency electromagnetic oscillations produced by local synchrony

of neural assemblies. In order to calculate the MF, the PSD of each signal

is estimated as the Fourier Transform of its autocorrelation function (Poza

et al., 2007b). Then, the MF is computed as the frequency which contains

half the PSD power (Escudero et al., 2009b):

1

2

[
40 Hz∑

f=1.5 Hz

PSD (f)

]
=

MF∑
f=1.5 Hz

PSD (f) . (6.27)

It is important to note that the use of MF is twofold in this BSS prepro-

cessing (Escudero et al., 2008d, 2009b):

1. It serves as criterion to order the components extracted by the BSS

techniques so that comparisons can be made between AD patients and

control subjects.

2. It is a signal characterising feature which can be used to classify the

subjects.

Spectral Entropy

SpecEn has been applied to AD patients’ EEG and MEG recordings to mea-

sure the flatness of the signal spectrum (Abásolo et al., 2006c; Poza et al.,
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2007b). This is due to the fact that this dementia causes a slowing in the

frequency content of the electromagnetic brain signals (Jeong, 2004) and this

measure is a convenient way of quantifying these changes. A broad and flat

spectrum entails high SpecEn values, whereas a predictable signal with nar-

row spectral content offers a low SpecEn (Sleigh et al., 2004). In order to

estimate the SpecEn, the PSD is normalised — PSDn — so that (Abásolo

et al., 2006c; Escudero et al., 2008d; Poza et al., 2007b):

40 Hz∑
f=1.5 Hz

PSDn (f) = 1. (6.28)

Afterwards, SpecEn is computed applying the Shannon’s entropy to the

PSDn (Sleigh et al., 2004):

SpecEn =
−1

logN

40 Hz∑
f=1.5 Hz

PSDn (f) log [PSDn (f)] . (6.29)

Lempel-Ziv Complexity

LZC has been used to analyse various biomedical signals (Aboy et al., 2006),

including AD patients’ MEG activity (Gómez et al., 2006a, 2009a; Hornero

et al., 2008, 2009b). This metric evaluates the signal complexity by measur-

ing the number of distinct substrings and their rate of recurrence along the

time series (Lempel and Ziv, 1976). It assigns larger values to more complex

data (Lempel and Ziv, 1976). This non-linear feature can offer information

about the electromagnetic brain dynamics taking into account that it mainly

depends on the signal bandwidth and, to a smaller degree, on the sequence

probability density function (Aboy et al., 2006; Ferenets et al., 2006). Ad-

ditionally, LZC can be interpreted as a harmonic variability metric (Aboy

et al., 2006). To compute this feature, the recording must be coarse-grained

into a finite symbol sequence (Aboy et al., 2006). In this study, this transfor-

mation has been performed by comparing the data points with the median

of the signal due to its well-known robustness to outliers (Escudero et al.,

2009b; Hornero et al., 2008).
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To estimate the LZC complexity, an uni-dimensional signal, {x(n)}, must

be transformed into a finite symbol sequence, typically a binary one (Lempel

and Ziv, 1976). By comparison with a threshold Td, the original signal sam-

ples are converted into a 0-1 sequence {s(n)} = {s(1), s(2), . . . , s(N)}, with

s(i) defined as (Zhang et al., 2001):

s (i) =

{
0 if s (i) < Td,

1 if s (i) ≥ Td.
(6.30)

The sequence {s(n)} is then scanned from left to right and the complexity

counter c (N) is increased by one unit every time a new subsequence of con-

secutive characters is encountered (Zhang et al., 2001). In order to obtain

a complexity measure which is independent of the sequence length, c (N)

should be normalized (Zhang et al., 2001). In general, N/ logα (N) is the

upper bound of c (N), where the base of the logarithm α is the number of

symbols (two for a binary sequence). Thus,

lim
N→∞

c (N) = b (N) ≡ N

logα (N)
(6.31)

where ≡ denotes identity and c (N) can be normalized via b (N):

C (N) =
c (N)

b (N)
(6.32)

C (N), the normalized LZC complexity, reflects the arising rate of new pat-

terns along with the sequence, capturing its temporal structure. Larger val-

ues correspond to more complexity (Zhang et al., 2001).

Sample Entropy

In 1991, ApEn was introduced to assess the irregularity of biomedical record-

ings by evaluating the appearance of repetitive patterns in the data (Pincus,

2001). This statistic counts each sequence as matching itself to avoid the oc-

currence of log (0) in the computations. Thus, this irregularity estimation is

biased (Richman and Moorman, 2000). To reduce this bias, SampEn was de-
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veloped as a modification of ApEn (Richman and Moorman, 2000). Likewise

ApEn, SampEn is an irregularity metric that associates higher values with

more irregular signals. It can provide information about changes in the reg-

ularity of brain local synchronizations (Abásolo et al., 2006c; Hornero et al.,

2009b). In addition to the number of samples in the signal, N , this metric

has two input parameters: a run length m (here m is a different parame-

ter from the number of measurements in the BSS) and a tolerance window

r (Richman and Moorman, 2000).

SampEn(m, r,N) is the negative logarithm of the conditional probability

that two sequences similar for m points remain similar at the next point,

where self-matches are not included in the calculation. Thus, a lower value

of SampEn also indicates more self-similarity in the time series. SampEn is

largely independent of record length and displays relative consistency under

circumstances where ApEn does not (Richman and Moorman, 2000).

Formally, given a time series {x(n)} = {x(1), x(2), . . . , x(N)}, to define

SampEn, one should follow these steps (Richman and Moorman, 2000):

1. Form m-vectors Xm(1), Xm(2), . . . , Xm(N −m + 1) following the pro-

cedure defined in the first step of the algorithm for the computation

of ApEn. The distance between Xm(i) and Xm(j) is defined as in

Eq. (6.20).

2. For a given Xm(i), count the number of j (1 ≤ j ≤ N − m, j 6= i),

denoted as Bi, such that the distance between Xm(i) and Xm(j) is less

than or equal to r. Then, for 1 ≤ i ≤ N −m,

Bm
i (r) =

1

N −m− 1
Bi (6.33)

3. Define Bm(r) as:

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (6.34)

4. We increase the dimension to m+ 1 and calculate Ai as the number of
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Xm+1(i) within r of Xm+1(j), where j ranges from 1 to N −m (j 6= i).

We then define Ami (r) as:

Ami (r) =
1

N −m− 1
Ai (6.35)

5. We set Am(r) as:

Am(r) =
1

N −m

N−m∑
i=1

Ami (r) (6.36)

Thus, Bm(r) is the probability that two sequences will match for m

points, whereas Am(r) is the probability that two sequences will match

for m+ 1 points.

6. We define SampEn by:

SampEn(m, r,N) = − ln

[
Am(r)

Bm(r)

]
(6.37)

It is imperative to consider ApEn (m, r,N) and SampEn (m, r,N) as fam-

ilies of parameters: comparisons are intended with fixed values of m, r and

N . Although m and r are critical in determining the outcome of ApEn and

SampEn, no guidelines exist for optimizing their values. In principle, the

accuracy and confidence of the entropy estimate improve as the number of

matches of length m and m + 1 increases. The number of matches can be

increased by choosing small m (short templates) and large r (wide tolerance)

(Escudero et al., 2006a). However, there are penalties for too relaxed criteria

(Pincus, 2001). For smaller r values, one usually achieves poor conditional

probability estimates, while for larger r values, too much detailed system

information is lost. It is convenient to set the tolerance as r times the SD of

the original data sequence. In this study, SampEn was estimated with m = 1

and r = 0.25 times the SD of the original time series (Abásolo et al., 2006c;

Richman and Moorman, 2000).
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6.7 Extraction of Brain Rhythms With cBSS

This part of the Doctoral Thesis attempts to adaptively extract, using a

cBSS, rhythmic activity related to the main frequency bands δ, θ, α and β

from diverse scalp regions.

Instead of setting a priori the boundaries of these spectral bands, an

EMD (Huang et al., 1998) will be used to decompose the activity recorded

at each channel into rhythmical IMFs. Afterwards, all the IMFs computed

from all channels in the same region are fed into a clustering procedure to

automatically select a reference for every brain rhythm (δ, θ, α and β). This

reference is employed with a cBSS to extract activity simultaneously from

all channels of the region. Finally, the Coh(f) is calculated for each pair of

extracted activities to assess the level of brain connectivity in AD patients

versus healthy elderly subjects.

6.7.1 Preprocessing

The following preprocessing was applied to the signals before proceeding to

the EMD, cBSS and calculation of Coh(f).

Firstly, as it was explained in Section 5.3, and similarly to Section 6.6, the

MEG recordings were divided into epochs of 10 s and only the fragments of

the signal with minimal artefactual activity were selected for further analysis.

This was done in order to avoid surplus complexity in the analysis.

Additionally, it is important to note that the CA always appears in the

MEG activity (Escudero et al., 2007b; Jousmäki and Hari, 1996). Further-

more, due to the ability of the EMD to isolate specific rhythms in natural data

(Huang et al., 1998) — including biomedical signals (Wu and Hu, 2006; Ye

et al., 2007) — the QRS complexes of the cardiac activity may spread across

the mid- to high-frequency IMFs computed with the EMD (Blanco-Velasco

et al., 2008; Tang et al., 2008). Hence, in order to avoid the cardiac contam-

ination of the IMFs that must serve as references to extract the rhythmic

brain activity, we reduced the CA in the MEG signals by means of a cBSS

procedure as explained in Section 6.5.1.
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6.7.2 Empirical Mode Decomposition

In this Doctoral Thesis, EMD was applied to obtain the rhythmic components

that compose each of the MEG channels recorded.

EMD (Huang et al., 1998) is a non-linear technique to adaptively represent

non-stationary signals as sum of their IMFs. EMD considers the oscillations

in signals at a very local level. Each resulted IMF by the EMD method

satisfies two basic conditions (Huang et al., 1998):

1. In the complete data set, the number of extrema and the number of

zero crossings must be the same or differ at most by one.

2. At any point, the mean value of the envelope defined by the local

maxima and the envelope defined by the local minima is zero.

The EMD of the signal x (t) can be computed following the next algo-

rithm (Flandrin et al., 2004):

1. Set g1 (t) = x (t).

2. Detect the extrema (both maxima and minima) of g1 (t).

3. Generate the upper and lower envelopes em (t) and el (t), respectively,

by connecting the maxima and minima separately with cubic spline

interpolation.

4. Determine the local mean as:

m (t) =
em (t) + el (t)

2
. (6.38)

5. The IMF should have zero local mean. Thus, subtract m (t) from the

original signal as: g1 (t) = g1 (t)−m (t).

6. Decide whether g1 (t) is an IMF or not by checking the two basic con-

ditions described above.

7. Repeat steps 2 to 6 and end when an IMF g1 (t) is obtained.
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When the first IMF is derived, set d1 (t) = g1 (t), which is the smallest

temporal scale (higher frequencies) in x (t) (Flandrin et al., 2004). In order to

find the remaining IMFs, generate the residue r1 (t) of the data by subtracting

d1 (t) from the signal as: r1 (t) = x (t)− d1 (t) (Flandrin et al., 2004).

r1 (t) is then considered as the new data and subjected to the same sift-

ing process described above (Flandrin et al., 2004). The sifting process is

continued until the final residue is a constant, monotonic function, or a func-

tion with one maxima and one minima from which no more IMFs can be

derived (Flandrin et al., 2004).

At the end of the decomposition, the unidimensional signal x (t) is repre-

sented as:

x (t) =
M∑
p=1

dp (t) + rM (t) , (6.39)

where M is the number of IMFs and rM (t) is the final residue.

In this Doctoral Thesis, the stopping criteria proposed by Rilling et al.

(2003) was used.

6.7.3 Frequency Characterisation of the IMFs

The EMD was applied to adaptively extract the rhythms composing each

MEG channel. Since the objective of this part of the Doctoral Thesis is to

analyse the brain connectivity in different spectral bands, it is necessary to

characterise the spectral content of each IMF.

In order to do so, the instantaneous frequency, ω (t), of each IMF was

computed as (Huang et al., 1998):

ω (t) =
dθ (t)

dt
, (6.40)

where θ (t) is the phase of the analytic signal, z (t) = a (t) exp [iθ (t)] = x (t)+

iy (t), computed from each IMF by means of the Hilbert Transform (Huang

et al., 1998).

Afterwards, a weighted average value of the instantaneous frequency, 〈ω〉,
was computed from each ω (t) (and thus from each IMF) considering the
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corresponding amplitude following:

〈ω〉 =
E {a (t)ω (t)}
E {a (t)}

. (6.41)

〈ω〉 represents the average frequency of each IMF and is the feature used

to characterise the spectral content of every IMF.

6.7.4 Regional Extraction of Brain Rhythms

The EMD allowed us to obtain rhythmic activities from each MEG channel.

Then, the IMFs were characterised with their 〈ω〉 values.

Nevertheless, it must be noticed that the MEG recordings are composed

of a large number of channels (148 in this Doctoral Thesis). Hence, it may be

helpful to group the channels in regions (Poza et al., 2008b; Stam et al., 2006).

The regions considered in Doctoral Thesis are shown in Fig. 6.6. This divi-

sion is similar to that made by Gómez et al. (2009b) and Poza et al. (2008b),

but it also considers the difference between left and right hemispheres like

Stam et al. (2006). Midline sensors were not used (Stam et al., 2006). Hence,

MEG channels were grouped into: Left Central Region (LeftC), Right Cen-

tral Region (RightC), Left Anterior Region (LeftA), Right Anterior Region

(RightA), Left Lateral Region (LeftL), Right Lateral Region (RightL), Left

Posterior Region (LeftP) and Right Posterior Region (RightP).

The IMFs are representative of the oscillating brain activity recorded

at a particular channel, but not necessarily of the brain rhythms over a

specific region. Therefore, a cBSS technique has been applied to extract the

brain activity corresponding to a particular region (see Fig. 6.6) for a specific

frequency band — δ (1 Hz to 4 Hz), θ (4 Hz to 8 Hz), α (8 Hz to 13 Hz) and

β (13 Hz to 30 Hz). In order to perform the extraction, the cBSS requires

a suitable reference signal (Huang and Mi, 2007; James and Gibson, 2003).

This reference signal is selected by means of a k-means clustering procedure

applied to the average frequency of all IMFs from a region.

The clustering procedure is as follows. Firstly, for each region, select

the values of 〈ω〉 ranging from 1 Hz to 30 Hz. Then, these 〈ω〉 are fed
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Figure 6.6: Distributions of the MEG sensors into central (yellow), anterior
(red), lateral (blue) and posterior (green) regions for left (white text) and
right (black text) hemispheres. The midline sensors are marked in white.

into a k-means clustering procedure which is initialised with four centroids

located in the middle of the four spectral bands considered (δ, θ, α and β).

The outcomes of the clustering showed that the 〈ω〉 values are assigned to

disjoint clusters, each of which can be identified with one of the four spectral

bands. Finally, the IMF corresponding with the 〈ω〉 value closest to the

centroid of each cluster is selected as the reference for a cBSS applied to all

MEG channels from the region in order to extract activity representative of

that spectral band.

The k-means algorithm is an effective and relatively simple clustering

procedure (Hartigan and Wong, 1979). Hence, it has been applied in di-

verse applications (Sanei and Chambers, 2007). This algorithm divides a

set of features (the values of 〈ω〉 in this case) into k clusters automatically

and without the need of supervision (Hartigan and Wong, 1979; Sanei and

Chambers, 2007).
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The algorithm is initialised by setting k to the expected number of clus-

ters, which in our case is four corresponding to the four spectral bands: δ,

θ, α and β. The centre of every cluster has been initialised to the medium

frequency in each band. After this initialisation, the k-means clustering as-

signs the data points to the closest cluster centre. Then, new cluster centres

are calculated. This is the essence of the algorithm: once the clusters have

been established (i.e., each data point has been assigned to its closest cluster

centre), the geometric centre of each cluster is recomputed. These steps are

repeated until convergence is reached (Hartigan and Wong, 1979; Jobson,

1991b; Sanei and Chambers, 2007).

6.7.5 Coherence

Once the cBSS had extracted the brain activity related to each band (δ,

θ, α and β) from every region, the Coh(f) was used to measure the syn-

chrony. The Coh(f) function quantifies linear correlations as a function of

the frequency (Dauwels et al., 2010; Sanei and Chambers, 2007). This mea-

sure can detect linear synchronisation between two signals, but it does not

discriminate the directionality of the coupling (Sanei and Chambers, 2007).

In order to compute Coh(f), the two signals x and y are subdivided in

M segments of equal length L. The Coh(f) is calculated by averaging over

those segments as (Dauwels et al., 2010):

Coh (f) =
|〈X (f)Y ∗ (f)〉|
|〈X (f)〉| |〈Y (f)〉|

, (6.42)

where X (f) and Y (f) denote the Fourier Transform of x (t) and y (t), in that

order, and ∗ indicates the complex conjugate. |·| and 〈·〉 stand for magnitude

and average computed over the M segments, respectively (Dauwels et al.,

2010). Experiments with EEG data suggest that this parameters is strongly

correlated with other commonly used synchronisation measures (Dauwels

et al., 2010).
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6.8 Statistical Analysis Tools

Diverse statistical analysis tools have been used in this Doctoral Thesis to

assess the results. They are briefly described in the following lines grouped

in three main categories.

6.8.1 Visual Information Tools

A useful tool to obtain a visual summary of a data distribution is the box-

plot. This diagram is composed of a box with three horizontal lines at the

lower quartile, median and upper quartile values. Hence, the median of the

distribution is represented as the line which appears, approximately, in the

middle of the box. Usually, the confidence interval of the median is indicated

with a couple of notches. For two or more boxplots, if there is no overlap

between these notches, there are significant differences between the corre-

sponding data distributions. The boxplot also has two whiskers, which are

lines extending from each end of the boxes to show the extent of the rest

of the data. Their maximum length is usually estimated as 1.5 times the

interquartile range. Values beyond the end of the whiskers are considered

outliers, which are marked with a ‘+’ (Tukey, 1977). This tool has been used

in the study of the results derived from the Section 6.2.1.

6.8.2 Statistical Significance Tests

A Student’s t-test was used in the analysis of the results from Section 6.6 to

decide which BSS components provided the most significant difference be-

tween subject groups. This statistical test evaluates the null hypothesis that

the means of two independent and normally distributed samples are equal.

This procedure also assumes that the variances of the two populations are

equal (Jobson, 1991a). Additionally, the variance of a quantitative predic-

tor (covariate) can be removed from the samples by a regression in order

to account for some variability of the samples and increase the statistical

power (Jobson, 1991a).

As a generalisation of the Student’s t-test, the ANOVA allows us to test
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whether the means of several groups are all equal. Moreover, this procedure

offers the possibility of partitioning the observed covariance in the data into

components due to diverse explanatory variables (Jobson, 1991a). Similarly

to the Student’s t-test, ANOVA assumes independence of cases, normality of

the distributions and homogeneity of variances. ANOVA splits the total sum

of squares of the data into components related to the effects included into

the model (Jobson, 1991a). In Section 6.7, a one-way, repeated-measures

ANOVA was done with Greenhouse-Geisser corrected degrees of freedom to

correct the lack of sphericity. The variable ‘Diagnosis’ was taken as the inter-

subject factor while the variables ‘Band’ and ‘Pair of regions’ were considered

intra-subject factors. Special attention was paid to the estimated marginal

means corresponding to each factor (Searle et al., 1980). A significance level

of p < 0.05 was used.

6.8.3 Classification Analysis

In the classification analyses, results are showed in terms of sensitivity, speci-

ficity and accuracy. Specificity was defined as the percentage of healthy sub-

jects correctly detected and sensitivity represented the proportion of all AD

patients for whom the test was positive. Accuracy denoted the total fraction

of subjects well recognised.

A LDA may be useful to perform a classification analysis of the observa-

tions. On the basis of information derived from a known sample distribution,

one or more discriminant functions are estimated to classify unknown data

of the same type. Under the assumption of multivariate normality with com-

mon covariance matrix, an observation is assigned to the group whose Maha-

lanobis distance from the observation is smallest. This criterion is equivalent

to classify a sample as belonging to the group with the largest likelihood

value (Jobson, 1991b). It is important to note that for discrete data in small

samples this criterion performs as well or better than methods based on vari-

ous discrete distributions. For continuous data, transformations to normality

do not usually improve classification error rates and, in some cases, the error

rates are even larger than for non-transformed data (Jobson, 1991b). Clas-
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sification analysis using LDA have been carried out to analyse the results

obtained from Section 6.6 and Section 6.7.

Additionally, it is important to decide whether all variables are necessary

to obtain a good classification. For instance, the larger the number of vari-

ables included in the LDA classification rule, the larger must be the sample

size to achieve the same level of precision (Jobson, 1991b). Hence, statistical

tests can be employed to test the hypothesis that the Mahalanobis distance

between two groups is the same for a subset of q < p of the variables as it is

for the full set of p variables (Jobson, 1991b). These tests can offer a criterion

to determine if a particular variable should enter or exit the discriminant rule

in a stepwise way. This stepwise procedure was applied to select the variables

included in the classification studies of Section 6.7.

ROC curves (Fawcett, 2006) are helpful to analyse and visually assess

the performance of classifiers. They are two-dimensional graphs in which

true positive rate (i.e., sensitivity) is plotted against the false positive rate

(computed as one minus the specificity). The ROC curves depicts the trade-

off between true positives and false positives for a classifier (Fawcett, 2006).

It may be useful to summary the ROC performance to a single scalar value

in order to compare different classifiers. This can be done by calculating

the Area Under the ROC Curve (AUC) (Fawcett, 2006). The AUC is a

fraction of the area of the unit square. Hence, its value ranges between 0 and

1.0. However, due to the fact that completely random classifiers produces a

diagonal with an associated AUC of 0.5, no realistic classifier should have an

AUC smaller than 0.5 (Fawcett, 2006). It is important to note that the AUC

of a classifier is equivalent to the probability that the classifier will rank a

randomly chosen positive instance higher than a randomly chosen negative

instance. This is equivalent to the Wilcoxon test of ranks (Fawcett, 2006).

The AUCs of diverse classifiers are given in Section 7.4 and Section 7.5.

In the analyses carried out in Section 6.6, the subject population was

divided randomly into a training set and a test set (see Table 5.3). The

training set was used to develop the BSS preprocessing and to find the clas-

sification rules for each case. Then, these rules were applied, without further

modification, to the test set to independently assess the improvement in the
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separation between AD patients and control subjects due to the BSS prepro-

cessing in order to avoid over-estimation of the classification rate (Escudero

et al., 2009b; Jobson, 1991b).

A leave-one-out cross-validation procedure was used to avoid the appear-

ance of over-fitting and bias in the classification analysis performed with

the results of Section 6.7. The leave-one-out cross-validation classifies each

single case using the decision rule derived from all remaining data (Jobson,

1991a,b). Then, this process is repeated for all cases. Although this pro-

cedure typically reduces the sensitivity, specificity and accuracy values, it

increases the reproducibility of the results (Cichocki et al., 2005).
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This Chapter reports the results obtained in this Doctoral Thesis. The

structure of the Chapter follows quite closely the description of the method-

ology presented in Chapter 6. Hence, the results obtained from the testing

of the preprocessing with synthetic data are first presented. The Chapter

continues with the results derived when the preprocessing was applied to the

real MEG signals. Afterwards, the measurements of similarity between BSS

algorithms are reported. This Chapter also contains the results obtained

for the automatic evaluation of the artefact removal based on BSS. Next,

the classification improvements gained from the use of BSS techniques as

a preprocessing are reported. Finally, results about the extraction of brain

rhythms over specific scalp regions and the connectivity analysis between

them are given.

7.1 Preprocessing

This part of the dissertation details the results obtained from the application

of the processing presented in Section 6.2 to the synthetic signals and the

real dataset of control subjects’ recordings.

7.1.1 Synthetic Data

In order to evaluate the degree to which the preprocessing (Cao et al., 2003;

Escudero et al., 2007b; Ikeda and Toyama, 2000) was able to accurately

estimate the number of inner components and the level of the additive noise

added to the mixtures, 1000 different synthetic mixtures were created with

diverse levels of external additive noise. Then, the preprocessing was applied

ten times to each of these mixtures and the results were averaged for every

dataset (Escudero et al., 2007b). The average SNR of the simulated mixed

signals originated from the 11 inner synthetic components ranged between

−14 dB and 22 dB.

First of all, the performance of the preprocessing to find out the cor-

rect number of inner components was analysed (Escudero et al., 2007b).

The scheme using the MDL was compared against three PCA-based ap-
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proaches (Escudero et al., 2007b):

• To set n to the number of eigenvalues of the data covariance that explain

a certain part of the total power (Escudero et al., 2007b; James and

Hesse, 2005; Ting et al., 2006). This fraction was set to 95% (“PCA:

limit 95%”) and 99% (“PCA: limit 99%”).

• To consider those components that individually account for at least

1% of the total variance of the data (Escudero et al., 2007b; James and

Hesse, 2005). This procedure was denoted as “PCA: larger than 1%”.

The results of this comparative analysis appear in Fig. 7.1. As it could be

expected, the criteria based on setting a threshold on the cumulative value

of explained variance over-estimate n when the noise power is not negligible

(Escudero et al., 2007b). For instance, the criterion “PCA: limit 99%” over-

estimated n when the noise power produces average SNRs lower than 17 dB.

The criterion “PCA: limit 95%” offers more accurate estimations of this

parameter for SNRs larger than 11 dB, but even in this case it does not

provide the correct number of components. What is more, below that value

of 11 dB, this criterion behaves very similarly to “PCA: limit 99%”.

The MDL criterion gives accurate estimations of the number of compo-

nents that originated the mixtures for SNR larger than 3 dB. For higher

noise power, and contrary to the PCA-based criteria, MDL tends to under-

estimate n.

The criterion “PCA: larger than 1%” provides values of n around nine or

ten (close to the real value of 11) for average SNR values larger than 3 dB.

Nevertheless, for SNR < 3 dB, this criterion assigns extremely high values

to n, similarly to the other PCA-based criteria (Escudero et al., 2007b).

Additionally, the error in the estimation of the external noise power,

Enorm, was evaluated with Eq. (6.9) (Escudero et al., 2007b). Fig. 7.2 de-

picts the average value of Enorm computed from the ten applications of the

preprocessing to each of the 1000 realisations of the synthetic mixtures. Here,

the number of components (n) was set to the value that minimised the MDL

(Escudero et al., 2007b; Ikeda and Toyama, 2000). It can be seen that, in

most cases, the normalised error was lower than 3.5%.



184 Chapter 7. Results

−15 −10 −5 0 5 10 15 20 22
0

10

20

30

40

50

Average SNR of the synthetic mixtures (dB)

E
st

im
at

ed
 n

um
be

r 
of

 c
om

po
ne

nt
s

(A
ct

ua
l v

al
ue

: 1
1)

MDL
PCA: 95% limit
PCA: 99% limit
PCA: larger than 1%
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study.
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Figure 7.1: Estimated n values for each of the 1000 synthetic mixtures ac-
cording to the tested criteria.
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Figure 7.2: Average Enorm for diverse average SNR values in the synthetic
mixtures.

7.1.2 Real MEG Recordings

The preprocessing was applied to the real MEG recordings acquired from the

26 control subjects. These signals were split into epochs of 10 s, 20 s, 40 s,

60 s and 90 s. In each case, the optimum number of components (n) and

the external noise power were estimated. These results are presented in this

Section. These preprocessed data are the starting point of the analyses and

results about the comparison of BSS algorithms presented in Section 7.2 and

the artefact rejection performance summarised in Section 7.3.

Firstly, the value of n was estimated for each case with the MDL (Es-

cudero et al., 2007b; Ikeda and Toyama, 2000). Fig. 7.3 shows the boxplots

representing the distributions of n for every epoch length. As it can be ex-

pected, n tended to increase with the epoch length (Escudero et al., 2009d).

For the previously computed n values, the power of the external noise

was computed. The results, in terms of normalised power (power assigned

to the additive noise divided by the total power in the data) are depicted in

Fig. 7.4. As it can be seen, the interquartile range of the additive term power

represents about 2.8% to 5.6% of the total power in the MEGs. This implies

that the SNR of the recordings usually lay between 15.4 dB and 12.3 dB.

Finally, it must be noted that the preprocessing implies a dimensionality
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Figure 7.3: Boxplots showing the number of components (n) estimated for
the epoch lengths considered in this study.

10 20 40 60 90
0

0.05

0.1

0.15

0.2

N
or

m
al

is
ed

 p
ow

er
 o

f t
he

 e
xt

er
na

l n
oi

se

Epoch length (s)

Figure 7.4: Normalised external noise power in real MEG signals as modelled
by the preprocessing.

reduction caused by the selection of a value for n < m = 148 (Escudero et al.,

2007b). The additive vector n (t) can be interpreted as a specific error term

in the model (6.4). Hence, the objective is to retain the maximum amount

of energy associated by the processing with the inner components for the

BSS analysis. Hence, considering the previously estimated n values, Fig. 7.5

illustrates the fraction of energy retained. It is clear that almost all power

attributed to the underlying components will be considered in the following

steps.
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Figure 7.5: Inner power retained for BSS by selecting the optimum number
of components (n) estimated by the MDL.

7.2 Evaluation of the Consistency

In this Section of the Doctoral Thesis, the preprocessed MEG signal epochs

with the optimum n values were decomposed with five BSS algorithms:

AMUSE, SOBI, JADE, eInfoMax and FastICA. Similarly to Section 7.1.2,

epoch lengths equal to 10 s, 20 s, 40 s, 60 s and 90 s were considered.

After the BSS, the matrices Pqr — see Eq. (6.10) — were computed

for each epoch and pair of algorithms. Then, they were characterized with

the metric F defined in Eq. (6.11). In order to reduce the amount of data

to be analysed, only the matrix Pqr was studied instead of both Pqr and

Prq (Escudero et al., 2009d). This decision was supported by the fact that

the average absolute differences for the F metric between Pqr and Prq were

always lower than 1.2%.

For each epoch length, the F values obtained for every pair of algorithms

were averaged. These results are depicted in Fig. 7.6, where all subplots are

represented with the same colour range. As it was previously explained in

Section 6.4.1, lower F values are related to more consistent (i.e., more sim-

ilar) pairs of algorithms (Escudero et al., 2009d). For all epoch lengths, the

most consistent pair of algorithms was AMUSE–SOBI (SOS-based methods),

followed by the pair JADE–FastICA, which involve HOS. Moreover, Fig. 7.6

shows that the general level of consistency improved as the epoch length in-
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creased. This means that the separations provided by different algorithms

tended to converge as larger signals were decomposed.

For each epoch length, a one-way ANOVA analysis of variance with the

Scheffé’s multiple comparison procedure, ‘Pair of algorithms’ as the grouping

factor and ‘Number of estimated components’ (n) as a covariate was used to

statistically evaluate the differences in the F values.

For an epoch length equal to 10 s, there were significant differences in

the F values as a consequence of the grouping factor ‘Pair of Algorithms’,

the covariate ‘Number of estimated components’ and their interaction (p�
0.0001 in all cases). Additionally, the slopes of the regression of F against

n were significantly different from 0 (p < 0.05) for the pairs of algorithms

‘AMUSE–SOBI’, ‘AMUSE–eInfoMax’ and ‘SOBI–eInfoMax’. Whereas in

the first case F slightly increased with n (indicating that a larger number

of components made the outcomes of the decompositions more different),

for the other two pairs, more components produced lower F . Finally, the

multiple comparison procedure confirmed that the level of consistency of the

‘AMUSE–SOBI’ pair was significantly lower from that of ‘JADE–FastICA’,

and that the F values for these two pairs also differed significantly from the

other eight pairs. Of note is that ‘AMUSE–JADE’ and ‘SOBI–JADE’ offered

the most different separations. All values of F obtained from the 10 s epochs

and the regression lines are shown in Fig. 7.7.

The results obtained for epochs of 20 s are very similar to those previously

reported for 10 s. There were significant differences in the F values due to

the ‘Pair of Algorithms’, the ‘Number of estimated components’ and their in-

teraction (p� 0.0001 in all cases). The regression of F against n had slopes

that were significantly positive for the pairs of algorithms ‘AMUSE–SOBI’

and ‘JADE–FastICA’ and significantly negative for ‘AMUSE–eInfoMax’ and

‘SOBI–eInfoMax’. By means of the multiple comparison procedure, it was

found out that the level of consistency of ‘AMUSE–SOBI’ was significantly

lower from that of ‘JADE–FastICA’, and that their F values were also sig-

nificantly different from the other 8 algorithms. Again, the pairs ‘AMUSE–

JADE’ and ‘SOBI–JADE’ were characterised by providing the most dissim-

ilar decompositions. Fig. 7.8 summarises this analysis graphically.
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Figure 7.6: Average F values for each pair of BSS algorithms (A: AMUSE,
S: SOBI, J: JADE, eI: extended Infomax, F: FastICA) and epoch length.
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Figure 7.7: ANOVA with n as a covariate for the F metric applied to epochs
of 10 s (A: AMUSE, S: SOBI, J: JADE, e: extended Infomax, F: FastICA).
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Figure 7.8: ANOVA with n as a covariate for the F metric applied to epochs
of 20 s (A: AMUSE, S: SOBI, J: JADE, e: extended Infomax, F: FastICA).
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Figure 7.9: ANOVA with n as a covariate for the F metric applied to epochs
of 40 s (A: AMUSE, S: SOBI, J: JADE, e: extended Infomax, F: FastICA).

The case of epoch length equal to 40 s presents slight deviations from

the results introduced above. The F values also varied significant as a result

of the ‘Pair of Algorithms’ (p � 0.0001), ‘Number of estimated compo-

nents’ (p = 0.0100) and their interaction (p� 0.0001). In this occasion, the

slopes of the regression for ‘AMUSE–eInfoMax’, ‘AMUSE–FastICA’, ‘SOBI–

eInfoMax’ and ‘SOBI–FastICA’ decreased with the number of components,

whereas the pair ‘JADE–FastICA’ offered less similar separations for larger

values of n. The multiple comparison procedure reported the same outcome

as in the two previous cases. Fig. 7.9 illustrates this analysis.

When the BSS of epochs of 60 s is studied, the F values only present

significant differences for the grouping factor ‘Pair of Algorithms’ and the in-

teraction of this factor with the number of components (p� 0.0001 in both

cases). The slopes that are significantly different from zero are identical

to those indicated in the analysis made for epochs of 40 s: the consistency

of ‘AMUSE–eInfoMax’, ‘AMUSE–FastICA’, ‘SOBI–eInfoMax’ and ‘SOBI–

FastICA’ increased with n, while ‘JADE–FastICA’ produced larger F values

for more components. Once again, the multiple comparison procedure sug-

gested that ‘AMUSE–SOBI’ and ‘JADE–FastICA’, in that order, are the

most consistent pairs of algorithms. It also indicated that ‘AMUSE–JADE’
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Figure 7.10: ANOVA with n as a covariate for the F metric applied to epochs
of 60 s (A: AMUSE, S: SOBI, J: JADE, e: extended Infomax, F: FastICA).

and ‘SOBI–JADE’ provided the least similar signal decompositions. This

information is depicted in Fig. 7.10.

Finally, the decompositions computed for epochs of 90 s were studied.

Similarly to the 60 s case, only the grouping factor ‘Pair of Algorithms’

and the interaction of this factor with the number of components have

significant p values in the ANOVA (p � 0.0001). The ‘JADE–FastICA’

and ‘JADE–eInfoMax’ tended to offer more different BSSs when more com-

ponents were estimated (p < 0.05). Only the pairs ‘AMUSE–eInfoMax’,

‘AMUSE–FastICA’ and ‘SOBI–eInfoMax’ had regression slopes that were sig-

nificantly (p < 0.05) lower than zero. For this epoch length, ‘AMUSE–JADE’

and ‘SOBI–JADE’ computed the least consistent separations. However, four

pairs of algorithms had significantly different population marginal means for

the F values different from the rest of pairs. These were, from more con-

sistent to more dissimilar separations: ‘AMUSE–SOBI’, ‘JADE–FastICA’,

‘eInfoMax–FastICA’ and ‘JADE–eInfoMax’. These results are depicted in

Fig. 7.11.
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Figure 7.11: ANOVA with n as a covariate for the F metric applied to epochs
of 90 s (A: AMUSE, S: SOBI, J: JADE, e: extended Infomax, F: FastICA).

7.3 Artefact Removal

This Section of the Doctoral Thesis presents the results compiled to objec-

tively and automatically evaluate the removal of CA, OA and PLN based

on BSS techniques. Similarly to the consistency analysis performed in Sec-

tion 7.2, signal epochs of 10 s, 20 s, 40 s, 60 s and 90 s were considered to

be decomposed with the following BSS techniques: AMUSE, SOBI, JADE,

eInfoMax and FastICA. Additionally, a cBSS algorithm was used in the CA

rejection with a reference of the cardiac activity computed as an average of

all MEG channels.

7.3.1 Artefacts in the Original Recordings

First of all, the overall influence of CA, OA and PLN in the recordings was

assessed with the measurements described in Section 6.5.2. In this way, it

was possible to have references to objectively compare the average amount of

contamination in the MEG signals before and after the BSS-based procedures

(Escudero et al., 2007b). Moreover, this assessment was automatically carried

out. The metrics intended to measure those contaminations without relying
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Table 7.1: Average values of APtP and RMS indicating the importance of
the CA in the original MEG recordings for the epoch lengths considered in
this study. Data are shown as mean±SD.

Epoch length APtP (pT) RMS (pT)

10 s 0.756±0.337 0.122±0.073
20 s 0.759±0.340 0.123±0.073
40 s 0.757±0.342 0.121±0.074
60 s 0.744±0.363 0.119±0.076
90 s 0.745±0.364 0.120±0.077

on any manual marking of visual revision of the recordings. On the one hand,

this might limit the reliability of the results in the sense that the quality of

the processed signals was not visually reviewed on a one-by-one basis. On

the other, this scheme avoided the time-consuming and laborious process of

manual labelling and allowed objective comparisons to be performed.

First of all, the presence of the CA was evaluated considering the ampli-

tude and power of the average QRS complex that could be found in the MEG

signals. R-peaks were located in the average of all 148 MEG channels before

any kind of signal processing (Escudero et al., 2007b). This could be done

thanks to the fact the only synchronous activities in the MEG recordings are

the CA and the PLN. Then, an average QRS-complex was calculated and

the power of this artefact was characterised with its APtP and RMS values.

These results appear in Table 7.1 for the epoch lengths considered in this

Doctoral Thesis.

Additionally, in order to illustrate the waveform associated with the CA,

Fig. 7.12 plots the average QRS complex computed from all control subjects.

The Q, R and S peaks can be clearly observed, whereas the P and T waves

are more difficult to make out.

The evaluation of the OAs is more complex since this activity does not

always appear in the recordings and it is not as well localised in the spectrum

as the PLN. Following a similar procedure to that proposed by Mantini et al.

(2008), an amplitude threshold of ±2 pT was set to count the number of

‘high-amplitude’ peaks in the recordings. Moreover, most of the ocular ac-
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Figure 7.12: Average QRS complex that appears in the original recordings
for epoch length equal to 10 s.

tivity power is located near the eyes. Hence, an average PSD was computed

from a subset of 18 MEG channels located over the anterior part of the head

and close to the eyes while another average PSD was calculated from the

remaining set of 130 channels (see Fig. 6.5). By subtracting the latter PSD

from the former, the difference in power at each specific frequency between

the activity acquired near the eyes and the average signal recorded over the

rest of head is revealed. Then, the total power of this ‘discrepancy’ measure

between 0.5 Hz and 6.5 Hz was calculated. Table 7.2 contains the values of

these OA-related metrics.

In order to illustrate, and later compare, how much power there is in low

frequencies near the eyes in comparison with the sensors located over the

rest of the scalp, Fig. 7.13 depicts the amount of power of the previously

described ‘discrepancy’ measure for epoch lengths of 20 s, 60 s and 90 s.

Finally, the calculation of the PLN power contaminating the MEG record-

ings can be easily done in the frequency domain. Therefore, the power of

the PSD and PSDn between 49 Hz and 51 Hz were computed. These results

appear in Table 7.3 and an illustration of this part of the spectra is shown

in Fig. 7.14.
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(b) Epochs of 60 s.
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(c) Epochs of 90 s.

Figure 7.13: Median of the difference between the PSDs for the two subsets
of MEG channels used to compare the impact of OAs in the recordings.



7.3. Artefact Removal 197

Table 7.2: Number of peaks in the signals above ±2 pT and the difference
between the PSDs computed at 18 MEG channels close to the eyes and at
the rest of MEG sensors indicating the importance of the OA in the original
recordings for the epoch lengths considered in this study. Data are shown as
median±SD.

Epoch length Peaks above ±2 pT Spectral difference (pT2)

10 s 1303±19959 0.019±1.105
20 s 1299±19925 0.019±1.016
40 s 1191±18714 0.019±1.082
60 s 1300±19889 0.019±1.087
90 s 1142±18118 0.018±1.276

Table 7.3: Average values of total and normalised spectral power in the band
from 49 Hz to 51 Hz indicating the importance of the PLN in the original
MEG recordings for the epoch lengths considered in this study. Data are
shown as mean±SD.

Epoch length Total power (pT2 ·103) Normalised power (102)

10 s 2.272±3.803 3.476±4.758
20 s 2.281±3.823 3.453±4.760
40 s 2.299±3.836 3.426±4.738
60 s 2.284±3.835 3.445±4.776
90 s 2.311±3.844 3.405±4.729
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Figure 7.14: Average spectra centred at the PLN frequency in the original
signals computed from epochs of 60 s.
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7.3.2 Blind Source Separation

First of all, the preprocessing and dimension reduction techniques detailed

in Section 6.2 were applied to the real MEG signals divided into epochs of

10 s, 20 s, 40 s, 60 s and 90 s. Once the number of optimum number of inner

components (n) had been estimated with the MDL, the algorithms AMUSE,

SOBI, JADE, eInfoMax and FastICA were used to decompose the recordings.

Afterwards, the underlying components were characterised with the metrics

described in Section 6.5.1 and the automatic artefact rejection criteria were

applied. Finally, a reconstruction of the MEG signals was calculated by

means of Eq. (6.15) (Mantini et al., 2008; Ting et al., 2006).

In addition to the procedure described in the previous paragraph, a ref-

erence signal following the R-peaks that appear in the MEG activity was fed

into a cBSS algorithm to extract the cardiac contamination in the recordings

and then cancel it out by subtracting its projection from the MEG chan-

nels (James and Gibson, 2003).

7.3.3 Artefact Detection

The labelling of a particular BSS component as an artefact or a useful sig-

nal was automatically done. Thus, this Section contains a summary of the

number of components selected for rejection by each of the proposed metrics

for every case (i.e., BSS algorithm and epoch length).

Cardiac Artefact

Several metrics have been used to detect the BSS with possible cardiac con-

tamination. First of all, the Skew pinpoints components with asymmetrical

probability distributions (Escudero et al., 2007b). Table 7.4 summarises the

average number of BSS components for every case (i.e., epoch length and

BSS technique) marked for removal within each epoch by that metric.

Additionally, the component with the minimum value of VarSc for ev-

ery BSS was picked up for removal (Shao et al., 2008). Hence, only one

component was removed from the signals in each case, as Table 7.5 indicates.
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Table 7.4: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric Skew.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.98 0.93 1.07 0.93 1.08
20 s 0.92 0.92 1.18 1.00 1.13
40 s 0.99 0.93 1.25 1.20 1.22
60 s 1.08 0.93 1.29 1.30 1.24
90 s 1.08 0.92 1.30 1.33 1.25

Table 7.5: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric VarSc.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 1.00 1.00 1.00 1.00 1.00
20 s 1.00 1.00 1.00 1.00 1.00
40 s 1.00 1.00 1.00 1.00 1.00
60 s 1.00 1.00 1.00 1.00 1.00
90 s 1.00 1.00 1.00 1.00 1.00

The remaining metrics used to detect CAs in the BSS components are not

specific to this kind of artefact. These include a high-order statistic moment

(KrE) and three entropic measures (HSh, HRé and ApEn) (Barbati et al.,

2004; Escudero et al., 2007b; Greco et al., 2006; Mammone and Morabito,

2008; Mantini et al., 2008). Therefore, it is important to note that the

number of components marked for removal by these metrics does not only

include components with hints of CAs, but also BSS sources with possible

OAs and PLN.

Table 7.6 indicates the mean number of components that were selected

for removal for every signal epoch with KrE, considering that this metric was

applied to detect all types of artefacts included in this Doctoral Thesis: CA,

OA and PLN.

Likewise KrE, HSh, HRé and ApEn were used to label BSS components

suspicious of containing any of the artefacts studied. Thus, the average

numbers of rejected components shown in Table 7.7 for HSh, Table 7.8 for
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HRé and Table 7.9 for ApEn include components with possible CAs, OAs

and PLN.

Ocular Artefact

Diverse criteria were applied to point out BSS components which might iso-

late OAs. Firstly, the PEY ES metric marked components whose scalp distri-

bution is mainly gathered near the eyes (Escudero et al., 2007b). Table 7.10

presents the mean number of components labelled as OAs by this metric for

each case (i.e., for each combination of epoch length and BSS algorithm).

Another metric which is specifically proposed for the OA is PLF . This

is based on the assumption that most of the OA energy is concentrated in

low frequencies (Escudero et al., 2007b). The average number of BSS sources

identified by this criterion is summarised in Table 7.11.

Finally, the criteria KrE, HSh, HRé and ApEn were also used to try to find

components with ocular contamination. As these metrics are not specific to

a particular kind of artefact, the mean number of components marked for

rejection by each of these criteria has already been recorded in Table 7.6,

Table 7.7, Table 7.8 and Table 7.9.

Power Line Noise

The last contamination studied in this Doctoral Thesis is the PLN. Thanks

to the fact that this artefact is very well located in the frequency domain,

the metric P50Hz was proposed to detect components which are mainly com-

posed by a spectral harmonic at 50 Hz (Escudero et al., 2007b). The mean

number of components marked by this criterion for each case is indicated in

Table 7.12.

Finally, the metrics KrE, HSh, HRé and ApEn were also tested in the

PLN removal. As it has been already explained, the average numbers of

components with potential artefactual activity identified by these criteria

appear in Table 7.6, Table 7.7, Table 7.8 and Table 7.9, respectively.



7.3. Artefact Removal 201

Table 7.6: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric KrE.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.67 0.61 0.97 0.86 0.95
20 s 0.68 0.64 1.03 0.91 1.05
40 s 0.72 0.65 1.10 1.07 1.10
60 s 0.70 0.65 1.12 1.14 1.10
90 s 0.76 0.66 1.14 1.18 1.12

Table 7.7: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric HSh.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.87 0.81 1.01 0.91 1.04
20 s 0.84 0.82 1.14 0.97 1.12
40 s 0.84 0.82 1.23 1.18 1.20
60 s 0.88 0.81 1.25 1.27 1.25
90 s 0.95 0.80 1.26 1.37 1.29

Table 7.8: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric HRé.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.93 0.83 1.01 0.91 1.02
20 s 0.92 0.85 1.11 0.97 1.11
40 s 0.96 0.87 1.24 1.17 1.20
60 s 1.04 0.83 1.27 1.31 1.29
90 s 1.13 0.95 1.29 1.36 1.29

Table 7.9: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric ApEn.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 1.02 1.02 1.00 1.13 1.04
20 s 1.03 0.98 1.04 1.03 1.06
40 s 1.06 1.05 1.19 1.15 1.17
60 s 1.05 1.03 1.32 1.23 1.25
90 s 1.05 1.08 1.29 1.24 1.26
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Table 7.10: Average number of components marked for rejection for the epoch
lengths and algorithms considered in this study with the metric PEY ES.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.37 0.40 0.32 0.50 0.37
20 s 0.48 0.46 0.42 0.50 0.42
40 s 0.54 0.52 0.42 0.51 0.51
60 s 0.56 0.59 0.48 0.53 0.54
90 s 0.58 0.63 0.54 0.59 0.55

Table 7.11: Average number of components marked for rejection for the
epoch lengths and algorithms considered in this study with the metric PLF .

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.77 0.79 0.49 0.51 0.65
20 s 0.90 0.90 0.68 0.70 0.79
40 s 1.03 1.04 0.84 0.96 0.89
60 s 1.10 1.14 0.90 1.03 0.96
90 s 1.18 1.14 1.01 1.17 1.04

7.3.4 Evaluation of the Artefact Removal

This Section contains the results obtained from the automatic evaluation of

the artefact rejection performed by removing the activity isolated in the com-

ponents marked for rejection with Eq. (6.15). It is important to bear in mind

the results presented in Section 7.3.1, since they provided us with information

about the importance of the artefacts in the original MEG recordings. There-

Table 7.12: Average number of components marked for rejection for the
epoch lengths and algorithms considered in this study with the metric P50Hz.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 0.49 0.49 0.41 0.28 0.46
20 s 0.51 0.52 0.43 0.24 0.47
40 s 0.53 0.54 0.43 0.22 0.47
60 s 0.54 0.55 0.44 0.16 0.50
90 s 0.58 0.58 0.47 0.18 0.51
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Table 7.13: Average values of APtP for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the Skew. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.430±0.201 0.422±0.200 0.150±0.149 0.160±0.163 0.136±0.153
20 s 0.432±0.208 0.411±0.210 0.139±0.152 0.159±0.164 0.133±0.157
40 s 0.422±0.199 0.402±0.196 0.128±0.145 0.126±0.149 0.121±0.152
60 s 0.400±0.210 0.382±0.205 0.124±0.149 0.115±0.151 0.121±0.155
90 s 0.403±0.206 0.379±0.207 0.124±0.155 0.117±0.154 0.119±0.152

fore, they allowed us to objectively compare the reduction in the artefactual

power.

Cardiac Artefact

The assessment of the CA removal is based on the computation of an average

QRS complex per signal epoch. Previously, the location of the R-peaks in

the raw MEG recordings had to be stored. After the BSS processing, the

same locations of the MEG signals as in Section 7.3.1 were inspected to

obtain the corresponding values of APtP and RMS. Therefore, this Section

will introduce the values of APtP and RMS computed for each combination

of CA detection metric, epoch length and BSS algorithm. Additionally, the

mean QRS complex will be plotted in several representative cases.

First of all, the metrics of Skew and VarSc were used to specifically detect

the CA. The corresponding values of APtP and RMS for them appear in

Table 7.13 (metric Skew evaluated with APtP ), Table 7.14 (criterion Skew

assessed with RMS), Table 7.15 (criterion VarSc evaluated with APtP ) and

Table 7.16 (metric VarSc assessed with RMS).

Secondly, the criterion KrE was applied to pinpoint BSS components with

abnormal probability distributions. In the case of CAs, their histograms

may be characterised very high values of KrE. The values of APtP and RMS

computed for this artefact rejection criterion are summarised in Table 7.17

and Table 7.18, respectively.

Additionally, entropic measures were also used for the same reason as
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Table 7.14: Average values of RMS for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the Skew. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.067±0.045 0.066±0.045 0.035±0.048 0.035±0.049 0.033±0.048
20 s 0.069±0.049 0.066±0.051 0.035±0.051 0.037±0.052 0.034±0.052
40 s 0.066±0.048 0.063±0.048 0.030±0.047 0.030±0.047 0.029±0.048
60 s 0.063±0.049 0.061±0.049 0.029±0.047 0.028±0.047 0.029±0.048
90 s 0.063±0.050 0.061±0.051 0.029±0.050 0.029±0.049 0.030±0.049

Table 7.15: Average values of APtP for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the VarSc. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.454±0.209 0.429±0.205 0.166±0.221 0.129±0.115 0.119±0.118
20 s 0.461±0.227 0.428±0.226 0.167±0.260 0.153±0.192 0.130±0.138
40 s 0.459±0.222 0.431±0.220 0.183±0.273 0.176±0.293 0.173±0.317
60 s 0.445±0.243 0.392±0.235 0.176±0.278 0.175±0.289 0.180±0.318
90 s 0.470±0.249 0.400±0.242 0.190±0.282 0.174±0.293 0.175±0.325

Table 7.16: Average values of RMS for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the VarSc. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.069±0.039 0.068±0.046 0.040±0.059 0.031±0.042 0.031±0.046
20 s 0.072±0.046 0.068±0.052 0.039±0.064 0.038±0.058 0.035±0.051
40 s 0.070±0.044 0.066±0.044 0.040±0.066 0.040±0.070 0.041±0.079
60 s 0.068±0.045 0.060±0.045 0.040±0.067 0.040±0.070 0.041±0.077
90 s 0.075±0.056 0.063±0.053 0.042±0.069 0.041±0.071 0.042±0.080
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Table 7.17: Average values of APtP for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the KrE. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.463±0.220 0.451±0.213 0.142±0.126 0.147±0.135 0.123±0.123
20 s 0.450±0.220 0.431±0.221 0.136±0.121 0.143±0.142 0.114±0.123
40 s 0.440±0.205 0.426±0.212 0.122±0.122 0.113±0.134 0.103±0.114
60 s 0.433±0.238 0.403±0.216 0.122±0.126 0.105±0.118 0.105±0.122
90 s 0.430±0.222 0.399±0.213 0.120±0.118 0.101±0.113 0.101±0.111

Table 7.18: Average values of RMS for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the KrE. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.073±0.049 0.071±0.049 0.035±0.048 0.034±0.048 0.032±0.048
20 s 0.072±0.051 0.069±0.051 0.035±0.050 0.035±0.052 0.032±0.051
40 s 0.068±0.048 0.066±0.049 0.030±0.048 0.028±0.049 0.027±0.048
60 s 0.068±0.051 0.064±0.050 0.029±0.048 0.027±0.047 0.028±0.048
90 s 0.068±0.051 0.063±0.051 0.029±0.048 0.027±0.048 0.028±0.048

KrE. These metrics can detect probability distributions typical of artefactual

activity. The most straightforward entropic measure is HSh. The evaluation

of the CA removal based on this criterion is shown in Table 7.19 for APtP

and Table 7.20 for RMS.

HRé is a modification of HSh. Hence, it may be helpful to recognise the

artefactual activities similar to those detected by HSh. The results of APtP

and RMS computed to assess the quality of the CA removal with HRé are

depicted in Table 7.21 and Table 7.22, respectively.

Moreover, ApEn is an entropic measurement helpful to assess irregularity

in biomedical time series. Hence, this criterion was tested in the removal

of CA as well as HRé and HSh. The values of APtP for this case appear in

Table 7.23 whilst the evaluation of this CA rejection by means of RMS is

shown in Table 7.24.

The previously introduced Tables offer quantitative data about the reduc-
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Table 7.19: Average values of APtP for the epoch lengths considered in this
study after the CA removal based on the metric HSh. Data are shown as
mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.437±0.214 0.426±0.207 0.136±0.122 0.140±0.133 0.114±0.116
20 s 0.429±0.214 0.409±0.213 0.124±0.116 0.136±0.134 0.110±0.121
40 s 0.425±0.205 0.402±0.197 0.109±0.105 0.101±0.111 0.102±0.111
60 s 0.404±0.217 0.379±0.213 0.106±0.109 0.092±0.110 0.099±0.113
90 s 0.405±0.215 0.377±0.208 0.106±0.115 0.092±0.113 0.095±0.110

Table 7.20: Average values of RMS for the epoch lengths considered in this
study after the CA removal based on the metric HSh. Data are shown as
mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.069±0.049 0.068±0.049 0.035±0.048 0.033±0.048 0.031±0.048
20 s 0.067±0.049 0.066±0.051 0.033±0.050 0.034±0.051 0.031±0.051
40 s 0.067±0.048 0.063±0.048 0.028±0.046 0.027±0.046 0.027±0.047
60 s 0.064±0.050 0.061±0.050 0.027±0.047 0.025±0.047 0.027±0.048
90 s 0.064±0.052 0.060±0.051 0.027±0.049 0.026±0.048 0.027±0.048

Table 7.21: Average values of APtP for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the HRé. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.445±0.219 0.428±0.204 0.138±0.124 0.141±0.134 0.118±0.125
20 s 0.426±0.210 0.415±0.216 0.126±0.120 0.136±0.134 0.112±0.123
40 s 0.426±0.206 0.408±0.208 0.109±0.105 0.104±0.124 0.103±0.114
60 s 0.410±0.229 0.383±0.209 0.106±0.109 0.092±0.110 0.099±0.113
90 s 0.412±0.218 0.375±0.220 0.106±0.115 0.093±0.113 0.095±0.110



7.3. Artefact Removal 207

Table 7.22: Average values of RMS for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the HRé. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.071±0.049 0.068±0.048 0.035±0.048 0.033±0.048 0.031±0.048
20 s 0.067±0.048 0.067±0.051 0.033±0.050 0.034±0.051 0.032±0.051
40 s 0.067±0.048 0.064±0.049 0.028±0.046 0.027±0.048 0.027±0.048
60 s 0.065±0.051 0.061±0.050 0.027±0.047 0.025±0.047 0.027±0.048
90 s 0.065±0.051 0.060±0.052 0.027±0.049 0.026±0.048 0.027±0.048

Table 7.23: Average values of APtP for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the ApEn. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.620±0.289 0.602±0.291 0.260±0.194 0.219±0.127 0.225±0.202
20 s 0.612±0.301 0.601±0.311 0.265±0.263 0.237±0.240 0.219±0.233
40 s 0.613±0.299 0.594±0.293 0.264±0.295 0.208±0.240 0.222±0.266
60 s 0.604±0.305 0.572±0.315 0.240±0.268 0.178±0.211 0.206±0.233
90 s 0.598±0.321 0.566±0.284 0.240±0.301 0.181±0.214 0.197±0.230

Table 7.24: Average values of RMS for the epoch lengths and BSS algorithms
considered in this study after the CA removal based on the ApEn. Data are
shown as mean±SD.

(pT) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.087±0.040 0.084±0.040 0.049±0.050 0.037±0.026 0.041±0.047
20 s 0.087±0.041 0.085±0.043 0.051±0.063 0.043±0.054 0.041±0.054
40 s 0.087±0.041 0.084±0.040 0.052±0.068 0.040±0.055 0.042±0.058
60 s 0.087±0.042 0.081±0.043 0.048±0.063 0.037±0.053 0.039±0.055
90 s 0.085±0.044 0.080±0.039 0.049±0.070 0.038±0.055 0.039±0.057



208 Chapter 7. Results

Table 7.25: Average values of APtP and RMS for the epoch lengths considered
in this study after the CA rejection based on a cBSS procedure. Data are
shown as mean±SD.

Epoch length (s) APtP (pT) RMS (pT)

10 0.101±0.090 0.024±0.027
20 0.116±0.118 0.026±0.033
40 0.124±0.126 0.027±0.036
60 0.127±0.129 0.027±0.036
90 0.140±0.150 0.029±0.039

tion in the power (or amplitude) associated with the CA. In order to provide

visual information about the diminution of average QRS complexes in the

data, Fig. 7.15 plots the average QRS in the MEG signals after the BSS-based

artefact rejection procedure for representative cases of the previous criteria.

Finally, a different approach was also tested. This consisted of using a

cBSS to extract the cardiac activity from the MEGs. Then, the projection

of this extracted signal was subtracted from the MEG channels. Table 7.25

contains the APtP and RMS values calculated in this case. Furthermore,

Fig. 7.16 illustrates the mean QRS complex remaining in the BSS signals

after the CA removal with the cBSS.

Therefore, it can be seen that certain combinations of artefact detection

metric, epoch length and BSS algorithm, as well as some epochs lengths in

the cBSS approach, are able to notably reduce the importance of the cardiac

artefact. To be more precise, the APtP and RMS values decreased from about

0.750 and 0.120 to around 0.100 and 0.028, respectively, after the artefact

removal procedure.

Ocular Artefact

This Section is devoted to the evaluation of how the artefact removal with

BSS modifies the MEG signals and the influence of the OAs on them. This

evaluation was performed both in the time and spectral domains. It was

based on counting the number of peaks exceeding a particular threshold

(±2 pT) and measuring the difference between two subsets of channels in a
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(a) eInfoMax with 60 s epochs and Skew.
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(b) FastICA with 10 s epochs and VarSc.
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(c) eInfoMax with 90 s epochs and KrE.
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(d) eInfoMax with 60 s epochs and HSh.
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(e) eInfoMax with 60 s epochs and HRé.
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(f) eInfoMax with 60 s epochs and ApEn.

Figure 7.15: Average QRS complex in the MEG recordings after diverse
BSS-based CA removals.
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Figure 7.16: Average QRS complex in the MEG recordings after the cBSS-
based CA removal for epochs of 10 s.

Table 7.26: Number of peaks in the MEG signals above ±2 pT for the epoch
lengths and BSS algorithms considered in this study after the OA removal
based on the PEY ES. Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 942±9599 931±7280 1302±29937 1303±13461 1286±29726
20 s 946±8923 930±7843 1299±29511 1299±18403 1299±29105
40 s 789±8479 806±6774 1191±29050 1139±27546 1191±28476
60 s 812±8698 801±6416 1249±30046 1288±30739 1300±30727
90 s 799±9110 798±5687 1136±31225 1142±27315 1100±28307

particular spectral band, respectively.

First of all, the PEY ES criterion was applied to remove ocular contamina-

tion from the MEG recordings. The values obtained for the criteria applied

to evaluate the artefact rejection appear in Table 7.26, which refers to the

time domain evaluation, and Table 7.27, which includes the data for the

frequency domain assessment.

As well as PEY ES, the metric PLF was proposed to detect only the OAs by

considering the low frequencies of the signal. For each epoch length and BSS

algorithm, the number of peaks whose amplitude exceeds ±2 pT appears
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Table 7.27: Difference between the PSDs computed at 18 MEG channels
near the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
PEY ES. Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.014±0.191 0.013±0.088 0.017±1.333 0.017±0.533 0.017±1.216
20 s 0.011±0.153 0.014±0.109 0.019±1.233 0.019±0.888 0.019±1.268
40 s 0.008±0.192 0.008±0.095 0.017±1.381 0.019±1.462 0.019±1.363
60 s 0.008±0.183 0.008±0.059 0.019±1.299 0.019±1.443 0.019±1.431
90 s 0.008±0.315 0.010±0.043 0.015±1.360 0.018±1.471 0.018±1.350

Table 7.28: Number of peaks in the signals above ±2 pT for the epoch lengths
and BSS algorithms considered in this study after the OA removal based on
the PLF . Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 654±6492 597±5203 975±24076 769±11873 932±24725
20 s 642±5250 537±4753 953±25468 761±12483 847±21314
40 s 546±3748 354±3659 804±23058 746±14854 745±16450
60 s 247±3815 234±3381 869±25947 797±20046 679±18929
90 s 182±2949 182±4453 751±30990 750±18921 652±15757

in Table 7.28 while the spectral difference in low frequencies between the

subsets of channels is included in Table 7.29.

As it was previously described, KrE, HSh, HRé and ApEn have been tested

in the removal of the CA, OA and PLN. The time and spectral variables

obtained for the KrE criterion are detailed in Table 7.30 and Table 7.31,

respectively. Similarly to the CA, the entropies can recognise components

whose probability distributions are characterised by an abnormal behaviour.

Whereas the evaluation of the OA removal with HSh are detailed in Table 7.32

and Table 7.33, the results for HRé appear in Table 7.34 and Table 7.35.

The last metric employed in this Doctoral Thesis in the OA removal is

ApEn. The corresponding results are detailed in Table 7.36 for the time-

based evaluation and in Table 7.37 for the spectral ‘discrepancy’ measure.

In addition to the quantitative information presented in the previous ta-
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Table 7.29: Difference between the PSDs computed at 18 MEG channels
close to the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
PLF . Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.009±0.142 0.010±0.069 0.012±0.989 0.011±0.148 0.009±0.928
20 s 0.008±0.114 0.008±0.086 0.012±1.051 0.010±0.123 0.010±0.922
40 s 0.008±0.057 0.008±0.055 0.013±0.813 0.009±0.173 0.011±0.848
60 s 0.007±0.033 0.007±0.026 0.014±0.787 0.010±0.333 0.010±0.739
90 s 0.008±0.026 0.008±0.180 0.015±0.817 0.010±0.422 0.011±0.805

Table 7.30: Number of peaks in the signals above ±2 pT for the epoch lengths
and BSS algorithms considered in this study after the OA removal based on
the KrE. Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 599±20608 622±20612 658±22113 635±21476 637±22072
20 s 608±20655 582±20620 652±21842 635±21737 640±21730
40 s 632±19330 637±19327 638±20363 630±20534 637±20629
60 s 735±20726 671±20784 671±21811 660±21709 657±21729
90 s 502±18959 498±19030 485±19987 482±19802 484±19904

Table 7.31: Difference between the PSDs computed at 18 MEG channels
close to the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
KrE. Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.014±1.917 0.015±1.914 0.016±1.907 0.016±1.907 0.016±1.908
20 s 0.015±1.926 0.015±1.926 0.016±1.920 0.016±1.919 0.016±1.921
40 s 0.018±1.990 0.017±1.991 0.017±1.986 0.017±1.983 0.017±1.984
60 s 0.018±1.936 0.018±1.936 0.017±1.932 0.017±1.931 0.017±1.931
90 s 0.016±2.033 0.015±2.033 0.015±2.027 0.015±2.028 0.015±2.027
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Table 7.32: Number of peaks in the signals above ±2 pT for the epoch lengths
and BSS algorithms considered in this study after the OA removal based on
the HSh. Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 477±20708 418±20641 633±22116 539±21511 543±22082
20 s 620±20931 428±20732 652±21850 541±21743 543±21740
40 s 630±19344 637±19542 638±20353 630±20533 637±20640
60 s 522±20761 526±20812 671±21818 660±21721 657±21735
90 s 458±18979 488±19057 483±19992 479±19821 480±19922

Table 7.33: Difference between the PSDs computed at 18 MEG channels
close to the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
HSh. Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.012±1.917 0.011±1.916 0.015±1.907 0.014±1.907 0.014±1.908
20 s 0.013±1.926 0.012±1.924 0.016±1.920 0.014±1.919 0.014±1.921
40 s 0.018±1.991 0.017±1.991 0.017±1.986 0.017±1.983 0.017±1.984
60 s 0.016±1.937 0.015±1.937 0.017±1.932 0.017±1.931 0.017±1.932
90 s 0.013±2.034 0.013±2.034 0.015±2.027 0.014±2.028 0.014±2.028

Table 7.34: Number of peaks in the signals above ±2 pT for the epoch lengths
and BSS algorithms considered in this study after the OA removal based on
the HRé. Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 449±20777 414±20818 558±22123 539±21548 543±22096
20 s 566±20942 368±20763 652±21855 541±21747 543±21750
40 s 480±19347 421±19365 638±20356 630±20539 637±20645
60 s 645±20735 535±20823 671±21822 594±21739 612±21752
90 s 390±18839 373±18642 483±20005 479±19820 480±19922
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Table 7.35: Difference between the PSDs computed at 18 MEG channels
close to the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
HRé. Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.011±1.918 0.011±1.910 0.014±1.907 0.014±1.906 0.014±1.908
20 s 0.011±1.927 0.009±1.920 0.016±1.920 0.014±1.919 0.014±1.921
40 s 0.012±1.991 0.012±1.986 0.017±1.986 0.017±1.983 0.017±1.984
60 s 0.013±1.937 0.015±1.937 0.017±1.932 0.015±1.932 0.015±1.932
90 s 0.014±2.034 0.013±2.034 0.015±2.028 0.014±2.028 0.014±2.028

Table 7.36: Number of peaks in the signals above ±2 pT for the epoch lengths
and BSS algorithms considered in this study after the OA removal based on
the ApEn. Data are shown as median ± SD.

# AMUSE SOBI JADE eInfoMax FastICA

10 s 315±3406 304±3367 560±21683 370±15016 458±21510
20 s 477±3240 370±3052 657±20774 528±17325 482±20700
40 s 460±2411 282±2571 575±19209 393±18278 408±18653
60 s 706±3230 706±3426 575±20374 420±20249 573±20609
90 s 634±3628 582±3550 453±18981 255±19133 269±19087

Table 7.37: Difference between the PSDs computed at 18 MEG channels
close to the eyes and at the rest of MEG sensors for the epoch lengths and
BSS algorithms considered in this study after the OA removal based on the
ApEn. Data are shown as median ± SD.

(pT2) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.009±0.011 0.010±0.012 0.013±1.883 0.011±1.055 0.014±1.737
20 s 0.008±0.012 0.007±0.013 0.016±1.924 0.014±1.252 0.012±1.905
40 s 0.008±0.016 0.008±0.013 0.017±1.989 0.011±1.841 0.011±1.992
60 s 0.010±0.014 0.009±0.015 0.017±1.934 0.015±1.935 0.015±1.909
90 s 0.011±0.011 0.011±0.013 0.013±2.029 0.013±2.000 0.013±1.145
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bles, a visual evaluation of the impact of the ocular metrics in the MEG

signals’ spectra is depicted in Fig. 7.17 for a few representative combinations

of epoch length, BSS algorithm and artefact detection criterion. This figure

shows the same low frequency range as Fig. 7.13 for the sake of a straight-

forward comparison, since it is necessary to compare the spectra computed

with the same epoch length.

By comparing Fig. 7.13 and Fig. 7.17, it is clear that the BSS-based arte-

fact rejection procedure caused a reduction in the amount of low frequency

power at the channels located near the eyes. Additionally, the number of

peaks with extreme values also decreased notably.

Power Line Noise

Finally, this Doctoral Thesis also attempted to reduce the PLN in the MEG

recordings. The evaluation of this artefact removal was entirely done in the

frequency domain. To begin with, the power of the PSD around 50 Hz was

measured. This provides information about the total power of the PLN.

Then, the PSDn was computed and the normalised power in the same fre-

quency band was computed. This calculation was carried out due to the fact

that some artefact removal metrics were applied to detect all kind of arte-

facts. Hence, it might be possible that the total power of the PLN decreased

in the signals while the normalised power increased. This might happen if

a certain artefact detection metric removed some portion of the PLN and a

very large fraction of the CA or OA, thus removing a larger proportion of

the whole recording power than the proportion of the removed PLN.

Firstly, the P50Hz metric was used to detect and remove the BSS compo-

nents with large power at 50 Hz. The values of total and normalised power

around the line frequency after the BSS-based artefact removal are given in

Table 7.38 and Table 7.39, respectively.

Since the amplitude distribution of a purely harmonic signal may be rel-

atively different from that of brain activity, KrE, HSh, HRé and ApEn were

also tested in the reduction of the PLN. The evaluation of the PLN power

reduction by means of the KrE is given by Table 7.40 and Table 7.41.
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(a) SOBI with 60 s epochs and PEY ES .
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(b) AMUSE with 90 s epochs and PLF .
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(c) eInfoMax with 90 s epochs and KrE.
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(d) SOBI with 20 s epochs and HRé.
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(e) SOBI with 20 s epochs and ApEn.

Figure 7.17: Median of the difference between the PSDs for the two subsets
of MEG channels used to compare the impact of OAs in the recordings after
diverse BSS-based OA removals.
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Table 7.38: Average values of total spectral power in the band from 49 Hz to
51 Hz multiplied by 103 for the epoch lengths and BSS algorithms considered
in this study after the PLN removal based on the P50Hz. Data are shown as
mean±SD.

(
pT2

·103

)
AMUSE SOBI JADE eInfoMax FastICA

10 s 0.479±0.863 0.479±0.864 0.718±0.879 1.119±1.202 0.529±0.853
20 s 0.476±0.864 0.476±0.864 0.627±0.857 1.029±1.106 0.518±0.854
40 s 0.487±0.927 0.487±0.927 0.579±0.912 1.254±1.536 0.521±0.918
60 s 0.466±0.863 0.471±0.862 0.550±0.856 1.394±2.347 0.497±0.855
90 s 0.490±0.962 0.491±0.962 0.558±0.952 1.079±1.290 0.521±0.954

Table 7.39: Average values of normalised spectral power in the band from
49 Hz to 51 Hz multiplied by 102 for the epoch lengths and BSS algorithms
considered in this study after the PLN removal based on the P50Hz. Data are
shown as mean±SD.

(102) AMUSE SOBI JADE eInfoMax FastICA

10 s 0.713±0.751 0.718±0.755 1.125±0.986 1.815±1.869 0.805±0.762
20 s 0.689±0.712 0.686±0.709 0.958±0.846 1.593±1.483 0.776±0.757
40 s 0.675±0.743 0.674±0.748 0.837±0.764 1.713±1.678 0.749±0.751
60 s 0.637±0.624 0.649±0.628 0.791±0.748 1.790±2.039 0.729±0.746
90 s 0.614±0.563 0.621±0.572 0.782±0.761 1.567±1.671 0.718±0.741

Table 7.40: Average values of total spectral power in the band from 49 Hz to
51 Hz multiplied by 103 for the epoch lengths and BSS algorithms considered
in this study after the PLN removal based on the KrE. Data are shown as
mean±SD.

(
pT2

·103

)
AMUSE SOBI JADE eInfoMax FastICA

10 s 2.269±3.802 2.269±3.802 2.265±3.806 2.228±3.764 2.264±3.797
20 s 2.283±3.823 2.279±3.822 2.277±3.828 2.268±3.821 2.272±3.815
40 s 2.300±3.836 2.299±3.836 2.290±3.838 2.292±3.831 2.291±3.828
60 s 2.284±3.833 2.285±3.835 2.277±3.829 2.277±3.828 2.275±3.824
90 s 2.314±3.844 2.313±3.843 2.303±3.834 2.302±3.836 2.303±3.834
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Table 7.41: Average values of normalised spectral power in the band from
49 Hz to 51 Hz multiplied by 102 for the epoch lengths and BSS algorithms
considered in this study after the PLN removal based on the KrE. Data are
shown as mean±SD.

(102) AMUSE SOBI JADE eInfoMax FastICA

10 s 4.132±5.924 4.159±6.052 4.517±6.862 4.481±6.944 4.578±6.999
20 s 4.100±5.866 4.168±6.097 4.512±6.907 4.512±6.945 4.557±7.006
40 s 4.023±5.764 4.129±6.018 4.453±6.831 4.495±6.895 4.499±6.925
60 s 4.047±5.801 4.124±6.025 4.504±6.927 4.530±6.964 4.527±6.989
90 s 4.113±6.040 4.109±6.054 4.457±6.864 4.470±6.875 4.467±6.894

Table 7.42: Average values of total spectral power in the band from 49 Hz to
51 Hz multiplied by 103 for the epoch lengths and BSS algorithms considered
in this study after the PLN removal based on the HSh. Data are shown as
mean±SD.

(
pT2

·103

)
AMUSE SOBI JADE eInfoMax FastICA

10 s 2.251±3.788 2.265±3.800 2.265±3.806 2.227±3.765 2.263±3.796
20 s 2.264±3.815 2.279±3.821 2.276±3.826 2.268±3.821 2.272±3.814
40 s 2.300±3.836 2.299±3.836 2.288±3.837 2.293±3.831 2.290±3.827
60 s 2.284±3.834 2.285±3.835 2.276±3.828 2.275±3.827 2.273±3.823
90 s 2.250±3.806 2.313±3.843 2.303±3.834 2.301±3.834 2.303±3.833

Furthermore, the entropic measurements were tested in the reduction of

the PLN. The corresponding spectral metrics computed from the PSD and

PSDn are included in Table 7.42 and Table 7.43 for the HSh, while the results

for HRé appear in Table 7.44 and Table 7.45.

Finally, the artefact reduction results obtained with ApEn appear in Ta-

ble 7.46 for the total power and Table 7.47 for the normalised power.

Considering those results, Fig. 7.18 offers visual information about the

reduction in the PLN for a few representative cases of the BSS-based artefact

removal. The plots show the same amplitude range as Fig. 7.14. It can be

seen that the power at 50 Hz is reduced about 30 times (i.e, about 14.7 dB).
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Table 7.43: Average values of normalised spectral power in the band from
49 Hz to 51 Hz multiplied by 102 for the epoch lengths and BSS algorithms
considered in this study after the PLN removal based on the HSh. Data are
shown as mean±SD.

(102) AMUSE SOBI JADE eInfoMax FastICA

10 s 4.148±5.911 4.227±6.168 4.525±6.868 4.497±6.946 4.590±7.010
20 s 4.166±5.983 4.205±6.121 4.538±6.937 4.519±6.948 4.571±7.022
40 s 4.050±5.795 4.138±6.017 4.473±6.854 4.505±6.892 4.508±6.936
60 s 4.127±5.968 4.183±6.136 4.524±6.948 4.548±6.977 4.540±7.006
90 s 3.921±5.440 4.176±6.236 4.473±6.879 4.498±6.897 4.481±6.905

Table 7.44: Average values of total spectral power in the band from 49 Hz to
51 Hz multiplied by 103 for the epoch lengths and BSS algorithms considered
in this study after the PLN removal based on the HRé. Data are shown as
mean±SD.

(
pT2

·103

)
AMUSE SOBI JADE eInfoMax FastICA

10 s 1.918±3.347 2.086±3.513 2.265±3.806 2.231±3.785 2.264±3.796
20 s 1.822±3.444 2.115±3.748 2.277±3.827 2.268±3.821 2.272±3.814
40 s 1.629±3.197 2.045±3.703 2.288±3.837 2.292±3.831 2.291±3.827
60 s 1.258±2.311 2.098±3.723 2.276±3.828 2.275±3.827 2.273±3.823
90 s 1.195±2.568 1.535±2.589 2.305±3.833 2.300±3.834 2.303±3.833

Table 7.45: Average values of normalised spectral power in the band from
49 Hz to 51 Hz multiplied by 102 for the epoch lengths and BSS algorithms
considered in this study after the PLN removal based on the HRé. Data are
shown as mean±SD.

(102) AMUSE SOBI JADE eInfoMax FastICA

10 s 3.357±4.467 3.859±5.338 4.524±6.867 4.496±6.939 4.587±7.006
20 s 3.226±4.271 3.740±5.211 4.534±6.937 4.519±6.947 4.565±7.015
40 s 2.470±3.356 3.422±4.635 4.474±6.853 4.501±6.893 4.509±6.935
60 s 1.927±2.528 3.576±4.852 4.524±6.948 4.551±6.975 4.543±7.005
90 s 1.713±2.540 2.518±3.202 4.476±6.878 4.497±6.898 4.481±6.905
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(a) AMUSE with 60 s epochs and P50Hz.
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(b) JADE with 60 s epochs and P50Hz.
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(c) JADE with 60 s epochs and ApEn.

Figure 7.18: Average spectra centred at the PLN frequency after the artefact
removal with three BSS procedures.
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Table 7.46: Average values of total spectral power in the band from 49 Hz to
51 Hz multiplied by 103 for the epoch lengths and BSS algorithms considered
in this study after the PLN removal based on the ApEn. Data are shown as
mean±SD.

(
pT2

·103

)
AMUSE SOBI JADE eInfoMax FastICA

10 s 0.866±0.924 0.922±0.957 1.129±1.473 1.402±1.528 0.909±0.794
20 s 0.748±0.853 0.822±0.890 0.904±1.037 1.415±1.754 0.971±0.951
40 s 0.699±0.795 0.758±0.799 0.745±0.948 1.371±1.804 0.744±0.935
60 s 0.855±1.068 0.970±1.178 0.583±0.846 1.403±2.340 0.670±0.872
90 s 0.802±1.107 0.764±1.033 0.635±0.953 1.271±1.658 0.704±0.954

Table 7.47: Average values of normalised spectral power in the band from
49 Hz to 51 Hz multiplied by 102 for the epoch lengths and BSS algorithms
considered in this study after the PLN removal based on the ApEn. Data
are shown as mean±SD.

(102) AMUSE SOBI JADE eInfoMax FastICA

10 s 1.997±1.912 2.137±2.048 1.998±2.245 2.700±2.541 1.954±1.845
20 s 1.606±1.706 1.790±1.892 1.737±1.760 2.342±2.290 1.913±1.660
40 s 1.510±1.614 1.670±1.770 1.341±1.173 2.298±2.271 1.410±1.323
60 s 1.522±1.653 1.841±2.245 1.095±1.090 2.289±2.761 1.306±1.285
90 s 1.394±1.593 1.370±1.475 1.092±0.936 2.074±2.092 1.249±1.244

7.4 Feature Enhancement

This Section of the Doctoral Thesis details the results obtained from the pre-

processing with BSS techniques to help in the discrimination of AD patients

from elderly control subjects’ MEGs.

7.4.1 Preliminary Description of the Analysis

This application is based on the idea that a BSS may provide a decomposi-

tion of the MEG recordings in which some components are more sensitive to

the dementia than others. Therefore, a subset of components that collects

most of the differences between the subject groups can be selected to par-
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tially reconstruct the MEG signals. Hopefully, this would lead to a better

discrimination between signal features of AD patients and healthy elderly

subjects (Escudero et al., 2008d, 2009b).

As a trade-off between the number of samples required by spectral and

non-linear signal features, epochs of 10 s (1695 samples) were analysed in this

Section of the Doctoral Thesis (Escudero et al., 2009b). It is important to

note that, in order to avoid surplus complexity, signal epochs with minimal

artefactual activity were first selected. Moreover, no dimension reduction

procedure was applied due to the fact that only the most relevant compo-

nents were retained to partially reconstruct the MEG signals. Regarding the

application of the BSS algorithms to the actual recordings, the signal epochs

of 10 s with minimal artefactual activity were fed to AMUSE and SOBI. In

contrast, FastICA and eInfoMax were applied to the whole MEG recordings

of five minutes in order to have enough data samples to reliably estimate the

ICA decomposition. Afterwards, the same signal epochs selected for analysis

in the SOS case were picked up for the HOS algorithms. Of note is that

JADE could not be applied in this setting due to the high dimensionality of

the data (m = 148).

It is important to bear in mind that the development of the preprocessing

was carried out with the data from the subjects included in the training set

whereas the evaluation of the classification improvement due to this proce-

dure was done with the test set (see Table 5.3).

7.4.2 Decompositions and Ordering Criteria

Firstly, AMUSE, SOBI, FastICA and eInfoMax were applied to blindly de-

compose MEG background activity recorded from all AD patients and con-

trol subjects. AMUSE naturally ordered the components by decreasing linear

predictability. On the other hand, the components extracted with SOBI, Fas-

tICA and eInfoMax had to be ranked to compare different subjects. These

sources were ordered by increasing MF and kurtosis. These ranking processes

allowed us to directly compare the values of signal features (MF, SpecEn,

LZC and SampEn) computed for the ordered BSS components of both sub-
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ject groups (Escudero et al., 2009b,c).

Afterwards, a one-way ANOVA with age as a covariate was used to sta-

tistically assess the differences between the MF, SpecEn, LZC and SampEn

values of the subject groups for each AMUSE, SOBI, FastICA and eInfoMax

component. Thanks to this information, it is possible to define subsets of

components characterised by providing the most significant differences be-

tween subject groups. These subsets of components will eventually be used

to partially reconstruct the MEG signals (Escudero et al., 2008d, 2009b,c).

AMUSE

AMUSE was applied to blindly decompose MEG background activity epochs

of 10 s (1695 samples) recorded from all 36 AD patients and 26 controls.

However, the analysis of components aiming at developing the preprocessing

was only done with the training set.

Given that AMUSE orders the components by decreasing linear pre-

dictability, the MF, SpecEn, LZC and SampEn of the components for the

subjects in the training set could be straightforwardly compared. Fig. 7.19

depicts these values for each AMUSE component averaged over all AD pa-

tients and control subjects included in the training set.

Overall, the values of MF, SpecEn, LZC and SampEn increased with

the AMUSE component index. This relationship is particularly clear for

MF, indicating that the order provided by AMUSE is related to the low- or

high-frequency content of the components (Escudero et al., 2008d). For this

reason, MF was selected as an ordering criterion for the other BSS algorithms

(SOBI, FastICA and eInfoMax) (Escudero et al., 2009c). Moreover, the Sam-

pEn results confirm that higher AMUSE component indexes correspond to

more irregular (i.e. less predictable) data. Additionally, lower MF, SpecEn,

LZC and SampEn values tended to be found in the AD patients’ AMUSE

components, as expected (Escudero et al., 2009b).

Then, a one-way ANOVA with age as a covariate was used to statisti-

cally assess the differences between subject groups of the training set for

each AMUSE component and signal feature. Fig. 7.20 depicts these results.
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Figure 7.19: Average values of the signal features for every AMUSE compo-
nent in AD patients and control subjects of the training set.
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Figure 7.20: p-values of a one-way ANOVA with age as a covariate computed
for each AMUSE component in the training set for (a) MF and SpecEn and
(b) LZC and SampEn.
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They show that the evolution of the p-values is similar for all metrics. The

components with the most significant differences are gathered together and

have relatively low AMUSE components indexes, although the very first com-

ponents provide less differentiation between groups.

SOBI

The same epochs fed into AMUSE were decomposed with SOBI. This Section

presents the study of the SOBI components derived from the training set and

the corresponding signal features MF, SpecEn, LZC and SampEn.

Likewise AMUSE, SOBI is a SOS-BSS algorithm. It employs an iterative

procedure to simultaneously diagonalise a set of covariance matrices. Thus,

SOBI does not provide an inherent order of the extracted components. On

the bases of the AMUSE results, the MF of the SOBI components was used

to rank them so that comparisons can be done between the SOBI sources of

different subjects (Escudero et al., 2009c). For the sake of completeness, the

kurtosis of the components was also used as an ordering criteria based on

HOS.

MF-Based Order Fig. 7.21 represents the values of MF, SpecEn, LZC and

SampEn computed for AD patients and controls from the SOBI components

once these had been ordering by increasing values of MF within each epoch.

Likewise the case of AMUSE, MF, SpecEn, LZC and SampEn increased

with the ordering index. However, the evolution of these features with the in-

dex appeared ‘more noisy’ than for AMUSE. This may be due to the fact that

SOBI does not impose a natural order on the decomposition. Additionally,

AD patients presented lower values of the signal features.

A one-way ANOVA with age as a covariate was computed to evaluate

the group differences in the training set for the features of each individual

component. The results in terms of p-values appear in Fig. 7.22. It can

be seen that the evolution of the statistical differences was similar to the

AMUSE case.
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Figure 7.21: Average values of the signal features for the SOBI components
orderer by their MF in AD patients and control subjects of the training set.
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(a) MF and SpecEn.
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Figure 7.22: p-values of a one-way ANOVA with age as a covariate computed
for SOBI components ordered by their MF in the training set for (a) MF and
SpecEn and (b) LZC and SampEn.
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Kurtosis-Based Order On the other hand, the SOBI components com-

puted from every signal epoch were ordered following increasing values of

kurtosis. Although the epochs selected for this analysis had minimal arte-

factual activity, it might be possible that some artefacts, such as the CA,

appeared in the recordings. Therefore, the very first and last components

according to the kurtosis ranking might contain undesired signals. Fig. 7.23

illustrates the MF, SpecEn, LZC and SampEn values for the training set after

the SOBI components of each epoch were ordered by increasing kurtosis.

Fig. 7.23 indicates that AD patients had abnormally low values of the

signal characterising features. However, there was not clear structure in the

kurtosis ordering. Only the very first and last components, which might be

related to artefactual activity, had values notably different from the rest of

the components. This was corroborated by the one-way ANOVA (age as a

covariate) whose p-values are illustrated in Fig. 7.24.

Extended Infomax

In contrast to the two previous BSS algorithms, eInfoMax utilises HOS in

the signal decomposition. In this case, all five minutes of recording were

fed into the BSS algorithm. Afterwards, only the signal epochs previously

studied with AMUSE and SOBI were analysed. eInfoMax does not estimate

the components in a fixed order (Escudero et al., 2009c). Therefore, the

ordering criteria based on increasing MF and kurtosis were used.

MF-Based Order The MF, SpecEn, LZC and SampEn computed from

the eInfoMax components were ordered by increasing MF and represented

in Fig. 7.25 for the training set. Likewise the AMUSE and SOBI cases,

this ordering criterion implied that the MF, SpecEn, LZC and SampEn of

the components increased with their position in the ranking. Nevertheless,

all features showed a relatively steep increase in their values for the first

components and relative constant values for the remaining BSS sources.

The p-values of the ANOVA with age as a covariate computed for each

signal feature and component index in the training set suggested that the
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Figure 7.23: Average values of the signal features for the SOBI components
orderer by their Kurtosis in AD patients and control subjects of the training
set.
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Figure 7.24: p-values of a one-way ANOVA with age as a covariate computed
for SOBI components ordered by their Kurtosis in the training set for (a)
MF and SpecEn and (b) LZC and SampEn.
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Figure 7.25: Average values of the signal features for the Extended InfoMax
components orderer by their MF in AD patients and control subjects of the
training set.

most significant differences usually appear in the first half of the component

ranking. Those p-values are plotted in Fig. 7.26.

Kurtosis-Based Order Similarly to the ordering of the SOBI components

based on kurtosis, the very first and last eInfoMax components ranked by in-

creasing kurtosis were characterised by very low values of the signal features.

The rest of the eInfoMax components had relatively stable values of the sig-

nal features. They are plotted in Fig. 7.27, which represents the MF, SpecEn,

LZC and SampEn values for the training set after the eInfoMax components

of each epoch were ordered by increasing kurtosis. Fig. 7.27 suggested that

there was not any common structure with regard to where the main differ-

ences between both groups gathered. The corresponding p-values from the
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Figure 7.26: p-values of a one-way ANOVA with age as a covariate computed
for the Extended InfoMax components ordered by their MF in the training
set for (a) MF and SpecEn and (b) LZC and SampEn.

one-way ANOVA with age as a covariate are depicted in Fig. 7.28.

FastICA

FastICA utilises HOS in the signal decomposition. Similarly to eInfoMax, all

five minutes of MEG recording were fed into the FastICA algorithm, although

only the previously studied signal epochs were analysed.

MF-Based Order The values of MF, SpecEn, LZC and SampEn com-

puted from the FastICA components ordered by increasing MF are repre-

sented in Fig. 7.29 for the training set. This ordering criterion implied that

the MF, SpecEn, LZC and SampEn of the components increased with their

position in the ranking. Similarly to the eInfoMax case, all features showed a

relatively steep increase in their values for the first components and relative

constant values for the remaining BSS sources.

The p-values of the ANOVA with age as a covariate computed for each

signal feature and component index in the training set suggested that the

most significant differences tended to be grouped. These p-values computed

with a one-way ANOVA with age as a covariate for each signal feature and

component are plotted in Fig. 7.30.
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Figure 7.27: Average values of the signal features for the Extended InfoMax
components orderer by their Kurtosis in AD patients and control subjects of
the training set.
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Figure 7.28: p-values of a one-way ANOVA with age as a covariate com-
puted for the Extended InfoMax components ordered by their Kurtosis in
the training set for (a) MF and SpecEn and (b) LZC and SampEn.
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Figure 7.29: Average values of the signal features for the FastICA compo-
nents orderer by their MF in AD patients and control subjects of the training
set.
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Figure 7.30: p-values of a one-way ANOVA with age as a covariate computed
for the FastICA components ordered by their MF in the training set for (a)
MF and SpecEn and (b) LZC and SampEn.
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Figure 7.31: Average values of the signal features for the FastICA compo-
nents orderer by their Kurtosis in AD patients and control subjects of the
training set.

Kurtosis-Based Order Finally, the FastICA components were ordered by

increasing values of kurtosis and the signal features MF, SpecEn, LZC and

SampEn were calculated. These values appear in Fig. 7.31 for the subjects

in the training set. Additionally, the p-values calculated with a one-way

ANOVA (age as a covariate) for every component and signal feature are

illustrated in Fig. 7.32.

7.4.3 Selection of the Most Significant Components

Visual inspection of the p-values shown in Fig. 7.20, Fig. 7.22, Fig. 7.24,

Fig. 7.26, Fig. 7.28, Fig. 7.30 and Fig. 7.32 suggested that the most AD-

sensitive components were often gathered together in relatively continuous
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Figure 7.32: p-values of a one-way ANOVA with age as a covariate computed
for the FastICA components ordered by their Kurtosis in the training set for
(a) MF and SpecEn and (b) LZC and SampEn.

intervals.

Therefore, two small subsets of components — ŝrange (t) — were cho-

sen to partially reconstruct the MEG recordings — xpartial (t) — for every

combination of BSS algorithm, ordering criterion and signal feature. These

ranges were defined as the continuous intervals of 15 and 30 components (10%

and 20% of all the 148 available BSS sources, respectively) which provided

the lowest average p-value for every metric and type of preprocessing in the

training set. Table 7.48 shows these ranges.

Comparing the ranges included in Table 7.48 with the MF values depicted

in Fig. 7.19, Fig. 7.21, Fig. 7.25 and Fig. 7.29, it can be noticed that some

of the ranges selected to partially reconstruct the MEG signals corresponded

to activity centred in the α (8 Hz – 13 Hz) or β1 (13 Hz – 19 Hz) bands.

Therefore, spectral analyses of the MEG recordings focused on these bands

(α and β1) were also carried out to decide whether the application of the

BSS (a spatial filtering technique) as a preprocessing offered any advantages

over the most commonly used spectral filtering preprocessing. These spectral

analyses consisted of an evaluation of the relative spectral power in the α and

β1 bands and the computation of the signal features MF, SpecEn, LZC and

SampEn from the band-pass filtered MEG recordings in α and β1.
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Table 7.48: Ranges of components (estimated from the training set) selected
to partially reconstruct the MEG signals for each feature and type of pre-
processing (BSS algorithm and ordering criterion).

Preprocessing # comps. MF SpecEn LZC SampEn

A
M

U
SE

15 comps.
18 to 32 9 to 23 7 to 21 7 to 21

(10%)
30 comps.

13 to 42 6 to 35 3 to 32 6 to 35
(20%)

C
om

po
ne

nt
s

or
de

re
d

by
M

F

SO
B

I 15 comps.
20 to 34 20 to 34 20 to 34 20 to 34

(10%)
30 comps.

5 to 34 10 to 39 9 to 38 9 to 38
(20%)

eI
nf

oM
ax 15 comps.

9 to 23 59 to 73 30 to 44 37 to 51
(10%)

30 comps.
7 to 36 46 to 75 15 to 44 61 to 90

(20%)

Fa
st

IC
A 15 comps.

62 to 76 44 to 58 42 to 56 62 to 76
(10%)

30 comps.
45 to 74 40 to 69 43 to 72 67 to 96

(20%)

C
om

po
ne

nt
s

or
de

re
d

by
K

ur
to

si
s

SO
B

I 15 comps.
2 to 16 79 to 93 2 to 16 2 to 16

(10%)
30 comps.

119 to 148 119 to 148 1 to 30 1 to 30
(20%)

eI
nf

oM
ax 15 comps.

27 to 41 96 to 110 25 to 39 41 to 55
(10%)

30 comps.
26 to 55 57 to 86 25 to 54 27 to 56

(20%)

Fa
st

IC
A 15 comps.

52 to 66 48 to 62 53 to 67 52 to 66
(10%)

30 comps.
48 to 77 39 to 68 48 to 77 39 to 68

(20%)

7.4.4 Evaluation of the Classification Improvement

This Section is devoted to comparing the classification performance achieved

by means of signal features extracted from the raw MEG recordings — x (t)

— with that obtained from the BSS preprocessed signals — xpartial (t).

The MEG signals of the training set were partially reconstructed with
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Table 7.49: Classification results and AUC obtained from the MEG record-
ings without any preprocessing in the test set using the decision rules devel-
oped with the training set.

MF SpecEn LZC SampEn

Accuracy (%) 77.4 61.3 61.3 58.1
Sensitivity (%) 88.9 55.6 55.6 72.2
Specificity (%) 53.9 69.2 69.2 38.5

AUC 0.855 0.727 0.786 0.645

the ranges specified in Table 7.48. In each case, an average value of MF,

SpecEn, LZC or SampEn per channel and subject was computed from the

corresponding signals xpartial (t) or x (t). The 148 values of MF, SpecEn,

LZC or SampEn were averaged for every subject. Owing to the high spa-

tial density of the MEG channels, this dimensionality reduction is helpful

to simplify the analysis and the interpretation of the results. Thus, every

classification analysis was carried out using one mean value of MF, SpecEn,

LZC or SampEn per subject (Escudero et al., 2008d, 2009b,c).

An LDA was applied to the average values of these signal features of the

original MEG recordings — x (t) — and the partially reconstructed MEG

signals — xpartial (t) — to find the optimal subject classification rules in the

training set. These classification rules were evaluated, without further alter-

ation, with the test set. Therefore, the accuracy, sensitivity, specificity and

AUC results detailed in this Section were computed from the test set (Escu-

dero et al., 2009b).

Firstly, the classification rules derived from the training data were ap-

plied to the unseen test set for the case where no BSS preprocessing and

component selection procedure was used — x (t). These results are depicted

in Table 7.49.

For the sake of comparison with more common techniques, the classifi-

cations achieved with the relative power in the α and β1 bands are shown

in Table 7.50. As it was mentioned, these bands were inspected because, in

several cases, the subsets of BSS components selected to partially reconstruct

the signals seemed to contain activity centred around α and β1.
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Table 7.50: Classification results and AUC from the relative power in the α
(8 Hz–13 Hz) and β1 (13 Hz–19 Hz) bands in the original MEG recordings
for the test set using the decision rules developed with the training set.

Relative power in α Relative power in β1

Accuracy (%) 54.8 67.7
Sensitivity (%) 50.0 72.2
Specificity (%) 61.5 61.5

AUC 0.628 0.752

Table 7.51: Classification results and AUC obtained from the α-filtered MEG
signals in the test set using the decision rules developed with the training
set.

α-filtered (8 Hz–13 Hz) MF SpecEn LZC SampEn

Accuracy (%) 77.4 41.9 51.6 35.5
Sensitivity (%) 72.2 44.4 61.1 33.3
Specificity (%) 84.6 38.5 38.5 38.5

AUC 0.872 0.598 0.504 0.615

Moreover, the classifications achieved with the MF, SpecEn, LZC and

SampEn calculated from MEG signals filtered in the α and β1 bands are de-

tailed in Table 7.51 and Table 7.52, respectively. Although the accuracy or

AUC values detailed in Table 7.50, Table 7.51 and Table 7.52 sometimes in-

creased in comparison with Table 7.49, the improvement derived from study-

ing these individual frequency bands is not completely significant.

Table 7.52: Classification results and AUC obtained from the β1-filtered
MEG signals in the test set using the decision rules developed with the train-
ing set.

β1-filtered (13 Hz–19 Hz) MF SpecEn LZC SampEn

Accuracy (%) 61.3 58.1 64.5 61.3
Sensitivity (%) 66.7 55.6 61.1 55.6
Specificity (%) 53.8 61.5 69.2 69.2

AUC 0.624 0.560 0.705 0.645
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Table 7.53: Classification results and AUC obtained from the partially recon-
structed MEG signals with the AMUSE preprocessing in the test set using
the algorithms developed with the training set (Acc: Accuracy, Sen: Sensi-
tivity, Spe: Specificity).

A MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 77.4 71.0 71.0 67.7 67.7 74.2 80.7 80.7
Sen. (%) 77.8 66.7 77.8 72.2 72.2 72.2 83.3 83.3
Spe. (%) 76.9 76.9 61.5 61.5 61.5 76.9 76.9 76.9

AUC 0.878 0.868 0.786 0.782 0.838 0.838 0.872 0.863

On the other hand, Table 7.53 details the classification results obtained

thanks to the AMUSE preprocessing. This BSS algorithm provides an in-

herent order for the extracted components and the ranges of components

selected for the partial reconstruction were quite consistent. Therefore, this

type of preprocessing improved all AUC values and the accuracy of all signal

features expect for MF (Escudero et al., 2009b). Furthermore, these were

the highest rises in several cases.

SOBI is similar to AMUSE in the sense that both techniques employ

SOS to decompose the signals. However, SOBI does not have any intrinsic

order of the estimated components. Following the results offered by AMUSE,

the components were ordered by increasing MF (Escudero et al., 2009c).

The ranges of selected components tended to be consistent among the four

signal features. The corresponding classification results are introduced in

Table 7.54. It can be seen that the accuracy and AUC improved in most

cases. However, the enhancement of the classification quality was not as

important as for AMUSE.

In comparison with the previous case, eInfoMax and FastICA are HOS-

based BSS methods. For the sake of a complete comparison, the components

computed with these techniques were also ranked by increasing MF. The

classification results for the eInfoMax and FastICA preprocessings are pre-

sented in Table 7.55 and Table 7.56, in that order. Nevertheless, these BSS
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Table 7.54: Classification results and AUC obtained from the partially re-
constructed MEG signals with the SOBI preprocessing ordered following the
MF in the test set using the algorithms developed with the training set (Acc:
Accuracy, Sen: Sensitivity, Spe: Specificity).

S–MF MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 77.4 71.0 74.2 58.1 64.5 67.7 67.7 71.0
Sen. (%) 88.9 77.8 72.2 61.1 61.1 72.2 72.2 77.8
Spe. (%) 61.5 61.5 76.9 53.8 69.2 61.5 61.5 61.5

AUC 0.876 0.829 0.782 0.709 0.808 0.769 0.803 0.782

Table 7.55: Classification results and AUC obtained from the partially re-
constructed MEG signals with the Extended InfoMax preprocessing ordered
following the MF in the test set using the algorithms developed with the
training set (Acc: Accuracy, Sen: Sensitivity, Spe: Specificity).

eI–MF MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 74.2 74.2 67.7 67.7 64.5 61.3 64.5 54.8
Sen. (%) 83.3 77.8 55.6 50.0 66.7 61.1 55.6 33.3
Spe. (%) 61.5 69.2 84.6 92.3 61.5 61.5 76.9 84.6

AUC 0.808 0.812 0.697 0.679 0.679 0.701 0.675 0.692

and component selection procedures did not produce as many improvements

in the accuracy or AUC as the cases of SOBI ordered by MF or AMUSE.

Finally, the classification results obtained with a preprocessing that or-

ders the extracted components by increasing kurtosis appear in Table 7.57,

Table 7.58 and Table 7.59 for SOBI, eInfoMax and FastICA, respectively.

Among these cases, the best results are offered by eInfoMax. However, the

improvement is more modest than in the preprocessing done with SOBI and

the MF ordering or, specially, AMUSE.



240 Chapter 7. Results

Table 7.56: Classification results and AUC obtained from the partially re-
constructed MEG signals with the FastICA preprocessing ordered following
the MF in the test set using the algorithms developed with the training set
(Acc: Accuracy, Sen: Sensitivity, Spe: Specificity).

F–MF MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 64.5 71.0 61.3 61.3 58.1 61.3 54.8 54.8
Sen. (%) 55.6 55.6 50.0 50.0 50.0 50.0 38.9 38.9
Spe. (%) 76.9 92.3 76.9 76.9 69.2 76.9 76.9 76.9

AUC 0.825 0.816 0.722 0.701 0.688 0.701 0.650 0.679

Table 7.57: Classification results and AUC obtained from the partially re-
constructed MEG signals with the SOBI preprocessing ordered following the
Kurtosis in the test set using the algorithms developed with the training set
(Acc: Accuracy, Sen: Sensitivity, Spe: Specificity).

S–Kurt MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 71.0 71.0 61.3 61.3 64.5 61.3 58.1 61.3
Sen. (%) 88.9 66.7 72.2 55.6 50.0 44.4 50.0 50.0
Spe. (%) 46.2 76.9 46.2 69.2 84.6 84.6 69.2 76.9

AUC 0.876 0.829 0.718 0.688 0.812 0.782 0.782 0.782

Table 7.58: Classification results and AUC obtained from the partially re-
constructed MEG signals with the Extended InfoMax preprocessing ordered
following the Kurtosis in the test set using the algorithms developed with
the training set (Acc: Accuracy, Sen: Sensitivity, Spe: Specificity).

eI–Kurt MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 64.5 67.7 67.7 58.1 64.5 67.7 64.5 71.0
Sen. (%) 66.7 72.2 61.1 38.9 61.1 66.7 66.7 72.2
Spe. (%) 61.5 61.5 76.9 84.6 69.2 69.2 61.5 69.2

AUC 0.795 0.778 0.786 0.696 0.778 0.795 0.782 0.782
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Table 7.59: Classification results and AUC obtained from the partially re-
constructed MEG signals with the FastICA preprocessing ordered following
the Kurtosis in the test set using the algorithms developed with the training
set (Acc: Accuracy, Sen: Sensitivity, Spe: Specificity).

F–Kurt MF SpecEn LZC SampEn

# comps. 30 15 30 15 30 15 30 15
retained (20%) (10%) (20%) (10%) (20%) (10%) (20%) (10%)

Acc. (%) 64.5 61.3 67.7 64.5 61.3 61.3 64.5 64.5
Sen. (%) 72.2 66.7 66.7 66.7 61.1 61.1 72.2 72.2
Spe. (%) 53.8 53.8 69.2 61.5 61.5 61.5 53.8 53.8

AUC 0.786 0.812 0.722 0.671 0.739 0.756 0.744 0.765

7.5 Adaptive Extraction of Brain Rhythms

This Section of the Doctoral Thesis summarises the results obtained from

computing a connectivity analysis of adaptively extracted brain rhythms over

diverse scalp regions. This synchronisation analysis was based on the Coh(f)

measure, while the extraction of the signals employed a procedure composed

of an EMD, a k-means clustering and a cBSS.

7.5.1 Estimation of References

First of all, MEG epochs of 10 s with minimal artefactual activity were se-

lected for analysis. Furthermore, the cBSS-based artefact removal procedure

described in Section 6.5.1 was applied to reduce the presence of the CA in the

recordings. This artefact removal scheme was selected among the alterna-

tives presented in Section 7.3 for its simplicity and good performance, which

ranked among the best described in that Section.

Secondly, an EMD was applied to each single MEG channel to obtain the

rhythmical components enclosed in it. To illustrate this procedure, Fig. 7.33

plots a MEG epoch recorded from a control subject at the channel A7 (LeftC)

and Fig. 7.34 depicts the IMFs computed from its EMD following the order

in which they are calculated.

Once all IMFs had been computed, their spectral content was charac-
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Figure 7.33: MEG channel from a control subject.

terised with the weighted average value of the instantaneous frequency, 〈ω〉
— see Eq. (6.41). This value offered information about the average spectral

localisation of every IMF. Therefore, it was possible to decide which IMFs

computed from a particular scalp region (see Fig. 6.6) belong to the δ, θ, α

or β band.

The cBSS might be helpful to estimate the brain rhythmical activity

recorded over a particular scalp region for a specific spectral band. In order

to do so, all MEG signals belonging to that region were fed into the cBSS

technique. Nevertheless, a proper reference of the activity of interest was

needed. This reference was selected as one of the previously computed IMFs.

This selection was performed by means of an automatic k-means clustering

procedure.

The 〈ω〉 values of all IMFs of a particular region that ranged between 1 Hz

and 30 Hz were fed to a k-means with the number of clusters set to four. After

the convergence of this process, the IMF with the closest value of 〈ω〉 to the

centroid of each cluster was selected as the reference for the cBSS. Fig. 7.35

illustrates the distributions of the 〈ω〉 values of the IMFs computed for the

LeftC of the same control subject as in Fig. 7.33 and Fig. 7.34. Additionally,

the vertical lines in Fig. 7.35 indicate the positions of the four centroids. It

is clear that the 〈ω〉 values tended to gathered together in groups relatively

well localised in the δ, θ, α and β bands.
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Figure 7.34: Example of the IMFs obtained from the EMD of a MEG channel
acquired from a control subject. The IMFs are plotted following their order
of extraction.
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Figure 7.35: Example of the reference selection for the cBSS with the k-means
clustering procedure.

7.5.2 Descriptive Statistical Analysis

With the references computed for each spectral band and region, a cBSS

procedure was used to extract the corresponding MEG activity for each signal

epoch. Then, the Coh(f) between the activity signals of all possible pairs of

regions was computed and the average level of Coh(f) for the band and pair

of interest was computed across all epochs. Therefore, a value of Coh(f) per

band, pair of regions and subject was obtained.

A qualitative statistical analysis was performed to gain insight into the

Coh(f) values of AD patients and control subjects considering the spectral

band — δ (1 Hz to 4 Hz), θ (4 Hz to 8 Hz), α (8 Hz to 13 Hz) and β (13 Hz

to 30 Hz) — and the pair of regions involved.

First of all, a repeated measures ANOVA was done with the Greenhouse-

Geisser correction for the degrees of freedom due to the lack of sphericity.

The group was the inter-subjects factor (AD patients vs. control subjects).

The two intra-subject factors were band (four levels: δ, θ, α and β) and pair

of regions — 28 levels corresponding to all possible combinations of LeftC,

RightC, LeftA, RightA, LeftL, RightL, LeftP and RightP.

This analysis reported significant effects involving the factors ‘Band’ (p =
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Figure 7.36: Estimated marginal means plotted with the 95% confidence
interval of the Coh(f) for AD patients and control subjects in each spectral
band.

0.0096), ‘Band×Diagnosis’ (p = 0.0473), ‘Pair’ (p < 0.0001) and ‘Band×Pair’

(p < 0.0001). The inspection of the estimated marginal means for both sub-

ject groups considering each band separately revealed slight differences in the

corresponding levels of Coh(f). Fig. 7.36 depicts these estimated marginal

means (Searle et al., 1980) with the 95% confidence interval. It suggests that

AD decreased the level of Coh(f) in the α and β bands while it increased

the connectivity in δ.

To gain further insight, a repeated measures ANOVA with the Green-

house-Geisser correction was applied to every individual band. Hence, the

only intra-subject factor was the pair of regions (28 levels).

For the δ band, there was a significant effect due to the ‘Pair’ factor (p <

0.0001) but not to ‘Diagnosis’ (p = 0.1635). The effect of ‘Pair’ is illustrated

in Fig. 7.37, which represents the estimated marginal means (without regard

of group) of every pair of regions for the δ band. It can be seen that the

level of Coh(f) seemed to depend on the distance between the regions. For

instance, the overall Coh(f) level between regions located over the same

hemisphere (blue) is usually higher than for regions of different hemispheres.
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Table 7.60: Classification results of the coherence measures computed from
the adaptively extracted brain rhythms. Accuracy, sensitivity and specificity
were calculated with a stepwise LDA. The number of variables automatically
selected by this procedure and the related AUC are also shown.

δ θ α β All bands

Accuracy (%) 67.7 46.8 69.4 43.5 96.8
Sensitivity (%) 63.9 47.2 66.7 44.4 94.4
Specificity (%) 73.1 46.2 73.1 42.3 100.0

Variables in the stepwise LDA 1 * 3 * 11
AUC 0.713 0.874 0.815 0.912 1.000

The results for the θ, α and β bands were similar to those of δ. There

was a significant effect due to the ‘Pair’ (p < 0.0001 in all cases) but not

to ‘Diagnosis’ (p = 0.8145 for θ, p = 0.2143 for α and p = 0.6611 for β).

The dependence of the Coh(f) values on the distance between regions was

similar to that plotted in Fig. 7.37, also suggesting a dependence on the

distance between regions.

7.5.3 Classification Analysis

A descriptive statistical analysis was presented in Section 7.5.2. Nevertheless,

it is also important to quantitatively evaluate the ability of those features to

distinguish AD patients from control subjects. This is due to the fact that

the very subtle differences in some bands and pairs of regions might com-

plement themselves in the subject classification. Thus, a stepwise LDA with

a leave-one-out cross-validation procedure was applied to the Coh(f) values

computed from every band. This LDA provided the accuracy, sensitivity

and specificity rates. The Coh(f) values obtained for all bands were also

fed into the stepwise LDA simultaneously. Table 7.60 shows these results.

Additionally, the number of variables selected by the stepwise LDA and the

AUC associated with the discriminant function are indicated.

In the cases where no variable fulfilled the criterion to enter into the

classification rule (indicated with an ‘*’ in Table 7.60), the LDA was trained

with all variables at the same time. Of note is that the “All bands” case
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actually included variables from all bands (δ, θ, α and β) in the classifier to

achieve an accuracy over 95% with an associated AUC equal to 1.
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Bearing in mind the results reported in Chapter 7, the main findings of

this Doctoral Thesis will now be discussed considering the state of the art in

the application of BSS methods to MEG background activity and AD. After a

brief introduction, specific sections will be devoted to revising and comment-

ing the results related to each of the problems and applications addressed

in this Doctoral Thesis. These include the preprocessing and dimension re-

duction procedure, the evaluation of the consistency of the decompositions

computed by BSS techniques, the artefact removal based on BSS, the use

of BSS as a preprocessing to enhance features associated with AD and the

adaptive extraction of brain rhythms with cBSS to perform a connectivity

analysis in AD. Finally, the main limitations of the studies carried out in this

Doctoral Thesis will be acknowledged.

8.1 Introduction

The MEG is the non-invasive recording of the tiny magnetic fields gener-

ated by the brain activity. This neurophysiological technique offers direct

measurements of the brain cortex activity without having to interpret the

information on the basis of vascular or metabolic changes (Hämäläinen et al.,

1993; Hari, 2004). The temporal and spatial resolution of the MEG is high.

The magnetic recordings depend on neither any reference point nor the re-

sistive properties of the extra-cerebral tissues (Hämäläinen et al., 1993; Hari

et al., 2000). However, the extremely weak amplitude of the brain magnetic

fields needs additional procedures to attenuate the noisy signals produced by

the extra-cerebral sources affecting the MEG (Hari et al., 2000). The eye

movements and blinks and the cardiac activity, together with the PLN, can

contaminate the MEG recordings (Antervo et al., 1985; Hämäläinen et al.,

1993; Jousmäki and Hari, 1996; Sternickel and Braginski, 2006). Therefore,

it is necessary to deal with these artefacts in the MEG recordings. It is

important to note that the recording of MEG signals could provide relevant

information to the characterisation or diagnosis of AD (Hornero et al., 2009b;

Stam, 2005, 2010).
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AD is a slowly progressive neurodegenerative disorder. It produces mem-

ory loss and diverse cognitive and behavioural symptoms that progressively

impair the activities of daily living (Blennow et al., 2006; Cummings, 2004).

AD patients often die between seven and ten years after diagnosis (Masters

et al., 2006). The symptoms of this dementia worsen gradually until, in the

last stages of the dementia, the patients are utterly dependent on their care-

givers (Blennow et al., 2006; Jeong, 2004; Nestor et al., 2004). AD is the most

common type of dementia in the Western World. It accounts for 50% to 60%

of all cases and it shows an almost exponential increase with age (Blennow

et al., 2006; Cummings, 2004). Therefore, AD poses very serious economic

and social problems to modern societies (Ferri et al., 2006). It is expected

that diagnostic testing for AD will contribute only marginally to the cost

associated with this dementia. Considering this and that a definite diagnosis

of AD can only be made by necropsy (Blennow et al., 2006), the importance

of developing methods to help in the diagnosis and characterisation of this

disorder becomes clear. Eventually, this may lead to reduce that AD-related

cost (Lahiri et al., 2002).

BSS techniques have recently become popular in the field of biomedical

signal processing (James and Hesse, 2005; Vigário and Oja, 2008). These

data-driven methods can decompose multi-dimensional biomedical record-

ings into their constituent underlying components (Cichocki and Amari, 2002;

Hyvärinen et al., 2001). Hence, they are used in biomedical signal processing

to separate, or extract, underlying statistically independent components of

interest in biomedical signals. These techniques can provide useful perspec-

tives to inspect the MEG recordings (James and Hesse, 2005; Vigário and

Oja, 2008).

Therefore, this Doctoral Thesis aimed at applying BSS methods to help in

the analysis and interpretation of MEG background activity from AD patients

and elderly control subjects. This global objective was split into the following

applications of BSS techniques to the data at hand:

• Comparison of the similarity of the decompositions provided by several

BSS algorithms for real MEG signals.
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• Automatic and objective assessment of the removal of artefactual car-

diac and ocular activities, as well as the power electrical noise, that

contaminate the MEG recordings.

• Improvement of the classification of MEG signals acquired from AD

patients against those recorded from healthy elderly subjects.

• Adaptive extraction of rhythmic brain activity suitable to be analysed

with connectivity measurements from the MEG recordings.

8.2 Preprocessing

This Section discusses the results obtained in the testing of the preprocessing

(see Section 7.1). This preprocessing does not constitute a BSS algorithm.

Actually, it relies on the classical projection technique of FA (Cao et al., 2003;

Escudero et al., 2007b; Ikeda and Toyama, 2000). However, this preprocess-

ing is important for several reasons (Escudero et al., 2007b; Hesse, 2008;

Hyvärinen et al., 2001; Ikeda and Toyama, 2000; Vigário and Oja, 2008):

1. The number of inner meaningful components may be less than the

number of available channels for analysis.

2. A dimensionality reduction may sometimes be necessary to avoid ‘over-

fitting’.

3. A dimensionality reduction may help to reduce the importance of the

external noise.

The whole preprocessing included the estimation of the optimum number

of inner components (n) and a quasi-whitening of the data that considered

the estimated external noise. Before applying this preprocessing to the real

MEG signals, it was tested on synthetic data (Escudero et al., 2007b). The

results showed that the MDL and the FA-based preprocessing estimated both

the value of n and the power of the external noise accurately for SNR > 3 dB

(Escudero et al., 2007b). In the synthetic data set, n was set to the correct
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value of 11 and the average Enorm was always lower than 3.5% (Escudero

et al., 2007b).

Moreover, the performance of the MDL metric in the estimation of n was

compared with three commonly used standard PCA-based criteria: “PCA:

95% limit”, “PCA: 99% limit” and “PCA: larger than 1%” (Escudero et al.,

2007b; James and Hesse, 2005; Ting et al., 2006). The results clearly indi-

cated that these PCA approaches may cause ‘overfitting’ in the BSS since

they tend to over-estimate n for SNRs below a certain value. What is more,

the estimation of n was neither accurate for high SNR values (Escudero

et al., 2007b). On the other hand, for very high external noise power, the

MDL metric tended to under-estimate the number of inner components. Ob-

viously, the values of n should be as accurate as possible, thus avoiding both

over- and under-estimations. Nevertheless, a mild under-estimation of n will

cause some underlying real components to be mixed in the extracted BSS

components. In some applications, this may be better than a severe ‘over-

fitting’ (Escudero et al., 2007b).

In summary, the MDL provided more accurate values for the parameter

n than the methodologies based on PCA. These results confirmed that the

latter not only are subjective and depend on the shape of the eigenvalue spec-

trum (James and Hesse, 2005), but also could be prone to over-estimation of

the number of components when the external noise is not negligible (Escudero

et al., 2007b). These problems are avoided with the MDL approach.

As for the real MEG recordings, the dependence of the preprocessing on

the signal length was studied by analysing epochs of 10 s, 20 s, 40 s, 60 s and

90 s. As it could be expected, the value of n increased with the epoch length.

This means that longer signals tend to be composed of more inner sources

or, at least, need to consider more components to obtain an optimum decom-

position. For each case, the corresponding power of the external noise was

estimated. In most cases, it was found that the additive noise accounted be-

tween 2.8% and 5.6% of the total power in the recordings. The values of SNR

associated with these noise powers range from 12.3 dB to 15.4 dB. For these

SNRs, the evaluation of the preprocessing made on synthetic data suggested

that the MDL was appropiate to calculate n. Finally, it must be noticed
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that almost all power assigned to the inner components was considered in

the following steps as shown in Fig. 7.5.

All these results are supported by the recently published studies about

the model order selection by Hesse (2007, 2008). These pieces of research

investigated the performance of diverse approaches based on PCA and FA

to estimate the number of BSS components in real EEG and MEG record-

ings. Those results indicated that probabilistic PCA and FA models yielded

estimations of the dimensionality that are more reliable and independent of

the signal power than commonly used PCA approaches (Hesse, 2007, 2008).

The estimated values of n were about one third of the measurement space

dimension (Hesse, 2007). In our case, the number of components was usually

lower than one third of channels, specially for the shorter epochs. Therefore,

this suggested that, in the case of MEG equipment, more channels do not

necessarily reflect more brain signals (Hesse, 2007). What is more, the data

dimension reduction is supported by the statistical properties of the signal

and the FA models may offer an appropriate description of the brain record-

ings. These results pinpointed the importance of considering the additive

noise to be ‘anisotropic’ (Hesse, 2007, 2008).

8.3 Consistency Evaluation

This Section discusses the main results of the comparison carried out between

the decompositions computed with the following BSS algorithms: AMUSE,

SOBI, JADE, eInfoMax and FastICA. In addition, five different epoch lengths

were considered: 10 s, 20 s, 40 s, 60 s and 90 s. The data on which this

discussion relies were presented in Section 7.2.

The algorithms were compared in terms of their consistency: the similar-

ity between their decompositions for the same input data. Of note is that

only one matrix Pqr — see Eq. (6.10) — for each pair of algorithms was

analysed, instead of both Pqr and Prq. This decision was supported by the

fact that the average differences for the F metric — defined in Eq. (6.11) —

between Pqr and Prq were always lower than 1.20%. Hence, by taking this

decision, we tried to reduce the surplus complexity and redundancy of the
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Table 8.1: Ratios of the number of data samples for each epoch length divided
by the median value of the number of elements in A.

Epoch length Data samples Median of n Elements in A
(
n2
)

Ratio

10 s 1695 29 841 2.02
20 s 3390 33 1089 3.11
40 s 6780 38 1444 4.67
60 s 10170 41 1681 6.05
90 s 15255 44 1936 7.88

problem (Escudero et al., 2009d).

The visual representation of the results provided by Fig. 7.6 clearly indi-

cated that the pair AMUSE–SOBI provided the most similar decomposition

for the analysed MEG signals. The principle beneath these two techniques

is the simultaneous diagonalisation of several time-delayed cross-covariance

matrices (Hyvärinen et al., 2001; James and Hesse, 2005). It was also found

that the decompositions of JADE and FastICA were characterised by a high

degree of consistency. This might be explained by the fact that the theoret-

ical principles of both algorithms can be related (Hyvärinen et al., 2001).

Additionally, the algorithms tended to estimate more similar decomposi-

tions as longer signals were decomposed (Escudero et al., 2009d). This may

be due to the fact that, although the value of the parameter n increased with

the epoch length, the number of data samples increased more rapidly than

the number of elements to be estimated in the matrix A. This fact is illus-

trated in Table 8.1, which represents the number of available data samples

and the median of the number of elements to be estimated in A for each

epoch length. It is clear that, the longer the epoch, the larger the ratio of

the number of samples available to estimate A. Hence, the decompositions

may be considered more reliable for longer epochs (Onton et al., 2006), which

could explain the ‘relative similarity’ of the BSS outcomes for long epochs.

The statistical analysis carried out individually for every epoch length

pointed out the statistical significance of the similarity between the decompo-

sition computed by AMUSE–SOBI and JADE–FastICA. On the other hand,

the pairs AMUSE–JADE and SOBI–JADE used to provide the most dissim-
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ilar separations of the MEG signals. A relatively consistent pattern was that

a larger number of components made the outcomes of the separations cal-

culated by AMUSE–SOBI and JADE–FastICA slightly more different. Sur-

prisingly, the pairs AMUSE–eInfoMax and SOBI–eInfoMax computed BSS

decompositions that were slightly more similar for larger values of n.

Previous studies have compared the performance of several BSS tech-

niques from different perspectives. For instance, synthetic signals have been

used to assess the quality of the BSS decomposition (Klemm et al., 2009)

or to evaluate whether the BSS improved the automatic detection of arte-

facts in the EEG (Delorme et al., 2007). Artificially mixed EEG signals have

also been analysed by Fitzgibbon et al. (2007) to compare the relative per-

formance of a few BSS algorithms to isolate artefacts. Real MEG signals

were decomposed by Zavala Fernández et al. (2006) to evaluate their ability

to extract artefacts by comparing the contaminated components of differ-

ent algorithms with reference signals. Several of these studies used small

datasets or small numbers of channels and the evaluation of the algorithms

was frequently based on subjective criteria (Klemm et al., 2009).

In contrast to those studies, we analysed the decompositions of actual

MEG recordings globally to gain insight into the similarities and relation-

ships between some of the most commonly used BSS algorithms. Instead

of comparing a manually selected subset of components (Zavala Fernández

et al., 2006), the entire decomposition was assessed as the metric F (Melis-

sant et al., 2005) was computed on the basis of the whole mixing matrices Aq

and Ar (Escudero et al., 2009d). It is important to note that the real sources

are unknown (James and Hesse, 2005). Thus, the analyses only aimed at

measuring the similarity between the results of the BSS algorithms and not

at evaluating the actual quality of the separation (Escudero et al., 2009d).

8.4 Artefact Removal

This Section contains the discussion about the results of the artefact removal

with BSS. The relevant results were detailed in Section 7.3. It is important to

note that the main objective was to objectively measure the artefact removal
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without having to rely on visual inspections of the data, which are subjective

and time-consuming (Rong and Contreras-Vidal, 2006). Hence, this evalua-

tion was based on measures designed ad hoc for every type of artefact: CA,

OA and PLN. In this Doctoral Thesis, the evaluation of the artefact removal

was carried out for several combinations of BSS technique, epoch length and

artefact detection metric.

This application is motivated by the fact that the MEG is a non-invasive

neurophysiological technique to record the magnetic field generated by neural

currents parallel to the skull (Hämäläinen et al., 1993; Hari, 2004). This

signal carries information about the brain activity and it does not require to

interpret the data as a function of metabolic changes or a reference channel.

Moreover, its temporal and spatial resolution is high (Hari, 2004; Hari and

Forss, 1999). Nevertheless, MEG signals are contaminated with artefacts that

can bias the analyses (Antervo et al., 1985; Hämäläinen et al., 1993; Jousmäki

and Hari, 1996). Hence, it is important to develop methodologies to deal with

the artefacts. BSS may be a suitable tool to achieve this aim (Escudero et al.,

2007b; James and Hesse, 2005).

The BSS techniques were applied after the robust preprocessing and

model order procedure. This was done in order to avoid ‘over-fitting’ and

to perform a robust preprocessing of the recordings (Escudero et al., 2007b).

Although it is not necessary, this preprocessing was also used before the cBSS

in order to ensure that all decomposition or extraction methods were applied

to the same input data. After the BSS, several artefact detection metrics

and criteria helped to identify the BSS components with possible artefacts.

The BSS is the key element in this artefact removal procedure. It relies

on the facts that the MEG channels acquire relatively redundant information

at nearby channels and that the artefacts almost always affect more than one

channel (James and Hesse, 2005). On the other hand, the main hypothesis

needed to apply BSS is that the underlying components are independent

(Cichocki and Amari, 2002; James and Hesse, 2005; Vigário and Oja, 2008)

This hypothesis is reasonable for EEG and MEG data since the useful brain

signals and the artefacts are anatomically and physiologically separated pro-

cesses. This should be reflected in the statistical relationships between both
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kinds of activity (Jung et al., 2000; Vigário and Oja, 2000).

Several pieces of research have aimed at isolating or removing the CA

in MEG data (Barbati et al., 2004; Dammers et al., 2008; Escudero et al.,

2007b; James and Gibson, 2003; Mantini et al., 2008; Rong and Contreras-

Vidal, 2006; Sander et al., 2002; Vigário and Oja, 2000). For instance, Sander

et al. (2002) detected the subspace of the CA attending at its spectrum, tem-

poral evolution and topographical distribution. Rong and Contreras-Vidal

(2006) developed an artificial neural network methodology to detect the CA

in event-related MEGs by simultaneously considering the information pro-

vided by higher-order statistics, the spectrum and the scalp topography. The

kurtosis and entropy values, together with the correlation level with a refer-

ence ECG was used by Barbati et al. (2004) to detect the CA. Nevertheless,

neither kurtosis nor entropy were able to uniquely identify the cardiac com-

ponents (Barbati et al., 2004). Entropic measures have also been applied in

this setting in other studies (Dammers et al., 2008; Mantini et al., 2008).

Moreover, Dammers et al. (2008) suggested the use of phase statistics in

the recognition of this artefact. The asymmetry of the CA, quantified with

the Skew, can also be helpful to detect this artefact (Escudero et al., 2007b;

Shao et al., 2008; Shoker et al., 2005a). Alternatively, the variability of the

corresponding scalp maps have been introduced as a possibly useful metric

to mark the CA (Shao et al., 2008).

Considering these studies, diverse metrics were employed in this Doctoral

Thesis to label the CA. Among them, the Skew and VarSc metrics were

only applied to the detection of this artefact, while the kurtosis and entropic

measurements (KrE, HSh, HRé and ApEn) were tested on the detection and

removal of all types of artefacts due to the suggestions made by previous

studies (Barbati et al., 2004; Dammers et al., 2008; Mammone and Morabito,

2008; Mantini et al., 2008). Despite the fact that Skew and VarSc only aimed

at marking the CA, they identified more components as possible artefacts

than the non-specific metrics.

On the other hand, cBSS can extract artefactual activity if a suitable

reference is available (James and Gibson, 2003). In order to obtain this

reference, the average of all MEG channels was computed. This approach
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could be taken thanks to the fact that the CA was the only synchronous

activity in the MEG background activity.

The OA removal with BSS has recently received considerable attention

in both EEG (Castellanos and Makarov, 2006; Flexer et al., 2005; Frank and

Frishkoff, 2007; Hoffmann and Falkenstein, 2008; Iriarte et al., 2003; Joyce

et al., 2004; Jung et al., 2000; Krishnaveni et al., 2005; LeVan et al., 2006; Li

et al., 2006; Nazarpour et al., 2008; Romero et al., 2008, 2009; Shao et al.,

2008; Shoker et al., 2005a,b; Ting et al., 2006) and MEG (Barbati et al.,

2004; Dammers et al., 2008; Escudero et al., 2007b; James and Gibson, 2003;

Okada et al., 2007; Rong and Contreras-Vidal, 2006). While the goal of the

first seminal studies was just to visually identify the ocular components (Jung

et al., 2000; Vigário, 1997; Vigário and Oja, 2000), several pieces of research

have applied metrics to detect the OA. These were based on the topographic

information of the BSS (Escudero et al., 2007b; Li et al., 2006; Okada et al.,

2007), the correlation with reference signals (Barbati et al., 2004; Flexer et al.,

2005; Joyce et al., 2004), thresholding (Castellanos and Makarov, 2006; Ting

et al., 2006) and higher-order statistics (Dammers et al., 2008; Shoker et al.,

2005a). In other cases, more complex approaches involving a combination of

metrics were set up (Frank and Frishkoff, 2007; LeVan et al., 2006; Rong and

Contreras-Vidal, 2006; Shao et al., 2008). Nevertheless, the diverse types

of signals and evaluation methodologies make the direct comparison of the

results difficult.

In the case of the OA, the specific metrics PEY ES and PLF , which used to-

pographical and spectral information, in that order (Escudero et al., 2007b),

and the general artefact detection metrics (KrE, HSh, HRé and ApEn) were

tested. PEY ES and PLF identified less components as artefacts, although it

must be noted that the latter were supposed to pinpoint all types of contam-

ination.

The MEG background activity was acquired while the subjects had their

eyes closed. Hence, the number of blinks and fast eye movements was re-

duced but the α power could have increased as a result. Moreover, the lack

of a visual reference might increase the low-frequency eye movements (Croft

and Barry, 2000). Despite the fact that this might induce artefacts in the
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recordings, the metric PLF , which detects low frequencies, might deal with

this situation. Nevertheless, the application of this metric to open-eyes set-

tings may not be straightforward. Additionally, the brain activity might be

characterised by a 1/f spectrum and be localised over the anterior region of

the head, which may affect the reliability of the PLF and PEY ES metrics (Es-

cudero et al., 2007b).

The reduction of the PLN power is typically done by spectral filtering.

Nonetheless, if the spectral band of interest overlaps with the power line

frequency, another approach is needed to avoid the removal of brain activity

(Jung et al., 2000). The detection of the PLN components was done by

taking into account the power around the line frequency (50 Hz) (Escudero

et al., 2007b). A similar criterion was also introduced by LeVan et al. (2006)

and Nicolaou and Nasuto (2007), although the artefact removal of the PLN

was not individually measured.

Most of the artefact detection criteria were applied following the “trials”

approach introduced by Barbati et al. (2004); Dammers et al. (2008); Greco

et al. (2006) and Mammone and Morabito (2008). If a certain fraction of

the trials (or segments) of a BSS component exceeds a threshold value, that

component is considered an artefact (Barbati et al., 2004; Dammers et al.,

2008; Greco et al., 2006; Mammone and Morabito, 2008). Usually, a compo-

nent is rejected if 20% or more of its trials exceeded the threshold of ±1.64

(Barbati et al., 2004). However, in order to minimise the amount of brain

components removed byt this procedure, we only marked a BSS source as

an artefact when 30% or more of its segments exceeded a threshold value

of ±2.0 (Dammers et al., 2008). This criterion may decrease the amount

of artefactual activity removed by the procedure but it safeguards the brain

activity (Dammers et al., 2008). Moreover, this type of criteria seems to be

appropriate to label cases for very unbalanced data. That is, the number of

non-artefactual components tends to be much larger than that of artefacts.

In this situation, traditional classification techniques may not be the best

option to distinguish both kinds of activity (Shao et al., 2008).

It can be seen that the artefact detection metrics aiming at labelling all

artefacts (KrE, HSh, HRé and ApEn) seemed to have marked less components
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for removal than the combination of the metrics designed to recognise only

a specific kind of contamination (either CA, OA or PLN). This suggests

that the former, by trying to recognise different artefacts, might lose some

sensitivity to the undesired sources.

One problem associated with the use of BSS in the artefact removal of

EEG and MEG signals is that the actual underlying components are unknown

(Escudero et al., 2007b). Therefore, it is impossible to perform a completely

reliable and accurate evaluation of the performance. (Barbati et al., 2004;

James and Hesse, 2005). Yet, it is indeed possible to compare the brain

signals before and after the artefact removal to gain some idea about the

degree to which the artefacts have been rejected (Dammers et al., 2008;

Escudero et al., 2007b; Mantini et al., 2008). In this Doctoral Thesis, this

approach has been taken in order to provide objective and quantitative data

about the outcome of the artefact removal.

The evaluation of the CA removal relied on the fact that the cardiac

interference was the only synchronous activity in the recordings (Escudero

et al., 2007b). On the other hand, the OAs do not always appear in the

MEG data. Hence, their reduction is more difficult to assess. In order to

do so, the temporal waveforms of the signals were inspected to count the

number of peaks above a particular threshold (Mantini et al., 2008) and the

low frequency range of the spectrum was considered (Escudero et al., 2007b).

Finally, the reduction in the PLN was easy to quantify in the spectral do-

main (Escudero et al., 2007b; Iriarte et al., 2003). Thanks to these criteria,

we were able to gather quantitative data about the artefact removal. On

the basis of these results, Table 8.2 details some of the combinations of BSS

technique, epoch length and artefact detection metric that offered the great-

est artefact reduction. In each case, the data in this Table are expressed

as the ratio of the values of the corresponding metric (for instance, APtP )

after and before the artefact removal. It is important to note that the list of

combinations detailed in Table 8.2 is not exhaustive as slight modifications,

such considering shorter or longer epoch lengths, may offer similar levels of

artefact reduction. However, this Table does convey an idea of the type of

artefact reduction methodologies that are best suited for CA, OA and PLN.
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Table 8.2: Summary of the changes (expressed as ratios) in the metrics to
assess the artefact removal. Lower ratios suggest better artefact removal.

Ratios of the metrics evaluating the cardiac artefact

Metric Length BSS method APtP RMS

– 10 s cBSS 0.1335 0.1963
Skew 60 s eInfoMax 0.1547 0.2359
VarSc 10 s FastICA 0.1572 0.2513
KrE 90 s eInfoMax 0.1354 0.2258
HSh 60 s eInfoMax 0.1238 0.2132
HRé 60 s eInfoMax 0.1242 0.2131

Ratios of the metrics evaluating the ocular artefact

Metric Length BSS method Number of peaks Spectral discrepancy

PEY ES 60 s SOBI 0.6158 0.4137
PLF 90 s AMUSE 0.1589 0.4357
KrE 90 s eInfoMax 0.4221 0.8165
HRé 20 s SOBI 0.2833 0.5005

ApEn 20 s SOBI 0.2848 0.4011

Ratios of the power from 49.5 Hz to 50.5 Hz to evaluate the power line noise

Metric Length BSS method Total power Normalised power

P50Hz 60 s AMUSE 0.2039 0.1850
P50Hz 60 s JADE 0.2406 0.2297
ApEn 60 s JADE 0.2551 0.3178

It can be seen that the CA is considerably reduced with a cBSS procedure

or by decomposing the signals with HOS-BSS techniques. This may be due

to the fact that this artefact is often characterised by having highly asymmet-

rical and supergaussian amplitude distributions (Escudero et al., 2007b). On

the other hand, the cBSS completely avoids the need of identifying the com-

ponents of interest as it only extracts the component whose activity is closer

to the reference (James and Gibson, 2003). As for the OAs, the best artefact

removal was usually achieved with SOS-BSS techniques combined with spe-

cific artefact detection criteria. This supports the idea suggested by Kierkels

et al. (2006) and Romero et al. (2008, 2009) that this kind of artefact may be

better reduced by means of SOS-BSS techniques, such as AMUSE and SOBI,
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than HOS-BSS. Finally, the impact of the PLN was reduced thanks to the

metric P50Hz which aims at marking components with high power around the

line frequency (Escudero et al., 2007b). When observing the artefact removal

results contained in Table 8.2, it should be noticed that the real reduction in

power between 49 Hz and 51 Hz is given by the total power measure. This is

due to the fact that the normalised power depends on the amount of power

in the whole frequency range, which could have been affected by the removal

of the CA or OA. Moreover, the actual reduction in peak at 50 Hz is higher

than the ratios indicated in Table 8.2 since these metrics account for the

change in power in a 2 Hz band (49 Hz to 51 Hz).

For the sake of a straightforward comparison between diverse BSS-based

artefact removal studies in MEG data, Table 8.3 displays the main results re-

garding artefactual attenuation derived from those studies and this Doctoral

Thesis.

All those data support the idea that BSS is very useful to reduce the

amount of artefactual contamination in brain recordings, thus helping to

properly interpret the signals in further analysis (Escudero et al., 2007b;

James and Hesse, 2005; Vigário and Oja, 2008). However, care should be

taken as a ‘leakage’ of brain activity into the artefactual components would

mean that useful information was lost (LeVan et al., 2006). Moreover, some

authors have even suggested that this kind of procedures might, in some

cases, produce distortions in the signals (Castellanos and Makarov, 2006;

Wallstrom et al., 2004). Nonetheless, BSS artefact removal avoids the prob-

lems of other methodologies, such as the requirement of recording reference

channels and the bidirectional contamination of the regression techniques and

the very limited specificity of spectral filtering (Crespo-Garcia et al., 2008;

Iriarte et al., 2003; LeVan et al., 2006; Romero et al., 2008).

8.5 Feature Enhancement

In this Section, the application of BSS techniques as a preprocessing to en-

hance signal features of MEG recordings in AD is discussed. The correspond-

ing results were described in Section 7.4. Due to the nature of the spectral
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and non-linear signal features computed from the MEGs, signal epochs of

10 s were analysed.

The BSS algorithms AMUSE, SOBI, eInfoMax and FastICA were applied

to decompose MEG epochs with minimal artefactual activity recorded from

36 AD patients and 26 healthy elderly control subjects. It is important to

note that the population was randomly divided into training and test sets

to avoid the optimization of the parameters involved in the methodology

(ranges of components and classification rules) on the whole dataset (Escu-

dero et al., 2009b). Whereas AMUSE provided an inherent order for the

extracted sources, the SOBI, eInfoMax and FastICA components had to be

ordered (Escudero et al., 2009c). Two different ranking criteria were used:

the MF and the kurtosis of the components. Then, every component was

characterised with two spectral (MF and SpecEn) and two non-linear (LZC

and SampEn) signal features. Of note is that the use of MF is twofold. On

the one hand, it serves as an ordering criterion so that components extracted

from different epochs and subjects can be compared. On the other, it is a

signal characterising technique helpful to distinguish the subject groups (Es-

cudero et al., 2009c).

For each case, a one-way ANOVA with age as a covariate was used to

decide which components had the most significant differences between AD

patients and controls in the training set (see Table 7.48). These ranges of

components were used to compute the partial reconstructions of the MEG

signals: xpartial (t). An LDA provided the classification rules for each case

in the training set. Then, these rules were applied to the test set without

further modification. In this way, it was compared the separation between

groups achieved using the original MEG recordings with that of the partially

reconstructed MEGs preprocessed with the combinations of BSS technique

and ordering criterion. Overall, the results suggested that the BSS and com-

ponent selection procedure improved the separation between the AD patients

and control groups since this preprocessing increased both the accuracy and

AUC.

BSS estimates the set of components that originated the recorded brain

activity blindly (James and Hesse, 2005; Vigário and Oja, 2008). The BSS
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components are not necessarily equivalent generator dipoles, but mutually

independent and simultaneous electromagnetic activity measured over the

scalp (Jin et al., 2002; Vorobyov and Cichocki, 2002). As it has been men-

tioned, one of the most common applications of BSS techniques to EEG and

MEG is artefact removal (Escudero et al., 2007b; James and Hesse, 2005;

Joyce et al., 2004; Melissant et al., 2005; Sander et al., 2002; Ting et al.,

2006; Vorobyov and Cichocki, 2002). This is based on the assumption that

the BSS methods will isolate the artefactual activity into a few BSS sources.

Once these artefacts have been identified and detached, the brain components

are projected back to the channels to obtain the clean recordings (Escudero

et al., 2007b; Joyce et al., 2004).

On the other hand, the approach taken in this part of the Doctoral Thesis

is different. The aim was not to remove artefacts from MEG recordings with

minimal brain activity distortion (Escudero et al., 2008d, 2009b). Instead,

we attempted to emphasise the differences between AD patients and control

subjects’ MEG recordings by retaining only the components which accounted

for the most relevant differences between groups in each case. Thus, the par-

tially reconstructed MEG signals do not reflect the brain activity accurately,

but they should have more different values of MF, SpecEn, LZC and SampEn

than the MEG data without any BSS preprocessing (Escudero et al., 2008d,

2009b).

It is worth noting that, previously to the BSS, the MEG epochs with

the clearest artefacts were rejected. This was done in order to avoid surplus

complexity and to assess the classification improvement without any other

kind of previous procedure. Obviously, the same signal epochs were used to

compute the MF, SpecEn, LZC and SampEn with and without the BSS and

component selection procedure. Therefore, the diverse classification results

could be directly compared to evaluate the relative classification improve-

ment (Escudero et al., 2008d, 2009b).

There is a wide range of BSS algorithms available to decompose EEG or

MEG data (James and Hesse, 2005). Among them, AMUSE (Tong et al.,

1991), SOBI (Belouchrani et al., 1997), eInfoMax (Lee et al., 1999) and Fas-

tICA (Hyvärinen and Oja, 1997) were tested in this framework. The former
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two are SOS techniques whereas the latter two are HOS-based methods.

AMUSE was the first BSS technique proposed to be used in this kind of pre-

processing (Cichocki et al., 2005). Afterwards, the spatial filtering technique

of CSP was also tested to achieve a similar objective (Woon et al., 2007). Re-

cently, this approach has been extended to other BSS techniques (Escudero

et al., 2009c).

AMUSE might not separate the components as completely as SOBI (Tang

et al., 2005). This is specially the case for short signal epochs since it was

shown in Section 7.2 that their separations tend to converge for long sig-

nals. On the other hand, the computational complexity of AMUSE is lower

than in most BSS algorithms (Cichocki and Amari, 2002; Ting et al., 2006).

Furthermore, AMUSE has other advantages: it always offers the same sepa-

ration when applied to the same input data set and orders the components by

decreasing linear predictability (Cichocki et al., 2005). This inherent order

is one of the key points of this component selection procedure and, prob-

ably, one of the reasons why the AMUSE preprocessing usually provided

better classifications than the preprocessings based on other BSS techniques.

AMUSE allowed to straightforwardly compare the components from different

epochs and subjects. On the other hand, due to the fact that AMUSE only

uses two time delays to decorrelate the signals, the AMUSE decomposition

may be less robust to additive white noise than that computed using other

BSS algorithms (Tang et al., 2005; Ting et al., 2006).

The other three BSS techniques tested in this framework required defin-

ing an ordering criterion to compare the components computed from different

signals. On the basis of previous results (Escudero et al., 2008d, 2009b), the

MF was defined as a ranking criterion that tried to mimic the ordering of

AMUSE. As it was shown in Section 7.4, the combination of SOBI with the

ordering of MF offered the most similar results to AMUSE. Alternatively,

eInfoMax and FastICA are HOS techniques. Hence, their decompositions

differ substantially from those of SOBI and AMUSE. For the sake of com-

parison with MF, kurtosis was also used as a ranking criterion. However, this

ordering of the components failed to reveal structures in the data as clear

as those pointed out by AMUSE or the combination of SOBI with the MF
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ordering.

The features used for classification were MF (Poza et al., 2007b), SpecEn

(Sleigh et al., 2004), LZC (Lempel and Ziv, 1976) and SampEn (Richman

and Moorman, 2000). The former two try to characterise the whole spectrum

with a single value, while the latter two are non-linear features. When MF

and SpecEn were applied to the analysis of AD patients’ EEG and MEG

data, they revealed a slowing and irregularity loss in the spectrum of the

signals (Abásolo et al., 2006c; Fernández et al., 2006; Jelic et al., 2000; Poza

et al., 2007b; Signorino et al., 1995). Additionally, the non-linear analysis

methods supported the hypothesis of decreased irregularity and complexity in

AD patients’ EEGs and MEGs (Abásolo et al., 2006c,e; Gómez et al., 2006a,

2009a; Hornero et al., 2009b). Nevertheless, the origin of these changes is

not clear yet, due to the heterogeneity of AD (Jeong, 2004; Selkoe, 2001).

In the best cases, the BSS and component selection preprocessing in-

creased the accuracy between 12.9% and 22.6% for all features apart from

MF, for which the accuracy remained unchanged. Nevertheless, the AUCs of

all features improved between 0.023 and 0.227 (for MF and SampEn, in that

order). A summary of the best preprocessings in terms of improvements for

the accuracy and AUC values is detailed in Table 8.4. For the sake of com-

parison, the classification results obtained from the raw MEG data (without

any preprocessing) and from a spectral band-pass filtering are also included

in Table 8.4.

It is remarkable that the accuracy and AUC results were computed in

different ways. Whereas the accuracy was calculated in the test set with

the classification rules developed in the training set, the AUC was estimated

using data only from the test set. In contrast to the maximum accuracy

value obtained for a variable, the AUC depends on the whole range of sen-

sitivity/specificity pairs provided by that variable, thus offering an idea of

how separated the groups are (Fawcett, 2006). Therefore, our results suggest

that the best BSS preprocessings provided a more robust separation between

groups for both kinds of features: spectral and non-linear ones (Escudero

et al., 2009b). Moreover, our analyses showed that similar ranges of com-

ponents contained the most significant differences for both types of features
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Table 8.4: Comparison of the accuracy and AUC values reached with various
preprocessing techniques with the values obtained from the MEGs without
any preprocessing.

MF

Type Components retained Accuracy AUC

Without preprocessing – 77.4% 0.855
α-filtered – 77.4% 0.872
AMUSE 30 77.4% 0.878

SOBI - MF 30 77.4% 0.876
SOBI - Kurtosis 30 71.0% 0.876

SpecEn

Type Components retained Accuracy AUC

Without preprocessing – 61.3% 0.727
β-filtered – 58.1% 0.560

SOBI - MF 30 74.2% 0.782
AMUSE 30 71.0% 0.786

eInfoMax - Kurtosis 30 67.7% 0.786

LZC

Type Components retained Accuracy AUC

Without preprocessing – 61.3% 0.786
β-filtered – 64.5% 0.705
AMUSE 15 74.2% 0.838
AMUSE 30 67.7% 0.838

SOBI – Kurtosis 30 64.5% 0.812

SampEn

Type Components retained Accuracy AUC

Without preprocessing – 58.1% 0.645
β-filtered – 61.3% 0.645
AMUSE 30 80.7% 0.872
AMUSE 15 80.7% 0.863

SOBI – MF 30 67.7% 0.803
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when the preprocessing employed AMUSE or SOBI with the MF ordering.

Actually, these were the most consistent and accurate preprocessings. Fur-

thermore, a spectral band-pass filtering preprocessing could not match the

classification improvements provided in those cases. Therefore, it could be

hypothesised that those BSS and component selection procedures could also

be applied with other spectral and non-linear features and that the ranges

of components with the largest differences between AD patients and healthy

controls for other analysis techniques might be similar to those reported in

this study when utilising AMUSE or SOBI–MF.

Previous research by Cichocki et al. (2005) and Vialatte et al. (2005)

had shown the utility of the AMUSE and component selection procedure

when spectral and WT features were computed from EEGs of MCI patients

who later proceeded to AD. These EEG signals were characterised with the

relative powers in six frequency bands (Cichocki et al., 2005). Afterwards,

an LDA was applied to classify the subjects. The accuracy improvement

due to this methodology was 10% (Cichocki et al., 2005). Nevertheless, the

individual improvement in each variable was not measured by Cichocki et al.

(2005). A later study used a “bump modelling” of the partially reconstructed

EEG wavelet time-scale transform and a neural network classifier to further

improve the subject classification (Vialatte et al., 2005).

In contrast to those studies, the classification method of this Doctoral

Thesis allowed to assess the improvement in each variable (MF, SpecEn,

LZC and SampEn) separately. It was also found that the BSS and component

selection procedure is useful when the MEG signals are analysed with non-

linear methods. Similarly, a study with the same EEGs analysed by Cichocki

et al. (2005) and Vialatte et al. (2005) found that the ability of both spectral

and non-linear features to distinguish the subject groups improved with the

application of a different kind of spatial filters: CSP (Woon et al., 2007). CSP

finds spatial filters which maximise the difference in signal power between two

classes to be discriminated (e.g., patients and controls) (Woon et al., 2007).

To facilitate the comparison of the results, Table 8.5 summarises the main

characteristics of those studies.

Since diverse spatial filtering techniques have proven to be useful in this
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type of application, it is suggested that their common characteristics should

be considered to design a preprocessing to improve the classification of AD

patients’ EEG or MEG signals.

8.6 Adaptive Extraction of Brain Rhythms

This Section discusses the main implications derived from the adaptive re-

gional extraction of brain rhythms and subsequent evaluation of their con-

nectivity carried out in Section 7.5. Similarly to the BSS preprocessing to

enhance signal features of AD, the length of the signal epochs analysed in

this application was 10 s.

Of note is that the CA that appeared in the signal epochs was reduced by

means of a cBSS (James and Gibson, 2003). This procedure was necessary to

ensure that the QRS complexes did not contaminate the IMFs that will serve

as references to extract the rhythmical signals from each region. This was

due to the nature of the EMD. This methodology is able to adaptively and

locally decompose a signal in its rhythmic components (Huang et al., 1998).

Hence, the cardiac activity may be present in some of the IMFs (Blanco-

Velasco et al., 2008; Tang et al., 2008). If the CA removal was not applied,

there would be chances of ending up computing the Coh(f) between signals

with large cardiac contamination, which might bias the results. Moreover,

the same cardiac activity was estimated and removed by this procedure at all

MEG channels, thus avoiding differences in the way different channels were

preprocessed.

On the other hand, the OAs did not pose serious problems onto the

analysis since the signals with clear artefacts were not selected for analysis.

Additionally, the PLN that may contaminate the MEG recordings was con-

tained in the first IMF computed by the EMD. This IMF had almost always

a 〈ω〉 value larger than 30 Hz. Thus, it was not fed into the subsequent

clustering procedure.

The analyses carried out in this part of the Doctoral Thesis focused on

specific spectral bands: δ (1 Hz – 4 Hz), θ (4 Hz – 8 Hz), α (8 Hz – 13 Hz) and

β (13 Hz – 30 Hz). However, no spectral filtering had to be performed, thus
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avoiding the definition of cut-off frequencies a priori. This was due to the

fact that the IMFs have well defined spectral characteristics (Huang et al.,

1998). Therefore, one can take into account the spectral content of every

IMF, which was characterised with the 〈ω〉. Then, only the IMFs whose

average spectral content fell within the broadband of interest (1 Hz – 30 Hz)

were considered for selection of the suitable reference for every band and

scalp region.

Among all IMFs computed from the channels within a region, suitable

references were selected for each spectral band. This procedure was carried

out with a k-means clustering of the corresponding 〈ω〉 values. This is an

unsupervised, effective and simple algorithm that divides a set of features

into k clusters (Hartigan and Wong, 1979; Sanei and Chambers, 2007). This

methodology is appealing due to its adaptive nature. It grouped the IMFs

with similar 〈ω〉 together and allowed characterising each cluster by its cen-

troid value. It must be noticed that this process marked a single IMF as a

reference to extract the rhythmical activity of interest in every region. This

estimation of the reference could not have been based, for example, on cal-

culating an average of several IMFs since slightly desynchronisations in their

oscillations would have altered their rhythmical nature.

Once the references for each spectral band and region had been com-

puted, they were used with a cBSS to extract activity representative of all

channels in a region for a particular band. This was necessary because the

particular IMF selected as reference had been computed from one particular

MEG channel. By means of the cBSS, the activity extracted to be analysed

with the Coh(f) was representative of the whole region. This approach was

motivated by the fact that attention should be paid to the ‘domain’ where

the brain activity is analysed. The most simple approach may be to anal-

yse the signals at every particular channel — ‘channel domain’ — (Dauwels

et al., 2010; Gómez et al., 2009c; Rossini et al., 2007). Alternatively, the

equivalent current dipoles can be localised and analysed — ‘dipole domain’

— (Rossini et al., 2007; Stam, 2010).

As it was mentioned, the approach adopted in this study was different.

The rhythmic brain activity was simultaneously extracted from all channels
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in a region. This approach was relatively similar to that taken by Stam

et al. (2006). It consisted of a channel-wise procedure by which the anal-

ysis was carried out channel by channel, and the the results from different

sets of channels were grouped together (Stam et al., 2006). Instead, in this

Doctoral Thesis, a cBSS was applied to extract the activity that characterises

a particular scalp region for a particular spectral band (‘regional domain’).

This methodology may be beneficial since common sources might influence

the results computed at nearby MEG channels (Stam et al., 2006). Hence,

the connectivity calculated between close channels might have been produced

as a result of this phenomenon rather than having been originated by true

interactions (Stam, 2010; Stam et al., 2006). When analysing the signals in

the ‘dipole domain’, there is the problem of localising the unknown sources.

Furthermore, the solution to this problem is not unique and the source re-

construction algorithm could influence the interdependencies between the

sources (Stam, 2010; Stam et al., 2006).

The connectivity analysis was carried out in the ‘regional domain’ with

the Coh(f) (Nunez et al., 1997, 1999). The rationale beneath this connec-

tivity analysis is the following.

Several authors have proven that AD produces a slowdown of the elec-

tromagnetic brain activity. This dementia increases of power in the low-

frequency range (δ and θ) and decreases the power in the high-frequency

range (α and β) (Jeong, 2004; Rossini et al., 2007; Stam, 2010). Abnor-

malities in the non-linear dynamics of these recordings also appear (Hornero

et al., 2009b; Stam, 2005, 2010). Nevertheless, AD could also be characterised

by a neo-cortical disconnection (Jeong, 2004; Stam, 2005). However, these

effects are not always easily detectable as there usually is large variability

among AD patients (Dauwels et al., 2010). There is some consensus that AD

is related to a lower synchronization level in α and β bands. Nevertheless,

contradictory results have been found in the other frequency bands and it

remains unclear whether δ and θ connectivities are decreased or increased in

AD (Jelic et al., 2000; Jeong, 2004; Stam et al., 2006).

Hence, it may be interesting to study the connectivity between different

areas rather than local dysfunctions (Stam et al., 2006). Large scale func-
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tional integration might be essential for cognitive and behavioural function-

ing. This large scale functional integration may be due to the synchronization

(i.e., temporal correlation) between neural activity in different brain regions,

which can be assessed by analysing the connectivity of MEGs in diverse

spectral bands and regions (Pereda et al., 2005; Stam et al., 2006).

Coh(f) is the most widely used method to assess connectivity. It is a nor-

malized linear measure of the correlation between two signals as a function of

frequency (Nunez et al., 1997, 1999; Pereda et al., 2005). Coh(f) only cap-

tures the linear interactions between pairs of signals. Thus, it might fail to

detect non-linear interdependencies in the data (Gómez et al., 2009c; Pereda

et al., 2005). Nevertheless, this method has already revealed changes in the

connectivity of AD patients’ brain recordings (Jeong, 2004). Moreover, it

is not clear that alternative non-linear connectivity measures are superior to

Coh(f) to distinguish AD or MCI and the outcomes of Coh(f) and other con-

nectivity measurements seem to be correlated (Dauwels et al., 2010; Gómez

et al., 2009c).

The statistical analysis of the Coh(f) results revealed strong dependences

on the spectral band and pair of regions. The estimated marginal means

(Searle et al., 1980) computed for AD patients and control subjects in each

spectral band supported the idea that AD decreases the connectivity of brain

signals in α and β bands (Jeong, 2004). Moreover, the analyses seem to

indicate that this dementia causes a rise in δ coherence. However, there were

no significant differences between subject groups. Additionally, the factor

‘Pair of regions’ showed significant interactions in all cases. The pattern was

similar for all bands. It suggested the logical idea that more distant pairs of

regions tend to be characterised with lower Coh(f) values.

Despite the fact that the differences in the overall level of Coh(f) for

AD patients and controls on every band were not significant, Fig. 7.36 in-

dicated a certain tendency that relates alterations in connectivity to AD.

The fact that not all frequencies are not equally affected by the changes

in coherence suggests that these alterations are not simply due to a loss of

cortical neurons (Dauwels et al., 2010). Therefore, the alterations in connec-

tivity might be due to other mechanisms, such as anatomical disconnections



276 Chapter 8. Discussion

among different cortical regions or reduced cholinergic coupling between cor-

tical neurons (Dauwels et al., 2010; de LaCoste and White, 1993; Jeong et al.,

2001).

In addition to the statistical analysis, a classification study based on the

Coh(f) results was also performed. This employed a stepwise LDA. This

technique selected the most appropriate variables to be included into de

classification rule automatically. This classification used the variables from

each spectral band separately and the combination of all Coh(f) values. In

the cases when no variable met the criterion to enter into the classification

rule, the LDA was trained with all the possible variables simultaneously.

However, the corresponding accuracy values were clearly lower than in the

other cases.

It is important to note that a leave-one-out cross-validation procedure was

used. Although this procedure typically reduces the sensitivity, specificity

and accuracy, it avoids over-estimation of the true classification rates and

increases the reproducibility of the results (Cichocki et al., 2005; Jobson,

1991a,b). The number of variables selected by the stepwise LDA was small

in comparison with the total number of features available for classification.

For instance, in the case of considering variables from all bands, only 11 out

of 128 possible variables entered the classifier.

A recent review by Stam (2010) pointed out that the best classification

rates obtained by different methodologies for MEGs of AD patients ver-

sus healthy elderly subjects ranged between 80% to 90%. However, cross-

validation techniques were not always applied in those studies. In this study,

the accuracy computed from the Coh(f) values of a specific spectral band

was always lower than 70%. Nonetheless, when variables of all bands were

introduced into the stepwise LDA, the accuracy rose to 96.8%, as it is shown

by Table 8.6. It must be borne in mind that this result was computed with

a leave-one-out cross-validation procedure and that variables from all bands

were included into the classifier.

Finally, it must be noticed that, similarly to (Dauwels et al., 2010), this

study mainly tried to help in the discrimination of both subject groups.

We did not aim at identifying the biophysical mechanisms that cause the



8.7. Limitations of the Study 277

Table 8.6: Summary of the classification results obtained from the adaptively
extracted brain rhythms.

δ α Combination of δ, θ, α and β

Accuracy (%) 67.7 69.4 96.8
AUC 0.713 0.815 1.000

alterations of AD in the MEGs. Additionally, the subjects did not perform

any specific task. That is, only MEG background activity was analysed.

Hence, the performance of the classification might be improved by analysing

signals acquired during specific tasks (Dauwels et al., 2010; Stam, 2010).

8.7 Limitations of the Study

After discussing the main implications of the results, this Section reviews the

main limitations of the studies carried out in this Doctoral Thesis. These are

detailed in the following lines:

• The significance of results detailed in this Doctoral Thesis is limited

by the relatively reduced size of the database. This consisted of MEG

background activity recorded from 36 AD patients and 26 control sub-

jects. This size is relatively similar to, or even larger than, that of other

studies about the application of BSS techniques to EEG (Castellanos

and Makarov, 2006; Crespo-Garcia et al., 2008; Flexer et al., 2005;

Halder et al., 2007; Hyvärinen et al., 2010; Iriarte et al., 2003; Krish-

naveni et al., 2005; Mammone and Morabito, 2008; Melissant et al.,

2005; Shao et al., 2008; Ting et al., 2006; Wallstrom et al., 2004) and

MEG data (Barbati et al., 2004; Cao et al., 2003; Dammers et al., 2008;

Escudero et al., 2007b, 2009d; Hesse, 2007, 2008; Ikeda and Toyama,

2000; James and Gibson, 2003; Mantini et al., 2008; Okada et al., 2007;

Rong and Contreras-Vidal, 2006; Sander et al., 2002; Tang et al., 2005;

Vigário and Oja, 2008; Zavala Fernández et al., 2006), including AD-

related studies (Abatzoglou et al., 2007; Berendse et al., 2000; Escu-

dero et al., 2008d, 2009b,c; Fernández et al., 2006; Gómez et al., 2006a,
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2007a, 2009a,b,c; Hornero et al., 2008, 2009b; Osipova et al., 2003,

2005, 2006a,b; Pekkonen et al., 1999, 2005; Poza et al., 2007b, 2008b;

Stam et al., 2006; van Cappellen van Walsum et al., 2003). However,

it would be advisable to increase the dataset by adding new signals in

order to further test the main results of this Doctoral Thesis.

• By the own nature of the analyses, the actual sources that originated

the brain recordings are unknown. Hence, assessing the performance

of the BSS analysis is not straightforward at all because the separa-

tion cannot be absolutely validated (James and Hesse, 2005; Vigário

and Oja, 2008). However, in most cases, some kind of ad hoc criteria

can be established to gain an idea of the usefulness or quality of the

BSS. For instance, the BSS-processed signals can be compared with the

raw recordings to estimate how much artefactual activity was removed

(Dammers et al., 2008; Escudero et al., 2007b; Mantini et al., 2008)

or whether the BSS improved the separation between subject groups

(Escudero et al., 2008d, 2009b). On the other hand, the quality of the

separation can only be evaluated by means of synthetic data. This is

the reason why the analyses carried out in Section 7.2 were limited to

comparing the outcomes of BSS techniques rather than assessing their

quality.

• When synthetic data are used to study a particular algorithm, such as

in Section 7.1.1, the results are likely to be limited by the quality of the

simulated signals. Diverse types of synthetic data have been proposed

and some of them are even based on actual signals recorded under

specific conditions (see, for example, Barbati et al., 2004; Delorme et al.,

2007; Escudero et al., 2007b; Fitzgibbon et al., 2007; Kierkels et al.,

2006; Romero et al., 2009). In this sense, the efforts done by Kierkels

et al. (2006) or Romero et al. (2009) to mimic real EEG signals using

complex models of their generation are remarkable.

• Another limitation of this Doctoral Thesis has to do with the fact that

only MEG background activity was analysed. Thus, some of the con-
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clusions about the artefact removal procedures or the classification of

AD patients using this kind of recordings may not be straightforwardly

extended to the case of event-related brain activity. Furthermore, this

‘resting state’ might not be the most effective condition to find AD-

related abnormalities in brain data (Stam et al., 2006).

• In this Doctoral Thesis, significant efforts have been devoted to dealing

with MEG recordings acquired from AD patients. However, AD is not

the only mental disorder known to produce alterations in the EEG

and MEG activity (Jeong, 2004; Stam, 2005, 2010). In this sense, it

would be particularly important to study MCI (Cichocki et al., 2005;

Fernández et al., 2006; Gómez et al., 2009c; Jelic et al., 2000) or other

types of dementia (Signorino et al., 1995; Stam, 2005), which have

similar effects on the brain signals to those of AD.

To sum up, the findings of this Doctoral Thesis suggest the usefulness of

BSS methods in the analysis of MEG signals, specially in patients with AD.

Nevertheless, further investigations are needed to confirm our results.
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This final Chapter draws the main conclusions derived from this Doctoral

Thesis. In addition, the main contributions of this Doctoral Thesis to the

state of the art are highlighted. Finally, possible future research lines are

suggested.

9.1 Introduction

The MEG signals record the magnetic fields originated by the neural currents

in the brain. They have some relevant advantages over other neurophysio-

logic techniques, including their high temporal and spatial resolution or the

fact that they do not depend on any reference point (Hämäläinen et al., 1993;

Hari, 2004). Nevertheless, their analysis is not always straightforward and

suitable tools and methodologies to help in their study and interpretation

could be very useful. Moreover, the MEG could offer important informa-

tion about diverse brain states and disorders, including the most common

dementia in the Western World: AD (Hornero et al., 2009b; Stam, 2005,

2010).

It is well-known that AD causes a progressive memory loss. Eventually, it

also affects all cognitive functions of the patient (Blennow et al., 2006; Cum-

mings, 2004; Nestor et al., 2004). Due to its high prevalence and the burden

that it poses on caregivers, AD causes huge social and economic problems in

Western societies (Ferri et al., 2006). The cost of the diagnostic testing for

AD is expected to be lower than that associated with its treatment and man-

agement (Lahiri et al., 2002). Considering this idea and that a definite AD

diagnosis can only be made by necropsy (Blennow et al., 2006), the impor-

tance of developing tools to help in the diagnosis and characterisation of this

disorder becomes clear. Eventually, this may lead to reduce the AD-related

costs (Lahiri et al., 2002).

The term BSS denotes a set of techniques useful to process, among others,

biomedical signals (James and Hesse, 2005; Vigário and Oja, 2008). These

data-driven decompositions of multi-dimensional recordings reveal the con-

stituent inner components that generated the observed recordings through

an unknown mixing process (Cichocki and Amari, 2002; Hyvärinen et al.,
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2001). Their use in the analysis of biomedical data and, more particularly,

brain signals has been increasing notably (James and Hesse, 2005; Vigário

and Oja, 2008).

Considering these three main concepts (MEG, AD and BSS), all the anal-

yses and studies carried out in this Doctoral Thesis have been based on the

following hypotheses.

1. That the comparison of the decompositions estimated by diverse BSS

techniques for the same real MEGs could offer relevant information

about the relationships and similarities between those BSS methods.

2. That the use of BSS and some specific metrics designed to label arte-

facts in the BSS components could help to automatically remove some

of the CA, OA and PLN that contaminate the MEG background ac-

tivity.

3. That a properly designed BSS preprocessing could help to distinguish

signal features (MF, SpecEn, LZC and SampEn) computed from AD

patients’ MEG background activity from those of control subjects.

4. That a procedure based on an EMD and a cBSS could offer an adap-

tive regional extraction of brain rhythms in AD patients and controls’

MEG background activity. This rhythms could be characterised with

connectivity techniques.

In hindsight, our results and discussions do support these hypotheses,

which lay behind the methodology developed in this Doctoral Thesis. There-

fore, it can be said that the main objective of this Doctoral Thesis has been

fulfilled. This was no other than applying BSS techniques to help in the

analysis and interpretation of MEG background activity from AD

patients and elderly control subjects. The results suggested that BSS

techniques are indeed extremely helpful in the analysis of MEG recordings.

Moreover, this utility is not only limited to common methodological frame-

works (for instance, the use of BSS to reduce the artefacts in brain signals)

but it also includes more innovative ways of studying the brain activity with
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BSS techniques such as their use as preprocessing techniques to enhance sig-

nal features of the MEGs or as means to perform an adaptive extraction of

brain rhythms on diverse scalp regions. However, further research is needed

to confirm these results.

9.2 Conclusions of the Doctoral Thesis

The methodology introduced in Chapter 6 has been used to process MEG

recordings acquired from 36 patients with a diagnosis of probable AD and

26 healthy elderly subjects in order to carry out four main studies about the

application of BSS techniques to MEG background activity:

1. The comparison of the decompositions computed by diverse BSS tech-

niques for real MEG data helped to identify similarities between BSS

methods and their evolution with the epoch length and the number of

components to estimate.

2. The quantitative evaluation of the BSS-based removal of the CA, OA

and PLN was useful to objectively pinpoint diverse combinations of BSS

technique, epoch length and artefact-detection metric that attenuated

the presence of these artefacts in MEG background activity.

3. The development and testing of a BSS preprocessing and component

selection procedure showed that the application of this kind of spa-

tial filtering techniques increased the classification accuracy and the

AUC values of signal features computed from AD patients and control

subjects.

4. The use of an adaptive procedure to extract rhythmical brain activity

from diverse scalp regions offered information about the connectivity

alterations caused by AD and revealed the possible usefulness of this

analysis in the classification of AD patients versus healthy elderly sub-

jects.

All these results are promising in the sense that they suggest the utility

of BSS in the processing of MEG background activity and in the
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identification and characterisation of AD. Therefore, BSS may be

an important tool to analyse this kind of biomedical recordings. In

addition to this main conclusion, the following particular conclusions can be

drawn from this Doctoral Thesis:

1. The FA-based procedure and the MDL model order selection

criterion may be better suited for MEG preprocessing than

classical PCA techniques. The testing of the FA-based procedure

and the MDL criterion (Cao et al., 2003; Ikeda and Toyama, 2000)

on synthetic data indicated that this approach was the most appro-

priate to perform a first step in the data processing before BSS. This

was due to the fact that the commonly used PCA criteria tended to

suffer from severe overfitting (Escudero et al., 2007b). Moreover, the

appropriateness of that approach was also supported by the real signal

analysis.

2. The most similar decompositions of real MEG background ac-

tivity were computed by AMUSE–SOBI followed by JADE–

FastICA. The consistency evaluation of the degree to which diverse

BSS techniques computed similar decompositions for real MEGs (Es-

cudero et al., 2009d) showed that the most consistent pair of algo-

rithms was AMUSE–SOBI, followed by JADE–FastICA. Additionally,

the pairs AMUSE–JADE and SOBI–JADE used to provide the most

dissimilar separations. Finally, the overall level of similarity increased

as longer signals were decomposed.

3. The quantification of the artefactual activity decrease in the

MEG background activity highlighted the utility of several

combinations of BSS techniques and specific artefact detection

metrics. The objective measurement of the reduction the average

intensity of the CA, OA and PLN in the whole dataset pinpointed the

following strategies for artefact removal:

• For its simplicity, the cBSS scheme (James and Gibson, 2003)

was considered the most suitable approach to remove the CA.
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Moreover, its performance ranked among the best in the reduction

of this artefact.

• The OAs reduction was the most difficult to evaluate as this arte-

fact does not always appear in the signals and its localisation in

the spectrum is not so evident as in the PLN case. However,

the evaluation results suggested that the combination of artefact

detection metrics such as ApEn, PEY ES and, specially, PLF (Es-

cudero et al., 2007b) with SOS-BSS techniques could be helpful

to reduce the OA.

• The PLN could be substantially reduced without altering the brain

signal spectrum by means of the specific metric P50Hz (Escudero

et al., 2007b) and AMUSE.

4. A SOS-BSS preprocessing and component selection procedure

could improve the separation between AD patients and con-

trol subjects’ MEG signal features. The ordering criteria was

essential to straightforwardly compare the BSS components, thus en-

abling us to develop the BSS preprocessing algorithms (Escudero et al.,

2008d, 2009b,c). The assessment of the improvement in the separation

between AD patients and controls’ spectral and non-linear features of

the MEGs revealed rises in the AUC values between 0.023 and 0.227

and accuracy increases of up to 22.6% in comparison with the ‘raw’

signals. The most appropiate algorithms for this application turned to

be AMUSE and SOBI with the MF ordering.

5. The adaptive extraction of brain rhythms over diverse scalp

regions with an adaptive procedure based on an EMD and a

cBSS yielded useful information about the connectivity pat-

tern in AD and, specially, the subject classification. The adap-

tive framework introduced to extract rhythmical brain activity from

diverse regions was based an EMD (Huang et al., 1998), a k-means

clustering (Hartigan and Wong, 1979) and a cBSS (Huang and Mi,

2007). The statistical analysis suggested that AD affects the connec-

tivity between scalp regions, although the results were not statistically
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significant. However, a leave-one-out classification analysis based on

the Coh(f) values classified the AD patients versus the controls with

an accuracy of 96.8%.

Finally, it is important to note that one of the main advantages of BSS

in these types of applications is that they are data-driven methods which

do not need much information about the components to be estimated or the

mixing process (James and Hesse, 2005; Vigário and Oja, 2008). By making

a few general assumptions about the signals, these techniques are able to

estimate a set of underlying components that may provide novel and fruitful

perspectives to examine the data (James and Hesse, 2005; Onton et al., 2006;

Vigário and Oja, 2008).

To sum up, this Doctoral Thesis has examined a few applications of BSS

techniques to MEG recordings, paying special attention to AD. One of the

general aims was to provide quantitative evaluation of the advantages and

benefits provided by these methods. The results indicate utility of BSS in the

processing of MEG signals, specially in AD. Nevertheless, further investiga-

tions should be carried out to confirm our conclusions. It must be noted that

interesting reviews on the use of BSS to study brain signals have recently

been published (James and Hesse, 2005; Onton et al., 2006; Vigário and Oja,

2008). Nevertheless, the possible range of application of BSS is so wide and

the discipline evolves so rapidly that it is very difficult to compile most of

the information available into one document.

9.3 Original Contributions to the State of the

Art

The main contribution of this Doctoral Thesis is the evaluation of the per-

formance, in terms of the previously defined objectives, of diverse BSS tech-

niques in four different applications. In order to do so, different methodolo-

gies have been introduced. Furthermore, in some cases, this Doctoral Thesis

represents the first application of the corresponding preprocessing, method-

ologies or evaluation techniques to MEG background activity.
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The original contributions of this Doctoral Thesis to the state of the

art are detailed in the following lines. Moreover, the scientific publications

generated as a consequence of this research are listed in Appendix A.

1. The testing of the FA-based preprocessing on synthetic data indicated

the suitability of this technique as a prior step to BSS over some PCA

approaches. The evaluation of these preprocessing alternatives with

synthetic signals and diverse SNR values represents, to the best of our

knowledge, the first exhaustive assessment of the FA- and PCA-based

preprocessings in this context for the analysis of brain signals (Escudero

et al., 2007b).

2. The comparisons of the outcomes computed by diverse BSS algorithms

for the same real MEG signals yielded information about the similarities

and differences of those techniques. We could not find in the state of

the art any other study about the global consistency (or similarity) of

the whole BSS decompositions of real brain recordings (Escudero et al.,

2009d).

3. The objective evaluation of the reduction in the amount of artefacts

that contaminate the MEGs played a key role in the artefact removal

application. To the best of our knowledge, this study can be consid-

ered as the first evaluation of the CA removal with BSS in terms of

the average QRS (Escudero et al., 2007b). Moreover, this study also

proposed the evaluation of the artefact removal in MEG based on the

totality of the signals in a database by considering them as a whole

dataset instead of analysing only a few examples or attending at single

cases (Escudero et al., 2007b). As for the artefact detection metric,

this study proposed the metrics PEY ES, PLF and P50Hz and it applied

the Skew to MEG data (Escudero et al., 2006c,d, 2007b, 2008c).

4. This study evaluated the use of BSS techniques as a preprocessing to

enhance signal features related to AD. Although this preprocessing had

been previously used in EEG data, this Doctoral Thesis represents its
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first application to MEG data (Escudero et al., 2008d), including non-

linear signal features as well as spectral ones (Escudero et al., 2009b).

Moreover, we could not find in the literature any evaluation of other

BSS (or ICA) algorithms than AMUSE in this kind of framework (Es-

cudero et al., 2009c).

5. The methodology developed to adaptively extract brain rhythms from

diverse regions is novel. Although a division of the MEG channels

into different regions had previously been used (see, for example, Stam

et al., 2006), this is the first time that the EMD is applied to brain

signals with the aim of characterising AD and, in particular, to MEG

recordings with the aim of extracting references suitable to be fed into

a cBSS whose outcome will be used in a connectivity analysis.

Additionally, it is important to note that the PhD candidate has also

worked in the characterisation of brain recordings (EEG and MEG data),

paying particular attention to the non-linear analysis of AD patients’ sig-

nals. This has enabled him to collaborate in diverse pieces of research not

directly related to the BSS (Abásolo et al., 2006a,b,d, 2007a,b, 2008a,b,c,

2009; Escudero et al., 2006b, 2007a, 2008a,b; Fernández et al., 2008, 2009;

Gómez et al., 2006b, 2007a,b,c, 2008a,b, 2009a; Hornero et al., 2008, 2009a,b;

Poza et al., 2007a, 2008a,b, 2009). Of special relevance are the articles about

the multiscale entropy analysis of EEG data in AD patients (Escudero et al.,

2006a) and the interpretation of the ‘rate of decrease of the auto-mutual

information function’ in terms of straightforward signal characteristics (Es-

cudero et al., 2009a).

9.4 Future Research Lines

In this Doctoral Thesis, MEG background activity recordings from 36 AD

patients and 26 control subjects have been studied with BSS techniques. De-

spite the effort made to provide a comprehensive view of the topics covered

by this research, there are interesting open issues that have not been stud-



290 Chapter 9. Conclusions and Future Research Lines

ied yet. Some of these future research lines are related to the limitations

acknowledged in Section 8.7.

The analyses of the BSS consistency and the artefact removal have been

carried out with the recordings of the 26 control subjects. The signals ac-

quired from 36 patients with probable AD were also included in the studies

about the classification improvement due to the BSS preprocessing and the

connectivity measurement of extracted brain rhythms. However, the size of

the database should be increased in order to draw more reliable and sig-

nificant conclusions in the future. Moreover, other disorders may cause al-

terations in the EEG and MEG data similar to those of AD (Stam, 2005,

2010). Hence, it would be helpful to include in the database recordings from

patients with other neurodegenerative disorders. In this way, it would be

possible to carry out more complex studies aiming at developing strategies

for differential diagnosis. Of special importance is the comparison of MEG

recordings from demented subjects with those of MCI patients. This is due

to the fact that the MCI may be considered as a previous stage to dementia.

Actually, a few studies have already analysed MEG activity from MCI pa-

tients and control subjects included in the database analysed in this Doctoral

Thesis (Fernández et al., 2006; Gómez et al., 2009c).

As for the artefact removal, it should be checked how the BSS-based

artefact removal affects the MEG signals acquired from patients with mental

disorders like AD. This is due to the fact that the artefact removal was only

tested with the control group. It is expected that the same methods can

be applied to patients’ signals but this hypothesis should be corroborated.

In this sense, the pieces of research by Melissant et al. (2005) and Vialatte

et al. (2009) showed that the BSS artefact removal does not cause undesired

alterations in the brain recordings and that it can improve the classification

rate of different subjects in comparison with that based on the noisy data

with artefacts. On the other hand, Castellanos and Makarov (2006) suggested

that, if the BSS-based artefact removal is done with little care, it can affect

the connectivity pattern of EEG data.

Other possible research line is the application of different data-driven

signal decomposition techniques. For instance, methods such as the Non-
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negative Matrix Factorisation (NMF) could provide us with important in-

formation about the brain signals, even in AD (Chen et al., 2006; Cichocki

et al., 2008). Alternatively, different types of constraints (e.g., spatial or

spectral ones; James and Hesse, 2005) could be used instead of the temporal

references needed by the cBSS applied in this Doctoral Thesis.

It is also of interest to apply the techniques included in this Doctoral The-

sis to other physiological signals. For example, although the methods were

designed for MEG recordings, their application to EEG recordings should be

straightforward.

Although the selection of the parameters of each methodology (spectral

bands and input values for the BSS algorithms and signal features) tried

to be supported by the revision of the state of the art, it is possible that

variations in the values of these input parameters may alter the outcomes

of the signal processing. Furthermore, other signal features (Hornero et al.,

2009b; Stam, 2005) or connectivity measures (Dauwels et al., 2010; Pereda

et al., 2005) could also be useful in these settings and should be tested.

All in all, this Doctoral Thesis evaluated some of the most common BSS

techniques in the framework of diverse applications, including the compari-

son of the algorithms’ outcomes, the artefact removal, the development of a

preprocessing to improve the classification and the adaptive and regional ex-

traction of brain rhythms. The BSS lay at the core of the methodology. The

results indicated that the BSS may be an extremely helpful tool to assist in

the analysis and study of MEG background activity. Nonetheless, additional

research is needed to confirm the results.
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This Appendix details the publications in international journals indexed

in the SCI–JCR, books and conferences in which the PhD candidate has

collaborated.

A.1 Peer-Reviewed International Articles in

Journals Indexed in the SCI–JCR

• Javier Escudero, Roberto Hornero, Daniel Abásolo and Alberto Fer-

nández.

Blind source separation to enhance spectral and non-linear features of

magnetoencephalogram recordings. Application to Alzheimer’s disease.

Medical Engineering and Physics, 31(7):872–879, September 2009.

• Alberto Fernández, Javier Quintero, Roberto Hornero, Pilar Zuluaga,

Marta Navas, Carlos Gómez, Javier Escudero, Natalia Garćıa-Cam-

pos, Joseph Biederman and Tomás Ortiz.

Complexity analysis of spontaneous brain activity in attention-deficit

hyperactivity disorder: diagnostic implications.

Biological Psychiatry, 65(7):571–577, April 2009.

• Carlos Gómez, Roberto Hornero, Daniel Abásolo, Alberto Fernández

and Javier Escudero.

Analysis of MEG background activity in Alzheimer’s disease using non-

linear methods and ANFIS.

Annals of Biomedical Engineering, 37(3):586–594, March 2009.

• Javier Escudero, Roberto Hornero and Daniel Abásolo.

Interpretation of the auto mutual information rate of decrease in the

context of biomedical signal analysis. Application to electroencephalo-
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Analysis of spontaneous MEG activity in Alzheimer’s disease using

time-frequency parameters.

In Proceedings of the 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 5712–5715, 2008.

• Daniel Abásolo, Roberto Hornero and Javier Escudero.

Non-linear analysis of the EEG background activity in Alzheimer’s dis-

ease patients.

In Book of abstracts of the Third International Conference on Com-

putational Intelligence in Medicine and Healthcare (CIMED 2007) -

Advances In Early Diagnosis And Care For AD, 14, 2007.



A.3. Contributions to International Conferences 299

• Daniel Abásolo, Roberto Hornero and Javier Escudero.

Non-linear analysis of the EEG background activity in Alzheimer’s dis-

ease patients (Special Invited Session).

In Book of abstracts of the Third International Conference on Compu-

tational Intelligence in Medicine and Healthcare (CIMED 2007) - Ad-

vances In Early Diagnosis And Care For AD - special invited session,

19, 2007.

• Javier Escudero, Roberto Hornero, Daniel Abásolo, Alberto Fernán-

dez and Jesús Poza.
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Javier Escudero, Pilar Zuluaga and Tomás Ortiz.

Lempel-Ziv complexity analysis of spontaneous brain activity in atten-

tion-deficit hyperactivity disorder.

In Libro de Actas del XXVI Congreso Anual de la Sociedad Española

de Ingenieŕıa Biomédica, 525–528, 2008.
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and Alberto Fernández.

Separación ciega de fuentes para realzar caracteŕısticas espectrales y
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Apéndice B
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B.3 Caṕıtulo 3: Enfermedad de Alzheimer . . . . . . 309
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Este Apéndice recoge los correspondientes resúmenes en Español de todos

los Caṕıtulos que componen esta Tesis Doctoral salvo el Caṕıtulo 9, cuya

traducción ı́ntegra al Español se encuentra en el Apéndice C.

B.1 Caṕıtulo 1: Introducción

Esta Tesis Doctoral se enmarca en la disciplina cient́ıfica del Procesado de

Señales Biomédicas. Este área se preocupa de la adquisición y procesado ma-

temático de señales informativas derivadas de sistemas biológicos (Onaral,

2006). En la mayoŕıa de las aplicaciones, el mero registro de estas señales

no es suficiente para obtener la información contenida en ellas. Por ello, de-

ben emplearse procedimientos espećıficos para obtener tal información. Estos

pueden incluir diversos tratamientos de señal para realzar sus caracteŕısticas

más importantes o para reducir la cantidad de ruido externo o artefactos que

afectan a los registros (Laguna and Sörnmo, 2009).

Las señales biomédicas que se analizarán en esta Tesis Doctoral son cono-

cidas como registros de MEG. Éstos reflejan los campos magnéticos generados

por la actividad neuronal en el cerebro. Diversas técnicas de BSS serán em-

pleadas para procesar señales de MEG de pacientes con un diagnóstico de

AD probable y sujetos sanos de control de edad avanzada con los siguientes

objetivos:

• Comparar la similitud de las descomposiciones calculadas con diversas

técnicas de BSS para señales reales de MEG.

• Evaluar de un modo objetivo y automático la eliminación basada en

BSS de los artefactos card́ıaco y ocular, aśı como de la interferencia de

red eléctrica, que contaminan los registros de MEG.

• Mejorar la clasificación de las señales de MEG adquiridas de pacientes

con AD frente a aquellas de sujetos de control mediante el uso de un

preprocesado de BSS.

• Extraer adaptativamente de los registros de MEG con técnicas de BSS

actividad ŕıtmica cerebral adecuada para ser analizada con medidas de
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conectividad.

Estas aplicaciones se basan en las siguientes hipótesis:

• Que la comparación de las descomposiciones estimadas con varias técni-

cas de BSS para los mismos registros de MEG puede ofrecer información

relevante acerca de las relaciones y similitudes existentes entre aquellas.

• Que el uso conjunto de la BSS y métricas especialmente diseñadas para

detectar artefactos en las componentes BSS puede ayudar a eliminar

automáticamente la contaminación por CA, OA y PLN presente en la

actividad basal de MEG.

• Que un preprocesado adecuadamente diseñado con BSS puede ser útil

para distinguir caracteŕısticas calculadas a partir de los registros de

MEG de pacientes con AD de aquellas computadas para señales de

sujetos de control.

• Que una metodoloǵıa basada en EMD y cBSS puede proporcionar una

extracción adaptativa de ritmos cerebrales sobre diversas regiones del

cuero cabelludo con información relevante acerca de la conectividad de

pacientes con la AD en comparación sujetos de control.

En resumen, podemos decir que el principal objetivo de esta Tesis Doc-

toral es aplicar técnicas de BSS para ayudar en el análisis e interpretación

de actividad basal de MEG registrada en pacientes con la AD y sujetos de

control.

B.2 Caṕıtulo 2: Magnetoencefalograf́ıa

El MEG es el registro no invasivo de los pequeños campos magnéticos gene-

rados por la actividad neuronal en el cerebro. Junto con el EEG, es la única

técnica neurofisiológica capaz de medir la actividad de la corteza cerebral

directamente, sin tener que interpretar la información en función de cambios

metabólicos o vasculares (Hari, 2004).
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Las señales MEG se registran sobre la superficie del cuero cabelludo.

Aunque reflejan la actividad de las corrientes generadas en la parte activa

del cerebro en cada momento, la mayor parte de la señal procede de la cor-

teza cerebral, la cual contiene células piramidales alineadas. Las neuronas

se componen de dendritas, cuerpo celular (o soma) y axón. Un conjunto de

axones forma las fibras nerviosas, destinadas a conectar diversas regiones del

cerebro. Dentro de cada neurona, la información se transmite en forma de

impulso eléctrico, mientras que la transferencia de información entre neuro-

nas se realiza por medio de neurotransmisores qúımicos en las sinapsis (Vrba

and Robinson, 2001).

La adquisición del MEG es una tarea extremadamente compleja. Necesita

de la utilización de materiales superconductores en los sensores para registrar

las diminutas variaciones del campo magnético cerebral. Puesto que los ma-

teriales superconductores deben operar a temperaturas próximas al cero ab-

soluto, éstos deben estar inmersos en un baño de He ĺıquido para mantenerlos

refrigerados. Asimismo, es necesario realizar las medidas en una habitación

magnéticamente aislada para aśı disminuir el impacto de fuentes externas de

ruido magnético (como veh́ıculos) en la adquisición de las señales (Vrba and

Robinson, 2001).

No obstante, los artefactos constituyen otra importante fuente de acti-

vidad indeseada en el MEG. Éstos son actividad no deseada que aparece

en los registros y puede afectar los análisis. Pueden estar producidos por

órganos del propio sujeto como los ojos o el corazón (Hämäläinen et al.,

1993). Por ejemplo, el corazón genera un campo magnético ostensiblemente

más potente que el creado por las neuronas (Jousmäki and Hari, 1996) y los

parpados o movimientos oculares pueden también causar una contaminación

significativa de las señales MEG (Antervo et al., 1985). Es obvio que el ais-

lamiento magnético no ayuda a reducir estos artefactos puesto que el sujeto

se encuentra dentro de la habitación magnéticamente aislada. Además, la

interferencia de red eléctrica a 50 Hz puede aparecer también en este tipo de

señales (Hämäläinen et al., 1993).
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B.3 Caṕıtulo 3: Enfermedad de Alzheimer

La AD es una enfermedad neurodegenerativa progresiva que conduce a la

muerte del paciente (Blennow et al., 2006). Además de la famosa pérdida

de memoria asociada con esta patoloǵıa, la AD también causa otros défi-

cits cognitivos (por ejemplo: desorientación, confusión y disminución de la

capacidad para razonar) y conductuales (como agitación, ansiedad, delirio,

depresión, alucinaciones o insomnio) que merman notablemente la capacidad

del paciente para realizar tareas cotidianas (Blennow et al., 2006; Cummings,

2004; Lahiri et al., 2002).

El factor de riesgo más importante en la AD es la edad. Asimismo, diversos

estudios epidemiológicos han sugerido otros factores de riesgo relacionados

con enfermedades vasculares o hábitos alimenticios, aunque los resultados no

son concluyentes (Blennow et al., 2006; Lahiri et al., 2002; Purnell et al.,

2009). Además, la AD tiene un significativo componente genético en sus

dos formas: familiar y esporádica (Blennow et al., 2006). La primera ha sido

asociada con mutaciones en los genes APP, PSEN1 y PSEN2 (Blennow et al.,

2006; van Es and van den Berg, 2009), mientras que la forma esporádica,

mucho más común, se ha relacionado con el gen APOE (Blennow et al.,

2006) y, más recientemente, con SORL1, CLU, PICALM y CR1 (Harold

et al., 2009; Lambert et al., 2009; National Institute on Aging, 2008).

A nivel microscópico, las lesiones más representativas de la AD son las

placas seniles y los ovillos neurofibrilares. Además, la AD produce degenera-

ción celular y sináptica (Mattson, 2004). El mecanismo por el cual aquellas

lesiones provocan la neurodegeneración no se conoce con total exactitud (van

Es and van den Berg, 2009). Sin embargo, śı existe un cierto consenso en cuan-

to a que la producción y acumulación de Aβ juega un papel esencial en la

patogénesis de esta demencia puesto que se ha relacionado con la formación

de placas seniles y ovillos neurofibrilares y con procesos de oxidación, infla-

mación y fomento de muerte celular, entre otros (Cummings, 2004; Masters

et al., 2006).

En lo referente a su impacto en la sociedad, cabe destacar que la AD

es el tipo más común de demencia en Occidente. Representa entre el 50 %
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y el 60 % de todos los casos (Blennow et al., 2006). Aunque su prevalencia

se sitúa por debajo del 1 % en sujetos de entre 60 y 64 años, su incidencia

se dobla, aproximadamente, con cada 5 años de edad (Cummings, 2004).

En consecuencia, la AD afecta a entre el 24 % y el 33 % de la población

mayor de 85 años (Blennow et al., 2006). Teniendo en cuenta el aumento de

la población y de la esperanza de vida, se estima que unos 81 millones de

personas padecerán demencia en 2040 (Blennow et al., 2006). Por todo ello,

resultan evidentes los elevados costes de los sistemas de salud asociados a

esta demencia (Ferri et al., 2006).

Puesto que cabe pensar que los gastos relacionados con las pruebas diag-

nósticas de la AD contribuirán tan sólo de forma marginal a esos costes,

resulta deseable desarrollar nuevas alternativas que puedan ayudar en la de-

tección de esta demencia (Lahiri et al., 2002).

B.4 Caṕıtulo 4: Separación ciega de fuentes

El uso de la BSS en el procesado de señales biomédicas ha ganado popularidad

recientemente (James and Hesse, 2005; Onton et al., 2006; Vigário and Oja,

2008). Estas técnicas son útiles para separar registros multidimensionales

en las componentes internas que los constituyeron (James and Hesse, 2005;

Vigário and Oja, 2008). Su uso implica la separación o extracción de fuentes

estad́ısticamente independientes que dieron lugar a la actividad registrada.

Para ello, estos métodos definen un modelo de generación de las señales

observadas, las cuales se asumen relacionadas entre śı (James and Hesse,

2005; Vigário and Oja, 2008).

Se necesitan ciertas hipótesis para calcular la BSS (James and Hesse,

2005). La más importante de todas ellas es que las fuentes, o componentes,

son mutuamente independientes entre śı o, de forma alternativa, que están

incorreladas para cualquier retardo temporal. La BSS extrae estas fuentes

explotando esta hipótesis de independencia o decorrelación espacio-temporal

(Hyvärinen et al., 2001; James and Hesse, 2005; Onton et al., 2006). De hecho,

BSS es una técnica más potente que otros métodos clásicos de descomposición

de señales como PCA y FA (Hyvärinen et al., 2001; James and Hesse, 2005).
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El problema básico que la BSS (Cichocki and Amari, 2002; Hyvärinen

et al., 2001) intenta resolver puede enunciarse como sigue. Supongamos que

x (t) = [x1 (t) , x2 (t) , . . . , xm (t)]T denota un conjunto de m muestras tem-

porales en un instante de tiempo t. x (t) se asume compuesto de una com-

binación lineal de n componentes internas s (t) = [s1 (t) , s2 (t) , . . . , sn (t)]T.

En el caso más sencillo, el proceso de mezcla se considera lineal y se obvia el

ruido aditivo externo, resultando en:

x (t) = As (t) , (B.1)

donde A es una matriz de mezcla de rango completo m × n. Se asume que

m ≥ n (Hyvärinen et al., 2001; James and Hesse, 2005; Vigário and Oja,

2008).

Los algoritmos de BSS calculan una estimación, ŝ (t), de las componentes

reales subyacentes en el proceso, s (t), a partir de las medidas, x (t), por

medio de:

ŝ (t) = Bx (t) , (B.2)

donde B es la matriz de separación estimada, la cual se corresponde con la

pseudo-inversa de A (Cichocki and Amari, 2002; Hyvärinen et al., 2001).

Para encontrar la solución se adoptan las hipótesis de mezcla lineal e ins-

tantánea, estacionaria e independencia estad́ıstica de las componentes (Ci-

chocki and Amari, 2002; Hyvärinen et al., 2001).

Existen diversas metodoloǵıas para estimar la BSS (Cichocki and Amari,

2002; Hyvärinen et al., 2001). Mientras algunos métodos se basan en HOS de

las distribuciones de amplitud de las fuentes (comúnmente conocidos como

ICA; Vigário and Oja, 2008), otras técnicas consideran la estructura tem-

poral (o espectral) de las señales. Éstos se denominan técnicas basadas en

SOS (James and Hesse, 2005).

La metodoloǵıa ICA obvia la información temporal de los datos (Cicho-

cki and Amari, 2002; Hyvärinen et al., 2001; James and Hesse, 2005). Estos

algoritmos buscan combinaciones de señales que generen estimaciones de las

fuentes lo menos gausianas posibles ya que buscar componentes indepen-

dientes equivale a buscar componentes no gausianas (Hyvärinen et al., 2001;
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James and Hesse, 2005). Ejemplos de estas técnicas son FastICA (Hyvärinen,

1999), InfoMax (Bell and Sejnowski, 1995) y JADE (Cardoso and Soulou-

miac, 1993).

Las matrices de separación y mezcla pueden estimarse a partir de un

conjunto de matrices de covarianza calculadas en diversos retardos tempo-

rales (Hyvärinen et al., 2001). Si este procedimiento se realiza considerando

únicamente dos retardos temporales, se obtiene el algoritmo AMUSE (Tong

et al., 1991). Por el contrario, si la técnica se extiende a más de dos retar-

dos, el procedimiento requiere de técnicas iterativas resultando en el método

SOBI (Belouchrani et al., 1997; Ziehe and Muller, 1998).

Todos los anteriores algoritmos son capaces de extraer componentes ca-

racterizadas por ser lo más independientes posibles desde diversos puntos de

vista. Sin embargo, en ciertas aplicaciones, puede ser aconsejable extraer una

única componente caracterizada por guardar similitud con cierta señal de re-

ferencia. En tales situaciones, las técnicas de cBSS resultan extremadamente

útiles (Huang and Mi, 2007; James and Gibson, 2003; Lu and Rajapakse,

2005).

Como puede observarse, existe una amplia variedad de técnicas de BSS

y no todos los procedimientos emplean los mismos principios (Cichocki and

Amari, 2002; Hyvärinen et al., 2001; James and Hesse, 2005). Por ello, puede

resultar dif́ıcil en ocasiones seleccionar a priori el algoritmo más adecuado pa-

ra una aplicación concreta (Fitzgibbon et al., 2007; Zavala Fernández et al.,

2006). Por ello, resulta importante estudiar la consistencia, o similitud, de las

separaciones calculadas por diversos algoritmos para registros reales de acti-

vidad electromagnética cerebral de tal modo que las relaciones entre técnicas

BSS puedan entenderse en mayor profundidad.

Asimismo, existen numerosas aplicaciones de la BSS al análisis de EEG

y MEG relacionadas con los estudios llevados a cabo en esta Tesis Doctoral.

La primera de ellas es el rechazo de artefactos en EEG y MEG con BSS. A

pesar de la relativa popularidad de estos procedimientos (Barbati et al., 2004;

Castellanos and Makarov, 2006; Dammers et al., 2008; Delorme et al., 2007;

Escudero et al., 2006c,d, 2007b, 2008c; Joyce et al., 2004; LeVan et al., 2006;

Li et al., 2006; Mantini et al., 2008; Okada et al., 2007; Romero et al., 2008;
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Shao et al., 2008; Ting et al., 2006), existen pocos estudios comparativos de

técnicas en la Literatura. Además, la evaluación del rechazo de artefactos

se realiza habitualmente mediante una inspección visual de los resultados,

existiendo pocos estudios que realicen una evaluación cuantitativa de éstos

(Dammers et al., 2008; Escudero et al., 2007b; Mantini et al., 2008). Además,

la mayor parte de los esfuerzos se han centrado en EEG (Castellanos and

Makarov, 2006; Fitzgibbon et al., 2007; Joyce et al., 2004; Romero et al.,

2008, 2009; Shao et al., 2008; Ting et al., 2006), con el MEG recibiendo menos

atención (Dammers et al., 2008; Escudero et al., 2007b; Mantini et al., 2008).

Por ello, esta Tesis Doctoral pretende evaluar cuantitativamente diversas

técnicas de rechazo de artefactos con BSS en señales de MEG.

Los registros cerebrales también pueden procesarse con métodos de BSS

para ayudar en la detección de diversas enfermedades neurológicas (Hung

et al., 2007; Jarchi et al., 2009; Kobayashi et al., 1999). Teniendo en cuen-

ta la propia complejidad de los registros cerebrales, puede asumirse que la

aplicación de una BSS, junto con técnicas de caracterización de señal, puede

mejorar la detección de sujetos con patoloǵıas como la AD (Cichocki et al.,

2005). Esto se debe a que algunas componentes BSS podŕıan ser más sen-

sibles a esos estados cerebrales que otras (Cichocki et al., 2005; Escudero

et al., 2008d, 2009b; Vialatte et al., 2005). Aśı pues, podŕıan seleccionarse

tales componentes para mejorar la separación basada en el MEG entre, por

ejemplo, pacientes con AD y sujetos sanos de edad avanzada. A pesar de las

ventajas que este procedimiento puede reportar, pocos estudios lo han em-

pleado (Escudero et al., 2008d, 2009b). En consecuencia, parte de esta Tesis

Doctoral se dedica a explorar las posibilidades que este planteamiento ofrece.

La AD causa, además de alteraciones en el espectro y las caracteŕısticas

no lineales de los registros de EEG y MEG (Hornero et al., 2009b; Jeong,

2004; Stam, 2005, 2010), cambios en el patrón de sincronización de los ritmos

cerebrales (Jeong, 2004). Sin embargo, estos efectos no son siempre fáciles de

detectar (Dauwels et al., 2010). Además, en la Literatura se han reportado

resultados contradictorios en las bandas espectrales δ y θ (Jeong, 2004). Por

ello, esta Tesis Doctoral plantea un procedimiento alternativo para estudiar

la sincronización entre regiones. Éste se basa en las propiedades adaptativas
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de la EMD (Huang et al., 1998) y la extracción de señales de la cBSS. Esta

metodoloǵıa buscará analizar diversas bandas espectrales de interés (δ, θ, α

y β) y regiones del cuero cabelludo con el fin de analizar los patrones de

conectividad de señales en la AD.

B.5 Caṕıtulo 5: Registro de MEG

En esta Tesis Doctoral se ha analizado la actividad basal de MEG registrada

en 62 sujetos. De ellos, 36 eran pacientes diagnosticados con AD probable

y 26 eran sujetos de control de edad avanzada. Los principales datos so-

ciodemográficos de ambos grupos de sujetos, aśı como de sus divisiones en

conjuntos de entrenamiento y validación se muestran en la Tabla B.1.

Todos los pacientes cumpĺıan los criterios de AD probable de acuerdo con

las gúıas de la NINCDS-ADRDA (McKhann et al., 1984) y fueron reclutados

de la “Asociación de Familiares de Enfermos de Alzheimer” en Madrid. Cabe

destacar que no hay diferencias significativas entre la edad media de ambos

grupos de sujetos (p = 0,1911 > 0,05). Se obtuvo consentimiento informado

de todos los sujetos de control y de los cuidadores de los pacientes de AD para

su participación en este estudio, el cual fue aprobado por el correspondiente

comité ético.

Los registros de MEG se realizaron con un magnetómetro de 148 canales

(MAGNES 2500WH, 4D Neuroimaging) ubicado en una habitación magnéti-

camente aislada del “Centro de Magnetoencefalograf́ıa Dr. Pérez-Modrego”

de la Universidad Complutense de Madrid. Para minimizar la cantidad de

artefactos en los registros, éstos se adquirieron mientras los sujetos yaćıan en

una camilla, despiertos, en un estado relajado y con los ojos cerrados.

Para cada sujeto, se realizó un registro MEG de cinco minutos de duración

con una frecuencia de muestreo de 678.17 Hz. Posteriormente, las señales

se submuestrearon por un factor cuatro para reducir su longitud, siendo la

frecuencia de muestre resultante de 169.54 Hz. En los casos necesarios, se

empleó la herramienta “Filter Design & Analysis” de Matlab para diseñar

filtros FIR paso-banda con ventana de Hamming para limitar el ancho de

banda de las señales.
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Tabla B.1: Principales datos sociodemográficos y cĺınicos de todo los parti-
cipantes y la divisiones en grupos de entrenamiento y validación. Los datos
se expresan como media±SD.

Todos los sujetos

Pacientes con AD Sujetos de Control

Número de sujetos 36 26
Número de mujeres 24 17

Edad 74.06±6.95 71.77±6.38
MMSE 18.06±3.36 28.88±1.18

GDA/FAST 4.17±0.45 1.73±0.45

Grupo de entrenamiento

Pacientes con AD Sujetos de Control

Número de sujetos 18 13
Número de mujeres 12 9

Edad 74.11±7.38 71.38±4.84
MMSE 17.72±3.63 28.92±1.04

GDA/FAST 4.17±0.38 1.85±0.38

Grupo de validación

Pacientes con AD Sujetos de Control

Número de sujetos 18 13
Número de mujeres 12 8

Edad 74.00±6.70 72.15±7.82
MMSE 18.39±3.15 28.85±1.34

GDA/FAST 4.17±0.51 1.62±0.51

En las aplicaciones que emplean la BSS como un preprocesado para au-

mentar la precisión diagnóstica basada en el MEG (Sección 6.6) o en la

extracción adaptativa de actividad ŕıtmica (Sección 6.7) las épocas de MEG

con los artefactos más evidentes fueron rechazadas. Se empleó este método

de rechazo de artefactos para evitar complejidad adicional en los análisis y

para evaluar el rendimiento de estas aplicaciones de BSS sin ningún otro tipo

de preprocesado. En estos casos, se empleó un método semi-automático que

combinó una inspección visual de los registros con un método de umbraliza-

ción en amplitud para detectar actividad espuria de manera similar a otros
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estudios de actividad de MEG (Osipova et al., 2003, 2005, 2006a,b; Pekkonen

et al., 1999, 2005).

B.6 Caṕıtulo 6: Métodos

Diversos estudios han sido realizados en esta Tesis Doctoral. No obstante,

en el caso del análisis de la consistencia entre técnicas de BSS y del rechazo

de artefactos, fue necesario emplear una etapa de preprocesado. Se evaluó la

eficacia de aquella propuesta por Cao et al. (2003), la cual se basa en FA.

Este método tiene en cuenta los elementos en la diagonal principal de la

matriz de covarianza de ruido. Mediante un procedimiento iterativo (Cao

et al., 2003; Escudero et al., 2007b), se calculan las matrices que darán lugar

a la matriz de preprocesado de los datos. Asimismo, para determinar el valor

óptimo de n, se empleó un método de FA basado en un modelado estad́ıstico

de los datos: el MDL (Escudero et al., 2007b; Ikeda and Toyama, 2000).

Para evaluar todo este preprocesado se emplearon señales sintéticas a las que

se superpuso ruido aditivo externo de diversa intensidad (Escudero et al.,

2007b).

La metodoloǵıa básica de los diversos estudios llevados a cabo en esta

Tesis Doctoral se resume a continuación:

1. La aplicación destinada a evaluar la consistencia (o similitud) de diver-

sos algoritmos de BSS se fundamentó en comparar las descomposicio-

nes calculadas para las mismas señales reales de MEG. Para ello, dos

algoritmos diferentes de BSS (algoritmo q y algoritmo r) se aplican al

mismo conjunto de datos para estimar las correspondientes matrices de

mezcla : Aq y Ar (Cichocki et al., 2009). Posteriormente, las columnas

de estas matrices se normalizan y se calcula la matriz Pqr según:

Pqr = (Aq)−1 Ar. (B.3)

Si los dos algoritmos, q y r, proporcionan exactamente la misma sepa-

ración, Pqr tendrá la forma de una matriz de permutación generalizada.

Del mismo modo, cuanto más similar sea Pqr a este tipo de matriz, más
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consistentes (similares) serán las separaciones de los algoritmos q y r

(Cichocki et al., 2009). En consecuencia, empleando una métrica ade-

cuada puede medirse la similitud de las descomposiciones computadas

con distintos algoritmos (Escudero et al., 2009d).

2. La segunda aplicación busca evaluar la utilidad de la BSS en el re-

chazo de artefactos. Esta aproximación al problema basada en BSS

puede ser útil puesto que las señales se separan en componentes con

mı́nima interdependencia. De este modo, se pueden inspeccionar las

componentes para encontrar cuáles son responsables de la presencia de

artefactos en los registros (Barbati et al., 2004; Escudero et al., 2007b;

Ting et al., 2006; Vigário, 1997). Estas componentes con artefactos se

pueden eliminar para reducir la influencia de la contaminación en las

señales. Existen muy diversos criterios para decidir qué componentes se

corresponden con actividad de artefactos. Por ello, se pretende evaluar

y comparar de forma objetiva el rendimiento de diversas combinacio-

nes de técnica de BSS, longitud de época y criterio de detección de

artefactos. Esta aplicación se encuentra motivada por el hecho de que,

en la mayoŕıa de los casos, la utilidad de la BSS en el rechazo de ar-

tefactos se ha medido sólo con datos sintéticos (Barbati et al., 2004;

Delorme et al., 2007; Kierkels et al., 2006; Romero et al., 2008, 2009;

Wallstrom et al., 2004) o por medio de una inspección visual de los

registros (Flexer et al., 2005; Greco et al., 2006; Joyce et al., 2004;

Jung et al., 2000; LeVan et al., 2006; Li et al., 2006; Mammone and

Morabito, 2008; Shoker et al., 2005a; Ting et al., 2006; Vigário, 1997;

Vorobyov and Cichocki, 2002). Sin embargo, seŕıa deseable desarrollar

evaluaciones objetivas de la eliminación de los artefactos, de forma si-

milar a (Dammers et al., 2008; Escudero et al., 2007b; Mantini et al.,

2008).

3. Es tercer estudio de esta Tesis Doctoral intenta mejorar la capacidad de

caracteŕısticas espectrales y no lineales calculadas del MEG para distin-

guir pacientes con AD de sujetos de control mediante un preprocesado

basado en BSS. Para ello, se emplearon los algoritmos AMUSE (Tong
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et al., 1991), SOBI (Belouchrani et al., 1997), FastICA (Hyvärinen and

Oja, 1997) y eInfoMax (Lee et al., 1999). Por sencillez, se ha asumido

m = n gracias a que únicamente las componentes con diferencias más

significativas entre ambos grupos de sujetos se utilizarán para calcu-

lar una reconstrucción parcial de las señales de MEG (Escudero et al.,

2008d, 2009b). En este estudio resulta clave ordenar las componentes

extráıdas para poder realizar comparaciones entre sujetos encaminadas

a discernir dónde se concentran las diferencias más significativas entre

grupos de sujetos. Esta ordenación se basó en dos criterios distintos:

MF y curtosis. Las caracteŕısticas de señal MF, SpecEn, LZC y SpecEn

se calcularon para las señales parcialmente reconstruidas con las com-

ponentes más significativas y para los registros originales, de tal modo

que pudo compararse la clasificación obtenida en cada caso.

4. La última parte de la Tesis Doctoral busca extraer de forma adaptativa,

haciendo uso de una cBSS, actividad ŕıtmica en las bandas espectrales

t́ıpicas (δ, θ, α y β) sobre diversas regiones del cuero cabelludo. Este

procedimiento, en lugar de fijar bandas espectrales a priori, emplea una

EMD (Huang et al., 1998) para descomponer la actividad cerebral re-

gistrada en cada canal en IMFs. Después, las IMFs calculadas a partir

de todos los canales en la misma región se introducen en un procedi-

miento de clúster para seleccionar automáticamente una referencia en

cada una de las bandas (δ, θ, α y β). Esta referencia se emplea junto

con la cBSS para extraer actividad de interés simultáneamente en todos

los canales de la región. Por último, se calcula la Coh(f) para cada par

de señales extráıdas con el fin de evaluar la conectividad en pacientes

con la AD frente a sujetos de control.

B.7 Caṕıtulo 7: Resultados

Para evaluar el grado en el cual el preprocesado basado en FA (Cao et al.,

2003; Escudero et al., 2007b; Ikeda and Toyama, 2000) era capaz de estimar

adecuadamente el número de componentes internas y la potencia del ruido
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externo añadido a las mezclas, se crearon 1000 mezclas sintéticas distintas

con diversos niveles de ruido externo. A continuación, el preprocesado se

aplicó diez veces a cada una de estas mezclas (Escudero et al., 2007b). Cabe

reseñar que los valores de SNR de las mezclas sintéticas estuvieron compren-

didos entre −14 dB y 22 dB. Además, el preprocesado basado en FA y MDL

se comparó con otras metodoloǵıas que empleaban PCA.

Como cab́ıa esperar, los criterios que empleaban PCA sobre-estimaban el

valor de n cuando la potencia de ruido externo no era despreciable (Escudero

et al., 2007b). Por el contrario, el criterio MDL proporcionó estimaciones

más precisas del número de componentes internas para los datos sintéticos.

Además, la aplicación del preprocesado a las señales reales apoyó la elección

del FA en lugar de PCA en el sentido de que los valores de potencia de ruido

externo estimada se encontraban en el rango de SNR para el cual la MDL

proporcionó estimaciones precisas en las señales sintéticas.

En lo referente a la comparación de las descomposiciones estimadas con

diversas técnicas de BSS, las matrices Pqr se calcularon para cada par de

algoritmos y diversas longitudes de época (10 s, 20 s, 40 s, 60 s y 90 s). Estas

matrices se caracterizaron con una métrica F destinada a proporcionar una

idea acerca de la similitud de las separaciones calculadas con q y r. Para

reducir la cantidad de datos a analizar, sólo se tuvo en cuenta la matriz Pqr

en lugar de ambas Pqr y Prq (Escudero et al., 2009d). Estos resultados se

muestran en la Fig. B.1, donde menores valores se corresponden con pares

de algoritmos más consistentes (similares).

Puede observarse que los pares de algoritmos más consistentes fueron

AMUSE–SOBI (métodos SOS), seguidos del par JADE–FastICA (HOS).

Estos resultados se corroboraron con los pertinentes análisis estad́ısticos.

Además, el nivel global de consistencia mejoró conforme se analizaron épocas

de mayor longitud.

En la parte de esta Tesis Doctoral destinada a evaluar de forma objetiva

el rechazo del CA, OA y PLN con técnicas de BSS se descompusieron épocas

de 10 s, 20 s, 40 s, 60 s y 90 s con las siguientes técnicas BSS: AMUSE, SOBI,

JADE, eInfoMax y FastICA. Además, un método de cBSS se empleó para

reducir el CA con una referencia calculada como el promedio de todos los
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Figura B.1: Promedio de la métrica F para cada par de algoritmos BSS (A:
AMUSE, S: SOBI, J: JADE, eI: extended Infomax, F: FastICA) y longitud
de época.



B.7. Caṕıtulo 7: Resultados 321

canales de MEG.

En primer lugar, se evaluó el impacto global de estos artefactos en to-

da la base de datos con el fin de obtener referencias válidas para medir la

disminución de los artefactos después de la BSS (Escudero et al., 2007b).

Tras la aplicación de las técnicas de BSS y de diversas métricas de detec-

ción de artefactos en componentes, se comprobó que algunas combinaciones

de métodos BSS y criterios de detección fueron capaces de reducir de forma

notable el impacto del CA: los valores de APtP y RMS disminuyeron, apro-

ximadamente, de 0.750 y 0.120 a 0.100 y 0.028, respectivamente, después del

rechazo de artefactos. Por otro lado, la evaluación de la disminución del OA

se realizó tanto en el domino temporal (contando el número de picos de la

señal de MEG por encima de un determinado valor) como espectral (midien-

do la diferencia en bajas frecuencias entre espectros calculados en diferentes

subconjuntos de canales). Los resultados indicaron que el rechazo de OAs con

BSS disminúıa la potencia de señal localizada en bajas frecuencias cerca de

los ojos, lo cual puede interpretarse como un decrecimiento de la actividad

ocular, y redućıa el número de picos en las señales con valores extremos. Por

último, la evaluación de la reducción en el PLN arrojó tasas de reducción

tras el rechazo de artefactos con BSS de unos 14.7 dB.

La tercera aplicación de esta Tesis Doctoral se basa en la idea de que

la BSS del MEG puede contener componentes especialmente adecuadas pa-

ra distinguir los pacientes con AD de los sujetos de control. De este modo,

un subconjunto de tales componentes podŕıa servir para realizar reconstruc-

ciones parciales del MEG que condujeran a una mejor distinción de ambos

grupos de sujetos (Escudero et al., 2008d, 2009b). En primer lugar, los al-

goritmos AMUSE, SOBI, FastICA y eInfoMax se emplearon para descom-

poner las señales. Mientras AMUSE proporciona un orden natural para las

componentes, éstas tuvieron que ordenarse según su MF o curtosis en los

casos de SOBI, FastICA y eInfoMax para poder realizar comparaciones en-

tre sujetos (Escudero et al., 2009b,c). Posteriormente, un análisis estad́ıstico

sirvió para indicar qué subconjuntos de componentes proporcionaban las di-

ferencias más significativas entre sujetos (Escudero et al., 2008d, 2009b,c).

Estos subconjuntos, definidos como intervalos continuos de 15 ó 30 compo-
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Tabla B.2: Resultados de la clasificación con las medidas de coherencia cal-
culadas a partir del procedimiento adaptativo de extracción de ritmos cere-
brales.

δ θ α β Todas las bandas

Precisión ( %) 67.7 46.8 69.4 43.5 96.8
Sensibilidad ( %) 63.9 47.2 66.7 44.4 94.4
Especificidad ( %) 73.1 46.2 73.1 42.3 100.0

AUC 0.713 0.874 0.815 0.912 1.000

nentes con el menor p-valor promedio, se utilizaron para calcular reconstruc-

ciones parciales del MEG.

Los resultados indicaron que estos rangos de componentes seleccionadas

tend́ıan a ser consistentes entre las cuatro caracteŕısticas de señal considera-

das (MF, SpecEn, LZC y SampEn). Es más, este procedimiento fue capaz de

mejorar el valore de AUC y precisión en múltiples casos.

La última aplicación de analizada en esta Tesis Doctoral pretend́ıa reali-

zar un análisis de la conectividad de actividad ŕıtmica de MEG extráıda de

forma adaptativa sobre diversas regiones del cuero cabelludo. Este análisis

de sincronización se basó en una medida de Coh(f). Por su parte, la extrac-

ción de señales empleó un procedimiento compuesto de una EMD, un clúster

k-medias y una cBSS. Las pruebas estad́ısticas mostraron que exist́ıan efec-

tos significativos en los valores de Coh(f) en función de la banda espectral

analizada y del par de regiones considerado. Sin embargo, no aparecieron

diferencias significativas entre grupos de sujetos. A pesar de esto, las me-

dias marginales estimadas sugirieron que AD parećıa disminuir la Coh(f) en

bandas α y β y aumentarla en δ.

Además de este análisis, se cuantificó la precisión de ambos grupos de

sujetos con un LDA con introducción de variables por pasos junto con un

procedimiento de validación cruzada dejando uno fuera. Los resultados pa-

ra cada banda, y cuando éstas se consideran de forma conjunta, aparecen

recogidos en la Tabla B.2, aśı como los valores de AUC correspondientes.
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B.8 Caṕıtulo 8: Discusión

El objetivo de esta Tesis Doctoral era aplicar métodos de BSS para ayudar

en el análisis e interpretación de actividad basal de MEG adquirida en pa-

cientes con AD y sujetos de control de edad avanzada. Este objetivo global

se evaluó atendiendo a cuatro aplicaciones concretas.

Aunque el preprocesado basado en FA y MDL no es una técnica de BSS, su

uso śı puede ser útil como un paso previo a este tipo de descomposiciones en

diversas situaciones. El criterio MDL proporcionó estimaciones más precisas

del valor n que otras metodoloǵıas que empleaban PCA. Estos resultados

confirmaron que estas últimas no sólo poseen un cierto grado de subjetividad

y dependen de la forma del espectro de autovalores (James and Hesse, 2005),

sino que también pueden tender a sobre-estimar n cuando el ruido externo

no es despreciable (Escudero et al., 2007b). Estos problemas se evitan con el

MDL de FA.

Estos resultados corroboran los hallazgos recientemente publicados por

Hesse (2007, 2008) acerca de la selección del orden adecuado para el mode-

lo. Estos estudios investigaron el rendimiento de diversos preprocesados con

PCA y FA para estimar el número de componentes BSS en registros reales

de EEG y MEG. Tales resultados indicaron que un PCA probabiĺıstico o un

modelo de FA proporcionaba estimaciones de la dimensionalidad para fiables

e independientes de la potencia de la señal que técnicas de PCA comúnmente

empleadas (Hesse, 2007, 2008).

Los resultados acerca de la comparación de técnicas BSS mostrados en

la Fig. B.1 indicaron claramente que el par de algoritmos AMUSE–SOBI

computaba las descomposiciones más similares para las señales de MEG. El

principio de descomposición que comparten ambas técnicas es la diagona-

lización simultánea de varias matrices de covarianza calculadas para varios

retardos temporales (Hyvärinen et al., 2001; James and Hesse, 2005). Los re-

sultados también indicaron que las descomposiciones de JADE y FastICA se

caracterizaban por un elevado grado de consistencia. Esto podŕıa deberse a

que los principios teóricos sobre los que se asientan ambos algoritmos pueden

relacionarse (Hyvärinen et al., 2001).
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Asimismo, los algoritmos de BSS tend́ıan a estimar descomposiciones más

similares para épocas de señal de mayor longitud (Escudero et al., 2009d).

Esto puede deberse al hecho de que, a pesar de que el valor de n aumentó con

la longitud de la señal, el número de muestras disponibles para la estimación

de A creció más rápidamente que el tamaño de esta matriz. Cabe reseñar que

este estudió comparó las descomposiciones calculadas para registros de MEG

reales desde un punto de vista global en lugar de comparar componentes

manualmente (Zavala Fernández et al., 2006). No obstante, las fuentes reales

son desconocidas (James and Hesse, 2005), aśı que resulta imposible conocer

a ciencia cierta la verdadera calidad de la separación BSS (Escudero et al.,

2009d).

La evaluación objetiva del rechazo de artefactos empleó medidas especial-

mente diseñadas para cada tipo de artefacto, evitando el proceso relativamen-

te subjetivo, laborioso y tedioso de identificar manualmente las componentes

(Rong and Contreras-Vidal, 2006). Gracias a estas métricas, se pudieron eva-

luar automáticamente diversas combinaciones de algoritmo de BSS, longitud

de época y métrica de detección de artefactos.

La evaluación del rechazo del CA se efectuó gracias al hecho de que la

actividad card́ıaca es la única actividad śıncrona, junto con el PLN, en los

registros (Escudero et al., 2007b). Por otro lado, los OAs no aparecen siem-

pre en las señales de MEG. Es por esta razón que su reducción es más dif́ıcil

de medir. No obstante, se consideraron caracteŕısticas temporales, como el

número de picos por encima de un cierto umbral de amplitud (Mantini et al.,

2008), y espectrales de las señales, estudiando las frecuencias más bajas de

la señal (Escudero et al., 2007b). Por último, la reducción en el PLN pudo

medirse fácilmente en el dominio espectral (Escudero et al., 2007b; Iriarte

et al., 2003). Con estos criterios y medidas, pudo recopilarse información

cuantitativa acerca de la calidad del rechazo de artefactos. La Tabla B.3 de-

talla algunas de las combinaciones más exitosas en la eliminación de cada

tipo de contaminación. En cada caso, los datos en la Tabla B.3 están ex-

presados como el ratio de las métricas correspondientes después y antes del

rechazo de artefactos. De este modo, es posible proporcionar una idea del

tipo de metodoloǵıas más adecuadas para cada caso.
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Tabla B.3: Resumen de los cambios (expresados como ratios) en las métri-
cas de evaluación del rechazo de artefactos. Ratios menores indican mejores
rechazos de artefactos.

Ratios para las métricas del artefacto card́ıaco

Métrica Época Tipo de BSS APtP RMS

– 10 s cBSS 0.1335 0.1963
Skew 60 s eInfoMax 0.1547 0.2359
VarSc 10 s FastICA 0.1572 0.2513
KrE 90 s eInfoMax 0.1354 0.2258
HSh 60 s eInfoMax 0.1238 0.2132
HRé 60 s eInfoMax 0.1242 0.2131

Ratios para las métricas del artefacto ocular

Métrica Época Tipo de BSS Número de picos Diferencia espectral

PEY ES 60 s SOBI 0.6158 0.4137
PLF 90 s AMUSE 0.1589 0.4357
KrE 90 s eInfoMax 0.4221 0.8165
HRé 20 s SOBI 0.2833 0.5005

ApEn 20 s SOBI 0.2848 0.4011

Ratios de potencia entre 49.5 Hz to 50.5 Hz para evaluar el ruido eléctrico

Métrica Época Tipo de BSS Total Normalizada

P50Hz 60 s AMUSE 0.2039 0.1850
P50Hz 60 s JADE 0.2406 0.2297
ApEn 60 s JADE 0.2551 0.3178

Los algoritmos de BSS AMUSE, SOBI, eInfoMax y FastICA fueron apli-

cados para descomponer épocas MEG de 36 pacientes con AD y 26 sujetos

de control de edad avanzada. Es destacable que la población se dividió de

manera aleatoria en conjuntos de entrenamiento y validación para evitar la

optimización de los parámetros incluidos en la metodoloǵıas sobre toda la ba-

se de datos (Escudero et al., 2009b). Mientras AMUSE proporcionó un orden

para las componentes de manera intŕınseca, las componentes SOBI, eInfoMax

y FastICA tuvieron que ser ordenadas (Escudero et al., 2009c). Para ello se

emplearon dos criterios: MF y curtosis. Posteriormente, cada componente se

caracterizó con caracteŕısticas de señal espectrales y no lineales (Escudero
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et al., 2009b).

Tras comparar las componentes, pudieron evaluarse las mejoras en la

separación de sujetos reportadas por este tipo de metodoloǵıa. En los mejores

casos, la BSS y el procedimiento de selección de componentes aumentó la

precisión entre un 12.9 % y un 22.6 % para todas las caracteŕısticas salvo MF,

en cuyo caso la precisión no se modificó. Sin embargo, las AUCs de todas

las caracteŕısticas mejoraron entre 0.023 y 0.227 (para la MF y la SampEn,

respectivamente). Un resumen de los mejores preprocesados en términos de

precisión y AUC aparece en Tabla B.4.

Los análisis acerca de la extracción adaptativa de ritmos cerebrales se

centró en las bandas espectrales t́ıpicamente consideradas en la Literatura:

δ (1 Hz – 4 Hz), θ (4 Hz – 8 Hz), α (8 Hz – 13 Hz) y β (13 Hz – 30 Hz).

Sin embargo, no hubo la necesidad de realizar un filtrado espectral a priori,

evitando tener que definir frecuencias de corte. Esto se debe a que las IMFs

tienen caracteŕısticas espectrales bien definidas (Huang et al., 1998). Por es-

te motivo, puede considerarse en los análisis el contenido espectral de cada

IMF, el cual se caracterizó con los valores de frecuencia instantánea prome-

dio. Posteriormente, sólo las IMFs cuyo contenido espectral se encontraba

en la banda espectral de interés (1 Hz – 30 Hz) fueron introducidas en el

procedimiento de clúster que proporcionó las referencias para el cBSS.

El análisis estad́ıstico sugirió que la AD afecta el patrón de conectividad

de la actividad electromagnética cerebral (Dauwels et al., 2010; Jeong, 2004;

Stam, 2010), aunque los resultados no fueron significativos. Sin embargo, el

análisis de la capacidad de estos resultados para clasificar los pacientes con

AD frente a sujetos de control proporcionó unos resultados más que notables,

alcanzado un 96.8 % de precisión, el cual puede compararse favorablemente

con otros estudios citados en la reciente revisión del estado del arte publicada

por Stam (2010).

Deben tenerse en cuenta diversas limitaciones de los estudios realizados

en esta Tesis Doctoral. Las principales se deben al relativamente reducido

tamaño de la base de datos analizada, lo que limita los análisis realizados y

las conclusiones extráıdas. Además, por la propia naturaleza de los análisis, se

desconocen las componentes reales que dieron lugar a los registros de MEG.
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Tabla B.4: Comparación de los valores de precisión y AUC alcanzados me-
diante diversos preprocesados con los valores obtenidos a partir de las señales
de MEG sin preprocesar.

MF

Tipo Componentes seleccionadas Precisión AUC

Sin preprocesado – 77.4 % 0.855
Filtrado en α – 77.4 % 0.872

AMUSE 30 77.4 % 0.878
SOBI - MF 30 77.4 % 0.876

SpecEn

Tipo Componentes seleccionadas Precisión AUC

Sin preprocesado – 61.3 % 0.727
Filtrado en β – 58.1 % 0.560
SOBI - MF 30 74.2 % 0.782

AMUSE 30 71.0 % 0.786

LZC

Tipo Componentes seleccionadas Precisión AUC

Sin preprocesado – 61.3 % 0.786
Filtrado en β – 64.5 % 0.705

AMUSE 15 74.2 % 0.838
AMUSE 30 67.7 % 0.838

SampEn

Tipo Componentes seleccionadas Precisión AUC

Sin preprocesado – 58.1 % 0.645
Filtrado en β – 61.3 % 0.645

AMUSE 30 80.7 % 0.872
AMUSE 15 80.7 % 0.863

Por ello, la evaluación del rendimiento de las técnicas de BSS no es simple

y las descomposiciones no pueden validarse por completo (James and Hesse,

2005; Vigário and Oja, 2008).
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Este Apéndice constituye la traducción al español del Caṕıtulo 9 donde se

recogen las principales conclusiones extráıdas de esta Tesis Doctoral. Además

de éstas, este Apéndice detalla las principales contribuciones al estado del

arte realizadas en esta Tesis Doctoral y sugiere posibles ĺıneas futuras de

investigación.

C.1 Introducción

El MEG recoge los campos magnéticos cerebrales originados por las corrien-

tes eléctricas de las neuronas. Esta técnica posee ciertas ventajas sobre otros

métodos de neuro-imagen, como son su elevada resolución espacial y tem-

poral o el hecho de que el MEG no depende de ningún punto de referencia

(Hämäläinen et al., 1993; Hari, 2004). Sin embargo, el análisis del MEG

no resulta siempre sencillo, por lo que es deseable desarrollar herramientas

y métodos adecuados para ayudar en esta tarea. Además, el MEG podŕıa

ofrecer información relevante acerca de diversos estados y enfermedades ce-

rebrales, incluyendo la causa más frecuente de demencia en Occidente: la

AD (Hornero et al., 2009b; Stam, 2005, 2010).

Es por todos conocido que la AD causa una pérdida progresiva de memo-

ria. Eventualmente, esta demencia termina afectando a todas las funciones

cognitivas del paciente (Blennow et al., 2006; Cummings, 2004; Nestor et al.,

2004). Debido a su elevada prevalencia y a la pesada carga que esta demencia

impone sobre los cuidadores y familiares de los pacientes, la AD causa con-

siderables gastos y problemas sociales (Ferri et al., 2006). Cabe considerar

que el coste del diagnóstico cĺınico de la AD es bajo en comparación con los

costes asociados con el tratamiento de esta demencia y el cuidado de los en-

fermos (Lahiri et al., 2002). Por ello, y teniendo en cuenta que un diagnóstico

definitivo de la AD sólo puede conseguirse mediante necropsia, resulta evi-

dente la importancia de desarrollar técnicas que ayuden en el diagnóstico y

caracterización de esta enfermedad. Esto podŕıa repercutir en una reducción

de los costes producidos por esta patoloǵıa (Lahiri et al., 2002).

El término BSS denota un conjunto de técnicas estad́ısticas útiles para el

procesado, entre otras, de señales biomédicas (James and Hesse, 2005; Vigário
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and Oja, 2008). Estas herramientas generan transformaciones de registros

multidimensionales sin asumir una base para proyectar los datos a priori y

permiten revelar las componentes internas que dieron lugar a señales obser-

vadas a través de un proceso de mezcla que se asume desconocido (Cichocki

and Amari, 2002; Hyvärinen et al., 2001). Hoy en d́ıa, se está generalizando

su uso en el estudio de datos biomédicos y, de forma más particular, en el

procesado de señales cerebrales (James and Hesse, 2005; Vigário and Oja,

2008).

Teniendo en cuenta estos tres conceptos principales sobre los que versa

esta Tesis Doctoral (MEG, AD y BSS), los estudios desarrollados en ella se

han basado en las siguientes hipótesis :

1. Que la comparación de las descomposiciones estimadas con varias técni-

cas de BSS para los mismos registros de MEG podŕıa ofrecer informa-

ción relevante acerca de las relaciones y similitudes existentes entre

aquellas técnicas.

2. Que el uso conjunto de la BSS y métricas especialmente diseñadas para

detectar artefactos en las componentes BSS podŕıa ayudar a eliminar

automáticamente la contaminación por CA, OA y PLN presente en la

actividad basal de MEG.

3. Que un preprocesado adecuadamente diseñado basado en BSS podŕıa

ser útil para distinguir caracteŕısticas (MF, SpecEn, LZC y SampEn)

calculadas a partir de los registros de MEG de pacientes con AD de

aquellas computadas para los registros de los sujetos de control.

4. Que una metodoloǵıa basada en EMD y cBSS podŕıa proporcionar una

extracción adaptativa de ritmos cerebrales sobre diversas regiones del

cuero cabelludo con información relevante acerca de la conectividad de

pacientes con la AD en comparación sujetos de control.

Viendo en perspectiva los resultados y la discusión de esta Tesis Docto-

ral, estas hipótesis parecen ser correctas, lo que corrobora la idoneidad de la
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metodoloǵıa empleada. En consecuencia, puede afirmarse que se ha consegui-

do el principal objetivo de esta Tesis Doctoral. Éste no era otro que aplicar

técnicas de BSS para ayudar en el análisis e interpretación de ac-

tividad basal de MEG registrada en pacientes con la AD y sujetos

de control de edad avanzada. Los resultados han resaltado la idoneidad

de las técnicas BSS para procesar señales de MEG. Además, la utilidad de

estas técnicas no se limita únicamente a los marcos metodológicos en donde

podŕıan tener una aplicación más obvia (por ejemplo, el uso de la BSS en el

rechazo de artefactos en señales cerebrales) sino que también son útiles pa-

ra estudiar la actividad cerebral desde puntos de vista más novedosos como

el uso de la BSS como un preprocesado para resaltar caracteŕısticas de las

señales relacionadas con la AD o como un medio de realizar una extracción

adaptativa de ritmos cerebrales sobre diversas agrupaciones de canales.

C.2 Conclusiones de la Tesis Doctoral

Con la metodoloǵıa presentada en el Caṕıtulo 6 se han procesado registros

de MEG adquiridos de 36 pacientes con un diagnóstico de AD probable y 26

sujetos sanos de edad avanzada. La aplicación de tal metodoloǵıa persegúıa

la consecución de cuatro estudios principales acerca de la aplicación de la

BSS a actividad basal de MEG:

1. La comparación de las descomposiciones estimadas mediante diversas

técnicas de BSS para registros reales de MEG ayudó a identificar si-

militudes entre los métodos de BSS y su evolución con el número de

componentes a estimar y la longitud de las épocas de señal analizadas.

2. La evaluación cuantitativa del rechazo del CA, OA y PLN basado en

técnicas de BSS resultó útil para señalar las combinaciones de método

de BSS, longitud de época y métrica de detección de artefactos que

proporcionaban una mayor atenuación de estas actividades indeseadas

en la actividad basal de MEG.

3. El desarrollo, y posterior evaluación, de un procedimiento de BSS y
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selección de componentes significativas mostró que este tipo de filtrado

espacial de los datos era capaz de aumentar la precisión de la clasifica-

ción y los valores de AUC de caracteŕısticas de señal calculadas para

los MEGs de pacientes de AD y sujetos de control.

4. El uso de un procesado adaptativo para extraer actividad ŕıtmica cere-

bral sobre diversas regiones del cuero cabelludo proporcionó informa-

ción acerca de las alteraciones que la AD causa en la sincronización de

las señales cerebrales y reveló la posible utilidad de este tipo de proce-

sado en la clasificación de pacientes con la AD versus controles de edad

avanzada.

Todos estos estudios resultan alentadores en el sentido de que sugieren

que la BSS es una herramienta útil en el procesado de actividad

basal de MEG y en la identificación y caracterización de la AD.

En consecuencia, la BSS puede representar un conjunto de técni-

cas importantes en el estudio de este tipo de registros biomédicos.

Además de esta conclusión general, las siguientes conclusiones particulares

pueden derivarse también de esta Tesis Doctoral:

1. El procedimiento basado en un FA, junto con el criterio MDL

de selección del orden del modelo, resultó ser más adecuado

para preprocesar los registros de MEG que PCA. La evaluación

de procedimiento basado en FA y el criterio MDL (Cao et al., 2003;

Ikeda and Toyama, 2000) en los datos sintéticos sugirió que este es-

quema era el más apropiado para realizar un acondicionamiento de las

señales previo a BSS. Esto se debe a que otros criterios comúnmente

empleados, los cuales se basan en PCA, tend́ıan a sufrir de sobreajuste

(Escudero et al., 2007b). Además, la utilidad de esta metodoloǵıa fue

corroborada por el análisis de las señales reales.

2. Los algoritmos AMUSE–SOBI, seguidos por el par JADE–

FastICA, ofrecieron las descomposiciones de registros reales

de actividad basal de MEG más similares. La evaluación de la

consistencia de las separaciones calculadas con diversas técnicas de BSS
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para señales reales de MEG (Escudero et al., 2009d) mostró que los

pares de algoritmos más consistentes fueron AMUSE–SOBI y JADE–

FastICA. Asimismo, los pares AMUSE–JADE y SOBI–JADE ofrecie-

ron las separaciones más diferentes. Por último, cabe reseñar que el

nivel global de similitud aumentó conforme se descompusieron señales

de mayor longitud.

3. La cuantificación de la reducción en los artefactos presentes

en la actividad basal de MEG destacó la utilidad de varias

combinaciones de técnicas de BSS y métricas espećıficas de

detección de artefactos. La medida de la reducción de la intensidad

promedio del CA, OA y PLN a lo largo de todo el conjunto de datos

disponible destacó las siguientes estrategias para reducir los artefactos:

• Por su sencillez, se consideró el procedimiento de cBSS (James

and Gibson, 2003) como el más adecuado para eliminar el CA.

Es más, su rendimiento resultó ser equiparable al de las mejores

combinaciones de técnicas basadas en BSS.

• La reducción en los OAs fue la más dif́ıcil de evaluar puesto que

este artefacto aparece de forma intermitente en los registros y su

enerǵıa no se encuentra tan localizada en el espectro como en el ca-

so del PLN. No obstante, la evaluación indicó que la combinación

de métricas de detección de artefactos como ApEn, PEY ES y, es-

pecialmente, PLF (Escudero et al., 2007b) con métodos SOS-BSS

podŕıa ser útil para reducir este artefacto.

• El PLN pudo reducirse sustancialmente sin alterar el espectro de la

señal cerebral por medio de la métrica espećıfica P50Hz (Escudero

et al., 2007b) y AMUSE.

4. Un preprocesado con SOS-BSS y un procedimiento de selec-

ción de componentes pudo mejorar la separación entre carac-

teŕısticas de la señal de MEG de pacientes con AD y sujetos

de control. Los criterios de ordenación resultaron esenciales para com-

parar de forma directa las componentes de BSS, permitiendo de este
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modo desarrollar las metodoloǵıas de preprocesado con BSS (Escudero

et al., 2008d, 2009b,c). La evaluación de la mejora en la separación

entre caracteŕısticas espectrales y no lineales de los MEGs de pacientes

con la AD y controles reveló aumentos en los valores de AUC de entre

0.023 y 0.227 y mejoras en la precisión de hasta un 22.6 % en compara-

ción con las señales “crudas”. Los algoritmos más adecuados para este

fin resultaron ser AMUSE y SOBI con una ordenación basada en la

MF.

5. La extracción adaptativa de ritmos cerebrales sobre diversas

regiones del cuero cabelludo con un procedimiento adaptati-

vo basado en una EMD y una cBSS ofreció información útil

acerca del patrón de conectividad en la AD y, especialmente,

y la clasificación de sujetos. La metodoloǵıa adaptativa introduci-

da para extraer actividad ŕıtmica cerebral sobre diversas regiones del

cuero cabelludo se basó en una EMD (Huang et al., 1998), un proce-

dimiento clúster de k-medias (Hartigan and Wong, 1979) y una cBSS

(Huang and Mi, 2007). El análisis estad́ıstico sugirió que la AD afecta

a la conectividad entre regiones, a pesar de que los resultados no fueron

estad́ısticamente significativos. Por el contrario, un análisis de la clasi-

ficación con una validación dejando uno fuera empleando los valores de

Coh(f) permitió clasificar los pacientes con la AD frente a los controles

con una precisión del 96.8 %.

Por último, cabe reseñar que una de las principales ventajas de la BSS

en estos tipos de aplicaciones reside en el hecho de que la BSS representa

un método de descomposición de señales que no necesita apenas información

acerca de las componentes a estimar o del proceso de mezcla al que fueron

sujetas (James and Hesse, 2005; Vigário and Oja, 2008). Asumiendo unas

pocas hipótesis generales acerca de las señales, estas técnicas son capaces

de estimar un conjunto de componentes internas que pueden proporcionar

novedosa información para examinar los datos bajo estudio (James and Hesse,

2005; Onton et al., 2006; Vigário and Oja, 2008).



336 Apéndice C. Conclusiones en Español

En resumen, esta Tesis Doctoral ha examinado algunas aplicaciones de

técnicas de BSS a registros de MEG, prestando especial atención a la AD.

Uno de los objetivos generales fue evaluar cuantitativamente las ventajas y

beneficios obtenidos gracias al uso de estos métodos. Debe tenerse en cuenta

que interesantes revisiones acerca del estado del arte sobre la utilización de

la BSS en el estudio de señales cerebrales han sido publicadas recientemen-

te (James and Hesse, 2005; Onton et al., 2006; Vigário and Oja, 2008). Sin

embargo, el posible rango de aplicaciones de las técnicas de BSS es tan ex-

tenso y evoluciona tan rápidamente que es dif́ıcil recopilar la mayor parte de

información disponible al respecto en un único documento.

C.3 Contribuciones originales al estado del

arte

La principal contribución de esta Tesis Doctoral es la evaluación del ren-

dimiento, en términos de los objetivos definidos previamente, de diversas

técnicas de BSS en cuatro aplicaciones diferentes. Para realizar estas investi-

gaciones, se han propuesto diversas metodoloǵıas. Es más, en algunos casos,

esta Tesis Doctoral representa la primera aplicación de los correspondien-

tes preprocesados, métricas o técnicas de evaluación a la actividad basal de

MEG.

Las contribuciones originales al estado del arte aportadas por esta Tesis

Doctoral se detallan a continuación. Además, las publicaciones cient́ıficas

generadas como consecuencia de estas investigaciones se encuentran listadas

en el Apéndice A.

1. La evaluación del preprocesado basado en FA mediante datos sintéticos

permitió comprobar lo adecuado de este procedimiento como un paso

previo a BSS en contraposición a otras alternativas basadas en PCA.

La evaluación de estos tipos de preprocesado con señales sintéticas di-

versos valores de SNR representa, hasta lo que conocemos, la primera

evaluación exhaustiva de preprocesados basados en FA y PCA en este

contexto para señales cerebrales (Escudero et al., 2007b).
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2. Las comparaciones de las descomposiciones estimadas mediante diver-

sos algoritmos de BSS para el mismo conjunto de señales de MEG reales

reportaron información acerca de las similitudes y diferencias de estas

técnicas. Hasta lo que sabemos, éste es el primer estudio acerca de la

consistencia (desde un punto de vista global) de descomposiciones BSS

de señales cerebrales reales (Escudero et al., 2009d).

3. La evaluación objetiva de la reducción en los artefactos que contami-

nan los registros de MEG representa una parte esencial en la aplicación

de rechazo de artefactos. Hasta donde tenemos conocimiento, este es-

tudio representa la primera evaluación de la eliminación del CA con

BSS medido en términos del complejo QRS promedio (Escudero et al.,

2007b). Además, se ha propuesto la evaluación de la eliminación de

artefactos en MEG considerando de forma conjunta la totalidad de las

señales en la base de datos para obtener medidas de la atenuación en

lugar de considerar ejemplos concretos o atender a señales individuales

(Escudero et al., 2007b). En lo que respecta a las métricas de detección

de artefactos, este estudio propuso las métricas PEY ES, PLF y P50Hz y

aplicó Skew a señales de MEG (Escudero et al., 2006c,d, 2007b, 2008c).

4. Este estudio ha evaluado el uso de técnicas de BSS como un preproce-

sado para realzar caracteŕısticas de señal relacionadas con la AD. Hasta

donde sabemos, este estudio constituye la primera aplicación de esta

metodoloǵıa a señales de MEG (Escudero et al., 2008d), incluyendo

el estudio de caracteŕısticas no lineales aśı como espectrales (Escudero

et al., 2009b). Asimismo, este trabajo constituye la primera introduc-

ción de otros algoritmos de BSS (o ICA) distintos a AMUSE en este

tipo de procesado (Escudero et al., 2009c).

5. Hasta lo que conocemos, la metodoloǵıa desarrollada para extraer rit-

mos cerebrales sobre diversas regiones del cuero cabelludo de manera

adaptativa es nueva. A pesar de que estudios previos (ver, por ejemplo,

Stam et al., 2006) ya hab́ıan propuesto previamente agrupar canales en

función de su localización espacial, ésta es la primera vez que la EMD
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se ha aplicado a señales cerebrales con el fin de caracterizar la AD y, en

particular, a señales de MEG para extraer referencias adecuadas para

emplearlas en un cBSS cuyos resultados se emplearán en un análisis de

conectividad.

Además, cabe reseñar que el doctorando también ha trabajado en la carac-

terización de registros cerebrales (EEG y MEG) prestando especial atención

al análisis no lineal de señales adquiridas en pacientes con la AD. Esta la-

bor le ha permitido colaborar en diversas investigaciones las cuales no están

directamente relacionadas con la BSS (Abásolo et al., 2006a,b,d, 2007a,b,

2008a,b,c, 2009; Escudero et al., 2006b, 2007a, 2008a,b; Fernández et al.,

2008, 2009; Gómez et al., 2006b, 2007a,b,c, 2008a,b, 2009a; Hornero et al.,

2008, 2009a,b; Poza et al., 2007a, 2008a,b, 2009). Especialmente relevantes

son los art́ıculos acerca del análisis de señales de EEG en pacientes con la

AD mediante la entroṕıa multiescala EEG (Escudero et al., 2006a) y la inter-

pretación de la ‘tasa de descenso de la función de auto-información mutua’

en términos de conceptos sencillos de procesado de señal (Escudero et al.,

2009a).

C.4 Futuras ĺıneas de investigación

En esta Tesis Doctoral, se han estudiado registros de actividad basal de MEG

adquiridos de 36 pacientes con un diagnóstico de AD probable y 26 sujetos de

control haciendo uso de técnicas de BSS. A pesar del esfuerzo realizado para

realizar un estudio lo más detallado posible acerca de los temas abordados

en ella, existen cuestiones interesantes directamente relacionadas con esta

Tesis Doctoral que no han sido tratadas aún. Algunas de estas ĺıneas futuras

de investigación están relacionadas con las limitaciones de la Tesis Doctoral

reconocidas en la Sección 8.7.

El análisis de la consistencia y del rechazo de artefactos se llevó a cabo

empleando los registros de los 26 sujetos de control. Las señales adquiridas de

los 36 pacientes con un diagnóstico de AD probable también fueron incluidas

en los estudios acerca de la mejora de la clasificación debida al preprocesado
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con BSS y en la medida de la conectividad de los ritmos cerebrales. Sin em-

bargo, debeŕıa aumentarse el tamaño de la base de datos con el fin de obtener

conclusiones más fiables y significativas en el futuro. Asimismo, otras pato-

loǵıas pueden causar alteraciones en la actividad de EEG y MEG similares

a las inducidas por la AD (Stam, 2005, 2010). Por ello, seŕıa deseable incluir

en la base de datos registros de pacientes con otras enfermedades neurodege-

nerativas. De este modo, seŕıa posible llevar a cabo estudios más complejos

cuyo objetivo fuera desarrollar estrategias útiles para elaborar un diagnóstico

diferencial. En este sentido, merece destacarse la comparativa de los registros

de MEG adquiridos de pacientes con demencia con aquellos registrados en

pacientes con MCI. Esto se debe al hecho de que el MCI puede considerarse

como un estado previo a la demencia. De hecho, algunos estudios ya han ana-

lizado actividad MEG en pacientes con MCI y sujetos de control incluidos

en la base de datos analizada en esta Tesis Doctoral (Fernández et al., 2006;

Gómez et al., 2009c).

Con respecto al rechazo de artefactos, debeŕıa comprobarse cómo éste

afecta a los registros de MEG adquiridos de pacientes con enfermedades

como la AD. Esto se debe a que el rechazo de artefactos se evaluó empleando

únicamente el grupo de control. Cabe esperar que los mismos métodos de

rechazo de artefactos puedan aplicarse a señales registradas en pacientes,

pero esta hipótesis debeŕıa corroborarse. En este sentido, son remarcables

las investigaciones realizadas por Melissant et al. (2005) y Vialatte et al.

(2009), las cuales mostraron que un rechazo de artefactos con BSS no causa

alteraciones indeseadas en los registros cerebrales y que puede mejorar la

clasificación entre grupos de sujetos en comparación con aquella basada en el

análisis de señales ruidosas con artefactos. Por el contrario, Castellanos and

Makarov (2006) sugirieron que, si el rechazo de artefactos no se realiza con

el cuidado necesario, podŕıa alterar el patrón de conectividad del EEG.

Otra posible ĺınea de investigación es la aplicación de otros métodos de

descomposición de señales multidimensionales que tampoco definen una ba-

se para proyectar las señales a priori. Por ejemplo, métodos como la NMF

podŕıan ofrecer información importante acerca de las señales cerebrales, in-

cluso en la AD (Chen et al., 2006; Cichocki et al., 2008). Por otro lado,
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diversos tipos de restricciones (por ejemplo, espaciales o espectrales; James

and Hesse, 2005) podŕıan emplearse en lugar de las referencias temporales

necesarias en el cBSS aplicado en esta Tesis Doctoral.

Otra posible ĺınea de investigación futura es la aplicación de las técnicas

incluidas en esta Tesis Doctoral a otras señales fisiológicas. Por ejemplo, a

pesar de que los métodos se diseñaron espećıficamente para registros de MEG,

su aplicación a registros de EEG debeŕıa ser prácticamente directa.

Aunque la selección de los parámetros de cada método (bandas espectrales

y valores de los parámetros de entrada a los algoritmos BSS y caracteŕısticas

de señal) se basó en la revisión realizada del estado del arte, es posible que

variaciones en estos valores puedan alterar los resultados del procesado. Es

más, otras medidas de caracteŕısticas de señal (Hornero et al., 2009b; Stam,

2005) o conectividad (Dauwels et al., 2010; Pereda et al., 2005) podŕıan ser

también útiles en este tipo de análisis y debeŕıan ser evaluados.

En resumen, esta Tesis Doctoral ha evaluado algunos de los métodos más

comunes de BSS en el marco de diversas aplicaciones, incluyendo la com-

paración de los resultados de diversos algoritmos, el rechazo de artefactos,

el desarrollo de un preprocesado para mejorar la clasificación de sujetos y

la extracción adaptativa de ritmos cerebrales. La BSS es una parte esencial

de esta metodoloǵıa. Los resultados indican que la BSS puede ser extrema-

damente útil para ayudar en el análisis y estudio de la actividad basal de

MEG.



Acronyms

Aβ Amyloid β peptide.

APtP Peak-to-Peak Amplitude.

AD Alzheimer’s Disease.

AMUSE Algorithm for Multiple Unknown Signals Ex-

traction.

ANOVA ANalysis Of VAriance.

ApEn Approximate Entropy.

APOE Apolipoprotein E.

APP Amyloid Precursor Protein.

ASCII American Standard Code for Information In-

terchange.

AUC Area Under the ROC Curve.

BSS Blind Source Separation.

CA Cardiac Artefact.

CAT Computerised Axial Tomography.

cBSS Constrained Blind Source Separation.

CJD Creutzfeldt-Jakob Disease.

CLU Clusterin.

CNS Central Nervous System.

Coh(f) Spectral Coherence.

CR1 Complement Component (3b/4b) Receptor 1.

CSF CerebroSpinal Fluid.
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CSP Common Spatial Patterns.

ECG Electrocardiogram.

EEG Electroencephalogram.

eInfoMax Lee & Sejnowski’s Extended Information

Maximisation Algorithm.

EMD Empirical Mode Decomposition.

EOG Electrooculogram.

EPSP Excitatory Post-Synaptic Potential.

FA Factor Analysis.

FastICA Hyvärinen–Oja’s FastICA Algorithm.

FIR Finite Impulse Response.

fMRI Functional Magnetic Resonance Imaging.

GDA/FAST Global Deterioration Scale / Functional As-

sessment Staging.

HRé Rényi Entropy.

HSh Shannon Entropy.

HOS Higher-Order Statistics.

HPI Head-Position Indicator.

ICA Independent Component Analysis.

IMF Intrinsic Mode Function.

InfoMax Bell & Sejnowski’s Information Maximisation

Algorithm.

IPSP Inhibitory Post-Synaptic Potential.

JADE Joint Approximate Diagonalization of Eigen-

matrices.

KrE Kurtosis Excess.



Acronyms 343

LDA Linear Discriminant Analysis.

LeftA Left Anterior Region.

LeftC Left Central Region.

LeftL Left Lateral Region.

LeftP Left Posterior Region.

LZC Lempel-Ziv Complexity.

MCI Mild Cognitive Impairment.

MDL Minimum Description Length.

MEG Magnetoencephalogram.

MF Median Frequency.

MMSE Mini-Mental State Examination.

MRI Magnetic Resonance Imaging.

MRS Magnetic Resonance Spectroscopy.

NINCDS-ADRDA National Institute of Neurological and Com-

municative Disorders and Stroke – Alzhei-

mer’s Disease and Related Disorders Associ-

ation.

NMDA N -methyl-D-aspartate.

NMF Non-negative Matrix Factorisation.

OA Ocular Artefact.

P50Hz Power at the Line Frequency.

PEY ES Power near the Eyes.

PLF Power in Low Frequencies.

PCA Principal Component Analysis.

PET Positron Emission Tomography.

PICALM Phosphatidylinositol-binding Clathrin Assem-

bly Protein.

PLN Power Line Noise.
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PNS Peripheral Nervous System.

PSD Power Spectral Density.

PSDn Normalised Power Spectral Density.

PSEN1 Presenilin 1.

PSEN2 Presenilin 2.

RightA Right Anterior Region.

RightC Right Central Region.

RightL Right Lateral Region.

RightP Right Posterior Region.

RMS Root Mean Square.

ROC Receiver Operating Characteristic.

SampEn Sample Entropy.

SCI–JCR Science Citation Index – Journal Citation

Reports R©.

SD Standard Deviation.

Skew Skewness.

SNR Signal-to-Noise Ratio.

SOBI Second-Order Blind Identification.

SORL1 SOrtilin-Related receptor.

SOS Second-Order Statistics.

SpecEn Spectral Entropy.

SPECT Single Photon Emission Computed Tomogra-

phy.

SQUID Superconductive QUantum Interference De-

vice.

VaD Vascular Dementia.

VarSc Variance of the Scalp Distribution.

WT Wavelet Transform.
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sis of EEG background activity in Alzheimer’s disease patients with
Lempel-Ziv complexity and central tendency measure. Medical Engi-
neering and Physics, 28(4):315–322, 2006e.

D. Abásolo, R. Hornero, and J. Escudero. Non-linear analysis of the EEG
background activity in Alzheimer’s disease patients. In Book of ab-
stracts of the Third International Conference on Computational In-
telligence in Medicine and Healthcare (CIMED 2007) - Workshop
On Advances In Early Diagnosis And Care For Alzheimer’s Disease,
page 14, 2007a.

345



346 Bibliography

D. Abásolo, R. Hornero, and J. Escudero. Non-linear analysis of the EEG
background activity in Alzheimer’s disease patients (Special Invited
Session). In Book of abstracts of the Third International Conference
on Computational Intelligence in Medicine and Healthcare (CIMED
2007) - Workshop On Advances In Early Diagnosis And Care For
Alzheimer’s Disease - Special invited Session, page 19, 2007b.

D. Abásolo, J. Escudero, R. Hornero, P. Espino, and C. Gómez. Fractal
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the auto mutual application rate of decrease to biomedical signals. In
Proceedings of the 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 2137–2140, 2008b.

J. Escudero, R. Hornero, D. Abásolo, J. Poza, and A. Fernández. Applying
Independent Component Analysis to the Artifact Detection Problem
in Magnetoencephalogram Background Recordings. In N. Wickramas-
inghe and E. Geisler, editors, Encyclopedia of Healthcare Information
Systems, volume I, pages 84–92. IGI Global, U.S.A., 2008c.

J. Escudero, R. Hornero, J. Poza, D. Abásolo, and A. Fernández. Assess-
ment of classification improvement in patients with Alzheimer’s dis-
ease based on magnetoencephalogram blind source separation. Arti-
ficial Intelligence in Medicine, 43(1):75–85, 2008d.

J. Escudero, R. Hornero, and D. Abásolo. Interpretation of the auto-mutual
information rate of decrease in the context of biomedical signal anal-
ysis. Application to electroencephalogram recordings. Physiological
Measurement, 30(2):187–199, 2009a.



352 Bibliography

J. Escudero, R. Hornero, D. Abásolo, and A. Fernández. Blind source sep-
aration to enhance spectral and non-linear features of magnetoen-
cephalogram recordings. Application to Alzheimer’s disease. Medical
Engineering and Physics, 31(7):872–879, 2009b.

J. Escudero, R. Hornero, D. Abásolo, and A. Fernández. Magnetoenceph-
alogram preprocessing with blind source separation algorithms to im-
prove the classification of Alzheimer’s disease patients. In Proceedings
of The 6th International Workshop on Biosignal Interpretation, pages
224–227, 2009c.

J. Escudero, R. Hornero, D. Abásolo, J. Poza, and A. Fernández. Comparison
of the decompositions estimated using five blind source separation al-
gorithms for magnetoencephalogram background activity. In Proceed-
ings of The 6th International Workshop on Biosignal Interpretation,
pages 136–139, 2009d.

M. Fatourechi, A. Bashashati, R. Ward, and G. Birch. EMG and EOG
artifacts in brain computer interface systems: a survey. Clinical Neu-
rophysiology, 118(3):480–494, 2007.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

R. Ferenets, T. Lipping, A. Anier, V. Jäntti, S. Melto, and S. Hovilehto.
Comparison of entropy and complexity measures for the assessment
of depth of sedation. IEEE Transactions on Biomedical Engineering,
53(6):1067–1077, 2006.

A. Fernández, R. Hornero, A. Mayo, J. Poza, P. Gil-Gregorio, and T. Or-
tiz. MEG spectral profile in Alzheimer’s disease and mild cognitive
impairment. Clinical Neurophysiology, 117(2):306–314, 2006.

A. Fernández, J. Quintero, R. Hornero, C. Gómez, J. Escudero, P. Zuluaga,
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Española de Ingenieŕıa Biomédica, pages 37–40, 2008a.
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of spectral based measures from MEG background oscillations in Alz-
heimer’s disease. Medical Engineering and Physics, 29(10):1073–1083,
2007b.

J. Poza, R. Hornero, J. Escudero, A. Fernández, and C. Gómez. Anal-
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pages 61–64, 2009.

C. Purnell, S. Gao, C. Callahan, and H. Hendrie. Cardiovascular Risk Factors
and Incident Alzheimer Disease: A Systematic Review of the Litera-
ture. Alzheimer Disease & Associated Disorders, 23(1):1–10, 2009.

S. Rampp and H. Stefan. On the opposition of EEG and MEG. Clinical
Neurophysiology, 118(8):1658–1659, 2007.

B. Reisberg. Functional assessment staging (FAST). Psychopharmacology
Bulletin, 24(4):653–659, 1988.

C. Reitz and R. Mayeux. Endophenotypes in normal brain morphology and
Alzheimer’s disease: A review. Neuroscience, 164(1):174–190, 2009.

J. Richman and J. Moorman. Physiological time-series analysis using approx-
imate entropy and sample entropy. American journal of physiology.
Heart and circulatory physiology, 278(6):H2039–H2049, 2000.



364 Bibliography
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