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Abstract 

 

With the recent introduction of pine-wood nematode (PWN), Bursaphelenchus 

xylophilus (Steiner & Bührer) Nickle (Nematoda: Aphelenchoididae), in Europe, measures 

to contain the disease are urgent. Human activity has proven to be the primary mechanism 

of spread of the disease over long distances, but knowledge of the dispersion to local scale 

is just as important. Knowledge of the vector population dynamics therefore plays a key role 

here. Knowing where the insects are going to disperse, which hosts will it colonize, how it 

will disperse and how far will be able to reach even when the beetles are without food, all 

together with a good capture device, it will enable the development of biological control 

techniques such as mass trapping or even the early detection of disease. 

Transmission of the causing agent of the pine wilt disease, the PWN, between Pinus 

pinaster Aiton trees in Portugal is known to occur either during pine sawyer, Monochamus 

galloprovincialis (Olivier; Col.: Cerambycidae), adult feeding on twigs of healthy trees or 

during female oviposition on branches and trunks of dying or dead trees. Still, the disease 

does not affect other potentially susceptible local pine species such as Pinus pinea L. Several 

experiments evaluated the suitability of P. pinea as a host for M. galloprovincialis feeding, 

oviposition and progeny development. Feeding responses were first studied in two-choice 

experiments pairing P. pinea twigs with P. pinaster, P. halepensis Miller, P. sylvestris L., P. 

uncinata Miller, and P. nigra Arnold. Another test evaluated the effect on feeding of 

increased dosages of limonene applied to P. pinaster twigs. Oviposition preferences by M. 

galloprovincialis females between P. pinaster, with either intact or manipulated bark 

thickness, P. pinea and P. sylvestris were also studied in two-choice tests. Finally, suitability 

of P. pinea as a substrate for the development of M. galloprovincialis offspring was tested. 

Results showed that P. pinea could be an acceptable host for the pine sawyer feeding under 

lab conditions. 

 Long-distance transportation of goods containing nematode-infested beetles to 

distant locations constitutes the main pathway for the expansion of the disease. 

Management actions involving early detection and eradication under this scenario are 

critical to stop pathogen’s spread. Although the dispersal of mature M. galloprovincialis have 

been successfully tracked down using commercial baits and traps, dispersal behavior and 

potential of immatures is poorly understood. Several physiological traits related to 



dispersal and maturation were studied for newly emerged M. galloprovincialis during 

several shoot-feeding spans. Similarly, field survival and dispersal capabilities of immature 

insects were studied by mark-release-recapture studies in which the individuals were 

released from an area lacking hosts and recaptured in a small-sized pine stand. Results 

showed that insects reached sexual maturity after feeding for 12-13 days, marked by 

changes in their gonads. Monochamus galloprovincialis emerged with enough lipid and 

muscular fractions for sustaining dispersal, regardless of size, age or sex. Micro-CT images 

made it possible to create cross-sections of insects at different developmental stages, 

showing the wing muscular structures. Unfed adults survived 12 days on average in the lab 

(6-20 days). Based on the fitted negative-exponential dispersal model, immature insects 

were expected to disperse up to 3109 m from their release point in the middle of a crop field 

to a nearby pine stand. Overall, our results show that newly emerged M. galloprovincialis 

are able to sustain long flights in the field without requiring hosts for feeding. Furthermore, 

our results complement previous findings and can be integrated in the design and 

implementation of management measures in high risk areas or where PWD has been 

recently reported. 

 

The spread of the PWN, is greatly constrained to the dispersal of its vectors, long-

horned beetles of the Monochamus genus. Disease spread at global and regional scales has 

been mainly caused by human-mediated transport, yet at a local scale, the short- and long-

distance dispersal behaviour of the beetles determine colonization dynamics. Three mark-

release recapture experiments using commercial traps and lures allowed the 

parametrization of the dispersal kernel under two landscape fragmentation scenarios for 

the only known European PWN vector, M. galloprovincialis. The respective release of 171 

and 353 lab-reared beetles in continuous pine stands in 2009 and 2010, resulted in 36 and 

28% recapture rates, yet, at a fragmented landscape in 2011, only 2% of the released 473 

individuals could be recaptured. Recaptures occurred as soon as 7-14 days after their 

release, in agreement with the requirement of sexual maturation to respond to the 

pheromone-kairomone attractants. Data from the first two experiments was fitted to one 

mechanical and two empirical dispersal models, from which the distance dispersal kernels 

could be computed. Derived estimated radii enclosing 50% and 99% of dispersing M. 

galloprovincialis under continuous pine stands ranged between 250-532m and 2344-

3495m depending on the replicate and choice of model. Forecasted recaptures in 2011 

resulted in a moderate underestimation of long-distance dispersal, probably influenced by 

the high degree of habitat fragmentation. In addition, trapping parameters such as the 
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effective sampling area (0.57-0.76ha) or the seasonal sampling range (426-645m) could be 

derived. Observed results, derived dispersal kernels and trapping parameters provide 

valuable information for the integrated pest management of PWD. Furthermore, estimated 

dispersal distances indicate that ongoing clear-cut measures for eradication in the 

European Union are likely ineffective in stopping the vectors dispersal. 

Understanding dispersal behaviour of these beetles is key to a sound disease 

management. LiDAR techniques were used to describe habitat features that may affect 

distribution of sexually mature and immature individuals. Predictive models for seven 

dasometric variables were developed and calibrated using reference field data collected in 

20m-fixed radius circular plots. A mark-release-recapture assay was carried out by placing 

sixty-four traps in the centers of 4 ha square cells in a regular grid and releasing 223 insects 

(111 immature and 112 mature) in the center of the plot. Seven stand variables at 200 x 

200m scale were fitted to a GLM for analyzing beetle habitat selection. Data from recaptures 

was fitted to 2Dt and negative exponential empirical dispersal models, from which the 

distance dispersal kernels could be computed. The % of forest canopy cover (FCC) had a 

significant positive effect on the amount of recaptured native insects, whereas distance and 

mean height of the regrowth was negatively correlated to the distribution of lab-released 

insects. A significant edge effect for the native captures of native insects was found in the 

edge traps. There were not differences in habitat selection between mature and immature 

insects neither were in the dispersal pattern for both kind of individuals. Estimated radii 

enclosing 50% and 99% of immatures was 347-365m and 1445-2013m respectively and 

317-324 and 1282-1561m for 50% and 99% of matures respectively. Longest tail, by the 

2Dt model, estimated that 0.001% of the immature M. galloprovincialis would fly over 5000 

m distance. Our results contribute to understanding the influence of forest structure on 

M.galloprovincialis abundance at patch-scale, which would help to develop strategies for 

disease control trough forest management. 

 

Traps and attractants have been optimized for the capture of M. galloprovincialis, 

increasing the possibility of developing methods of lowering its population in PWD affected 

areas with the aim of either eradicating the disease or containing the spread of it. In order 

to evaluate the effectiveness of such mass trapping campaigns, two sets of experiments 

were carried out in 2010 and 2013. The release of 353 lab-reared beetles in the 

experimental area of 2010 facilitated the evaluation of mark-release-recapture (MRR) 

procedures in the calculation of population abundance estimates using the POPAN 

formulation of the Jolly-Seber model, a pre-requisite for the assessment of mass-trapping. 



Abundance estimates derived from best fitting parameters fell within one standard error of 

the real figures, proving the method appropriate. In 2013 four trap densities were tested in 

six 36 ha plots. In order to evaluate the removed proportions, the local beetle population 

was estimated in a contiguous 260 ha study area. A superpopulation of 21319 individuals 

could be calculated from the MRR data, corresponding to a rough density of 82 individuals 

per hectare. Evaluated trapping densities removed 4.66, 20.50, 33.33, and 59.80% of M. 

galloprovincialis population at 0.02, 0.11, 0.25 and 0.44 traps ha−1 respectively, thus the 

estimated 95% removal would occur at 0.82 traps ha−1. These results suggest that 

substantial reduction of M. galloprovincialis abundances might be achieved via mass 

trapping, and that this represents a very promising management method for the 

containment or eventual eradication of B. xylophilus at the areas affected by the PWD. 
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Resumen 

 

Con la reciente introducción del “nematodo del pino” en Europa, la necesidad de 

medidas para la contención de la enfermedad son de carácter obligatorio. La actividad 

humana ha resultado ser el primer mecanismo de dispersión de la enfermedad a larga 

distancia, pero el conocimiento de la dispersión de forma local es igual de importante a la 

hora de ver qué medidas tomar. El conocimiento de las dinámicas de la población del vector 

por tanto aquí juega un papel clave. Conocer cuál es su preferencia de hospedantes, cómo y 

cuánto se va a dispersar y a qué distancia sería capaz de llegar aun cuando se encuentre sin 

alimento, junto con un buen dispositivo de captura, van a posibilitar el desarrollo de 

técnicas de control biológico como captura masiva o una detección temprana de la 

enfermedad.  

 

La transmisión del agente causante de la enfermedad del marchitamiento del pino, 

Bursaphelenchus xylophilus (Steiner y Bührer) Nickle (Nematoda: Aphelenchoididae), entre 

árboles  de Pinus pinaster Aiton en Portugal se sabe que es provocado ya sea durante  la 

alimentación de Monochamus galloprovincialis (Olivier; Col .: Cerambycidae) adultos en las 

ramas de los árboles sanos o durante la oviposición de las hembras en las ramas y troncos 

de los árboles moribundos o muertos. Sin embargo, la enfermedad no afecta a otras especies 

de pino locales potencialmente susceptibles tales como Pinus pinea L. Varios experimentos 

han evaluado la idoneidad de P. pinea como especie aceptable para la alimentación, 

oviposición y desarrollo de la progenie de M. galloprovincialis. Las respuestas de 

alimentación del vector fueron estudiados por primera vez en dos experimentos de doble 

elección emparejando ramillos de  P. pinea con P. pinaster, P. halepensis Miller, P. sylvestris 

L., P. uncinata Miller, y P. nigra Arnold. Otro ensayo evaluó el efecto sobre la alimentación 

de altas dosis de limoneno aplicadas a ramillos de P. pinaster. Las preferencias de 

oviposición de las hembras de M. galloprovincialis entre P. pinea , P. sylvestris y P. pinaster, 

este último con el grosor de la corteza intacta o reducida, se estudiaron también en un 

ensayo en el que se sometía al insecto a elegir entre los hospedantes emparejados dos a dos. 

Por último, fue probado la idoneidad de P. pinea como posible sustrato para el desarrollo de 

la descendencia de M. galloprovincialis. Los resultados mostraron que P. pinea podría ser un 

anfitrión aceptable para el perforador del pino al menos bajo condiciones de laboratorio. 



El transporte a larga distancia de mercancías que contengan material infestado de 

Monochamus con nematodo constituye la principal vía de expansión de la enfermedad. 

Acciones de manejo que contemplen la temprana detección y erradicación bajo este 

escenario son críticas para poder detener la difusión del patógeno.Aunque la dispersión de 

insectos vectores maduros puede ya ser exitosamente seguida mediante el uso del cebo 

comercial y trampas eficaces, el comportamiento de dispersión de los insectos inmaduros 

todavía es desconocido. Se estudiaron varios rasgos fisiológicos relacionados con la 

dispersión de los recién emergidos Monochamus durante varios intervalos de alimentación. 

De esa misma manera se estudió la supervivencia y capacidad de dispersión en campo de 

los inmaduros mediante técnicas de marcado-liberación-recaptura. De esta manera se 

liberaron en un área desprovista de posibles hospedantes y se recapturaron en una pequeña 

masa de Pinus pinaster mediante trampas cebadas multiembudos. Los resultados de este 

estudio mostraron que los insectos alcanzan su madurez sexual después de alimentarse 

durante 12-13 dias, lo cual se puede apreciar por los cambios en sus gónadas. Monochamus 

galloprovincialis emergieron con suficiente cantidad de lípidos y fracción muscular para 

mantener el vuelo de dispersión, sin afectarles el tamaño, edad o sexo. 

Imágenes con Micro-CT hicieron possible la creación de secciones del insecto en diferentes 

estadíos de desarrollo, pudiéndose observar las estructuras de musculatura alar.Los 

insectos sin alimentar sobrevivieron hasta los 12 días de media en el laboratorio (6-20 dias).  

Basándonos en el ajuste de un modelo negativo exponencial, los inmaduros pudieron 

dispersarse hasta los 3109m desde su punto de liberación en el medio de un campo de 

cultivo cercano a una pequeña masa de pinar. En conclusión, nuestros resultados muestran 

que los insectos recién emergidos son capaces de volar largas distancias en campo sin 

requerir ningún hospedante para alimentarse. Además, nuestros resultados complementan 

estudios previos de dispersión y pueden ser integrados en el diseño e implementación de 

medidas de  manejo en áreas con alto riesgo o donde la enfermedad haya sido recientemente 

introducida. 

La propagación del nematodo de la madera del pino (NMP), Bursaphelenchus 

xylophylus (Nematoda; Aphelenchoididae), se ve limitada en gran medida a la dispersión de 

sus vectores, los cerambícidos del género Monochamus. La enfermedad del nematodo del 

pino se ha extendido a escala mundial y regional principalmente por el accidental 

transporte humano. Sin embargo, a escala local, el comportamiento de dispersión de los 

escarabajos va a determinar la dinámica de la colonización. Tres experimentos con técnicas 

de marcado-captura-recaptura, utilizando trampas comerciales y señuelos permitieron la 

parametrización del núcleo de dispersión bajo dos escenarios de fragmentación del paisaje 
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para el único vector europeo conocido, M. galloprovincialis. La respectiva liberación en 2009 

y 2010 de 171 y 353 escarabajos criados en laboratorio y liberados en un área de rodales 

continuos de pino, se tradujo en 36 y 28% de tasas de recaptura. Sin embargo, en 2011en 

un paisaje fragmentado, de los 473 insectos liberados  sólo el 2% de los individuos pudo ser 

recapturado. Las recapturas se produjeron como pronto a los 7-14 días después de su 

liberación, lo que puede ser debido a su requisito de maduración sexual para responder a 

los atrayentes de feromonas-kairomona. Los datos de los dos primeros experimentos se 

ajustaron a un modelo mecánico y a dos modelos empíricos de dispersión, de los cuales la 

distancia de los núcleos de dispersión pudo ser calculada. Los radios de distancia derivados 

de las estimaciones que engloban el 50% - 99% de la dispersión de M. galloprovincialis bajo 

rodales continuos de pino oscilaron entre 250-532m y 2344-3495m dependiendo de la 

réplica y la elección del modelo. Las recapturas obtenidas en 2011 dieron lugar a una 

moderada subestimación de dispersión a larga distancia, probablemente influenciado por 

el alto grado de fragmentación de los hábitats. Además, los parámetros de captura, tales 

como el área efectiva de muestreo (0.57-0.76ha) o el intervalo de muestreo estacional (426-

645m) pudieron también ser obtenidos. Los resultados observados, ya sean los kernels de 

dispersión como los parámetros de captura proporcionaron información valiosa para el 

manejo integrado de la enfermedad del nematodo del pino. Por otra parte, las distancias de 

dispersión obtenidas indican que las medidas vigentes de la Unión Europea consistentes en 

la realización de clareos probablemente sean una medida ineficaz para detener la 

dispersión de sus vectores. 

Trampas y atrayentes se han optimizado para la captura de M. galloprovincialis, 

aumentando la posibilidad de desarrollar métodos de reducción de su población en las 

zonas afectadas PWD con el objetivo de erradicar la enfermedad o contener la propagación 

de la misma. Con el fin de evaluar la eficacia de este tipo de campañas de trampeo masivo, 

dos series de experimentos se llevaron a cabo en 2010 y 2013. La liberación de 353 insectos 

criados en laboratorio en la zona experimental de 2010 facilitó la evaluación de la 

metodología de marcado-captura-recaptura (MCR) para el cálculo de las estimaciones de 

abundancia de la población mediante la formulación Popan del modelo Jolly-Seber, un 

requisito previo para la evaluación de la captura masiva. Las estimaciones de abundancia 

derivados de los mejores parámetros de ajuste estaban  dentro del intervalo de las cifras 

reales, lo que demuestra que el método es adecuado. En 2013 cuatro densidades de trampas 

se pusieron a prueba en seis  parcelas de 36 hectáreas cada una. Con el fin de evaluar las 

proporciones de insectos eliminados, la población de Monochamus  locales se estimó en un 

área de estudio contigua de 260 hectáreas. Se calculó haber una superpoblación de 21319 



individuos a partir de los datos de MCR, que corresponde a una densidad aproximada de 82 

individuos por hectárea. Las densidades de trampeo evaluadas extrajeron el 4.66, 20.50, 

33.33, y 59.80% de la población de M. galloprovincialis en 0.02, 0.11, 0.25 y 0.44 trampas 

ha-1, respectivamente, por lo que la eliminación de aproximadamente el 95% de captura se 

produciría en 0.82 trampas ha-1. Estos resultados sugieren que una reducción sustancial de 

la abundancia de M. galloprovincialis podría lograrse a través de la captura masiva, y que 

esto representa un método de gestión muy prometedor para la contención o erradicación 

futura de B. xylophilus en las zonas afectadas por la enfermedad del nematodo del pino.
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Introduction 

  

 

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN), 

Bursaphelenchus xylophilus Nematoda: Aphelenchoididae (Steiner et Buhrer) Nickle, and it 

is considered as one of the biggest threats to Pinus spp. forests worldwide(Vicente et al. 

2012; Futai 2013). Considered indigenous to North America, B. xylophilus follows a 

saprophytic lifestyle colonizing dead or dying coniferous trees. However, its introduction to 

new regions worldwide (i. e. Japan, Korea, China and Taiwan in the Far East, and Portugal 

and Spain in Europe) has resulted in significant economical and environmental damage 

(Vicente et al. 2012).The first incidence of PWD was reported in Japan in 1905 (Yano 1913), 

but B. xylophilus was not identified as the causal agent of the disease until 1971, when 

Kiyohara and Togushige demonstrated the pathogenicity of the nematode by inoculating 

25-year-old Pinus densiflora (Siebold & Zucc) with it, and observind the characteristic wilt 

symptons (Kiyohara and Tokushige 1971). Cerambycid beetles of the genus Monochamus 

(Coleoptera: Cerambycidae) have beeen reported as the sole vectors of the PWN, although 

other members of Bursaphelenchus are found associated with beetles belonging to 

Scolytinae, Curculionidae, Cerambycidae and Buprestidae (Futai, 2015). So far, the list of 

PWN vectors, include M. alternatus  in East Asia (Mamiya and Enda 1972) M. saltuarius in 

Japan (Sato et al. 1987), M. caroliensis in North America (Linit et al. 1983), and M. 

galloprovincialis  in Portugal (Sousa et al. 2001) 

In 1984, the PWN was detected in a shipment of wood from North America upon its 

arrival in Finland. Because of this, and in order to avoid the spread of the disease along 

Europe, European authorities obliged to carry out more rigorous inspections at sea ports, 

in particular, wood products coming from East Asia. In 1985 Finland restricted the 

importation of conifer chips shipped from the USA and Canada. Other Nordic countries 

acted similarly, and the EPPO recommended the prohibition of the import of softwood 

products from countries with PWN presence to Europe. Both, B. xylophilus and its vectors, 

were classified as a quarantine organism of class “A-1” by the European and Mediterranean 

Plant Protection Organization (OEPP/EPPO 1986). Despite the dedicated and concerted 

actions of government agencies, the PWD continues to spread (Zamora et al. 2015). 

In 1999 PWD was observerd for the first time in Europe on Pinus pinaster Aiton trees 

at two sites approximately 3 km from each other, Marateca/Pegoes and Vale de Landeira 



located in the area of Setubal (Portugal;Mota et al. 1999),. The work carried out by Sousa et 

al. (2001) in PWN infested areas in Portugal, resulted in the capture of 69 M. 

galloprovincialis; 54% of them B. xylophilus; between a few hundred and a few thousand per 

insect. As soon as the PWN was detected, containment measures were immediately applied 

through the National Eradication Programme for the Pinewood Nematode Control 

(PROLUNG). Portuguese authorities were initially aiming at stopping the spread of the 

disease within an area of 30 km in radius from Setúbal. During the first years, the disease 

was succesfully contained within this demarcated area. Yet, the actions carried out to 

eradicate the PWN did not succeed. The current situation remains worrying: the whole of 

Portuguese territory is considered a demarcated zone since 2008, due to the absence of 

guarantee of the existence of free zones inside 

  

 

Figure 1. Distribution of PWD in the Iberian Peninsula. Infested regions within Portugal highlighted in red, and the 

intensive sampling border-buffer in orange. Background images represent raster images of conifer land coverage 
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An official contingency plan against the PWD, headed by the Spanish Ministry of 

Environmental Affairs in agreement with the European Union launched preventive 

measures in 2008. As a consequence of systematic sampling along the Portuguese border 

and within the national territory, B. xylophilus has been detected in four instances in Spain. 

In all cases, a small number of trees were found to held the PWN, and eradication measures 

have been taken in each of the foci. The first outbreak reported was in Villanueva de la Sierra 

(Cáceres, Extremadura) in 2008 (OEPP/EPPO 2010a), and was recently considered 

eradicated. A second positive tree was found in As Neves (Pontevedra ,Galicia) in 2010 

(OEPP/EPPO 2010b); then in 2012, a declining P. pinaster tree was found at Valverde del 

Fresno (Cáceres, Extremadura)(OEPP/EPPO 2012a), while the last one was reported in 

Sancti-Spíritus (Salamanca, Castilla y Leon) on an isolated multi-species stand(OEPP/EPPO 

2014), yet, the nematode was retrieved from samples taken on a Pinus radiata D. Don 

(Zamora et al. 2015). All four foci were located close to the Portuguese border (Figure 1). 

There is a clear risk of spread of the PWN into Spanish territory from Portugal, especially in 

the northern half of the Portuguese border, where many pine stands expand towards both 

sides of the frontier. The expansion of the PWN’s range may come both as a result of natural 

spread and as a consequence of human mediated dispersal (Robinet et al. 2011). A very 

important timber trade occurs between the two countries, and not surprisingly, two of the 

PWD foci in Spain have been found in the vicinities of wood mils. Yet, although PWN might 

be present in the wood, M. galloprovincialis plays a fundamental role in the establishment 

of the invasive species. There is an urgent need to halt the spread of PWD in Spain, as the 

country serves as a preventing further spread to other European countries, where the 

climatic conditions, the presence of M. galloprovincialis, and of several highly susceptible 

pine species might generate catastrophic damages.Soliman et al. (2012)have resently 

estimated a conservative 11.9 billion € loss caused by PWD in Spain during the period 2008-

2030. Succesful integrated management methods of M. galloprovincialis may help reducing 

such losses.  

 

 

 

 



 Disease symptoms 
 

Pine wilt is a dramatic disease since it usually kills affected trees within a few weeks 

to a few months after infection. One of the current hypothesis on how such death may occur 

suggests that as nematodes multiply within the host pine trees, abnormal substances 

accumulate heavily around the pit mebranes of tracheid cells. The blockage of the water 

conduction results in "tracheid cavitation", i. e. the formation of air pockets in the water 

transport system (Futai 2013). As the infection proceeds, the cavitations increase and 

ultimately lead to the destructiuon of the water-conducting pathway. During this process, 

transpiration decreases, ultimately causing yellowing and wilting of the needles; the most 

visual signs of the disease. In susceptible trees, the nematodes develop into adults and 

translocate throughout the tree, feeding on parenchymatic cells, while they reproduce. If 

conditions are optimal for nematode development, internal host responses can be seen as 

soon as one to three days after infection (Melakeberhan and Webster 1990). 

Wilting progresses downwards from the top of the tree, one of the characteristics which 

allow to visually distinguish PWD from other needle diseases. Needle discoloration is 

usually the first symptom (Figure 2). Needles first turn to grayish green and then to a tanned 

brown color. An additional symptom, yet difficult to detect in situ, is the amount of oleoresin 

exudate, as the reduction and cessation of it matches with the onset of the disease. Yet, it 

has been shown that the development of the disease varies environmentmental factors, 

which also modify hosts’ susceptibility to PWN; high temperatures and water deficit in the 

growing season favors the intensity and spread of the disease (Pérez et al. 2008).  

  

Figure 2. Trees affected by the PWD in Portugal 
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 The Pine Wood Nematode: Bursaphelenchus xylophilus  
 

The genus Bursaphelenchus comprises mycophagus nematodes, mainly distributed in 

the northern hemisphere (Braasch et al. 1998). Bursaphelenchus xylophilus (EPPO A1 list: 

No. 158) was first described in the USA as Aphelenchoides xylophilus (Steiner and Buhrer 

1934). Later it was described again as Bursaphelenchus lignicolus, when it was recognized 

as the causal agent of PWD in Japan (Mamiya and Kiyohara 1972). Bursaphelenchus 

xylophilus is found mainly on Pinus spp. and can apparently use the dead wood of most pine 

species as a substrate for its development. However, only a limited number of host species 

are susceptible to be attacked as living trees. So far, the Asian P. bungeana, Zucc. ex Endl., P. 

densiflora Siebold & Zucc., P. luchuensis Mayr, P. massoniana Lamb. and P. thunbergii Parl (in 

their native habitats), and the European P. nigra Arnold (Inácio et al. 2015) P. sylvestris L., 

P. pinaster, (Evans et al. 1996) or even the introduced P. radiata Don (Zamora et al. 2015) 

in Spain, are the only known species to be affected by PWD as mature trees in the field. Many 

other species have been found to be damaged or killed by the nematode but only under 

experimental conditions (mainly as seedlings in greenhouses). Other conifers can also act 

as hosts (primarily Larix, Abies and Picea) but reports of damage are rare. In addition, a few 

isolated cases of affected Picea and Pseudotsuga trees have been reported in the USA (Malek 

and Appleby 1984). Within the EPPO region, P. sylvestris would be the species of Pinus most 

at risk in northern and central. 

 

 

Figure 3. Nematode Bursaphelenchus xylophilus causative of the PWD 

http://plpnemweb.ucdavis.edu/nemaplex/Taxadata/G145S1.HTM 



 Infection cycle of the pine wilt disease 
 

One of the main characteristics of the PWD cylcle is the close relationship between the 

developmental stages of the PWN and those of its vector beetles. A full knowledge of the 

relationships between these two organisms is necessary to understand the epidemic 

mechanism of the PWD. The nematode is transported between host trees almost exclusively 

by cerambycid beetles in the genus Monochamus (Linit; et al. 1983; Akbulut & Stamps, 

2012). Other families of beetles besides Monochamus have been shown to carry PWN, but 

none has been shown to transmit it (Linit et al. 1983; Kobayashi et al. 1984; Robertson et 

al. 2008). 

Two main phases are distinguished during the life cycle of B. xylophilus: the so-called 

propagative or mycophage phase, and the phytophagous or dispersive phase. These phases 

are mainly deriving from the type of transmission to the hosts: either by vector oviposition 

in stems of dead or dying trees during the propagative phase, or by the infection of host 

twigs while the vector beetles feed during the dispersion phase. The propagative phase can 

be held without the vectors’ presence and does not serve for the purpose of dissemination. 

The dispersal cycle starts with the formation of third and fourth-stage dauer larva (DL3 and 

DL4), which are morphologically different from L3 and L4 stages at the propagative phase. 

These are considered survival stages, with high starvation resistance, whereas DL4 larvae 

are only able to tolerate moderate dryness. When stimulated by the presence of the vector 

beetle, the DL3 molts to DL4, in preparation to board the vector. As the adult beetle emerges, 

the nematodes migrate and settle beneath the elytra or within the trachea of the beetles, 

which then transports them to another host (Kikuchi et al. 2011). Distribution of B. 

xylophilus on the body of M. galloprovincialis was studied by Naves et al. (2006b). They 

found nematodes in 11% of the larvae, 17% of pupae and 91% of callow adults; the highest 

number of nematodes was found in the thoracic region of the beetles. 

As mentioned, both dispersal stages are closely related to the development of the 

cerambycid vector (Mamiya 1976). When the beetles feed on branches of healthy trees, the 

nematodes emerge from the beetle's respiratory system and enter the trees through the 

feeding-wounds created by the beetles (Naves et al. 2007). On the other hand, once mature 

the insects will look for a dead or dying tree or trunk where to lay eggs, facilitating the 

establishement of the propagative phase on new hosts (Naves et al. 2007). Next, the beetle 

larvae feed several weeks in the cambial wood and then bore into the sapwood to 

overwinter. As the time of beetle emergence get closer, the nematodes aggregate around 
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the pupal chambers of their vectors, and when the beetle is preparing to emerge, the 

nematodes migrate to the beetle, closing the cycle.  

 

 

Figure 4. Interaction of the pine Wood nematode with sawyer beetles to cause pine wilt. (Kikuchi et al. 2011). 

  

These routes of transfer demonstrate the significance of the vectors in the life cycle of 

PWN as well as their central role in PWD epidemics. Beetles can be loaded with high 

numbers of PWN. On average 15 000 and up to 289 000 were found on M. alternatus 

(Mamiya and Enda 1972). Similarly, M. galloprovincialis was able to transfer up to 324 000 

nematodes to P. pinaster twigs, although the average transfer was of 25 813(Naves et al. 

2007). Total nematode load is apparently correlated with vector weight (Linit et al. 1983; 

Wingfield and Blanchette 1983). A study conducted with M. alternatus and M. saltarius, 

reported that PWN left their bodies for approximately 35 and 24 days of feeding 

respectively, reaching the peak scape during the second week after the emergence (Dong 

Soo Kim et al. 2009). Similarly, in the case of the European vector, M. galloprovincialis, the 

transmission occurs during the first 8 weeks after emergence, with transmission peaks 

recorded during the second and the sixth week (Naves et al. 2007). Accordingly, the 

knowledge of the whereabouts of the behavior of the vector beetles during this period of 

time plays a key role in the control of the disease.  



 

 Monochamus galloprovincialis 
 

Monochamus beetles inhabiting conifers constiute the principal confirmed and potential 

vectors of B. xylophilus (Akbulut and Stamps 2012). The genus Monochamus belongs to the 

subfamily Lamiinae within the coleopteran family Cerambycidae (Bense 1995). Of the more 

than 130 described species in the world, five are present in Europe, while two of them, 

Monochamus galloprovincialis (Olivier, 1795) and Monochamus sutor (Linnaeus, 1758), are 

in Spain (Figure 3). Elsewhere, M. alternatus Hope is the main vector in Japan, whereas M. 

carolinensis Olivier and M. scutellatus Say are known vectors in North America. In Europe 

however, M. galloprovincialis is to date the only vector of the disease (Sousa et al. 2001). Yet, 

its distribution in Europe overlaps with other Monochamus beetles, especially M. sutor, 

which is considered as one of the potential vector candidates if the PWD spreads 

northwards (Pajares et al., 2015). Monochamus sutor inhabit only in montane pine and fir, 

and in Spain was found only in the Pyrenees. 

Monochamus beetles are secondary insects that can attack only weakened or dying trees 

(Cesari et al. 2005). In fact, under normal circumstances, they provide very important 

ecosystem services, especially in forest biomass, where they act as primary decomposers 

and initiators of wood breakdown (Vives 2000; Saint Germain et al., 2004). However, many 

of the Monochamus spp. have been recorded as having non-pathogenic Bursaphelenchus 

spp. as associates. It is supposed, therefore, that most, if not all, species would also be 

capable of transmission of B. xylophilus to a greater or lesser extent. For example, European 

M. sutor have been shown to transmit the related B. mucronatus (Schroeder and Magnusson 

1992; Abelleira et al. 2015) and could potentially transmit B. xylophilus as M. 

galloprovincialis in Portugal or Spain, or as M. alternatus in Asia.  

Monochamus galloprovincialis is distributed through the coniferous forests of Europe, 

North Africa, Siberia, Caucasus and Mongolia (Vives 2000). At the Iberian Peninsula and the 

Balearic Islands, M. galloprovincialis can be found in stands of most of the pine species. 

Notably, its presences is rare in pure P. pinea L. stands, while it is altitudinally excluded from 

P. uncinata Miller natural stands, where it is substituted by M. sutor. Despite the wide 

distribution, until its role as the vector of PWN was discovered, very few studies had been 

conducted on its bio-ecology, as it was considered a secondary insect, involved in the 

decomposition of wood. However, the recent events have created the demand for deepening 

the knowledge on the PWN vector, and hence numerous scientists dedicate to its study.  
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This way, the life cycle of M. galloprovincialis has been widely studied. Monochamus 

galloprovincialis follows an univoltine life cycle in southern Europe while it might be 

semivoltine in the North, adults taking up to two years to emerge (Koutroumpa et al. 2009; 

Akbulut and Stamps 2012). Naves et al. (2008) reported that M. galloprovincialis beetles 

started to emerge in May in Portugal, peaking during July, while the last beetles emerged in 

September. In Spain the adults emerge from late May to mid August (Mas i Gisbert 2015). 

As they emerge, beetles fly towards fresh pine branches, where they feed on twigs for about 

10 to 20 days, before they reach sexual maturity (Naves et al. 2006a, 2008; Koutroumpa et 

al. 2008).  

 

 

Figure 5. Monochamus spp. present in the Iberian Peninsula 

 

So far immature attraction to feeding trees has not been linked to chemical attraction 

mediated by host terpenes (Álvarez et al. 2015b). Yet, the same stude showed that immature 

M. galloprovincialis are able to physiologically respond to host cues. Similarly, lab-bioassays 

failed to show cross attraction between immature and mature M. galloprovincialis (Ibeas et 

al. 2008). On the other hand, chemical cues, such as host and bark beetle kairomones are 

used by mature beetles looking for mates or breeding grounds (Ibeas et al. 2007; Pajares et 

al. 2004). In addition, at least one male produced pheromonal compound mediates 

aggregation in M. galloprovincialis and othe Monochamus beetles (Pajares et al. 2010; 

Pajares et al. 2013). These advances in the chemical ecology of PWN vector have helped 

improving the tools available for research and management of their populations.  

Female M. galloprovincialis ovoposit in bark crevices or in niches chewed through the 

bark, forming slit-like scars on recently dead or severely stressed trees (Naves et al., 2006b). 



After hatching (Figure 6a), larvae bore under the bark, feeding on phloem. At the end of the 

season, they mine into the sapwood sealing the entrance with a plug of frass, while they 

remain within a characteristic “L” shaped gallery (Figure 6b). They spend the winter in the 

form pupa or imago. Diapause apparently occurs during the fourth larval instar, after which 

pupation occurs, ultimately leading to emergence (Koutroumpa et al. 2008; Naves and 

Sousa 2008). 

 

  

Figure 6. (a) M. galloprovincialis larva recent eclosionated;  (b) "L "-shaped gallery  

 

 

Research on the bioecology of M. galloprovincialis has provided much data such as the 

nematode enters the vector and spread it again (Naves et al. 2007), PWN dynamics inside 

the vector, (Naves et al. 2006a), or reproduction of the beetle (Naves et al. 2006a, 2008; 

Ibeas et al. 2008; Koutroumpa et al. 2008). As new technologies develop, new possibilities 

to study the insects’ physiology arise. X-ray computed microtomography (micro-CT) is a 

non-destructive powerful tool that allowos visualizing details of the inner structures of 

beetles (Figure 7). Recently, the micro-CT with a high spatial resolution was considered as 

a potential tool for the morphological classification of insects (Alba-Tercedor and Caparrós 

2012; Alba-tercedor 2014) and therefore is a great tool to study insect morphology (Zhang 

et al. 2010; Li et al. 2011). This technique allows imaging of a small specimen with spatial 

resolution in the range 1–50 μm, values that fit well within the dimensions of the beetle. 

Such potential has allowed the anatomical study the developmet of organs directly involed 

with the ecology and behavior of M. galloprovincialis in the field, such as the reproduction 

system (Hubweber and Schmitt 2009), flight muscles and their evolution (Bozkurt et al. 

2007), energetic reservoirs in the shape of fat content or even the location of the inner 

organs (Zhang et al. 2010). 
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Figure 7. Three dimensional reconstruction of Monochamus galloprovincialis using X-ray computed 
microtomography. 

 

 Vector-host-pathogen relationship 
 

Monochamus beetles are secondary insects that only attack weakened or dying 

trees(Cesari et al. 2005). However, with the recent introduction of the PWN in Europe and 

Asia, the study of longicorn is considered to be helpful in clarifying the outbreaks and PWN 

epidemics and therefore, the knowledge of the relationship vector-host-nematode is of vital 

importance. 

  Insects host preferences show a strong heritable component and are thought to 

represent the suitability of hosts for larval survival (Thompson 1998). Suitability can 

depend upon a number of factors such as nutritional quality, host plant defense chemicals, 

prevalence of natural enemies or microenvironment (Thompson and Pellmyr 1991). 

Considering its role in the dispersion of the nematode, defining host spectrum and 

preference of M. galloprovincialis is of primary importance for forest management. 

Monochamus species are mainly Pinus feeders, but some may utilize Picea and Abies species 

as well. In Portugal, only P. pinaster has been found to be infested by the nematode, although 

other Pinus species (P. pinea and P. halepensis Miller) grow in the infested zone(Mota et al. 

1999; Naves et al. 2006b). High resistance to PWN was reported earlier for P. pinea (Evans 

et al. 1996), although recent results have reported only moderate resistance (Santos et al. 

2012). Several studies focused on the study of host preferences, reported that P. sylvestris 

L. is the most frequent host of M. galloprovincialis in Northern and Central Europe while its 

Southern and Mediterranean populations are more frequently collected on P. pinaster and 

P. halepensis (Francardi 2000; Naves et al. 2006b; Koutroumpa et al. 2009).  

Several environmental stimuli or events will affect the behavior of the insect, such 

as fires, availability of host material or even forest characteristics. Landscape structure and 



dynamics influence ecological processes (e.g., population dynamics, spatial distribution) of 

the organisms living in the landscape (Turner 1989; Wiens et al. 1993). However, 

mechanisms leading to habitat location by Monochamus sp. at larger scale are still largely 

unknown (Saint-Germain et al. 2004). The explosive technological advances and 

development in recent years enormously facilitates the detection and monitoring of pests 

(Work et al. 2011; Mueller et al. 2014). The importance of landscape structure and how 

organisms interact with spatial and temporal landscape heterogeneity has come to the 

forefront of ecology, and this perspective is making inroads into pest management as well. 

The recent incorporation of Light Detection and Ranging (LiDAR) techniques in forestry, 

may provide appropriate tools for the achievevement of this goal. The information obtained 

through the LiDAR, can be related to the main variables of woodland, such as the number of 

trees, basal area, standing volume, the mean square diameter, dominant height, foliar 

biomass or branch biomass, by relating them with LiDAR readings via statistical models. 

The availability of such LiDAR data repositories in Spain, justifies the implementation of 

these new forest resource mapping tehcniques. This way, the habitat of M. galloprovincialis 

can be better characterized and used to improve pest management strategies. 

 

 

 

Figure 8 .Point cloud image  from LiDAR 
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Pine Wilt Disease Management 
 

 History and management of the PWD 
 

Once introduced into a susceptible tree the control of B. xylophilus is very hard 

considering the options available so far. In the United States, PWD management is mainly 

achieved by the removal of symptomatic trees. In East-Asia, where the disease is much more 

devastating (Yoshimura et al. 1999), insecticide and nematicide treatments, biological 

control, and induced resistance using less virulent strains of PWN have been investigated. 

After the disease was found in Asia, the governments of the affected countries strengthened 

quarantine measures at ports of entry and established quarantine stations within the 

countries to prevent the movement of infected logs, lumber and wood products from 

infected to uninfected areas. In addtion, clear cutting and methyl bromide fumigation of pine 

trees killed by the PWN were implemented too(Ikeda 1984). Traps with attractant lures for 

monitoring the vector were developed and insecticide sprays or trunk injections have 

resulted in some success. However, such insecticide have resulted in harmful side effects to 

the environment. In addition, nematicide and insecticide treatment of trees are regarded as 

impractical, very expensive and ineffective due to the extensive areas of affected forests  

areas (Dwinell 1997), furthermore, many of these treatments have been removed due to 

their non-selective nature. 

A national regulatory control system is recommended to all EPPO countries for the 

detection, containment and eradication of B. xylophilus, yet allowing sufficient guarantees 

to export host commodities within and outside the region. The recommendations to prevent 

the introduction of B. xylophilus and its vectors cover plants and wood of all conifers, apart 

from Thuja plicata, from countries where the nematode occurs (OEPP/EPPO 2012b). It is 

also recommended that coniferous plants should be prohibited but that countries may 

choose whether to prohibit wood. If it is not prohibited, wood must have been heat treated 

to a core temperature of 56°C for 30 minutes. In the case of packing wood (crates, dunnage 

etc.), kiln drying could be accepted instead, whereas for particle wood, the alternative of 

fumigation is also acceptable. 

Since the detection of PWN in Europe, Portugal implemented an eradication 

program in the demarcated areas of that country. Yet, in 2008, the PWN was found at 65 of 

the 2,443 surveyed Portuguese locations (Ministry of Agriculture, Portugal, unpublished 

report). An outbreak in 2008 in Spain led the European Union to intensify control measures, 



especially in Portugal, where a demarcated area consisting of the sum of the infested area 

with the presence of widespread damage, was created over a belt 20 km around the border 

with Spain (Figure 2). Timber from Portugal must be subject to the conditions laid down in 

the Community Decision 2012/535 / EU.  

Due to the provisions of the Implementing Decision of the Commission 2012/535 / 

EU, Spain has undertaken the development of a national contingency plan to prevent the 

introduction and spread of PWN. Adopted measures include establishing protocols for the 

inspection of sawmills and wood industries, commercial shipments. In each of the declared 

PWD foci, all coniferous hosts were eliminated within a 3 km wide clear cut belt, in order to 

prevent further spread. In addition, traps were installed along the outer limit of the affected 

zone to capture the vector during its flight period. Periodic surveys, eradication and insect 

vector control actions are being conducted on the whole affected and buffer zone too 

(known as the demarcated area).  

 

  The nematodes can move actively within the wood tissues, and thus, it can leave one 

piece of wood to move into an adjoining piece (Wingfield and Blanchette 1983). However, 

without their vectors they are incapable of moving from one host tree to another. Infested 

wood is the most probable way of international transport of B. xylophilus, and the species 

has been intercepted in a number of occasions on sawn wood, round wood and wood chips 

imported into the EPPO region from the USA and Canada (Rautaapa 1986). The most likely 

pathway of introduction of B. xylophilus is when it is imported together with the insect 

vectors, which may then carry the nematodes to coniferous trees in the vicinity upon 

emergence (Robinet et al. 2009).  

In order to obtain practical information to enable the Standing Committee on Plant 

Health Union develop European scientific and health policy on the problem of PWN and 

submit them to the Commission for be incorporated as binding decisions. The spread of the 

disease, whether locally or worldwide, requires the study of biotic and abiotic factors that 

influence the disease agents (nematode and insect vector) are dispersed between stands. 
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 Monitoring the vector 
 

Direct attempts to control the pathogen resulted impractical in large areas so the 

management of the insect vectors seems a better strategy for dealing with the disease. Even 

though the human transport of infested wood is responsible for long-distance dispersal of 

the disease(Robinet et al. 2009, 2011), the beetle's flight activity and dispersal is also 

important when considering the spreading of PWD at a local scale. With the development of 

effective trapping devices such as modified multiple-funnel (Lindgren 1983; Álvarez et al. 

2015a), or cross-vane traps that are well suited for the catch of M. galloprovincialis and the 

development of a very attractive lure for Monochamus spp.(Pajares et al. 2004, 2010b; 

Álvarez et al. 2015b) the monitoring has now converted in an efficient managing tool. Traps 

provide now the possibility to be used not only for monitoring the insect vector but also for 

direct control of its population. The incorporation of the Teflon film seemed to be an 

important factor to gain highest beetle amounts while that for successful Monochamus spp. 

trapping, escape-proof dry collection cups either with insecticide or enlarged depth and 

Teflon film or water containing collection cups are required(Álvarez et al. 2015a). 

 

 

Figure 9. Modified multiple funnel with Teflon and 

enlarged cup 

 

Previously, short- and long distance dispersals by PWN vectoring beetles have been 

studied. Yet, without an effective trapping system, used methods were quite imprecise, 

Figure 10. Galloprotect 2D plus (α-pinene, pheromone 
and kairomone) 



resulting in few or poor results (Shibata 1986; Togashi 1990a; Fujioka 1993; Yoshimura et 

al. 1999; Robinet et al. 2009). A further advance in monitoring of Monochamus sp. occurred 

when the commercial M. galloprovincialis lure kit (Galloprotect 2D®,SEDQ S. L., Barcelona, 

Spain) was developed (Pajares et al. 2010a). This lure contains two bark beetle kairomones 

(ipsenol and 2-methyl-3-buten-2-ol) and the pheromone (2-undecyloxy-1-ethanol), and 

results highly attractive for both sexes of M. galloprovincialis (Pajares et al.,2010). These 

developments have in turn allowed carrying out demanding techniques such as mark-

release-recapture of M. galloprovincialis (Gallego et al. 2012; Mas i Gisbert et al. 2013; 

Torres-Vila et al. 2014), which represent a very useful methodology for the estimation of 

the population density, the study of the vectors’ dispersal behavior, or can potentially be 

used to provide key information of the nematode load carried by the vector, allowing early 

detection of infections. It might also provide a more proactive management strategy for the 

eradication or containment of the PWD using mass-trapping techniques or even opening up 

opportunities for integrating entomopathogenic fungi into PWD management (Alvarez-Baz 

et al. 2015).  

 

 

Figure 11. Numbered M.  galloprovincialis in a mark-capture-recapture assay 

 

Even so, while the research has been directed towards the development of highly 

attractive commercial lure for mature pine sawyers, none of the tested blends were 

successful in attracting immature pine sawyer adults (Álvarez et al. 2015b). This represents 

a serious handicap when the population dynamics of immature insects need to be studied.  
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According to Naves et al. (2007b) the nematode transmission in M. galloprovincialis is 

more frequent during the first 6 weeks after emergence. So, this is a crucial period to be 

considered when the spread of the disease is analyzed, since the dispersal behaviour of 

immature Monochamus will play a key role in the dynamics of disease expansion. However, 

in the case of immature M. alternatus, these disperse by flying randomly (Togashi 1990a), 

whereas mature adults are strongly attracted to volatiles emitted from dying or newly killed 

trees(Ikeda et al. 1980). These adults move by walking or short-range flights in the pine 

canopy concentrating in those dying trees where they mate and oviposit (Togashi 1990a, 

1990b), while that in the Iberian Peninsula a study with mature M. galloprovincialis seems 

that even if most of recaptures occurred close to the origin, some beetles could disperse at 

14 km from the release point (Gallego et al. 2012; Mas i Gisbert et al. 2013). Long-distance 

dispersal of PWN by beetle flight and the human transportation of pine logs infested with 

PWN and the insect vector both accelerate the spread of the PWD (Robinet et al. 2009). 

Local spread of the disease from infested pine stands to surrounding, un-infested pine 

stands is likely caused by long-distance dispersal by beetles. Accurate estimates of the flight 

capacity of this insect vector are required if we are to understand and predict the spread of 

PWD in Europe, and for managing the spread of the PWN in European forests developing 

new or improved tools to track vector activity and dispersal. 

On the other hand, the development of aforementioned new mapping techniques such 

as LiDAR, creates the possibility of producing high-resolution maps which could eventually 

lead to an earlier detection of pests (Mei et al. 2011). By combining LiDAR data with other 

information about an area’s vegetation, rainfall patterns and temperature, researchers can 

get a detailed picture about the characteristics of the micro-habitat preferences that could 

influence in the dispersion of the insects (Work et al. 2011). LiDAR techniques may be an 

interesting possibility to study the behavior and migration of insects, of relevance to 

ecology, agriculture and evolution (Brydegaard et al. 2009). Therefore, LiDAR techniques 

could lead to obtain the level of detail needed to model the activity of pests on a landscape-

scale and so, it can be relevant for planning and decision making. 

  

  



 

Main questions 
 

Shoot feeding and oviposition preferences (Chapter 1)  

 

 What is the host preference in the Iberian Peninsula? 

 Is Pinus pinea an acceptable host? 

 Can limonene act as a repellent for M. galloprovincialis? 

 Can M. galloprovincialis develop a progeny in Pinus pinea? 

 

Physiology and dispersal of immature Monochamus galloprovincialis 

(Chapter 2) 

 

 What is the M. galloprovincialis sex maturation period?   

 Do immature beetles have enough fat content and wing muscles to undertake 

sustained dispersal flight? 

 How long can recently emerged insects survive without eating? 

 How far can a newly emerged M. galloprovincialis disperse the in an area deprived 

of hosts? 

 

Monochamus galloprovincialis dispersal under continuous and 

fragemented pine stands (Chapter 3) 

 

 Which is the dispersal behaviour of M. galloprovincialis in a continuous stand? 

Which dispersal kernels describe best this behaviour? 

 How far can M. galloprovincialis disperse? Which is the probability for long distance 

dispersal events? 

 How is the dispersal patron in a fragmentated habitat? 

 Is there differences between the dispersal behaviour of M. galloprovincialis between 

sex and size of the individuals? 

 Can we parametrize the trapping effort? What is the effective sampling area of 

commercial traps and lures for M. galloprovincialis? And their seasonal sampling 

range? 
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Monochamus galloprovincialis abundance and dispersal in relation to 

stand characteristics (Chapter 4) 

 

 What is the influence of stand characteristics on tracking local populations of M. 

galloprovincialis? How do densities of the PWN vector vary within a continuous 

stand? 

 Which stand variables influence the distribution of released M. galloprovincialis in 

the pinewood? 

 Do mature and immature insects have different dispersion patterns? 

 

Monochamus galloprovincialis population reduction for PWD 

management (Chapter 5) 

 

 Is mark-released-recapture a valid method to estimate absolute population 

densities of Monochamus galloprovincialis? How precise are the estimates?  

 Do populations of M. galloprovincialis behave as open or as close? How does this 

affect the estimates? 

 Is mass trapping an effective control method for the insect vector? What is the 

optimal trap density? 
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Introduction 
 

Pine wilt disease was detected for the first time in Nagasaki (Japan) in 1905 (Yano, 

1913), but has spread since to most of Japan, east of China, Korea and Taiwan (Zhao et al., 

2008). Despite the widespread pine mortality caused, it took almost seven decades for the 

pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle 

(Nematoda: Aphelenchoididae), to be shown as the causal agent of the disease (Kiyohara T., 

1971). This nematode is originally associated with dead and dying conifers of North 

America where it lives as a saprophyte, but can cause a fatal wilting disease in susceptible 

host species, especially out of its natural range, and is now considered one of the most 

dangerous diseases that threaten conifers worldwide. PWN necessarily requires of an insect 

vector for being introduced into new hosts. Species of the genus Monochamus Dejean (Col.: 

Cerambycidae), a group of woodboring beetles that colonize dead, dying, or severely 

stressed woody plants, are the only demonstrated vectors of the PWN (Linit, 1988).  

In 1999, PWN was declared the agent causing death of Pinus pinaster Aiton trees in 

Setubal Peninsula (Portugal), some 20 Km south of Lisbon (Mota M., 1999). Studies soon 

demonstrated that Monochamus galloprovincialis (Olivier), a species widely distributed 

throughout Europe, and particularly in the Mediterranean region (Vives, 2000), was 

vectoring the disease (Sousa et al., 2001). The discovery and subsequent spread of PWN 

trough Portugal, and its recent occurrence in Spain affecting P. pinaster trees close to the 

Portuguese border (Abelleira et al., 2011), has created great concern in Europe.  

Life cycles of the nematode and its vector are closely linked (Linit, 1988; Togashi, 

2008). Eggs are usually deposited in bark crevices or in egg niches chewed by female M. 

galloprovincialis through the bark and forming slit-like scars on recently dead or severely 

stressed trees (Naves et al., 2006b). Larvae bore under the bark, feed on phloem, and mine 



into the sapwood at the end of the season. Their development is completed when they 

finally pupate in characteristic pupal cells located at the end of a U-form gallery within the 

sapwood (Bense, 1995). Juveniles of PWN aggregate in the xylem tissue surrounding these 

pupal cells and, after moulting to dauer larvae, climb onto newly formed callow beetles 

(Linit, 1988). After emergence during the following summer, imagines feed on young pine 

shoots in the crown of healthy trees, initially for sexual maturation, but they keep doing so 

for nutrition trough all their life. Primary transmission of nematodes into healthy trees 

occurs during this shoot feeding, but transmission can also occur during oviposition into 

dying or dead trees, in the so called secondary transmission. 

Interestingly, nematode infection and tree mortality in Portugal has been restricted 

to P. pinaster, whereas Pinus pinea L., which commonly occurs in the infested zone, has 

shown no symptoms so far (Naves et al., 2006a). High resistance to PWN had been reported 

earlier for P. pinea (Evans et al., 1996), although recent testing points towards just moderate 

resistance (Daub, 2008; Santos et al., 2012). Other pine species susceptible to PWN occur in 

the Iberian Peninsula (Naves et al., 2006b), that aided by the predominant Mediterranean 

climate could provide the required temperature range for disease development (Perez et 

al., 2008; Rutherford & Webster, 1987). Among possible reasons for trees escaping 

nematode infection, host rejection or avoidance by vector beetles during feeding or 

oviposition, or impaired or reduced progeny development may play a key role. Very few 

studies have been addressed to study host preferences by M. galloprovincialis among 

European pines. Naves et al. (2006b) found Pinus sylvestris L. to be significantly preferred 

by adult males in multiple choice feeding tests. Preference for this pine species over P. 

pinaster had been also found by Koutroumpa et al. (2009). Feeding on P. pinea, on the other 

hand, was reported to not differ from P. pinaster, P. radiata D. Don or P. halepensis Miller 

(Naves et al., 2006b). The same authors reported that M. galloprovincialis females laid 

significantly more eggs on P. sylvestris than in other tested species; on the other hand, very 

few eggs were laid on P. pinea and none of the larvae successfully developed to adult beetles. 

These facts suggest that even though P. pinea is accepted by M. galloprovincialis adults for 

feeding, it may be rejected by reproductive females. Limonene, the most abundant terpene 

of P. pinea (Santos et al., 2006), is a known feeding deterrent for other conifer insects such 

as Thaumetopoea pityocampa (Petrakis et al., 2005), Hylobius abietis or H. pinastri 

(Nordlander, 1990; Nordlander, 1991), and can also influence hosts choice by ovipositing T. 

pityocampa females (Tiberi et al., 1999). In relation to M. galloprovincialis, it has been 

suggested as one of the chemical compounds influencing host selection (Naves et al., 

2006b), as is the case for M. alternatus (Fan & Sun, 2006). 
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In this paper we report the results of six laboratory experiments aimed to 

determine: (i) the preferences of M. galloprovincialis for P. pinea as a feeding substrate 

compared to other Iberian pines; (ii) if limonene is a feeding deterrent to M. galloprovincialis 

(iii) the relative host preferences by ovipositing M. galloprovincialis females; and, (iv) the 

suitability of P. pinea for the development of the M. galloprovincialis progeny. Gathered 

results are discussed and considered within the frame of pine wilt disease etiology in 

Mediterranean pinelands.  

 

Materials and methods 
 

Insects, host material and experimental conditions 

 

 Tested M. galloprovicialis adults were obtained from P. pinaster bolts of naturally 

infested trees in 2009 and 2010 after forests fires in the vicinity of Arenas de San Pedro 

(Avila, Spain) and from P. sylvestris bolts of Tabuyo del Monte (Leon, Spain) in 2011. Upon 

emergence in the lab, insects were sexed and the length of their right elytrum was 

measured. Insects used for feeding bioassays were kept unfed for 1-3 days before used, 

whereas those for oviposition bioassays were fed with P. halepensis twigs for 2 weeks to 

allow for sexual maturation. In all cases, insects were kept in individual containers. All 

experiments were carried out under laboratory conditions (25 ºC; 15:09 L: D photoperiod). 

 Pine twigs of P. pinaster, P. uncinata, P. sylvestris and P. nigra trees used in the 

feeding experiments were collected at the clonal bank of the Spanish Ministry of Agriculture 

and Environment in Valsaín (Segovia; Spain). Pinus pinea twigs were obtained from trees at 

the seed orchard of the Autonomous Government of Castile and Leon in Tordesillas, 

(Valladolid; Spain). Pinus halepensis samples were collected from trees of the Meseta Norte 

provenance planted at Megeces (Valladolid, Spain). In all cases, used twigs were similar in 

age (2-3 years old), diameter (1 cm) and had been pruned from trees of similar age and 

characteristics. Upon collection, twigs were carried to the laboratory in plastic bags, ends 

were sealed with paraffin to prevent desiccation, kept at 5 ºC and used within 24h of their 

collection. Similarly, logs for the oviposition and developmental studies were harvested 

from nearby localities. These were 50 cm long and between 5 and 15 cm in diameter. Pinus 

pinea, P. pinaster and P. sylvestris stands in which felling was done, were located in 

Valladolid, Tabuyo del Monte and Saldaña (Palencia; Spain) municipalities respectively.  

 



Bioassay 1: Feeding preference tests between P. pinea and Pinus spp. 

Two-choice tests were carried out to study M. galloprovincialis adult feeding 

preference between P. pinea and P. halepensis, P. pinaster, P. uncinata, P. sylvestris and P. 

nigra. Each individual was presented a pair of test twigs, 15-20 cm long and one cm in 

diameter, arranged vertically 10 cm apart between each other, held upright on a Styrofoam 

platform and within a two-litre glass jar. Pairings were set using P. pinea as the control twig, 

and one of the other species as the test twig. For each host species pairing, ten replicates 

were set (five males and five females). Adults were allowed to feed for 60 hours and then 

each twig was wrapped with plastic film and feeding wounds were outlined with a 

permanent marker. As two types of feeding wounds could be identified on the bark of the 

twigs (regular feeding, i. e. wounds that regularly reached to the phloem and irregular 

feeding, i.e. wounds that reached the phloem patchily), and this could have been linked with 

different feeding preferences, each wound type was measured and analyzed independently. 

After unrolling the film, outlined areas were scanned and measured using the digital image 

analysis software ImageTool 3.0 (University of Texas Health Science Centre, S. Antonio, 

U.S.A.). The amount of fed bark (mm2) was used as the response variable for the analysis of 

host preference. 

Bioassay 2: Feeding preference test between P. pinea and P. pinaster 

To test for a possible positional bias in Bioassay 1 due to pair arrangement, a false 

10 cm long twig was built joining two 5 cm long twigs halves, one from P. pinea and another 

from P. pinaster. A metallic filament inserted into the pith connected both halves, and the 

central junction area was covered by parafilm. Size and bark thickness of both twig parts 

were as similar as possible. These false twigs were then laid horizontally on the bottom of 

the jars. Twenty-six replicates were bioassayed (13 with each sex). Sampling and 

experimental procedures were as in Bioassay 1.  

Bioassay 3: The effect of limonene on feeding 

To test for a possible feeding deterrent effect, three different concentrations of 

limonene were tested on 10 cm long P. pinaster twigs and 6-10 mm in diameter. The (+) 

isomer of limonene (97%, Sigma, St. Louis, MO), naturally occurring in the phloem of P. 

pinea (Santos et al., 2006), was dissolved in ether to give low (1 mg/g), medium (2 mg/g) 

and high (3 mg/g) dosages based on the dry bark weight. The low dosage corresponded to 

the natural concentration of limonene found in the phloem of P. pinea (Macchioni et al., 

2003). Different solutions were topically applied to one half of the twig, whereas the other 

only received the solvent. As in the previous assay, the central area between both parts was 
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covered with parafilm. For each test dosage, twenty-six replicates were evaluated. Sampling 

and experimental procedures were as before.  

Bioassay 4: Oviposition preferences between P. pinaster, P. pinea and P. sylvestris. 

Two-choice bioassays were carried out to evaluate oviposition preferences of M. 

galloprovincialis. Two 60 cm long logs were paired inside plastic boxes (ca. 704030 cm). 

The three combinations between P. pinaster, P. pinea and P. sylvestris initially had 15 

replicates each (Pairings I to III), although by the end of the experimental period some of 

the replicates had to be removed as no activity could be detected on them. To account for 

the influence of physical features of bark on the egg-lying preference by females, paired logs 

were selected to be as similar as possible in diameter and total bark thickness. Although no 

significant differences in total diameter could be found, bark thicknesses differed 

significantly, even if P. pinaster logs had their bark previously filed down in an attempt of 

evening bark thicknesses (Table 1). Two extra pairings (IV and V) were set comparing P. 

pinaster intact logs with P. pinea and P. sylvestris. These extra pairings had 20 replicates 

initially although, as before, some were removed from the analysis due to lack of activity 

(Table 1). Sexually-mature unmated M. galloprovincialis adults, one female and two males, 

were released into the centre of each box, and were allowed to move freely, mate and lay 

eggs during 4-7 days. Fresh P. halepensis shoots were also placed inside the boxes for adult 

feeding. After adults were removed, oviposition slits were detected and bark around was 

excised with a scalpel so number of eggs laid, or recently hatched larvae, and slits without 

eggs could be tallied. 

 

   Mean log diameter (mm)  SEM   Mean log bark thickness (mm)  SEM   

 n  P. pinaster P. pinea P. sylvestris P  P. pinaster P. pinea P. sylvestris P 

Pairing I 14  83.07±3.34 77.07±3.01  0.19  4.14±0.45 2.61±0.29  <0.01 

Pairing II 13   91.46±2.42 85.77±2.72 0.13   3.38±0.25 1.54±0.17 <0.01 

Pairing III 15  65.93±6.38  67.33±6.06 0.87  3.33±0.57  1.7±0.32 0.02 

Pairing IV 17  96.06±4.96 99.06±3.87  0.64  6.47±0.97 8.18±0.92  0.21 

Pairing V 18  108.83±6.99  108.22±5.96 0.95  8.39±1.26  4±0.76 <0.01 

Table 1. Mean and SEMs of diameter and bark thicknesses of logs used in the Bioassay 4. P, probability values of paired Welch’s two sample t-

tests.



 

 

Bioassay 5: Development of M. galloprovincialis progeny in P. pinea 

 In order to check whether the M. galloprovincialis offspring could complete its 

development from egg to adult in P. pinea, 12 logs, 50-60 cm long and ca. 10 cm in diameter, 

were placed in pairs within plastic boxes as above. One pair of mature M. galloprovincialis 

adults was released into each box, and was left to interact for one week. After this period, 

adults were removed, oviposition slits were recorded and laid eggs were left to hatch under 

laboratory conditions. Larval activity at each oviposition wound (i. e. frass occurrence) was 

tracked during the first two weeks after egg laying. Then, larval activity was recorded for 

the entire log, as it was not possible to assign to any particular slit. Six months after 

oviposition, logs were transferred to a cool chamber (5°C) for three weeks to induce 

diapause (Koutroumpa et al., 2008). Subsequently, development was left to resume in the 

laboratory to adult emergence. Upon emergence, fifteen months after oviposition, logs were 

debarked to check for larval entries into the xylem to pupate. Finally, logs were cut in pieces 

and larvae still alive within the wood were recorded.  

Bioassay 6: Offspring performance in P. pinea vs. P. sylvestris 

Overall performance of M. galloprovincialis on P. pinea and P. sylvestris logs was 

compared. Eight 60 cm long logs of each species, similar in diameter (11 ± 0.9 SEM and 

10.5 ± 1.2 SEM cm for P. pinea and P. sylvestris respectively; t=-0.394, p=0.700), were 

arranged in pairs inside plastic boxes (ca. 704030 cm). A couple of sexually mature 

unmated M. galloprovincialis adults was released into each box and was allowed to mate 

and oviposit. Egg laying slits were tracked daily and adults were removed when at least 15 

slits on each log were recorded, thus no differences in the number of slits were detected 

between species (F 1,14 1.17, P (>F)=0.298). Progeny was left to develop until adult 

emergence, and logs were debarked and larval entries into the xylem recorded. Collected 

adults were measured and weighted upon emergence.  

 

Statistical analysis 

 As a Welch’s t-test on the feeding responses of male and female M. galloprovincialis, 

both for figures at each evaluated pine species pair and for total figures, showed no 

significant differences (P > 0.05), data was pooled for sexes. For each experimental pairing 

in Bioassays 1 and 2, and each treatment level in Bioassay 3, univariate differences in 

regular and irregular feeding were estimated using Welch’s t-test for paired samples, 

whereas Hotelling's T2 test (Lockwood, 1998) was used to analyze the registered response 
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in a multivariate fashion. In addition, a new variable vector of differences, resulting from 

the differences in the response between control twigs (P. pinea) and each Pinus species in 

Bioassay 1, was used to fit a generalized linear model (GLM) against tested species, followed 

by an analysis of variance. If significant effects were detected, means were separated using 

Tukey’s HSD test, applying a Bonferroni correction to the value of α for the confidence 

intervals. In addition, both regular and irregular feeding responses in Bioassay 3 were fitted 

in a linear regression model against tested limonene dosages. 

 The number of egg laying wounds with or without eggs, standardized to the log bark 

area, as well as the percentage of laying wounds containing eggs, were used as the response 

variables for fitting GLMs against tested species within each pairing. Log diameters and bark 

thicknesses were taken into account as covariates. 

Weight and elytral length of emerged M. galloprovincialis individuals were compared 

through the analysis of variance of GLMs fitting the responses against tested species for each 

sex and in conjunction. Similarly, the number of egg laying wounds, xylem entries and 

emergences tallied for P. sylvestris and P. pinea were compared also by an analysis of 

variance on GLMs fitted against tested species, and accounting for the Poisson error 

distribution. All statistical tests and calculations were performed using R statistical analysis 

software (The R Development Core Team, 2012).  

 

Results 
 

Bioassays 1 and 2: Feeding preference tests 

Monochamus galloprovincialis adults did not reject P. pinea twigs when feeding. Yet, 

regularly fed areas were generally lower for P. pinea, although significant differences could 

only be shown for P. sylvestris and P. pinaster (Table 2). In the case of the irregularly fed 

area, except for a significant difference with P. sylvestris, there was no evident difference 

with evaluated pine species.  

 

 

 

 

 



  Mean consumed area ± SEM  

  Regular feeding  Irregular feeding Hotelling’s T2 

 Species (n) Tested Species P. pinea P  Tested Species P. pinea P P 

Bioas. 1 P.halepensis (10) 64.55±20.24 36.95±17.48 0.42  44.36±16.76 38.65±14.32 0.83 0.53 

 P. nigra (10) 63.31±36.54 53.79±25.90 0.85  55.67±16.00 85.07±49.41 0.62 0.82 

 P. pinaster (9) 100.71±20.11 61.53±32.45 0.38  16.95±5.10 28.90±11.98 0.34 0.34 

 P. sylvestris (8) 108.58±25.94 14.94±11.84 <0.01  301.59±99.38 1.36±1.36 0.02 <0.001 

 P. uncinata (10) 75.07±26.04 84.08±49.02 0.88  288.03±89.09 151.24±35.86 0.23 0.34 

Bioas. 2 P. pinaster (9) 168.92±31.86 77.54±22.28 <0.01  10.04±3.52 19.15±8.69 0.25 0.03 

Table 2. Mean area consumed on twigs of tested species in feeding bioassays 1&2 ± SEM. P, probability values of paired Welch’s two sample t-

test, and probability value for Hotelling’s T2 test for two sample multivariate test considering regular and irregular feeding. 

 

No significant differences were found in the vector of differences of regularly consumed 

areas among the tested species (F4, 42 0.715, P =0.59). On the other hand, this variable was 

found to differ significantly among species for irregularly consumed areas (F4, 40 3.99, P = 

0.008; Figure 1).  

 

 Figure 1. Pairwise differences in regularly consumed areas (mm2) between tested pine species and P. pinea in Bioassay 1. Bars sharing the 

same letter are not significantly different (Tukey’s HSD test, Bonferroni’s adjustment, P<0.05). 
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Bioassay 3: The effect of limonene on feeding 

No differences were found in both types of feeding between control and limonene 

treated twigs, regardless of any tested dose (Table 3).  

 

 Mean consumed area ± SEM  

 Regular feeding  Irregular feeding Hotelling’s T2 

 Limonene  Dose (n) Test Twig Control twig P  Test Twig Control twig P P 

1 mg/g DW (26) 165.66±20.27 175.46±29.11 0.69  41.72±11.09 43.24±7.89 0.92 0.95 

2 mg/g DW (25) 158.76±25.38 119.28±23.30 0.24  37.22±9.05 42.78±14.27 0.72 0.48 

3 mg/g DW (26) 84.18±17.01 116.54±26.90 0.21  33.52±13.06 20.75±10.64 0.46 0.35 

Table 3. Mean area consumed on tested twigs in Bioassays 3 ± SEM. P, probability values of paired Welch two sample t-test. and probability 

value for Hotelling’s T2 test for two sample multivariate test considering regular and irregular feeding 

 

Fed area however, decreased as the dose of limonene increased, and a significant 

treatment effect could be shown for limonene treated twigs (P = 0.008), still with a very low 

fit (r2 = 0.079). The same trend was registered on control twigs, but the linear modeling 

resulted in no treatment significance and a low fit (r2 = 0.02, P = 0.11). 

 

 

Bioassay 4: Oviposition preferences between P. pinaster, P. pinea and P. sylvestris  

The results of Bioassay 4 showed that M. galloprovincialis produced more oviposition 

wounds and laid more eggs on P. pinea when it was offered together with P. pinaster or with 

P.sylvestris (Pairings I, II and IV; Figure 2), although the difference in laid eggs could not be 

significantly proven when the bark of P. pinaster was artificially smoothed (Pairing I; Figure 

2). Significantly higher number of oviposition wounds, both with and without eggs, were 

detected on P. sylvestris than on intact P. pinaster, but the number of eggless wounds was 

significantly lower on P. sylvestris when the bark of P. pinaster was manipulated (Pairings 

III and V; Figure 2).  

 

   % Egg containing laying wounds ± SEM    

 n  P. pinaster P. pinea P. sylvestris F df P 

Pairing I 14  33.64±0.09 23.32±0.06  1.06 1, 9 0.329 

Pairing II 13   55.51±0.06 65.66±0.05 2.31 1, 10 0.159 

Pairing III 15  50.49±0.09  70.33±0.07 4.68 1, 11 0.053 

Pairing IV 17  85.42±0.06 33.53±0.09  16.73 1, 6 0.006 

Pairing V 18  68.71±0.07  53.20±0.07 24.48 1, 14 <0.001 
Table 4. Percentage of egg containing laying wounds ± SEM on tested species in Bioassay 5. F, df and P; F statistic, degrees of freedom and 
probability values respectively, of the species factor on the analysis of co-variance of registered responses.  



 

 

Figure 2. Pairwise differences in the mean number of egg laying wounds per m2 with eggs present or absent in Bioassay 4. Asterisks over bars 

denote significance level for the species factor in the analysis of co-variance: . P<0.1; *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 

 

However, when the proportion of eggs on oviposition wounds was analyzed, P. pinea 

resulted in a less suitable host (Table 5). A significantly lower percentage of eggs per wound 

was detected when P. pinea was paired to P. pinaster with intact bark (Pairing IV), a 

difference that could not be proven in the case of manipulated bark thickness (Pairing I; 

Table 5). On the other hand, no significant differences were found between P. pinea and P. 

sylvestris (Pairing II; Table 5). Significant difference was found favouring P. pinaster to 

P.sylvestris on Pairing V, whereas the opposite was almost true when P. pinaster bark was 

manipulated (Pairing III; Table 5). 
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 Pinus pinea Pinus sylvestris F d. f. P 

Weight (mg) 481.36±16.46 312.05±11.93 65.73 1, 84 <0.001 

 Female 479.85±26.20 321.48±16.60 27.18 1, 38 <0.001 

 Male 482.67±21.56 303.84±17.14 37.47 1, 44 <0.001 

Elytral length (mm) 15.68±0.21 13.89±0.2 30.08 1, 94 <0.001 

 Female 16.33±0.27 14.48±0.26 19.74 1, 44 <0.001 

 Male 15.06±0.23 13.35±0.28 15.46 1, 48 <0.001 

Table 5. Mean weight (mg) and elytral length (mm) ± SEM of M. galloprovincialis adults emerged from P. pinea and P. sylvestris. F, df and P; F 
statistic, degrees of freedom and probability values respectively, of the species factor on the analysis of variance of registered responses. 

 

Bioassay 5: Development of M. galloprovincialis progeny in Stone pine 

 A total of 269 egg laying wounds made by M. galloprovincialis females were tallied on 

the experimental P. pinea logs. After one week, a mean of 25% of these wounds per log 

showed activity of newly hatched larvae (69 in total; Figure 3). This figure further decreased 

to a 23% of the initial wounds one week later. Four months later, 57 larvae (84% of hatched 

larvae) were found to have entered the xylem to pupate, but only 14 (23% of hatched 

larvae) came out to emerge as adults ten months after the onset of the bioassay. 

Furthermore, 7 larvae (11% of hatched larvae) were found alive within the xylem 14 

months after eggs were laid.  

 

Figure 3. Mean percentages ± SEM of M. galloprovincialis developmental stages in relation to the number of egg laying wounds per P. pinea log 

(Bioassay 5).  

 

 



 

Bioassay 6: Offspring performance in P. pinea Vs. P. sylvestris 

The comparison of M. galloprovincialis offspring performance resulted on poorer 

figures in P. pinea than in P. sylvestris (Figure 4, Table 5). The mean number of oviposition 

wounds was similar in both species (F1, 14 1.17, P = 0.30), but the proportion of larvae that 

had entered the xylem to pupate was almost three times lower in P. pinea (F1, 14 10.53, P = 

0.006) and, similarly, the number of emerging adults was found to be significantly higher in 

P. sylvestris (F1, 14 4.87, P = 0.046; Figure 4). Overall, only 14% of egg laying wounds resulted 

in the emergence of new adults in P. pinea, whereas 36.5% did so in P. sylvestris. Mortality 

of the progeny once within the xylem, however, was similar for both pine species, as the 

proportion of emergences per larval entries was not different (ca. 75%). On the other hand, 

adults emerging from P. pinea were significantly larger and heavier (Table 5) than those 

reared on P. sylvestris, regardless of their sex.  

 

Figure 4. Mean number ± SEM of egg laying wounds, xylem entries and emergences per P. pinea and P. sylvestris log in Bioassay 6. Asterisks 

over bars denote significance level for the species factor in the analysis of variance: *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 
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Discussion 
 

 On the basis of the results presented above, although differences in magnitude could 

be found, it seems that M. galloprovincialis is able to feed, lay eggs and develop on P. pinea, 

at least under lab conditions. The analysis of the outcome of feeding bioassays showed that 

two patterns of feeding behavior could be recognized, as the phloem of test twigs was found 

to be eaten in a regular or irregular way by evaluated insects. These patterns were evaluated 

separately, but the analysis showed similar preferences for species, so it did not apparently 

represent a different M. galloprovincialis behaviour (i. e. irregular feeding was not linked to 

rejection or no-preference). Insects consumed a larger area on P. sylvestris twigs, as 

previously reported either for multiple-choice experiments (Naves et al., 2006b) or when 

confronted just with P. pinaster (Koutroumpa et al., 2009). Thus, it seems that P. sylvestris 

might be the preferred host for twig feeding by M. galloprovincialis. Pinus pinaster could be 

ranked as a second candidate, also shown by Naves et al., (2006b). As for the rest of 

evaluated species, no significant differences could be found between them and P. pinea. Due 

to its biogeographical importance, it is noteworthy to mention that no differences were 

found with P. uncinata, the main host for Monochamus sutor in the Pyrenees (Vives Noguera, 

2001), and hence host preference can not be considered a biological barrier for the spread 

of PWN by M. galloprovincialis through the Pyrenees. 

 It is known that beetle preferences are mediated by chemical cues associated with 

hosts and non-hosts (Allison et al., 2004). Limonene, the most abundant terpene on P. pinea, 

(Santos et al., 2006), is a known oviposition deterrent for several pine-infesting insects 

(Nordlander, 1990), and a feeding inhibitor of M. alternatus (Fan & Sun, 2006). It is also 

known to reduce up to 40% the M. galloprovincialis catch in pheromone-kairomone baited 

traps (Pajares et al., unpub.). Even if no differences were detected between treated and 

control twigs, a progressive reduction in feeding was detected as the limonene dosage 

increased. This could indicate a plausible deterrent effect of limonene in the diet of adults, 

which could have also manifested in the feeding of control twigs, as the atmosphere of the 

experimental arena was polluted by limonene. Still, the lack of an unbiased control 

precludes to conclude whether if the application of a low limonene dosage, i. e. the 

equivalent to what has been reported for the contents of P. pinea (Macchioni et al., 2003), 

could be sufficient to deter the feeding response on P. pinaster and achieve a similar result 

to that on Bioassay 2.  



M. galloprovincialis females laid eggs on all pine species tested and the results in 

oviposition tests did not show a clear preference towards any particular host. Still, figures 

showed that females of M. galloprovincialis did not negatively discriminate P. pinea as a host 

for reproduction over other pines. In fact, Stone pine logs received more egg laying wounds 

and more eggs than the other species. However, when the proportion of eggs at egg laying 

wounds was considered, lower values were consistently registered for P. pinea than for 

other pine species, although differences were only significant to P. pinaster. This fact could 

indicate a lack of preference as a substrate for egg laying towards P. pinea. (Akbulut et al., 

2008) have reported between 1 to 4 eggs in M. galloprovincialis oviposition scars, with 8% 

of these containing multiple eggs. In our bioassays, percent of egg containing wounds 

ranked from 23,3 in P. pinea to 85,4 in P. pinaster, and not a single wound was found with 

multiple oviposition. On the other hand, preference between P. pinaster and P.sylvestris 

remains unclear, as the proportion of egg containing scars was higher on Maritime pine 

when its bark was not manipulated, but resulted lower when the bark was smoothed. In any 

case, P. sylvestris logs always received a higher number of eggs, significant if they were 

confronted to non manipulated P. pinaster logs. Other published studies have similarly 

reported P. sylvestris to be the most oviposited host by M. galloprovincialis (Koutroumpa et 

al., 2009; Naves et al., 2006b). Thus, it seems likely that bark thickness is a main host feature 

involved in M. galloprovincialis oviposition preferences. Interestingly, Nakamura (1995) 

had reported that the optimum bark thickness for M. alternatus oviposition was between 1-

2 mm and Francardi (1996) had shown a negative correlation between bark thickness and 

the density of M. galloprovincialis. Also Naves (2006b) had suggested that M. 

galloprovincialis preference for P. sylvestris over other native Portuguese pines was due to 

its thinner bark. In our case, number of eggs were similar in thin-barked P. pinaster than in 

P. sylvestris (mean of 59 and 61 respectively), but much lower if thick-barked P. pinaster 

logs were presented (mean of 17,6 and 49,9 respectively). 

Several laboratory studies have reported low values of within-log generation 

survivorship of Monochamus species. For example, the survival of M. carolinensis (Olivier) 

in P. sylvestris ranged between 6 and 15% (Akbulut & Linit, 1999; Akbulut et al., 2004). 

Akbulut et al., (2008) showed that between 12 and 15 % of the initial cohort completed 

development and emerged as M. galloprovincialis adults on P. sylvestris and P. nigra. The 

results presented above showed that the proportion of emergences per egg laying slit in P. 

sylvestris was 36.5% and 14% in P. pinea. A closer look to the data, revealed that peak 

mortality occurred between oviposition and larval entry to the xylem, i. e. during the early 

larval instars. The fact that almost a quarter of the hatched larvae became adults would 

come to demonstrate that P. pinea is not lethal to M. galloprovincialis under lab conditions, 
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which contradicts previous results by Naves et al., (2006b). Still a lower survivorship than 

in P. sylvestris could mean that P. pinea is not as good a host as the latter. In addition, even 

if initial colonization densities were not significantly different on P. pinea and P. sylvestris, 

emerged adults were bigger and heavier on P. pinea. These parameters have been 

repeatedly linked to breeding success and fitness (e. g. Anderbrant & Schlyter, 1989), and 

hence it seems that emerging M. galloprovincialis had better fitness parameters in P. pinea 

than in P. sylvestris, far from what could be expected. However, we should take in 

consideration that this may be the result of reduced larval competition in P. pinea due to a 

higher mortality of young larvae. Furthermore, even if it is generally accepted that M. 

galloprovincialis has one generation per year (Francardi, 1996), the appearance of alive 

larvae in P. pinea logs after one year indicates the possibility of cycles of variable duration, 

as has been shown on other pine species (Koutroumpa et al., 2008; Naves, 2008). Thus it 

seems possible, that most of M. galloprovincialis follow a univoltine life cycle, while for a 

small fraction of the population a two-year development might be required, also on P. pinea 

logs. 

Taken together, the experiments presented above showed that all pines species 

tested were accepted by M. galloprovincialis as host for feeding, and P. sylvestris, P. pinaster 

and P. pinea as hosts for breeding, albeit at different preference levels. Remarkably, 

M. galloprovincialis fed and reproduced on P. pinea and, although it was not the preferred 

host, no particularly detrimental effects were observed. Still, this beetle has not been found 

in natural, pure stands of P. pinea after intensive trapping surveys conducted in the 

Northwest of Spain (Sánchez et al., unpub. results). As mentioned, P. pinea and P. pinaster 

co-occur in areas affect by PWN in Portugal (Naves et al., 2006a), but somehow P. pinea does 

not get infected, even if this pine is moderately susceptible to the pathogen and M. 

galloprovincialis populations are certainly present. The possibility that conducting 

experiments in confinement may have influenced the results of the study, since the beetles 

tended to attack plant species normally ignored in the field (Morewood et al., 2004), seems 

insufficient to explain the contradiction between field and laboratory reports regarding M. 

galloprovincialis biology on P. pinea. Further research should focus on the unravelling of the 

traits of P. pinea that could explain this elusive question and provide managers with 

information that could be exploited both in breeding and silvicultural management 

programs aimed to increase resistance to the PWN.  
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Introduction 
   

The pine sawyer Monochamus galloprovincialis (Olivier, Coleoptera, Cerambycidae) 

is the only known European vector of Bursaphelenchus xylophilus Steiner & Buhrer (Nickle, 

1970). This pathogenic nematode, known as the pine wood nematode (PWN), induces the 

Pine Wilt Disease (PWD), a major cause of conifer mortality in Eurasia (Mota et al., 1999; 

Sousa et al., 2001; Futai, 2013). Prior to the introduction of the disease into Europe, M. 

galloprovincialis, was regarded as a secondary forest pest that merited little attention. 

However, the obligate phoretic association of the PWN during its dispersal has transformed 

it into a priority species. Recent spread of the disease throughout Portugal and the detection 

of four foci in the bordering regions of Spain (Zamora et al., 2015), has increased the 

demand to understand the vector’s ecology.  

Healthy hosts are infected with the PWN when Monochamus spp. feed on the shoots 

of susceptible trees. Although adult beetles feed on shoots throughout their life span, 

initially for sexual maturation after emergence and later for maintenance, most of successful 

PWN transmissions occur during the first 49 days after beetles have emerged (Naves et al., 

2007). Vector dispersal is thus a key feature for nematode spread and thus for PWD 

management. As is the case in many invasive species, active of passive dispersal 

mechanisms of dispersal can be considered for the vector. Recent findings indicate that 

M.galloprovincialis adults usually disperse actively over rather short distances within pine 

stands, though some individuals may disperse over much longer distances, particularly in 

fragmented habitats (Etxebeste et al., 2015). On the other hand, passive dispersal of 

Monochamus larvae in nematode-infested wood may result in the establishment of the 

pathogen in geographically distant areas. This way accidental transport by humans has 

carried the beetles and the nematodes over very long distances (Robinet et al., 2009, 2011). 

In fact, human activities involving the movement of wood products are regarded as the 

single-most important factor in spreading PWN (Robinet et al., 2009). Once in destination 
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ports, warehouses or timber processing facilities, the emerged nematode-infested 

immatures will disperse in search of hosts and potentially spread the disease to new areas. 

  Dispersal and reproduction depends mainly on the ability of M. galloprovincialis 

individuals to explore and colonize new suitable resources. Shoot feeding is regarded as a 

requirement for sexual maturation, manifested with the development of gonads and mature 

eggs. Even though the genital structure of M. galloprovincialis has already been described 

(Tomminen & Leppanen, 1991), the gonad development sequence is not fully understood. 

Similarly, the time required to reach sexual maturity is assumed to range from 15 days 

(Álvarez et al., 2015; Sanchez-Husillos et al., 2015) to 3 weeks (Koutroumpa et al., 2008; 

David et al., 2013, 2015), but has not been studied in detail. Additional shoot feeding by 

adult M. galloprovincialis may contribute to further development or recovery of wing 

muscles as well as for the accumulation of lipids for further dispersal events (Zera & Denno, 

1997). Furthermore, an energetic trade-off between dispersal and reproductive capacities 

has been described for M. galloprovincialis and other species (Zera & Denno, 1997; Ronce, 

2007; David et al., 2015).Gonad development and other physiological changes during the 

initial days of feeding of model insects might affect their dispersal abilities (Wang et al., 

2014). David et al. (2015) recently reported that newly emerged M. galloprovincialis were 

capable of flying in a flight mill, and that the reproductive maturity of females had no effect 

on the distance flown. Thus, detailed observation of the physiological development of these 

beetles as they shoot feed and mature might help understanding the dispersal capabilities 

of immature pine sawyer beetles. 

  The dispersal range of mature M. galloprovincialis has recently been studied in 

laboratory and field experiments. Flight mill records have shown that mature beetles are 

capable of flying accumulated distances of about 16 km (David et al., 2013), whereas field 

studies involving mark-capture-recapture (MCR) techniques have reported maximum flight 

distances between 8.3 and 13.6 km in fragmented landscapes (Gallego et al., 2012; Mas i 

Gisbert et al., 2013; Etxebeste et al., 2015). However, the dispersal ability of newly emerged 

adults has been only studied by means of 10 min flights in a flight mill (David et al., 2015). 

Classical field experiments based on MCR techniques could not be used, as immature beetles 

failed to respond to any of the known attractants for mature beetles. Several studies have 

shown that freshly emerged adults released in a pine stand did not respond to the standard 

pheromone-kairomone blend until at least 2 weeks after release (Etxebeste et al., 2015; 

Sanchez-Husillos et al., 2015). This span was therefore interpreted as the time required for 

the beetles to mature and respond to the attractants, which include a male produced 

pheromonal component (Pajares et al., 2010). Though antennal response of immature 



beetles to several host terpenes was recorded, field trials in a pine stand or an area deprived 

of competitive hosts failed to attract these adults to terpene-baited traps (Álvarez et al., 

2015). 

  Further accumulation of knowledge regarding the survival, physiological 

development and dispersal behaviour of immature M. galloprovincialis will be very relevant 

for developing PWD management strategies. In order to address these issues, several 

experiments were carried out to quantify (1) physiological changes related to (a) gonad 

development, (b) lipid content, (c) wing muscle content and (d) survival in immature M. 

galloprovincialis adults during shoot feeding after emergence; and (2) the dispersal 

behaviour of newly emerged unfed immature beetles over areas deprived of hosts in 

comparison to mature beetles that had been feeding for at least 15 days.  

 

Materials and methods 
 

Insects, feeding material and experimental conditions 

  Monochamus galloprovincialis individuals were obtained from Pinus sylvestris Ait. 

bolts field colonized by wild-parents during early summer in 2011, 2012 and 2013 in 

Tabuyo del Monte (42°15′N, 6°25′W; Castile and Leon, Spain) attracted to the logs by 

commercial M. galloprovincialis lures (Galloprotect 2D®, SEDQ SL, Barcelona, Spain). 

Colonized logs were transferred to an outdoor cage at the end of the summer, and stacked 

in racks until the following season. The cage was checked daily for emergences between 

May and August. Upon collection, M. galloprovincialis individuals were transferred to the 

lab, sexed, weighted and length of the right elytrum was measured; after, each beetle was 

kept in an individual container. In the case that planned experiments required insects to be 

fed, Pinus pinaster Aiton twigs were provided to each individual. Insects fed ad libitum. 

Indoor experiments were carried out under laboratory conditions (25 ºC; 15:09 L: D 

photoperiod). 

Gonad development 

  After 0, 4, 8, 10, 12, 14 and 18 days of feeding, a total of 140 insects (10 females and 

males at each sampling occasion) were dissected out. For each individual, the presence of 

oocytes and eggs in the ovarioles and the ovaries respectively in the case of females, and the 

colour of testes in the case of male individuals were recorded under a binocular microscope 

(10X-23X). 
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Lipid content 

 Lipid contents were determined following the protocol presented by Anderbrant (1988). 

Monochamus galloprovincialis individuals were sampled after 0, 4, 8, 14 and 18 days of 

feeding (n=117 females and 94 males). Beetles were handled individually, killed by freezing, 

dried at 60º C for 24 h and weighed dry. Lipid extraction consisted of macerating the insect 

in a petroleum ether (60-71º) solution for 24 hours at 38º C. After the extraction, beetles 

were dried for additional 24h at 60º C, and weighed again for the fat-free value. Mean lipid 

content was calculated as the percentage of the ratio between fat (dry weight minus fat-free 

weight) and the initial dry weight. 

Wing muscle content 

  X-ray computed microtomography (micro-CT) was used for observing wing 

muscles. This recently proposed imaging method for studying muscular structures is 

entirely non-destructive and does not require slicing the target insect (Zhang et al., 2010; Li 

et al., 2011; Alba-tercedor, 2014). Micro-CT imaging was applied to describe wing muscle 

development for individuals (one each) based on a cellular length scale after 0, 4, 8 and 18 

days of feeding. Micro-CT images were obtained with a Skyscan 1172 Micro-CT high 

resolution scanner (Bruker MicroCT, Kontich, Belgium). 

Lipid-extracted insects were used to determine wing muscle content (n=211). The 

pterothorax fraction of the insect was excised from the body using micro-scissors. Guided 

by the 3D images obtained from the micro-CT, a binocular microscope (10X-23X) was used 

to carefully remove the main muscles of the pterothorax (Pringle, 2010): the direct (dorso-

longitudinal) and indirect flight muscles (dorso-ventral) and the pleural inserted in the 

wing esclerites. Leg, pleurocoxal and trochanter muscles were not removed. The 

pterothorax fraction was weighed and macerated in a 10% KOH solution at 40ºC until only 

the sclerotized parts remained. Pterothorax dry weight was measured again after extraction 

and wing muscle content was determined as % of pterothorax dry weight.  

Beetle survival 

  Twenty-nine newly emerged adults (12 males, 17 females) were placed in 2l glass 

jars and individually fed with P. pinaster twigs until their weight was stabilized (24 days). 

At the same time, 10 newly emerged insects (5 males, 5 females) were left unfed until death. 

All beetles were checked daily. All beetles were weighed regularly (once every 1-3 days) 

and the age in days at beetle death was recorded. 

 



Dispersal of newly emerged immature beetles  

  In order to test dispersal capacities of recently emerged M. galloprovincialis, two 

similar experiments were conducted in Cervatos de La Cueza (42º 18´10´´ N, 04º45 58´´ W, 

849 m. a. s. l., Castile and Leon, Spain) during two consecutive years (July 25th to September 

30th 2011, and from June 18th to October 9th 2012). The experiments consisted of releasing 

unfed, freshly emerged (maximum 2 days before release) M. galloprovincialis individuals in 

a crop area with no host trees, except for two adjacent small (2.56 and 4.51 ha) P. pinaster 

stands. It was hypothesized that immature insects would need to disperse to these pine 

stands, where they would feed, become sexually mature and eventually, be attracted to 

baited traps in the stand. Released beetles were individually marked using numbered bee 

tags (Opalith Plättchen, Christian Graze KG, Germany), glued to their pronotum. A total of 

434 immature beetles of similar weight (359.51± 10.28 mg males and 359.45± 10.15 mg 

females) were released at distances of 100, 250, 500, 750, 1000 and 1500m (in 2012) and 

1000, 1500, 2000, 2500 and 3000 m (in 2013) away of the nearest pine stands’ edge (Table 

1 and Fig 1). At each forest patch, multi-funnel traps (Econex SL, Murcia, Spain) were 

installed, 12 and 14 at the southern and northern patch respectively. Traps were baited with 

the standard commercial lure for M. galloprovincialis (Galloprotect 2D®,SEDQ S. L., 

Barcelona, Spain). Lures were replaced every 6 weeks and traps checked every other day. 

The distance flown by the insects was estimated as the distance from the release point to 

the nearest pine tree in the trap stands (i. e. stands’ edge). As a positive control, 169 mature 

beetles (two to three weeks old, lab reared beetles) were also released as controls from the 

same locations.  

  Distances (m) 100 250 500 750 1000 1500 2000 2500 3000 Total  

Immature (n=434) 
F 12 13 13 17 40 37 16 23 20 191 

M 20 17 18 15 41 42 33 27 30 243 

Mature  
(n= 169) 

F 7 7 7 8 15 17 3 6 8 78 

M 8 10 9 7 14 15 12 9 7 91 

Table 1 Number of immature and mature M. galloprovincialis males and females released at different distances from the trap stand 
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Figure 1 Localization of trap stands and release points in the M.galloprovincialis dispersal experiments. Release points are labelled with the 

distance to the nearest pine tree in the stand 

 

Statistical analyses 

  One-way ANOVA was used to analyze the size differences between sexes. Lipid and 

wing muscle contents as % of total or pterothorax dry-weight respectively, were fitted 

against feeding time (number of days), size and sex factors using a quasi-binomial error 

distribution in a generalized linear model (GLM; Crawley, 2007). Tukey’s HSD test with 

Bonferroni adjustment to the value of α= 0.05 was used for post hoc mean comparisons. A 

survival analysis was performed using censored data of fed and unfed beetles with time to 

death data. Welch's t-test was used to analyze differences in survival time between sexes. 

Data from the two experiments on dispersal of immatures were pooled for analysis. 

Dispersal of immatures was approached by fitting a negative exponential linear model for 

the frequency of recapture proportion per released insect for each distance, modified as the 

logarithm (x + 1), and the logarithm of flight distance, pooled for sexes and experimental 

years. These variables could not be analyzed separately due to low recapture numbers. The 

intercept of the modeled function with the x-axis was considered an estimator of the 

maximum distance that a beetle can fly (Östrand & Anderbrant, 2003). In addition, a 

possible difference in the dispersal behavior of mature and immature beetles was tested by 



including the maturation state factor within the same modeling strategy and regressing 

pooled recapture data for both beetle classes. All statistical analyses were performed using 

the R 3.2.2 statistical programming environment and language (The R Development Core 

Team, 2015). 

 

Results 
 

Gonad development  

  Female M. galloprovincialis emerged with 6 pairs of empty elongated ovarioles 

(Figure 2a). By the 12th day of feeding, the first oocites had been observed in almost all 

females and eggs had appeared in 20% of females (Table 2).  

  Female gonads   Male gonads 

Feeding days Oocites Eggs   White Light Yellow Dark yellow 

0 0 0  100   

8 0 0  90 10  

10 0 0  90 10  

12 70 20   40 60 

14 100 90    100 

18 100 100    100 

Table 2 Monochamus galloprovincialis female (n=70) and male (n=70) gonad development (%) after different feeding spans 

 

Two days later, almost all females (90%) had eggs in their ovaries (Figure 2c). Newly 

emerged males on the other hand, had two pairs of white circular testes (Figure 2d). After 

8 days of feeding, signs of maturation (yellowing of testes) were apparent in only 10% of 

males, but four days later, more than half the males appeared to have completed maturation 

, shown by the dark yellow coloration of testes  (Table 2; Figure 2f). After 14 days of feeding, 

all males presented mature testes. If these characters are taken as proxies of maturation, 

50% of the individuals reached maturity after 11.96±0.001SE and 12.78±0.05SE days of 

feeding for males and females, respectively. 
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Figure 2 Gonad development in M. galloprovincialis. a to c, pictures of ovarioles of female M. galloprovincialis taken 0, 8 and 14 days after emergence, 

showing the presence of oocytes already at day 8. d to f, change in coloration of male M. galloprovincialis gonads. 

 

Lipid content 

 Preliminary analysis showed that adult size was significantly affected by sex (F1,341=24.35, 

P<0.001); correspondingly, mean elytral length in females was 15.28 ±0.3 mm, while males’ 

measured 13.91± 0.4 mm on average. The proportion of lipid content was not significantly 

affected by elytral length (F 1,186= 0.205, P=0.651), yet, it was positively correlated with 

insect dry weight (r= 0.69, t = 12.97, P<0.001). Mean lipid content was not significantly 

affected by sex (F 1,186=0.001, P= 0.980), or number of feeding days (F 1,188=0.306 P=0.581; 

Figure 3a). Lipid content remained fairly constant at around 11% of dry weight in males 

and 10% in females, though a slight increase (1-3%) was observed after the first days of 

feeding, particularly in males. 

Wing muscle content  

 Micro-CT scanning provided crisp spatial imaging of the thorax, leg and wing muscles as 

well as the abdomen with the reproductive system and eggs was clearly visible, as can be 

seen in Figure 3. The A-A´ section shows the cross-section of dorso-longitudinal wing 

muscles (Figure 4, upper row) whereas the B-B´ section shows the cross-section of the 

dorso-ventral wing muscles (Figure 4, lower row). Lack of replicates precluded statistical 



analysis, but observation revealed that unfed, freshly emerged females had a well-

developed wing muscle array like that of fed females.  

 The proportion of pterothorax muscle content presented no significant differences based 

on sex (F1,135=0.519 P=0.690) or size (F1,135= 0.913 P= 0.341). Muscle content averaged 

33.37±4.9% and 31.21±4.6% of pterothorax dry weight in males and females, respectively 

(Figure 3b). In newly emerged adults, wing muscles accounted for 23.83±4.2 % (males) or 

29.91±6.8% (females) of pterothorax dry weight. These proportions did not change 

significantly after feeding for females (F4,62=0.739, P=0.569) or males (F4,65=1.266, 

P=0.292), which corroborated the 3D Micro-CT observations. 

 

Figure 3 a, Mean fat content % (±SEM) and b, Mean wing muscle content % (±SEM), of newly emerged M. galloprovincialis adults after different 

feeding spans.  
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Figure 4 CTVox volume rendering reconstruction of mature M. galloprovincialis female, showing the cross-section axis (upper). Cross-section 

of dorso-longitudinal (Dlm) (A-A´row) and dorso-ventral (Dvm) (B-B´row) wing muscles after different feeding spans (lower). 

 

 

 

 

 

 



Beetle Survival 

  Fed adults steadily gained weight for 14-16 days, after which the weight stabilized 

at around 30% and 49.3% increase over initial weight for males and females, respectively 

(Figure 4). Female weight increased by 23.8% during the first 4 days of feeding, then more 

slowly by 10% more through day 11, then rose sharply by another 24% through day 16, 

concurrent to egg development in the ovaries (Table 2). Weight increment in fed males was 

11.2% after 3 days, and then rose steadily during the first 2 weeks of feeding. Unfed males 

and females behaved similarly and steadily lost 31.1% and 38.2% of their body weight, 

respectively, from emergence to death. Most fed insects (83.3% males and 70% females) 

lived to the end of the experiment, though 18% mortality occurred between the Day 6 and 

Day 8. Unfed males died 4 to 17 days after emergence, while females did so 11 to 20 days 

after emergence. Mean survival time for unfed insects was 10.0 ± 2.07 and 14.8 ± 1.74 days 

for males and females respectively, but this difference was not statistically significant ( 

t=1.77, p=0.115). 

 

Figure 5 Weight ratio fed and unfed of newly emerged M. galloprovincialis adults over time. 

 

Dispersal of newly emerged immature beetles  

  A total of 57 immature (13.13%) and 24 mature (14.20%) insects were recaptured 

in the trap stands. Earliest recapture occurred as soon as 4 days after release for mature 

insects (one male) and after 14 days for immature insects (3 males and 6 females), 

confirming that these insects must feed to mature for nearly 2 weeks before responding to 
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the pheromone-kairomone attractants. The last recapture of an immature individual (a 

male) occurred 98 days after release at the last sampling occasion, whereas the last mature 

beetle (a female) was recaptured after 53 days. Recaptured immature adults had been 

originally released over a range of100 to 2000 m away of the stands, while matures were so 

from 100 to1500 m (Figure 6). A high proportion of adults released close to the trap stands 

were recaptured, indicating that at least 28.1-40% of immature and 60-17% of mature 

adults released at distances of 100 or 250m from the stands were able to reach them. The 

numbers of beetles that were recaptured in the stands decreased as the release distance 

increased. Still, 11 (13.92%) immature adults released at 1500 m and 3 (6.12%) released at 

2000 m were recaptured after 14 and 21 days, respectively. The fitted linear model was: 

(Recapture rate+1) = exp3.80 - 0.001*distance. This model estimated 3109 m (1868-5727 m 95% 

CI; r2= 0.843, P< 0.001) as the maximum dispersal distance for unfed immature beetles. 

  No mature beetles released at 2000 m were recaptured (Figure 6), but this 

difference with immature beetles could be related to the number of released mature beetles, 

which were intended to act as positive controls. Accordingly the analysis of the pooled 

recaptures, i. e. mature and immature beetles, showed that the inclusion of the maturation 

state in the model did not significantly improve it (F1, 15 0.95, P=0.345). 

 

Figure 6 Relative recapture frequencies of mature (yellow rectangles) and immature (black triangles) M. galloprovincialis adults released at 

different distances from the trapping stands. Shown data was pooled from 2102 and 2013 experiments.  



 

 

 

Discussion 
 

Physiological development during maturation 

  Monochamus galloprovincialis females depend on shoot feeding for sexual 

maturation. They presented immature gonads at emergence and matured to produce eggs 

after 12-13 days of feeding. Recently, David et al. (2015) reported that most M. 

galloprovincialis females had no eggs until 10 days after emergence, which is in accordance 

to our findings. Egg production quickly increased after this period, as reflected in the sharp 

female weight gain observed after Day 11 (Figure 5). Similarly, male testes were completely 

mature at about 12 feeding days, with 10% showing full maturity after only 8 days. These 

results indicate that sexual maturation in M. galloprovincialis takes longer than the 6 days 

estimated for M. alternatus (Togashi, 1997), but is within the range of 9.8 (at 25º C) and 15.9 

days (at 20°C) described for M. saltuarius (Togashi 1998).  

  Our results for the pre-oviposition period align with the 20.4 day span from 

emergence to the first egg laid reported by Naves et al. (2006) for M. galloprovincialis. This 

would imply that, even if M. galloprovincialis females have eggs formed in their ovaries as 

early as two weeks after emergence, the may require an additional week for copulation and 

egg fecundation before the onset of oviposition. Females would only respond to the male 

aggregation pheromone once they are mature, not earlier than about 12-14 days after 

emergence, as has been shown in behavioural and field assays involving the recapture of 

released immature beetles (Pajares Alonso et al., 2010). Since males become mature a little 

earlier than females, one could think that they should also start responding earlier than 

females to the aggregation pheromone, but such trend could not be established from our 

results. 

  Monochamus galloprovincialis females were significantly larger than males, in 

agreement to what has been reported previously in Portugal (Naves et al., 2007, 2008). 

Togashi (1997) found a positive correlation between the size of M. alternatus females and 

oviposition rate. David et al (2015), however, found no correlation between emergence 

weight and the number of eggs present in M. galloprovincialis females during the first 

month. After studying several arthropod taxa, Lease and Wolf (2011) concluded that lipid 

content increase is proportionate to body size and that females have relatively higher lipid 

reserves than males. In our study, however, proportion of body lipid content was neither 
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sex- nor size-dependent. Furthermore, the lipid proportion (about 10% of body dry weight) 

of freshly emerged males and females remained the same through maturation feeding. 

Insects can access other compounds for usable energy, however, which are chemically 

modified from the lipids. These include glycerol, other carbohydrates or glycogen: a glucose 

polysaccharide that serves as a form of energy storage. The lipid content of emerging insects 

may affect their capacity for dispersal (Coppedge, 1994). Judging by the results of the 

dispersal experiments, the lipid contents in recently emerged M. galloprovincialis seems 

high enough to allow for sustained dispersal before they find a new host for feeding.  

  The Micro-CT technique proved very useful in facilitating non-destructive, 3D 

observations of M. galloprovincialis wing muscle structures. This method, however, is highly 

dependent on available resources and has only been used to study wing muscles in a few 

cases (Zhang et al., 2010). Though the small number of insects examined did not allow 

statistical analysis, 3D imaging of wing muscle development showed that newly emerged 

insects had well-developed wing muscles that would potentially enable sustained dispersal 

flights (Figure 4). 

  Well-developed flight muscles are essential for insect dispersal. Flight muscle size 

may respond to biotic and abiotic factors, such as food availability or population densities 

and competition, and may range from as much as 65% of body weight to nearly zero in 

species that have temporarily or permanently lost the ability to fly. Wing muscles in newly 

emerged M. galloprovincialis adults accounted for 25-30% of pterothorax dry weight and 

13% of total body weight, which lies within the range required for an insect to be able to fly 

(Marden, 2000). However, recent findings have shown that the distance flown by immature 

M. galloprovincialis in a flight mill was positively correlated to the thorax reserves, not to 

the proportion of wing muscle (David et al., 2015). Similar to the lipid fraction, pterothorax 

muscle content was neither sex nor size dependent and did not significantly increase after 

feeding. Even if neither lipids nor pterothorax muscles increased, male and female beetles 

gained around 30% and 50% of their emergence weight, respectively, during 24 days of 

shoot feeding. These values are higher than the 28% (both sexes together) reported by 

David et al (2015). Yet, the increase in body weight could be partially explained by the fact 

that ether washing does not extract compounds such as undigested food, egg content, 

abdomen proteins, glycogen and other carbohydrates that accumulate through feeding 

(Stadler, 1969). 

  Unfed immature beetles began to die as soon as 4 days after emergence. The longest 

surviving males and females died at 2.5 and 3 weeks of age respectively, when they had lost 



nearly 40% of their body weight. Most nourished adults, on the other hand, survived till the 

end of the assay. Naves et al. (2006) reported 61.2 days and 64.0 days mean longevity for 

M. galloprovincialis lab-reared males and females, respectively. Mean longevity under field 

conditions is not yet precisely known, but recaptured beetles released in pine stands 

immediately after emergence in three different experiments survived in the field for an 

average of 33.8, 44.1 and 46.8 days; while the oldest was recaptured when it was 105 days-

old (Etxebeste et al., 2015). Even if immature adults do not survive long without food, they 

would live long enough to successfully transmit the pine wood nematode to susceptible 

hosts. In laboratory experiments, nematode transmission by M. galloprovincialis adults to 

cut twigs occurred from emergence through the 8th week and peaked from weeks 2 to 6  

(Naves et al., 2007). Similarly, Togashi (1985) found in Japan that a large proportion of 

nematodes left M. alternatus bodies between 10 and 40 days after emergence, with the peak 

exit period between days 20 to 35. When nematode escape from M. alternatus and M. 

saltarius was studied in Korea, Dong Soo Kim et al., (2009) found these values to average 

34.9±12.4 and 23.9±16.2 days after emergence, respectively. 

Dispersal of immature beetles  

Newly emerged, immature M. galloprovincialis adults were able to disperse over an 

area deprived of food and fly to distant pine stands. Results from the lipid and wing muscle 

study suggest no apparent sex difference in dispersal, but recaptures were insufficient for 

proper analysis. Similarly, David et al (2015) reported no sex-biased differences for 

immature beetles exercised in a fight mill for 10 min. As expected, a higher proportion of 

the beetles reached the stands when released at a short distance (≤250 m) than when freed 

from larger distances. Even so, 6.12% were able to travel at least 2 km to find the host stand. 

The fitted model estimated that some emerging immatures would fly up to 3.1 km in an 

environment deprived of hosts. However, it is important to note that these figures may in 

fact underestimate the flying capacity of beetles. Firstly, both trap stands were located south 

of the release points and there were no other stands to trap beetles that may have randomly 

dispersed in other directions, as has been reported for immature M. alternatus (Togashi 

(1990a;b). Secondly, actual distances traveled by recaptured beetles are unknown. The 

assay only measured the minimum distance that the beetle had to fly to reach the nearest 

pine, but it is likely that most beetles did not follow a straight trajectory and thus flew extra 

distances to find the pine stands. We do not know the time spent by the beetles travelling 

these distances, since they had to feed for about two weeks before being recaptured. Some 

of them must have reached the pine stand the same day they were released, such as the 

three adults released 1500 m away and caught 14 days later. This possibility is supported 
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by David et al. (2015) who found that newly emerged immature beetles were capable of 

flying an average of 443m and a maximum of 1000m in a flight mill only in 10 min. 

The dispersal ability of mature M. galloprovincialis has been studied in flight mills 

(David et al., 2013) and by mark-release-recapture methods in pine stands (Gallego et al., 

2012; Mas et al., 2013; Etxebeste et al. 2015, Torres-Vila et al., 2014). Mature adults may 

disperse up to 13.6 km in patchy landscapes (Gallego et al., 2012). However, most remained 

close to the release point under continuous stand conditions and 99% of them did not 

disperse over estimated 2344-3496 m boundaries (Etxebeste et al. 2015). Our results also 

showed that lab matured M. galloprovincialis  were able to cross host-free areas at least 

during 1500 m. There were no apparent differences in dispersal between the sexes, which 

agrees with previous studies (Etxebeste et al. 15; Togashi, 1990b; Mas et al., 2013; David et 

al., 2013), and with results on the physiological traits related to dispersal discussed earlier. 

Mature beetles did not perform better than immature beetles when dispersing over a food-

free area. Humphry & Linit, (1989) reported that immature M. carolinensis were more active 

fliers in a flight mill than mature insects, but David et al (2013, 2015) reported better flight 

mill performance for mature M. galloprovincialis, suggesting that maturation feeding would 

improve flight capacity. Our results showed no significant improvement in lipid or muscle 

content throughout the maturation stage. However, our conclusions regarding mature 

beetle dispersal must be considered with caution since they are derived from a small 

sample. 

To sum up, our results show that recently emerged and immature M. 

galloprovincialis were able to disperse rather long distances through areas deprived of any 

host. In addition, newly emerged beetles had well-developed thoracic muscles and energetic 

reserves for sustained such flights. In the absence of food, these adults can survive up to 

three weeks and would thus be able to transmit PWN to distant susceptible hosts, which 

constitutes a highly relevant situation for PWD management. Human mediated dispersal 

through transportation of wood products will reproduce such scenario, and certainly, the 

dispersal traits of immature M. galloprovincialis may facilitate the further scenario of PWD 

expansion through Europe as has been observed elsewhere (Robinet et al., 2009). Beetles 

to emerging in new apparently host-less areas, such as ports or warehouses, may spread 

the threat of infection to susceptible trees as they disperse in search of new hosts, even over 

non-forested areas. Since semiochemical monitoring of M. galloprovincialis  is currently only 

feasible after beetles have matured, it might be asked if providing some host trees in the 

vicinity of these sites might reduce the risk of beetle dispersal by allowing later on-site 

trapping. Such management actions would oppose current procedures. However, the 



presence of nearby hosts would also increase beetle survival and the subsequent risk of 

infection, thus making this measure counterproductive. Further studies should account on 

how to effectively deal with the dynamics of new PWN infestations, taking into account the 

dispersal capacity of immature M. galloprovincialis. 
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Introduction 
 

Dispersal, defined as the distance travelled by an organism from its site of birth to 

site or sites of reproduction, is an essential process in the gene flow within and between 

populations (Clobert et al. 2012), but it is also the mechanism by which species spread 

towards new environments. Boosted by the increasing human mediated dispersal by trade 

and global flow (Levine and D'antonio 2003; Robinet et al. 2011), biological invasions are 

regarded as one of the main causes of biodiversity loss, and cause major economic and 

environmental damages (Pimentel et al. 2005). 

The pinewood nematode (PWN), Bursaphelenchus xylophylus (Steiner et Buhrer) 

Nickle, is the causal agent of pine wilt disease (PWD), a worldwide threat to pine forests 

(Futai 2013). Its introduction in Japan during the early twentieth century has caused 

massive timber and economic losses (Yoshimura et al. 1999). PWN was reported for the 

first time in Europe by Mota et al. (1999), and despite intensive management efforts, the 

disease spread through Portugal, while four foci are under eradication in neighbouring 

regions in Spain (Abelleira et al. 2011; Zamora et al. 2015). According to a recent economic 

impact assessment, a 11.9 billion € loss is forecasted for Spain between 2008-2030 

(Soliman et al. 2012). 

So far, only Monochamus galloprovincialis (Olivier) vectors PWN in Europe (Sousa 

et al. 2001). As other members of the genus, M. galloprovincialis reproduce on recently dead 

or severely stressed trees, where it arrives following chemical cues including host and bark 

beetle kairomones, and also pheromonal compounds (Pajares et al. 2010; Pajares et al. 

2013). New beetles will mostly emerge at the beginning of the summer in Southern Europe 

(Naves and De Sousa 2009). If present, PWN juveniles aggregate around pupal chambers 

and enter callow beetles prior to emergence. Newly emerged Monochamus beetles feed on 

the bark of twigs and branches of healthy pines, facilitating the entrance of PWNs into new 

hosts (primary PWN transmission; Linit 1990). For about 15 days, beetles will keep feeding 

until they reach sexual maturity while they strengthen flight muscles for further dispersal 
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(Koutroumpa et al. 2008 and references therein). This phase has been named the 

maturation feeding, however, shoot feeding takes place throughout adult life, and PWN 

transmission through primary transmission would occur even after maturity has been 

reached (Naves et al. 2007). Infection by PWN results in a quick death of most infected trees, 

which then become attractive to the vector. Secondary transmission of PWN may also occur 

during oviposition by Monochamus females (Futai 2013). Thus, the spread of PWD is greatly 

constrained to the dispersal capacity of Monochamus beetles. 

The rearrangement of individuals with distance, the dispersal curve, is often used to 

numerically characterize dispersal. Its general shape is considered almost universally 

regular; while the majority of individuals undergo short-distance dispersal (SDD), a few will 

show a long-distance dispersal (LDD; Nathan et al. 2003). SDD has been thoroughly studied 

in many organisms, and its characterization allows now for the computation of several 

population parameters, such as recruitment or small-scale metapopulation dynamics 

(Clobert et al. 2012; Okubo and Levin 2001; Turchin 1998). On the other end, the scarce 

LDD events have a disproportionate importance in the evolution of populations, species and 

communities, and are especially relevant in the case of biological invasions (Clobert et al. 

2012; Nathan et al. 2003). Yet, these events are characterised by a high degree of 

stochasticity, and records often proceed from anecdotal and potentially biased data sets, 

making LDD characterization very hard (Nathan et al. 2003; Turchin 1998). In addition, 

human activities such as good transportation or translocation of firewood, contribute 

significantly to the occurrence LDD events (Pimentel et al. 2005; Taylor et al. 2010; 

Yoshimura et al. 1999). Correspondingly, long-distance spread of PWD has been primarily 

linked to human-mediated transportation (Robinet et al. 2011; Takasu et al. 2000; Togashi 

and Shigesada 2006). The local expansion of the disease on the other hand, is critically 

affected by the SDD behaviour of Monochamus beetles (Robinet et al. 2011; Takasu et al. 

2000). 

As for most of small animals, insect dispersal is one of the most difficult population 

parameters to measure. Information gathered using tethered insects at flight mills has 

provided information about the flight potential, i. e., the dispersal capacity, of studied 

insects (Ranius 2006). Yet, the lab procedures under which these tests are performed make 

their field interpretation difficult (Ranius 2006; Taylor et al. 2010). Using this technique, M. 

galloprovincialis has recently been shown to be able to accumulate mean flight distances of 

about 16 km (David et al. 2014). Telemetry and mark-release recapture (MRR) on the other 

hand, allow for field observation of the dispersal of studied insects. In addition MRR 

provides means for population size estimation (Ranius 2006; Sanchez-Husillos et al. 2015). 



Mark-recapture has been widely used to study dispersal of wood boring beetles (e. g. 

Bancroft and Smith 2005; Franklin et al. 2000; Turchin and Thoeny 1993; Turchin and 

Odendaal 1996), and some figures are also available for Monochamus beetles (Bonifacio 

2009; Gallego et al. 2012; Mas et al. 2013; Shibata 1986; Togashi 1990; Torres-Vila et al. 

2015). Results of MRR studies conducted in Japan registered very low SDD for M. alternatus, 

yet distances above 2 km were recorded at landscape level (Shibata 1986; Togashi 1990). A 

number of MRR experiments with native and lab-reared M. galloprovincialis conducted in 

fragmented landscapes showed that even if most of recaptures occurred close to the origin, 

two beetles could be trapped at 8.3 km and 13.6 km from the release point (Gallego et al. 

2012; Mas et al. 2013). 

Eulerian analysis of the redistribution of populations relies in the recording of large 

numbers of marked or unmarked individuals at specific points in space (Nathan et al. 2003; 

Turchin 1998). Two complementary approaches would then result in the computation of 

the dispersal kernel (Nathan et al. 2012), that is, statistical distribution of dispersal 

distances of the population under study. While phenomenological or empirical models use 

dispersal records to fit ad hoc functions that ignore the dispersal process, mechanistic 

models are based in the redistribution process and use data on factors affecting it during 

modelling, after which the dispersal curve is then predicted independent of the dispersal 

data (Nathan et al. 2003; Nathan et al. 2012; Turchin and Thoeny 1993; Turchin 1998). One 

further methodological challenge involves incorporating the estimation of LDD events as 

these are characterised by their scarcity (Nathan et al. 2003).  

The availability of an efficient trapping procedure to conduct MRR studies with M. 

galloprovincialis (Álvarez et al. 2015; Pajares et al. 2010), encouraged us to conduct three 

field experiments to study the dispersal of lab reared beetles from emergence to a first 

response to a fake breeding site, i. e., a trap baited with infochemicals. Two main aims were 

set for these trials: first, the dispersal of M. galloprovincialis was studied in order to fit 

dispersal kernels that could assist in the description of the PWD expansion when vectored 

by M. galloprovincialis, as well as provide information to managers and policy makers in the 

implementation and application of control measures. The experiments were held in two 

landscape scenarios, fragmented and continuous pine stands, and gathered dispersal data 

allowed for the comparison of a mechanical model based on simple diffusion with 

disappearance (Turchin and Thoeny 1993) with two empirical models, one of which has 

shown the potential to describe both short- and long-distance dispersal (Clark et al. 1999). 

Previous reports have generally focused in tracking long distance dispersal events over 

fragmented scenarios (e. g. Gallego et al. 2012; Mas et al. 2013), or have followed wild-
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beetles in a limited spatial scale (Torres-Vila et al. 2015), while no M. galloprovincialis 

dispersal kernel based on MRR results have been published to our knowledge. And second, 

the same experimental set-ups would help defining the performance of multiple-funnel 

traps baited with commercial lures that are used in monitoring Monochamus beetles 

(Álvarez et al. 2015), and establishing their effective sampling area as well as their seasonal 

sampling ranges (Ostrand and Anderbrant 2003; Turchin and Odendaal 1996). 

 

Materials and methods 
 

Insects and host material 

Beetles for the mark-recapture experiments in 2009 and 2010 were obtained from 

Pinus pinaster Aiton bolts infested with M. galloprovincialis, collected in Arenas de San 

Pedro (Ávila, Spain; 40°11’02’’N, 5°02’22’’W). Similarly, Pinus halepensis Miller logs were 

collected in 2011 Callosa d’en Sarrià (Alacant, Spain; 38°38’45’’N, 0°08’25’’W). Bolts were 

transported to the lab, placed in outdoor cages or boxes, and monitored regularly for insect 

emergence (from mid-June to mid-July). Beetles were sexed and the length of their right 

elytrum was measured upon collection. Numbered and coloured queen bee tags (Opalith 

Plättchen, Christian Graze KG, Germany) were glued to their pronotum using gum Arabic. 

Marked beetles were kept individually in glass jars at climatic chambers (15L:9D, 

25°C:20°C) until release (≤ 3 days). No food was provided as dispersal records aimed at 

including any initial displacement providing maturation feeding. 

Study sites and experimental design 

Lab-reared M. galloprovincialis release-recapture experiments were held at three 

distant sites in the Iberian Peninsula during three consecutive seasons (Fig. S1a). Grids of 

traps were installed centred on the points of release located at continuous (2009 and 2010; 

Fig. S1b and S1c) and fragmented pine stands (2011; Fig. S1d). In all experiments, multiple-

funnel traps (Econex S.L., Murcia, Spain; Lindgren 1983) baited with the commercial lure 

for M. galloprovincialis (Galloprotect Pack ®, SEDQ S.L., Barcelona, Spain) were used to track 

dispersing beetles at week intervals. Traps were hung between pairs of trees, with the 

collection cup at least 50 cm from the ground. The lures released two bark-beetle 

kairomones (ipsenol and 2-methyl-3-buten-2-ol, 2.5 and 12 mg/day respectively), a host 

kairomone (α-pinene, 500 mg/day) and the M. galloprovincialis pheromone (2-undecyloxy-

1-ethanol; ca. 2 mg/day; Pajares et al. 2010). Baits were renewed every 6 weeks. 



The first experiment was carried out between 24 June and 7 October 2009 at a 

natural ca. 60-year-old P. pinaster stand in Tabuyo del Monte (Fig. S1b, Leon, Spain; 

42°17’45’’N, 6°10’52’’W; 961 m a. s. l.). On average, the stand had ca. 900 trees ha-1. Four 

batches of recently emerged M. galloprovincialis were released from the centre of a circular 

grid consisting of four concentric rings (Fig. S2a).  

 

Fig. S2 Detailed trap disposition in experiments held at (a) Tabuyo del Monte (2009) and (b) Villota del Páramo (2010). Filled circles represent 

trap locations, while crosses represent release sites. Radii lengths of each of the trapping annuli on both sites are shown as well as the underlying 

200 m cell grid in 2009 (b). 

 

Four, 4, 8 and 12 traps were placed at regular arc segments respectively at 50m, 

100m, 250m and 500m from the release point. In order to prevent escape, traps included a 

small piece of dimethyl 2, 2-dichlorovinyl phosphate insecticide (Econex S. L., Murcia, 

Spain). The release platform consisted of dead pine branches staked on the ground. Beetles 

were placed on the platform between 10:00 and 12:00 at each release occasion, and 

observed for 20 min for flight initiation. Fifty-four, 55, 40 and 22 lab-reared M. 

galloprovincialis were observed to resume flight on the 24 June, 1, 8 and 15 July respectively 

(Table 1). 

The study site in 2010 was located in Villota del Páramo (Fig. S1c, Palencia, Spain; 

42°32'26"N, 4°51'56"W; 1003 m a. s. l.), and was carried out between 18 June and 30 

September. The study area consisted of mixed reforested stands of P. pinaster (8%), Pinus 

nigra salzmannii Arnold (78%) and Pinus sylvestris L. (14%) of varying ages (40 to 60-years 

old) and densities (150 to 650 trees ha-1; Fig. S1c). Patches of Quercus pyrenaica Willd. in 

the understory could also be found locally. A regular grid of 56 multiple funnel traps were 

installed centred in the release point (Fig. S1c). Fifty-two of them were placed in the centres 
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of 4 ha square cells (200×200 m), while the remaining four covered the closest 1 ha cells to 

the release point. The design intended to provide a homogeneous sampling intensity, while 

fitting 8 concentric rings around the release point (Fig. S2b). 

 

Fig. S1. Monochamus galloprovincialis dispersal studies location and design between 2009 and 2011. (a) Geographical location of the 

experimental sites shown over a raster depicting the distribution of Pinus spp. forests in Southern Europe (Tröltzsch et al. 2009). Trap (crosses) 

and release site locations (filled squares) for (b) Tabuyo del Monte (2009), (c) Villota del Páramo (2010) and (d) Altura (2011). Background 

images represent raster images depicting canopy height derived from airborne LiDAR data (b and c; PNOA, Instituto Geográfico Nacional, Spain) 

and forest patches with P. halepensis dominance (d; 3rd Spanish National Forest Inventory, Ministry of Agriculture, Food and Environment). 

See text and Fig. S1 for further design details. 

 

Following the same procedures as in 2010, four batches of 39, 106, 142, and 66 M. 

galloprovincialis were observed to resume flight on the 29 June, 6, 13 and 20 of July 

respectively (Table 1). Modified multi-funnel traps allowed for live-trapping of M. 

galloprovincialis while minimizing escape (see details in Álvarez et al. 2015). Captured 



marked beetles that were recognized as capable of re-initiating flight, i. e., maintained 

vigour, were re-released 100 m away of the traps position to minimize interference with 

dispersal. At each sampling occasion, new fresh pine twigs were placed inside the collection 

cups to allow for insect feeding. 

 

     Distance (m) Time (days) 
Year Replicate Date N0 Recaptures dmin dmax dmed tmin tmax tmed 

2009 
I 

2009-06-
24 54 

18 (33.3%) 50 500 100 28 105 45.5 

 
II 

2009-07-
01 55 (36♀,19♂) 

21 (38.2%) 50 500 50 21 91 52 

 
III 

2009-07-
08 40 (19♀,21♂) 

11 (27.5%) 50 250 50 7 77 35 

 
IV 

2009-07-
15 22 (10♀,12♂) 

10 (45.5%) 50 500 75 21 84 35 

2010 
I 

2010-06-
29 39 (22♀,17♂) 

9 (23.1%) 71 762 141 14 49 14 

 

II 

2010-07-
06 

106

 (53♀,53♂) 

32 (30.2%) 71 762 71 7 84 28 

 

III 

2010-07-
13 

142

 (66♀,76♂) 

43 (30.3%) 71 762 141 14 84 28 

 
IV 

2010-07-
20 66 (34♀,32♂) 

18 (27.3%) 71 762 141 14 77 24.5 

2011 

I 

2011-06-
02 

128

 (61♀,67♂) 

1 (0.8%) 0 0 0 29 29 29 

 
II 

2011-06-
10 81 (32♀,67♂) 

3 (1.2%) 559 1000 901 52 94 73 

 
III 

2011-06-
15 77 (44♀,34♂) 

6 (1.3%) 0 2019 0 26 89 75 

 
IV 

2011-06-
22 78 (39♀,38♂) 

5 (1.3%) 0 559 0 19 78 61 

 
V 

2011-07-
04 58 (40♀,18♂) 

7 (1.7%) 0 1118 500 35 98 56 

 
VI 

2011-07-
11 32 (18♀,14♂) 

3 (3.2%) 0 559 559 28 59 49 

 
VII 

2011-07-
21 19 (13♀,6♂) 

3 (5.3%) 0 5303 5037 14 46 49 

Table 1 Summary values of Monochamus galloprovincialis release-recapture studies between 2009 and 2011. Initial number of beetles 

released at the origin (N0), absolute and relative recaptures, and ranges and median values for distances and times of recapture are provided. 

Sex distribution for the first replicate in 2009 is not available. 

 

Finally, a third experiment was carried out in a highly heterogeneous landscape 

during 2011 in Altura (Fig. S1d, Castelló, Spain; 39°49'18"N, 0°38'31"W). Altitudes in the 

area ranged between 400-1200 m a. s. l., pine stands dominated by P. halepensis were 

present patchily across a wide study area (> 48000 ha). Other pine species could also be 

found, including P. nigra, P. pinaster, or P. sylvestris. Tree densities in the centre of the setup, 

a 50-year-old P. halepensis stand, averaged 300 to 400 trees ha-1 (Fig. S1d). Thirty-six 

modified traps were used to track down the dispersal of M. galloprovincialis under two 

trapping regimes. On the one hand, a central set of 19 traps were placed following a 

staggered trellis on a continuous pine stand of about 600 ha (3-4-5-4-3 disposition; ca. 500 
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m between traps; Fig. S1d). This set of traps was alternatively removed and installed, 

following an average 6-days-trapping and 4-days-no trapping cycle, under the assumption 

that no artificial pheromone source was left at the central stand. On the other hand, 17 

additional traps were installed at forest patches with a dominance of P. halepensis in two 

rough concentric rings of 4-6 km and 8-10 km radii. Seven batches of lab-reared M. 

galloprovincialis were released during the time when no traps were present following the 

procedure described above (Table 1). The release point matched that of the location of the 

central trap (Fig. S1d). Altogether, 473 M. galloprovincialis were released at this third 

experiment. 

Statistical analyses 

Due to the low number of recaptures in 2011 (2.1% on average; Table 1), and their 

poor and sparse distance coverage, modelling was not conducted on this data set. Yet, that 

information was used to evaluate models fitted with the 2009 and 2010 datasets. Only the 

distance records for the first time insects were recaptured in 2010 were used for the 

analysis, so that results would be comparable to those of 2009 when beetles were killed at 

capture. All calculations and analyses were carried out under the R statistical environment 

and language (R Core Team 2014). 

Rotational symmetry in the effective dispersal of recaptured individuals was tested 

prior to modelling, in order to check for the assumptions of selected methods (Clark et al. 

1999; Turchin and Thoeny 1993). The significance of the deviation of the average 

displacement from the x and y axes was calculated following the method proposed by 

Turchin and Thoeny (1993). Relationship between insect size (elytral length) and recapture 

distance was analysed by simple linear regression. 

Mechanistic model – A mechanistic model for the quantitative analysis of the dispersal of a 

bark beetle, allowing for disappearance, was developed by Turchin and Thoeny (1993). 

Based on their solution for a time integrated simple-diffusion model (Okubo and Levin 

2001; Turchin 1998): 

  0
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   Eqn. 1 

where, C (r) are the captures at distance 𝑟 = √(𝑥2 + 𝑦2 ), α is the recapture efficiency, N0 is 

the initial number of beetles released at the origin, D is the diffusion rate, δ is the loss rate 

and K0 (z) is a modified Bessel function of the second kind. Turchin and Thoeny (1993) 

proposed the following approximation, written as:  
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where, 𝐴 ≡ (𝛼𝑁0)/(√8𝜋𝑟  √𝐷3 𝛿
4

 is the scale parameter, proportional to the number of 

beetles released and the recapture efficiency; and  𝐵 ≡ √(𝐷/𝛿) measures the spatial scale 

of dispersal. Parameter B can then be used to construct the probability density function, i. 

e., the distance dispersal kernel (kD) by numerically solving: 
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  Eqn. 3 

 

Taking natural logarithms of Eqn. 2, and linearizing it, facilitates its fitting by regressing   

𝑌 = ln 𝐶(𝑟) +
1

2
ln 𝑟   on r (Turchin 1998). Trap catches [𝐶(𝑟)] were averaged by equal 

distances, thus avoiding problems derived by zero catches at certain traps and distances 

(Turchin and Thoeny 1993). Response variable Y was then fitted by linear mixed effect 

models (LME) that allowed to test for possible differences in dispersal patterns between 

sexes of M. galloprovincialis, zonal effects (i. e., spatial heterogeneity between trapping 

annuli), year of the experiment, replicates, and replicates within years, using a diagonal 

variance-covariance structure for random effects. Models were fit using the “lme” function 

of the nlme R package (Pinheiro et al. 2015). Likelihoods of fitted models were compared to 

a linear model without random effects by means of likelihood-ratio tests (Pinheiro and 

Bates 2000). A conventional linear model was then fitted for each of the replicates in 2009 

and 2010 (Table 1), and kD and the cumulative probability curves were correspondingly 

built using fitted B parameters.  

Empirical models – Two phenomenological distance location kernels (kL) were also fitted to 

the recaptures recorded in 2009 and 2010 via inverse modelling. On the one end, the fat-

tailed bivariate Student´s t or “2Dt” model was chosen as was designed to describe both 

local and long-distance dispersal (Clark et al. 1999; Nathan et al. 2012). The formulation for 

the 2Dt model is: 
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   Eqn. 4 

 

where, p is the shape parameter and u is the scale parameter (m2). On the other, the negative 

exponential kernel was chosen as a reference against more fat-tailed diffusion-based and 

2Dt kernels (Nathan et al. 2012). Its formulation: 
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   Eqn. 5 

 

where , a is the scale parameter, and the shape parameter c relating the kernel to the gamma 

function, equals one. The kernel was considered separately to the initial number individuals 

at each replicate (N0) and the trapping-area used to detect dispersal (A) so that the expected 

number of captured individuals would be computed as 𝐶(r) = 𝐴𝑁0 𝑘𝐿®. The value for the 

trapping area was taken as the average of the computed effective sampling area for years 

2009 and 2010 (6650 m2; see below; Turchin and Odendaal 1996). Results from replicates 

in 2009 and 2010 were analysed as one single batch accounting for different N0. Empirical 

models were fitted using numerical maximum likelihood estimation assuming a Poisson 

error distribution for M. galloprovincialis recaptures (e. g. Clark et al. 1999). The negative 

Poisson log-likelihood (-ln L) was numerically minimized using the Stats4 R package. 

Location and distance kernels in 2D space were related through 𝑘𝐷(𝑟) = 2𝜋r𝑘𝐿(𝑟)( Nathan 

et al. 2012). 

Fitted mechanical and phenomenological kernels were evaluated graphically using 

the 2011 dataset as the observed recaptures. The A parameter in the diffusion model (Eqn. 

2) was re-scaled accounting for the initial number of beetles released on each replicate in 

2011. In addition, the mean squared errors of the predictions were computed for each 

selected kernel. The same set of fitted distance dispersal kernels was also used to produce 

a table with distances corresponding to the expected 50%, 67%, 95%, and 99% percentiles 

of dispersal events, as well as the probabilities to disperse over 500, 1000 and 5000 m. 

Trapping parameters – Turchin and Odendaal (1996) introduced a computation method, 

later extended by Ostrand and Anderbrant (2003), that allowed for the estimation of the 



effective sampling area (αESA) and the seasonal sampling range (rs; Wall and Perry 1987) of 

pheromone baited traps under the assumptions that recruitment areas around the traps 

have circular shapes, and that insect densities (B) remain homogeneous within the area. 

This way αESA can be computed as: 
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  Eqn. 6 

 

where P (r) is the function linking the average proportion of captured insects that started 

at the distance r of a certain trap and C is the number of captured individuals. The intercept 

of P (r) with the x-axis provides an estimate of rs. The ratio between the radius of the αESA 

(rα) and rs can be used to describe the concentration of the trapped individuals’ origin. This 

way, if both estimates are similar, the catch is very concentrated in space, whilst low catch 

concentration (CC) values would mean that only a small fraction of the catch comes from 

the immediate vicinity of the trap (Ostrand and Anderbrant 2003). The influence of sex, 

year, zonal heterogeneity, and replicates as random effects were tested through a series of 

LME models. Distance to the origin was log10 transformed for modelling. Values for αESA, rα, 

rs and CC were numerically computed for fitted models. 

 

Results 
 

Marked lab-reared M. galloprovincialis could be consistently recaptured during 

experiments in 2009 and 2010, yet rates greatly dropped in 2011 (Table 1). Altogether, 60 

beetles could be recaptured in 2009, yielding an average 36.1% rate per replicate. Beetles 

were caught as soon as 7 and as late as 105 days after their release. Although median 

distances corresponded to those closest to the release point, recaptured beetles were found 

across all the experimental setup. In 2010, an average recapture rate of 27.7% of released 

beetles (102 first sightings), showed that trap modifications were avoiding the escape of M. 

galloprovincialis without a significant loss of efficiency, yet 20.6% of the beetles were found 

dead at their first recapture. Nine and three beetles were sighted on a second and a third 

occasion (33.3% and 0% mortality respectively). Table 1 shows median, minimum and 

maximum distance recorded for first sightings, while cumulative track lengths averaged 

240 m (mode 71 m, range 71-1090 m); beetles were re-sighted between 1 and 12 weeks 
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after their release. Out of the 473 M. galloprovincialis released in 2011, only an average 2.1 

% recapture rate per replicate was obtained (28 first sightings, 64.3% mortality). Three 

individuals were sighted on a second occasion (66.6% mortality), and one M. 

galloprovincialis could be tracked dead on a third occasion. First recaptures occurred as 

soon as 14 and as late as 98 days after release. Distances to recaptures ranged from 0 to 

5303 m (Table 1). Although cumulative distances ranged between 1000 and 2000 m, the 

longest records were recorded from two first sightings of beetles that dispersed 5303 m 

after only 14 days, and 5037 m after 46 days (Fig. S6). No significant influence of beetle size 

in recapture distance was found at any of the experimental years (radj -0.04, P 0.70 in 2009; 

radj -0.013, P 0.58 in 2010;and radj -0.019, P 0.47 in 2011). 

No significant deviation on the average displacement from the x and y axes was 

detected in 2009 (5.8 m, t3 0.65, P 0.56 and -23.68 m, t3 -0.89, P 0.44 respectively). On the 

other hand, a significant westward deviation was found in 2010 (-95.21 m, t3 -5.31 P 0.013), 

whilst the average displacement from the y axis remained not significant (-87.47 m, t3 -2.3 

P 0.105). Much of the detected drift could be accounted to replicates I and IV (-144.44 and -

83.33 m westward drift), which were in turn the replicates with lowest absolute and relative 

recaptures (Table 1). Their removal from the displacement analysis resulted in a non-

significant deviation (t1 -4.44 P 0.14). Thus, and in spite of this small overall drift, the 

assumption of rotational symmetry was still acknowledged. 

Mix modelling of recaptures pinpointed the significant effects of replicates and 

experimental years on the diffusion model structure, but the recapture distance was not 

found to be affected by the sex of dispersing M. galloprovincialis (Table S1). 

 

Model Random Effects d. f. AIC P 
LM - 3 134.71  
LME Sex 5 138.71 1 
 Annulus 5 135.62 0.214 
 Replicate 5 131.30 0.025 
 Year 5 131.48 0.027 
  Replicate into 

Year 
7 132.26 0.200 

Table S1 Comparison of diffusion model structures based on likelihood-ratio tests comparing linear mixed effect (LME) models to a linear model 
(LM) without random effects. Models included recapture data of all replicates in 2009 and 2010. See text for further details. AIC, Akaike 
Information Criterion. 
 

 Nesting replicates within year, did not significantly improve the model either, 

although the difference in AIC value did not support big differences with un-nested 

alternative models or with the simple linear regression alternative. Considering these 

results and the different N0 values, computation of the parameters for the mechanistic 

diffusion models were obtained through simple linear regression (Table 2; Figs. S4 and S5).  



 

 

Fig. S4 Mean number of predicted Monochamus galloprovincialis recaptures by diffusion models 642 with distance and boxplots of observed 

recaptures in replicates (a) I, (b) II, (c) III and (d) IV in 2009. 643 Predictions for replicate 2009-III are based on approximate parameters as 

model could not be fitted.  

 

Fig. S5 Mean number of predicted Monochamus galloprovincialis recaptures by diffusion models 645 with distance and boxplots of observed 

recaptures in replicates (a) I, (b) II, (c) III and (d) IV in 2010 
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Replicate 2009-III only recaptured beetles in two out of four possible trapping distances, 

making it impossible to follow the same modelling strategy (logs of zeros). In addition, the 

low and evenly distributed recaptures for replicates 2010-I and 2010-IV resulted in very 

large B parameters of the diffusion model. Based on lowest AIC values, i.e., highest 

likelihoods, diffusion models for replicates 2009-I and 2010-II were selected for further 

analyses and representation purposes (Table 2). Fig. 1 shows the curves corresponding to 

the fitted models, distance dispersal kernels and cumulative probabilities of dispersal based 

on those models. 

 

  Parameter  
Year Replicate A B AIC 
2009 I 13.63 ± 0.55 413.26 ± 1984.10 6.08 
 II 22.16 ± 1.28 173.97 ± 853.17 12.83 
 IV 8.95 ± 0.79 275.27 ± 1390.07 8.93 
2010 I 5.36 ± 1.11 18269.99 ± 1454.40 12.00 
 II 25.51 ± 0.43 450.09 ± 4474.67 6.13 
 III 37.06 ± 0.88 326.08 ± 2169.93 16.27 
 IV 11.75 ± 0.64 690.15 ± 2895.42 10.53 

Table 2 Diffusion model parameter estimates (±SE) after linear modelling of mean Monochamus galloprovincialis recaptures per sampling 
distance and replicate. Model for replicate 2009-III was not fitted because recaptures were only available for two radii (see Results). See Eqn. 2 
and text for parameter definition. 

 

 

In addition, inverse modelling of recaptures allowed the estimation of the 

parameters of the 2Dt and negative-exponential empirical dispersal location kernels (Table 

3).  

 

Dispersal kernel Parameter Estimate 95% CI AIC 

2Dt p 0.804 0.50 to 1.36 375.98 

 u 39760.1 m2 19820 to 82135.8 m2  

Negative exponential a 149.14 132.78 to 165.51 368.29 

 Table 3 Monochamus galloprovincialis maximum likelihood estimates for 2Dt and negative exponential empirical dispersal location kernels. 

Approximated 95% confidence intervals of parameters estimates are provided. See Eqn. 4 and 5 for parameter definition. 

 

The negative exponential provided the best fit, providing the lowest AIC value of 

both evaluated models. Fig. 2 shows the kernels for location, distances and cumulative 

probabilities for dispersal computed after the fitted parameters of both models. 



 

Fig. 2 Analysis of Monochamus galloprovincialis dispersal using two empirical models on recaptures of all replicates in 2009 and 2010. (a) 
Dispersal location kernels, (b) distance dispersal kernels and (c) cumulative probabilities of dispersal over distances fitted with parameters 
estimated for 2Dt and negative exponential kernels. See text and Table 4 for further details. 

 

Graphical evaluation of fitted kernels is presented in Fig. 3, complemented with the 

computation of distances to given percentiles of dispersers and probabilities of beetles 

dispersing to certain distances (Table 4).  

 

 Distance at percentile (m)  Probability over distance 
Distance Dispersal kernel r50 r67 r95 r99  500 m 1000 m 5000 m 

Mechanical 2009 I 488.88 708.67 1614.76 2344.19  0.490 0.184 <0.001 
  II 205.8 298.33 679.76 986.83  0.125 0.009 <0.001 
  IV 325.64 472.04 1075.58 1561.45  0.304 0.064 <0.001 
 2010 II 532.45 771.83 1758.67 2553.11  0.528 0.217 <0.001 
  III 385.75 559.17 1274.11 1849.67  0.381 0.105 <0.001 
  IV 816.44 1183.49 2696.67 3914.83  0.694 0.408 0.002 

Empirical 2009+2010 2Dt 233.34 343.87 1270.67 3495.87  0.203 0.073 0.006 
  Neg. Exp. 250.32 343.59 707.52 990.07  0.152 0.009 <0.001 

Table 4 Estimated radii enclosing 50%, 67%, 95% and 99% of dispersing Monochamus galloprovincialis based on fitted distance dispersal 

kernels. Alternatively, probabilities of dispersal events over 500, 1000 and 5000 m are presented. 
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Overall, diffusion models for replicates 2009-I and 2010-IV predict that 20% of the 

beetles will fly over 1000 m, but less than 0.1% would do over 5000 m. On the other hand, 

7.3% and 0.9% of the beetles would be found over 1000 m according to the 2Dt and 

negative-exponential models respectively. The widest tail was forecasted by the 2Dt, 

predicting that 0.6% of M. galloprovincialis would fly over 5000 m. When compared to Fig. 

3, observations closest to the release point, i. e., highest observed recaptures, were 

forecasted in a similar fashion by all models, while above 1000 m, i. e., lowest observed 

recaptures, diffusion models provided a better guess than empirical models. 

 

 Model parameters and fit  Derived trapping parameters 

Data set a 95% CI b 95% CI AIC   rs r CC 

2009 0.122 0.066 to 0.179 -0.046 -0.101 to 0.008 -555.52  0.57 ha 426 m 43 m 0.10 

2010 0.076 0.051 to 0.1 -0.027 -0.039 to -0.015 -1429.39  0.76 ha 645 m 49 m 0.08 

Table 5 Trapping parameters in 2009 and 2010. LME model parameters with their 95% CI for each data set, relate the proportion of captured 

insects and distance to release point considering zonal effects as random. Derived trapping parameters: effective sampling area (αESA), its 

radius (rα), the seasonal sampling range (rs) and the catch concentration (CC; see Materials and Methods for further explanations). 



 

Fig. 3 Comparison of agreements between observed mean and absolute recaptures of Monochamus galloprovincialis in Altura (2011) derived 

from the best fitting mechanical diffusion models and the 2Dt and negative exponential empirical dispersal kernels. The dashed line depicts the 

line of agreement. Mean squared errors (MSE) for each comparison are provided. 

 

Finally, the effective sampling area (αESA) and the seasonal sampling range (rs) 

among other trapping parameters could be computed using the recaptures of M. 

galloprovincialis in 2009 and 2010. Selected linear mixed models included the zonal effects 

within the random effects, while the remaining variables evaluated for random effects did 

not improve fitted models. Derived trapping parameters, along model parameters, are 

presented in Table 5. Values for the αESA and rs were higher in 2010. On the other hand, catch 

concentration was found to be slightly lower in 2010, meaning that a larger proportion of 

the beetles caught originated from the outside of the αESA. 
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Discussion 
 

The natural spread of PWD is greatly constrained to the dispersal of Monochamus 

beetles and the successful transmission of its causal agent, the PWN. Most of M. 

galloprovincialis resightings were recorded in traps located closest to their origin, 

irrespective of the study area or experimental year, in accordance to other Monochamus 

observations (Table 1; Gallego et al. 2012; Mas et al. 2013; Shibata 1986; Togashi 1990; 

Torres-Vila et al. 2015). On the other hand, fitted dispersal kernels under a continuous 

forest cover locate the median of dispersers at 233-532 m, while 99% of the dispersing M. 

galloprovincialis would not disperse over 2344-3496 m. Recapture rates were very low at a 

third experiment, yet distance records reached 5000 m on two occasions. No apparent 

differences between the dispersal behaviour of M. galloprovincialis males and females were 

observed, in agreement with previous reports (David et al. 2014; Mas et al. 2013; Torres-

Vila et al. 2015). Torres-Vila et al. (2015) have recently reported an average of 122 m and a 

maximum 464 m flight-length for wild M. galloprovincialis in a study conducted within a 4 

ha plot. Similarly, Bonifacio (2009) reported three flights to traps that averaged 237 m, 

while re-sightings occurred at 5 m from the release site on average when beetles were 

tracked visually. On the other end, wild-beetles were mainly recaptured in traps at the 

nearest pine stands, ca. 2 km away of the origin, while one beetle could be recaptured at 8.3 

km (Gallego et al. 2012). In addition, Mas et al. (2013) reported recaptures up to 13.6 km 

from the origin. Both these works included experiments conducted at fragmented forests 

distributed across hilly terrains. Although our results at the larger scale do agree with them, 

the dispersal distances of M. galloprovincialis under a continuum of forest are longer than 

previous estimations (Bonifacio 2009; Torres-Vila et al. 2015). Similarly, the studies on the 

Japanese vector of the PWD, M. alternatus, have allocated SDD ranges to a few hundreds of 

meters (Shibata 1986; Togashi 1990). Yet, at a landscape level, M. alternatus was able to 

disperse up to 3.3 km between forest patches (Togashi 1990 and references therein). 

Lab assessments on the flight performance of PWD vectors have shown that their 

flight potential can in fact be much larger than the distances recorded in the field. Tethered 

M. galloprovincialis can fly 16 km on average during their lifetime (David et al. 2014), 3.7 

km long flights were recorded for M. carolinensis (Akbulut and Linit 1999), while M. 

alternatus was reported to sustain a maximum 3.3 km flight (Ito 1982; Takasu et al. 2000). 

Flight-mill records may be biased due to the effects of handling or lab conditions (Taylor et 



al. 2010 and references therein). Yet, if net dispersal is compared with flight mill records 

through random walk or derived diffusion models, they can be regarded as the cumulative 

distances flown by the insect (Okubo and Levin 2001; Taylor et al. 2010; Turchin 1998). 

Attaining reliable measures of dispersal necessarily implies that the method of 

choice and the size of the study area are providing unbiased data (Franzen and Nilsson 

2007; Ranius 2006; Turchin 1998; Yamamura et al. 2003). Applying MRR experiments to 

describe M. galloprovincialis dispersal implicitly requires that a large proportion of the 

individuals can be tracked down, i.e., recaptured (Franzen and Nilsson 2007; Turchin and 

Thoeny 1993). Registered rates, at least during 2009 and 2010 (Table 1), fit such scenario. 

Similar experiments usually result in recapture rates well below 10% (Bancroft and Smith 

2005; Franklin et al. 2000; Mas et al. 2013; Ostrand and Anderbrant 2003; Torres-Vila et al. 

2015; Turchin and Thoeny 1993; Turchin and Odendaal 1996). The experimental design in 

2010 incorporated a lattice pattern design (Fig. S2), which is known to minimize the bias 

caused by artificial removal of individuals (Yamamura et al. 2003). Also, median dispersal 

estimates were generally higher in 2010 (Table 4), indicating that M. galloprovincialis 

dispersal was not severely affected by the trapping density. The effect of the presence of 

artificial sources of infochemicals on the dispersal of Monochamus is not known. Bark beetle 

recapture patterns with distance are known to change in relation to the strength of the lure 

(Duelli et al. 1997; Franklin et al. 2000; Turchin and Thoeny 1993). However, as 

Monochamus beetles do not need to overcome host defences through aggregation, their 

responses would not be comparable to bark-beetles. In addition the accumulated sampling 

area according to the computed αESA values, represent but a fraction of the study area 

(Turchin and Thoeny 1993). Taking into account these considerations, we assumed that 

MRR data using pheromone traps in 2009 and 2010 provided a representative data set for 

the study of M. galloprovincialis dispersal under continuum stands. 

The definition of the boundaries between SDD and LDD for Monochamus beetles has 

varied according to the scale of the studies (Bonifacio 2009; Gallego et al. 2012; Mas et al. 

2013; Togashi and Shigesada 2006; Torres-Vila et al. 2015; Yoshimura et al. 1999). 

Following the methodology proposed by Turchin and Thoeny (1993), a simple model for 

diffusion allowing for disappearances could be applied in six out of eight replicates. One 

major advantage of mechanical models is that fitted parameters are readily interpretable 

(Turchin 1998). Consistently, our results showed that while the scale parameter A varied 

according to corresponding N0 values per replica, the spatial scale of dispersal (B) did not 

change much each year, and on average, it was somewhat higher in 2010, likely influenced 

by the larger study area (Table 2). Variations of the negative exponential kernel have been 
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previously used to describe Monochamus dispersal behaviour (Gallego et al. 2012; Pukkala 

et al. 2014; Togashi 1990; Torres-Vila et al. 2015). However, the 2Dt kernel should provide 

a better overall description of both SDD and LDD (Clark et al. 1999). Inverse modelling of 

observed recaptures in 2009 and 2010 resulted in a better fit of the negative exponential 

kernel (Table 3; Fig. 2). Yet, even if none of the kernels fitted under continuous forest 

conditions predicted the 2011 observations accurately (Fig. 3), the 2Dt kernel forecasted 

the highest probability of LDD events (Table 4). 

Proper estimation of LDD requires adjusting the scale of the experiments to the scale 

of such process, while the sampling effort is held roughly constant (Nathan et al. 2003). In 

addition, landscape composition is recognized to have a severe effect on dispersal (Clobert 

et al. 2012), as the degree of fragmentation and connectivity of habitat patches is directly 

linked to the size of the study areas required for adequate dispersal measurement (Franzen 

and Nilsson 2007). The experiment in 2011 covered an extensive fragmented area, with a 

much lower sampling effort, and yet the forecasts using kernels derived from continuous 

forests were still able to draw the general trends. In fact, the two re-sightings occurring at 

5 km took place at the two traps bordering a large host-less area west of the release site 

(Fig. S1d). The analysis of the recaptures under a framework that considers habitat 

composition within and between patches was beyond the aim of the present paper, yet our 

results, and those from similar experiences (Gallego et al. 2012; Mas et al. 2013), suggest 

that M. galloprovincialis dispersal varies according to the landscape, an effect that, to our 

knowledge, has not been evaluated for PWD spread. Other factors, such host density and 

susceptibility, vector population level, PWN load or meteorological conditions may also 

affect the dispersal of Monochamus (Robinet et al. 2011).  

As other members of the genus, M. galloprovincialis requires of a period of about 15 

days to mature (Koutroumpa et al. 2008) and to start responding to the pheromonal 

compounds (Pajares et al. 2010). On average, the median time to recapture was 45.5 days 

after the release, while the minimum averaged correspondingly to 15 days (Table 1; Fig. 

S3). Most of successful PWN transmissions occur during the first 49 days after M. 

galloprovincialis emergence (Naves et al. 2007), a period during which ca. 75% of the 

recaptures occurred in 2009 and 2010. Monitoring or vector population control should be 

adjusted to emergence patterns in order to maximize the chances that the beetles are 

trapped when PWN occurrence is highest within the beetles (Koutroumpa et al. 2008; Naves 

and De Sousa 2009; Sanchez-Husillos et al. 2015). Also, the early removal of beetles carrying 

PWNs, would add to a lower incidence of LDD events, reducing the rate of successful PWN 



transmissions at long distances, altering the reported Allee effects (Takasu et al. 2000; 

Yoshimura et al. 1999). 

 

 

Fig. S3 Boxplots of the number of days between releases and recaptures of Monochamus 639 galloprovincialis at Tabuyo del Monte 

(2009), Villota del Páramo (2010) and Altura (2011). Box 640 widths are proportional to the square-roots of the number of recaptures per year. 

 

Managing of invasive species such as PWN relies on early detections and 

interventions, but also requires optimization of trapping efforts (Bogich et al. 2008). By 

analysing the M. galloprovincialis recapture data in 2009 and 2010 estimates of relevant 

trapping parameters could be derived (Table 5; Ostrand and Anderbrant 2003; Turchin and 

Odendaal 1996). These estimates are readily applicable for managers; for example, 

according to the rs values, distances between traps should not exceed 1 km when 

monitoring for the presence of M. galloprovincialis, while αESA estimates would suggest that 

population suppression programmes would be maximized at 1.3-1.75 traps per hectare. An 

assessment of mass trapping on a M. galloprovincialis population of an estimated 82 beetles 

per hectare density, has recently shown that 95% of the population removal would occur at 

0.82 traps per hectare (Sanchez-Husillos et al. 2015). Torres-Vila et al. (2015) reported 

similar sampling area values, even if the parameter was derived from wild-beetles tracked 

at a much smaller scale. Higher catch-concentration values (CC=0.32-0.42) than those 

reported here (CC=0.08-0.10), indicate a possible influence of the scale. These parameters 

should in any case be interpreted with caution, as the influence of many environmental and 

design factors might be behind variations in trap performance (Ostrand and Anderbrant 

2003). 

The latest European Union Commission decision concerning the prevention of PWD 

spread (2012/535/EU), included mandatory eradication measures establishing “clear-cut” 

zones of at least 500 m around each susceptible plant in which PWN had been detected. 
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Both estimated and observed M. galloprovincialis dispersal results presented here suggest 

that such a measure would be ineffective to significantly reduce the probability of spread 

by beetles emerging from a PWN infected host. Nevertheless, the expected probabilities of 

LDD events under continuous stands depict an scenario in which 1% of the beetles could 

disperse beyond 2.5-3.5 km from their emerging host. Furthermore, fragmented habitats 

would apparently increase those figures, as it has also been observed earlier (Gallego et al. 

2012; Mas et al. 2013). On the other hand, diseased trees follow a clumped distribution 

during the first years of invasion (Bonifacio 2009; Togashi and Shigesada 2006). In theory, 

a prompt clear-cutting after a very early detection of a new focus could remove all infested-

trees, but in practice new detections are likely to occur once beetles have already emerged 

and dispersed away from PWN infected hosts. However, few detailed studies are available 

concerning local PWD dynamics or the movement behaviours during feeding and 

reproduction of M. galloprovincialis. Future works should clarify such behaviours, and 

include in addition the influences of landscape and stand characteristics in the dispersal 

behaviour of M. galloprovincialis. These goals are currently being pursued. 
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Introduction 
 

Monochamus galloprovincialis (Olivier, Col.: Cerambycidae) is the native insect 

vector of the Pine Wilt Disease (PWD) in Europe (Sousa et al., 2001). Recent introduction of 

the pathogen in Europe (Mota et al., 1999), has led to enormous efforts for controlling the 

disease, e.g.: clear cutting of infected forest areas, removal and elimination of a of infested 

material before the emergence of the insect vectors and removal of them by lured traps 

during their dispersal flight .Dispersal behavior of individuals within between suitable 

microhabitats is key to understand population distribution, abundance and spatiotemporal 

structure of populations. M. galloprovincialis presents an univoltine life cycle to complete a 

generation within a short–lived habitat resource (Naves, de Sousa, et al., 2007; Naves et al., 

2008). But habitats and resources are changeable in time and space. Immediate after 

emergence from breeding material, M. galloprovincialis adults start feeding on the bark on 

living conifers shoots until sexual maturation occurs after 12-13 days (Sanchez-Husillos et 

al. unpublished). Later on, they begin to look for reproducing in recently dead trees, or parts 

of them. Thus, dispersal behavior plays a key role in ecological processes such as the 

resource allocation, predator/prey interactions and mating strategies. The host selection 

process can be subdivided in several sub-process such as habitat localization, host location 

and host acceptance. Several studies on the later (Naves et al., 2006; Koutroumpa et al., 

2009; Sanchez-Husillos et al., 2013) have shown that M. galloprovincialis clear prefers Pinus 

sylvestris L. and P. pinaster Aiton in Europe. However, it is rare to find empirical data 

describing key dispersal parameters as microsite selection in habitat location by 

Monochamus spp pine sawyers There is not enough information yet on the habitat selection 

patterns by Monochamus beetles, although some authors have indicated that that they are 

the earliest colonizers of forests damaged by fire, wind or hailstorm (Gandhi et al.; 

McCullough et al., 1998). Saint-Germain et al (2004) reported the importance of landscape-

scale environmental variables such altitude or distance from nearest unburned areas to a 



fire and demonstrated that M. scutellatus preferred sites in which both stressed and healthy 

trees occurred, in order to satisfy nutritional requirements of larvae and adults.  

Direct methods for studying insect dispersal behavior involve either characterizing 

the actual path of the insect movement (Sutcliffe et al., 2003; Brouwers & Newton, 2010), 

or mark-recapture experiments (Gallego et al., 2012; Sanchez-Husillos et al., 2015). Indirect 

methods may include genetic markers (Wang et al., 2008), scanning radar (O’Neal et al., 

2004), empirical and mechanistic modelling (Etxebeste et al.2015; Turchin, 1998) or simply 

modelling the insect movement as a correlated random walk (Kareiva & Shigesada, 1983). 

Other methodological approaches would include the “resistance” that is the physiological 

cost of moving through a particular environment. These values are typically used to fill the 

gap in the knowledge by providing a quantitative estimate of how environmental 

parameters affect animal movement. However, methods for quantifying resistance surfaces 

are diverse and there is no general consensus on the appropriate choice of environmental 

data or analytical approach (Zeller et al., 2012). Other factors, such as host density and 

susceptibility, vector population level, PWN load or meteorological conditions may also 

affect dispersal of Monochamus beetles (Robinet et al., 2011). Insect home range, predators 

distribution or the edge effect have been also considered (Vodka & Cizek, 2013). The later 

would include any environmental attribute that is altered as a result of being at, or in 

proximity to, the border between two habitats. The edge effect could be provoked by a 

change in the microhabitat, such as a forest disturbance, or even the setting of pheromone 

traps that frequently lead to an increase in population density or species richness (Vodka & 

Cizek, 2013; Navarro-Llopis et al., 2014). Despite the many environmental variables that 

could affect the insect local distribution, patch-scale distribution patterns of Monochamus 

spp. in microsite selection have received practically no attention. 

Light detection and ranging data (LiDAR) based methodologies have proved 

extremely useful in the accurate three-dimensional (3D) characterization of forest canopy 

and spatial organization of vegetation within the forest canopy (Lefsky et al., 1999; Suárez 

et al., 2005; Evans et al., 2009) . The development of new sensor systems, either satellite-

borne or airborne, together with the development of the Global Positioning System, are both 

key issues for the use of remotely sensed data in forest inventories. LiDAR canopy height 

measures allows for much higher resolution maps, that are calibrated and validated with 

tree diameter distributions measured within independently geolocated, fixed-radius plots 

(Hudak et al., 2009). Influences of habitat condition and forest structure on faunal 

assemblages have been well explored in wildlife studies (Bradbury et al., 2005) and several 

LiDAR studies have focused on correlations between lidar-derived measures of vegetation, 

structural diversity and bird species diversity in forests (Goetz et al. 2007). Studies in 
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agricultural areas using fluorescence LiDAR techniques have also been shown useful for 

pest monitoring (Mei et al., 2011). Nowadays, applications of LiDAR in pests management, 

including insect migration and distributions are increasing (Wang et al., 2008; Brydegaard 

et al., 2009; Müller & Brandl, 2009; Work et al., 2011; Mei et al., 2011; Mueller et al., 2014). 

LiDAR data can be used as a predictive tool to seek out a given species distribution (Nelson 

et al., 2005), or can be used too as an exploratory tool to better understanding  resource 

selection by species of known distributions (Broughton et al., 2006). Many studies using 

LiDAR techniques have focused on mapping, and post-detection and early-warning of 

insects defoliation (Stone & Coops, 2004; Vastaranta et al., 2013a; b). Also, recent studies 

have analyzed the impacts of canopy heterogeneity, showing that different components of 

its structural complexity drive canopy arthropod biodiversity at different spatial scales 

(Mueller et al., 2014). Another study with LiDAR images performed in boreal forests showed 

how topography could influence the availability of microhabitats for beetles (Work et al., 

2011). Variables such as proximity to burned stands, altitude or tree nutritional condition 

could be linked to the feeding requirements of Monochamus scutellatus (Saint-Germain et 

al., 2004), thus  outlining its importance in the host selection process of the sawyer. Even 

though a great number of remote-sensing methods are currently available, there are few 

studies linking the collected information in order to identify the habitat features that are 

required for M. galloprovincialis. 

Although many recent studies have  dealt with M. galloprovincialis dispersal (Mas i 

Gisbert et al., 2013; David et al., 2013; Etxebeste et al., 2015), none has been carried out to 

analyze dispersal of immature insects, may be to the difficulty to lure them to traps baited 

with known attractants (Álvarez et al., 2015a). Recently, Sánchez-Husillos et 

al.(unpublished) have described M. galloprovinciallis sexual maturation to be after 12-13 of 

feeding-days, when which they start to be attracted by pheromone traps. This period is 

relevant for PWD control since nematode transmission can occur that early (Naves et al., 

2007; Dong Soo Kim et al., 2009). Thus, lack of suitable studies limits our knowledge of the 

mature and immature M. galloprovincialis distribution within forests, and thus to make 

sound decisionsfor an early detection of PWD. 

The present work has been addressed to help defining the environmental variables 

that motivate M. galloprovincialis movement within a forest stand and know if there are 

different patterns according to the maturation state. Thus, it has been aimed firstly to fit 

dispersal kernels that could help in the description of the dispersal pattern for both, mature 

and immature M. galloprovincialis beetles and, secondly, to evaluate which forest features 



are related to native insect recaptures within a 200 x 200m trap grid and to compare with 

the variability in the recaptures of lab-released mature and immature beetles at patch scale.  

 

Material and methods 
 

 
Dispersal study Area 

The study area was located in Zarzuela del Pinar (41°17'7"N, 4°13'22"W 854 m a. s. 

l., Castilla y Leon, Spain). A field trial was conducted in 2011 within an irregular P. pinaster 

pure stand forested by natural regenerated pines, between June 22th and September 28st, 

covering most of the flight period of the target insect. A capture-mark-recapture assay was 

performed. Sixty-four teflon coated multiple funnel traps with extended cups (Econex, S L, 

Mucia, Spain) were placed in the centers of 4 ha square cells (200×200 m; 0.25 traps ha−1 ; 

Fig. 1) in a regular grid covering a total of 256ha. Traps were baited with Galloprotect Pack 

® (SEDQ, S L, Barceloan, Spain), and lures were replaced every six weeks. All traps were 

checked weekly during the entire sampling season. During each sampling, freshly cut pine 

shoots with needles were placed within the cup, to provide food and shelter to trapped M. 

galloprovincialis individuals. 

 

 

Fig. 1. Trapping set up of the mark-release-recapture dispersal experiemnt. Background images are orthophotos (PNOA, Instituto Geográfico 

Nacional, Spain) 
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M. galloprovicialis adults were obtained from P. pinaster bolts colonized naturally in 2010 

after a forest fire in the vicinity of Arenas de San Pedro (40°18′3,71′’N, 5°3′W; Castilla y 

Leon, Spain). Mature-tagged insects were fed during 15 days with fresh P. pinaster twigs 

before release, whereas immature insects were released unfed within two days after 

emergence. These lab-reared beetles were released at the center of the study area during 

four consecutive occasions (22th -29th of June and 6th - 13th of July; 111 immature and 112 

mature insects). All the insects were individually identified using numbered bee-tags 

(Opalith Plättchen, Christian Graze KG, Germany), glued at their pronotum. 

 

LiDAR data 

LiDAR images acquired in 2010 were obtained from the National Plan for Aerial 

Orthophotography (PNOA; Spanish National Center for Geographic Information).  The 

average point density was 0.5 pulses/m2 with 20 cm in altitude accuracy. An approximate 

digital terrain model (DTM) was produced by selecting the lowest LiDAR last return in each 

5- by 5-m grid cell to be the ground elevation for that cell. All LiDAR returns were assigned 

to a 5- by 5-m cell in a regular grid oriented parallel with the plot sides. LiDAR heights above 

the ground (normalized height or canopy height) were calculated by subtracting the ground 

elevation from the corresponding non-ground LiDAR measurements. Directly from the 

LiDAR images were obtained the stratified canopy density (Evans et al., 2009), % cover up 

to 5m (Cover0-5), % cover above 5m (Cover5), and forest canopy cover (FCC)).  

Field data were collected during the June-September, 2014. Seven traps were randomly 

selected and 20m fixed-radius circular plots were set considering the traps as the centers. 

Trees inside the plot were subdivided in: adult class, including all the trees with a dbh 

(diameter at breast height) greater than 7.5 cm, and regeneration class comprised of all the 

trees with dbh less than 7.5 cm. In every tree, the following variables were measured: height 

to the top (m) (Hf for old trees and Hb for regrowth), height to the lowest living branch (m) 

(Hc), diameter at breast height (at 1.3 m) (m) (dbh) and total number of trees (N). Diameters 

were measured with calipers and heights with a VERTEX III digital hypsometer. These data 

were used for evaluating the differences between field- and LiDAR-derived tree heights. 

LiDAR images were processed with FugroViewer TM, FUSION (Version 3.42) and QGIS 

(Version 2.6.1). 

 

 



 

Fig. 2. LiDAR digital models of calibrated variables. (See text for description of Cover 0-5, Cover 5, FCC, Hf, Hb and Hc) 

 

 

 

Statistical analysis 

We explored the relationship between LiDAR data and field dasometric variables. 

Field samples were used for calibration of LiDAR measurements. A scatter plots and 

stepwise regression analysis were used to obtain the best predictive model. QGIS was used 

in order to create an accumulate viewshed of each trap in relation to tree height. The seven 

forest descriptive variables (Hf, Hb, Hc, Cover 0-5, Cover >5, FCC and viewshed) (Fig 2) were 

averaged for the 200m cells considering each trap as the plot center. 

Counts of captured insects were fitted against descriptive variables to a quasi-

Poisson (to account for overdispersion) error distribution in a generalized linear model 

(GLM)(Crawley, 2008). With the aim of obtaining the simplest model, a scatter plot was used 

and all the non-significant interaction terms were removed. The significance of each term 

effect was tested with an ANOVA analysis for GLM models (F-value). Spatial autocorrelation 

was analyzed with Moran´s Index using the method described by Gittleman and Kot (1990). 

The edge effect in the catches of external traps was calculated by the Wilcoxon-Wilcox test. 

The effects of sex and sexual maturation on dispersal distance and dispersal time were 

compared under GLM Gaussian assumptions and the significance of each term with an 

ANOVA analysis of the model. Two phenomenological distance location kernels (kL) were 
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also fitted for the recaptures of mature and immature beetles using two empirical models: 

2Dt model and the negative exponential kernel (see details in Etxebeste et al., 2015). All 

statistical analyses were performed under the statistical programming environment and 

language R 3.2.0 (The R Development Core Team, 2010). 

 

Results 

Dispersion 

A total of 1834 native insects were captured (982 males and 852 females). From the 

223 lab-released insects, a total of 26 immature (23% of released) and 32 mature (29% of 

released) insects were recaptured. Of all these 58 lab-released insects recaptured, 46.55 % 

(11 immature and 16 mature insects) were recovered at 141.42 m distance, followed by 

15.51% (5 immature and 4 mature insects) which reached 316.22 m distance from the 

release center. Recaptures decreased with distance to the release point, so that only 2 

immature beetles (0.9% of recaptured).were found 989.95m away of it. There was no 

significant differences in distance of recapture between maturation stages (F= 0.587, 

P=0.4469) or between the interaction of sex with maturation stage (F=1.107, P=0.2975); 

there were however significant differences between sexes in distance of recapture 

(F=4.872, P=0.0316) and in dispersal time (F=10.687, P=0.001), being both greater for 

males. Recapture of mature beetles occurred as soon as 7 and as late as 98 days after release, 

whereas in immature insects it occurred from 21 to 84 days after release. A significant edge 

effect was obtained for the captures of natives (W = 964.5, P <0.001) in the external traps 

of the set up. 



 

Fig. 3. Effect of FCC (% of forest cover) on number of native insects recaptured. Line corresponds to the model prediction, and shaded area to 

the standard error. Recaptures = 2.92+ 0.015 x FCC 

 

The negative exponential showed the best fit parameters, providing the lowest AIC 

value of both models. In table 3, the kernels for location, distances and cumulative 

probabilities for dispersal computed after the fitted parameters of both models are shown. 

According to our results, 50% of the immature insects could be found within 347.8-365.4 m 

range and half of the mature insects would be within 317.7-324 m, whereas practically all 

the insects (99%) could be found in an interval of 1445-2013m for immatures and 1282-

1561m for matures. According to results from the 2Dt and the negative-exponential models, 

immature beetles could be found over a distance of 1000 m with a probability of 0.07% and 

0.06% respectively, whereas only 0.04% and 0.03% respectively of mature insects would 

be found over such distance. The widest tail was forecasted by the 2Dt model, estimating 

that 0.001% of the immature M. galloprovincialis would fly over 5000 m distance. 
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  r50 r67 r95 r99 over500 over1000 over5000 df AIC 

2Dt-Inmmatures 347.8 473.8 1132 2013 0.302 0.069 0.001 2 137.1 

Neg.exp-Inmatures 365.4 501.6 1033 1445 0.332 0.057 0 1 126.3 

2Dt-Matures 317.7 426.8 946.3 1561 0.248 0.042 0 2 149.5 

Neg.exp-Matures 324 444.8 915.8 1282 0.269 0.035 0 1 137.3 

Table 3 Estimated radii enclosing 50%, 67%, 95% and 99% of dispersing Monochamus galloprovincialis based on fitted distance dispersal 
kernels (m). Alternatively, probabilities of dispersal events over 500, 1000 and 5000 m are presented. 

 

LiDAR data 

Best fitted models showed a significant good predictive behavior of the maximum 

height variables (Hf and Hb) and of the height of the first living branch (Hc) (Table 1) but 

due to the lack of adequate data it was not possible to fit a model for the dbh and N variables. 

Directly from the LiDAR images, the stratified canopy density (% Cover) and the forest 

canopy cover (FCC) (Fig. 2) were obtained.  

 

MODEL 
Adjusted R-

squared   p-value 

PredHf= sqrt(-3.589969 +23.273839*Elev.P95 –(1.981176*Int.mode)) 
 0.826  0.013 

PredHb= 2.09932145 - (0.10719071*Elev.mode) +0.01516722*Int.maximum - (0.54284297*Elev.MAD.mode) 
0.989  <0.01 

PredHc= 3.9980624 - (0.6731551*Elev.MAD.mode) 
0.531 0.038 

Table 1 Prediction models from Lidar variables calibrated with field data. 

 

The spatial autocorrelation of the variables in the 5 by 5-m grid cell dropped within 

an interval of the Moran’s I of 0.25-0.37, resulting into a random association among points. 

According to the GLM results, FCC had a significant positive effect in the amount of 

recaptured native insects (F= 4.428, P= 0.034) (Fig. 3). On the other hand, distance and Hb 

had a significant negative effect in the recapture of released insects (Table 2), while the 

interaction between distance and the Hb had a light positive effect in trecaptures. The 

ANOVA analysis, however, showed that significantly changes in the number of recaptures 

were not detected when Hb varied (Table 2). 

 

 

 

 



Class Intercept Hb mean Distance Hb mean*distance 

Immature 15.59 ± 3.9 ***  -6.28± 1.7 ***  -0.03± 0.006 *** 0.01±4.40 *** 

  0,51 12,74*** 19,46*** 

Mature 11.09± 3.9 ***  -4.14± 1.7*  -0.02± 0.007 ** 0.007± 0.003 * 

  2,48 19,16*** 8,58** 

Release 14.2± 2.62 ***  -0.03±0.004***  -5.28± 1.1 *** 0.009± 0.001 *** 

    0,51 23,46*** 17,61*** 

Table 2 Summary of the patch-scale model obtained from GLM with laboratory released M. galloprovincialis. 
First line represents Estimate  ± SE of the habitat variables and intercept (columns) on the dependent variable (lines) and second line F values  
Significant values are in bold (***P < 0.001, **P < 0.01, *P < 0.05) 
 

 

Discussion 

LiDAR is a powerful tool capable of providing a highly accurate geospatial 

information to characterize forest structure. It can be used to analyze basic landscape 

structural features affecting species abundance and distribution. Recommendation for 

vegetation applications is 4–6 pulses/m2 as it is well balanced between cost and support 

(Evans et al., 2009). In our study, however, the existing low point density (0.5 pulses/m2, 

IGN) together with the low number of measured field plots were likely the reasons why only 

a predictive model of canopy heights could be fitted accurate enough. Even so, FCC could be 

identified as the main habitat factor affecting abundance of native beetles. Dispersing 

M.galloprovincialis adults should be in search of living trees for feeding, mates, and dying or 

newly dead pines for egg-laying. It makes sense that insects would look for sites with higher 

FCC and therefore with a greater variety of suitable host trees. FCC was correlated to 

maximum tree height  (r2=0.92, p<0.01) which it is usually an indicator of  old trees, 

suggesting that in these areas native beetles would best find trees or dead branches for 

reproduction. Several studies on the influence of lures, type,and placement of traps, and 

habitat type on cerambycid catches have shown that the viewshed of the trap affected the 

number of captured insects (Dodds et al., 2010; Dodds, 2011). In our case, trap viewshed 

was negatively correlated with FCC (r2= -0.35, p<0.01), pointing to that, even if trap 

viewshed is smaller with high FCC values,, native captures were still greater in these areas, 

highlighting its importance in beetle habitat selection. 

Best habitat prediction model for lab-released insects indicated that distance was 

an important factor. Thus, according to the fitted 2Dt and the negative exponential models, 

50% of recaptures should be observed within a maximum distance of 317-365m. Impact of 

landscape features on pest abundance could be influenced by edge effect (Costa et al., 2013). 

Then, traps along the edge of the set up would capture a disproportionate amount of insects, 
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even if stand features were not most suitable and this may be happening for laboratory 

insects that were released in the center of the plot. Here, models indicated that distance 

affected negatively abundance (table 2), seen as a higher proportion of recaptures in the 

traps nearest to the plot center. Therefore, high captures may occur in these center traps in 

areas without optimal habitat conditions. Thus, the fact that higher recaptures were 

associated to lower values for regrowth height could be an artifact since in this central area 

regrowth was of low height. The effect of distance on recaptures can generate pseudo-

absence data in traps placed further inland inducing errors in the models. Native beetles, in 

the other hand, were in their natural habitat when the trapping set up was installed and, 

even if accounting for a potential sink effect, pheromone-traps, would capture insects 

proportionally to the suitability of natural characteristics in the area, not being influenced 

by distance of release. In addition, other factors such as predator occurrence, temperature 

or wind speed and direction would determine transportation, deposition and establishment 

of insect populations where there are suitable hosts and climate conditions (de la Giroday 

et al., 2011).  

 Density of pheromone traps was selected to both, maximize recapture and minimize 

trap interference, in accordance to previous studies, and obtained recaptures, 23-29% of 

released insects, laid well within the range reported by them (Etxebeste et al, 2015, 

Sanchez-Husillos et al., 2015). Several studies on M. galloprovincialis dispersal have 

reported that most recaptures of released beetles were recorded in traps closest to release 

point (Gallego et al., 2012; Mas i Gisbert et al., 2013; Torres-Vila et al., 2014; Etxebeste et al., 

2015).Our results are in agreement, with it, but, distance for 99% probability of recapture 

resulted lower than the expected distance (2344-3495m upon on replica and model) 

pointed by Etxebeste et al (2015). In the present study, values for 99% probability of 

recapture ranged from 1282m (mature beetles, negative exponential model) to 2013m 

(immatures, 2Dt model). Beetle initial stage of maturation did not influenced dispersal, 

though immatures appeared to disperse somewhat further. This, result does not agree with 

that reported by David et al( 2013, 2015) of increasing flight distance with age of 

M.galloprovincialis in a flight mill. It must be bared in mind that lab released immature 

beetles only held such condition during their first 12-13 days after release. It would be then 

most interesting to differentiate dispersal during this short immature period from dispersal 

once beetles became mature, but lack of response of immatures to know attractants 

(Álvarez et al., 2015b) made it impossible to know. The fact that most mature and immature 

insects were recaptured in the traps closest to the center is interfering with the observation 

of beetle habitat selection.Similarly, lack of response of immatures increases the 



uncertainty for predictions on possible differential habitat selection by these beetles. We 

found that M. galloprovincialis males dispersed further away and during more time than 

females and this, together with its known earlier emergence (Naves et al.2008; Togashi & 

Magira, 1981; Shibata, 1999), may point to an strategy of finding suitable hosts before the 

later arrival of females. 

 Our understanding of the influence of forest structure on M.galloprovincialis is still 

limited, but results reported here illustrate how habitat differences at patch-scale may exert 

a strong influence on beetle abundance. Remote sensing measurements used to model 

insect distributions should ideally be related to the scale at which beetles discriminate 

habitat characteristics (Scott et al. 2002), as well as the scale at which managers make 

conservation priority decisions.  

 

Acknowledgements 

We would like to acknowledge M. Jerez and the forest agents at the Segovia Forest Service 

(Castilla and León) for access to field sites and field assistance, the crew at Castilla y León 

Forest Health Center (Calabazanos, Palencia) for helping us breeding the required beetles, 

and the PNOA ©INSTITUTO GEOGRÁFICO NACIONAL DE ESPAÑA – SEGOVIA for the 

acquisition of the LiDAR images. This work has been financed through a grant by the 

Spanish Ministry of Science and Innovation (RTA2011-00069-C03-03) and by the European 

Union REPHRAME project (FP7-KBBE-2010-4). I. Etxebeste was partially supported by a 

POSDOC grant of the Basque Autonomous Government. 

 

  



105 

 

References 

Álvarez G, Gallego D, Hall DR, Jactel H & Pajares JA (2015a) Combining pheromone and 

kairomones for effective trapping of the Pine Sawyer Beetle Monochamus 

galloprovincialis. 

Álvarez, Gallego D, Hall DR, Jactel H & Pajares J (2015b) Combining pheromone and 

kairomones for effective trapping of the Pine Sawyer Beetle Monochamus 

galloprovincialis. Journal of Applied Entomology In press. 

Bradbury RB, Hill R a., Mason DC, Hinsley S a., Wilson JD, Balzter H, Anderson GQ a., 

Whittingham MJ, Davenport IJ & Bellamy PE (2005) Modelling relationships between 

birds and vegetation structure using airborne LiDAR data: a review with case studies 

from agricultural and woodland environments. Ibis 147:443–452. 

Broughton RK, Hinsley S a., Bellamy PE, Hill R a. & Rothery P (2006) Marsh Tit Poecile 

palustris territories in a British broad-leaved wood. Ibis 148:744–752. 

Brouwers NC & Newton  a C (2010) Movement analyses of wood cricket ( Nemobius 

sylvestris) (Orthoptera: Gryllidae). Bulletin of entomological research 100:623–34. 

Brydegaard M, Guan ZG & Svanberg S (2009) LIDAR techniques for studying insect 

migration and distributions. CLEO/Europe - EQEC 2009 - European Conference on 

Lasers and Electro-Optics and the European Quantum Electronics Conference. IEEE, 

pp 1–1. 

Costa A, A M, Boone CK, Kendrick AP, Murphy RJ, Sharpee WC, Raffa KF & Reeve JD (2013) 

Dispersal and edge behaviour of bark beetles and predators inhabiting red pine 

plantations. Agricultural and Forest Entomology 15:1–11. 

Crawley M (2008) The R Book. John Wiley & Sons. U.K. 

David G, Giffard B, van Halder I, Piou D & Jactel H (2015) Energy allocation during the 

maturation of adults in a long-lived insect: implications for dispersal and reproduction. 

Bulletin of entomological research:1–8. 

David G, Giffard B, Piou D & Jactel H (2013) Dispersal capacity of Monochamus 

galloprovincialis , the European vector of the pine wood nematode, on flight mills. 

Journal of Applied Entomology 138:566–576. 

Dodds KJ (2011) Effects of habitat type and trap placement on captures of bark (Coleoptera: 

Scolytidae) and longhorned (Coleoptera: Cerambycidae) beetles in semiochemical-

baited traps. Journal of economic entomology 104:879–888. 

Dodds KJ, Dubois GD & Hoebeke ER (2010) Trap type, lure placement, and habitat effects 

on Cerambycidae and Scolytinae (Coleoptera) catches in the Northeastern United 

States. Journal of economic entomology 103:698–707. 

Dong Soo Kim, Lee SM & He Soon Huh NCP and CGP (2009) Escape of Pine Wood Nematode, 

Bursaphelenchus xylophilus, through Feeding and Oviposition Behavior of Monochamus 



alternatus and M. saltuarius (Coleoptera: Cerambycidae) Adults. Korean Journal of 

Applied Entomology 48:527–533. 

Etxebeste I, Sanchez-Husillos E, Álvarez G, Mas i Gisbert H & Pajares J (2015) Dispersal of 

Monochamus galloprovincialis (Col.: Cerambycidae) as recorded by mark-release 

recapture using pheromone traps. Journal of Applied Entomology. 

Evans JS, Hudak AT, Faux R & Smith AMS (2009) Discrete return lidar in natural resources: 

Recommendations for project planning, data processing, and deliverables. Remote 

Sensing 1:776–794. 

Gallego D, Sanchez-Garcia F., Mas i Gisbert H, Campo MT & Lencina J. (2012) Estudio de la 

capacidad de vuelo a larga distancia de Monochamus galloprovincialis (Olivier 1795). 

Bol.San.Veg.Plagas 38:109–123. 

Gandhi KJK, Gilmore DW, Katovich SA, Mattson WJ, Spence JR & Seybold SJ Physical effects 

of weather events on the abundance and diversity of insects in North American forests. 

Gittleman, J. L. and Kot M (1990) Adaptation: statistics and a null model for estimating 

phylogenetic effects. Systematic Zoology 39:227–241. 

Hudak AT, Evans JS & Stuart Smith AM (2009) LiDAR Utility for Natural Resource Managers. 

Remote Sensing 1:934–951. 

Kareiva PM & Shigesada N (1983) Analysing insect movement as a correlated random walk. 

Oecologia 56:234–238. 

Koutroumpa FA, Salle A, Lieutier F & Roux-Morabito G (2009) Feeding and oviposition 

preferences of Monochamus galloprovincialis on its main hosts Pinus sylvestris and 

Pinus pinaster. Entomologia Hellenica 18:35–46. 

de la Giroday HMC, Carroll AL, Lindgren BS & Aukema BH (2011) Incoming! Association of 

landscape features with dispersing mountain pine beetle populations during a range 

expansion event in western Canada. Landscape Ecology 26:1097–1110. 

Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA & Harding D (1999) Lidar Remote 

Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western 

Hemlock Forests. Remote Sensing of Environment 70:339–361. 

Mas i Gisbert H, Hernández, Villaroya, Peña S, Pérez-Laorga E, González Rosa E, Ortiz A, 

Lencina J, Rovira E, Marco M, Pérez V, Gil M, Sánchez-García F, Bordón P, Pastor C, Biel 

MJ, Montagud L & Gallego D (2013) Comportamiento de dispersión y capacidad de 

vuelo a larga distancia de Monochamus galloprovincialis (Olivier 1795). p In: 6o 

Congreso Forestal Español. Ed. by SECF, Gas. 

McCullough DG, Werner RA & Neumann D (1998) Fire and insects in northern and boreal 

forest ecosystems of North America. Annual review of entomology 43:107–27. 

Mei L, Guan ZG, Zhou HJ, Lv J, Zhu ZR, Cheng JA, Chen FJ, Löfstedt C, Svanberg S & 

Somesfalean G (2011) Agricultural pest monitoring using fluorescence lidar 

techniques. Applied Physics B 106:733–740. 

Mota M, Braasch H, Bravo M, Penas AC, Burgermeister W, Metge K & Sousa E (1999) First 



107 

 

report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–

734. 

Mueller J, Bae S & Roeder J (2014) Airborne LiDAR reveals context dependence in the effects 

of canopy architecture on arthropod diversity. Forest Ecology and Management 

312:129–137. 

Müller J & Brandl R (2009) Assessing biodiversity by remote sensing in mountainous 

terrain: the potential of LiDAR to predict forest beetle assemblages. Journal of Applied 

Ecology 46:897–905. 

Navarro-Llopis V, Vacas S, Zarzo M & Primo J (2014) Dispersal ability of Ceratitis capitata 

(Diptera: Tephritidae): edge effect in area-wide treatments. Journal of Applied 

Entomology 138:403–408. 

Naves PM, Camacho S, de Sousa EM & Quartau JA (2007) Transmission of the pine wood 

nematode Bursaphelenchus xylophilus through feeding activity of Monochamus 

galloprovincialis (Col., Cerambycidae). Journal of Applied Entomology 131:21–25. 

Naves P, De Sousa EM & Quartau JA (2006) Feeding and oviposition preferences of 

Monochamus galloprovincialis for certain conifers under laboratory conditions. 

Entomologia Experimentalis et Applicata 120:99–104. 

Naves PM, de Sousa EM & Quartau JA (2007) Winter dormancy of the pine sawyer 

Monochamus galloprovincialis (Col., Cerambycidae) in Portugal. Journal of Applied 

Entomology 131:669–673. 

Naves P, Sousa E, Rodrigues JM & Auxiliar I (2008) Biology of Monochamus galloprovincialis 

( Coleoptera , Cerambycidae ) in the Pine Wilt Disease Affected Zone , Southern 

Portugal. Silva Lusitana 16:133–148. 

Nelson R, Keller C & Ratnaswamy M (2005) Locating and estimating the extent of Delmarva 

fox squirrel habitat using an airborne LiDAR profiler. Remote Sensing of Environment 

96:292–301. 

O’Neal ME, Landis DA, Rothwell E, Kempel L & Reinhard D (2004) Tracking Insects with 

Harmonic Radar: a Case Study. American Entomologist:212–218. 

Robinet C, Van Opstal N, Baker R & Roques A (2011) Applying a spread model to identify 

the entry points from which the pine wood nematode, the vector of pine wilt disease, 

would spread most rapidly across Europe. Biological Invasions 13:2981–2995. 

Saint-Germain M, Drapeau P, Hébert C & Bert C (2004) Landscape-Scale Habitat Selection 

Patterns of Monochamus scutellatus (Coleoptera: Cerambycidae) in a Recently Burned 

Black Spruce Forest. Environmental Entomology 33:1703–1710. 

Sanchez-Husillos E, Álvarez-Baz G, Etxebeste I & Pajares JA (2013) Shoot feeding, 

oviposition, and development of Monochamus galloprovincialis on Pinus pinea relative 

to other pine species. Entomologia Experimentalis et Applicata 149:1–10. 

Sanchez-Husillos E, Etxebeste I & Pajares J (2015) Effectiveness of mass trapping in the 



reduction of Monochamus galloprovincialis Olivier (Col.: Cerambycidae) populations. 

Journal of Applied Entomology:n/a–n/a. 

Shibata E (1999) Seasonal flight of the Japanese pine sawyer, Monochamus alternatus 

(Coleoptera: Cerambycidae), in a pine forest in central Japan. Sustainability of pine 

forests in relation to pine wilt and decline. Proceedings of International Symposium, 

Tokyo, Japan, 27-28 October, 1998. Shokado Shoten, pp 150–154. 

Sousa E, Bravo M, Pires J & Naves P (2001) Bursaphelenchus xylophilus (Nematoda; 

aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; 

Cerambycidae) in Portugal. Nematology 3:89–91. 

Stone C & Coops NC (2004) Assessment and monitoring of damage from insects in 

Australian eucalypt forests and commercial plantations. Australian Journal of 

Entomology 43:283–292. 

Suárez JC, Ontiveros C, Smith S & Snape S (2005) Use of airborne LiDAR and aerial 

photography in the estimation of individual tree heights in forestry. Computers and 

Geosciences 31:253–262. 

Sutcliffe OL, Bakkestuen V, Fry G & Stabbetorp OE (2003) Modelling the benefits of farmland 

restoration: Methodology and application to butterfly movement. Landscape and 

Urban Planning 63:15–31. 

Team RDC & R Development Core Team R (2010) R: A language and environment for 

statistical computing (RDC Team, Ed. by ). R Foundation for Statistical Computing. 

Togashi K & Magira H (1981) Age-Specific Survival Rate and Fecundity of the Adult Japanese 

Pine Sawyer : Monochamus alternatus HOPE (Coleoptera : Cerambycidae), at Different 

Emergence Times. Applied Entomology and Zoology 16:351–361. 

Torres-Vila LM, Zugasti C, De-Juan JM, Oliva MJ, Montero C, Mendiola FJ, Conejo Y, Sanchez 

A, Fernandez F, Ponce F & Esparrago G (2014) Mark-recapture of Monochamus 

galloprovincialis with semiochemical-baited traps: population density, attraction 

distance, flight behaviour and mass trapping efficiency. Forestry 88:224–236. 

Turchin P (1998) Quantitative analysis of movement: Measuring and modeling population 

redistribution in animals and plants. Sinauer, Sunderland, Mass. 

Vastaranta M, Kantola T, Lyytikäinen-Saarenmaa P, Holopainen M, Kankare V, Wulder M a., 

Hyyppä J & Hyyppä H (2013a) Area-based mapping of defoliation of scots pine stands 

using airborne scanning LiDAR. Remote Sensing 5:1220–1234. 

Vastaranta M, Kantola T, Lyytikäinen-Saarenmaa P, Holopainen M, Kankare V, Wulder M, 

Hyyppä J & Hyyppä H (2013b) Area-Based Mapping of Defoliation of Scots Pine Stands 

Using Airborne Scanning LiDAR. Remote Sensing 5:1220–1234. 

Vodka Š & Cizek L (2013) The effects of edge-interior and understorey-canopy gradients on 

the distribution of saproxylic beetles in a temperate lowland forest. Forest Ecology and 

Management 304:33–41. 

Wang YH, Yang KC, Bridgman CL & Lin LK (2008) Habitat suitability modelling to correlate 



109 

 

gene flow with landscape connectivity. Landscape Ecology 23:989–1000. 

Work TT, Benoit S & Jacobs JM (2011) Response of female beetles to LIDAR derived 

topographic variables in Eastern boreal mixedwood forests (Coleoptera, Carabidae). 

ZooKeys 147:623–639. 

Zeller KA, McGarigal K & Whiteley AR (2012) Estimating landscape resistance to movement: 

a review. Landscape Ecology 27:777–797. 

 

  



Chapter 5: Effectiveness of mass-trapping in the reduction 

of Monochamus galloprovincialis Olivier (Col.: 

Cerambycidae) populations. 

E. Sanchez-Husillos, I. Etxebeste & J. Pajares 

Journal of Applied Entomology (2015)  

DOI: 10.1111/jen.12219 

 

Introduction 
 

The pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner and Bührer; 

Nematoda: Aphelenchoididae) is considered a weak pathogen in its original range in North 

America (Wingfield et al. 1982). PWN was introduced in Asia causing massive tree 

mortalities (Zhao et al. 2008). In Europe, it was first reported on a Pinus pinaster Aiton tree 

in Portugal (Mota et al. 1999). Thereafter, three distant infestation foci in areas close to 

Portugal are under eradication in Spain (e. g. Abelleira et al. 2011). The spread of the PWN 

might occur via the transportation of infested woody material, or through the activity of the 

adult stages of beetles of the genus Monochamus (Coleoptera: Cerambycidae) through 

feeding on shoots of susceptible living trees, or oviposition on dying or recently dead trees 

(EPPO 2009; Futai 2013; Linit 1988). 

Soon after the detection of the PWN in Portugal, Monochamus galloprovincialis 

(Olivier) was shown to be its vectoring agent (Sousa et al. 2001). Although Monochamus 

beetles had previously been considered secondary pests, the introduction of the PWN, has 

instigated increased efforts devoted to understanding its biology and ecology (Akbulut and 

Stamps 2012). With this, the study of their chemical ecology has shown how host and bark 

beetle kairomones can be used to attract them (Allison et al. 2001; Francardi et al. 2009; 

Ibeas et al. 2007). Furthermore, a male-specific pheromone, 2-undecyloxy-1-ethanol, has 

been shown to be very attractive for both sexes of M. galloprovincialis (Pajares et al. 2010), 

for M. sutor (Pajares et al. 2013) and for other members of the genus (Macias-Samano et al. 

2012). A very attractive pheromone-kairomone lure has since been available for trapping 

Monochamus beetles. The combination of this lure and the availability of enhanced trap 

designs (Álvarez et al. 2014) represents one effective method for monitoring the vectors of 

PWD, but might also be used as a direct control method of the vector population. In fact, the 

European Union implemented measures to control the disease that include the felling and 

destruction of all susceptible plants in a minimum radius of 500m around the infected trees 
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and intensified surveillance for its presence in a demarcated area that covers 20km around 

the infestation focus. (EC, Decision 2012/535/EU). 

So far, the control of the disease has proved difficult once B. xylophilus has been 

introduced into a susceptible tree species. Removal of symptomatic trees after intensive 

monitoring is the only practical method that has shown some success in the control of PWD. 

Other methods such as tree injection or preventive pesticide sprays (Zhao et al. 2008) are 

either impractical on a whole-forest scale or environmentally unacceptable. Mass trapping 

of the vector might provide a more proactive management strategy for the eradication or 

the containment of the PWD. European foresters are reported to have used ‘trap-trees’ for 

over 200 hundred years to massively remove damaging bark beetles (Coleoptera: 

Scolytinae), taking indirect advantage of the attractive compounds released by piled host 

logs (Niemeyer 1997). Nevertheless, substitute use of traps baited with infochemicals to 

reduce bark beetle population levels was not considered as an alternative to trap-trees until 

the discovery of their pheromone blends (El-Sayed et al. 2006). To date, mass trapping has 

been studied as a control tool for a wide range of insect pests but results have not always 

been successful. Examples within Coleoptera include the first reported mass trapping 

attempt carried out in 1970 on bark beetles (Coleoptera:Scolytidae), showing promising 

results (Bedard and Wood 1974). A large scale mass trapping campaign was also conducted 

in Scandinavia with the aim of controlling Ips typographus (L.) (Weslien 1992), and the 

effect of a long term mass trapping campaign on an isolated stand was also studied (e. g. 

Schlyter et al. 2001).. In the case of long-horned beetles, very few studies have been 

reported. Maki et al. (2011) showed that both mass trapping and mate disruption could help 

lower the population densities of Prionius californicus Motschulsky in hop production yards. 

On the other hand, two works have shown how mark recapture studies can be used to 

evaluate mass trapping of Cerambyx welensii Küster through comparisons of estimated 

population densities and trap catch levels (Torres-Vila et al. 2012; Torres-Vila et al. 2013). 

El-Sayed et al. (2006) concluded that mass trapping has the potential to suppress or 

eradicate low-density, isolated pest populations. In fact, this effect on the target population 

is known to increase as its density decreases (Barclay and Chao 1991). This scenario fits the 

case of newly detected PWD foci well, in which vector population build-up has not occurred 

yet, and the removal of many individuals would decisively help suppress the infestation of 

new hosts. Furthermore, M. galloprovincialis reproduces in univoltine life cycles in 

southern Europe, and semivoltine in the north (Akbulut and Stamps 2012), which is a 

recognized advantage of mass trapping (El-Sayed et al. 2006). 



However, factors related to the target insect or to the trapping methodology might 

severely affect the success of mass trapping. Population density, rates and patterns of 

population increase, mobility, migration, and dispersal capacities of the target insect are key 

factors that can drastically reduce the success of mass trapping. Hence, in order to evaluate 

the real effect of mass trapping, estimates of the initial population density are mandatory. 

Trap catches of M. galloprovincialis during monitoring and research trials suggest that this 

beetle generally occurs at low densities (e. g. Álvarez et al. 2014; Francardi et al. 2009; 

Pajares et al. 2010), but absolute estimates are lacking. Demographic studies of insects 

using mark-recapture procedures have shown promising results, and examples of studies 

of long-horned beetles are available (e. g. Drag et al. 2011; Tikkamäki and Komonen 2011; 

Torres-Vila et al. 2012; Torres-Vila et al. 2013), including an early work that studied the 

abundance of M. alternatus Hope in a small PWD affected P. thumbergii Parl stand in Japan 

(Shibata 1985). 

On the other end, technical details behind mass trapping campaigns are also very 

important. Works evaluating the design of the trapping device have shown that modified 

multiple funnel (Lindgren 1983) or cross vane traps are well suited for the catch of M. 

galloprovincialis (Álvarez et al. 2014; Rassati et al. 2012). Also, lures available for M. 

galloprovincialis (Pajares et al. 2010) have been shown to obtain high catches in the field 

(Álvarez et al. 2014; Pajares et al. 2010; Rassati et al. 2012). Yet, the effect that different 

trapping densities could have on M. galloprovincialis populations is not known precisely, 

nor have other technical details been studied. 

Thus, considering the trapping technology available, two field trials were conducted 

in order to assess the effect of mass trapping on M. galloprovincialis populations with the 

aim of developing a method for reducing the vector population as support for the 

eradication or containment of the disease in PWD affected areas. For this, our major goals 

were (i) to evaluate a valid method to estimate population abundances of this insect, so that 

we could (ii) study mass trapping efficiency, i.e. the proportion of adults that could be 

removed from the target population, and (iii) to estimate the relationship between trap 

density and vector removal so forest health managers could choose the optimal trap density 

suited to their objectives. 
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Materials and Methods 
 

Monochamus galloprovincialis population estimates. 

The first experimental approach to the estimation of population densities of M. 

galloprovincialis was carried out along side other capture-mark-recapture (CMR) 

experiments, also currently in the process of publication, studying the dispersal capacity of 

this insect. Within the trial, both native and lab-reared beetles were tracked down using a 

grid of infochemical baited traps. The study was conducted in a 224 ha pine stand located 

in Villota del Páramo (42°32'26"N, 4°51'56"W 1003 m a. s. l., Castilla y Leon, Spain), from 

the 18th of June to the 30th of September 2010. The study area (Fig. 1a) was composed of 

reforested stands of P. pinaster (8%), Pinus nigra salzmannii Arnold (78%) and Pinus 

sylvestris L. (14%), with Quercus pyrenaica Willd. growing patchily in the understory. 

Multiple funnel traps were modified to prevent the escape of M. galloprovincialis by 

applying a Teflon® coating to the collection cup and the inner face of the lowest funnel 

(ECONEX S.L., Murcia, Spain; Álvarez et al. 2014). Fifty-two traps were placed in the centres 

of 4 ha square cells (200×200 m; 0.25 traps ha−1 ; Fig. 1a).  

In addition four additional traps covered the closest 1 ha cells away from the center 

with the aim of detecting individuals that could have remained close to the release point. 

Traps were hung from ropes between trees with the collection cup placed at least 50 cm 

from the ground. The commercial M. galloprovincialis lure kit (Galloprotect 2D®, SEDQ S. 

L., Barcelona, Spain), containing two bark beetle kairomones (ipsenol and 2-methyl-3-

buten-2-ol) and the pheromone compound (2-undecyloxy-1-ethanol) identified by Pajares 

et al.(2-undecyloxy-1-ethanol; 2010) was complemented with (−) α-pinene (Galloprotect 

Plus ®, SEDQ S. L.). Lures were replaced every six weeks. 

 



 

Fig. 1 Spatial disposition of traps and experimental plots at the field trials carried out in (a) Villota del Páramo (Palencia, Spain) in 2010 and (b) 

Cuellar (Segovia, Spain) in 2013. Circles depict trapping positions, while stars refer to lab-reared beetle initial release points. Background raster 

depicts canopy height models derived from airborne LiDAR data (PNOA, Instituto Geográfico Nacional, Spain). See Materials and Methods for 

further details regarding sampling design. The geographical location of the experiments by years is also presented (c). 

 

Lab-reared beetles were released at the centre of the study area with the intention 

to serve as a positive control of the evaluation of the population estimates. These beetles 

were collected during early spring, 2010 in the vicinity of Arenas de San Pedro (Castilla y 

Leon, Spain; 40°11’02’’N, 5°02’22’’W) from P.pinaster bolts infested with M. galloprovicialis. 

Upon emergence (from mid-June to early-August), collected beetles were marked, using 

coloured, sequentially numbered bee tags glued at their pronotum and then placed 

individually in glass jars. Beetles were not fed and were kept in growth chambers for a 

maximum of three days until their release (15L:9D, 25°C:20°C). With this, 353 lab reared M. 

galloprovincialis imagoes were released from the middle of the set up (Fig. 1a) four weeks 

in a row, rendering batches of 39 (22♀,17♂), 106 (53♀,53♂), 142 (66♀,76♂) and 66 

(34♀,32♂) individuals released on the 29th of June, and the 6th, 13th and 20th of July 

respectively.  
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Traps were then checked weekly for lab- reared and native beetles. In the case that 

any native M. galloprovincialis individual was caught, if it was judged to be in good shape to 

disperse further, a number was painted on its elytrae using fine-tipped waterproof paint 

markers. These and any recaptured beetles were released at least 100m away from the 

source traps to minimize the interference of the traps with their dispersal. Individuals found 

dead or in bad shape were tallied as losses during sampling occasions. 

In 2013, a second experiment simultaneously evaluated the native population 

density and the removal of M. galloprovincialis by using different trap densities within a 

large continuous stand of P. pinaster. The area was located in the municipality of Cuellar 

(41°17'7"N, 4°13'22"W 854 m a. s. l., Castilla y Leon, Spain). Although the experimental area 

was almost completely covered by P. pinaster, scattered Pinus pinea L. trees were present 

throughout the stand. Special care was taken to select forest units that were of similar tree 

age and density (Fig. 1b). The field trials were conducted between the 4th of June and the 

21st of October 2013, covering the entire flight period of the target insect. 

The experimental site was subdivided into two similar contiguous zones so that the 

effect of different trap densities on mass trapping could be assessed. For this purpose in 

mind, the southern sector was used to estimate the local population density of M. 

galloprovincialis (“Population area”, Fig. 1b), while in the northern area seven square 

subplots (600×600 m), with ca. 100 m wide buffer zones between them were be used to test 

four trapping densities (“Mass-trapping area”, ca. 296 ha; Fig. 1b). The population area (ca. 

260 ha) was established using six contiguous forest units of similar stand characteristics. A 

regular grid of 4 ha cells were defined over the area, and then 20 cells were selected 

randomly. Multiple funnel traps were placed in the centre of the selected cells. This time, 

traps in both areas were hung from inverted “L” shaped metal poles. Also, taking into 

account the improvements suggested for the trap design, ECONEX S. L. (Murcia, Spain) 

provided traps that had all its surfaces coated, including the collection cups, with Teflon®. 

The length of the collection cup was doubled in relation to the original one, and the bottom 

of it had been converted to a wire mesh, enhancing air circulation within the cup (Álvarez 

et al. 2014). In addition, during each sampling newly cut pine shoots with needles were 

placed within the cup in such a way that food and shelter would be provided for trapped M. 

galloprovincialis individuals. Traps were baited with Galloprotect Pack ®, and lures were 

replaced every six weeks. All traps were checked weekly during the entire sampling season. 

Trapped individuals were marked and released following the previously described 

procedure in the 2010 experiment. 



As in the previous trial, lab-reared beetles were released as a positive control of the 

method. To rear the beetles, 140 cm long P. sylvestris logs sections were placed at the edge 

of fire cuts and were baited with the commercial lure Galloprotect 2D® at Tabuyo del Monte 

during the spring of 2012 (Castilla y Leon, Spain; 42°17’45’’N, 6°10’52’’W). Colonized logs 

were brought to the lab and stored in an outdoor cage over winter. As in 2010, seven batches 

were released in the “Population area” on the 18th of June (9 and 20 individuals), 25th of 

June (20 individuals), and on the 26th of July (20, 21, 24 and 15 individuals). In addition, 

batches of 20 to 40 lab-reared beetles were released on the 9th, 16th and 23rd of July at 

random locations at the “Mass-trapping area” sub-plots. In total, 188 females and 211 males 

were released in from 14 randomly selected sites (Fig. 1b). 

 

The effect of trapping densities on population removal 

As introduced above, the northern area of the 2013 experimental site (“Mass-

trapping area”, Fig. 1b) contained seven 36 ha subplots, each of them assigned one of four 

tested trap densities. Three subplots had only one trap in the centre, corresponding to a 

trap density of 0.02 traps/ha. In two subplots four traps were installed following a regular 

grid (300 m inter-trap distance; 0.11 traps/ha). The remaining subplots had nine traps (200 

m inter-trap distance; 0.25 traps/ha) and 16 traps in a regular grid (150 m inter-trap 

distance; 0.44 traps/ha) respectively (Fig. 1b). Insects trapped in the mass-trapping area 

were removed. 

 

Statistical analyses 

All analyses and calculations were performed using the R statistical environment 

and language (The R Development Core Team 2014). Demographic analyses were 

conducted using the RMark library as an interface for the MARK package (Ivan 2008), under 

the assumption that M. galloprovincialis populations during the sampling periods were of 

the open type, i. e. births, deaths, emigration and immigration occurred during those 

periods. By following the Jolly-Seber methodology under the POPAN parameterisation, 

three primary parameter groups can be estimated which lead to three obtained parameters: 

births (Bi), population size (Ni) at the sampling interval, and the total population size 

(superpopulation, ). The primary parameters represent: pi, the probability of capture 

at occasion i; φi, the probability of an insect surviving between occasions i and i + 1 ; and bi 

, the probability that an insect from the superpopulation would enter the population 

between occasions i and i + 1 (also referred as penti, probability of entrance). These primary 
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parameters were modelled as to be constant, (∙) in MARK notation, linearly dependent on 

time (T), to differ between sexes (Sex), or have additive or multiplicative interactions 

between sampling occasion and sex (T×Sex). A range of models for each primary parameter 

were defined and then run. Factorial treatment of time was not considered due to the fact 

that more than one sampling occasion lacked recaptures in all data-sets. Best models were 

selected using the quasi-Akaike information criterion (AICc).  stimates were derived 

from weighted average parameters of best models (∆AICc<10). Losses-on-capture, i. e. 

beetles found dead or in bad shape, were accounted for in the computation. In addition, for 

the analysis of lab-reared beetles, a second range of models was adjusted by fixing 

parameter bi to zero, i. e. considering that no new individuals were recruited by the 

superpopulation during the experimental period. 

To evaluate the effect of trapping on the M. galloprovincialis population, 𝑁𝑇𝑜𝑡    

estimates needed to be transformed into density (D) units, putting the state of the 

population into a common currency. The estimation of D implies assuming some sort of 

geographical closure, which in turn likely violates the openness of the population under 

study (Ivan 2008). Yet, for evaluation purposes, three different effective sampling area 

calculations were considered. These were the area defined by our own seasonal sampling 

range calculation for the used traps and lures (sensu Turchin and Odendaal 1996; 561.76 

ha), the mean maximum distance covered by the beetles between trapping events (see Ivan 

2008, and reference therein; 517.43 ha; Wilson and Anderson 1985) and the defined study 

area (the naive density estimator, Wilson and Anderson 1985; 260 ha).  Then, the last one 

was chosen as the smallest and hence the most conservative in terms of pest management, 

i. e. it would yield the highest attributable D value and hence the lowest proportion of 

beetles removed.  

Accumulated trap catches at the mass-trapping area in 2013 were analysed in three 

distinct ways. First, absolute catches per trap were fitted against treatment (trap density) 

and block factors (the subplot at which they were placed) in a generalized linear model 

(GLM) with a Poisson error distribution. Means were later separated using Tukey’s HSD test 

with Bonferroni’s adjustment. Second, accumulated catches per experimental plot for each 

tested trap density was plotted. Due to the low number of replicates, parametric tests were 

not applied. Yet, when those values were put in relation to the estimated D value, a logistic 

regression could be fit relating the estimated percentage of removed population and the 

trap density used. The regression was fit under GLM assumptions and a quasibinomial error 

distribution to account for overdispersion. Trap densities at which 50% and 95% of the 

population could be removed (named TD50 and TD95) were computed on the fitted GLM. 



Finally the effect on the M. galloprovincialis population of 5 successive years of mass-

trapping carried out at the four tested trap densities was simulated. For this purpose a 

stochastic stationary Gompertz model was defined and iterated 1000 times with or without 

mass-trapping (Holmes et al. 2014). The hypothetical carrying capacity was arbitrarily set 

to 100 individuals per hectare with a 100% population growth rate, although the initial 

population density was set to 82 individuals per hectare, deriving from the estimated actual 

population in 2013. Weak density dependence was assumed for this hypothetical M. 

galloprovincialis population (0.78). The process variance was set to 0.01. Although the 

effectiveness of mass-trapping is known to increase with lowered population densities 

(Barclay and Chao 1991), for illustration purposes, it was held constant during simulations. 

 

Results 
 

Monochamus galloprovincialis population estimates 

The field trial in 2010 resulted in 102 lab-reared beetles that were recaptured once 

(28.89% of the released beetles; 60.53% females and 39.47% males), of which 12 could be 

recaptured at least a second time. During trap emptying, 22.8% of lab-reared beetles were 

found dead or dying (losses on capture). Altogether, CMR resulted in 114 detections during 

13 sampling occasions that allowed model fitting. The best-fitting Jolly-Seber models (Table 

1) showed time dependent survival probabilities (φ), whilst the capture probability (p) 

either remained constant or was time and sex dependent, when entrance probability (b) 

was allowed to be computed or was fixed at zero. Although the derived population sizes 

under both modelling scenarios overestimated the actual figures, they fell within one 

standard error of the released 175 female and 178 male lab-reared beetles (Table 1), and 

hence the accuracy of the abundance estimates derived from CMR data was considered 

appropriate. 

Regarding the native insects, 41 individuals were captured in 2010. Only eight were 

recaptured, yielding a total of 49 detections that could be used for the fitting. Furthermore, 

28.6% were lost on capture. The mean distance between consecutive capture locations was 

680.10m, with a maximum distance of 1280.78m and a minimum distance of 100m between 

detections of each individual. A local superpopulation of 116 individuals could be derived 

from the best Jolly-Seber models (Table 1). The best-fitting model pointed to a time 

dependent capture probability, whereas remaining parameters held constant. 
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   Abundance ( ) 

Year 
Insect 
Source Nreleased Best models 

No. 
P. AICc Females Males Total 

2010 Lab-
reared 

♀175; 

♂178  
8 217.97 296±123 277±127 573 

   
 

7 230.49 242±85 216±85 458 

 Native  
 

5 109.01 - - 115.98±61.49 

2013 Lab-
reared 

♀188; 

♂211  
9 135.66 143±151 132±151 275 

 Native  
 9 2468.38 10835±1289 10484±1282 21319 

Table 1 Summary of best fitting Jolly-Seber models (POPAN parameterisation) and derived population abundance(𝑁𝑇𝑜𝑡 ±̇   𝑆𝐸) z estimates of 

lab-reared and native Monochamus galloprovincialis at the field trials carried out in Villota del Páramo (Palencia, Spain) in 2010 and Cuellar 

(Segovia, Spain) in 2013. Model parameters were held constant (.), fixed (e.g. 0), differed between sexes (Sex), responded to time in a linear (T) 

manners or could present interactioctions (e.g. T×Sex). No. P, stands for number of parameters in the model .NTot estimates derivated from 

weighted average parameters of best models (∆AICc<10). Nreleased summarize the number of lab-reared beetles released at each study area. 

 

During the second experimental season in 2013 a total of 2836 native insects were 

registered in 2968 detections and 19 occasions. Of these 50.11% corresponded to female 

and 49.89% to male M. galloprovincialis individuals. Losses on capture accounted for 54.2% 

of total registered beetles. The mean distance between consecutive capture locations was 

518.90m with a maximum distance between detections of each individual of 694.55m and 

a minimum distance of 100m. Mean maximum distance covered by the beetles between 

trapping events was computed at 523.02m. The best-fitting Jolly-Seber model revealed that 

survival and entrance probabilities for native beetles in 2013 were time dependent (Table 

1). A time-sex interaction could be derived in the capture probability as well. Weighted 

averaging of models under POPAN parameterisation resulted in the superpopulation 

estimation size of 21319 M. galloprovincialis individuals. Weekly estimates ranged between 

291 and 1138 individuals with a slight bias towards females (Fig. 2c). 

 



 

Fig. 2. Temporal evolution of (a) mean temperatures, (b) estimated population removals by trap densities, and (c) Monochamus 

galloprovincialis population abundance estimates by sexes per week in the 2013 experiment at Cuellar (Segovia, Spain). Temperatures were 

retrieved from the Spanish Meteorological Agency’s station located at the same municipality. The polygon depicts the mean of daily maximum 

and minimum temperatures per week, whilst the weekly mean for the daily average temperature is represented by the black line. Estimation of 

population removal was based on the M. galloprovincialis population density corresponding to the study area (260 ha). Means per trap densities 

and sampling week are presented. Weekly population densities derived from the mark recapture data modelled under POPAN method and from 

the weighted average of best model parameters. 
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On the other hand, only 44 lab-reared insects were recaptured (36.67%) in 47 

detections (54.17% females and 45.83% males), yielding 3 net recaptures that could be 

used for fitting demographic models. Most of fitted models with this data had parameters 

that did not converge or resulted in singular parameters probably due to the extremely low 

second recapture figures. Table 1 presents the most accurate of them, modelled under no-

new-entrance probability. The figure of 399 beetles released in the study area was 

underestimated by the model (275) yet remained realistic. 

The effect of trapping densities on population removal 

A total of 5113 native insects were captured during the whole trapping period at the 

mass trapping area in 2013. Of these, 47.8% were males and 52.2% were females. The 

abundance figure calculated for the nearby “population area” was transformed to density 

considering the size of the design area (260 ha), yielding a reference of 82 M. 

galloprovincialis individuals ha−1 density value for the superpopulation. Weekly 

abundance estimates transformed to densities were used to calculate the population 

removal percentages during the sampling period (Fig. 2b). A noticeable reduction in trap 

catches occurred after the fourth sampling week, and these did not increase again until 

mean maximum temperatures fell below 30 ºC (Fig. 2a). Significant differences in 

accumulated mean catches per trap were found between different trapping density plots 

(Analysis of variance of fitted GLM on trapping density effect, F3, 32 5.38, P(>F) 0.004; Fig. 

3a).  

 

Fig. 3 Bar plots representing mean Monochamus galloprovincialis catches ±SEM per trap and trapping densities (a) and mean M. galloprovincialis 

catches per hectare ±SEM at Cuellar (Segovia, Spain) during the 2013 experimental season. Bars sharing the same letter are not significantly 

different (Tukey´s HSD, Bonferroni´s adjustment, P<0.05). 

 

Although the highest value per trap was recorded at a trapping density of 0.11 traps ha−1 

(177.25±11.84 SEM M. galloprovincialis individuals per trap), the plot with 0.44 traps ha−1 

caught a total of 2065 individuals (129.06±8.01 SEM M. galloprovincialis individuals per 

trap), providing the highest catch per unit area (57.36 insects ha−1; Fig. 3b).  



Fig. 4 shows the values for the estimated population removal of tested trapping 

densities, and the curve fitted after the logistic regression. Calculations were done using the 

estimated 82 individuals ha−1 D value for native beetles. The slope parameter was found to 

be significantly higher than zero (P>|t| 0.025), and the computation of the TD50 and TD95 

values, the trap densities required to remove 50% and 95% of the estimated population for 

the sampling plot, forecasted values of 0.37±0.04SE traps ha−1 and 0.82±0.11SE traps ha−1 

respectively. More specifically, the highest density of traps removed 59.80% of the 

estimated population, and, as the density of traps decreased, the percentage of extracted 

population exponentially decreased to 4.66% of the extracted population at the density of 

0.02 traps ha−1  (Fig. 4). 

 

Fig. 4 Logistic regression fit of the estimated removed number of Monochamus galloprovincialis in relation to increasing trapping densities 

within the mass trapping area in Cuellar (Segovia, Spain) during the 2013 experimental season. Shaded region represents 95% confidence 

interval of the fitted response. Estimated TD50 and TD95 values of traps per hectare required to remove 50 and 95% of the local populations are 

presented 

 

An additional figure to show the mass-trapping effectiveness could be computed 

using the estimated abundance of native M. galloprovincialis in 2010. The capture of 41 

native insects would have resulted in the reduction of 35.34% of the population at the 

trapping density of 0.25 traps ha−1. In 2013, the estimated removal at the same trapping 

density was slightly lower, accounting for a 33.33% reduction in the local plot abundance. 
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Discussion 
 

M. galloprovincialis was considered a secondary pest until its association with B. 

xylophilus was proven (Sousa et al. 2001). Yet, this saproxylic beetle causes little, if any, 

disturbance to management goals in forestry. Furthermore, the boring activity by its larvae 

occurs within the early successional stages of the saproxylic habitat, and it is very likely that, 

as has been shown for other beetles of the same genera (e. g. Saint-Germain et al. 2004), M. 

galloprovincialis provides valuable ecosystem services during the decomposition process of 

conifer wood. It is only in PWD affected areas where M. galloprovincialis reaches pest status. 

It must be stressed that the population control measures discussed within this work only 

apply to those areas and should be considered within the framework of integrated pest 

management directed, in this case, to the containment and eradication of PWD. 

Direct pest control by mass trapping depends on the availability of suitable trapping 

systems. Very efficient lures and traps are currently available for mass trapping of several 

Monochamus species (Álvarez et al. 2014; Macias-Samano et al. 2012; Pajares et al. 2010; 

Pajares et al. 2013; Rassati et al. 2012). Furthermore, and as shown by our results, the 

commercial pheromone-kairomone lure attracted both sexes of M. galloprovinciallis equally 

(see also Álvarez et al. 2014; Pajares et al. 2010) making direct control of the PWN vector 

more feasible. Recent developments in multiple funnel and in cross vane traps have greatly 

improved trap performance (Álvarez et al. 2014). Yet, other factors must be accounted for 

in order to evaluate the effectiveness of mass trapping in population removal. Among these, 

an accurate estimate of the target population and sound knowledge of the pests’ dynamics 

are of particular importance.  

Population abundance estimates derived from CMR data of lab-reared M. 

galloprovincialis were fairly consistent with the true values (Table 1), indicating that 

estimated abundances for native beetles would also fall within their true values. If anything, 

values in 2010 indicated slightly overestimated abundances. Contrary to precautionary 

principles in conservation biology (Tikkamäki and Komonen 2011), overestimated values 

are less of a problem for integrated pest management. Best supported models for native M. 

galloprovincialis in 2013 pointed towards linear relationships with sampling occasions in 

all three primary Jolly-Seber parameters. Furthermore, the interaction between sex and 

time in probability of capture (pi) was highlighted by this model. Trap catches have been 

reported to be slightly female biased for M. galloprovincialis (Pajares et al. 2010), and, as 



shown in Fig. 2, traps tended to remove higher proportions of the estimated population 

towards the end of the summer. Hence, the model structure for the capture probability 

parameter seems to reflect observed phenomena. Similarly, individual recruitments 

occurring both through immigration and new beetle emergences are thought to have 

occurred during the sampling period. In fact, beetle emergences at the outdoor lab extended 

until mid-August, which is also reflected in the recruitment parameter. Finally, survival and 

emigration patterns of M. galloprovincialis populations are unknown. Yet, high rates of 

losses of captured beetles, especially during the warmest sampling occasions, were 

observed. 

Estimated absolute population sizes needed to be transformed to density units in 

order to evaluate the effect of trapping density on the M. galloprovincialis population. Yet 

defining the geography that encloses the estimated population abundances (N ̂) is generally 

difficult to attain (Wilson and Anderson 1985). The native density estimator, D ̂=N ̂/A using 

the area covered by the trapping grid, results in the overestimation of D ̂ as a consequence 

of ignoring edge effects (Wilson and Anderson 1985). The area derived from the mean 

maximum distance covered by the recaptures is a common measurement used to reduce 

such bias, as it approximates the home range of the recaptured individuals (Ivan 2008).  In 

this study, the area derived from the mean maximum distance covered by the beetles 

between trapping events (517.43 ha) would have meant an estimated superpopulation 

density of 41 individuals ha−1, which, in turn, would have doubled the effectiveness of 

mass-trapping. Assuming the effective sampling area to be the experimental area (260 ha) 

increases such density and provides the most conservative estimation. Jolly-Seber models 

have been used for the estimation of PWN vector population sizes. Shibata (1985) reported 

M. alternatus population estimates that reached densities over 3500 individuals ha−1 in a 

stand sustaining 48% of P. thumbergii Parl tree mortality in Japan. Similarly, Togashi 

(1988), studying the link between M. alternatus populations and the incidence of PWD in a 

0.05 ha P. thumbergii stand, computed densities of native M. alternatus of up to 1176 

individuals ha−1 . 

Increased trap densities resulted in increased catches per plot (Fig. 2b and Fig. 3). 

Thus traps deployed at the highest trap density (0.44 traps ha−1) were able to catch 57.36 

beetles ha−1 (2065 within the 36 ha plot), or 59.80% of the estimated resident population. 

The corresponding adjusted logistic model (Fig. 4) predicted that a trap density ca. 1.5tr/ha 

would remove almost 100% of the population. However, deploying only half the traps (0.82 

traps ha−1) would result in a 95% reduction of the population density. Trapping results in 

2010 compared to 2013 did not provide any further support to the hypothesis that mass 
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trapping is beetle density-dependent, as reported earlier by Barclay and Chao (1991), and 

population removal was estimated to be very similar at equal trapping densities but very 

different M. galloprovincialis population levels. Under normal circumstances, Monochamus 

beetles are secondary insects that reproduce on dying or freshly dead trees and branches. 

The availability of such host material is dependent on stand conditions that may vary 

strongly spatially and temporarily (Grove 2002). Under such assumption, M. 

galloprovincialis populations would be expected to exist mainly in low densities. Yet, 

according to our results, the estimated native beetle densities can still vary strongly (0.52 

and 82 individuals ha−1 in 2010 and 2013 respectively). Regardless, the numbers of 

removed beetles suggest that mass trapping can be implemented operationally even in 

apparently moderate density populations. The population levels reported for M. alternatus 

(Shibata 1985; Togashi 1988) raise the question of what population levels are reached 

within PWD affected stands in which M. galloprovincialis is the vectoring agent. A deeper 

knowledge of the dynamics of Monochamus populations under different scenarios is 

required. Alternatively, reduction of stand damage has been commonly regarded as a proxy 

for population reduction and has served as a way of measuring mass trapping success 

(Alpizar et al. 2012; Faccoli and Stergulc 2008; Oehlschlager et al. 2002; Schlyter et al. 2001; 

Weslien 1992). Monochamus beetles, when not vectoring B. xylophilus, are secondary 

conifer borers that do not cause any damage. However, these beetles thrive on hosts that 

have been damaged by other agents therefore, intensive sanitation of freshly dead or dying 

trees is recommended in high PWD risk areas.  

Simulations of mean reverting dynamics of a moderate density M. galloprovincialis 

population (82 beetles ha−1) either under five consecutive years of mass trapping or not 

are presented in Fig. 5. In the case of removal efficiency of a fixed population, a mass 

trapping campaign conducted at 0.44 traps ha−1 should drive local populations to near 

extinction levels. If local extinction did not occur, populations would gradually reach their 

initial densities ten years after the mass trapping had ceased. Simulations have used a 

constant population growth rate, as could be expected for stable M. galloprovincialis 

populations. Such rate, however, would be much higher if destabilizing positive density-

dependent feedback occurred due to uncontrolled nematode inoculations, resulting in a 

great increase in suitable breeding material. In such a scenario, growth rate would tend to 

increase exponentially so population would recover much faster once trapping were 

cancelled.  

 



 

Fig. 5 Monochamus galloprovincialis population trends under different trapping intensities. The results of stochastic stationary Gompertz model 

simulations iterated 1000 times with (red), or without (blue) mass-trapping during the first five seasons are shown. Simulated trapping 

densities correspond to those tested in the 2013 field experiment: (a) 0.02, (b) 0.11, (c) 0.25 and (d) 0.44 traps per hectare. 

 

High costs are a relevant constraint for operational mass trapping management 

tactics. Costs incurred could vary greatly between programmes intended for preventive 

control or for eradication of the target insect. Hence, forest health managers must decide 

the optimal trap density, balancing the desired results with the costs of the required 

trapping effort. Other than the cost of lures and traps, manpower likely accounts for the 

highest proportion of the costs of mass trapping programmes. These costs are related to site 

features, number of traps, distances between traps, the area of the target forest, and target 

population density (Barclay and Chao 1991). As shown by Bogich et al.(2008), it is 

important to balance the costs and benefits in both the detection and the eradication of 

invasive species, as optimal trap densities are most influenced by growth rate of the 

infestation. Figure 4 could help forest health managers by providing a sound correlation 

between trap densities, thus expected costs, and the desired removal of the estimated 
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population. Isolation of the treatment area is also a critical issue, since isolated populations 

are easier to eliminate (Barclay 1984).  

The by-catch of non-target organisms may be another constraint to mass trapping 

programmes. Even if the M. galloprovincialis aggregation pheromone compound in the 

commercial lure is specific to Monochamus beetles, the host and bark beetle kairomones in 

the operational lures attract several saproxylic insects, including some bark beetle 

predators, and these are undesirably removed from the forest (Francardi et al. 2009; Ibeas 

et al. 2007; Rassati et al. 2012). Similarly, a large number of saproxylic species have been 

shown to be attracted to bark beetle pheromones (Etxebeste et al. 2013), and trap 

modifications have minimized the catch of beneficial insects (Martín et al. 2013). Even 

though research efforts are focused on improving the trapping of Monochamus beetles 

specifically (Álvarez et al. 2014), the effects of large scale mass trapping operations on non-

target entomofauna should be taken into consideration. 

Mass trapping should be regarded as a tool complemented with other control 

measures aimed at reducing vector populations, and not as a stand-alone control method. 

Sanitation of breeding material is imperative in any operational bark beetle control 

programme using mass trapping (Borden 1993; Wermelinger 2004), and should necessarily 

be carried out if effective control of PWD is the aim. Biological control of M. galloprovincialis 

using natural enemies could be regarded as a complementary strategy to mass trapping as 

well. The release of M. alternatus parasitoids has been quite successful in China and Japan 

(Zhao et al. 2008), but studies on M. galloprovincialis parasitoids are still preliminary (Naves 

et al. 2005). Entomopathogenic organisms are of particular interest within the options of 

biological control of the vectors of PWD. Considering the fact that a very effective lure is 

available, pathogenic organisms could be inoculated into the vector population by means of 

integrated methods, such as the ‘lure and infect’ tactic that has been developed for other 

pest systems (Jackson et al. 2005). In this sense, some fungal strains isolated from M. 

galloprovincialis adults and larvae in Spain have demonstrated high potential for horizontal 

transmission in adults and might become available for practical implementation in the near 

future (Álvarez-Baz, pers. comm.). Furthermore, the identification of the reported contact-

pheromone in M. galloprovincialis (Ibeas et al. 2008), could further increase the chances of 

successful application of this tactic. The combined usage of attractant and repellent 

infochemicals (‘push and pull’) in pest management represents yet another alternative for 

the integration of mass trapping with other techniques (Cook et al. 2007). Infochemicals 

with known repellent effect on bark beetles, such as verbenone (Etxebeste and Pajares 

2011; Etxebeste et al. 2013), had been tested earlier on M. galloprovincialis with little 



success (Ibeas et al. 2007). Further research should be done to identify and evaluate other 

candidate repellents that could be used in the management of the PWD. 

With current high risk of PWD expansion within Europe, the need for control 

measures keeps increasing. Yet, the general public supports environmentally friendly pest 

management alternatives. The present paper shows that mass trapping of M. 

galloprovincialis, the European vector of the PWN, represents a valuable tool in the 

integrated management of this serious disease. Mark-recapture studies have allowed 

assessing this tool under two different population densities, and managers are provided 

with a relationship between the implemented trap density and the expected proportion of 

M. galloprovincialis individuals removed. According to our results, mass trapping may 

effectively help stopping the spread of PWD, both in eradication programmes in areas 

where the disease has recently been detected and in border areas or other buffer zones 

where containment is strongly required.  

 

Acknowledgements 
We would like to acknowledge the field assistance and support provided by G. 

Alvarez and A. Ponce, and the crew at Castilla y León Forest Health Center (Calabazanos, 

Palencia) who helped us breed the required beetles, and the forest officers at the Castilla y 

León Forest Service in Segovia for access to field sites. This work has been financed through 

the European Union REPHRAME project (FP7-KBBE-2010-4) and by the Spanish Ministry 

of Science and Innovation project (RTA2011-00069-C03-03). I. Etxebeste was partially 

supported by the POSDOC grant of the Basque Autonomous Government. 

  



129 

 

 

References 
Abelleira A, Picoaga A, Mansilla JP, Aguin O, 2011. Detection of Bursaphelenchus xylophilus, 

Causal Agent of Pine Wilt Disease on Pinus pinaster in Northwestern Spain. Plant. Dis. 

95, 776-776. 

Akbulut S, Stamps WT, 2012. Insect vectors of the pinewood nematode: a review of the 

biology and ecology of Monochamus species. Forest. Pathol. 42, 89-99. 

Allison JD, Borden JH, McIntosh RL, de Groot P, Gries R, 2001. Kairomonal response by four 

Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. J. Chem. 

Ecol. 27, 633-646. 

Alpizar D, Fallas M, Oehlschlager AC, Gonzalez LM, 2012. Management of Cosmopolites 

sordidus and Metamasius hemipterus in banana by pheromone-based mass trapping. J. 

Chem. Ecol. 38, 245-252. 

Álvarez G, Etxebeste I, Gallego D, David G, Bonifacio L, Jactel H, Sousa E, Pajares JA, 2014. 

Optimization of traps for live trapping of Pine Wood Nematode vector Monochamus 

galloprovincialis. J. Appl. Entomol. DOI:10.1111/jen.12186. 

Barclay HJ, 1984. Pheromone trapping models for pest-control effects of mating patterns 

and immigration. Res. Popul. Ecol. 26, 303-311. 

Barclay HJ, Chao L, 1991. Combining methods of pest-control - minimizing cost during the 

control program. Theor. Popul. Biol. 40, 105-123. 

Bedard WD, Wood DL, 1974. Programs utilizing pheromones in survey and control. Bark 

beetles - the western pine beetle. In: Pheromones. Ed. by M C Birch, Elsevier-North 

Holland, Amsterdam, 441-461. 

Bogich TL, Liebhold AM, Shea K, 2008. To sample or eradicate? A cost minimization model 

for monitoring and managing an invasive species. J. Appl. Ecol. 45, 1134-1142. 

Borden JH, 1993. Strategies and tactics for the use of semiochemicals against forest insect 

pests in North America. In: Pest Management. Biologicaly Based Technologies. Ed. by R 

D Zumsde, J L Vaughn, American Chemical Society, Washington,DC, 265-279. 

Cook SM, Khan ZR, Pickett JA, 2007. The use of push-pull strategies in integrated pest 

management. Annu. Rev. Entomol. 52, 375-400. 



Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L, 2011. Demography and dispersal 

ability of a threatened saproxylic beetle: A mark-recapture study of the rosalia 

longicorn (Rosalia alpina). Plos ONE 6, 8. 

El-Sayed AM, Suckling DM, Wearing CH, Byers JA, 2006. Potential of mass trapping for long-

term pest management and eradication of invasive species. J. Econ. Entomol. 99, 

1550-1564. 

EPPO, 2009. PM 7/4(2): Bursaphelenchus xylophilus. EPPO Bull. 39, 344-353. 

Etxebeste I, Pajares JA, 2011. Verbenone protects pine trees from colonization by the six-

toothed pine bark beetle, Ips sexdentatus Boern. (Col.: Scolytinae). J. Appl. Entomol. 

135, 258-268. 

Etxebeste I, Alvarez G, Pajares J, 2013. Log colonization by Ips sexdentatus prevented by 

increasing host unsuitability signaled by verbenone. Entomol. Exp. Appl. 147, 231-

240. 

Etxebeste I, Lencina JL, Pajares J, 2013. Saproxylic community, guild and species responses 

to varying pheromone components of a pine bark beetle. B. Entomol. Res. 103, 497-

510. 

Faccoli M, Stergulc F, 2008. Damage reduction and performance of mass trapping devices 

for forest protection against the spruce bark beetle, Ips typographus (Coleoptera 

Curculionidae Scolytinae). Ann. For. Sci. 65. 

Francardi V, de Silva J, Pennacchio F, Roversi PF, 2009. Pine volatiles and terpenoid 

compounds attractive to European xylophagous species, vectors of Bursaphelenchus 

spp. nematodes. Phytoparasitica 37, 295-302. 

Futai K, 2013. Pine Wood Nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 

51, 61-83. 

Grove SJ, 2002. Saproxylic insect ecology and the sustainable management of forests. Annu. 

Rev. Ecol. Syst. 33, 1-23. 

Holmes EE, Ward EJ, Scheuerell MD, 2014. Analysis of multivariate time-series using the 

MARSS package version 3.9. Northwest Fisheries Science Center, NOAA, Seattle, WA, 

USA. 

Ibeas F, Gallego D, Diez JJ, Pajares JA, 2007. An operative kairomonal lure for managing pine 

sawyer beetle Monochamus galloprovincialis (Coleoptera : Cerymbycidae). J. Appl. 

Entomol. 131, 13-20. 



131 

 

Ibeas F, Diez JJ, Pajares JA, 2008. Olfactory sex attraction and mating behaviour in the pine 

sawyer Monochamus galloprovincialis (Coleoptera : Cerambycidae). J. Insect. Behav. 

21, 101-110. 

Ivan J, 2008. Density estimation. In: Program MARK: a gentle introduction. Ed. by E Cooch, 

G White, 20-21, 20-19. 

Jackson TA, Crawford AM, Glare TR, 2005. Oryctes virus—Time for a new look at a useful 

biocontrol agent. J. Invertbr. Pathol. 89, 91-94. 

Lindgren BS, 1983. A multiple funnel trap for Scolytid beetles (Coleoptera). Can. Entomol. 

115, 299-302. 

Linit MJ, 1988. Nematode vector relationships in the pine wilt disease system. J. Nematol. 

20, 227-235. 

Macias-Samano JE, Wakarchuk D, Millar JG, Hanks LM, 2012. 2-Undecyloxy-1-ethanol in 

combination with other semiochemicals attracts three Monochamus species 

(Coleoptera: Cerambycidae) in British Columbia, Canada. Can. Entomol. 144, 821-825. 

Maki EC, Millar JG, Rodstein J, Hanks LM, Barbour JD, 2011. Evaluation of mass trapping and 

mating disruption for managing Prionus californicus (Coleoptera: Cerambycidae) in 

hop production yards. J. Econ. Entomol. 104, 933-938. 

Martín AB, Etxebeste I, Pérez G, Álvarez G, Sánchez E, Pajares JA, 2013. Modified pheromone 

traps help reduce bycatch of bark-beetle natural enemies. Agr. Forest. Entomol. 15, 

86-97. 

Mota MM, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E, 1999. First 

report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1, 727-

734. 

Naves P, Kenis M, Sousa E, 2005. Parasitoids associated with Monochamus galloprovincialis 

(Oliv.) (Coleoptera : Cerambycidae) within the pine wilt nematode-affected zone in 

Portugal. J. Pest. Sci. 78, 57-62. 

Niemeyer H, 1997. Integrated bark beetle control: experiences and problems in Northern 

Germany. In: Integrating cultural tactics into the management of bark beetle and 

reforestation pests. Ed. by J C Gregoire, A M Liebhold, F M Stephen, K R Day, S M Salom, 

USDA, 80-86. 



Oehlschlager AC, Chinchilla C, Castillo G, Gonzalez L, 2002. Control of red ring disease by 

mass trapping of Rhynchophorus palmarum (Coleoptera : Curculionidae). Fla. 

Entomol. 85, 507-513. 

Pajares JA, Alvarez G, Ibeas F, Gallego D, Hall DR, Farman DI, 2010. Identification and field 

activity of a male-produced aggregation pheromone in the pine sawyer beetle, 

Monochamus galloprovincialis. J. Chem. Ecol. 36, 570-583. 

Pajares JA, Alvarez G, Hall DR, Douglas P, Centeno F, Ibarra N, Schroeder M, Teale SA, Wang 

ZY, Yan SC, Millar JG, Hanks LM, 2013. 2-(Undecyloxy)-ethanol is a major component 

of the male-produced aggregation pheromone of Monochamus sutor. Entomol. Exp. 

Appl. 149, 118-127. 

Rassati D, Toffolo EP, Battisti A, Faccoli M, 2012. Monitoring of the pine sawyer beetle 

Monochamus galloprovincialis by pheromone traps in Italy. Phytoparasitica 40, 329-

336. 

Saint-Germain M, Drapeau P, Hebert C, 2004. Landscape-scale habitat selection patterns of 

Monochamus scutellatus (Coleoptera : Cerambycidae) in a recently burned black 

spruce forest. Environ. Entomol. 33, 1703-1710. 

Schlyter F, Zhang Q-H, Liu G-T, Ji L-Z, 2001. A successful case of pheromone mass trapping 

of the bark beetle Ips duplicatus in a forest island, analysed by 20-year time-series 

data. Integrated. Pest. Manag. Rev. 6, 185-196. 

Shibata E, 1985. Seasonal fluctuation of the pine wood nematode, Bursaphelenchus 

xylophilus (Steiner et Buhrer) Nickel (Nematoda, Aphelenchoididae), transmitted to 

pine by the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera, 

Cerambycidae). Appl. Entomol. Zool. 20, 241-245. 

Sousa E, Bravo MA, Pires J, Naves P, Penas AC, Bonifacio L, Mota MM, 2001. Bursaphelenchus 

xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus 

galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematology 3, 89-91. 

The R Development Core Team, 2014. R: A language and environment for statistical 

computing, R Foundation for Statistical Computing, Vienna, Austria. 

Tikkamäki T, Komonen A, 2011. Estimating population characteristics of two saproxylic 

beetles: a mark-recapture approach. J. Insect. Conserv. 15, 401-408. 

Togashi K, 1988. Population-density of Monochamus alternatus adults (Coleoptera, 

Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus 

xylophilus (Nematoda, Aphelenchoididae). Res. Popul. Ecol. 30, 177-192. 



133 

 

Torres-Vila LM, Sanchez-Gonzalez A, Ponce-Escudero F, Martin-Vertedor D, Ferrero-Garcia 

JJ, 2012. Assessing mass trapping efficiency and population density of Cerambyx 

welensii  Küster by mark-recapture in dehesa open woodlands. Eur. J. For. Res. 131, 

1103-1116. 

Torres-Vila LM, Sanchez-Gonzalez A, Merino-Martinez J, Ponce-Escudero F, Conejo-

Rodriguez Y, Martin-Vertedor D, Ferrero-Garcia JJ, 2013. Mark-recapture of Cerambyx 

welensii in dehesa woodlands: dispersal behaviour, population density, and mass 

trapping efficiency with low trap densities. Entomol. Exp. Appl. 149, 273-281. 

Turchin P, Odendaal FJ, 1996. Measuring the effective sampling area of a pheromone trap 

for monitoring population density of southern pine beetle (Coleoptera: Scolytidae). 

Environ. Entomol. 25, 582-588. 

Wermelinger B, 2004. Ecology and management of the spruce bark beetle Ips typographus - 

a review of recent research. Forest. Ecol. Manag. 202, 67-82. 

Weslien J, 1992. Effects of mass trapping on Ips typographus (L) populations. J. Appl. 

Entomol. 114, 228-232. 

Wilson KR, Anderson DR, 1985. Evaluation of two density estimators of small mammal 

population size. J. Mammal., 13-21. 

Wingfield M, Blanchette R, Nicholls T, Robbins K, 1982. Association of pine wood nematode 

with stressed trees in Minnesota, Iowa, and Wisconsin. Plant. Dis. 66, 934-937. 

Zhao BG, Futai K, Sutherland JR, Takeuchi Y, 2008. Pine wilt disease. Springer, Tokyo. 

  



Concluding Remarks 

 

 Synthesis 
 

Host preferences and the role of Pinus pinea during host selection by Monochamus 

galloprovincialis 

 

The pine wood nematode (PWN), the causal agent of the pine wilt disease (PWD), was 

introduced in Portugal in 1999 (Mota et al., 1999). So far, only the cerambycid Monochamus 

galloprovincialis (Olivier) has been shown to vectorize the PWN in Europe (Sousa et al. 2001). 

The record on the evolution and expansion of PWD throughout the demarcated areas in this 

country showed that the nematode infections and tree mortality have been restricted to Pinus 

pinaster Aiton and Pinus nigra Arnold (Inácio et al., 2015) whereas stone pine, Pinus pinea L., 

which frequently occurs in the infested zone, has to date, not shown symptoms of decay (Naves 

et al., 2006). The first aim of this work was to determine the host spectrum of M. galloprovincialis 

in the Iberian Peninsula, specially focusing on the insect’s behavior in relation to P. pinea. 

 According to the results derived from Chapter, M. galloprovincialis is able to feed, lay 

eggs, and develop on P. pinea, at least under laboratory conditions. Although it was not the 

preferred host when compared with other Iberian Pinus, the beetle performed best on P. pinaster, 

no significant detrimental effects on feeding or reprocuding on P. pinea were observed. The 

influence of pine volatiles that are more abundant on different host species have on the attraction 

of Monochamus to traps has been studied in detail (Pajares et al., 2004, 2010; Ibeas et al., 2007, 

2008; Álvarez et al., 2015). In the case of M. galloprovincialis, limonene, the most abundant 

terpene in P. pinea (Santos et al., 2006; Martini et al., 2010) has been suggested as one of the 

most important chemical cues that might influence the process of host selection (Naves et al., 

2006), as has also been suggested for Monochamus alternatus Hope (Fan & Sun, 2006). As it has 

been shown in Chapter 1, a progressive decrease in feeding was detected as limonene dosage 

increased, which could indicate a probable deterrent effect of limonene in the diet of adult M. 

galloprovincialis. Oveall, the results on the host preferences of the vector do not explain the 

observed absence of nematode killed P. pinea trees in the field and further research should be 

focused on the study of P. pinea in order to developed possible new options to control the disease. 
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Dispersal of the European vector Monochamus galloprovincialis and immature 

dispersal capacity. 

 

 Although transportation of PWN and the beetles over very long distances by humans is 

considered the single-most important factor in spreading the PWD, the natura Monochamus 

dispersal behavior plays a very important role too, as the short-distance propagation of the PWD 

is mainly dominated by this process. With the development of effective traps and a highly 

attractive commercial lures for M. galloprovincialis (Pajares et al., 2004, 2010; Ibeas et al., 2007, 

2008; Rassati et al., 2012; Álvarez et al., 2015), mark-release-recapture (MRR) assays began to 

be feasible for this species (Gallego et al., 2012; Mas i Gisbert et al., 2013; Torres-Vila et al., 

2014; Mas i Gisbert, 2015). However, accumulating knowledge shows that immature M. 

galloprovincialis are not detected in traps baited with the standard lure (Ibeas et al., 2008; Pajares 

et al., 2010; Álvarez et al., 2015). On the other hand, knowledge on the survival, physiological 

development and dispersal capabilities of M. galloprovincialis constitutes a key factor in the 

development of adequate management policies of the PWD. With this mind, results presented in 

the Chapter 2, indicate that M. galloprovincialis depends on shoot feeding for sexual maturation 

for a period averaging 12-13 feeding days. Beyond that moment, they respond to the commercial 

pheromone lures. Remarkably, M. galloprovincialis emerged with enough lipid reserves, and 

muscular fractions to faces dispersal flighst, regardless of the size or sex. Furthermore, even if 

the immature adults do not survive long without food, they would live long enough to successfully 

transmit the PWN to susceptible hosts. In order to gain empirical evidence on how eventual 

translocation of PWN infested material into host deprived areas could lead to a further expansion 

of the disease, batches of immature beetles were relased at increasing distances from a P. pinaster 

stand from locations within a cropfield. Overall, our results show that newly emerged 

M. galloprovincialis are able to sustain long flights in the field without requiring hosts for feeding. 

In addition, the registered recapture percentages over release distances of lab-fed, 15-day-old 

mature M. galloprovincialis followed did not significantly differ. 

 The natural spread of PWD is greatly constrained to the dispersal of Monochamus beetles 

and the successful transmission of its causal agent, the PWN. Chapter 3 presented several studies 

focused in describing the dispersal kernels, i. e. the probability density function of the distribution 

of the dispersal distance travelled by a disperser that could assist in the description of the PWD 

expansion when vectored by M. galloprovincialis. Three experiments were held under two 

landscape scenarios, fragmented and continuous pine stands. Our result showed that although 

median recaptures occurred at the closest distance to the release point, recaptured beetles were 

found across all the experimental setup, in agreement with other dispersal assays (Gallego et al., 

2012; Mas i Gisbert et al., 2013). Dispersal kernels deriving from mechanical and empirical 



models fitted to observed M. galloprovincialis recaptures predicted that the 50% of the recaptured 

insects would occur at distances within 250-532 m from the source, and that the 99% of the 

dispersers would remain within 2344-3495 m. The most conservative kernel (bivariate t), 

forecasted that 0.6% of dispersers would fly beyond 5000m. Yet, our recapture results under the 

fragmented landscape scenario suggest that such habitats would apparently enhance the dispersal 

behaviour, as was also observed by Gallego et al (2012). These results, clearly call into question 

the relevance of the precautionary clear-cuts recommended by the latest European Union 

Commission decision concerning the prevention of PWD spread (2012/535/EU), which obliged 

member states to remove all susceptible hosts 500 m around new infestation foci. 

The same experimental set-ups provided results that helped computing trapping 

parameters by regressing the proportions of recaptured insects over the distances to the release 

point (Turchin & Odendaal, 1996; Östrand & Anderbrant, 2003). This way the effective sampling 

area was derived to be between 0.57-0.76 ha, while the seasonal sampling range oscilated between 

426 and 645m. Although these figures might vary in relation to environmental or technical 

parameters and apply to the evaluated trap and lures, they by themselves constitute a reference 

from which design management strategies such as early detection surveys, or ways of lowering 

the populations of the PWN vector. 

 Net dispersal is defined as the movement of an individual from site of birth to site of 

reproduction. Accordingly, the foremost reasons for dispersal in Monochamus beetles include 

looking for host material for maturation feeding, for sexual mates, and for dying or newly dead 

conifers suitable for egg-laying (Naves et al., 2008). The search of resources to meet these 

physiological needs could be affected by the habitat structure, which would in turn oblige M. 

galloprovincialis to move looking for optimal patches in the forest. However, with a few 

exceptions (Saint-Germain et al., 2004), empirical data that describes Monochamus spp. habitat 

location preferences are rarely found. The development of new techniques that allow mapping 

quantitative variables that can greatly enhance the characterization of the habitat. For example, 

LiDAR images have led to improved measurements of tree and forest variables and the 

characterization spatial structure of the stands (Hudak et al., 2009). Correspondingly, this 

information is increasingly used on studies dealing with pest management (Brydegaard et al., 

2009; Mei et al., 2011; Vastaranta et al., 2013a; b). By studying the abundance of 

M. galloprovincialis across the experimental site in 2011 in relation to LiDAR derived stand 

characteristics, canopy cover could be identified as the principal habitat factor that quantitatively 

affected the presence of native beetles. On the other hand, not surprisingly, distance to the release 

site was the main factor affecting their abundance. This result is in agreement with the predictions 

by the dispersal kernels fitted in Chapter 3, and correspondingly insects would be recaptured at 

the closest distances to their release site. In addition, another factor awas found to significantly 

affect lab-reared Monochamus habitat selection, the maximum height of regeneration (i. e. the 
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height of pines in the understory). Yet, this result could have been caused by the overestimated 

impact of the height of the regeneration at the nearest distances, caused by a very high number of 

recaptures in less of 300 m of the release site (62 % of recaptures), where regeneration was lower 

than in the rest of the site.  

One of the main drawbacks in the development of methods for the early detection of 

PWD, is the lack of information on how immature M. galloprovincialis distribute within the 

forest. The same dispersal kernels as above were fitted to the recaptures of beetles released at 

mature or immature stages of their life cycle during Chapter 4. Fitted models, predicted similar 

values for the probability of dispersal, yet, the kernel based on the bivariate t distribution predicted 

that 0.001% of immature M. galloprovincialis would fly over 5000 m, when such events were not 

foreseen for mature beetles. Overall, such results are highly comparable to those obtained in 

Chapter 2, i. e. dispersal of matures and immatures under a scenario deprived of hosts. Keeping 

in mind that mature insects were 15 days-old when they were released, while immature insects 

reached their sexual maturation only after 12 feeding days, the displacements by immature beetles 

during their feeding flights do not seem to modify the dispersal behavior observed by the 

recapture of marked M. galloprovincialis by pheromone baited traps. Anyhow, keeping in mind 

that PWN primary transmission occurs as they feed, future studies aiming for the identification 

of active compounds for trapping immature pine sawyers may help understanding this initial 

feeding dispersal behaviour. 

 

 Mass-trapping as control method of Monochamus galloprovincialis 

Mark-recapture methods have been widely used to quantify animal abundance in the field 

(Seber, 1982).  On the other hand, the development of effective traps and lures for Monochamus 

spp. (Pajares et al., 2004, 2010; Álvarez et al., 2014, 2015) opened the question whether mass 

trapping could be used to reduce the population levels of the vector of the PWN, which might 

provide a more proactive management strategy for the eradication or containment of the PWD 

than the current management practices. But first, the methodology by which mark-release-

recapture data would be use to estimate the size of the target population abundance needed to be 

evaluated. The data used to fit the dispersal kernels in 2010, allowed validating the POPAN 

parametrization of Jolly-Seber models for such purpose. A large scale experiment conducted in 

2013, showed that mass-trapping might help reducing the population level of M. galloprovincialis 

in the studied area. However, special attention is needed in a scenario where the highest 

population levels would be reached, as could be the case of PWD-affected stands (Togashi, 1988). 

In such case, a destabilizing positive density-dependent feedback could occur due to uncontrolled 

nematode inoculations, resulting in a great increase in suitable breeding material. Evaluated 

trapping densities removed were 4.66%, 20.50%, 33.33% and 59.80% of M. galloprovincialis 



estimated population at 0.02, 0.11, 0.25 and 0.44 traps/ha, respectively. Accordingly, thus the 

estimated 95% of removal would occur at 0.82 traps/ha -1. 

 Yet, as discussed by Bogich et al. ( 2008), it is important to balance the costs and benefits 

in both, the detection and the eradication of invasive species, as optimal trap densities are most 

influenced by growth rate of the infestation. It is also important to consider the natural role of M. 

galloprovincialis globally, as under normal circumstances, this saproxylic insect provides, as 

many other members of the same guild, very important ecosystem services as primary 

decomposers of wood (Vives, 2000; Saint-Germain et al., 2004). In addition the effect on by-

caught non-targeted species must also be taken into account. Overall, and according to our results, 

mass trapping may help stopping PWD spread, and could potentially be applied in eradication 

programs in areas where the disease has recently been detected and in border areas or other buffer 

zones where containment strategies are strongly required. 
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 Conclusions 
 

Shoot feeding and oviposition preferences by Monochamus 

galloprovincialis (Chapter 1) 

1. Scots pine was the most preferred host by M. galloprovincialis for feeding, followed by 

maritime pine. All tested Iberian pines were accepted by the beetles for feeding. 

2. M. galloprovincialis was able to feed, lay eggs, and complete all its developmental stages 

on P. pinea, under laboratory conditions. 

3. Insect feeding decreased as limonene dose increased, suggesting that an inhibitory 

effect bythis terpene may occur. 

4. Oviposition wounds occurred more frequently on P. pinea than on P. sylvestris or P. 

pinaster, though the proportion of successful egg laying was significantly lower. 

5. M. galloprovincialis successfully completed progeny development on P. pinea, but 

survival was lower than on P. sylvestris. 

 

 

Physiology and dispersal of immature Monochamus galloprovincialis 

(Chapter 2) 

6. Sexual maturation took an average of 11.66±1 and 12.86±1 days of feeding for 

M.galloprovincialis males and females respectively. 

7. M. galloprovincialis newly emerged adults had lipid and pterothotorax (i.e. flight muscles) 

contents enough for dispersal flight, regardless of size, age or sex. 

8. Unfed adults survived 12 days on average (range 6-20 days). 

9. Newly emerged M.galloprovincialis were able to flight 2 km over areas deprived of hosts. 

Longest flight distance by these adults was estimated at 3109 m. 

 

 

 

 

 

 



Monochamus galloprovincialis dispersal under continuous and 

fragemented pine stands (Chapter 3) 

10. The negative exponential model was best fitted to M.galloprovincialis dispersal data  

11. Derived estimated radii enclosing 50% and 99% of dispersing M. galloprovincialis 

under continuous pine stands ranged between 250-532m and 2344-3495m, depending 

on replicate and model. 

12. The widest tail was forecasted by the 2Dt model, predicting that 0.6% of M. 

galloprovincialis adults would fly over 5000 m. 

13. M. galloprovincialis dispersal distance is affected by landscape structure, being longer 

in areas fragmentated areas. 

14. No differences in dispersal behaviour between M. galloprovincialis males and females 

were observed, nor there was significant influences of beetle size in distance of 

recapture. 

15. The effective sampling area for M.galloprovincialis resulted 0.57-0.76ha, and the 

seasonal sampling range was 426-645m. 

 

Monochamus galloprovincialis abundance and dispersal in relation to 

stand characteristics (Chapter 4) 

16. Forest canopy cover was the main variable that positively affected native 

M.galloprovincialis abundance. 

17. Distance from the release point and maximum height of regrowth negatively affected 

distribution of both mature and immature released insects. Interaction of these variables 

had a light positive effect on abundance. 

18. Immature and immature beetles had similar dispersal kernels when data was fitted to 2Dt 

and negative exponential models. Maximum distance probability resulted in that 0.001% 

of immature M. galloprovincialis would fly over 5000 m. 

19. M. galloprovincialis males dispersed further away and during more time than females. 
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Monochamus galloprovincialis population reduction for PWD 

management (Chapter 5) 

20. Capture-mark-recapture resulted an accurate method to estimate M. galloprovincialis 

population abundance. Conservative estimate of population density in the study are was 

82 beetles/ha 

21. As M. galloprovincialis population can be classed as one of the open type, abundance 

estimates had to be calculated weekly and different percentages of population removal 

were obtained during the study period. 

22. Mass-trapping was a valid method for reducing M.galloprovincialis population. Trapping 

densities at 0.02, 0.11, 0.25 and 0.44 traps/ha removed 4.66%, 20.50%, 33.33% and 

59.80% of M. galloprovincialis population, respectively. 95% removal was estimated to 

occur at 0.82 traps/ha. 

  



 

 Conclusiones 
 

Preferencias de alimentación y oviposición Monochamus 

galloprovincialis (Capítulo 1) 

1. El pino sivestre fue el más preferido por M.galloprovincialis para su alimentación, 

seguido del pino resinero. Todos las especies de pinos ibéricos testadas fueron 

aceptadas   

2. M. galloprovincialis fue capaz de alimentarse, hacer la puesta y desarrollar su progenie 

en pino piñonero, , en condiciones de laboratorio. 

3. La alimentación de los insectos disminuyó según se aumentó la dosis de limoneno, lo 

cual sugiere podría indicar un efecto disuasorio de este terpeno. 

4.  Las mordeduras de puesta fueron mayores en P. pinea que en P. sylvestris o P. pinaster, 

si bien la proporción de ellas que contenía huevo fue significativamente menor. 

5. completó con éxito el desarrollo de su progenie en P. pinea, aunque la supervivencia 

fue menor que en P. sylvestris. 

 

Fisiología y dispersión de Monochamus galloprovincialis (Capítulo 2) 

6. La duración media de maduración para los machos y las hembras de  M. 

galloprovincialis fue de 11.66±1 y 12.86±1 días de alimentación respectivamente. 

7. Los adultos recién emergidos de M. galloprovincialis tenían sufciente contenido de 

lípidos y musculatura alar para emprender el vuelo de dispersión, independientemente 

de las diferencias en tamaño, edad o sexo. 

8. La supervivencia de los adultos sin alimentarse fue 12 dias de media (entre 6-20 dias). 

9. Los adultos recién emergidos de M.galloprovincialis fueron capaces de volar 2 km 

sobre un área sin hospedantes. La mayor distancia de vuelo para estos adultos fue 

estimada en 3109m. 
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Dispersión de Monochamus galloprovincialis en masas continuas y 

fragmentadas. (Capítulo 3) 

10. El modelo exponencial negativo resultó el mejor ajustado a los datos de dispersión 

de M.galloprovincialis  

11.  Los radios que engloban el 50% y el 99% de los M. galloprovincialis dispersantes s 

fueron estimadas por los modelos entre 0-532m y 2344-3495m respectivamente, 

dependiendo de la réplica y del modelo. 

12. Las predicciones de máximas distancia estiman que el 0.6% de los adultos de M. 

galloprovincialis se dispersarían hasta los 5000 m. 

13. La dispersión de M. galloprovincialis depende de la estructura del paisaje, siendo 

mayor en paisajes con mayor grado de fragmentación. 

14. No existieron diferencias significativas entre la dispersion de machos y hembras de 

M. galloprovincialis, ni ésta se vió influida por el tamaño del insecto. 

15. El área efectiva de muestreo de la trampa utilizadas fue de 0.57-0.76ha, y su rango 

estacional de muestreo de 426-645m. 

 

Abundancia y dispersion de Monochamus galloprovincialis en relación 

con las características de la masa (Capítulo 4). 

16. La abundancia de los insectos nativos se vió influída positivamente por la fracción 

de cabida cubierta. 

17. La distancia al punto de liberación y la maxima altura del regenerado afectaron 

negativamente a la distribución de las capturas, mientras que la interacción de ambas 

lo hizo de forma ligeramente positiva. 

18. Ambos modelos 2Dt y exponencial negativo obtuvieron similares kernel de dipersión 

para los individuos maduros e inmaduros. Se estimó una probabilidad de que el 

0.001% de los insectos inmaduros se dispersaría por encima de los 5000m.  

19. Los machos de M. galloprovincialis se dispersaron más lejos y durante más tiempo que 

las hembras. 

 

 

 

 



Reducción de la población de Monochamus galloprovincialis como 

método para el manejo de la enfermedad del marchitamiento del pino 

(Capitulo 5) 

20. La Captura-marcado-recaptura rsulto un método preciso para estimar la abundancia 

de población de M. galloprovincialis. La estimación conservadora de la densidad 

poblacional en el area de estudio fue de 82insectos/ha. 

21. Al ser la población de M. galloprovincialis de tipo abierto, las estimaciones de 

abundancia tienen que ser calculadas semanalmente y por tanto los porcentajes de 

recaptura obtenidos fueron diferentes a lo largo del período muestreado. 

22. La captura masiva es un método válido para reducir la población de M.galloprovincialis. 

La densidades de 0.02, 0.11, 0.25 y 0.44 trampas/ha retiraron el 4.66%, 20.50%, 

33.33% y 59.80% respectivamente de la población de M. galloprovincialis.  Se estimó 

que el 95% de reducción ocurrirá con una densidad de 82 trampas/ha. 
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