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Sumario en Español 

 

Introducción 

 

 Existe una tendencia innata de la familia humana de aumentar su bienestar. 

Además, existe una necesidad ética de que ese bienestar se dé en todos los lugares del 

mundo. No obstante, y aunque las mejoras conseguidas desde el inicio de la revolución 

industrial hasta nuestros días ha permitido que en muchos lugares de los denominados 

países del primer mundo, la tasa de bienestar, amplificada por la alta tecnología 

desarrollada en el Siglo XX, sea muy satisfactoria. No obstante, ese desarrollo industrial 

ha traído consigo una serie de problemas de difícil solución, y que exigen una respuesta 

y solución a muy corto plazo. Entre ellos, y sin entrar en aspectos más filosóficos, se 

podrían mencionar: 

1. Disminución de la tasa de gases de efecto invernadero en la atmósfera, con 

objeto de disminuir el efecto invernadero 

2. Disminución del consumo energético, lo que disminuiría el uso de 

combustibles fósiles, y aumento de las energías alternativas como la energía 

solar y la energía eólica.  

Uno de los avances tecnológicos más importantes del final del siglo XX ha sido 

el desarrollo industrial de los procesos de separación por membranas como son la 

ultrafiltración, la diálisis, la ósmosis inversa, la pervaporación o la permeación selectiva 

de gases industriales 

Aunque estos avances han ido asociados al descubrimiento de nuevos materiales 

de diversos tipos: cerámicos, metálicos, poliméricos; hasta el momento, solo los 

polímeros han permitido resolver favorablemente las relaciones prestaciones-precio-

durabilidad que han de cumplirse en cualquier desarrollo industrial. 

En este contexto se inscribe esta memoria, que está dirigido al diseño y 

preparación de nuevas membranas poliméricas para ser evaluadas como materiales 

alternativos en procesos de separación de gases, y donde se han aplicado los últimos 

conocimientos en este tema para poder obtener materiales con mejores propiedades y 

donde se eliminen algunos de los inconvenientes de la actual generación de membranas 

de alta eficiencia. En particular, la separación de gases se ha dirigido a la separación de 

mezclas de gases donde uno de sus componentes sea el dióxido de carbono. 
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La separación de gases mediante membranas selectivas es una operación 

relativamente poco desarrollada que ha encontrado utilidad en casos concretos, pero no 

ha conseguido desplazar todavía a los procesos tradicionales como son la separación 

mediante absorbentes específicos o la destilación criogénica. No obstante, se han 

producido ya algunos desarrollos de interés industrial (puede señalarse que el 30 % del 

nitrógeno industrial se produce ya por separación de los componentes del aire mediante 

membranas poliméricas semipermeables) y se cuenta además con el conocimiento 

necesario para la explotación de las membranas, gracias al gran esfuerzo innovador 

realizado por muchos grupos en todo el mundo. 

Para caracterizar completamente una película de polímero como membrana de 

separación de gases, es necesario definir sus parámetros de transporte, que son el 

Coeficiente de Difusión o Difusividad (D), el Coeficiente de Solubilidad (S) y la 

Permeabilidad (P). 

La Permeabilidad de un gas A a través de una membrana (PA) se define como 

el volumen de gas que pasa a través de un espesor l de membrana por unidades de 

tiempo, presión y área de membrana. Matemáticamente: 

 12 pp

lN
P A

A 


  

donde NA es el flujo de gas a través de la membrana, p2 es la presión de alimentación y 

p1 es la presión del permeado. Cuando el valor de p1 es suficientemente pequeño 

(p2>>p1), es posible hacer una serie de aproximaciones, llegando a la siguiente 

expresión: 

 

donde DA (Coeficiente de Difusión) da idea de la movilidad de las moléculas de gas 

que penetran en la membrana, expresado en cm2/s, y SA (Coeficiente de Solubilidad) 

representa la cantidad de gas que puede quedar retenido en la membrana (expresado 

como concentración de gas absorbido por unidad de volumen de membrana) una vez 

alcanzado el equilibrio con la presión de gas suministrada a la membrana. El primero es 

un parámetro cinético que depende principalmente de la movilidad del permeante, los 

movimientos de cadena y el volumen libre del polímero. El segundo es un parámetro 

termodinámico que esta condicionado por las interacciones gas/polímero. 

 

AAA SDP   
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Para una mezcla de dos gases i,j, la Selectividad o Factor de Separación del 

componente i frente al componente j se define como el cociente de las permeabilidades 

de ambos gases: 

j

i

j

i

j

i
ji S

S

D

D

P

P
,  

 

Aunque existen muchos tipos de polímeros, y aparecen nuevas estructuras 

continuamente, muy pocos ofrecen un balance de propiedades adecuado para ser 

candidatos en el campo de la separación de gases. Si consideramos las condiciones de 

innovación y potencial competitividad exigibles, solo pueden considerarse los 

polímeros que cumplan con los siguientes requisitos mínimos: 

 

 Capacidad de procesado a filmes y membranas, preferiblemente a partir de 

disoluciones  

 Baja o nula cristalinidad 

 Temperatura de transición vítrea al menos 100 oC superior a la ambiente 

 Estabilidad térmica por encima de 300 oC (TGA, aire) 

 Buenas propiedades mecánicas (Carga a rotura > 60 MPa, Módulo >2 GPa) 

 Buena resistencia química 

 Bajo envejecimiento físico, entendiendo éste como una pérdida de la fracción de 

volumen libre del material a lo largo del tiempo. 

 

Salvo escasísimas excepciones, únicamente algunos polímeros de condensación 

aromáticos son capaces de satisfacer estas condiciones.  

Además, los materiales obtenidos han de reunir unas propiedades como membranas 

que los hagan competitivos frente a otras tecnologías o que permitan su uso en nuevas 

aplicaciones que están emergiendo debido a requisitos medio-ambientales o sociales. 

Por ejemplo, para la pareja oxígeno/nitrógeno la idea es alcanzar permeabilidades al 

oxígeno superiores a 50 Barrers (1 Barrer= 10-10cm3(STP) cm/cm2scmHg) y 

selectividades oxígeno/nitrógeno superiores a 8, y para la pareja dióxido de 

carbono/metano, permeabilidades al dióxido de carbono superiores a 100-200 Barrers, 

con selectividades dióxido de carbono/metano superiores a 40. Estas condiciones de 
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separación están al alcance de muy pocos polímeros, incluso dentro del campo de los 

polímeros especiales que acabamos de comentar. En la actualidad, existe una búsqueda 

de nuevos materiales capaces de separar parejas de gases que hace tiempo no se 

contemplaban como de importancia económica. Entre estas nuevas aplicaciones, 

algunas de ellas derivadas del problema del calentamiento global o del aprovechamiento 

de recursos naturales que no se han obtenido usando tecnologías avanzadas (p.ej. pozos 

que poseen cantidades importantes de petróleo o de gas donde se utilizaron métodos 

anticuados de extracción, aprovechamiento del carbón en centrales térmicas más 

eficientes o para la producción de gas de síntesis, etc.) destacan la separación inversa de 

oxígeno/nitrógeno, separación de metano de nitrógeno, separación de gases ácidos que 

poseen azufre, y un largo número de aplicaciones que en la actualidad tienen un nicho 

de actuación económica muy importante. 

Es por ello del máximo interés el desarrollo de nuevos polímeros, que ofrezcan unas 

características sustentadas por una composición química más adecuada, capaces de 

conducir a membranas con mejores propiedades. Esto exige una gran capacidad para la 

síntesis de nuevas estructuras, diseñadas en función de la propia experiencia y del 

conocimiento al que se tiene acceso, que permitan mejorar los materiales que se usan en 

la actualidad.  

El mecanismo de actuación de las membranas para gases está basado principalmente 

en la separación por difusión, actuando las membranas como tamices a nivel molecular, 

que permiten el paso de los gases a través del volumen libre del sistema (volumen no 

ocupado por las cadenas de polímero dentro del material). Según este mecanismo, la 

movilidad de las moléculas de gas se produce gracias a pequeñas reorganizaciones de la 

cadena polimérica, y por tanto del volumen libre, que permiten el salto de la molécula 

de gas desde un microhueco a otro. Por ello, el principal factor que controla la 

separación es la diferencia de tamaño entre los diversos gases, aunque existen también 

otros factores importantes, principalmente la solubilidad, parámetro termodinámico 

controlado por las interacciones entre las moléculas de los gases y las moléculas de 

polímero. En la siguiente figura se exponen los diversos mecanismos aceptados para la 

difusión de gases en materiales.   
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Figura 1. Ilustración idealizada de la difusión mediante saltos entre unidades de volumen 
libre del gas penetrante en membranas poliméricas clásicas (arriba), en tamices moleculares 
de carbono, CMS, (medio) y en polímeros de naturaleza ultra-rígida (abajo) 

 

Una membrana óptima para procesos de separación es aquella que posee a la vez 

elevados valores de permeabilidad y selectividad. Como consecuencia de este mecanismo, 

existe una relación inversa entre la permeabilidad de una membrana frente a diferentes 

gases y su capacidad para separar estos gases (selectividad). Esta relación, prácticamente 

universal, es el principal inconveniente que presentan las membranas frente a otros 

procesos de purificación de gases, puesto que cuando se consigue un aumento de 

permeabilidad, se produce simultáneamente una disminución de selectividad y viceversa. 

Evaluando una gran cantidad de parejas de datos permeabilidad/selectividad 

experimentales, Robeson propuso una relación empírica conocida como condición límite 

de Robeson, que representa el valor límite de selectividad que puede dar una membrana 

polimérica con una permeabilidad dada. Hasta la fecha, los polímeros que más se 

aproximan a dicho límite (y en algunos casos lo llegan a superar) son algunas politriazinas 

y polipirrolonas, y últimamente los denominados polímeros de microporosidad intrínseca, 

PIMs, materiales que son muy difíciles de procesar debido a su bajísima solubilidad en 

disolventes orgánicos convencionales o su problemática a la hora de sus síntesis y los 

polímeros obtenidos por reordenamiento térmico (materiales TR). Los últimos dos juegos 

de polímeros representan ahora mismo la investigación más fructífera y prometedora en el 

campo de la separación de gases. Más tarde en 2008, el propio Robeson hizo una revisión 

de su trabajo de 1991, y generó unos nuevos límites de compromiso entre selectividad y 



 6

permeabilidad 
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Figura 2. Gráfica de permeabilidad (eje X) frente a selectividad (eje Y) de una amplía 
variedad de materiales polímeros para la pareja de gases O2/N2. En la gráfica se ha 
representado el límite superior de Robeson (upper bound). 

 

 Además, el conocimiento adquirido durante los últimos años en este campo ha 

permitido establecer algunas reglas básicas para conseguir que los aumentos de una de 

estas dos características de las membranas (permeabilidad o selectividad) conduzcan a una 

disminución lo más pequeña posible en la otra. Se ha encontrado que los mejores 

materiales para estas membranas están basados en polímeros amorfos, con estructuras que 

dificulten el empaquetamiento, lo que da lugar a una elevada fracción de volumen libre y 

por ello a mucha permeabilidad, pero que al mismo tiempo posean una importante rigidez, 

lo que disminuirá la movilidad de las cadenas y facilitará el comportamiento como tamices 

moleculares, dando lugar a una elevada selectividad. Dentro de este ámbito, las poliimidas 

aromáticas, cuya estructura se esquematiza en la Figura 3 se han revelado como algunos de 

los mejores polímeros, debido a su altísima rigidez, sus excelentes propiedades térmicas y 
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mecánicas y la posibilidad de obtener estructuras a medida, mediante la introducción de 

diferentes grupos modificadores. En particular, las poliimidas con grupos laterales 

voluminosos han dado lugar a membranas con excelentes propiedades.  

 

Figura 3. Esquema de la estructura de una poliimida aromática 

 

No obstante, algunos de los principales inconvenientes que ha encontrado la 

investigación en este campo provienen de la forma de definir y caracterizar el volumen 

libre y la rigidez. Así, normalmente se ha recurrido a los métodos de ensayo y error, 

sintetizando nuevas estructuras a ojo y determinando sus propiedades de membrana, 

para modificar estas estructuras en función de los resultados obtenidos. 

Es necesario, por tanto, un método más elaborado, que permita la selección de los 

polímeros en función de su estructura a nivel micro y mesoscópico, haciendo posible la 

determinación de los parámetros que controlan tanto la fracción de volumen libre como 

la rigidez de cadena.  

La determinación de la fracción  de volumen libre se lleva a cabo habitualmente a 

partir de la medida experimental del volumen específico y del cálculo del volumen de 

van der Waals (volumen ocupado exclusivamente por la molécula) por diferentes 

métodos. Aunque este método es bastante fiable, tiene dos inconvenientes 

fundamentales: a) exige la síntesis del polímero para determinar su densidad 

experimental, b) permite determinar la fracción global de volumen libre, FFV, pero no 

permite conocer como es la distribución del volumen libre en el material (el 

comportamiento de una membrana será muy diferente en función de que existan pocos 

huecos grandes o muchos huecos pequeños). Otras técnicas más precisas en la 

determinación de la FFV y su distribución (aniquilación positrónica (PALS), RMN-
129Xe, etc), son muy complejas, exige una elevada especialización del grupo que las 

realiza, y su análisis es difícil de procesar. Entre ellas, la técnica PALS está aceptada 

como la herramienta que da una mejor estimación del volumen libre debido al pequeño 

tamaño de la sonda utilizada, además de la fracción de volumen libre, FFV, está técnica 

N
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da cuenta de la distribución del volumen libre. No obstante, la técnica posee 

limitaciones derivadas del elevado tamaño del material a medir debido a la elevada 

intensidad de la fuente de  positrones (en general, la fuente de positrones procede de una 

pequeña cantidad de material radiactivo, 22Na). Por ello, se suele utilizar un apilamiento 

de membranas hasta conseguir un espesor de 0,5 a 1 mm. Este apilamiento conduce a 

errores en la medida y ha limitado el  uso de la técnica en nanociencias o en el campo de 

las membranas de separación. No obstante, en los últimos tiempos han aparecido 

nuevos sistemas donde la energía del flujo de positrones que incide sobre la muestra se 

ha disminuido (low-energy beam PALS), lo  que permite el uso de la técnica en 

sistemas nanoscópicos con espesores muy inferiores a la micra). Esta técnica posee el 

inconveniente de que pocos grupos tienen acceso a ella.  

Otro aspecto a considerar y que se está explorando activamente en la actualidad es la 

idea de considerar la fracción de volumen libre accesible (eficaz distribución de 

volumen libre) como el factor determinante en los procesos de separación de gases. La 

idea es obvia ya que muchas unidades de FFV son tan pequeñas que ciertos gases no se 

pueden alojar en ellas, para iniciar el proceso de salto de ellas a otras unidades de FFV.  

Por lo que respecta a la movilidad de las cadenas, se han postulado diferentes 

parámetros para determinarla. El más utilizado es la temperatura de transición vítrea 

(Tg), que también plantea el inconveniente de que es necesario obtener el polímero para 

determinarla experimentalmente. Además, resultados preliminares obtenidos en nuestro 

grupo han mostrado que este parámetro, que determina la movilidad de fragmentos de 

cadena relativamente grandes, no es capaz de predecir la movilidad de fragmentos más 

pequeños, o de sustituyentes laterales de la estructura, que normalmente es suficiente 

para que se produzcan reorganizaciones en la distribución del volumen libre, que 

permitan el salto de la molécula de gas de un hueco a otro. Por ello, para una adecuada 

caracterización de la movilidad es necesario determinar, además de la Tg, las 

relajaciones que se producen a temperaturas inferiores a la Tg (relajaciones  y ) e 

intentar correlacionarlas con los parámetros de permeabilidad y selectividad de la 

membrana. Esas transiciones se ven afectadas en algunos casos por la presencia de 

ciertas moléculas en el medio (H2O o gases que posean momentos dipolares, 

cuadrupolares o capacidad de formar enlaces de hidrógeno, como CO2, SO2, SH2). La 

presencia de estos gases afectará a las propiedades de las membranas y por ello, una de 

las ideas  que se proponen en este trabajo es realizar determinaciones de las propiedades 

mecano-dinámicas y dieléctricas de los polímeros plastificados con esos gases. 
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Objetivos 

 

A la vista de lo expuesto, se resumen a continuación los objetivos que se han 

pretendido alcanzar en este proyecto de tesis; 

 

1) Obtención de nuevos resultados en el campo de la preparación de polímeros de 

especiales prestaciones. Puesta a punto de nuevos métodos de síntesis de monómeros y 

polímeros. 

2) Preparación de nuevas familias de polímeros de altas prestaciones con aplicación en 

membranas semipermeables para separación de gases. Estos polímeros han consistido 

esencialmente en el desarrollo de poliímidas con grupos hidroxilo situados en la 

posición orto- respecto al nitrógeno amínico. Estas poliimidas han sido tratadas 

térmicamente a elevadas temperaturas, superiores a los 350 oC, para obtener 

polibenzoxazoles que poseen elevadas fracciones de volumen libre.  

3) Obtención de nuevas membranas con propiedades que superen ampliamente a las 

mejores membranas comerciales, con especial énfasis en la separación de los siguientes 

gases; CO2 y CH4. 

4) Análisis de los resultados obtenidos en los puntos anteriores para encontrar 

relaciones estructura-propiedades, en especial las relaciones composición química- 

propiedades de permeación de gases. Este punto es fundamental para obtener  polímeros 

que poseen una combinación de  permeabilidad y selectividad muy superior a la 

presentada por polímeros comerciales utilizados en procesos de separación, y que 

además deriven (fase futura de este trabajo de investigación) de compuestos orgánicos 

de bajo coste. 

5) Uso de tecnologías conocidas en el campo de los materiales polímeros; en particular 

usando entrecruzamientos entre las cadenas poliméricas, para mejorar de una forma 

sencilla, y reduciendo el coste, de membranas de separación de gases con propiedades 

avanzadas. 
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Motivación 

La búsqueda de nuevos materiales de separación de gases con propiedades mejoradas 

para su aplicación en aplicaciones avanzadas que posean un valor importante tanto a 

nivel medioambiental como industrial ha sufrido un verdadero hito en la primera década 

de este siglo con el desarrollo de dos nuevas familias de polímeros:  

 

Polímeros de microporosidad intrínseca, PIMs, los cuales son unos polímeros de tipo 

escalera (ladder) muy rígidos y donde se ha incorporado un centro de contorsión 

derivado generalmente de un carbono de naturaleza espiro. Esta conjunción de factores 

hace que estos materiales posean extraordinarios valores de permeabilidad (similar a 

algunos polímeros ultraporosos) pero donde la regular disposición de la estructura se 

manifiesta en una mejor capacidad de discriminar gases. No obstante, y aún cuando la 

estructura es extremadamente rígida, la existencia probable de irregularidades hace que 

estos materiales posean un elevado envejecimiento físico y una cierta tendencia a sufrir 

fenómenos de plastificación. Aun cuando se ha aplicado en este campo un elevado 

esfuerzo investigador que ha permitido obtener materiales con envejecimiento físico 

reducido, la dificultad sintética inherente a estos materiales no ha permitido obtener 

muchos materiales que se puedan aplicar de manera industrial.  

 

 

 

 

 

 

 

 

 

 

Figura 4. Estructuras químicas  de PIMs obtenidos por McKeown y Budd 
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Figura 5. Modelado molecular de un PIM mostrando los plegamientos que impiden el 

empaquetamiento entre cadenas. 

 

Materiales TR. El otro gran hito apareció en 2007 con el desarrollo de los materiales 

TR. Los materiales TR se forman mediante tratamiento térmico a altas temperaturas en 

estado sólido de poliimidas aromáticas conveniente funcionalizadas con grupo XH 

(X=O, S o NH) en posición orto al grupo amino. Este tratamiento, y referido a la 

poliimida que posee grupos OH (el sistema claramente más empleado debido a la 

facilidad sintética y menor coste de las o-dihidroxi diaminas aromáticas)  produce en 

este tratamiento una transformación de la orto-hidroxi poliimidas (HPIs) en 

polibenzoxazoles (TR-PBOs). 

 

 

Figura 6. Reacción propuesta para la conversión de hidroxi-poliimidas a polibenzoxazoles 

Esta conversión térmica, aunque  era conocida antes de este trabajo, no se había 

empleado en la separación de gases. Tras esta conversión térmica el material formado 
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posee unas permeabilidades sobresalientes (superiores en algunos materiales a los 1000 

barrer, y en muchos de ellos a los 400 barrer) y una excelente permeoselectividad (de tal 

modo que estos materiales son capaces de superar el límite de Robeson del 2008.  

 

Figure 7. Pares productividad (permeabilidad al CO2)-selectividad (CO2/CH4) de diversos 
materiales poliméricos. En azul se contemplan algunos de los materiales TR descritos antes 
de este memoria 

 

La característica de cruzar el límite de Robeson del 2008, hasta la obtención de los 

PIMs y los TR-PBOS, no se había superado por prácticamente ningún material de 

naturaleza polimérica). Además, debido a que el proceso de tratamiento térmico a tan 

altas temperaturas induce un entrecruzamiento del material, se observa que los 

materiales poseen un envejecimiento físico muy bajo y una tendencia a la plastificación 

casi nula. Esta combinación de propiedades ha hecho que el esfuerzo investigador en 

este campo sea muy alto, donde se debe destacar que los grupos más activos son la 

Universidad de Texas en Austin, EEUU, (Prof. Benny D Freeman) y Hanyang 

Universidad de Seúl, Corea del Sur (Prof. Young M Lee). Estos grupos han conseguido 

que estos materiales puedan ser desarrollados en forma de fibras huecas (necesarias para 

poder conseguir su aplicación industrial). 
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No obstante, el desarrollo de los materiales TR debe solucionar una serie de aspectos 

como son:  

1) Necesidad de empleo de temperaturas más bajas que las usadas en la actualidad. Por 

ello, se deben buscar materiales que posean temperaturas de transición vítrea bastante 

más bajas  

2) Caracterización precisa del proceso de reconversión térmica. En este aspecto es 

necesario, saber qué es exactamente lo que ocurre durante el tratamiento térmico, y por 

ello parte de este trabajo de investigación se ha referido a la determinación de los 

parámetros que pueden dar una mejor idea de cómo es el proceso TR.  

3) Mejora importante de las propiedades mecánicas, propiedad negativa que se debe a la 

concurrencia de degradación térmica junto al proceso de conversión de la orto-hidroxi 

poliimida (HPI) en polibenzoxazol (TR-PBO). Disminución del envejecimiento físico y 

aumento de la resistencia a la plastificación. 

 

Este aspecto ha sido un objetivo primario en esta memoria de tesis, donde se ha 

realizado un estudio pormenorizado de los parámetros necesarios para caracterizar el 

tratamiento térmico que produce la interconversión de la orto-hidroxi poliimida al 

polibenzoxazol.   También, el método de síntesis de la orto-hidroxipoliimida (HPI) ha 

sido exhaustivamente realizado, observando que las funciones como membranas de 

separación de gases de los polibenzoxazoles de ellas derivadas son muy dependientes 

del método de síntesis. 

En la siguiente gráfica se observan los diversos métodos de síntesis empleados: 
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Figura 8. Diversas vías sintéticas para obtener TR-PBOs a partir de precursores de poliimida. 

 
Todos estos métodos han permitido observan las propiedades finales de gases como 

aparece en el siguiente gráfico: 

 

 

Figure 9. Permeabilidad al CO2  y selectividad de la pareja de gases  CO2/CH4 de membranas 
TR-PBO obtenidas poor diversos métodos de síntesis 
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Este trabajo ha sido muy novedoso y ha permitido extender el diseño de este tipo de 

materiales de una manera muy racional.  

En esta memoria de tesis, se han mejorado las membranas de separación de gases de 

diversos materiales TR mediante  la copolimerización de los precursores TR con otros 

precursores capaces de sufrir procesos de transposición térmica (orto-hidroxi diaminas u 

orto-amino diaminas) o con diaminas aromáticas clásicas. Mediante esta aproximación 

se han conseguido, después del proceso de reordenamiento térmico; TR-PBO-co-TR-

PBO, TR-PBO-co-PI y TR-PBO-co-Polypirrolonas (TR-PBO-co-PPL). Estas últimas 

son materiales con excelentes materiales de separación de gases (debido en particular a 

la excelente combinación de buena permeabilidad y alta selectividad), que además 

pueden sufrir otro proceso de la polipirrolona a polibencimidazol. En particular las 

primeras han generado una serie de TR-PBO-co-TR-PBO con propiedades 

perfectamente moduladas, y todas ellas materiales de separación de gases excelentes. 

 

 
Figura 10. Rutas de copolimerización basadas en doversas diaminas (orto-hidroxi diaminas, 
orto-amino diaminas y diaminas para preparar TR-PBO-co-TR-PBO, TR-PBO-co-PPL y TR-
PBO-co-PI, respectivamente 

 

Por ello, se puede decir que gracias al empleo racional de los co-monómeros empelados 

en esta memoria de tesis doctoral se pueden ajustar las propiedades finales del material, 

tanto en sus propiedades de permeación de gases, como en otras propiedades que 

necesitan ser mejoradas para permitir el empleo de los materiales TR en procesos 

industriales de separación de gases. 

En esta tesis se han combinado también las propiedades excelentes de los materiales TR 

con sistemas de tipo PIM. Este procesos se ha realizado mediante el uso de monómeros 

TR (es decir con funcionalidades orto-hidroxi) en sistemas orgánicos que poseen 

uniones de tipo espiránico, las cuales introducen alta rigidez y baja capacidad de generar 

empaquetamientos eficientes. Gracias a esta aproximación se han conseguido materiales 
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con permeabilidades tan altas como de 1200 barrer al CO2. Además el uso de estos 

sistemas con grupos espiránicos ha permitido obtener materiales con excelentes 

propiedades mecánicas, mucho más altas que la de todos los polímeros TR descritos en 

la bibliografía.  En la siguiente figura se exponen los monómeros que se han empleado 

en esta parte del trabajo de investigación. 

 
 

Figura 11. Estructras químicas de diversas estructuras que poseen carbonos espiránicos.  (a) 
dianhídrido basado en espirobisindano (SPDA1), (b) dianhídrido basado en espirobisindano 
2 (SPDA2), (c) 3,3,3’,3’-tetrametil-1,1’-espirobisindano-5,5’-diamino-6,6’-diol (TDSS), y (d) 
2,2’-dihidroxi-9.9’-espirobifluoreno-2,2’-diamina (HSBF). 

 

 

Finalmente, en esta memoria de tesis doctoral se presenta una nueva aproximación, que 

ha consistido en  copolimerizar monómeros TR con diaminas que porten 

funcionalidades (grupos carboxílicos) en polímeros precursores precisamente obtenidos.  

Estos copolímeros con grupos carboxílicos pueden ser entrecruzados mediante vías 

químicas (dioles o diaminas) obteniéndose materiales que poseen entrecruzamientos de 

de unidades ésteres con mucho mejores propiedades. Además, en la fase final de 

formación TR, los grupos ésteres son eliminados, generándose TR-polibenzoxazoles 

con menor envejecimiento físico y mejores propiedades mecánicas.  
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Figura 12. (a) Manera química de preparar XTR-PBOIs (X-TRP-PBO-Co-PI)s por reacción 
de transesterificacion con butanodiol y (b) Preparación térmicamente inducida de  XTR-
PBOIs (X-TRP-PBO-Co-PI)a partir de hidroxi copoliimida (HPI-co-PI) por tratamiento 
térmico en atmósfera de argón.  
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Figura 13 Formación de TR-PBO entrecruzados mediante tratamiento térmicos de hidroxi 
poliimides-co-poliimidas que portan grupos carboxílicos. El entrecriuzameinto se produce 
por descarboxilación de los grupos ácidos, entrecruzamiento y formación simuoltanea o no 
del TR-PBO.   
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Conclusiones generales del trabajo de Investigación ofrecido en esta memoria de 

Tesis Doctoral 

 

La nueva generación de materiales polímeros obtenidos por tratamientos térmicos de 

precursores de poliimida (generalmente orto-hidroxi poliimidas (HPIs) aunque es 

factible ese proceso desde orto-tiol poliimidas u orto-amino poliimidas), los cuales 

producen un reordenamiento térmico de estos precursores a materiales TR, 

polibenzoxazoles u otros tipos de poli(1,3-benzoazoles; polibenzotiazoles o 

polipirrolonas (las cuales derivan si el tratamiento térmico es más intenso a 

polibencimidazoles), ha permitido obtener membranas con sobresalientes propiedades 

de separación, ya que presentan permeabilidades (flujos) muy elevadas y razonables 

selectividades (capacidad de discriminar una mezcla de gases en sus componentes) . La 

capacidad de adecuar las propiedades finales mediante un diseño racional es de elevada 

importancia si lo que se busca es obtener materiales capaces de ser empleados por la 

industria.  

Para que esta aplicación industrial sea posible es necesario hacer una serie de mejoras. 

Para producir esas mejoras es necesario un conocimiento real del proceso de 

reconversión térmica (proceso TR) y la búsqueda de relaciones entre propiedades de 

transporte y estructura. En particular, la nueva generación de materiales TR que se 

desarrolle tiene  que poseer excelentes propiedades mecánicas, de largos mejores que 

las que se conocían antes de esta memoria de investigación. 

Por ello, mediante el uso de un buen diseño de los monómeros de partida, mediante el 

uso de métodos de copolimerización, y el uso de tecnologías de entrecruzamiento de las 

cadenas poliméricas se han obtenido unos materiales muy competitivos, y que tienen 

capacidad para ser empleados de manera industrial. Al mismo tiempo, en este trabajo de 

investigación se han obtenido relaciones entre la temperatura de tratamiento, el método 

de síntesis de los precursores de poliimida, y las propiedades finales de los materiales. 

Todo ello, y recalcando que los materiales desarrollados poseen excelente propiedades 

finales, puede permitir avanzar aún más en futuros trabajos de investigación, utilizando 

métodos racionales de diseño.  
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Abstract 

This PhD dissertation is mainly focused on the development of novel thermally 

rearranged copolymers intending to apply for gas separation membranes. It is targeted to 

developing novel copolymer membranes based on thermally rearranged polybenzoxazole 

(TR-PBO) and analyzing the relationships between chemical structures and physical 

properties as well as gas transport properties. This work focused on improving not only gas 

permeabilities also mechanical properties for practical gas separation applications. 

This dissertation is organized into six chapters including the introduction (Chapter 1), 

four main research parts (Chapter 2-6) and conclusion (Chapter 7).  

Chapter 1 introduces the state of the art of polymeric membranes in gas separation 

applications, the mechanisms of gas transport through solid state polymer membranes and the 

summary of development of thermally rearranged polymers for gas separation membranes for 

last decade. 

Chapter 2 introduces the relationship between the thermal properties and the structures of 

the precursor polymers including several hydroxy polyimides and hydroxy copolyimides. 

Various chemical structures of precursor polymers were obtained by combining different 

dianhydrides and hydroxy diamines. In this study, three thermal rearrangement temperatures 

(TTRs) were defined. TTRs demonstrated that the beginning temperature of thermally 

rearrangement was significantly dependent on the chemical structures of the precursor 

polymers which established that there is a linear relationship between TTRs with the glassy 

transition temperature (Tg) of the precursor polymers.       
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Based on the theory in Chapter 2, in Chapter 3, copolymerization with non-hydroxy 

diamines, so-called non-TR-able diamines, before thermal treatment was made to obtain 

thermally rearranged poly(benzoxazole-co-imide)s (TR-PBOIs). These poly(benzoxazole-co-

imide)s have much stronger mechanical properties than common TR-PBO and in this way, 

these materials overcome the mechanical issue of TR-PBO membranes. The relationships 

with polymer rigidity and gas transport properties were intensively studied and it was 

concluded that the main characteristics of TR-PBOIs were tuned by the ratio of non-TR-able 

diamines introduced in the polymer and that the right choice of chemical structures along 

with the enhancement of rigidity of precursor polymers improved the gas permeabilities 

while a higher flexibility led to a decrease of gas permeabilities but improved the ideal gas 

selectivities.    

In Chapter 4, a new generation of TR-PBOs (spiroTR-PBOs) incorporating 

spirobisindane mioieties into the polymer structure are introduced. Precursor HPIs were 

prepared using a newly synthesized monomer, 3,3,3’,3’-tetramethyl-1,1’-spirobisindane-5,5’ 

dimaino-6,6’-diol as hydroxy diamine. SpiroTR-PBO highly improved the mechanical 

properties, mainly the elongation of membrane, due to the kink structure of spiro segment. 

Molecular simulation analysis of structure and property of spiroTR-PBO explains that the 

wide angle distributions present in the macromolecular structure makes to stain against 

applied out-forces. Moreover, the ladder structure of spiroTR-PBO introduced by the 

spirobisindane group as well as the kink moiety increases the polymer rigidity which then 

translates to improvements of the gas permeabilities due to the increase of the fractional free 

volumes.    
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Chapter 5 studies a new research topic on crosslinking effect of TR copolymers. The 

monomer employed in this chapter is 1,3-diamino benzoic acid (DABA). This study has 

permitted to interpret the effect of cross-linking on TR polymers. Consequently, is has been 

demonstrated that DABA units undergo cross-linking by heat treatment acting as a role of 

pillars between polymer chains to sustain the polymer chain (increase of rigidity) and the free 

volume units. Crosslinking of TR copolymers results in about 4-fold and 25 fold increase in 

gas permeabilities compared with those of non-crosslinked TR-PBO copolymer and HPI 

precursor. Furthermore, incorporating cross-linking units in TR-PBO obviously generates 

synergetic effects with thermal rearrangement process not only by increasing gas 

permeability but also by augmenting the plasticization resistance. 

Chapter 6 suggested the optimal crosslinked TR-PBO membranes with improved 

mechanical strength and gas permeabilities in the hollow fiber membrane form. The cross-

linking effect on hollow fiber membranes were proved by measuring CO2 permeance of 

XTR-PBO hollow fiber membranes. In conclusion, the cross-linking between TR polymer 

chains maintained the effective skin layer and consequently helped to obtain high gas 

permeance. 
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 Introduction  

For recent decades, membrane technologies for gas separation have attracted a lot of 

attention, accompanied with worldwide demand and needs toward energy-efficient, eco-

friendly, and sustainable technologies as competitive as cryogenic distillation and pressure 

swing absorption (PSA) which require high energy by phase changes [1, 2]. Thus, and as an 

example, the process intensification and small space systems make membrane technology to 

be more attractive especially for applications at remote location [1, 3]. Since the first gas 

separation membranes using polysulfone or cellulose acetate membrane were implemented for 

H2 separation in ammonia purge gas in 1980, membrane markets have enlarged and extended 

to nitrogen enrichment from air, natural gas production, and refinery gas purification and a 

large number of applications. The current urgency of greenhouse gas reduction and other gas 

separation applications such as CO2 separation from flue gases emitted from power plants 

(post-combustion), CO2 removal from Integrated Gasification Combined Cycle (IGCC) 

process (pre-combustion), and CH4 concentrating from biogases have emerged in the last years. 

Gas separation technologies using membranes have been developed and are growing gradually; 

moreover, a rapid market growth is expected in the near future [4].   

Among the materials employed for gas separation membranes, polymeric membranes have 

been dominant in industry because of relative preparation conveniences and cost efficiencies. 

For instance, polysulfones (PS), polyimides (PI), and cellulose acetates (CA) are representative 

commercialized materials. However, acidic gases such as CO2, CH4 and H2S causes a swelling 

in polymer chains and thus membranes are losing separation efficiency by increasing of the 

free volume. This phenomenon is more significant under high feed pressure; thus, this fact 
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limits the application range of polymeric membranes. Furthermore, permeability drop by 

physical aging of glassy polymers is another issue, because the free volume of polymer in non-

equilibrium state gradually decreased until reaching thermodynamic equilibrium. Low 

permeability of commercialized polymers also asks for the tremendous scales of modules as 

well as costs, which limits its use in industrial CO2 capture technology. As permeability of 

membranes is related with economic values, high permeable membranes with high selectivity 

are the most prior tasks for membrane developments. Unfortunately, catching the both 

properties are not pieces of cakes because the permeation of gases through polymer membranes 

by solution-diffusion mechanism derive in the existence of strong trade-off relationships 

between permeability and selectivity of gas pairs, which means that the improving permeability 

of polymer is followed by reducing permselectivity [5]. Nevertheless, several novel polymers 

have recently emerged that have overcome the permeability-selectivity trade-off limitation. 

Developments of high performance polymers make membrane technology to be more 

challengeable not only for gas separation also for other separation technologies. More details 

of novel polymers such as polymer with intrinsic microporosity (PIM), thermally rearranged 

(TR) polymers, carbon molecular sieve (CMS), and high-performance polyimides will be 

introduced in the following section.   

In this thesis, Thermally Rearranged (TR) polymers were mainly considered. These 

materials are high permeable and selective ones by having tuned bimodal cavities [6]. Diverse 

TR polymer designs have been newly suggested and developed to solve the implemental 

limitations as well as to improve gas transport properties by applying chemical modifications 

into polymers or membranes such as; copolymerization[7-11], cross-linking[12, 13] and so on. 
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It is significantly discussed in the bibliography the search of relationships between chemical 

structural with physical properties and small gas transport properties. Moreover, main effects 

of modifications on gas transport phenomenon have been precisely considered. 

 

 Backgrounds and terminologies 

Membranes are commonly classified according to its structure (dense, symmetric, 

asymmetric, thin-film composites) as shown in Figure 1-1 and the permeation mechanisms 

(Knudsen diffusion, molecular sieve, and solution-diffusion) as shown in Figure 1-2. 

Asymmetric membranes are composed of an effective skin layer and a thick support layer. Most 

of membrane modules are in the forms of asymmetric membranes. The thickness of effective 

skin layer uses to be unknown; and hence sometimes the study using symmetric membranes is 

required. Membrane thickness decides the gas permeation flux; therefore, the formation of thin 

skin layers (less than 1 m) is important to obtain high permeable membranes. Thin-film 

composite is required to save the material cost.  

Separation using membranes is a process of filtering and concentrating a desired 

component from mixture. A typical schematic diagram of gas separation using membrane is 

shown in Figure 1-3. Gas permeability (P) is defined by the flux (J) across the membrane 

thickness (l), given the pressure gap (p) between upstream and downstream as shown blow 

equation.  

P =
𝐽 × 𝑙

∆𝑝
                                                             (1-1) 
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When p is given between the upstream (input) and the downstream (output) as a driving 

force, the feed gas mixture pass through the membrane. The gas across the membrane is called 

permeate at the lower pressure side and the remained gas is called retentate. Depending on the 

application and required gas purity, the product could be permeate or retentate. The efficiency 

of gas separation is influenced not only by pressure gap but the formation of adequate pore size 

and narrow pore distributions are mandatory. Therefore, it is important to select the suitable 

membranes according to the employed feed mixture to obtain a valuable product.  

Generally three types of gas transport mechanisms have been suggested depending on pore 

size as depicted in Figure 1-2. In Knudsen process, the molecules passing through the 

membrane have a smaller diameter than the distance of path of a molecule. In this diffusion 

process, the relative permeation rate is given by the inverse square root of the molecular weight 

of the gases [14]. The separation by Knudsen diffusion provides much lower selectivity than 

by molecular sieve and solution-diffusion. Molecular sieving membranes are ultra-

microporous materials, having pore diameters bigger than 7Å  and smaller size gases transport 

is much faster than for larger gases. Carbon membranes are representative of this type of 

process. Still, the fragility inherent to these membranes has prevented their commercialization, 

even though they show superior gas permeability. On the other hand, the solution-diffusion 

process is observed mostly in nonporous (dense) polymeric membranes. This diffusion process 

results in higher selectivity of gas pair. Solution-diffusion mechanism considers not only the 

pore size but also the interaction between polymer membranes and gases in the process of 

adsorbing onto the surface, diffusing through the body of material, and desorbing out from the 

opposite side of surface. The gases are not continuously diffused in the body; however, the 
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molecules jump among polymeric free volume elements by Brownian motion [4, 15, 16]. The 

gases can jump from upstream to downstream when high concentration is given in the upstream. 

Therefore, the controlling sized and distribution of free volume (cavities) is directly related 

with the diffusivity selectivity of gases pairs.  

Figure 1-1 The structural classification of membranes. 

 

Figure 1-2 Types of membrane transport phenomena. 
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Figure 1-3 General gas separation phenomenon when feed gas mixture is passing through a 

membrane.  

 

Gas permeability or permeability coefficient (P) by the solution-diffusion model is 

presented by two terms; the diffusivity coefficient (D) as a kinetic term, describing mobility of 

gas molecule passing through the membrane and the solubility coefficient (S) as a 

thermodynamic term, describing the amount of the gas molecules sorbed into the membrane as 

shown in Equation (1-2). 

P = D × S                                                                  (1-2) 

In here, gas permeability is the flux normalized by pressure and thickness as a constant 

intrinsic parameter, which is simply measured by permeation experiments. Single gas 

permeability of symmetric membrane is commonly measured by time-lag experiments, 

considering steadily increased pressure rate in the downstream volume chamber under the 

constant feed pressure and temperature. Time-lag method is worthy to figure out the diffusivity 
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coefficient at the ideal system and solubility coefficient is estimated by measured P and D as 

shown in Equation (1-3) and Equation (1-4), respectively. The unit of permeability is Barrer 

and it is based on the standard temperature and pressure (STP) condition (1 Barrer = 10-10 

cm3(STP)·cm /cm2·s·cmHg).   

P =
𝑉(𝑆𝑇𝑃) · 𝑙

∆𝑝 · 𝐴 · 𝑅 · 𝑇
                                                              (1-3) 

𝐷 =
𝑙2

6𝜃
                                                                      (1-4) 

When P is gas permeability, V is the volume rate, A represents the effective area of 

membrane, R is the ideal gas constant, and T is the temperature. Diffusivity, is the time-lag 

determined from constant volume measurements. However, estimated solubility coefficient by 

time-lag is not accurate for gases having low solubility value such as He and H2, mainly due to 

the high diffusivity of these gases in many polymeric materials, which brings about a high 

experimental error on the value of D and consequently of S.  

In order to determine solubility coefficients more accurately, the barometric pressure decay 

method has been used under constant pressure and temperature [6]. The solubility coefficient 

is the ratio of the concentration of gas sorbed (C) divided by the driven pressure (p) as shown 

in Equation (1-5). The four different types of sorption behaviors typically observed are shown 

in Figure 1-4. Figure 1-4(a) depicts the sorption isotherm following only Henry’s law that 

linearly increased according to increasing pressures when light gases are sorbed in rubbery 

polymers. For more condensable gases such as CO2, hydrocarbons and vapors, the sorption 

behavior does not obey the Henry’s raw by showing non-linear relationship under sufficiently 
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high pressures. Figure 1-4(b) describes the Flory-Huggins model, observed when, for instance, 

acetone is sorbed in cross-linked poly(dimethyl siloxane) (PDMS). The dual mode sorption 

behavior for glassy polymers is shown in Figure 1-4(c) that obeys Henry’s law and Langmuir 

isotherm behavior. Langmuir isotherm reflects the gas sorption in the free volume excess inside 

polymer chains at temperature below glass transition temperature (Tg). Equation (1-6) denotes 

the gas concentration sorbed in a materials following dual mode sorption, which is the sum of 

two terms; Henry’s law (CD) and Langmuir isotherm (CH) with Henry’s law coefficient (kD), 

Langmuir capacity constant (C’
H) and the affinity constant (b).  

S =
𝐶

𝑝
                                                                          (1-5) 

C = 𝐶𝐷 + 𝐶𝐻 = 𝑘𝐷𝑝 +
𝐶′𝐻𝑏𝑝

1 + 𝑏𝑝
                                                  (1-6) 

Under low and moderate pressure condition, the gas sorption in glassy polymer is 

dominated by Langmuir term. C’
H is dependent on temperature and Tg. Increment of Tg leads 

to increasing the excess of free volume at the specific temperature below Tg, and consequently 

C’
H value is increased. On the other hand, the C’

H value decreases as increasing the size of 

molecules due to the much smaller fraction to occupy the free volume. Figure 1-4(d) is the 

sigmoidal-shaped sorption isotherm, which can be observed in highly-concentrated gases 

sorbed in the material and in plasticized membranes. This behavior is estimated by dual mode 

sorption of the Flory-Huggins model with Langmuir isotherm. 
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Figure 1-4 Typical gas sorption isotherms: (a) Henry’s law, (b) Flory-Huggins, (c) dual mode 

sorption, (d) sigmoidal shaped sorption. [17] 
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Ideal gas selectivity () is simply determined by the ratio of permeability of gas A and B, 

measured from single gas experiments as shown in Equation (1-7). Each ratio of diffusivity 

and solubility coefficient indicates diffusivity selectivity ( D) and solubility selectivity ( S), 

which is useful to rationalize gas transport properties of polymers.  

𝛼𝐴𝐵 =
𝑃𝐴

𝑃𝐵
=

𝐷𝐴

𝐷𝐵
∙

𝑆𝐴

𝑆𝐵
= 𝛼𝐴𝐵

𝐷 ∙ 𝛼𝐴𝐵
𝑆                                                 (1-7) 

But in mixed gas system, mixed gas selectivity is influenced by the mole fraction of feed 

gas mixture and it is defined as the ratio of the permeate gas composition divided by the feed 

gas composition, as it is depicted by Equation (1-8). Mixed gas permeation test results are 

much representative for real-world gas separation processes.  

𝛼𝐴𝐵
# =

𝑁𝐴/𝑁𝐵

𝑥𝐴/𝑥𝐵
                                                                (1-8) 

Permeation of nonporous polymer membranes is taking place in such a way that penetrates 

passes through free volumes (cavities) (Fig. 4). The size and amount of free volume elements 

are significantly related to diffusivity for polymer membranes as predicted by Equation (1-9) 

[18], indicating that the diffusivity increases as free volume increases, where FFV is fractional 

free volume, A is a geometric factor, * is a factor of gas molecule size and  is an overlap 

factor of the free volume elements.   

D = A exp (−
𝛾𝑣∗

𝐹𝐹𝑉
)                                                            (1-9)  

FFV can be calculated by the differences between the specific volume (V) and the 

theoretical volume (V0) of polymer chains. Theoretical occupied polymer volume is estimated 
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using Bondi’s group contribution theory, expressing the sum of van der Waal’s volume of each 

segments of a polymer. The specific volume is obtained by real estimation of polymer density. 

The development of positron annihilation lifetime spectroscopy (PALS), has permitted to 

calculate FFV determining the free volume size elements and also it permits to calculate the 

FFV distribution in the membrane.   

Strong interaction between polymer and gas molecules influences the polymer chain 

mobility, and consequently the gas permeability and selectivity. The permeability is decreased 

as increasing pressure due to volume relaxation and gradual saturation of microvoids in glassy 

polymers [19]. As increasing pressure, sudden elevation of permeability indicates that the gases 

are sorbed strongly, and thus the polymer swells. This process is called plasticization. 

Plasticization of membrane results not only in increasing permeability but also in decreasing 

gas selectivity. This phenomenon is much stronger for acid gases or hydrocarbons, which are 

highly sorbed in polymer membrane. In order to design gas separation materials for acid gas 

separation at harsh environmental applications, the suppression of plasticization is required for 

polymer membranes.  

Polymers in non-equilibrium state possess excess free volume elements, which lessen as 

time goes by small movement of the polymer chains in order to reach a lower-energy 

equilibrium state. This phenomenon is called physical aging and causes losing permeability as 

compare with that one of initial state of the membrane. Highly porous membranes such as 

rubbery polymer or microporous polymer membranes have shown dramatic drops in 

permeability after passing just a few days. Also, this physical aging phenomenon is 

significantly related with film thickness, exposure time and pressure [20]. Physical aging of 
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polymer membranes would preclude the implementation on industrial applications. On the 

other hand, thermally aged polymers resist the aging coming further.  

 

Figure 1-5 Motion of gas molecules within the cavities through a series of diffusional jumps. 

[21] 

 

 Applications using polymer membranes 

Polymer membranes and modules have been commercialized for several feed stream 

treatments (Table 1-1). Especially, it is more employed for the treatment of small gas streams 

that other membrane technology because it is much economically suitable and efficient than 

any other separation technology. Initially, polymeric membranes could be applied for hydrogen 

recovery from ammonia purge gas stream due to the high permeable and selective behavior of 

this gas respect to other gases such as nitrogen or carbon dioxide. Monsanto was the first in 

making hydrogen recovery using PRISM®  hollow fiber membranes based on polysulfone in 

1979. This technology now achieves 95% hydrogen recovery by using recycling systems. 

Refinery of gas purification, separating hydrogen from methane generated from hydrocracking 
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of petroleum crude and syngas ratio adjustment, separating hydrogen from carbon monoxide 

are also currently membrane-commercialized fields [4].  

The largest market using membrane is nitrogen enrichment from air. Up to 99.9% nitrogen 

can be produced using polymer membranes having a selectivity of 6~7. Thus, when the 

nitrogen is feeding in the rate from 6~1200m3/h and the industry is asking for purity of 95~99%, 

membrane technology is more economical than pressure swing adsorption (PSA) [4]. 

Interestingly, On-Board Inert Gas Generation System (OBIGGS) has arisen as a nitrogen 

separation technology for the fuel tank blanketing of planes in order to prevent the explosion 

riskiness from the flammable air/fuel mixture in the aircraft and this technology has become 

one of the major markets of membranes in the industry. On the other hand, producing high-

purity oxygen is much difficult than obtaining high-purity nitrogen by one-stage membrane 

system. In this way, only 68% oxygen can be produced under the zero stage-cut and infinite 

pressure ratio when the membrane selectivity is 8 at one-stage process. General and beneficial 

range of oxygen concentration produced by membrane system is 30~50% and most of them is 

applied for the combustion process, for instance, the treatment of exhaust gas. Besides, use of 

oxygen-enriched gas is efficient to diesel engines as well as cost-effective [4]. These drawbacks 

have turned out the academy and industry to develop useful technology for carbon dioxide 

capture from combustion process that should debut to real markets in near future.  

Natural gas processing is an immerse market of gas separation in United States which 

produces 20% natural gas worldwide. Natural gas contains various hydrocarbons and acid 

gases under high-pressure conditions. In order to reduce the gas volume and increase the energy 

potential, CO2 has to be removed from natural gas in the gas sweetening process [22]. However, 
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the designed polymer membrane should have negligible CO2-induced plasticization as well as 

high selectivity in order to be applied. Presently, only 5% of membrane market share is 

occupied by membrane technology in this field [4]. Improving and developing new membrane 

technology and new materials, should increment the market share rate. This improvement 

would be useful not only for producing high-quality natural gas but also for capturing 

greenhouse gases; mainly CO2 although the no emission of methane to the atmosphere is 

getting much more important nowadays due to its influence in global warming. In addition, 

this gas should not be emitted from waste food and garbage [23].  

Most expectable near-future markets of gas separation are carbon dioxide capture (CCS) 

technologies. Greenhouse gases (GHG) such a CO2 and CH4 influence the climate and the 

global warming increasing the temperature of the Earth. Since DOE and IPA report the CO2 

concentration atmosphere as 385ppm in the end of 2009, it is hitting the 400ppm line in 2015 

by following the Business as Usual (BAU). Still GHG reduction is the biggest project in the 

world, and global efforts are being much pushed, asking for effective and realistic technologies 

that result in substantial changes. The membrane technologies are one of the most 

challengeable and applicable to CCS [24]. Mainly three processes have been suggested for CO2 

capture from fossil-fuel-based large-scale power generation sites as shown in Figure 1-5 with 

descriptions of each process. MTR, a US company, practically is using polymer membrane 

modules (Prism) in pre-combustion process of IGCC plant and flue gas separation of power 

generation plants [25, 26].  
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Table 1-1 Commercialized separation processes and membranes [19]. 

Separation 
Principal 

producers 
Membrane 

Market size.  

(US$ million/year) 

Nitrogen from air 

Water from air 

Permea 

Medal 

Dow, Geberon 

Ube 

Aquilo 

Polysulfone 

Polyimide 

Polyimide 

Polyimide 

Polyphenylene oxide 

150 

Carbon dioxide from natural 

gas 

Cynara 

Medal 

Grace, Separex 

MTR 

Cellulose triacetate 

Polyaramide 

Cellulose acetate 

Perfluoro polymers 

100 

Refining: H2/CH4 

Ammonia plants: H2/N2, Ar 

Syngas : H2/ CO 

Permea 

Medal 

 

MTR/ Ube 

Polysulfone 

Polyaramide 

 

Polyimide 

75 

C3+ Hydrocarbons/ Nitrogen 
MTR 

Borsig 

Silicon rubber 

Silicon rubber 
30 

N2, He, H2S from natural gas 

CO2/H2. Miscellaneous petro-

chemicals 

- Many polymers 20 

 

 

Figure 1-6 Applicable CO2 separation technologies and process in fossil-fuel based power 

plants for carbon capture and storage (CCS) [25]. 
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Table 1-2 Main carbon capture processes using membranes. 

 Separating 

main gases 

Descriptions 

Post-combustion 

process 

CO2/N2 Flue gases exhausting from combustion  

CO2 concentration ~30%, balanced with N2  

Ambient temperature (~60oC) and pressure (~1atm) 

Humidified (water vapor included) 

Pre-combustion 

process 

H2/CO2 Separating CO2 from water gas shift (WGS) reaction to 

produce H2 used for syngas.  

High temperature (>200 oC)  

Oxy-fuel combustion 

process 

O2/N2 O2 enrichment from air to improve combustion-efficiency 

before input into boiler 

 

 Emerging high-permeable polymer membranes 

Achieving higher permeability in polymer membranes means to counterbalance with the 

decrease in permselectivity determined by the well-known permeability-selectivity trade-off 

relationship. Robeson suggested the plots of permeability versus permselectivity of gas pairs 

and the boundary line, which obtained by collecting many literature data of polymeric 

membranes. This boundary line is so-called 1991 Robeson upper bound [5]. Later, using data 

generated from his primary work to the time he made a revision, Robeson determined a second 

boundary line; 2008 Robeson upper-bound [5, 27]. The empirical upper bound between the 

permeability and permselectivity clearly determines the limitations of polymer membranes. 

These Robeson plots serve to compare the performances among membranes and thus, it is a 

useful tool in the gas separation industry. However, Robeson’s analysis uses only pure gas 

information which defines the main limitation of these plots. Because of difficulties of practical 

application due to the differences of the gas transport properties between pure and mixed gas, 

recently the CO2/CH4 upper bound was revisited by applying a modified free volume theory 

[28]. In order to surpass the 1991 and 2008 upper bounds, several novel polymer materials 
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have been developed by combining high chain rigidity and stiffness of the macromolecular 

chain along with the attachment of bulky groups or by including very contorted structures [29, 

30]. The representative examples of high-performance polymers are shown in Figure 1-6. CO2 

permeability with CO2/CH4 selectivity collections of representative polymer materials close or 

beyond the 2008 upper bound have been developed in the last 5 years which has inspired the 

possibility of expanding gas separation applications requiring high gas permeability and 

moderate or high selectivity (Figure 1-7), for instance, polymers with intrinsic microporosity 

(PIM), Troger based intrinsic microporosity, novel polyimides (PI), carbon molecule sieves 

(CMS) from polyimides, and TR polymers.    

PIMs have shown incredible permeability by having rigid and ladder main backbones, 

possessing in addition adequate microporous cavities. Since the high permeability of the first 

PIM-1 was discovered (Figure 1-6 (a)) in 2004 [31-33], various PIMs have been developed to 

suppress CO2 plasticization and physical aging of inherent PIM-1 [34-37]. In 2013, Troger 

based intrinsic microporosity was suggested to improve their own rigidity and resulted in 

higher permeabilities (Figure 1-6 (b) and (c)) [38]. Moreover, PIMs incorporating various 

cross-linking method have been obtained, which has improved their gas selectivities [39-42]. 

Newly and well-optimized polyimides are located over 1991 upper bound which is the 

main limitation of prior polyimides by attaching bulky and rigid groups in polymer backbone 

such as the triptycene group (Figure 1-6 (d)), the spirobisindane groups and so on. Triptycene 

based PIM-PI obtained showed permeabilities more than 4000 Barrer to CO2 with values of 22 

of CO2/CH4 selectivity that is above the 2008 upper bound line. This polyimide has lots of 

manufacture advantages, and thus the development of high-performance polyimides will be 
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keep going on [43-48].  

Chemically or thermally induced cross-linking based on 3,5-diamino benzoic acid (DABA) 

have shown enhancement of permeability and low plasticization in polyimides. Other way of 

decrease the plasticization has consisted of making thermally induced cross-linking processes 

at temperature lower than 400oC, in which the polyimide backbone survived. On the other hand, 

carbon molecular sieve membrane could be obtained by applying much higher temperature in 

the range of 400~ 600 oC. CMS based on cross-linked polyimide showed incredible high gas 

selectivity, which was much higher than those showed by cross-linked PIMs and TR polymers 

[49-51]. CMSs based on polyimides are beneficial to produce membranes as hollow fibers, but 

its fragility is still an issue to be solved. 

High performance TR polymers have studied for upgrading their mechanical weakness to 

be implementable materials for last decades as well as for expanding their application. In order 

to improve physical and mechanical properties, various technical methods have been 

introduced into the polymer backbone such as combination with PIM and cross-linking to 

improve permeabilities [12, 13, 52-56]. More details in TR polymers in gas separation 

membranes will be explained in the next section. 
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Figure 1-7 Chemical strucrues of emerged high-performance polymers for gas separation (a) 

polymer with intrinsic microporosity (PIM-1), (b) PIM-EA-TB, (d) PIM-SBI-TB, (d) 

polyimide with triptycene structures, (e) thermally rearranged polybenzoxazole (TR-PBO) and 

(f) CO2 permeability with CO2/CH4 plot of recently emerged polymer membranes 

comparisons with Robeson upper bounds. 
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 Thermally rearranged (TR) polymers 

Thermal conversion in solid state from hydroxy-containing fully aromatic polyimide (HPI) 

to polybenzoxazole (PBO) was firstly introduced by Tullos and Mathias in 1999 [57, 58]. They 

found that a certain percentage of carbon dioxide was lost and benzoxazole groups emerged 

while hydroxyl groups and imide groups disappeared during heating up between 350oC and 

500 oC under nitrogen atmosphere or vacuum. Proposed hetero-cyclization is shown in Scheme 

1-1. The properties of thermally converted polybenzoxazole in film state were investigated and 

resulted in superior thermal and chemical stability. Consequently, the hetero-cyclization was 

considered as a plausible method for preparing high performance polybenzoxazoles[59]. The 

singular characteristics of thermally rearranged polybenzoxazoles (TR-PBO) in gas separation 

membranes were discovered in 2007 by Park et al[6]. When HPI was heated up and converted 

to PBO, the size of cavities and the free volume within polymer networks were increased, 

showing narrow and bimodal cavity distributions (Figure 1-8(a) and (b). The rearrangement in 

polymer chains during thermal conversion formed hourglass shaped cavities in the range of 

3~5Å  and 9~10 Å , and consequently the transport of small molecules and ions through the 

material significantly enhanced. TR-PBOs clearly overcame the past 1991 upper bound line as 

shown in Figure 1-8(c), and it contributed to revise the 2008 upper bound line. Gas permeability 

of thermally rearranged (TR) polymer membranes is almost a hundred times higher than 

precursor polyimide membranes, showing similar behavior to microporous polymers as 

PTMSP, which possesses ultrahigh free volume and high CO2 permeability. Increment rigidity 

(and plausible cross-linking processes due to the high temperatures employed) by thermal 

rearrangement to PBO can explain the remarkable high plasticization resistance of these 
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materials to condensable gases. Process feasibility and physical-chemical stability of TR 

polymer membranes induced to consider that these materials could be implemented for the 

industry in gas separation [6, 60, 61]. The applications of TR polymers is not only useful for 

gas separation (GS) but that it can widening be applied also to pervaporation (PV) [62], 

electrolytes for fuel cell (FC)[63] separators for Li-ion batteries [64], organic solvent 

nanofiltration (OSN), membrane distillation (MD) and other applications due to their high 

thermal and chemical strength and their outstanding ability to separate mixtures.  

 

Scheme 1-1 Proposed reaction for thermal conversion of hydroxy-imide to benzoxazole [58]. 
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Figure 1-8 Change in cavity radius distribution as increases in temperature (a) TR-1-300, (b) 

TR-1-350, (c) TR-1-400, and (d) TR-1-450 measured by PALS (left), CO2 permeabilities with 

CO2/CH4 selectivity relationship of TR-polymer in blue (center), and the description of the gas 

transport through bimodal cavities of the TR-polymer membrane (right) [6] 

 

TR polymers have attracted the attention of many researchers because physical and gas 

transport properties of these polymers are tunable according to the treatment conditions 

(temperatures, time, and gas employed in the thermal treatment)[56, 65-68], to the chemical 

structures of precursor polymers[69] , and to the synthesis protocol employed for making the 

hydroxy polyimide precursor[55]. Furthermore, successfully copolymerization with 

polyimides has expanded its application area [7-11, 70]. Various physical properties of TR 

polymers rely on the thermal treatment conditions regarding benzoxazole formation (for 

instance, the percentage of conversion to PBO determines a balance between gas separation 

properties and mechanical strength). Since it was discovered that the introduction of sufficient 

rigidity in microporous organic polymers (MOPs) maintains good selectivity as well as high 

permeability [30]. Combination of TR-PBO and PIM produces materials with high rigid main 

chains, which resulted in membranes with much higher permeabilities along with good 

mechanical properties; however, the thermal rearrangement process produces also drops of gas 
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selectivities due to increment cavities [52, 53, 71, 72]. In here, more details of TR polymers 

are going to be introduced by classification according to the chemical structures which have 

been widely developed for last decades.  

 

1.5.1 TR-α-PBO and TR-β-PBO 

TR-polymers can be broadly classified in two main groups, depending on the main chain 

structure of precursors: TR-α-PBOs, which derived from hydroxy polyimides (HPI) and TR-

β-PBOs, which derived from hydroxy polyamides (HPA) as shown in Scheme 1-2. According 

to the differences of origin polymer structures, TR-α-PBOs and TR-β-PBOs have shown 

kinetically and physically different properties even though the same polybenzoxazole 

structures can be formed. TR-α-PBO, as shown in Scheme 1-2(a), is derived from HPI 

synthesized from a dianhydride and a hydroxy diamine by solution imidization or thermal 

imidization (the details relay on imidization methods will be explained in next section). On the 

other hand, TR-β-PBO precursor is prepared using a dichloride instead of a dianhydride by 

straight polyamidation. During thermal rearrangement, cavities were formed by getting rid of 

CO2 from HPI, but of H2O from HPA. The emission of H2O for TR-β-PBO attributed to form 

much smaller cavity sizes (2.7~4.0Å  and 6.6~8.3 Å ). However, this small cavity size permits 

the separation of couple of small and big gases such as H2/CO2, He/ CO2. Also, the much higher 

mechanical properties and high selectivities of TR-β-PBO is much appreciated to applying for 

syn gas separations at high temperatures over 200oC.[69]  
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Scheme 1-2 Reaction of thermal rearrangement to (a) TR-α-PBO which converted from 

hydroxy polyimide (HPI), and (b) TR-β-PBO from hydroxy polyamide (HPA) 

 

1.5.2 TR-tPBO, cPBO, aPBO, sPBO, ePBO 

 Unlike TR-β-PBOs, TR-α-PBOs have shown various ways to prepare according to 

synthetic methods of precursor polyimides. Interestingly, the preparation methods were 

critically effected on the gas transport properties of final TR-PBO membranes.[55] Scheme 1-

3 summarized the five ways to prepare TR-PBOs that have been applied so far. And Figure 1-

9 illustrated the variations of CO2 permeability and CO2/CH4, O2/N2 selectivity depending on 

the synthetic methods such as (i) thermal imidization, (ii) azeotropic imidization, (iii) chemical 

imidization, (iv) silylated chemical imidization, and (v) esterificated azeotropic imidization. 

Each precursor polyimides through each imidization method are designated as tHPI, aHPI, 

cHPI, sHPI, and eHPI, respectively, and final corresponding TR-PBOs also are named as tPBO, 

aPBO, cPBO, sPBO and ePBO.  
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 Imidization to prepare TR-PBOs can be classified in three main types; thermal, azeotropic, 

and chemical one. Thermal imidized HPI (tHPI) is obtained by solid-state film form by casting 

poly(amic acid) solution and final thermal treatment. Generally tHPI film is not soluble in 

organic solvents by inherently cross-linked site. Randomly formed polymer networks influence 

on formation of much bigger cavities for tPBO than for aPBO. Even though, high permeability 

materials are obtained, along with the use of a simpler process to prepare membranes, tPBO is 

not a good candidate for implementation because of the lack of reproducibility when it is 

fabricated as hollow fiber membranes. On the other hand, aHPI polymer network is linearly 

formed by eliminating water molecules during conversion from hydroxy poly(amic acid) to 

hydroxy polyimide and it have showed much better processability by using polymer powders 

whose molecular weights are controllable. As aPBO gives the lowest gas permeabilities due to 

relatively low increments of free volume by linear polymer chains, the improvement of 

permeabilities is one of the main issue of aPBO. ePBOs also produce similar performances as 

aPBOs. 

cHPI and sHPI are obtained by chemical imidization that produces acetyl groups instead 

of hydroxy group at the ortho position. The thermally loss of acetyl groups before thermal 

rearrangement results in increases in cavity sizes and consequent increase of gas permeabilities. 

Thus, sPBO and cPBO showed much higher permeability than aPBO, tPBO and ePBO. 

However, the emission of ketene during thermal rearrangement from acetyl groups was warned 

due to its environmental hazardousness.   

Regardless of the used route, the final TR-PBOs have shown mechanical fragilities which 

is the main drawback to applying these materials for gas separation.    
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Scheme 1-3 Five synthetic routes to prepare TR-α-PBOs. 

 

Figure 1-9 CO2 permeability and CO2/CH4 selectivity of TR-PBO membranes which 

depending various synthetic routes 
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1.5.3 Thermally Rearranged Copolymers 

Copolymerization is a good approach to improve physical properties of polymeric 

materials. In this way, TR polymers also have been copolymerized by combining with other 

polybenzoxazole structures, with polyimide, or with polypyrrolone which derived from three 

different diamines: ortho-hydroxy diamines, diamines or tetramines, respectively, as shown in 

Scheme 1-4. Yeong at al. found out that the addition of 10% cardo-polybenzoxazole (CPBO) 

units which derived from a hydroxy diamine containing cardo group; 9,9’-bis(3-amino-4-

hydroxyphenyl)fluorine (bisAHPF), produced  420% increment of CO2 permeability as 

comparing with pure TR-PBO or TR-CPBO due to efficient free volume enhancement that 

translated to increases in CO2 and CH4 [10]solubility and diffusivity with drops in CO2/CH4 

selectivity down to 26.[70]  

Interestingly, ortho-amino polyimide (API), which can be converted to pyrrolone (PPL) 

structures by emitting water molecules during thermal treatment can be employed as 

copolymers of PBO. Thus, a API-co- HPI precursor was converted by thermal treatment to a 

poly(benzoxazole-co-pyrrolone) (PBO-co-PPL) membrane, which showed much lower 

permeability than TR-PBO; however, its O2/N2 selectivity was increased up to 7 and CO2/CH4 

selectivity was 78 which are by far much higher value than those observed for pure TR-PBO 

and PPL due to the well-packed structure of PPL which controls diffusivity selectivity.[9]  

Copolymerization using various pure diamines has been studied due to the tremendous 

chemical structures of diamines in nature.[7, 8, 10, 11] Firstly, Jung et al. developed TR-PBOI 

prepared by thermal imidization route, and it was observed the existence of a relationship 
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between the ratio of diamine and hydroxy diamine, and gas permeabilities. The reduction of 

PBO ratio led to a decrease in permeabilities and an increase in selectivity [10]. The 

relationship with diamine part has deeply studied using eight non-TR-able (common aromatic 

diamines) diamines. Flat and rigid structure in the non-TR-able diamine resulted in much 

higher permeabilities than using diamines having flexible or entangled structures [7, 11]. Not 

only the used non-TR-able diamines was important, also the TR-able (ortho-hydroxy diamines) 

diamines such as APAF and HAB, which are the most employed sources of TR-PBO materials, 

showed different thermal and physical behaviors. Mechanical properties of TR-PBOIs were 

much better than those showed by TR-PBOs and gas transport properties tuned according to 

polymer rigidity by controlling the non-TR-able and TR-able diamines ratio and the used 

chemical structures. These TR-PBOIs materials had much better gas transport properties than 

commercialized polymers such as cellulose acetate, polysulfones, polyimides and so on, 

therefore, the results of TR-PBOIs were meaningful for implementation to the practical gas 

separations [8].  

 

Scheme 1-4 Copolymerization routes based on three different diamines: a hydroxy diamine, 

tetramine, and diamine, to prepare TR-coPBO, TR(PBO-co-PPL) and TR-PBOI, respectively. 
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1.5.4 PIM-TR-PBO 

The kicked and contorted ladder-like structures of PIM consisting of spirobisindane group 

have obtained permeabilities higher than 2000 Barrer for CO2 by preventing chain packing and 

intrinsically producing 6-10Å  cavities. These unique PIM structures have been mimicked with 

TR polymers, which can be called PIM-TR polymers in two ways: to construct the required 

ladder-like moiety in the anhydride part as shown in Figure 1-10(a) and (b), or to include this 

moiety in the hydroxy diamine part as seen in (c) and (d). [43, 52, 53] The performance of TR 

polymers containing spirobisindane groups should produce materials with much higher 

permeabilities, for example, the TR-PBO membrane based on SPDA-HSBF (Figure 1-10 (b) 

and (d)) showed more than 1200 Barrer for CO2.[72] Moreover, it can also be figured out that 

the use of spirobisindane groups could be a key factor of overcoming the mechanical fragility 

of TR-PBOs as has been observed in related works.[8]  

 

Figure 1-10 Chemical structure of (a)spirobisindane based dianhydride 1 (SPDA1), (b) 

spirobisindane based dianhydride 2 (SPDA2), (c) 3,3,3’,3’-tetramehyl-1,1’-spirobisindane-

5,5’-diamino-6,6’-diol (TDSS), and (d) 2,2’-dihydroxyl-9.9’-spirobifluorene-2,2’-diamine 

(HSBF) 
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1.5.5 XTR-PBOIs  

 As aforementioned, one of the plausible reasons of the higher free volume element sin 

TR materials can be derived from the inherent cross-linking formed during its formation.[55] 

Cross-linking processes adding DABA, as a co-monomer, into TR-polymers has been tried in 

chemically- and thermally-based polymers derived from 6FDA-APAF.[12, 13] Scheme 1-5 

illustrates how to prepare chemically cross-linked TR-PBO (XTR-PBOI) polymers using 

butandiol and transesterification reactions. 10% DABA-contained XTR-PBOI was obtained 

and its films showed much higher permeabilities (980 Barrer) than pure TR-PBO (260 Barrer) 

but no exact relationship with DABA ratio was found. On the other hand, thermally cross-

linking polymer films only showed 619 Barrer when 10% DABA was used in the polymer 

backbone. Again, the relationship between DABA ratio and properties was not determined. 

However, these studies have proved the cross-linking has a synergetic effects on enlarging 

cavity sizes, and consequently on improving the gas permeabilities.  
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(a)  
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(b)  

Scheme 1-5 (a) The chemical way to prepare XTR-PBOIs by synthesizing XHPI by butandiol 

transesterification [12], and (b) the preparation of thermally induced XTR-PBOI directly from 

hydroxy copolyimide (HPI-co-I) by heat treatment under argon purging [13] 

 

  Conclusion 

Thermal rearranged (TR) polymers are emerging materials especially for gas separation 

applications because they show high permeabilities and reasonable selectivities due to the 

presence in the membrane of bimodal cavities. Well-designed tunability of TR-polymers is one 

attractive point of research to be applied for a determined gas separation process. For that, it is 

important, in order to design useable materials, to understand the relationship of gas transport 

properties with the chemical structure as well as its thermal behavior to know when and how 

thermal conversion taken place. Despite of their high permeabilities, the fragility (poor 

mechanical properties) of TR-PBOs handicaps its implementation in industrial (real-world) 

applications so that the search of ways to produce an enhancement of mechanical properties is 
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one of the most required research areas. Herein, this research work is focused on improving 

not only gas permeabilities but also mechanical properties. This understanding should permit 

the rational development of chemical structures of precursor polymer and corresponding TR 

polymers, which should lead to materials able to be employed in practical and industrial gas 

separation processes. 
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 Introduction 

In-situ thermal conversions of ortho-hydroxy-containing polyimides (HPIs) to 

polybenzoxazoles (PBOs) have been widely reported. Likhatchev and co-workers studied for 

the first time the thermal behaviour of soluble aromatic polyimides based on 2,2’-bis(3-amino-

4-hydroxyphenyl)hexafluoropropane (APAF) diamine and several aromatic dianhydrides (i.e. 

pyromellitic dianhydride (PMDA), 3,3’,4,4’-benzophenonetetracarboxylic acid dianhydride 

(BTDA) and 4,4’-oxydiphthalic anhydride (ODPA)) [1]. They established that the thermal 

conversion of hydroxypolyimides to polybenzoxazoles proceeds through a carboxy-

benzoxazole intermediate, followed by decarboxylation to give the fully aromatic final 

benzoxazole (Scheme 2-1). 
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Scheme 2-1 Proposed reaction for thermal conversion of hydroxy-imide to benzoxazole. 

 

The carbon dioxide evolution from the decarboxylation step was easily detected by 

thermogravimetric analysis (TGA) as a well-defined, weight-loss step prior to the generalyzed 

decomposition of the in-situ formed polybenzoxazole. Thus, they claimed that the starting 

temperature of weight loss and the temperature at the peak (maximum amount of CO2 evolution 

temperature) in the derivative thermogravimetric curves (DTG) were controlled to some extent 

by the structure of dianhydride moiety. In fact, the imide-to-benzoxazole rearrangement shifted 
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to lower temperatures as a function of increasing flexibility in the dianhydride moiety. 

Subsequently, Tullos and his colleagues carried out a more in depth study about the thermal 

rearrangement of several structurally different o-hydroxy polyimides derived from different 

bis(o-aminophenol)s such APAF and 3,3’-dihydroxybenzidine (HAB), and several 

dianhydrides such as 3,3’,4,4’-bisphenyltetracarboxylic dianhydride (BPDA), 4,4’-

(hexafluoroisopropylidene)diphthalic anhydride 6FDA, 4,4’-(4,4’-

isopropylidenediphenoxy)bis(phthalicanhydride) BPADA, BTDA, and ODPA, in an attempt to 

confirm the final rearranged polymer structure and the thermal conversion mechanism [2,3]. 

In fact, they reasserted the previously established imide-to-polybenzoxazole rearrangement 

mechanism, and found that the more flexible hydroxy-containing polyimides, with lower glass 

transition temperatures, underwent thermal conversion at a faster rate and at a lower 

temperature. However, Tullos and his colleagues did not establish a clear and direct relationship 

between the thermal rearrangement or conversion temperature (TTR) and glass transition 

temperature (Tg) of the precursor polyimides. After their report, several studies have described 

the thermal conversion of HPIs to PBOs [4-7], but none of them have centered on claryfing the 

possible connection between Tg and TTR.  

Recently we found that thermally rearranged (TR) polybenzoxazole membranes show 

unusual microporous characteristics resulting from a significant increase of free volume 

elements during the thermal rearrangement process in the solid state [8-12]. These TR-polymer 

membranes are promising materials for gas separation applications, such as CO2 separation for 

carbon capture, since they show outstanding gas performance, particularly for the gas pairs 

CO2/CH4 and CO2/N2 [13]. One of the crucial factors to design a cost effective thermal 
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treatment process for TR-polymers, is the thermal rearrangement or conversion temperature 

(TTR). This temperature, as pointed out above, can be predicted to be greatly influenced by the 

polymer morphology and chemical structure.  

Therefore, it is our objective to explore the relationship between the chain mobility, Tg and 

TTR for this family of o-hydroxy polyimides. As a continuation in our studies about TR-PBO 

polymer membranes and for further understanding on how TTR is affected by the chemical 

structure of o-hydroxy polyimides, herein we have examined in detail the differential scanning 

calorimetry (DSC) and TGA thermograms, accompained by DTG curves for a large set of o-

hydroxy polyimides and copolyimides. A great variety of different chemical structures have 

been synthesized, from two commercially available bis(o-aminophenol)s, (APAF and HAB), 

and two experimental ones, 2,2-Bis(4-(4-amino-3-hydroxyphenoxy)phenyl) 

hexafluoropropane (6FBAHPP) and 1,4-Bis(4-amino-3-hydroxyphenoxy) 2,5-di-tert-

butylbenzene (TBAHPB), incorporating flexible connecting linkages, together with three 

commercial, commonly used dianhydrides, such as, BPDA, 6FDA and BPADA.  

 

 Experimental Section 

2.2.1 Materials 

Solvents and reactants were of reagent-grade quality and used without further purification. 

5-Fluoro-2-nitrophenol, hydrazine monohydrate and palladium 10 wt% on activated carbon 

were purchased from Aldrich, 4,4'-(hexafluoroisopropylidene)diphenol and 2,5-di-tert-butyl 

hydroquinone to Alfa Aesar, and 5-fluoro-2-nitroanisole from Apollo (U.K). The dianhydride 
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3,3’,4,4’-bisphenyltetracarboxylic dianhydride (BPDA), was purchased from Shanghai Resin 

Factory Co., Ltd. (China), 4,4’-(4,4’-isopropylidenediphenoxy)bis(phthalicanhydride) 

(BPADA) was purchased from Aldrich and the 4,4’-(hexafluoroisopropylidene)diphthalic 

anhydride (6FDA) from Daikin Industries, Ltd. (Osaka, Japan). The diamines, 2,2’-bis(3-

amino-4-hydroxyphenyl) hexafluoropropane (APAF) was purchased from Central Glass Co. 

Ltd (Tokyo, Japan) and the 3,3’-dihydroxybenzidine (HAB) from Tokyo Chemical Industry 

(TCI) Co., Ltd. (Tokyo, Japan).  

 

2.2.2 Monomers Synthesis  

 Synthesis of 2,2-Bis(4-(4-amino-3-hydroxyphenoxy)phenyl) hexafluoropropane 

(6FBAHPP) 

It was synthesized in two steps, according to the previously reported method [14-15], from 

4,4'-(hexafluoroisopropylidene)diphenol and 5-fluoro-2-nitrophenol by nucleophilic aromatic 

substitution in the presence of potassium carbonate (K2CO3) and DMF as solvent, followed by 

catalytic reduction with hydrazine hydrate and Pd/C as a catalyst. Elemental analyses and 1H 

NMR data of intermediate and final monomers have been recently reported elsewhere [14]. 

 Synthesis of 1,4-Bis(3-methoxy-4-nitrophenoxy)2,5-di-tert-butylbenzene (1)  

The dinitro dimethoxylated intermediate 1 was synthesized by the reaction of 2,5-di-tert-

butylhydroquinone (11.12 g, 50 mmol) and 5-fluoro-2-nitroanisole (18.82 g, 110 mmol) in the 

presence of potassium carbonate (15.48 g, 112 mol) and DMF (100 mL) at 160 oC for 18 hours. 

The mixture was then cooled and poured into distilled water, filtered, and washed again with 
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water. The crude product was recrystallized from DMF to provide a yellow solid. The yield 

was 85%. mp 243 oC. Elemental Anal. Calcd. For C28H32N2O8: C, 64.11; H, 6.15; N, 5.34; 

Found: C, 63.95; H, 6.10; N, 5.20. 1H NMR (300 MHz, DMSO-d6): 8.00 (d, 2H, J= 9.1 Hz), 

7.00 (s, 2H), 6.96 (d, 2H, J= 2.2 Hz), 6.51 (dd, 2H, J= 2.2 Hz, J= 9.1 Hz), 3.39 (s, 6H). 

 Synthesis of 1,4-Bis(3-hydroxy-4-nitrophenoxy)2,5-di-tert-butylbenzene (2).  

A mixture of 9.00 g (11.44 mmol) of 1 and 54.0 g of pyridine hydrochloride was heated at 

160 oC for 24 hours under nitrogen. The reaction mixture was then poured into distilled water. 

Then the precipitate was collected by filtration, and the crude product was washed with water 

and dried. The product was recrystallized from penthanol to afford a brown solid. The yield 

was 65 %. mp 248 oC. Elemental Anal. Calcd. For C26H28N2O8: C, 62.89; H, 5.68; N, 5.64; 

Found: C, 62.65; H, 5.45; N, 5.50. 1H NMR (300 MHz, DMSO-d6): 11.19 (s, 2H), 8.05 (d, 2H, 

J= 8.6 Hz), 7.00 (s, 2H), 6.59 (d, 2H, J= 1.9 Hz), 6.50 (dd, 2H, J= 1.9 Hz, J= 8.6 Hz).  

 Synthesis of 1,4-Bis(4-amino-3-hydroxyphenoxy)2,5-di-tert-butylbenzene (TBAHPB)  

A flask was charged with 2 (5 g, 10.07 mmol), 25.0 ml of hydrazine monohydrate, 40 ml 

of ethanol, and 0.100 g of 10 % palladium on carbon (Pd-C). The mixture was heated to reflux 

for 20 hours. After this time, the reaction suspension was poured into distilled water. The 

precipitate was collected by filtration, and the crude solid was recrystallized using a mixed 

solution of DMF (DMF:water = 2:1, v/v) under a nitrogen atmosphere. The removing of the 

Pd-C catalyst was carried in the recrystallization step by filtering through Celite. The yield was 

70 %. mp 335 oC. Elemental Anal. Calcd. For C26H32N2O4: C, 71.53; H, 7.39; N, 6.42; Found: 

C, 71.35; H, 7.10; N, 6.20. 1H NMR (300 MHz, DMSO-d6): 9.20 (s (broad), 2H), 6.69 (s, 2H), 

6.55 (d, 2H, J= 8.6 Hz), 6.33 (d, 2H, J= 2.5 Hz), 6.22 (dd, 2H, J= 2.5 Hz, J= 8.6 Hz), 4.30 (s 



 

50 

 

(broad), 4H). 

 

2.2.3 Poly(o-hydroxyimide)s synthesis 

A three-necked flask, equipped with a mechanical stirrer and gas inlet and outlet, was 

charged with 10.0 mmol of diamine and 10.0 mL of NMP. The mixture was stirred at room 

temperature under nitrogen atmosphere until the solid was entirely dissolved. Then, the 

solution was cooled to 0 oC, had dianhydride (10.0 mmol) added to it along with 10.0 ml of 

NMP. The reaction mixture was stirred for 15 min at 0 oC. Then, the temperature was raised to 

room temperature and left overnight. o-Xylene (30 mL) as an azeotropic agent was then added 

to the solution, which was stirred vigorously and heated for 6 hours at 180 oC to promote 

imidization. During this step, the water released by the ring-closure reaction was separated as 

an o-xylene azeotrope. The resulting brown-colored solution was cooled to room temperature, 

precipitated in distilled water, washed several times with water and dried in a convection oven 

at 120 oC for 12 hours.  

 

2.2.4 Polyimide film formation 

The casting of the polyimide was done from a 15 wt% filtered solution in NMP onto a 

clean glass plate. Cast film was placed in a vacuum oven and heated slowly to 250 oC with 

holds for 1 hour at 100 oC, 150 oC and 200 oC to evaporate the solvent under high vacuum. The 

solid film was taken off from the glass plate, rinsed with deionized water, and dried at 120 oC 

until the water was removed. The defect-free and clean membranes were cut into small sized 



 

51 

 

strips, placed between quartz plates and further heated in a muffle furnace up to 300 oC, under 

a high-purity argon atmosphere. It was then held for 1 hour to eliminate residual solvent. 

Membranes with glass transition temperatures well below 300 oC, were only heated up to 250 

oC to complete solvent removal. The cooling rate of the cast membranes after annealing was 

10oC/min. 

 

2.2.5 Measurements 

1H spectra were recorded on a Murcury Plus 300 MHz spectrometer (Varian, Inc., CA, 

USA). Elemental analyses were performed with a Thermofinnigan EA1108 (Fisions 

Instrument Co., Italy) elemental analyzer. Molecular weights of precursor polyimides were 

measured by gel permeation chromatography (GPC, Tosoh HLC-8320 GPC, Tokyo, Japan) 

with a TSKTM SuperMultipore HZ-M column, and a refractive index (RI) detector in THF 

based on standard polystyrenes. Thermogravimetric analyses (TGAs) were performed on a TA 

Q-500 thermobalance (TA Instruements, DE, USA) and coupled with mass spectroscopy (MS) 

ThermoStarTM GSD 301T (Pfeiffer Vacuum GmbH, Asslar, Germany). 

Glass transition temperatures (Tg) of HPIs films were measured by differential scanning 

calorimetry (DSC) analyses on a TA Instruments Q20 calorimeter. A total of two heating-

cooling cycles, at a heating rate of 20oC/min, were conducted and Tg was obtained from the 

second heating cycle. Testing samples were heated to a temperature usually below the starting 

temperature of conversion to PBO for each HPI film during the first heating, quenched at room 

temperature and reheated up to 475oC in the second scan. Heat of decarboxylation reaction or 
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rearrangement reactionoccurred around 350-450 oC for HPIs can be detected by DSC.  

 

 Results and Discussion 

2.3.1 Monomer synthesis  

Two ether-containing non-commercially available bis(o-aminophenol)s were synthesized 

in order to obtain a wider and clearer picture of how different degrees of flexibility in the 

nucleophilic aromatic diamine monomer can influence the thermal conversion temperature 

(TTR). 

The synthesis of bis(o-aminophenol)s including flexible ether linkages has previously been 

reported [14]. The synthetic strategy usually employed in these studies involves the base 

mediated aromatic nucleophilic substitution of 2-hydroxy-4-fluoronitrobenzene with diverse 

bisphenols. This is done to provide readily the corresponding ether-containing bisnitrobenzene 

compound, which is further reduced to the final bis(o-aminophenol) by a conventional catalytic 

reduction in the presence of a palladium catalyst on carbon. According to this procedure, 2,2-

bis(4-(4-amino-3-hydroxyphenoxy)phenyl) hexafluoropropane (6FBAHPP) was synthesized 

successfully as reported elsewhere [14-15]. Nevertheless, in some cases, protection of the 

hydroxy group in the fluoronitro derivative, usually as a benzyloxy group, was proved to 

enhance the efficiency in the condensation step [16-18]. Thus, as a modification of this 

approach, the novel 1,4-bis(4-amino-3-hydroxyphenoxy)2,5-di-tert-butylbenzene (TBAHPB) 

monomer, including bulky di-tert-butyl side groups, was  efficiently prepared from the 

commercially available 5-fluoronitroanisole as the starting material in the condensation 
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reaction with 5-di-tert-butylhydroquinone. This was followed by demethylation of the methoxy 

protecting groups using pyridine hydrochloride in solvent-free conditions, and final 

conventional catalytic reduction with hydrazine/Pd-C (Scheme 2). Elemental analysis and 1H 

NMR spectroscopic techniques were used to identify the structures of the intermediate 

compounds and the final hydroxyl diamine monomer. 
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Scheme 2-2 Synthesis of 1,4-bis(4-amino-3-hydroxyphenoxy)2,5-di-tert-butylbenzene 

(TBAHPB). 

 

2.3.2 Synthesis of hydroxyl-containing precursor polyimides and copolyimides 

A series of polyimides containing hydroxy groups ortho to the imide group (HPIs) were 

synthesized from two commercially available bis(o-aminophenol)s monomers: the stiff 

biphenyl diamine 3,3’-dihydroxybenzidine (HAB), and the semi flexible diamine (APAF) 

containing the bulky [C(CF3)2] linkage.  Three commercial dianhydrides with different 

degrees of flexibility were also used: the rigid biphenyl BPDA dianhydride, the 6FDA 

dianhydride incorporating the -C(CF3)2- central link, and the very flexible BPADA monomer 
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containing ether and isopropylidene groups. 

Moreover, new ether-containing HPIs, with a higher degree of chain mobility, were 

prepared based on two experimental bis(o-aminophenol)s incorporating aryl ether linkages, 

namely the large and highly flexible 2,2-bis(4-(4-amino-3-hydroxyphenoxy) 

phenyl)hexafluoropropane (6FBAHPP) that included the [C(CF3)2] group as central linkage. 

The novel 1,4-bis(4-amino-3-hydroxyphenoxy)2,5-di-tert-butylbenzene (TBAHPB) contained 

bulky tert-butyl side groups in ortho positions in the central ring resulting in poly(ether-imide)s 

with a more contorted, rotation restricted and stiff conformation [19]. Inclusion of poly(ether-

imide)s will contribute to a more in depth study of the polymer structure-thermal conversion 

temperature relationship. 

Alternatively, for further understanding of how thermal rearrangement process is affected 

by the chain composition and flexibility of HPI, a series of copolyimides in different ratios 

were also synthesized based on 6FDA and APAF comonomers including no-hydroxylated 

diamine moieties, such as the flexible oxydianiline (ODA) or the very rigid 2,4,6-trimethyl-

1,3-phenylenediamine (DAM) in different contents. 

All the polymers were prepared by a two step polyimidation method using a poly(amic 

acid) intermediate. In the second stage, o-xylene as an azeotropic agent was added to the 

polymer solution, stirred vigorously, and heated for six hours at 180 oC to promote imidization. 

During this step, the water released by the ring-closure reaction was separated as an o-xylene 

azeotrope. Structures and codes of the monomers and polymers are given in Table 2-1. The 

polymer nomenclature is defined by the used monomers. For example, APAF-6FDA describes 
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a polyimide obtained by a reaction of APAF diamine with 6FDA dianhydride. In addition, 

APAF/DAM-6FDA (2:8) described a copolyimide that was prepared from 6FDA dianhydride 

and a mixture of APAF/DAM diamines in a ratio of 2:8. From gel permeation chromatography 

(GPC), it was confirmed that most of the polymers had high molecular weights (weight-average 

molecular weights, Mw) as shown in Table 2-1. Therefore creasable films could be prepared 

in every case by casting from polymer solutions. Polymer structures were confirmed by 1H 

NMR. As an example, the 1H NMR spectra of poly(ether-imide)s derived from the newly 

synthesized TBAHPB bis(o-aminophenol), are compiled in Figure 2-1. 
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Figure 2-1 1H NMR (DMSO-d6, 300 MHz) spectra of TBAHPB bis(o-aminophenol) 

containing poly(ether-imide)s
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Table 2-1 Thermal property and Mw of hydroxyl polyimides (HPIs) 

Polymer 

code 
Diamine Dianhydride Mw 

Tga 

(oC) 

TTR1 

(oC) 

TTR2 

(oC) 

TTR3 

(oC) 

HAB-6FDA 

 

H2N NH2

OHHO

HAB
 

CF3F3C

6FDA

OO

O

O

O

O

 

170,860 331 347 452 490 

HAB-

BPADA 

BPADA

OO

H3C CH3

OO

O

O

O

O

 

64,700 286 315 401 439 

TBAHPB-

BPDA 

 

O O

OH

NH2H2N

HO

TBAHPB  
 

BPDA

OO

O

O

O

O

 

28,900 310 337 426 456 

TBAHPB-

6FDA 

CF3F3C

6FDA

OO

O

O

O

O

 

70,200 304 321 424 450 

TBAHPB-

BPADA 

BPADA

OO

H3C CH3

OO

O

O

O

O

 

41,700 245 316 396 434 
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6FBAHPP-

BPDA 

 

H2N

HO OH

NH2

OO

F3C CF3

6FBAHPP  
 

BPDA

OO

O

O

O

O

 

185,200 295 300 382 427 

6FBAHPP-

6FDA 

CF3F3C

6FDA

OO

O

O

O

O

 

97,200 280 300 411 469 

6FBAHPP-

BPADA 

BPADA

OO

H3C CH3

OO

O

O

O

O

 

85,200 234 290 384 436 

APAF-

BPDA  

 

 

CF3F3C

HO OH

NH2H2N

APAF  

BPDA

OO

O

O

O

O

 

73,200 322 330 452 508 

APAF-6FDA  

CF3F3C

6FDA

OO

O

O

O

O

 

102,700 313 328 430 482 

APAF-

BPADA  

BPADA

OO

H3C CH3

OO

O

O

O

O

 

59,400 252 324 408 473 
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APAF/DAM-

6FDA (5:5)  

CF3F3C

HO OH

NH2H2N

APAF  

H2N

CH3

H3C CH3

NH2

DAM
 

CF3F3C

6FDA

OO

O

O

O

O

 

86,000 326 335 432 477 

APAF/DAM-

6FDA (2:8) 
31,200 358 373 454 ---b 

APAF/ODA-

6FDA 

(5:5)  

CF3F3C

HO OH

NH2H2N

APAF  

 

 

 

OH2N NH2

ODA  
 

 

CF3F3C

6FDA

OO

O

O

O

O

 

285,900 

 

306 

 

335 428 473 

APAF/ODA-

6FDA 

(2:8) 

413,900 304 332 430 460 

a From the second trace of DSC measurements conducted with a heating rate of 20oC/min under nitrogen atmosphere 

b Not detected  
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2.3.3 Thermal rearrangement temperature (TTR)  

As mentioned earlier, thermal rearrangement or conversion temperature (TTR), is one of the 

crucial factors to design a cost-effective thermal treatment process for TR-PBO polymer 

membranes. It has been widely reported that the thermal behaviour of HPI by TGA usually 

shows two distinct weight losses. The first one appeared in the range of 300-500 oC 

corresponding to the CO2 evolved in the rearrangement to PBO. The second one showed the 

generalized decomposition of the polymer backbone at around 500-600 oC. Furthermore, 

thermogravimetric analysis coupled with mass spectroscopy (TGA-MS) provided evidence for 

the CO2 evolution by detection of the mass weight of 44 [11,12]. Based on these observations, 

we concluded that it was possible to monitor, to some extent, the thermal conversion by TGA. 

Thus, we have recorded TGA data for all HPIs synthesized in this work, and analyzed the 

thermograms in an attempt to explore the relationship between chain mobility and Tg of HPI 

and/or TTR.  

In order to determine TTR by TGA, we defined three temperatures with significant changes 

in the first slope in the TGA curve. First, TTR1 was the starting temperature of the weight loss 

defining the temperature at which polymer chains started rearranging. Second, TTR2 was the 

temperature at the maximum point of weight loss or maximum amount of CO2 evolution. Third, 

TTR3 was the temperature at the end of the weight loss and showed the end of the rearrangement 

process. The identification of these temperatures was carried out in the first derivative 

thermograms (DTG). Thus TTR1 was analyzed from the temperature at the point where an 

increment in the DTG curve was detected, and TTR2 and TTR3 from the temperatures at the peak 

and at the end of the weight loss shown in the DTG curve. In some cases, simultaneous mass-
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spectroscopy analysis (TGA-MS) was also carried out to confirm the CO2 evolution starting 

point. A typical TTR1~TTR3 analysis procedure is shown in Figure 2-2. A summary of TTRs for all 

polymer samples is compiled in Table 2-1. 

 

Figure 2-2 Typical TTR1~TTR3 analysis procedure in TGA and DTG curves for HAB-6FDA 

polyimide with mass curve of CO2 on the bottom 
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2.3.4 Relationship between Tg and TTR 

We have analyzed thermal conversion temperatures (TTR1~TTR3) for all polymers as a 

function of Tg to foresee the effect of polymer structure and chain flexibility in the conversion 

process and for a better understanding about the relationship between Tg and TTRs. 

 Effect of chain flexibility 

Four ortho-hydroxy diamines with different degrees of flexibility, that is, HAB, APAF, 

TBAHPB and 6FBAHPP, were initially considered to combine with three aromatic 

dianhydrides (BPDA, 6FDA and BPADA) to obtain a clear picture on how different chemical 

structures and rigidities in the nucleophilic o-hydroxy-diamine as well as in the dianhydride 

monomers affect Tg and TTRs in the final precursor polyimides. The highly rigid HAB-BPDA 

polymer could not be synthesized by solution thermal imidization (azeotropic imidization), as 

were the rest of polyimides, because of premature precipitation during the imidization step.  

The glass transition temperature, Tg, was strongly affected by its chemical structure, as 

seen in Table 2-1 and Figure 2-3. For three different dianhydrides, the same trend of Tgs was 

found: HAB > APAF > TBAHPB > 6FBAHPP. The rigid biphenyl structure of diamine HAB 

yielded HPIs with the highest Tgs, whilst the large and very flexible ether-containing 6FBAHPP 

diamine produced HPIs with the lowest Tg. On the other hand, polymers containing BPDA 

dianhydride showed higher Tg than those derived from 6FDA and BPADA dianhydrides. The 

latter exhibited the lowest values in every case.  

This trend can be clearly seen in Figure 2-3, on DSC thermograms for several of these 

polyimides. Note that, in most cases, Tg is followed by an exothermic peak around 375-475 oC, 
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attributed to the intramolecular cyclization to the carboxybenzoxazole intermediate followed 

by decarboxylation to the final PBO [14]. Similar behavior has been observed before for some 

ortho-substituted aramids [20,21]. Thus, aramids containing a cyano, nitro or halogen group 

ortho to the amide nitrogen, undergo thermal rearrangement at high temperatures to 

benzoxazole polymers. This intramolecular cyclization reaction is also characterized by an 

exothermic transition. Pearce et al. found that the temperature range for these exothermic peaks 

was influenced to a certain extent by the polymer structure [21]. Note from Figure 2-3 that 

chemical structure also plays a role in the exothermic transitions in HPIs.  

Generally, the broad exothermic peaks slightly shift towards high temperatures as Tg 

increases, the shift being more pronounced for the most rigid polyimides, with the highest Tg 

values. The observed enthalpy changes of the cyclodecarboxylation reaction generally ranged 

between 3.0 and 13.3 J/g, although in some cases (APAF-BPADA and APAF-BPDA 

polyimides), this enthalpy change could not be clearly analyzed (see Figure 2-3 and Table 2-

2). HAB-6FDA polyimide, the most rigid polymer in this series (Tg = 331 oC), exhibited the 

largest heat flow per mass for the rearrangement reaction (13.3 J/g). On the contrary, 

6FBAHPP-BPADA polyimide, with the lowest Tg value (234oC), presented the smallest 

enthalpy change (3.0 J/g). Hence, the most flexible BPADA containing polymers seemed to 

show the lowest enthalpy change as compared to 6FDA and BPDA counterparts. These results 

indicate that the amount of ΔH at the rearrangement processs depends on the mobility of 

polymer chain (Tg) and the weight loss during the conversion process.  
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Figure 2-3 DSC curves of HPI films, at a heating rate of 20oC/min in N2, determined by the 

second heating scan. Glass transition temperature (Tg) values are shown for nine HPIs. 

 

These transitions are actually related to the first weight loss detected by TGA, 

corresponding to the evolution of CO2 during the rearrangement process as depicted in Figure 

2-2. If we compare thermal conversion temperatures (TTR1~TTR3) and Tg for this set of 

polyimides derived from three dianhydrides BPDA, 6FDA and BPADA, respectively, it can be 

clearly noticed that TTRs are greatly affected by Tg. Hence, as Tg increases with rigidity of 

dianhydride for any diamine, TTR1, TTR2 and TTR3 also move to higher temperatures. Actually, 

TTR1~TTR3 seem to increase with Tg and are parallel to each other. For four different diamines, 

the same order of TTRs is present: BPDA > 6FDA > BPADA. In fact, only 6FBAHPP-BPDA 

polymer (Tg = 295 oC), in spite of its high Tg, shows a decrease in TTR2 and TTR3 in comparison 
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with 6FBAHPP-6FDA counterpart (Tg = 280 oC). As an example, TGA thermograms of 

TBAHPB diamine containing polyimides are shown in Figure 2-4. Temperatures at the first 

maximum weight loss or maximum rate of CO2 evolution, TTR2s, are indicated as a guide. Note 

that, the first weight loss peak in the DTG curve clearly moves to a high temperature, as the 

rigidity of the dianhydride unit increases. Hence, the BPADA containing polyimide (Tg = 245 

oC) undergoes the cyclization reaction at lower temparatures than the more rigid TBAHPB-

6FDA (Tg = 304 oC) and TBAHPB-BPDA (Tg = 310oC) polyimides, although the resulting 

polybenzoxazoles degraded at almost the same temperature. Therefore, TTRs seem to be 

controlled by the type of dianhydride moiety. This behaviour generally agrees well with the 

previous findings by Likhatchev and co-workers, [1] that described a shift to low temperatures 

for TTR1 and TTR2 when increasing flexibility of the dianhydride moiety.  
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Figure 2-4 TGA and DTG curves of TBAHPB diamine containing polyimides, at a heating rate 

of 10oC/min in N2. 
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To further elucidate the relationship between chemical structure of HPI, Tg and TTRs, the 

effect of different degrees of flexibility in the diamine unit was analyzed. For 6FDA containing 

polyimides, the shift of the starting rearrangement temperature, TTR1, range from 304 oC for 

6FBAHPP-6FDA polyimide (Tg = 280 oC), the most flexible polymer in the 6FDA series, to 

347 oC for HAB-6FDA (Tg = 331 oC). Moreover, TTR2 also augments as a function of Tg and is 

parallel to TTR1, in the range of 411 oC to 452 oC. This trend in TTR3 shows a deviation for 

TBAHPB-6FDA polyimide, with lower TTR3 value than expected.  

Figure 2-5 shows DTG curves of 6FDA dianhydride containing polyimides. As seen, HPI 

with the TBAHPB diamine presented the lowest thermal stability in the series, with degradation 

temperature of the resulting polybenzoxazole around 490oC. This fact has been observed before 

for analogous polyimides containing di-tert-butyl side groups [20], and can be attributed to the 

loss of tert-butyl moieties that starts weight loss prior to the generalized degradation of the 

polymer chain. Unlike the rest of HPIs in the series, TTR3, for TBAHPB-6FDA seems to overlap 

with the early onset of degradation of the polymer backbone. This fact could explain the 

unexpected lower TTR3 value observed for this hydroxy-poly(ether-imide) within this series. 

Note that chemical structure and rigidity of diamine and dianhydride monomers seem to play 

a major role in the conversion from HPI to PBO. As a general trend, TTR1~TTR3 shift to high 

temperatures as a function of increasing monomer rigidity, and thus, due to increasing Tg.  

Hence, it was found that in every case TTR1 > Tg, meaning that polymer chains 

started rearranging in the rubbery state, where sufficient free volume and adequate 

segmental mobility already existed for the rearrangement reaction to occur.  
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Figure 2-5 DTG curves of 6FDA dianhydride containing polyimides, at a heating rate of 

10oC/min in N2. TTR3 values are pointed out. 

 

Another interesting fact is the range of detected TTR1 values moving from 290 oC for the 

most flexible polymer, 6FBAHPP-BPADA (Tg = 234 oC), containing ether linkages in either, 

diamine and dianhydride segments, to 347 oC for the very rigid HAB-6FDA polyimide.  

TTR2, the temperature at the maximum rate of CO2 evolution, considered to be the most 

effective and appropriate temperature to succesfully accomplish the rearrangement process in 

TR-polymers, is ranging between of 380 to 450oC (see Table 2-1). For a better understanding 

between chemical structure of HPIs and TTR2, we have also examined the gap between Tg and 

TTR2. TTR2- Tg values usually range from 100 to 150oC. On analyzing TTR2- Tg as a function of 

Tg, it can be seen that, with few exceptions, the distance between Tg and TTR2 increased with 
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decreasing rigidity of dianhydride. HPIs with the lowest Tg values within the series 

(6FBAHPP-BPADA, Tg = 234oC; TBAHHPB-BPADA, Tg = 245oC; APAF-BPADA, Tg = 

252oC) exhibited the largest TTR2- Tg gaps. Therefore, as observed for TTR1, TTR2 moves along 

with Tg, and TTR2- Tg increases for the most flexible polyimides in the series.  

Temperature range of the rearrangement process, ΔTTR, determined as TTR3-TTR1 was also 

considered for a more in-depth analysis of the conversion process. Large ΔTTR indicates broad 

distribution of rearrangement process and vice versa. Nonetheless, a clear trend between ΔTTR 

and Tg does not seem to be present. Peak sharpening or broadening during CO2 evolution does 

not appear to be directly governed by variations in the Tg, taking place indistinctly along the 

polymer series.  

As pointed out above, rearrangement reaction of HPIs into PBOs involves the evolution of 

two mol of carbon dioxide per repeat unit. Theoretical weight loss corresponding to this 

evolution differs for diverse polymer structures, decreasing as the molecular weight of the 

repeating unit increases. Hence, for the four different diamines, HPIs containing BPADA 

dianhydride, with the highest molecular weight per repeating unit, showed the lowest CO2 

weight losses. Similarly, 6FBAHPP diamine containing HPI exhibited the smallest values for 

every dianydride. Table 2-2 collects the actual and theoretical CO2 weight losses for this set of 

HPIs. Actual weight losses, determined from the first step in the TGA curves, usually agree 

well with the calculated values. Observed weight loss in HPIs containing TBAHPB diamine 

exceeded theoretical ones, probably due to some inherent instability for this particular di-tert-

butylated bis-o-aminophenol, as discussed before.  
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Table 2-2 Theoretical versus found carbon dioxide weight loss (in %) by TGA, as well as heat 

flow per mass (J/g) by DSC (in N2), corresponding to the rearrangement reaction. 

Polymer 

code 
Tg (oC) ΔH (J/g) Fw (g/mol)b 

CO2 wt. loss 

theoretical 

CO2 wt. loss 

found 

HAB-6FDA 331 13.3 624.44 14.09 14.17 

HAB-

BPADA 
286 5.3 700.69 12.55 11.14 

TBAHPB-

BPDA 
310 8.6 724.8 12.14 17.01 

TBAHPB-

6FDA 
304 10.8 874.82 10.06 13.14 

TBAHPB-

BPADA 
245 7.7 951.07 9.25 10.20 

6FBAHPP-

BPDA 
295 5.3 808.63 10.88 10.97 

6FBAHPP-

6FDA 
280 5.5 958.66 9.18 9.86 

6FBAHPP-

BPADA 
234 3.0 1034.90 8.5 7.93 

APAF-

BPDA 
322 _a 639.48 13.76 13.50 

APAF-6FDA 313 3.3 777.47 11.32 11.25 

APAF-

BPADA 
252 _a 850.71 10.34 13.47 

a Could not be analyzed from DSC thermograms  

b Molecular weight of the repeating unit 

 

 Effect of diamines without hydroxyl group in copolyimides 

From the findings discussed up to now, the starting conversion temperature of the imide-

to-benzoxazole, TTR1, as well as the maximum rate of reaction (TTR2) and the final reaction 

temperature (TTR3), seem to be controlled by the type of dianhydride and diamine monomers. 

In order to better understand the relationship between chemical structure, Tg and TTR, we 

intentionally attempted to change flexibility of HPI precursor while retaining chemical 

structure of the monomers involved in the rearrangement process by copolymerization with 

two different diamines without hydroxyl groups, namely, the highly stiff tri-methylated DAM 

diamine, and the quite flexible ether-containing oxydianiline (ODA). Thus, by incorporating 
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DAM into the APAF-6FDA structure, the rigidity of the polymer backbone increased. Two 

copolyimides with APAF and DAM diamines with molar ratios of 5:5 and 2:8 were prepared. 

Thus, Tgs for this series of copolymers increased gradually with increasing mol fraction of 

DAM (see Table 2-1). Figure 2-6 exhibits TGA and DTG curves of this APAF/DAM-6FDA 

series. As seen, the first peak due to the CO2 evolution during the conversion process, shifts to 

high temperatures as the mol fraction of the more rigid comonomer DAM increases. For the 

most rigid composition with the highest Tg value, (APAF/DAM-6FDA (2:8), Tg = 358oC), TTR3 

becomes imperceptible, reaching the onset of generalized decomposition of the polymer 

backbone, around 500 oC.  
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Figure 2-6 TGA and DTG curves for APAF/DAM-6FDA series of co-polyimides. 
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By incorporating a more flexible diamine such as ODA in HPI, we expected to improve 

polymer chain mobility, and thus to decrease Tg. In fact, Tg dropped from 313 oC for APAF-

6FDA homopolymer to 306 oC for APAF/ODA-6FDA (5:5) and remained almost constant 

when further augmenting ODA diamine content up to 80 % (Tg = 304 oC), which was the same 

as ODA-6FDA homopolymer [22]. From these observations, it is difficult to recognize a trend, 

as the chain ridigity might not be the only factor affecting Tg. As was expected, these minor 

variations in Tg for this series of ODA copolyimides, did not have significant repercussions on 

conversion temperatures to PBO, and thus, TTR1~TTR3 values of this copolymers scarcely 

changed with Tg. TGA and DTG curves for APAF/ODA-6FDA series clearly show this 

behaviour (Figure 2-7). 

Notice that TTR1~TTR3 of HPIs, regardless of the presence of rigid DAM diamine are 

influenced by the changes in flexibility, Tg, In addition, it is obvious that the addition of 

comonomer such as ODA in HPIs does not dignificantly alter the Tg of HPIs  and thus TTR 

remains relatively unchanged for these polymers. 

To attain a complete and general picture on how Tg of HPI and conversion to PBO 

temperature are related to each other, TTR1~TTR3 versus Tg for all the o-hydroxypolyimides 

described in this work, have been plotted in Figure 2-8. In this figure, TTR1~TTR3 and Tg generally 

show a linear relationship, signifying that as Tg increases, TTR1~TTR3 increase linearly.  
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Figure 2-7 TGA and DTG curves for APAF/ODA-6FDA series of co-polyimides. 
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Figure 2-8 TTRs values as a function of Tg for 15 o-hydroxypolyimides and o-

hydroxycopolyimides.  
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 Conclusions 

Upon analyzing DSC and TGA data for a total of 15 sets of o-hydroxypolyimides and 

copolyimides derived from two experimental and four commercial structurally different 

diamines, as well as three different dianhydrides monomers, we have attempted to elucidate 

the relationship between glass transition (Tg) of the precursor hydroxy-polyimide and the 

conversion temperature to polybenzoxazole in film samples. Thus, thermal rearrangement 

temperature, defined as TTR1, conversion starting temperature of the imide-to-benzoxazole, and 

TTR2 and TTR3, the maximum rate of reaction and the end of the rearrangement process 

temperatures, respectively, showed dependence with Tg of HPIs. In fact, TTR1 ~ TTR3 seemed to 

be influenced by the type of dianhydride and diamine monomers. Heat flow during the thermal 

rearrangement detected by DSC showed relationship with Tg, but was not as clear as TTRs 

detected by TGA. It is found that chain rigidity of HPI influences the thermal conversion 

temperature to polybenzoxazole, which should be considered when studying TR polymers. 
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 Introduction 

Development of micro-porous polymer membranes has been an active research area for the 

past few decades, especially in the industrial gas separation field (CO2 capture from post-

combustion flue gas in particular), where only highly permeable membranes can ensure 

separation productivity and efficiency [1-3]. Research efforts have focused mainly on the 

synthesis of polymer materials with micro-porous cavities and high fractional free volume 

(FFV), such as poly(trimethylsilyl-1-propyne) (PTMSP)[4], perfluoropolymers[5], fully 

aromatic and cross-linked thermally rearranged (TR) polymers with rigid main structures[6-

16], polymers with intrinsic micro-porosity (PIM) containing ladder-like structures with kinked 

groups[17-22], and Tröger’s base polymers[23-28]. More recently, attempts have been made 

to combine the benefits of different types of polymers, for example TR-PIM polymers [29,30] 

and Tröger’s base PIM [31]. All the aforementioned polymers have been developed by 

following the strategy of enhancing the polymer chain stiffness and backbone rigidity, thus not 

only boosting gas permeability and selectivity, but also promoting performance sustainability 

by restricting chain movement and packing [32]. Membranes fabricated from these polymer 

materials exhibited exceptional gas transport behavior and exceeded the so-called 

permeability-selectivity trade-off relation discovered by Robeson and colleagues [33,34].  

In terms of advances in TR polymers, research efforts have focused on improving 

separation performance, processability, and thermal/chemical stability through: (i) 

optimization of thermal treatment protocols [10, 15], (ii) investigation of various precursor 

polymerization routes and their influences on FFV, thermal conversion behavior, and gas 

transport properties[9, 12, 13], and (iii) manipulation of cavity size and distribution of the 
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thermally rearranged polybenzoxazoles (TR-PBOs)[11, 14, 30, 35] More recently, research 

interest has focused on the fabrication of TR-PBO membranes with an industry-preferred 

hollow fiber geometry using poly(amic acid) (PAA) as precursor[36].  

However, the fragility and brittleness of TR-PBO membranes still remain a major 

challenge for large-scale industry implementation of such membranes. Research efforts have 

therefore shifted to improving the mechanical properties of TR-PBO membranes, and the 

following strategies have been proposed: (i) introducing spirobisindane with a kinked structure 

in the TR-PBO membrane to disrupt the chain packing density, thus enhancing the mechanical 

strength of the membranes[30, 32], and (ii) incorporating polyimide (PI) in TR-PBO to produce 

polybenzoxazole-co-imide (TR-PBOI) membranes [37, 38].  

The discovery of a strong correlation between the ratio of TR-able and non-TR-able 

diamines and membrane micro-structure, as well as the gas permeability of the resultant 

membranes by Jung et al. represents another approach to manipulate the morphological and 

transport properties of TR-polymer membranes [40]. Soo et al. extended this work further by 

evaluating the effect of the chemical structure of non-TR-able diamines (e.g. the presence of 

bulky side groups or flexible ether linkages) on the physical properties of the membranes as 

well as their separation performance [41]. Recently, the synthesis of hydroxyl copolyimides 

incorporating a rigid non-TR-able diamine moiety through the chemical imidization method 

was studied in the context of gas separation, and the effects of different ratios of PBO to PI and 

the type of non-TR-able moiety were investigated [39]. 

Despite all these efforts, a thorough understanding of the functionality of non-TR-able 
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diamines, especially with respect to their interactions with TR-able components and their 

impact on membrane chemico-physical properties, is still lacking. In addition, the formation of 

FFV and the size of cavities in TR-PBOI membranes are greatly influenced by the choice of 

synthesis route.9 This motivated our comprehensive investigation of two commercially 

available TR-able diamine monomers, namely 2,2′-bis(3-amino-4-hydroxyphenyl) 

hexafluoropropane (bisAPAF) and 3,3′-dihydroxyl-4,4′-diamino-sbiphenyl (HAB), and two 

common non-TR-able diamine monomers, namely 2,4,6-Trimethyl-m-phylenediamine (DAM) 

and 4,4’-oxydiamine (ODA), as monomers for membrane fabrication. We assessed the 

chemico-physical and gas separation properties of membranes synthesized with various ratios 

of the above precursors by characterizing a wide variety of membrane properties (e.g. glass 

transition temperature, thermal rearrangement temperature, fractional free volume, tensile 

strength, elongation at break, gas permeability, and ideal selectivity). We provided an in-depth 

discussion of the structure-property relationships of TR-PBOI membranes to highlight the 

interactions between non-TR-able and TR-able diamines and their influence on membrane 

properties. We also established an optimal synthesis approach to produce TR-PBOI membranes 

with both excellent mechanical strength and superior separation properties.  

 

 Experimental Section 

3.2.1 Materials.  

4,4’-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was purchased from Daikin 

Industries, Ltd. (Osaka, Japan). TR-able diamines included 2,2′-bis(3-amino-4-hydroxyphenyl) 
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hexafluoropropane (bisAPAF) from Central Glass Co. Ltd. (Tokyo, Japan) and 3,3′-

dihydroxyl-4,4′-diamino-biphenyl (HAB) from Wakayama Seika Kogyo Co., Ltd. (Wakayama, 

Japan). Non-TR-able diamines used in this study were 4,4’-oxydiamine (ODA) from Tokyo 

Chemical Industry (TCI) CO., Ltd. (Tokyo, Japan) and 2,4,6-Trimethyl-m-phylenediamine 

(DAM) from Chemtec (China, sublimed twice and stored under argon). 6FDA was dried in a 

vacuum oven at 100oC for at least 24 hours. BisAPAF, HAB, and ODA were stored in a vacuum 

chamber at 40oC prior to the reaction. N-methyl-2- pyrrolidone (NMP) and o-xylene were 

purchased from Sigma-Aldrich Co. LLC (St. Louis, USA) and used without further purification. 

 

3.2.2 Polymer synthesis and membrane fabrication.  

Four different series of copolymers based on 6FDA with varied compositions of TR-able 

hydroxyl diamines (bisAPAF and HAB) and non-TR-able diamines (DAM and ODA) were 

prepared. Precursor hydroxyl copolyimides were synthesized following the azeotropic 

imidization method. Three 250 ml four-neck round-bottomed flasks with different ratios of 

hydroxyl diamine and diamine (4:16 mmol, 10:10 mmol, and 16:4 mmol) were prepared and 

washed with 35 ml NMP. Once all the monomers were completely dissolved, 6FDA (20 mmol) 

was added to the flask. The reaction mixture was stirred for 12 hours at 15oC to obtain hydroxyl 

copoly(amic acid).  

Imidization was conducted at 180oC for 6 hour by O-xylene reflux in a Dean-stack trap 

equipped flask. The crude solution was precipitated in a methanol/water (1:3) mixture and 

washed with de-ionized water three times to remove NMP and o-xylene. The obtained 
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polymers were then dried in a vacuum oven at 150oC for more than 12 hours. HPI and PI 

membranes were prepared according to the following protocol. Completely dried polymers (15 

wt %) were dissolved in NMP and cast on a glass plate, then slowly heated up to 250oC. After 

the solvent was evaporated, the thickness of the obtained hydroxyl copolyimide membranes 

was around 50 μm. TR-PBO and TR-PBOI membranes were prepared by heating the precursor 

membranes in a muffle furnace at 400oC for 2 hours that was purged with 300 cc/min high 

purity argon (Scheme 1). 

 

Scheme 3-1 Chemical structures and compositions of the diamines, hydroxyl copolyimide, and 

TR-PBOI membranes. (n) and (10-n) refer to the molar ratio of PBO derived from TR-able 

diamines (bisAPAF or HAB) and PI containing non-TR-able diamines (DAM or ODA). 
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3.2.3 Characterization.  

The physical properties of the copolyimides and TR-PBOI membranes were measured 

using several characterization techniques. The molecular weight of the HPIs was evaluated 

using gel permeation chromatography (GPC, TosohHLC-8320GPC, Seoul, Korea) with a 

TSKTM Super Multi pore HZ-M column and a refractive index (RI) detector in THF on the 

basis of standard polystyrenes. FFV was calculated based on Bondi’s group contribution 

theory.42, 43 The thermal rearrangement study was conducted using a thermo gravimetric 

analyzer (TGAQ500, TA Instruments, New Castle, DE, USA) and Fourier-transformation 

infrared spectroscopy (FT-IR, Nicolet6700, Thermo Fisher Scientific Inc., MA, USA) to 

confirm the formation of benzoxazole. The glass transition temperature (Tg) of the HPIs was 

determined using a dynamic mechanical analyzer (DMAQ800, TA Instruments). Tensile 

strength and elongation at break of the TR-PBOI and TR-PBO membranes were measured 

using a universal test machine (Autograph AGS-J, Shimadzu, Kyoto, Japan) and specimens 

were prepared according to the international standard (ASTM-D638). BET surface area and 

sorption characteristics were measured at 77K by a surface area and porosimetry analyzer 

(ASAP2020, Micrometric Instruments Corp., Norcross, GA, USA).  

The density of the precursors and TR-PBOI membranes was measured using an electronic 

balance equipped with a density kit (Sartorius, Gottingen, Germany) utilizing the buoyancy 

method, in which the weight of a membrane was measured in air and then in 2,2,4-

trimethylpentane. The density was then calculated using the following equation:  

𝜌𝑚 =
𝑤𝑎𝑖𝑟

𝑤𝑎𝑖𝑟 − 𝑤𝑙
𝜌𝑙                                                          (3-1) 
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where ρm (g/cm3) is the density of the membrane, wair (g) is the weight of the membrane in air, 

wl (g) is the weight of the membrane in 2,2,4-trimethylpentane, and ρl (g/cm3) is the density of 

the membrane in  2,2,4-trimethylpentane.  

Percentage conversion was calculated by TGA-isotherm analysis. Actual weight loss due 

to the release of CO2 during thermal rearrangement was measured by TGA-isotherm. The 

percentage conversion is the ratio of the actual weight loss divided by the theoretical mass loss 

as shown below:15, 41 

%𝐶𝑇𝐺𝐴 =
Actual mass loss  (%)

Theoritical mass loss (%)
                                        (3-2) 

                                           

Fractional free volume (FFV) of all membranes, including precursors, was obtained from 

the equation below: 

𝐹𝐹𝑉 =
𝑉𝑠𝑝 − 1.3𝑉𝑤

𝑉𝑠𝑝
                                                        (3-3) 

                                                         

where Vsp (cm3/g) is the specific volume, which is the inverse value of density, and Vw 

(cm3/g) is the Van der Waals volume derived from Bondi’s group contribution theory.42, 43 To 

estimate the FFV of TR-PBOI membranes, the value of Vw should be carefully considered in 

cases where the percentage conversion is less than 100%. The Vw of TR-PBOI was obtained by 

the equation shown below considering the molar ratio of TR-able and non-TR-able diamines 

and the percentage conversion of each membrane: 41  
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𝑉𝑤 = (1 − 𝑟)(𝑉𝑤,𝑛𝑜𝑛 𝑇𝑅) + 𝑟 [𝑉𝑤,𝑃𝐵𝑂 (
𝐶

100
) + 𝑉𝑤,𝐻𝑃𝐼 (1 −

𝐶

100
)]                 (3-4) 

 

Here C is the percentage conversion, r is the molar ratio of TR-able diamine, and (1-r) is 

the molar ratio of non-TR-able diamine. 

Pure gas permeability and ideal selectivity were measured by the time-lag method in an 

oven chamber equipped with a constant downstream volume at 35oC with high purity single 

gases (He, H2, O2, N2, CO2, CH4), and calculated based on the equations below:  

P = D ∙ S = (
𝑉𝑇0𝑙

𝑃0𝑇𝐴∆𝑃
)

𝑑𝑝

𝑑𝑡
                                                     (3-5) 

                                            

α =
P1

P2
                                                                        (3-6) 

 

P (Barrer) is the pure gas permeability and is the product of gas diffusivity D (cm2/s) and 

solubility S (cm3(STP)/cm3 cmHg) according to the solution-diffusion model. V(cm3) is the 

downstream volume in the oven chamber, T0 (K) and P0 (cmHg) are the standard temperature 

and pressure, respectively, l (cm) is the thickness of the membrane, A (cm2) is the effective area 

of the membrane, and ΔP is the pressure difference between the upstream and downstream of 

the membrane. dP/dt (cmHg/s) is the rate of pressure rise in the downstream volume at steady 

state.  
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 Results and Discussion  

3.3.1 Physical properties of precursor hydroxyl copolyimides and thermal 

rearrangement to TR-PBOIs.  

The major physical properties of the precursor hydroxyl copolyimide membranes (e.g. 

molecular weight, glass transition temperature, and fractional free volume) were measured and 

are presented in Table 3-1. Four series of hydroxyl copolyimides (APAF-DAM, APAF-ODA, 

HAB-DAM, and HAB-ODA) with a number-average molecular weight (Mn) higher than 

10,000 kgmol-1 and weight-average molecular weight (Mw) higher than 70,000 kgmol-1 were 

prepared for subsequent membrane fabrication.  

Table 3-1 Physi properties of hydroxy copolyimides and polyimides.cal 

Polymer 
MW  

(kg/mol) 

Mn 

(kg/mol) 

ρ  

(g/cm3) 
FFV 

APAF10 107,000 10,700 1.54 0.138 

APAF8-DAM2 93,000 10,700 1.49 0.156 

APAF5-DAM5 78,000 14,000 1.42 0.172 

APAF2-DAM8 70,000 12,500 1.36 0.192 

APAF8-ODA2 88,000 10,000 1.52 0.145 

APAF5-ODA5 286,000 14,300 1.49 0.152 

APAF2-ODA8 414,000 14,300 1.48 0.144 

HAB10 125,000 32,000 1.49 0.118 

HAB8-DAM2 96,000 38,400 1.42 0.152 

HAB 5-DAM5 115,000 34,000 1.38 0.173 

HAB 2-DAM8 85,000 23,000 1.34 0.190 

HAB 8-ODA2 144,000 42,300 1.44 0.126 

HAB 5-ODA5 111,000 28,500 1.46 0.140 

HAB 2-ODA8 203,000 24,500 1.48 0.159 

PI (6FDA-DAM) 77,000 8,100 1.30 0.211 

PI (6FDA-ODA) 160,000* 25,800 1.42 0.177 
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Figure 3-1  Glass transition temperatures (Tg) of APAF-DAM, APAF-ODA, HAB-

DAM, and HAB-ODA as a function of mole fraction of non-TR-

able diamines as measured by dynamic mechanical analysis (DMA). 

 

The effect of the chemical structure of precursor polyimides on their thermal properties 

(e.g. glass transition temperature and thermal rearrangement temperature) has been studied 

extensively in the past, and chain flexibility has been identified as a critical factor determining 

the thermal properties of both hydroxyl polyimides and hydroxyl copolyimides.44 In this study, 

we performed dynamic mechanical analysis (DMA) to determine the glass transition 

temperature (Tg) of the polymer samples, as DMA offers better sensitivity than differential 

scanning calorimetry (DSC), especially at temperatures higher than 400oC. Fluor-based 
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hydroxyl copolyimides and hydroxyl polyimides prepared here had a Tg higher than 300oC as 

shown in Figure 3-1 and Table 3-2. Among all hydroxyl copolyimides, APAF-ODA hydroxyl 

copolyimides showed the lowest Tg (317oC), whereas HAB-DAM showed the highest (424oC). 

It was also noted that the Tg of APAF-DAM increased gradually with the addition of non-TR-

able DAM in the TR-able APAF. However, this behavior was not observed for APAF-ODA, 

where the Tg of APAF-ODA did not change significantly upon the addition of non-TR-able 

ODA, but the Tg of the 100% ODA-containing polyimide decreased slightly. In contrast, when 

HAB was used as the TR-able component, addition of non-TR-able DAM had a negligible 

influence on Tg, with only a slight increase from 405oC to 424oC when 20% DAM was added. 

However, replacing DAM with ODA resulted in a steady decrease in Tg when increasing the 

molar ratio of non-TR-able ODA in HAB-containing copolyimides.   

This opposite trend for Tg was observed for different combinations of TR-able and non-

TR-able diamines, mainly due to the chemical structure of these components, as increasing the 

polymer chain rigidity usually leads to a higher Tg. We attributed the generally higher Tg of 

HAB-containing copolyimides than APAF-containing copolyimides to the better chain packing 

efficiency of HAB, which enhanced polymer chain rigidity. In terms of non-TR-able DAM and 

ODA, the three methyl substitutes in DAM restricted main chain movement; much lower 

flexibility is therefore expected for DAM than ODA, which contains a rotational ether group.45  
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Figure 3-2 (a) Thermal rearranged temperature (TTRs) analysis using TGA and weight perc

entage variations of HAB5-DAB5 in the range of 100 to 800oC/min.  (b) The TTR1 of di

fferent hydroxyl copolyimides as a function of their corresponding Tg. (1) APAF2-ODA

8, (2) APAF5-ODA5, (3) APAF8-ODA2, (4) HAB2-ODA8, (5) APAF8-DAM2, (6) APA

F5-DAM5, (7) HAB5-ODA5, (8) HAB8-ODA2, (9) APAF2-DAM8, (10) HAB2-DAM8, 

(11) HAB5-DAM5, (12) HAB8-DAM2. The trend line is provided to guide the eye. 
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The chain mobility of precursor hydroxyl polyimides had a strong influence on thermal 

rearrangement temperatures. The relationship between Tg (indicator of chain mobility) and the 

initial, maximal, and terminal thermal rearrangement temperatures (TTR1, TTR2, and TTR3, 

respectively) was thoroughly investigated in this study, and the results are summarized in Table 

3-2. Furthermore, the TTR1 of different hydroxyl copolyimides as a function of Tg are plotted in 

Figure 3-2(b). It should be noted that unlike in previous studies, TTR1 was defined as the onset 

point of the first slope of weight loss in this study for accurate comparison.  

A clear trend of TTR1 increasing along with Tg is evident in Figure 2b, indicating that the 

thermal rearrangement reaction of highly rigid hydroxyl copolyimides (indicated by the higher 

Tg) took place at much higher temperature than that of flexible polymers (indicated by the 

higher TTR1). Thus, the more rigid hydroxyl copolyimides required higher energy to initiate 

thermal rearrangement than the less rigid polymers. Unlike the clear increasing trend of TTR1 

along with Tg, TTR2 and TTR3 of each hydroxyl copolyimide were not greatly affected by Tg, as 

summarized in Table 3-2. Therefore, the gap between TTR1 and TTR3 (∆TR) became narrower 

at a higher Tg. For instance, the more rigid HAB-DAM polymers showed a gap as low as 55oC, 

which was much narrower than the ∆TR of flexible APAF-ODA polymers between 88 and 

98oC.  

The completeness of thermal conversion from hydroxyl imide to benzoxazole was 

indicated by the percentage conversion (%C) and results are presented in Table 3-3; however, 

potential errors due to weight loss measurement during thermal treatment should be kept in 

mind.[15, 31, 40] As shown in Table 3-3, 90-100% conversion was obtained for TR-PBOI 

membranes from hydroxy copolyimides containing ODA as a non-TR-able diamine. 
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Conversion percentages higher than 100% obtained for the hydroxyl copolyimides with 80% 

ODA were mainly due to thermal decomposition because of the low thermal stability of these 

membranes. 

 

Table 3-2  Glass transition temperature and thermal rearrangement temperature of each 

hydroxyl copolyimide. 

TR-PBOI 

Tg TTR1 TTR2 TTR3 ∆TRa 

TR-PBOI 

Tg TTR1 TTR2 TTR3 ∆TR 

(oC) (oC) (oC) (oC) (oC) (oC) (oC) (oC) (oC) (oC) 

APAF10 317 374 436 490 116 HAB10 405 393 436 491 98 

APAF8-

DAM2 
336 384 437 490 106 

HAB8-

DAM2 
424 409 449 487 78 

APAF5-

DAM5 
358 403 456 490 87 

HAB 5-

DAM5 
424 415 445 475 60 

APAF2-

DAM8 
418 403 458 489 86 

HAB 2-

DAM8 
421 415 445 470 55 

APAF8-

ODA2 
319 395 434 483 88 

HAB 8-

ODA2 
400 404 431 490 86 

APAF5-

ODA5 
317 392 441 490 98 

HAB 5-

ODA5 
370 396 425 473 77 

APAF2-

ODA8 
318 373 434 471 98 

HAB 2-

ODA8 
340 385 425 467 82 

a ∆TR= TTR3-TTR1 
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Table 3-3 Percentage conversion (%C) from imide to benzoxazole, and the FFV of each TR-

PBOI membrane. 

TR-PBOI 
%C FFV 

TR-PBOI 
%C FFV 

(%) (-) (%) (-) 

APAF10 100 0.168 HAB10 69 0.162 

APAF8-DAM2 74 0.187 HAB8-DAM2 42 0.186 

APAF5-DAM5 53 0.192 HAB5-DAM5 55 0.182 

APAF2-DAM8 44 0.198 HAB2-DAM8 34 0.198 

APAF8-ODA2 100 0.171 HAB8-ODA2 96 0.145 

APAF5-ODA5 95 0.164 HAB5-ODA5 95 0.156 

APAF2-ODA8 109 0.164a HAB2-ODA8 110 0.162 a 

a FFV is calculated as assuming 100% conversion 

 

In contrast, DAM-containing hydroxyl copolyimides with high TTR1 according to high Tg 

exhibited much lower conversion percentages. These results reflect that chain rigidity of 

precursor polymer strongly influence on the completeness of thermal conversion and a 

narrower ∆TR significantly limits the operating window for thermal rearrangement. Therefore, 

a high percentage conversion can be achieved by: (i) fine-tuning the polymer chain rigidity by 

careful selection of the precursor polymer, and (ii) optimizing the thermal treatment protocol, 

especially in the case of highly rigid polymers with a narrow ∆TR gap. 
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Figure 3-3 Nitrogen adsorption (solid symbols) and desorption (open symbols) isotherms of f

our TR-PBOI membranes (measured at 77K). 

 

We also performed N2 adsorption-desorption tests using four equimolar TR-able and non 

TR-able diamine-containing TR-PBOIs. The adsorption-desorption isotherms are shown in 

Figure 3-3, and typical Type I sorption isotherms with apparent hysteresis behavior similar to 

most micro-porous materials were observed. The sorption of ODA-containing TR-PBOIs was 

substantially lower than that of their DAM-containing counterparts, indicating the formation 

of significantly fewer pores and smaller cavities during thermal rearrangement when using 

ODA as a non-TR-able diamine. We attributed this observation to the highly flexible and 

rotational polymer chains of ODA restricting the enlargement of micro-cavities, while the 

bulky methyl groups of rigid DAM disrupted the chain packing efficiency, thus increasing 
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micro-cavity size. The BET surface area was also measured based on the N2 adsorption-

desorption test, and the rank order was APAF5-DAM5 (389.4 m3/g) > HAB5-DAM5 (194.7 

m3/g) > APAF5-ODA5 (69.4 m3/g) > HAB5-ODA5 (40.6 m3/g), which correlated well with 

the rank order according to FFV (Table 3-3): APAF5-DAM5 (0.192) > HAB5-DAM5 (0.182) 

> APAF5-ODA5 (0.164) > HAB5-ODA5 (0.156). 

 

3.3.2 Mechanical properties of TR-PBOI membranes.  

The mechanical strength of a polymeric membrane plays a critical role in determining the 

feasibility of industrial implementation of the membrane; not only is the membrane required 

to withstand high pressure operation, but needs to be sufficiently robust for module fabrication. 

The tensile strength and elongation at break of the TR-PBOI membranes as a function of mole 

fraction of non-TR-able diamines are presented in Figure 3-4. Membranes prepared from only 

TR-able polymers (APAF and HAB) exhibited the lowest tensile strength and elongation at 

break, while the addition of non-TR-able components (DAM and ODA) enhanced both 

parameters, except in the case of addition of 80% ODA to HAB; a slight drop in tensile 

strength was observed in this case. The slight decrease in tensile strength with the 

addition of 80% ODA to HAB was in good agreement with the percentage conversion 

results (Table 3-3), which we attributed to decomposition during thermal treatment.  
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Figure 3-4 (a) Tensile strength, and (b) elongation at break as a function of mole fraction of non-

TR-able diamines (ODA and DAM). The origin of the x-

axis represents membranes containing only TR-able diamines (APAF and HAB). 
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Stiff benzoxazole chains formed as a result of thermal rearrangement caused fast 

deformation, which lowered the mechanical strength of the TR polymer membranes. In contrast, 

additional non-TR-able ODA and DAM did not undergo the same TR process, and thus the 

mechanical properties of the corresponding membranes were superior. Further, the 

improvement in mechanical properties was more pronounced in the case of addition of ODA 

than DAM, which we attributed to the flexible chemical structure of ODA derived from its 

rotational ether group. 

To better understand the effect of the chemical structure of the diamines on membrane 

mechanical properties, four TR-PBOIs representatives (APAF5-DAM5, APAF5-ODA5, 

HAB5-DAM5, and HAB5-ODA5) were selected, and their tensile strength followed the 

descending order of HAB5-ODA5 (96 MPa) > APAF5-ODA5 (84 MPa) ≈ HAB5-DAM5 

(83MPa) > APAF5-DAM5 (77 MPa). A high chain packing efficiency and degree of chain 

orientation improved tensile strength.46 Diamines with high packing efficiency and no bulky 

side groups, such as HAB, had greater tensile strength than APAF. Additionally, as mentioned 

above, non-TR-able ODA had a higher tensile strength than DAM due to the presence of a 

rotational ether group in ODA. As a result, the mechanical properties of HAB5-ODA5 were 

synergistically enhanced. In contrast, the presence of bulky methyl substituents in DAM and 

the hexafluoropropylidene (6F) group in APAF decreased chain packing efficiency, resulting 

in lowered tensile strength and elongation at break.  

 

3.3.3 Gas transport properties of TR-PBOI membranes  
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Pure gas permeation studies were performed to determine the relationship between the 

chemical structure of TR-PBOIs (especially the polymer segmental architecture),47 membrane 

micro-structure (FFV in particular),48 and the gas transport properties of the membranes. The 

tested gases were He (2.6 Å ), H2 (2.9 Å ), CO2 (3.3 Å ), O2 (3.5 Å ), N2 (3.6 Å ), and CH4 (3.8 Å ). 

Pure gas permeability and ideal selectivity of the membranes are summarized in Table 3-4. 

FFV, CO2 diffusivity, and permeability as a function of mole fraction of DAM and ODA are 

plotted in Figure 3-5(a) and 5(b). In all cases, APAF-containing TR-PBOI membranes 

exhibited a higher FFV than their HAB-containing counterparts; as a consequence, APAF-

containing membranes had higher diffusivity and permeability than the other membranes 

evaluated. This behavior was mainly due to the presence of 6F groups in APAF, which 

disrupted the chain packing efficiency and enhanced the formation of larger FFVs. Furthermore, 

differences in FFV between APAF and HAB became less pronounced when the content of non-

TR-able diamines increased, indicating that TR-able diamines were primarily responsible for 

the formation of large micro-cavities. It should also be noted that similar CO2 permeability was 

observed when the DAM mole fraction was increased to 80% for both APAF and HAB (318 

Barrer for APAF2-DAM8 and 334 Barrer for HAB2-DAM8). Furthermore, as shown in Table 

3-4, the CO2 permeability of these two membranes became higher than their H2 permeability, 

which is a unique property that has only previously been observed for glassy polymers with 

excess free volume and stiff main chains or bulky substituents.49 Improved FFV, CO2 

diffusivity and permeability, and increased DAM content indicated that gas transport was 

dominated by gas diffusion through enlarged free volume elements contributed by the bulky 

methyl groups of DAM (Figure 3-5(a)). In contrast, a substantial decrease in CO2 permeability 

was observed for ODA-containing TR-PBOI membranes with an increase in ODA ratio. No 
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clear correlation was found between CO2 diffusivity and FFV (Figure 3-5(b)). The distribution 

of free volumes became narrower when flexible components (e.g. ODA) were introduced into 

the rigid polymer chains, which consequently restricted the passage of gas molecules through 

the polymer matrix. This phenomenon became more pronounced when the polymer had a 

number of flexible repeating units [48].  
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Table 3-4 Gas permeability and ideal selectivity of TR-PBOI membranes. 

 
Gas Permeability (Barrer) Ideal Selectivity (α) 

He H2 O2 N2 CO2 CH4 O2/N2 CO2/ N2 CO2/ CH4 H2/CO2 

TR-PBOIs           

APAF8-DAM2 215.3 222.1 36.3 8.0 172.8 4.8 4.55 21.6 36.0 1.29 

APAF5-DAM5 243.4 286.9 53.3 12.6 269.5 8.3 4.22 21.3 32.5 1.06 

APAF2-DAM8 243.4 308.6 59.8 15.2 318.1 10.2 3.93 20.9 31.3 0.97 

APAF8-ODA2 112.4 105.5 12.7 2.69 63.9 1.38 4.73 23.8 46.3 1.65 

APAF5-ODA5 93.2 86.8 10.8 2.16 57.0 1.15 4.97 26.4 49.7 1.52 

APAF2-ODA8 66.8 60.8 6.88 1.35 38.5 0.73 5.08 28.4 52.9 1.58 

HAB8-DAM2 113.1 122.2 16.2 3.6 91.2 2.6 4.54 25.5 34.9 1.34 

HAB5-DAM5 176.8 203.0 32.0 7.5 185.2 5.7 4.24 23.6 32.8 1.10 

HAB2-DAM8 197.9 299.1 59.8 15.3 334.4 11.8 3.91 21.9 28.3 0.89 

HAB8-ODA2 70.8 71.2 8.4 1.73 46.0 1.12 4.86 26.6 41.1 1.55 

HAB5-ODA5 59.1 55.1 5.9 1.14 33.2 0.71 5.16 29.0 46.8 1.68 

HAB2-ODA8 59.6 55.8 5.5 1.0 29.3 0.57 5.45 29.2 51.8 1.90 

TR-PBOs 

APAF10 207.5 179.9 29.4 5.2 111.8 2.4 5.60 21.4 45.8 1.61 

HAB10 84.6 86.5 10.8 2.2 59.0 1.6 4.80 26.3 36.5 1.47 

PIs           

DAM10 267.2 369.8 79.1 20.7 432.1 16.5 3.83 20.9 26.1 0.85 

ODA10 43.8 38.3 3.55 0.63 19.3 0.35 5.65 30.7 55.0 1.98 
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Figure 3-5 Correlation of fractional free volume (black symbols) of TR-PBOI membranes with 

CO2 permeability (blue symbols) and diffusivity (red symbols) (a) as a function of DAM; 

APAF-DAM (■), HAB-DAM (□), and (b) as a function of ODA. APAF-ODA (●), HAB-

ODA(○). 
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The permeability and ideal selectivity of the membranes to CO2, O2, N2, and CH4 are 

plotted as a function of mole fraction of non-TR-able diamines in Figure 3-6. Similar to the 

observation for CO2 (Figure 3-5), the addition of DAM improved permeability to all gas species 

due to an increase in FFV. Furthermore, APAF-based TR-PBOI membranes were more 

permeable to gases than those with HAB; however, these difference became less noticeable 

when the content of non-TR-able diamines increased.  

    In terms of ideal selectivity, increasing the mole fraction of DAM led to a decrease in 

ideal selectivity for all gas pairs (Figure 3-6(b)), while in the case of ODA, ideal selectivity 

increased along with the mole fraction of ODA (Figure 3-6(d)). The presence of bulky methyl 

side groups in DAM decreased the packing efficiency between polymer chains, which 

facilitated gas diffusion, but caused the loss of sieving functionality to separate gases. In 

contrast, the higher electro-negativity of ODA (ether bridging group) increased the strength of 

chain interactions, thus enhancing the selectivity of the membranes for gas pairs.47, 50  
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Figure 3-6 (a) Gas permeability and (b) ideal selectivity of TR-PBOI membranes containing 

APAF-DAM (closed symbols) and HAB-DAM (open symbols), and (c) gas permeability and 

(d) ideal selectivity of TR-PBOI membranes containing APAF-ODA (closed symbols) and 

HAB-ODA (open symbols). 

 

Trade-off relationships between the permeability and selectivity of all TR-PBOI 

membranes are shown in Figure 3-7, along with those for a few typical commercially available 
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polymeric membranes for comparison (e.g. Matrimid, PSF, CA, and TB-bisA-PC).51 As shown 

in Figure 3-7(a), all the in-house synthesized TR-PBOI membranes displayed better CO2/CH4 

separation performance than the commercial polymers. Furthermore, most of the TR-PBOI 

membranes exceeded the 1991 Robeson upper bound, while only slightly lower than the 2008 

upper bound, indicating their potential application in natural gas sweetening. In the case of 

CO2/N2 separation, as shown in Figure 3-7(b), the TR-PBOI membranes had moderate CO2/N2 

selectivities compared to the commercial polymers; however, the CO2 permeabilities of the TR-

PBOI membranes were higher than those of commercial polymers. It was noted that the 

improvement in CO2/CH4 separation performance of TR-PBOI membranes compared to other 

commonly used polymeric membranes was greater than the improvement in CO2/N2 separation 

performance. It was known that the exceptional separation performance of TR polymers was 

mainly derived from its fine-tuned cavity size and micro-porosity. As such, the mass transfer 

within the TR polymer matrix was largely dominated by its high diffusivity. Therefore the 

permeability improvement for the gas molecules with smaller kinetic diameters such as N2 

(3.64 Å ) was much more pronounced than those with larger kinetic diameters such as CH4 (3.8 

Å ), when comparing TR-PBOI membranes with other conventional polymeric membranes. 

Consequently the improvement in CO2/CH4 ideal selectivity was much greater than that of the 

CO2/N2 ideal selectivity for the same comparison, as evidenced in Figure 3-7, where the 

CO2/CH4 data points of the TR-PBOI membranes were much closer to the 2008 Robeson upper 

bound than the CO2/N2 data points of the TR-PBOI membranes.  

TR-PBOIs prepared in this work underwent a thermal treatment process above Tg. As a 

result, a rigid main polymer chain was achieved, which was sufficient to resist the plasticization 
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and physical aging. The major application for TR-PBOI membranes was carbon capture from 

post-combustion flue gases, where the pressure was only slightly above atmosphere, thus the 

plasticization phenomenon was unlikely to take place in this case. In addition, the CO2 

permeability of polymer materials is of the utmost importance to determine the CO2 capture 

cost, considering the huge volume of flue gas to be processed [3].  

As such the TR-PBOI membranes fabricated in this study, which have exceptional CO2 

permeability and feasibility to industrial implementations, are choice candidates for post-

combustion CO2 capture.   
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Figure 3-7  Robeson plot of (a) CO2/CH4 and (b) CO2/N2 for different TR-

PBOI membranes. 1991 and 2008 Robeson upper bounds  along with benchmark polymers 

were included for comparison.[33, 34, 51] (1) APAF2-ODA8, (2) APAF5-ODA5, (3) APAF8-

ODA2, (4) APAF10, (5) APAF8-DAM2, (6) APAF5-DAM5, (7) APAF2-DAM8, (8) HAB2-

ODA8, (9) HAB5-ODA5, (10) HAB8-ODA2, (11) HAB10, (12) HAB8-DAM2, (13) HAB5-

DAM5, (14) HAB2-DAM8. 

 

 Conclusions 

In this work, TR-PBOI membranes with structurally different TR-able and non-TR-able 

diamines were synthesized to study the relationship between the chemico-physical 

characteristics of TR-PBOI membranes and their mechanical and gas transport properties.  

The study revealed a strong relationship between chain rigidity and thermal conversion 

behavior (percentage conversion). This could guide optimization of thermal treatment 
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protocols. The use of structurally different diamines had a great influence on the mechanical 

properties of the TR-PBOI membranes. In terms of TR-able diamines, HAB-containing TR-

PBOI membranes exhibited higher mechanical strength than those with APAF (containing 

bulky 6F side groups) due to the better chain packing efficiency of HAB. The addition of non-

TR-able diamines such as DAM and ODA greatly enhanced the mechanical properties of TR-

PBOI membranes, especially in the case of ODA, where the presence of a rotational ether group 

substantially improved chain packing efficiency. As a result, TR-PBOI membranes showed a 

significant improvement in mechanical strength relative to their TR-PBO counterparts, 

especially in the HAB-ODA series (up to 70% improvement in tensile strength and elongation 

at break). 

In terms of gas separation performance, TR-able APAF offered a higher FFV, and thus 

higher gas permeability than HAB due to the presence of bulky 6F groups in APAF. The 

additional non-TR-able diamines functioned mainly as chain packing disruptors, especially in 

the case of DAM with bulky methyl groups, whereas for ODA, the rotational ether group 

increased the flexibility of the polymer chains, thus lowering FFV and gas permeability. 

Appropriate selection of TR-able and non-TR-able diamines resulted in excellent gas 

separation properties (CO2 permeability over 300 Barrer and CO2/N2 ideal selectivity above 

20); both of these values are higher than the values reported for the corresponding TR-PBO 

membranes. 
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 Introduction 

Since the first report of the membrane-based separation concept by Graham in 1866[1], 

membranes have been developed and utilized on an industrial scale for air separation, hydrogen 

recovery, and hydrocarbon/light gas separation. The realization that CO2 emitted by fossil fuel 

combustion is a major greenhouse gas, and that global warming is an urgent issue worldwide, 

has prompted research into CO2 removal not only from the atmosphere and natural gas but also 

from flue gas, for carbon capture and storage (CCS).  

Membrane technology is attractive in terms of large industrial scale separation, possibility 

to improve efficiency, and cost effectiveness[2]. Note that newly built power plants need to 

achieve 90% CO2 capture with no more than 35% increase in the cost of electricity[3]. Three 

strategies, combined with different separation processes, can be applied for CO2 capture in 

power plants: (1) oxy-fuel combustion, using air separation to produce oxygen enriched gas 

for the combustion process, resulting in an exhaust rich in CO2; (2) CO2 separation from syngas 

prepared by coal gasification and the water gas shift (WGS) process (H2/CO2 separation); (3) 

post-combustion capture, CO2 separation from flue gas composed of mainly CO2 and N2 at 

relatively low temperature and pressure. In post-combustion capture, high gas permeability and 

flux in membrane materials are more important than selectivity, provided the selectivity of 

CO2/N2 is above 20. In addition, if CO2 flux is more than 3,000 gas permeation unit (GPU), 

CO2 capture costs can be reduced below $20 per ton of CO2 capture without a feed 

compressor[4]. 

Membranes are fabricated as thin-film composites, spiral-wounds, or hollow fibers in a 

file:///C:/Users/jo.hye/Dropbox/Hye%20Jin%20Jo%20Thesis%20Ph%20D/Final%20Draft/Draft%202%20_Version%20of%20UVa/(5)Chapter%204%20_UVa.docx%23_ENREF_1
file:///C:/Users/jo.hye/Dropbox/Hye%20Jin%20Jo%20Thesis%20Ph%20D/Final%20Draft/Draft%202%20_Version%20of%20UVa/(5)Chapter%204%20_UVa.docx%23_ENREF_2
file:///C:/Users/jo.hye/Dropbox/Hye%20Jin%20Jo%20Thesis%20Ph%20D/Final%20Draft/Draft%202%20_Version%20of%20UVa/(5)Chapter%204%20_UVa.docx%23_ENREF_3
file:///C:/Users/jo.hye/Dropbox/Hye%20Jin%20Jo%20Thesis%20Ph%20D/Final%20Draft/Draft%202%20_Version%20of%20UVa/(5)Chapter%204%20_UVa.docx%23_ENREF_4


 

111 

 

module. Generally, hollow fiber membranes are industrially applicable due to their high 

packing density, i.e., high membrane area per unit volume. To prepare hollow fiber membranes, 

the most important requirement is the continuous fabrication of a thin and defect-free top-layer 

(typically < 0.2 μm), so as to reduce operation cost by increasing gas flux. Manufacturing 

membranes with good mechanical properties, ensuring no mechanical failure or membrane 

defect, is a major obstacle to commercialization of highly permeable materials. Furthermore, 

polymeric membranes still need to overcome some challenges such as plasticization resistance 

and physical aging tolerance for long-term, efficient process operation [5]. 

Several strategies have been developed to design high performance polymeric materials 

for gas separation, surpassing current limitations of physical and transport properties. Based 

on the ‘solution-diffusion’ mechanism which governs transport of small gases through 

polymers, one way is to enhance the diffusive pathways by controlling pore size and free 

volume[6] and another is to increase chemical interaction between the targeted gas molecule 

and polymers[7]. 

In order to increase free volume between polymer chains, many researchers have 

introduced bulky side groups or created an intrinsically porous rigid backbone in the main chain 

structure[8-10].The introduction of a non-coplanar structure into polymer chains also prevents 

chain packing and alignment. A spiro-centre is a non-coplanar structure composed of two 

adjacent rings orthogonal to one another, with a tetrahedral bonding atom[11]. The twisted 90o 

angle of this structure restricts polymer chain packing and inter-chain interactions. Over the 

past few years, several spiro-center-containing polyimides with excellent solubility and 
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thermal stability have been developed[12] by synthesizing diamines and dianhydrides[13-15] 

with a spiro-center[16-18]. 

Budd and McKeown synthesized organic-soluble polymers of intrinsic microporosity 

(PIMs) composed of a ladder-type pattern, constructed using a dibenzodioxane-forming 

reaction, with a 90o kinked spiro-center in a repeating unit[19]. These ladder-like polymers 

have an unusually high internal surface area and therefore show superior gas permeability, 

because the ladder-like structures do not stack regularly[9, 20]. The first reported soluble PIM 

(PIM-1) had a Brunauer-Emmett-Teller (BET) surface area of 850 m2/g; various subsequent 

variations of PIMs have resulted in BET surface areas up to 1760 m2 /g[21]. Recently, two 

types of hydroxyl-functionalized polyimides with intrinsic microporosity were synthesized and 

shown to be good candidates for gas separation applications [22]. 

Thermally rearranged (TR) polymers also have extraordinary microporous properties due 

to the presence of microcavities formed during thermal rearrangement of the precursor polymer. 

In the solid state, the well-packed polyimide precursors are converted into heterogeneous 

aromatic rigid-rod polymers, providing free space in the polymer matrix. The microcavities 

can be tuned for transport, storage, and separation of large gas molecules[6, 23-26] as well as 

smaller gas molecules[27], or even ions such as protons and acid molecules[6].The most 

permeable TR polymer obtained an incredible increment of fractional free volume of up to 96% 

during the thermal rearrangement process from hydroxyl polyimide, HPI[28]. 

Although microporous polymer materials possess superior surface area, poor mechanical 

properties and low elongation are critical issues in polymer processing. TR polymers exhibit 
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high tensile strength; however, they show low elongation at break (< 5%) and are brittle after 

thermal treatment at high temperatures. Recently thermally cross-linked polyimides[29], 

thermally cross-linked PIM-1[30] and co-polyimides grafted with thermally labile beta-

cyclodextrin (CD) side groups[31] have been suggested, but there still remains a concern about 

the brittleness after thermal treatment. Therefore, it is important to develop polymer materials 

for gas separation and carbon capture with high free volume coupled with high mechanical 

strength and elongation at break, which is regarded as a challenging task as these two properties 

are contradictory to each other. 

Here, we report on new and mechanically robust thermally rearranged polybenzoxazoles 

with a spirobisindane moiety (spiroTR-PBOs). After synthesizing a bulky and very rigid 

bis(amino)phenol monomer containing a spirobisindane moiety, we prepared spiroTR-PBOs 

and characterized their physical and mechanical properties along with their gas transport 

properties. We also performed molecular dynamic simulation studies of spiroTR-PBO 

membranes to gain further insight into their molecular behavior. 
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 Experimental section 

4.2.1 Materials 

Solvents and reactants were of reagent-grade quality and used without further purification. 

Bisphenol-A, 99% anhydrous N-methyl-2-pyrrolidone (NMP),methanesulfonic acid, 45% 

nitric acid, hydrazine monohydrate, and palladium 10 wt% on activated carbon were purchased 

from Sigma-Aldrich (St. Louis, USA). 4,4’-Hexafluoroisopropylidene diphthalic anhydride 

(6FDA), 3,3′,4,4′-bisphenyltetracarboxylic dianhydride (BPDA), 4,4'-(4,4'-

isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA), and 1,2,3,5-

benzenetetracarboxylic anhydride (PMDA) were purchased from Daikin Industries, Ltd. 

(Osaka, Japan). The monomers were dried at 160 or 120°C under reduced pressure for 12 hr 

before use. 

 

4.2.2 Synthesis of Monomer 

Spirobisindane-containing bis(amino)phenol was synthesized according to methods 

reported in the literature[32, 33]. Scheme 1shows the synthesis of monomer. 

 3,3,3’,3’-Tetramethyl-1,1’-spirobisindane-6,6’-diol (1) 

A mixture of bisphenol-A (200 g) and methanesulfonic acid (10 g) was heated at 140°C for 

5 h leading to a molten reaction mixture, which was poured into 2 L of deionized water under 

constant stirring. The precipitate was filtered and rinsed extensively with water. The dried crude 

material was crystallized from aq. ethanol (60 g, 30%, mp: 216–218oC).  
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 3,3,3’,3’-Tetramethyl-1,1’-spirobisindane-5,5’dinitro-6,6’-diol (2) 

HNO3 (45%) (8 mL) was added dropwise to 2 g of crystallized material 1 (2 g, 6.48 mmol) 

at 0°C. The semisolid yellow mixture was stirred overnight. Water was added and the solid was 

filtered, washed with water, filtered, and desiccated, then chromatographed on silica gel using 

a gradient of hexane/ether (start 90:10, finish 70:30), (0.954 g, 37%). 1H NMR (400 MHz, 

DMSO) δ) 10.59 (s, 1H), 7.91 (s, 1H), 6.54 (s, 1H), 2.42 (d, J = 13.2 Hz, 1H), 2.29 (d, J = 13.2 

Hz, 1H), 1.44 (s, 3H), 1.37 (s, 3H); HR-MS calcd for C21H22N2O6 398.1477, found 398.1490. 

 3,3,3’,3’-Tetramethyl-1,1’-spirobisindane-5,5’diamino-6,6’-diol (3) 

The yellow solid 2 (10 g) was dispersed in ethanol (200 mL) followed by mixing with Pd/C 

(0.8 g), which was heated to reflux. Then, N2H4-H2O (80%, 20 mL) was added dropwise to the 

hot solution. After refluxing for 10 h, the precipitate was taken off by filtration and the solution 

was cooled to room temperature, 200 mL of water was added, and the white precipitate was 

collected. The solid was recrystallized in ethanol and dried under vacuum, and finally white 

powder 3 was obtained (9.4 g, 96%).1H NMR (400 MHz, DMSO) δ ) 8.66 (s, 2H), 6.31 (s, 2H), 

6.03 (s, 2H), 4.31 (s, 4H), 2.15 (d, J = 12.9 Hz, 2H), 1.99 (d, J = 12.9 Hz, 2H), 1.25 (s, 6H), 

1.20 (s, 6H); HR-MS calcd for C21H26N2O2 338.20, found 338.14 
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Scheme 4-1 Preparation of spirobisindane-containing hydroxyl polyimides (spiroHPIs) by 

azeotropicimidization and their thermally rearranged polybenzoxazoles (spiroTR-PBOs) 
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4.2.3 Synthesis of spiro-hydroxyl polyimides via poly(amic acid)  

A two-step azeotropic imidization process was used to obtain spiro-hydroxyl polyimide 

(spiroHPI) powders (Scheme 1) as described in our previous studies[26, 28].All pre-treated 

chemicals and glassware were placed in a glove box and purged with dried nitrogen to protect 

monomers from moisture. 3 (10 mmol) as a diamine was dissolved in a 250 mL three-neck 

round-bottomed flask filled with NMP (30 mL). After stirring for 1 h under a nitrogen 

atmosphere, 10 mmol of a dianhydride (6FDA, BPDA, PMDA, or BPADA) was slowly added 

to the solution followed by stirring for 3 h in an ice bath, which induced the spontaneous ring-

opening reaction of dianhydride with diamine. This process yielded a yellowish spirobisindane-

containing hydroxyl poly(amic acid) (spiroHPAA) solution as an intermediate of polyimide. A 

round-bottomed flask containing intermediate spiroHPAA solution in NMP was moved into an 

oil bath with a temperature controller and connected to a Dean-Stark trap with a water-

circulated condenser. o-Xylene (30 mL) as an azeotropic agent was added to the solution, which 

was stirred vigorously and heated. The oil bath was heated slowly to 180°C. While o-xylene 

was kept refluxing for 6hr, water was separated by condensation in the trap. The resulting 

brownish solution was cooled to room temperature, precipitated in distilled water, and then 

dried at 150°C for 12 h. 

 6FDA-based hydroxy polyimide containing spirobisindane (4a)  

1H NMR (300 MHz, DMSO-d6): 9.62 (s, 2H, OH), 8.14 (d, 2H, J=8.0 Hz), 7.96 (d, 2H, 

J=8.0 Hz), 7.76 (s, 2 H), 7.16 (s, 2 H), 6.64(s, 2H), 2.48 (d, 4H, J = 12.9 Hz), 1.35(s, 6H), 

1.30(s, 6H). FT-IR (film): ν(-OH) at 3460 cm-1, ν(C-H) at 2950 cm-1, imide ν(C=O) at 1786 

and 1720 cm-1, imide ν(C-N) at 1380 cm-1. Molecular weight: Mw = 69,600, Mn = 21,500 with 
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a polydispersity of 3.5. 

 PMDA-based hydroxy polyimide-containing spirobisindane (4b) 

1H NMR (300 MHz, DMSO-d6): 9.75 (s, 2H, OH), 8.34 (s, 2H,), 7.22 (s, 2H), 6.51 (s, 2 

H), 2.49 (d, 4H, J = 12.9 Hz), 1.35(s, 6H), 1.30(s, 6H). FT-IR (film): ν(-OH) at 3395 cm-1, ν(C-

H) at 2939 cm-1, imide ν(C=O) at 1778 and 1724 cm-1, imide ν(C-N) at 1377 cm-1. Molecular 

weight: Mw = 59,100, Mn = 16,100 with a polydispersity of 3.6. 

 BPDA-based hydroxy polyimide-containing spirobisindane (4c) 

1H NMR (300 MHz, DMSO-d6): 9.70 (s, 2H, OH), 8.41 (d, 2H, J=8.0 Hz), 8.35 (s, 2H), 

8.06 (s, 2H), 7.19 (s, 2H), 6.51(s, 2H), 2.48 (d, 4H, J = 12.9 Hz), 1.35(s, 6H), 1.30(s, 6H). FT-

IR (film): ν(-OH) at 3398 cm-1, ν(C-H) at 2950 cm-1, imide ν(C=O) at 1778 and 1712 cm-1, 

imide ν(C-N) at 1380 cm-1. Molecular weight: Mw = 104,000, Mn = 26,200 with a 

polydispersity of 3.9. 

 BPADA-based hydroxy polyimide-containing spirobisindane (4d) 

1H NMR (300 MHz, DMSO-d6): 9.58 (s, 2H, OH), 7.89 (s, 2H), 7.46 (d, 10H), 7.18 (d, 

4H), 6.46(s, 2H), 2.48 (d, 4H, J = 12.9 Hz), 1.35(s, 6H), 1.30(s, 6H). FT-IR (film): ν(-OH) at 

3425 cm-1, ν(C-H) at 2939 cm-1, imide ν(C=O) at 1778 and 1716 cm-1, imide ν(C-N) at 1380 

cm-1. Molecular weight: Mw = 94,600, Mn = 24,000 with a polydispersity of 3.9.  

 

4.2.4 Preparation of spiroTR-PBO membranes  

SpiroHPIs were dissolved in 20 wt% NMP solution and cast onto clean glass plates after 

filtering with a 10 μm pore size glass filter. The glass plates were placed in a vacuum oven and 
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slowly heated from 60 to 250oC, with a 1 hr hold at 100, 150, 200, and 250oC to evaporate 

solvent. The yellow membranes were removed in a hot water bath, washed with deionized 

water, and dried at 120oC for 12 hr. Membranes (5 × 5 cm) were placed in a muffle furnace 

with a Eurotherm controller, heated up to 300oC at a rate of 5oC/min, and maintained at this 

temperature for 30 min in order to fully imidize the membranes. To obtain fully converted 

polybenzoxazoles from spiroHPIs, a further thermal treatment was performed at 400, 425, or 

450oC depending on the chemical structure of each spiroHPI. 

Thermal protocols for spiroTR-PBO membranes were determined by isothermal TGA 

studies to obtain 100% conversion from spiroHPIs to spiroTR-PBOs. The specific thermal 

protocols for each membrane will be discussed later. Samples were coded as spiroHPI-xx or 

spiroTR-PBO-xx where xx indicates the type of anhydride (6F, PM, BP or BPA). 

 

4.2.5 Measurements 

A novel synthesized bis(amino)phenol containing spirobisindane monomer and several 

spiroHPI structures were confirmed by 1H nuclear magnetic resonance (1H-NMR) spectra 

recorded on a Mercury Plus 300 MHz spectrometer (Varian, Inc., Palo Alto, CA, USA). 

SpiroHPIs and spiroTR-PBO structures were confirmed by 13C nuclear magnetic resonance 

(13C-NMR) spectra in a solid state using a 500 Hz, Bruker Avance II (Bruker Biospin Inc., 

Billerica, MA, USA). Molecular weight of each synthesized spiroHPI was measured by gel 

permeation chromatography (Waters GPC system, Milford, MA, USA). Thermo-gravimetric 

analysis (TGA) coupled with mass spectroscopy (MS) was used to confirm thermal 
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rearrangements and rearrangement temperatures using a TGA Q50 instrument (TA Instrument, 

DE, USA) at a heating rate of 10 oC/min under high purity nitrogen purging with a 

Thermostar™ GSD 301T (Pfeiffer Vacuum GmbH, Asslar, Germany).  

Mechanical properties of spiroHPIs and spiroTR-PBOs were measured using a Universal 

Testing Machine, UTM (AGS-J, Shimadzu, Kyoto, Japan) with specimens prepared according 

to ASTM D638-Type5 recommendations. At least four specimens of each sample were 

measured and the standard deviation from the mean was less than ± 10%. Wide-angle X-ray 

diffractometry (WAXD) (Rigaku Denki D/MAX-2500, Rigaku, Japan) provided the 

intermolecular distances of the spiroHPI precursors and spiroTR-PBO membranes. Sorption 

characteristics with respect to nitrogen were measured at 77 K using a surface area and 

porosimetry analyzer (ASAP 2020, Micrometrics Instrument Corp., Norcross, GA, USA) after 

degassing finely ground samples at 300oC for 6 h. The fractional free volume (FFV, Vf), which 

is an important determinant of transport behavior through polymer membranes, was calculated 

from the densities measured using a Sartorius MS02255-DU (Sartorius AG, Goettingen, 

Germany) balance with a density kit and buoyancy method using 2,2,4-trimethylpentane as 

immersion medium as follows 

 𝑉0 = 1.3𝑉w   (4-1) 

 𝑉 =
M

ρ
   (4-2) 

 𝑉f =
𝑉−𝑉0

𝑉
   (4-3) 

Where V is the molar volume of the polymer (cm3/mol) derived from the density  (g /cm3) 
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and the molar mass of the repeat unit M (g/mol). Vwis the van der Waals molar volume based 

on Bondi’s group contribution theory. 

Gas permeation properties were measured using the timelag method with a lab-made 

instrument for He (0.26nm), H2 (0.29 nm), CO2 (0.33nm), O2 (0.35 nm), N2 (0.36nm), and CH4 

(0.38nm) at a feed pressure of 760Torrdownstream pressure in a fixed chamber volume was 

increased from 0 to 10Torr and gas permeability coefficientsand ideal gas selectivity were 

calculated by the following equations: 

 𝑃 = 𝐷 ∙ 𝑆 =
273.15×VL

76×𝑃2AT
(

d𝑃1

dt
)   (4-4) 

 α𝐴/𝐵 =
𝑃𝐴

𝑃𝐵
=

𝐷𝐴

𝐷𝐵
∙

𝑆𝐴

𝑆𝐵
= α𝐴/𝐵

D ∙ α𝐴/𝐵
S    (4-5) 

Here, P (Barrer) is the gas permeability, V (cm3) is the downstream chamber volume, L 

(cm) is the thickness of the membrane, P2 (cmHg) is upstream pressure (when downstream 

pressure is sufficiently low as to be negligible), T (K) is temperature, A (cm2) is the effective 

area of membraneand dP1/dt is the rate of the pressure rise in downstream chamber at steady 

state. αA/B is the ideal gas selectivity and also defined as the product of diffusion selectivity 

(αD
A/B) and solubility selectivity(αS

A/B).   

The sorption isotherms of small gases into spiroTR-PBO-6F and spiroHPI-6F were 

measured with a pressure decay method at pressures up to around 20 atm depending on the 

penetrate gases.[34] The gas solubility was calculated from the pressure decay using the 

equation of state. A compressibility factor and a fugacity coefficient were introduced to apply 

the equation of state to real gas molecules. Solubility measurement was performed in the order 
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of H2, O2, N2, CH4, and CO2 to prevent plasticization effect due to CO2. The sorption 

measurement was performed at 35°C in a water bath. 

Molecular dynamic (MD) simulations were carried out with a time step of 1.0 fs to 

equilibrate the cells and obtain the final stable structures. The Berendsen algorithm set to a 

decay constant of 0.1 ps was used to control the temperature and pressure of each cell. Specific 

MD simulation procedures were as follows: (1) a NPT (a constant particle number, pressure 

and temperature) MD simulation at 400 K and 1 bar for 50 ps, (2) a NPT MD simulation at 298 

K and 1 bar for 50 ps, (3) a NVT (a constant particle number, volume and temperature) MD 

simulation at 298 K for 10 ps, (4) a NPT MD simulation at 298 K and 10000 bar for 50 ps, (5) 

a NVT MD simulation at 600 K for 20 ps, (6) a NVT MD simulation at 298 K for 20 ps and 

(6) a NPT MD simulation at 298 K and 1 bar for 50 ps. Simulations (4) – (7) were repeated 

until the simulated density and density changing rates had converged to within 3%. Finally, a 

NVT MD simulation was performed at 298 K for 10 ps to produce the spiroTR-PBO models. 

The Ewald summation method was used to calculate non-bond interactions (electrostatic and 

van der Waals) with an accuracy of 0.01 kcal /mol[27]. 
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 Results and Discussion 

4.3.1 Synthesis of monomer, spiroHPIs and spiroTR-PBO membranes  

1H-NMR results of monomer 3 and spiroHPIs showed that the monomer and spiroHPIs 

were successfully synthesized (Figure 4-1). Hydroxyl polyimides rearranged to 

polybenzoxazole by decarboxylation, induced by thermal treatment in the temperature range 

350–450 oC[6, 24, 25, 28, 35, 36]. Molecular weights of spiroHPIs ranged between 60 and 

100 kDa (Table 4-1). Solubilities of spiroHPIs were very similar to HPIs.  

 

Figure 4-1 Typical 1H-NMR of (a) 3,3,3’,3’-Tetramethyl-1,1’-spirobisindane-5,5’diamino-
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6,6’-diol monomer and (b) spiroHPI-6F. 

Table 4-1 Molecular weight and solubility of precursor spiroHPIs 

Polymer Mn Mw 
Solubility/Solventa 

NMP DMAc DMSO THF Acetone MeOH EtOH 

spiroHPI

-6F 
19 700 69 600 ++ ++ ++ ++ ++ + + 

spiroHPI

-PM 
16 100 59 100 ++ ++ ++ + ++ - - 

spiroHPI

-BP 
26 200 104 000 ++ ++ ++ + ++ - - 

spiroHPI

-BPA 
24 000 64 600 ++ ++ ++ ++ ++ + + 

a NMP: N-methylpyrrolidinone; DMAc: N,N-dimethylacetamide; DMSO: dimethyl sulfoxide; THF: tetrahydrofura; 

MeOH: methanol; EtOH: ethanol; The solubility was determined at 5% polymer content.+ +: soluble; the solid 

polymer was completely dissolved in the solvent to afford a clean, homogenous solution.+: partially soluble; the 

solid polymer was partially soluble but was completely dissolved in solvent by heating.  -: insoluble; the solid 

polymer did not dissolve in the solvent. 

 

A typical thermogravimetric diagram of spiroHPI-6F is shown in Figure 4-2(a). 

Decarboxylation of spiroHPIs was observed by TG-MS in the range 350500 oC. Degradation 

of the polymers occurred when they were heated over 500 oC. Mass spectroscopy clearly 

revealed CO2 emission in the first weight loss region, indicating a decarboxylation reaction, 

and H2O emission by thermo-degradation.  

TGA isothermal analysis was performed to determine the thermal treatment conditions for 

spiroHPIs in order to obtain completely rearranged spiroTR-PBO membranes. The 

understanding of thermal treatment conditions is fundamental because thermal treatment 

conditions affect the cavity size and free volume of the polymer.[6, 26]Typical examples of the 

TGA isotherms of spiroHPI-6F at 400, 425, 450 oC for 3 hr are provided in Figure 4-2(b). If 

spiroHPI-6F isthermally converted to spiroTR-PBO-6F, the theoretical weight loss should be 

11.8% based on the weight of one repeating unit of the polymer molecule. The 11.8% weight 
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loss line crossed the 425 oC and 450 oC isothermal curves and matched well with 120 and 15 

min, respectively. In this study, we selected a temperature of 425 oC and a treatment time of 2 

hr to obtain full conversion to spiroTR-PBO-6F. Thermal treatment conditions were 

determined in a similar manner for other fully converted TR-PBOs; the results are summarized 

in Table 4-2. 

 

Figure 4-2 (a) Typical thermogravimetric analysis combined with mass spectroscopy (TG-MS) 

of spiroHPI-6F, and (b) isothermal TGA analysis of spiroHPI-6F at different temperatures 

 

Typical solid-state 13C NMR spectra of spiroHPI-6F and spiroTR-PBO-6F are presented in 

Figure 4-3. For the thermally rearranged polymer, peaks corresponding to the benzoxazole ring 

are present at 163 ppm and 107 ppm, consistent with the values reported in the literature[37]. 
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Figure 4-3 Typical 13C-NMR at power state of (a) spiroHPI-6F and (a) spiroTR-PBO-6F. 
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Table 4-2 Theoretical weight loss of spiroHPIs and their thermal treatment conditions 

determined by isotherm TGA analysis. 

Polymer 

Thermal treatment conditions 

Theoretical weight 

loss  

(%) 

Temperature* 

(oC) 

Time* 

(h) 

spiroHPI-6F 11.8 425 2.0 

spiroHPI-PM 16.9 425 1.5 

spiroHPI-BP 14.8 450 3.0 

spiroHPI-BPA 10.7 400 1.0 

*Temperature and time to achieve the theoretical weight loss. 

 

Figure 4-4 shows the ATR-FTIR spectra of four spiroHPIsandspiro TR-PBOs. All the 

spiroHPIs showed absorption bands at 1788 cm-1 (symmetric C=O stretching), 1718 cm-1 

(asymmetric C=O stretching), and at 1373 cm-1 (C–N stretching), confirming the presence of 

imide groups. There was also a broad hydroxyl absorption band between 3200 and 3600 cm-1 

and the methyl group of spirobisindane was confirmed in a band between 2800 and 3000 cm-1 

(C–H stretching). No amide carbonyl peak at 1650 cm-1 was present, indicating complete 

imidization during polycondensation. SpiroTR-PBOs can be identified by emergent 

benzoxazole absorption bands at 1059 cm-1 and 1558 cm-1 (C=N stretching), and the 

disappearance of the broad absorption band between 3200 cm-1 and 3600 cm-1 which was 

associated with –OH[35, 36].For spiroHPI-6F and spiroHPI-BPA which have flexible linkage 

in the polymer chains, the –OH bands and C=O bands almost completely disappeared on 

thermal treatment, indicating that the hydroxy polyimide structures of spiroHPIs were more or 

less fully converted to benzoxazole structures. On the other hand, the –OH bands and C=O 

bands of spiroHPI-PM and spiroHPI-BP composed of rigid polymer structures, were not fully 

eliminated. 
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Figure 4-4 ATR-IR spectra of (a) spiroHPIs and (b) spiroTR-PBOs. 
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4.3.2 Physical properties 

Changes in the physical properties of spiroHPIs to spiroTR-PBOs can also prove the 

occurrence of thermal rearrangement reactions. We noticed that the thermal conversion from 

HPI to TR-PBO was accompanied by changes in physical properties such as density, d-spacing 

between polymer chains, and surface area[24, 28]. Two hydroxyl-functional polyimides with 

intrinsic microporosity were prepared by Ma et al.[22] and named as PIM-6FDA-OH and PIM-

PMDA-OH, which showed the same structure as spiroHPI-6F and PM. These two HPIs showed 

very similar physical properties to ours, even with different membrane preparation methods. 

The physical properties of spiroHPIs and spiroTR-PBOs with different chemical structures are 

summarized in Table 4-3. It is well known that the fractional free volume (FFV) of polymer 

increases during conversion from HPIs to TR-PBOs, resulting in a direct relationship with 

permeability [38]. SpiroTR-PBOs showed up to 31% increase in fractional free volume after 

thermal rearrangement. The density of spiroTR-PBO-6F decreased from 1.27 to 1.12 g/cm3 

elevating the FFV of spiroTR-PBO-6F up to 0.27; a 31% increment in FFV compared with 

spiroHPI-6F. Note that the density of aPBO also decreased compared to that of aHPI, with a 

29% increase in FFV (FFV = 0.22)[28].SpiroTR-PBO-PM showed only a 6% increment in 

FFV due to high rigidity of spiroHPI-PM structure that restricted torsional strain to form high 

free volume. SpiroTR-PBO-BP, which contained a biphenyl bridge with a spiro-center, showed 

a 14% increment in FFV from 0.17 to 0.20. In contrast, spiroTR-PBO-BPA, which was 

prepared from BPADA, showed only a 3% increment in FFV. There might be a limitation to 

enhancing the FFV of polymers by ether linkage of BPADA due to its high chain flexibility 

that fills up and stabilizes unoccupied free volume during thermal treatment. 
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The maximum average distance between polymer chains, or the d-spacing, had the 

following rank order: spiroTR-PBO-6F (6.42 Å ) > PM (5.52 Å ) > BP (5.30 Å ) > BPA (5.25 Å ), 

which coincided well with the free volume changes. As shown in Table 4-3, the d-spacing of 

spiroTR-PBOs, except for spiroTR-PBO-BPA, increased when compared with that of the 

spiroHPIs; the d-spacing of spiroTR-PBO-BPA, which contained flexible ether linkages, 

decreased slightly.  

Table 4-3 Physical properties of precursor spiroHPIs and spiroTR-PBOs. 

Polymer 
Density 

(g/cm3) 

Va 

(cm3/mol) 

Vw 

(cm3/mol) 
FFVb 

Increment 

in FFV 

(%) 

d-spacing 

(Å ) 

BET 

surface area 

(m2/g) 

spiroHPI-6F 1.27 587 360 0.20 - 6.34 368 

spiroHPI-PM 1.18 441 280 0.21 - 5.42 377 

spiroHPI-BP 1.22 488 311 0.17 - 5.24 112 

spiroHPI-BPA 1.21 681 439 0.16 - 5.44 12 

spiroTR-PBO-6F 1.12 586 332 0.27 31 6.42 466 

spiroTR-PBO-

PM 
1.10 394 238 0.22 6 5.52 283 

spiroTR-PBO-

BP 
1.12 456 282 0.20 14 5.30 306 

spiroTR-PBO-

BPA 
1.15 640 410 0.17 3 5.25 4.7 

a Molar volume of polymers b Fractional free volume of polymer membranes by Bondi method as in eq. (3) 

 

Nitrogen adsorption (at ~77 K) is widely used to determine the surface area and nanopore 

size distribution of porous solid materials. We found that the surface area measured by BET 

nitrogen sorption measurements matched very well with the FFV increments. In this way, the 

surface area of spiroHPIs was noticeably high in the range of 100–370 m2/g, whereas it was 

only 12 m2/g for spiroHPI-BPA. HPIs usually only have a surface area of about 10 m2/g but 

after conversion to TR-PBO, the surface area increases to 500 m2/g[28]. The high surface area 

of spiroHPIs-6F, PM and BP may be attributed to their rigid, contorted structures that result in 
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inefficient chain packing, thereby maintaining the free volume. The BET surface area of PIMs 

was reported to range from 450–950 m2/g[19, 39, 40], and TR-PBOs have been reported to 

have BET surface areas of 680–800 m2/g[6, 24, 25]. 

Ether linkages in chemical structures inhibit porosity and decrease micropore volume 

because the freely movable ether moieties fill the void spaces in the polymers. After conducting 

a thermal treatment, the distance between polymer chains decreased for spiroTR-PBO-BPA, 

indicating an increasing an increase in chain packing of the polymer. 

The nitrogen adsorption-desorption isotherm curves of spiroHPIs and spiroTR-PBOs in 

Figure 4-5 are mostly type II isotherms with a hysteresis at a low P/P0 ratio, indicating 

significant micropore filling. This type of N2 adsorption behavior can be observed in 

microporous solid materials containing narrow slit-shaped pores[41].The very broad hysteresis 

of spiroTR-PBO-6F in Figure 4-5(b) is likely due to the multi-throat cavity model characteristic 

of TR polymers. SpiroTR-PBO-PM and BP exhibited similar adsorption-desorption behavior. 

The isotherms for spiroHPI-BPA and spiroTR-PBO-BPA showed low uptake, typical of a 

nonporous powder. Figure 4-5(c) represents the simulated free volume distribution in TR-PBO-

6F, which shows how free volume elements in an amorphous cell are dispersed. The size and 

distribution varied according to the type of TR-PBO. 
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Figure 4-5 N2 sorption isotherms at 77 K of (a) spiroHPI and (b) spiroTR-PBO membranes. Filled symbols are the adsorption 

isotherm whereas open symbols are the desoprtion isotherms. (c) Typical simulated free volume (as represented inblue color) 

distribution in spiroTR-PBO-6F.
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4.3.3 Mechanical properties 

The mechanical properties of materials determine their potential applications. Highly rigid 

microporous and nanoporous polymers do not usually show good mechanical properties 

because of their high porosity and free volume.The requirement for careful handling highlights 

the need for mechanically improved high free volume materials. The average tensile stength 

and elongation of the spiroTR-PBOs are summarized in Table 4-4, and the values for several 

polymeric microporous materials are also included for comparison[6, 42-44]. Surprisingly, 

spiroTR-PBOs showed high elongation at break, in the range of 15–20%, despite the thermal 

treatment at high temperatures.We hypothesized that a degree of entanglement of molecular 

chains by the kink at the spiro center reduced the elongational stress. Moreover, PIM-1 showed 

lower elongation than spiroHPIs and spiroTR-PBOs, even though it had a spiro center, because 

of relatively non torsionable benzodioxane groups with a 180odihedral angle[45].These results 

indicate that spiroTR-PBOs havegood mechanical properties despitetheir high fractional 

freevolume, compared to other microporous polymers.  

Figure 4-6 shows relationships between FFV and elongation at break of spiroHPIs and 

spiroTR-PBOs, compared with glassy materials such as TR- polymers, PIM-1 and others. 

Generally, elongation of spiroHPIs and spiroTR-PBO were as high as those of polyether imides 

and polyimides. Again, spiroTR-PBO-6F and PM showed both high free volume and high 

elongation.As shown in Figure 4-6, high free volumeglassy polymers such as PIM-1 and TR-

1 generally show low flexibility because of their rigid sturcture. Common polyimides usually 

show high elongation at break but with low FFV, exhibiting low CO2 permeability (< 10 

Barrer). 
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Figure 4-6 Relationship of elongation at break and fractional free volume (FFV) of various 

glassy polymers; spiroTR-PBOs (●), and spiroHPIs (●), spiro-bisindane-containing poly(ether 

imide)s (□) [46], polynaphthalimide (△) [47], polyimides (◇) [48,49], polyether imides 

(▽)[50], AF 2400 (▼) [44], TR-PEBO (◆) [26], PIM-1 (●) [42] and TR-1-450 (■) [6]. The 

dashed ellipse indicates spiroHPI and spiroTR-PBOs having high fractional free volumeand 

high elongation at break. Details are shown in Table 4-4. 
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Table 4-4 Mechanical properties and fractional free volume of glassy polymers. 

Sample 
Fractional Free 

Volume 

Tensile Strength 

(MPa) 
Elongation (%) References 

spiroHPI-6F 0.20 100.9± 10.8 24.7 ± 10.4 This work 

spiroHPI-PM 0.21 97.8 ± 3.7 44.4 ± 7.7 This work 

spiroHPI-BP 0.17 97.8 ± 13.8 17.7 ± 5.5 This work 

spiroHPI-BPA 0.16 91.5± 5.1 16.5 ± 1.7 This work 

SpiroTR-PBO-6F 0.27 82.3± 1.3 20.0 ± 4.0 This work 

SpiroTR-PBO-PM 0.22 79.2± 3.5 17.3 ± 3.6 This work 

SpiroTR-PBO-BP 0.19 94.4± 1.4 14.9 ± 0.5 This work 

SpiroTR-PBO-BPA 0.17 69.9± 4.4 19.7 ± 0.2 This work 

6FDA-PPD 0.21 7.04 4.9 [1] 

Poly(pheylene-co-

naphtalimide)-50 
0.14 91 4.3 [2] 

Spiro-biindane 

containing fluorinated 

poly(ether imide) 

(PEI)-8a 

0.10 41.3± 3.2 2.9± 0.3 [3] 

PEI-8b 0.16 59.6± 3.6 4.9± 1.0 [3] 

PEI-8d 0.11 38.0± 2.5 2.9± 0.5 [3] 

TR-PEBO-450-1 0.18 54 4.0 [4] 

Poly(ether imide) 

PMDA-ATFT 
0.15 112 21.0 [5] 

BTDA-ATFT 0.14 110 17.0 [5] 

6FDA-ATFT 0.19 96 19.0 [5] 

A-ODA 0.13 168 21.0 [6] 

A-MDA 0.12 112 15.0 [6] 

B-ODA 0.14 123 13.0 [6] 

C-ODA 0.15 102 8.0 [6] 

PIM-1 0.26 47.8 10.0 [7] 

TR-1-450 0.28 98 3.9 [8] 

AF 2400 0.16 26.4 7.9 [9] 
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To determine the contribution of the spiro center to elongation of the main chain, we 

conducted molecular dynamic simulations of spiroTR-PBOs. Figure 4-7 shows the angle 

distributions of spiro segments in the simulated spiroTR-PBO model in comparisonwith 

hexafluoroisopropylidene (6F) segments of TR-PBO. Afterthermal conversion (i.e., changing 

of the rotatable imidelinkages into a benzoxazole ring) from HPI, there are no flexible 

segmentsto release the external stress in TR-PBO except for the 6F segments,due to the 

coplanar propertyof the PBO ring. 

Table 4-5 Mechanical properties of spiroTR-PBOs and microporous materials reported in the 

literature. 

Membrane 

Tensile strength 

at break  

[MPa] 

Elongation  

at break 

[%] 

References 

spiroTR-PBO-6F 82.3 ± 1.3 20.0± 4.0 this work 

spiroTR-PBO-PM 79.2 ± 3.5 17.3 ± 3.6 this work 

spiroTR-PBO-BP 94.4 ± 1.4 14.9 ± 0.5 this work 

spiroTR-PBO-BPA 69.9 ± 4.4 19.7 ± 0.2 this work 

PIM-1 47.8 10.0 [42] 

TR-1-450 98 3.9 [6] 

CMS 42 0.4 [6] 

PTMSN 16.1 4.1 [43] 

AF 2400 26.4 7.9 [44] 

 

Furthermore, the limited flexibilty of the 6F segment causes poor elongation, particularly 

for processiblity, despite good tensile strength as an engineering plastic. However, introduction 

of spiro segments instead of 6F segments in the TR-PBO main chain yields a microporous 

membrane with both strength and flexibility. As shown in Figure 4-7, the spiro segments 

showed a wider angle distribution (60o–120o) than the 6F segments (100o–120o), which 

indicates that the spiroTR-PBO chain is more flexible than the TR-PBO chain.In addition, spiro 
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kink group may provide adequate entanglement between chains hindering the slippage of 

chains and increases the elongation at break. 

 

 

Figure 4-7 Angle distribution of the hexafluoroisopropylidene (–C(CF3)2–) segment in TR-

PBO (―) and spiro segments in spiroTR-PBO-6F (―). 
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Table 4-6 Summary of gas permeability coefficient (P), diffusion coefficient (D), solubility 

coeffecient (S), diffusion selectivity (αD), and solubility selectivity (αS) for spiroTR-PBO-6F, 

comparing with those of spiroHPI-6F, PIM-1 and aPBO. 

Membrane 

P 

(Barrer) 
 

Da 

(10-8 cm2/ s) 
 

Sb 

 (10-2 cm3/ cm3 

cmHg) 

 αD  αS 

N2 CH4 CO2  N2 CH4 CO2  N2 CH4 CO2  
CO2 

/N2 

CO2 

/CH4 
 

CO2 

/N2 

CO2 

/CH4 

spiroHPI-6F 5.2 4.3 102  3.7  0.8 6.3  1.4 5.3 16  1.7 7.8  11.5 3.1 

spiroTR-PBO-

6F 
30 34 675  16  5.9 29  1.9 5.7 23  1.9 4.9  12.0 4.1 

PIM-1c 92 125 2300  22 6.8 26  4.2 18 88  1.2 3.8  20.9 4.9 

aPBOd 19  12 
  

398 
 31  2.1 13  0.6 5.7 31  0.4 6.2  51.7 5.4 

a Diffusivity coefficient (D) is calculated from P =D•S.  
b Solubility coefficient (S) is measured by the sorption isotherm at 35 oC; more details summarized in Table 4-7 

and the sorption isotherm curves are illustrated on Figure 4-9.  
c Data is referred from [9].  
d Data is referred from [28]. 

 

Table 4-7 Summary of gas diffusion coefficient (D) and solubility coeffecient (S) of five gases 

for spiroHPI-6F and spiroTR-PBO-6F at 35oC and 1atm. 

Membrane 

D (10-8 cm2/ s)  S (10-2 cm3/ cm3 cmHg) 

H2 N2 O2 CH4 CO2  H2 N2 O2 CH4 CO2 

SpiroHPI-6F 98.75 3.7 11 0.8 6.3  1.6 1.4 2.0 5.3 16.3 

SpiroTR-PBO-6F 186.5 16 42.8 5.9 29  2.3 1.9 2.8 5.7 23.3 

 

4.3.4 Gas transport properties 

Single gas permeabilities of spiroHPIs and spiroTR-PBOs were obtained for six small gas 

molecules (He, H2, CO2, O2, N2, and CH4), using the time-lag method at 35oC. Changes in gas 

permeability and ideal selectivity of spiroHPIs and spiroTR-PBOs are summarized in Table 4-

8. Gas permeability of spiroTR-PBO membranes increased in the following order in terms of 
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the dianhydrides in polymers: BPADA < BPDA < PMDA <6FDA. This trend correlates with 

the increment of FFV. The most attractive result was obtained from spiroTR-PBO-6F; CO2 

permeability remarkably increased from 102 to 675 Barrer and ideal CO2/N2 selectivity also 

increased from 19 to 22. This 6-fold increase of CO2 permeability of spiroTR-PBO-6F may be 

attributed to the free volume increase during thermal rearrangement. 

When we compare the contribution to P of D and S of spiroHPI-6F and spiroTR-PBO-6F 

(Table 4-6) for N2, CO2, and CH4, in particular, changes of D were substantial whereas S did 

not change much for all three gases. Selectivity contribution can also be divided into diffusion 

selectivity and solubility selectivity according to Equation (4-5). Lower CO2/CH4 selectivity 

of spiroTR-PBO-6F than spiroHPI was due to an increase in CH4 diffusion coefficient, by the 

expansion of the fractional free volume in the polymer presumably. Higher diffusion 

coefficients of spiroTR-PBO-6F than those of aPBO resulted in 1.7 times higher gas 

permeability; however, larger free volume elements caused by the spiro-center in spiroTR-

PBO-6F resulted in a loss of selectivity for the gas pairs studied. Diffusivity of spiroTR-PBO-

6F is similar to that of PIM-1, but gas permeability of PIM-1 is much higher due to about three 

times larger S.  

Permeability of single small gases in spiroTR-PBO-6F and BP were compared with several 

glassy polymers (Figure 4-8). Two different patterns were found in gas permeabilities 

depending on FFV. For spiroTR-PBO-BP, having low FFV, the highest permeability was for 

H2, the sequence of permeabilities being H2 > He > CO2 > O2> CH4 > N2, as observed in 

polycarbonate and AF 2400 (FFV=0.16). Because gas diffusion between the smaller free 

elements is significantly restricted, kinetic diameters of gas molecules are the governing factor 
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in determining gas permeation of spiroTR-PBO-BP. SpiroTR-PBO-6F, however, having higher 

free volume, showed permeabilities in the sequence CO2> H2> He > O2 > CH4 > N2, similar to 

those in PIM-1 and PTMSP. In the larger microcavities, sorption capabilities of small molecules 

become predominant while the effect of size selection by the diffusive pathway decreases. 

Figure 4-9 shows the sorption isotherms of spiroTR-PBO-6F and spiroHPI-6F measured 

at 35 oC for five gases (H2, O2, N2,CO2 and CH4). The sorption isotherms of both polymers 

showed typical dual-mode sorption behavior for glassy polymers[51]. The gas solubility is 

generally related with the critical temperature of gas molecules, and therefore the solubility of 

CO2 shows the highest value. The increase in the solubility of spiroHPI-6F before and after 

thermal rearrangement is about 20% for CO2. This is not as crucial as the increase in the gas 

permeability, but comparable with the increase in FFV. The solubility of gas, especially for 

CO2, is very high as compared to the solubility of gases in typical glassy polymers such as PC, 

PMMA and is similar to that of PTMSP[34, 52]. 

Figure 4-10 describes gas permeability and selectivity of the four spiroTR-PBO 

membranes for CO2/CH4 and CO2/N2, compared to the so-called 2008 and 1991 upper bounds. 

SpiroTR-PBO-6F, with the highest fractional free volume, is close to the 2008 upper bound, 

with permeabilities between those of aPBO and PIM-1. Note that spiroTR-PBO-6F possesses 

features in common with both aPBO and PIM-1, in terms of the repeating unit and preparation 

method. For CO2/N2, spiroTR-6F and PM showed higher selectivity than PIM-1 and aPBO.  

Note that the high rigidity and restricted mobility of the planar backbone of spiroTR-PBO-

PM allows higher permeation of CO2 than that of spiroTR-PBO-BPA, which have lower 
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rigidity and higher mobility due to the presence of the ether linkages. In fact, spiroTR-PBO-

BPA showed similar transport properties to commercial membranes such as polycarbonate and 

polysulfone. It is obvious that the rigidity of spiroTR-PBO-BP is a little bit lower than the TR 

polymer from PM, but much higher than the TR formed from BPA. 

Table 4-8 Single gas permeabilities (P) and ideal selectivities (α) for spiroHPIs and spiroTR-

PBOs 

Membrane 

 Pa (Barrer)  αb 

 
He H2 CO2 O2 N2 CH4 

 
H2/CO2 O2/N2 

CO2/ 

CH4 
CO2/N2 

spiroHPI 

6F  107 158 102 22 5.2 4.3  1.6 4.2 23 19 

PM  152 235 240 40 10 14  1.0 4.2 17 25 

BP  45 51 24 5.8 1.2 0.96  2.1 4.8 25 20 

BPA  34 37 14 3.2 0.53 0.56  2.6 6.1 25 27 

spiroTR-

PBO 

6F  318 429 675 120 30 34  0.6 3.9 20 22 

PM  164 261 263 48 11 15  1.0 4.4 18 24 

BP  112 143 87 20 5.2 5.7  1.7 3.9 15 17 

BPA  15 19 8.8 2.1 0.45 0.53  1.9 4.7 19 22 
a Permeability measured at 35 oC; feed pressure: 760 Torr; permeation side is evacuated to below 10-5 Torr;  

1 Barrer = 10-10 cm3 (STP) cm/ (cm2 s cmHg). 
b Ideal selectivity α = P1/ P2 
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Figure 4-8 Permeability of single small gases in spiroTR-PBO-6F and spiroTR-PBO-BP with 

PTMSP [53], AF2400 [54], PIM-1 [53] and polycarbonate [55], as a function of the kinetic 

diameter of the penetrates. 
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Figure 4-9 Sorption isotherm of five gases in (a) SpiroHPI-6F, (b) spiroTR-PBO-6F, and of (c) CO2 for spiroHPI-6F and spiroTR-

PBO-6F, PMMA, PC, and PTMSP[27, 51]. 
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Figure 4-10 CO2/CH4 selectivity (top plot) and CO2/N2 selectivity (lower plot) against CO2 

permeabilityfor spiroTR-PBO membranes (red squares) plotted with the Robeson upper bound 

revised in 1991[56] and 2008[57]. Data for other glassy polymers are shown for comparison. 
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 Conclusions 

A spirobisindane-containing dihydroxyldiamine (3,3,3’,3’- tetramethyl-1,1’-spiro 

bis(indan)-5,5’diamino-6,6’-diol) and various dianhydrides were used to prepare hydroxyl-

containing polyimides, yielding so-called spiroHPIs. Precursor spiroHPIs were thermally 

treated under conditions determined by TGA isothermal analysis to obtain 100% thermally-

rearranged spiroTR-PBOs. Formation of benzoxazole during thermal rearrangement was 

confirmed by 13C-NMR and ATR-FTIR, and emission of CO2 was confirmed by TGA-MS. For 

spiroHPIs and spiroTR-PBOs, physical properties, such as fractional free volume (FFV), d-

spacing, and BET surface area, were highly dependent on the chemical structures of the 

anhydrides. For instance, the presence of a bulky side hexafluoroisopropylidene group in the 

polymer increased the FFV, while the presence of flexible ether groups in the polymer reduced 

the FFV. The spiroTR-PBOs had much better elongation at break values, even after 100% 

conversion, than TR-PBOs which do not contain spirobisindane moieties. We attributed this to 

the enhanced entanglement by spiro-center molecular angle, with around 90o angle hinges, 

compared with rigid 110o angle hexafluoroisopropylidene.  

  After thermal rearrangement, spiroTR-PBO showed increased gas permeability up to 

675 Barrer and high elongation at break around 20%.We demonstrated that 

mechanically robust spiroTR-PBO gas separation membranes could be fabricated with 

high gas separation performance, in particular for carbon capture and sequestration. 

 

References 

[1] T. Graham, On the absorption and dialytic separation of gases by colloid septa, Phil. Trans. 



 

146 

 

R. Soc. Lond., 156 (1866) 399-439. 

[2] H. Stadler, F. Beggel, M. Habermehl, B. Persigehl, R. Kneer, M. Modigell, P. Jeschke, 

Oxyfuel coal combustion by efficient integration of oxygen transport membranes, Int. J. 

Greenh. Gas Con., 5 (2011) 7-15. 

[3] J.P. Ciferno, T.E. Fout, A.P. Jones, J.T. Murphy, Capturing carbon from existing coal-fired 

power plants, Chem. Eng. Prog., 105 (2009) 33-41. 

[4] T.C. Merkel, H.Q. Lin, X.T. Wei, R. Baker, Power plant post-combustion carbon dioxide 

capture: An opportunity for membranes, J. Membr. Sci., 359 (2010) 126-139. 

[5] C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of 

carbon dioxide from power plant flue gases, J. Membr. Sci., 279 (2006) 1-49. 

[6] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. 

Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small 

molecules and ions, Science, 318 (2007) 254-258. 

[7] J. E.B., L. Sonja, J.C. Christopher, S.H. Evan, D.N. Ricahrd, L.G. Douglas, Synthesis and 

performance of polymerizable room-temperature ionic liguids as gas separation membranes, 

Ind. Eng. Che. Res., 46 (2007) 5397-5404 

[8] J. de Abajo, J.G. de la Campa, A.E. Lozano, J. Espeso, C. Garcia, Designing aromatic 

polyamides and polyimides for gas separation membranes, Macromol. Symp., 199 (2003) 293-

305. 

[9] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. 



 

147 

 

Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci., 

251 (2005) 263-269. 

[10] M. Calle, A.E. Lozano, J. de Abajo, J.G. de la Campa, C. Alvarez, Design of gas separation 

membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-

tert-butyl side groups, J. Membr. Sci., 365 (2010) 145-153. 

[11] A. Ghosh, S.K. Sen, S. Banerjee, B. Voit, Solubility improvements in aromatic polyimides 

by macromolecular engineering, Rsc Adv, 2 (2012) 5900-5926. 

[12] D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Advanced polyimide 

materials: Syntheses, physical properties and applications, Prog. Polym. Sci., 37 (2012) 907-

974. 

[13] C.H. Chou, D.S. Reddy, C.F. Shu, Synthesis and characterization of spirobifluorene-based 

polyimides, J. Polym. Sci., Part A: Polym. Chem., 40 (2002) 3615-3621. 

[14] Y.H. Kim, H.S. Kim, S.K. Kwon, Synthesis and characterization of highly soluble and 

oxygen permeable new polyimides based on twisted biphenyl dianhydride and spirobifluorene 

diamine, Macromolecules, 38 (2005) 7950-7956. 

[15] D.S. Reddy, C.H. Chou, C.F. Shu, G.H. Lee, Synthesis and characterization of soluble 

poly(ether imide)s based on 2,2'-bis(4-aminophenoxy)-9,9'-spirobifluorene, Polymer, 44 (2003) 

557-563. 

[16] S.H. Hsiao, C.Y. Yang, Synthesis and evaluation of novel polyimides derived from 

spirobichrom an diether anhydride, J. Polym. Sci., Part A: Polym. Chem., 36 (1998) 215-215. 



 

148 

 

[17] D.S. Reddy, C.F. Shu, F.I. Wu, Synthesis and characterization of soluble polyimides 

derived from 2,2'-bis(3,4-dicarboxyphenoxy)-9,9'-spirobifluorene dianhydride, J. Polym. Sci., 

Part A: Polym. Chem., 40 (2002) 262-268. 

[18] F.S. Han, M.X. Ding, L.X. Gao, Polyimides from 3,3'-dioxo-1,1'-spirodiphthalan-5,5',6,6'-

tetracarboxylic dianhydride, Polymer, 40 (1999) 3809-3813. 

[19] P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. 

Tattershall, D. Wang, Solution-processed, organophilic membrane derived from a polymer of 

intrinsic microporosity, Adv. Mater., 16 (2004) 456-459. 

[20] N.B. McKeown, B. Gahnem, K.J. Msayib, P.M. Budd, C.E. Tattershall, K. Mahmood, S. 

Tan, D. Book, H.W. Langmi, A. Walton, Towards polymer-based hydrogen storage materials: 

Engineering ultramicroporous cavities within polymers of intrinsic microporosity, Angew. 

Chem. Int. Ed., 45 (2006) 1804-1807. 

[21] B.S. Ghanem, K.J. Msayib, N.B. McKeown, K.D.M. Harris, Z. Pan, P.M. Budd, A. Butler, 

J. Selbie, D. Book, A. Walton, A triptycene-based polymer of intrinsic microposity that displays 

enhanced surface area and hydrogen adsorption, Chem. Commun., (2007) 67-69. 

[22] X.H. Ma, R. Swaidan, Y. Belmabkhout, Y.H. Zhu, E. Litwiller, M. Jouiad, I. Pinnau, Y. 

Han, Synthesis and gas transport properties of hydroxyl-functionalized polyimides with 

intrinsic microporosity, Macromolecules, 45 (2012) 3841-3849. 

[23] A.M. Foley, B.P.O. Gallachoir, J. Hur, R. Baldick, E.J. McKeogh, A strategic review of 

electricity systems models, Energy, 35 (2010) 4522-4530. 

[24] C.H. Jung, J.E. Lee, S.H. Han, H.B. Park, Y.M. Lee, Highly permeable and selective 



 

149 

 

poly(benzoxazole-co-imide) membranes for gas separation, J. Membr. Sci., 350 (2010) 301-

309. 

[25] H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, Thermally rearranged (TR) polymer 

membranes for CO2 separation, J. Membr. Sci., 359 (2010) 11-24. 

[26] M. Calle, Y.M. Lee, Thermally rearranged (TR) poly(ether-benzoxazole) membranes for 

gas separation, Macromolecules, 44 (2011) 1156-1165. 

[27] S.H. Han, H.J. Kwon, K.Y. Kim, J.G. Seong, C.H. Park, S. Kim, C.M. Doherty, A.W. 

Thornton, A.J. Hill, A.E. Lozano, K.A. Berchtoldf, Y.M. Lee, Tuning microcavities in 

thermally rearranged polymer membranes for CO2 capture, Phys. Chem. Chem. Phys., 14 

(2012) 4365-4373. 

[28] S.H. Han, N. Misdan, S. Kim, C.M. Doherty, A.J. Hill, Y.M. Lee, Thermally rearranged 

(TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas 

transport behaviors, Macromolecules, 43 (2010) 7657-7667. 

[29] A.M. Kratochvil, W.J. Koros, Decarboxylation induced cross-linking of a polyimide for 

enhanced CO2 plasticization resistance, Macromolecules, 41 (2008) 7920-7927. 

[30] F.Y. Li, Y.C. Xiao, T.S. Chung, S. Kawi, High-Performance thermally self cross-linked 

polymer of intrinsic microporosity (PIM-1) membranes for energy development, 

Macromolecules, 45 (2012) 1427-1437. 

[31] Y.C. Xiao, T.S. Chung, Grafting thermally labile molecules on cross-linkable polyimide 

to design membrane materials for natural gas purification and CO2 capture, Energy Environ. 

Sci., 4 (2011) 201-208. 



 

150 

 

[32] T. Omote, K. Koseki, T. Yamaoka, Fluorine-containing photoreactive polyimides .6. 

Synthesis and properties of a novel photoreactive polyimide based on photoinduced acidolysis 

and the kinetics for its acidolysis, Macromolecules, 23 (1990) 4788-4795. 

[33] T. Omote, H. Mochizuki, K. Koseki, T. Yamaoka, Fluorine-containing photoreactive 

polyimides .7. Photochemical reaction of pendant 1,2-naphthoquinone diazide moieties in 

novel photoreactive polyimides, Macromolecules, 23 (1990) 4796-4802. 

[34] E.S. Sanders, W.J. Koros, H.B. Hopfenberg, V.T. Stannett, Mixed gas sorption in glassy 

polymers: Equipment design considerations and preliminary results, J. Membr. Sci., 13 (1983) 

161-174. 

[35] G.L. Tullos, J.M. Powers, S.J. Jeskey, L.J. Mathias, Thermal conversion of hydroxy-

containing imides to benzoxazoles: Polymer and model compound study, Macromolecules, 32 

(1999) 3598-3612. 

[36] G.L. Tullos, L.J. Mathias, Unexpected thermal conversion of hydroxy-containing 

polyimides to polybenzoxazoles, Polymer, 40 (1999) 3463-3468. 

[37] J.H. Chang, K.M. Park, S.M. Lee, J.B. Oh, Two-step thermal conversion from poly(amic 

acid) to polybenzoxazole via polyimide: Their thermal and mechanical properties, J. Polym. 

Sci., Part B: Polym. Phys., 38 (2000) 2537-2545. 

[38] Y.Y. Jiang, F.T. Willmore, D. Sanders, Z.P. Smith, C.P. Ribeiro, C.M. Doherty, A. Thornton, 

A.J. Hill, B.D. Freeman, I.C. Sanchez, Cavity size, sorption and transport characteristics of 

thermally rearranged (TR) polymers, Polymer, 52 (2011) 2244-2254. 

[39] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, 



 

151 

 

Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous 

materials, Chem. Commun., (2004) 230-231. 

[40] B.S. Ghanem, N.B. McKeown, P.M. Budd, D. Fritsch, Polymers of intrinsic microporosity 

derived from bis(phenazyl) monomers, Macromolecules, 41 (2008) 1640-1646. 

[41] K.S.W. Sing, The use of gas-adsorption for the characterization of porous solids, Colloid. 

Surface., 38 (1989) 113-124. 

[42] J. Song, N. Du, Y. Dai, G.P. Robertson, M.D. Guiver, S. Thomas, I. Pinnau, Linear high 

molecular weight ladder polymers by optimized polycondensation of tetrahydroxy-

tetramethyl-spirobisindane and 1,4-dicyanotetrafluorobenzene, Macromolecules, 41 (2008) 

7411-7417. 

[43] B.D. Freeman, Y.P. Yampolskii, Addition-type polynorbornene with Si(CH3)3 side groups: 

detailed study of gas permeation, free volume and thermodynamic properties, in: Y.P. 

Yampolskii, L. Starannikova, N. Belov, M. Gringolts, E. Finkelshtein, V. Shantarovich (Eds.) 

Membrane Gas Separation, John Wiley & Sons, 2011, pp. 43-57. 

[44] V.P. Shantarovich, I.B. Kevdina, Y.P. Yampolskii, A.Y. Alentiev, Positron annihilation 

lifetime study of high and low free volume glassy polymers: Effects of free volume sizes on 

the permeability and permselectivity, Macromolecules, 33 (2000) 7453-7466. 

[45] M. Heuchel, D. Fritsch, P.M. Budd, N.B. McKeown, D. Hofmann, Atomistic packing 

model and free volume distribution of a polymer with intrinsic microporosity (PIM-1), J. 

Membr. Sci., 318 (2008) 84-99. 

[46] S.K. Sen, S. Banerjee, Spiro-biindane containing fluorinated poly(ether imide)s: Synthesis, 



 

152 

 

characterization and gas separation properties, J. Membr. Sci., 365 (2010) 329-340. 

[47] Z.M. Qiu, S.B. Zhang, W.M. Li, Synthesis and gas permeability of novel fluorinated 

poly(phenylene-co-naphthalimide)s, J. Appl. Polym. Sci., 104 (2007) 2395-2402. 

[48] Z.M. Qiu, G. Chen, Q.Y. Zhang, S.B. Zhang, Synthesis and gas transport property of 

polyimide from 2,2'-disubstituted biphenyltetracarboxylic dianhydrides (BPDA), Eur. Polym. 

J., 43 (2007) 194-204. 

[49] C.Y. Yang, S.L.C. Hsu, J.S. Chen, Synthesis and properties of 6FDA-BisAAF-PPD 

copolyimides for microelectronic applications, J. Appl. Polym. Sci., 98 (2005) 2064-2069. 

[50] S. Banerjee, M.K. Madhra, A.K. Salunke, G. Maier, Synthesis and properties of 

fluorinated polyimides. 1. Derived from novel 4,4'-bis(aminophenoxy)-3,3'-trifluoromethyl 

terphenyl, J. Polym. Sci., Part A: Polym. Chem., 40 (2002) 1016-1027. 

[51] Y. Tsujita, Gas sorption and permeation of glassy polymers with microvoids, Prog. Polym. 

Sci., 28 (2003) 1377-1401. 

[52] T.C. Merkel, V. Bondar, K. Nagai, B.D. Freeman, Sorption and transport of hydrocarbon 

and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne), J. Polym. Sci., Part B: Polym. 

Phys., 38 (2000) 273-296. 

[53] C.L. Staiger, S.J. Pas, A.J. Hill, C.J. Cornelius, Gas separation, free volume distribution, 

and physical aging of a highly microporous spirobisindane polymer, Chem. Mater., 20 (2008) 

2606-2608. 

[54] I. Pinnau, L.G. Toy, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne), 



 

153 

 

J. Membr. Sci., 116 (1996) 199-209. 

[55] M.W. Hellums, W.J. Koros, G.R. Husk, D.R. Paul, Fluorinated polycarbonates for gas 

separation applications, J. Membr. Sci., 46 (1989) 93-112. 

[56] L.M. Robeson, Correlation of separation factor versus permeability for polymeric 

membranes, J. Membr. Sci., 62 (1991) 165-185. 

[57] L.M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400. 

 

  



 

154 

 

 

 

 

 

  

 

Cross-linking Effect on the Microstructure and  

Gas Transport Properties of Thermally Rearranged 

Poly(benzoxazole-co-imide)s 

 

  



 

155 

 

 Introduction  

Gas separation using polymer membranes has received more attention than inorganic 

membranes like ceramic, metal or porous glass membranes due to polymeric membranes’ high 

surface to volume ratio and excellent processability.[1-3] Moreover, polymeric membranes 

possess unique advantages in that their structures are easily functionalizable and morphological 

modifications enable the fine-tuning of membrane properties for many gas separation 

applications.[4, 5] Among a large number of polymer materials, thermally rearranged (TR) 

polymers have received considerable attentions for their unprecedented gas permeation 

properties that are mainly attributed to their rigid polymer chain structure as well as their 

microporous bimodal cavities. The gas transport properties of TR polymer membranes can be 

easily manipulated by controlling the percentage of TR conversion (%C) via tuning of their 

chemical structures and thermal treatment conditions.[6-14] 

Apart from studies on polymer materials for permeation property improvement, another 

focus of membrane development has been on enhancing their sustained performance against 

undesirable plasticization phenomena, as well as improving their chemical and thermal stability. 

One major strategy to achieve this goal is polymer cross-linking.[15-17] In this vein of thought, 

cross-linking of copolyimides with DABA has been extensively studied by modifying 

carboxylic acid groups in DABA through (i) ionic cross-linking with aluminum ions,[18] (ii) 

covalent cross-linking using diols or short-chain poly(ethylene glycol),[19-21] and (iii) 

decarboxylation induced cross-linking by thermal treatment below the glass transition 

temperature (Tg). [22] Furthermore, decarboxylation induced cross-linking has been applied on 

the industrially-preferred hollow fiber geometry.[23] 
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Recently, several cross-linking approaches were also explored on TR polymers by 

incorporating 1,3-diamino benzoic acid (DABA) to prepare cross-linked thermally rearranged 

poly(benzoxazole-co-imide) (XTR-PBOI) to further promote gas permeation properties.[24, 

25] It was found that such a cross-linking approach substantially improved the gas permeability 

by producing larger cavities than those found in TR-PBO. The larger size was mainly attributed 

to a synergetic effect of thermal rearrangement and crosslinking, through either covalent cross-

linking with 1,4-butandiol or the thermal radical cross-linking between pendent groups of 

DABA in the 6FDA-APAF-DABA copolymer. [24, 25] These studies offered rationales 

explaining the high permeability of TR-PBO prepared from thermal imidization (tPBO) 

compared to ones prepared from azeotropic imidization (aPBO).[12] Despite the excellent 

permeation properties achieved through cross-linking, these previous studies only focused on 

final permeation performance, when the membrane was completely cross-linked and thermally 

rearranged. Therefore, the role of cross-linking on thermal rearrangement, as well as on the 

morphological and permeation properties of the membrane, was not fully explored.   

Here, a comprehensive study was performed using a hydroxyl copolyimide based on 

6FDA-HAB-DABA to prepare cross-linked TR membranes. The effect of thermal treatment 

temperature on cross-linking and thermal rearrangement was carefully examined by 

characterizing a series of membranes which prepared at different thermal treatment 

temperatures, so that the role of cross-linking on thermal rearrangement could be revealed. In 

addition, an uncross-linkable hydroxyl copolyimide, based on 6FDA-HAB-mPD, was also 

prepared and used to cast TR membranes without cross-linking, following the same thermal 

treatment protocol. The results from these uncross-linked TR membranes were compared 
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against TR membranes that had been cross-linked to provide an in-depth understanding of the 

synergetic effects of cross-linking and thermal rearrangement on membrane properties. 

 

 Experimental  

5.2.1 Materials 

4,4’-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was purchased from Daikin 

Industries, Ltd. (Osaka, Japan) and 3,3′-dihydroxyl-4,4′-diamino-biphenyl (HAB) was 

acquired from Wakayama Seika Kogyo Co., Ltd. (Wakayama, Japan). 3,5-diaminobenzoic acid 

(DABA) and m-phenylenediamine (mPD) were purchased from Sigma-Aldrich Co. LLC (St. 

Louis, MO, USA) and were sublimated before use. N-methyl-2- pyrrolidone (NMP) and o-

xylene were also purchased from Sigma-Aldrich and used without further purification. 

 

5.2.2 Synthesis of Hydroxyl Copolyimides.  

A mixture of HAB (12 mmol) and DABA (8 mmol) and a mixture of HAB (12 mmol) and 

mPD (8 mmol) were introduced into two completely dry 250 mL four-neck round-bottomed 

flasks then washed with 35mL of NMP. After the monomers had completely dissolved at room 

temperature and cooled in an ice bath, 6FDA (20 mmol) was introduced into each flask. The 

crude, yellow solutions were stirred for 12 h. Imidization was conducted at 180oC for 12 h by 

o-xylene reflux in a Dean-Stack trap equipped flask, purged with nitrogen. Two dark yellow 

solutions were precipitated in a methanol/water (1:3) mixture and washed with de-ionized 



 

158 

 

water three times to remove the NMP and o-xylene. The precipitates were then filtered and 

dried in a vacuum oven at 150oC for more than 24 h. The DABA incorporated polymer was 

labeled HPI-DB and the mPD incorporated polymer was labeled HPI-mPD. The spectroscopic 

data for HPI-DB is as follows: 1H NMR (300 MHz, DMSO-d6, ppm): 13.48 (m, –COOH), 

10.09 (s, –OH), 8.18 (m, Har), 8.00 (s, Har), 7.81 (m, Har), 7.40 (d, Har, J = 7.33 Hz), 7.21 (s, 

Har). FT-IR (film): ν(O–H) at 3377 cm−1, ν(C=O) at 1782 and 1715 cm−1, Ar (C–C) at 1609, 

1498 cm−1, imide ν(C–N) at 1366 cm−1, (C–F) at 1297–1142, imide (C–N–C) at 1097 cm−1. int: 

0.68 dL g−1, Mw: 142,000g mol−1, PDI: 1.9. The spectroscopic data for HPI-mPD is given as 

follows: 1H NMR (300 MHz, DMSO-d6, ppm): 10.12 (s, –OH), 8.21 (d, Har, J = 6.16 Hz), 8.16 

(m, Har), 7.99 (d, Har, J = 9.98 Hz), 7.83 (m, Har), 7.39 (d, Har, J = 2.93 Hz), 7.21 (s, Har). FT-

IR (film): ν(O–H) at 3418 cm−1, ν(C=O) at 1784 and 1714 cm−1, Ar (C–C) at 1619, 1519 cm−1, 

imide ν(C–N) at 1377 cm−1, (C–F) at 1299–1135, imide (C–N–C) at 1102 and 720 cm−1.int: 

0.82 dL g−1, Mw: 197,000g mol−1, PDI: 1.9.  

 

5.2.3 Preparation of Hydroxyl Copolyimide Membranes.  

HPI-DB and HPI-mPD polymers (20%, w/v) were dissolved in NMP and then filtered 

using a 3 μm GMF syringe filter. The degassed polymer solution was poured onto a clean glass 

plate, cast using a doctor-blade, and then slowly heated to 250oC under vacuum. When finished, 

50μm thick HPI-DB and HPI-mPD membranes were obtained.  

 

5.2.4 Preparation of Cross-linked Hydroxyl Copolyimides and Thermally Rearranged 
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Poly (benzoxazole-co-imide) Membranes.  

To remove any residual solvent, the HPI-DB membranes were heated to 250oC while the 

HPI-mPD samples were heated to 300oC for 1 h each in a muffle furnace purged with high 

purity argon. For thermal cross-linking of the HPI-DB membranes, the membranes were heated 

to 300oC for 3 h. Thermal rearrangement was conducted by heating the membranes to either 

350, 400, or 425oC for 1 h or 450oC for 30 mins. 

 

5.2.5 Characterization. 

 1H spectra and molecular weights of HPI-DB and HPI-mPD were measured using Nuclear 

Magnetic Resonance (NMR, Mercury Plus 300MHz, Varian, Inc., Palo Alto, CA, USA) and 

gel-permeation chromatography (GPC, TosohHLC-8320GPC, Seoul, Korea) with a TSKTM 

Super Multi pore HZ-M column and a refractive index (RI) detector in THF with standard 

polystyrene as the basis for measurement. The glass transition temperature (Tg) and thermal 

relaxation behavior of the polymers were determined using a dynamic mechanical analyzer 

(DMAQ800, TA Instruments, New Castle, DE, USA) in tension mode. Cross-linking and the 

formation benzoxazole by thermal rearrangement were confirmed using a Thermo-Gravimetric 

Analyzer (TGAQ500, TA Instruments) coupled with mass spectrometry (MS, ThermoStar 

GSD 301T, Pfeiffer Vacuum GmbH, Asslar, Germany) and Fourier-transformation infrared 

spectroscopy (FT-IR, Nicolet6700, Thermo Fisher Scientific Inc., MA, USA). The gel content 

of the copolyimide was also investigated to evaluate the degree of cross-linking in the sub-Tg 

condition by measuring the residual weight after dissolving the dense films in NMP and heating 
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up to 150oC, following the protocols developed in a previous study.[26] Changes in polymer 

chain distances were analyzed in solid films using wide-angle X-ray diffractometry (WAXD) 

(Rigaku Denki D/MAX-2500, Rigaku, Japan) with CuKα (wavelength =1.54 Å ) radiation. 

The average d-spacing was calculated by Bragg’s equation, as follows: 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃                                                          (5-1) 

Pure gas permeability of six gases (He, H2, O2, N2, CO2, and CH4) and the ideal selectivity 

of each pair were measured using the time-lag method at 35oC with a constant downstream 

volume. The equations below were used to calculate the gas permeability (5-2) and ideal 

selectivity (5-3). 

P = (
𝑉(𝑆𝑇𝑃) ∙ 𝑙

∆𝑝 · 𝐴 · 𝑇
)

𝑑𝑝

𝑑𝑡
                                                      (5-2) 

α =
P1

P2
                                                                    (5-3) 

where P (cmHg) is the gas permeability, V (cm3) is the volume rate, l (cm) is the membrane 

thickness, A (cm2) is the effective area of the membrane, and T (K) is the temperature. The unit 

of permeability is Barrer and it is based on standard temperature and pressure (STP) conditions 

(1 Barrer = 10-10 cm3(STP)·cm /cm2·s·cmHg).  denotes the ideal selectivity, which is the ratio 

of pure gas permeability of gas 1 over gas 2.  

Gas permeability (P) is presented using two terms, in accordance with the solution-

diffusion model, with the diffusivity coefficient (D) as the kinetic term describing the mobility 

of gas molecules passing through the membrane and the solubility coefficient (S) as the 
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thermodynamic term describing the amount of the gas molecules sorbed into the membrane as 

shown below. 

P = D × S                                                               (5-4)  

In order to determine the solubility coefficient (S) more accurately, the barometric pressure 

decay method with a dual-volume, dual-transducer apparatus was used under constant pressure 

and temperature.[27, 28] The detailed experimental protocol can be found in our previous 

publication.[29] The dual-sorption parameters including CD (cm3 (STP) · cm-3) and CH (cm3 

(STP) · cm-3) were calculated based on the following equations,  

S =
𝐶

𝑝
                                                               (5-5) 

C = 𝐶𝐷 + 𝐶𝐻 = 𝑘𝐷𝑝 +
𝐶′𝐻𝑏𝑓

1 + 𝑏𝑓
                                         (5-6) 

where kD (cm3
STP · cm-3

polymer · atm-1) is Henry’s law coefficient, which is related to the 

equilibrium matrix of the glassy polymer, f (atm) is the gas fugacity, C’H (cm3 
STP · cm-3

 polymer) 

is the Langmuir sorption capacity, which is related to the non-equilibrium excess free volume, 

and b (atm-1) is the Langmuir affinity constant.[30, 31] 

Mixed-gas permeation tests were carried out using a CO2/CH4 (1:1 volume ratio.) gas 

mixture. The permeate gas composition was determined by a 490 Micro gas chromatography 

(GC) instrument (Agilent Technologies, Inc. Santa Clara, CA, USA) equipped with a thermal 

conductivity detector. The stage-cut was kept below 0.01 using argon sweep gas controlled by 

a mass flow controller (Line Tech M3030VA) with a 10 cm3 (STP) min-1 full scale. The total 
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feed pressure was manipulated by a backpressure regulator (Tescom 44-1700) to be in the range 

of 5 to 40 bar and the membranes were exposed to each pressure for more than 3 h until 

stabilized. The permeate side was maintained at atmospheric pressure. The permeability (P*) 

of each species and the selectivity (α*) in terms of fugacity were defined as follows. 

P1
* =

𝑁1𝑙

𝑓 f1 − 𝑓p1 
                                                            (5-7) 

𝛼∗ =
P1

*

P2
*

=
𝑦1 𝑦2⁄

𝑓p1 𝑓p2⁄
                                                           (5-8) 

where N1 is the steady-state flux of gas species 1, l is the thickness of the dense film, and f 

f1 and f p1 are the fugacity of gas species 1 in the feed and permeate sides, respectively. These 

were calculated using the virial equation of state with the second virial coefficient. y1 and y2 

are the permeate-side mole fractions of gas species 1 and 2, respectively, as measured by GC.  

 

 Results and Discussions 

5.3.1 Preparation and Characterization of Hydroxyl Copolyimides (HPI) and Sub-Tg 

Cross-linked Hydroxyl Copolyimides (XHPI).  

A cross-linkable 6FDA-based hydroxyl copolyimide (HPI-DB) comprised of HAB (TR-

able diamine) and DABA (non-TR-able diamine with a cross-linkable carboxylic acid group) 

in a 3:2 molar ratio was synthesized. As a comparison, an uncross-linkable hydroxyl 

copolyimide, incorporating mPD instead of DABA, was also synthesized (HPI-mPD). The 

chemical structures, as well as the 1H spectra results of the two HPIs, are shown in Figure 5-1. 
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The dense films, cast from these two HPIs, were a clear yellowish color, primarily due to the 

high molecular weight of the membranes (100,000 g mol-1).  

 

 

Figure 5-1 Chemical structures and 1H spectra of (a) HPI-DB and (b) HPI-mPD. 
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Thermal properties of HPI-DB and HPI-mPD were characterized using DMA and TGA to 

identify their Tg. DMA measures the modulus variations of aromatic glassy polymers with 

increasing temperature, thereby providing critical information on the glass-rubber transition 

behavior of the main-chain ( relaxation) and side-chain motion ( relaxation) by detecting 

susceptible movements with given oscillations.[32, 33] As shown in Figure 5-2(a), the changes 

in storage modulus and Tan  of HPI-DB and HPI-mPD were measured as a function of 

temperature up to 500oC. The differences in  and  relaxations for HPI-DB and HPI-mPD 

were mainly ascribed to the presence of carboxylic acid groups. A broad  relaxation was seen 

from 100 to 300oC for both HPIs. This was mainly attributed to side group motion caused by 

the CF3 groups on 6FDA and the OH groups on HAB. On the other hand, HPI-DB showed a 

unique second  relaxation around 386oC that was mainly due to the movement of the 

carboxylic acid moiety on the DABA. The so-called  relaxation (main-chain relaxation), 

where a dramatic drop in storage modulus or the highest Tan  appears, is commonly used to 

indicate the glass transition. Here, we define the temperature of the highest Tan  as the Tg, as 

such, the Tg of HPI-DB was found to be 439oC, much higher than that of HPI-mPD (372oC), 

which was in good agreement with previous studies showing that mPD with incorporated 

copolyimide has a lower Tg than DABA containing copolyimide.[25, 34] Such an observation 

can be attributed to the hydrogen bonding among carboxylic acid groups and hydroxyl groups. 

The polymer chains of HPI-mPD experienced a dramatic drop in storage modulus between 320 

and 380oC, whilst HPI-DB showed a recovery in storage modulus after passing the glass-rubber 

transition between 425 and 440oC, suggesting the occurrence of in-situ thermal rearrangement 

with increased temperature.[33]  
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TGA results of HPI-DB and HPI-mPD are shown in Figure 5-2(b). For both HPIs, the 

weight loss in the range of 400-520oC indicated CO2 emission by thermal rearrangement of 

imide to benzoxazole. The slight weight loss below 400oC for HPI-DB was related to the 

removal of residual solvent, as well as the release of H2O (m/z: 18) and CO2 (m/z: 44) according 

to mass spectroscopy (Figure 5-2(c)). The presence of the latter two components in mass 

spectroscopy implied potential cross-linking due to the formation of a dianhydride intermediate 

among the carboxylic acids in DABA which creates two phenyl free radicals as suggested by 

Qiu et al.[22]  
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Figure 5-2 Thermal and dynamic behaviors of HPI-DB and HPI-mPD (a) storage modulus and 
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changes and derivate weight change curves, measured by TGA (5oC/min, 99.9% N2 purge), 

and (c) TG-MS results of HPI-DB. 

 

5.3.2 Effect of Thermal Treatment Protocol on Cross-linking.  

As shown in Figure 5-3, the m HPI-DB dense film, cast at 250oC, completely dissolved 

in NMP with near zero gel fraction, indicating an absence of cross-linking. On the other hand, 

the HPI-DB dense film thermally treated at 300oC for more than 1 h showed a substantial 

increase in gel fraction, especially for the sample treated at 300oC for 3 h, which displayed a 

gel fraction of 99%, indicating that the HPI-DB was sufficiently cross-linked. Interestingly, it 

was found that the degree of cross-linking was highly dependent on the thickness of the dense 

film. For the m film, a 300oC treatment for 1 h was sufficient to increase the gel fraction 

to 98%, while for the 50 m film, the gel fraction dropped to 52% using the same thermal 

treatment protocol. Consequently, the 300oC thermal treatment for 3 h was deemed the optimal 

sub-Tg cross-linking condition for obtaining cross-linked hydroxyl copolyimides (XHPI-DB) 

in this study.  
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Figure 5-3 Gel fraction results for membranes treated under various sub- Tg conditions. 

 

5.3.3 Sub-Tg Thermal Cross-linking and Thermal Rearrangement of Cross-linked 

Hydroxyl Copolyimide (XHPI) into Poly(benzoxazole-co-imide) (XTR-PBOI).  

All membranes were first treated at 300oC for 3 h in argon to facilitate cross-linking of the 

hydroxyl polyimide (the optimal thermal treatment protocol for cross-linking as identified in 

the previous section), after which they were treated at 350, 400, 425 or 450oC to allow for 

thermal rearrangement (Scheme 5-1). For comparison purposes, the HPI-mPD was also 

thermally treated under same treatment conditions (Scheme 5-2).  

TGA and DMA were performed and the results are presented in Figure 5-4. As shown in 

Figure 5-4(a), for XHPI-DB, a significant weight loss was witnessed at temperatures between 
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350 to 510oC, the range in which thermal rearrangement took place. The CO2 emitted during 

this process corresponded to the weight loss. With the increased thermal treatment temperature, 

XTR-PBOIs showed a decrease in weight loss. More specifically, the XTR-425 and XTR-450 

only showed a slight weight loss, indicating a high conversion rate from hydroxyl imide to 

benzoxazole. This observation was a clear indicator of the increased conversion degree with 

thermal rearrangement at higher temperatures. The changes in chemical structure caused by 

cross-linking and thermal rearrangements were evidenced from DMA results, as shown Figure 

5-4(b). The variation in Tan  for each dense film clearly showed distinct changes in 

relaxations from 100oC to 420oC. The most noticeable difference was found in the Tan peak 

at 386oC of HPI-DB, which related to the COOH moiety. The amount of OH groups in HAB 

slowly decreased going from HPI-DB, to XHPI-DB and to XTR-350, eventually disappearing 

in the XTR-425 membrane. The DMA results also revealed changes in Tg with thermal 

treatment temperatures, going from the low end of 439 and 440oC for HPI and XHPI-DB, 

respectively, to 445oC for XTR-350, and eventually to 461oC for the XTR-425.  
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Scheme 5-1 Proposed reaction pathway and chemical structures of cross-linked thermally 

rearranged poly(benzoxazole-co-imide) membranes (XTR-PBOI) derived from hydroxyl 

copolyimide containing DABA (HPI-DB). 
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Scheme 5-2 Proposed reaction pathway and chemical structures of thermally rearranged 

poly(benzoxazole-co-imide) membranes (TR-PBOI) derived from hydroxyl copolyimide 

containing mPD (HPI-mPD). 
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Figure 5-4 Thermal and dynamic behaviors of a variety of dense films (a) weight changes and 

derivative weight change curves measured by TGA (5oC/min, 99.9% N2 purge) (b) storage 

modulus and Tan δ changes as a function of temperature, as measured by DMA (5oC/min, 1Hz). 

 

ATR-FTIR was applied on both XTR and TR dense films to identify the formation of the 

benzoxazole moiety, which is an indicator of thermal rearrangement. As shown in Figure 5-5, 

the most noticeable changes were the diminishing imide stretching peaks at 1710 cm−1 (C=O), 

1097 cm−1 (N-C-N), the hydroxyl group stretching peak around 3370 cm−1, and the increasing 

benzoxazole peaks at 1560, 1480, and 1055 cm−1 above 350oC. These results provided clear 

evidence that thermal rearrangement was initiated at approximately 350oC, which is in 

agreement with TGA results (Figure 5-4(a)). Furthermore, the imide peaks at 1782 and 1715 

cm−1 remain at temperatures above 350oC, mainly due to the presence of the 40% imide 
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moieties in the main-chains. On the other hand, the peaks related to the hydroxyl groups 

completely disappeared above 350oC. Based on these above observations, the dense films 

prepared at temperatures above 350oC clearly underwent thermal rearrangement and were 

therefore labeled as XTR-350, 400, 425, and 450 for films prepared from cross-linkable HPI-

DB, those prepared from uncross-linkable HPI-mPD were labeled as TR-350, 400, 425 and 

450.  
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Figure 5-5 ATR-FTIR spectra of (a) XTR-PBOIs compared with to precursor HPI-DB and 

XHPI-DB, and (b) TR-PBOIs compared with to precursor HPI-mPD. Arrows indicate 

increases in the intensity of the infrared adsorption bands. 
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The percentage conversion (%C) during thermal rearrangement was calculated as well. 

Previous studies reveal that the conversion rate (%C) is highly dependent on the thermal 

treatment protocols, therefore the amount of the benzoxazole structure in each TR or XTR-

PBOI will vary depending on the thermal treatment conditions.[6, 8] Most current studies 

calculate %C using data obtained from TGA-isotherms by comparing the actual weight loss 

over the theoretical weight loss.[6] A similar approach was adopted in this study for the 

calculation of the %C for XTR-PBOIs and TR-PBOIs; the results are summarized in Table 5-

1. The theoretical weight loss of XTR-PBOI converted from HPI-DB was 11.82%, of which 

3% was from DABA cross-linking and 8.82% was from thermal rearrangement. Assuming 

complete cross-linking of the XTR-450, the %C value (from HPI to PBO) was 71% (actual 

weight loss: 9.244%, weight loss by TR conversion: 6.244%). It was found that the conversion 

rate of TR-450 (92%) was higher than that of XTR-450 (71%), which was mainly due to 

restricted chain mobility caused by the more rigid HPI-DB limiting the TR conversion rate.[6]  

 

Table 5-1 Weight loss and TR conversion rates for different dense films. 

Polymer 

Actual 

weight 

loss, 

Wactual,1 

TR weight 

lossa 

Wactual,2 

%C 
Polymer 

Actual 

weight loss 

Wactual,3 

%Cc 

(%) (%) (%) (%) (%) 

XTR -350 0.73 - - TR -350 0.79 8.70 

XTR -400 4.01 1.01 11.4 TR -400 3.62 39.9 

XTR -425 6.28 3.28 37.2 TR -425 6.48 71.3 

XTR -450 9.24 6.24 70.8 TR -450 8.36 92.0 
a Complete DABA cross-linking is assumed when the actual weight loss is within 3% of the theoretical weight 

loss. Wactual,2 = Wactual,1-3. 
b 100*Wactual,2 /Wtheo, when theoretical weight loss (Wtheo) equals 8.82% for XTR-PBOI 
c
 100*Wactual,3 /Wtheo, when theoretical weight loss (Wtheo) equals 9.08% for XTR-PBOI  
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5.3.4 Effect of Cross-linking on Physical Properties.  

The effects of cross-linking on membrane shrinkage and the d-spacing of polymer chains 

are summarized in Table 5-2 and Figure 5-6. For amorphous polymers, previous studies 

attributed their shrinkage stresses to the disruption of intermolecular interactions between the 

frozen elastic chains.[35] Therefore, it is assumed that the TR polymers, which were treated at 

temperatures higher than the Tg, underwent chain relaxation and orientation, thereby 

diminishing their intermolecular interactions and consequently resulting in their higher 

shrinkage percent. As noted in Table 5-2, the shrinkage of both HPI-DB and HPI-mPD 

membranes gradually increased with increasing temperatures. Furthermore, the degree of 

shrinkage was significantly lower for the case of the XTR dense films compared to their TR 

counterparts. These results suggested that the XTR polymers showed a higher resistance to 

intermolecular chain disruptions due to their being cross-linked. Such behavior might be 

attributed to the restricted inter-chain relaxation and orientation.  

The inter-chain distance distributions of all samples measured by WAXD are shown in 

Figure 5-6, and the representative average inter-chain distances (d-spacing) of each sample are 

summarized in Table 5-2. The results clearly showed that the d-spacing of the XTR polymers 

increased with increasing thermal treatment temperatures, while the d-spacing of the TR 

polymers remained almost the same at temperatures above 350 ºC. More specifically, the initial 

increase in d-spacing of the HPI-DB from 0.550 to 0.592 nm was attributed to the cross-linking. 

Chain packing order was disrupted by the formation of anhydride cross-links and the partial 

decarboxylation of the cross-linked structure.[22] The subsequent d-spacing increase of the 

XHPI-DB (0.592 nm) to XTR-PBOIs (up to 0.629 nm) was caused by thermal rearrangement 
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and cross-linking by decarboxylation. Consequently, the XTR-450 dense film achieved a 29.5% 

increase in d-spacing while the uncross-linked TR-450 showed only a 4% increase. This 

observation was in good agreement with previous studies on intrinsically cross-linked tPBO, 

which showed a significantly greater increase in d-spacing and FFV than uncross-linked 

aPBO.[12]  

  
Table 5-2 Physical property comparisons of XTR-PBOIs and TR-PBOIs. 

Polymer 
Shrinkage d-spacing d-spacing 

(%) (nm) (%) 

HPI-DB - 0.550 - 

XHPI-DB 0.5 0.592  7.1 

XTR -350 2.0 0.629 14.4 

XTR -400 8.1 0.642 16.7 

XTR -425 9.4 0.711 29.3 

XTR -450 12.2 0.713 29.5 

HPI-mPD - 0.633 - 

TR -350 12.6 0.634 0.1 

TR -400 17.5 0.658 3.8 

TR -425 18.4 0.661 4.3 

TR -450 18.4 0.652 4.1 
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Figure 5-6 Wide-Angle X-ray Diffraction (WAXD) profiles of (a) XTR-PBOIs and (b) TR-

PBOIs at different thermal treatment temperatures. 
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5.3.5 Effect of Cross-linking on Pure Gas Transport Properties.  

The pure gas permeation results are summarized in Table 5-3. In addition, the profiles of 

CO2 permeability for XTR-PBOIs and TR-PBOIs, as a function of thermal treatment 

temperature, are shown in Figure 5-7. The results showed that the CO2 permeabilities of both 

polymers increased with temperature, but the CO2 permeability of XTR-PBOIs were higher 

than those of TR-PBOIs. Towards the end of the thermal treatment, XTR-450 saw a 25-fold 

higher CO2 permeability (169.7 Barrer) than its corresponding precursor, while the CO2 

permeability of TR-450 (44.6 Barrer) was only twice higher than its HPI-mPD precursor (15.6 

Barrer). Furthermore, it was found that the increase in gas permeabilities was highly correlated 

with the increase in d-spacing of the polymer chains (Table 5-2 and Figure 5-6). These results 

clearly suggested that cross-linking encouraged the formation of a polymer network that 

incorporated DABA in the HPI-DB. These functioned as a “pillar-like” cross-linker, effectively 

keeping the main polymer chains apart and therefore resulting in a substantially increased 

amount of free volume and extraordinary gas permeabilities compared with uncross-linked 

HPI-mPD. 

In terms of ideal gas selectivity, a general trend of a slight decrease in selectivity with 

increased treatment temperature was observed, which was primarily attributed to the enlarged 

free volume and chain distances. The CO2 permeabilities and CO2/CH4 selectivities for XTR-

PBOIs and TR-PBOIs at different thermal treatment temperatures are plotted in Figure 5-8. 

TR-PBOIs derived from HPI-mPD showed a typical permeability-selectivity trade-off 

relationship of decreased selectivity with increased permeability. All polymers fell below the 

1991 Robeson upper bound.[36] In terms of the cross-linked polymers, the typical trade-off 



 

180 

 

relationship was found when the dense films were treated below 400 ºC. Above this 

temperature, the CO2/CH4 selectivity had recovered (XTR-425 and 450), and subsequently, the 

XTR-450 crossed over the 1991 Robeson upper bound. Interestingly, the XTR-450 showed a 

much higher permeability and selectivity than the homo TR-PBO polymer based on 6FDA-

HAB,[6] while the TR-450 showed a lower permeability.  
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Figure 5-7 CO2 permeability profiles of XTR-PBOIs and TR-PBOIs as a function of thermal 

treatment temperature. 
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Table 5-3 Pure gas permeabilities of HPI-DB and HPI-mPD membranes and thermally rearranged XTR-PBOI an

d TR-PBOI membranes using the time-lag method (30oC, 760 torr) 

a the gas permeability and selectivity results were referred from [22] 

b the gas permeability and selectivity results were referred from [6]

 
Gas Permeability (Barrer) Ideal Selectivity (α) 

He H2 O2 N2 CO2 CH4 O2/N2 CO2/ N2 CO2/ CH4 H2/CO2 

HPI-DB 34.9 26.1 1.58 0.22 6.60 0.12 7.18 30.0 55.9 3.96 

XHPI-DB 50.2 37.4 2.46 0.37 10.5 0.21 6.70 28.7 50.1 3.55 

XTR-350 57.9 47.5 4.46 0.53 13.8 0.47 6.35 26.1 29.2 3.44 

XTR-400 112.2 118.2 14.9 2.72 66.8 2.52 5.48 24.6 26.5 1.77 

XTR-425 121.2 139.4 18.1 3.77 90.7 3.09 4.79 24.1 29.3 1.48 

XTR-450 210.8 246.5 35.0 7.33 169.7 4.46 4.78 23.2 38.0 1.45 

HPI-mPD 49.9 36.6 3.02 0.41 9.28 0.14 7.37 22.6 66.3 3.94 

TR-350 53.4 41.2 3.71 0.59 15.6 0.24 6.32 26.5 65.4 3.57 

TR-400 73.3 66.8 6.75 1.28 29.9 0.67 5.26 23.3 44.4 2.23 

TR-425 99.5 93.8 10.1 1.94 46.3 1.04 5.20 23.8 44.3 2.03 

TR-450 89.6 87.8 9.55 1.81 44.6 1.05 5.26 24.6 42.5 1.97 

DAM-DABA (3:2)a 357.0 - 98.0 25.2 485.4 18.1 3.90 19.3 26.8 - 

HAB aPBOb 84.6 86.5 10.8 2.2 59.0 1.6 4.80 26.3 36.5 1.47 
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Figure 5-8 The Robeson plot of CO2 permeability and CO2/CH4 ideal selectivity for co

mparing XTR-PBOIs (▲) and TR-PBOIs (●) with several comparable polymer membr

anes: aPBO based on 6FDA-HAB (■), 6FDA-DAB-DABA(3:2) (●).[36, 37] 

 

The CO2 and CH4 sorption isotherms are shown in Figure 5-9. All sorption isotherms 

displayed typical dual-mode sorption for glassy polymers. As shown in Figure 5-9(a) and (b), 

CO2 and CH4 sorption isotherm curves for XTR-450 and TR-450 were located above that of 

HPI-DB and HPI-mPD. Interestingly, the sorption isotherms for XHPI-DB were located below 

HPI-DB, indicating that cross-linking caused lower gas solubility. According to the dual-mode 

solubility parameters summarized in Table 5-4, TR-450, derived from HPI-mPD, exhibited an 

increased Henry’s law constant (kD) and Langmuir capacity (C’H). However, the conversion to 

rigid benzoxazoles reduced the Langmuir affinity (b) between CO2 and the polymer matrix, 
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which was in agreement with the sorption behaviors of TR-PBOIs.[38] On the other hand, 

cross-linked XHPI-DB resulted in reduced kD and C’H parameters, indicating that cross-linking 

prohibited the swelling of the polymer matrix. Additionally, the reductions in these two 

parameters were also partially attributed to the loss in excess free volume by thermal annealing. 

Further increasing the temperature, to promote thermal rearrangement, only led to marginal 

increases in kD from 1.07 (XHPI-DB) to 1.15 (XTR-450) and a significant increase in C’H from 

28.9 (XHPI-DB) to 38.2 (XTR-450). The b parameters kept decreasing from 0.71 (XHPI-DB) 

to 0.40 (XTR-450) due to the formation of rigid benzoxazole groups.  

The solubility and diffusivity coefficients are summarized in Table 5-5. For the cross-

linkable dense films, a clear trend of increased diffusivity coefficient as a function of 

temperature was observed, and the increase was more pronounced during the thermal 

rearrangement than during cross-linking. This observation was in good agreement with the 

permeability results as well as the d-spacing results. The drops in solubility coefficients after 

cross-linking and thermal rearrangement were mainly attributed to the decreased Langmuir 

affinity (b). The increase in d-spacing and free volume led to decreased diffusivity selectivity. 

For the uncross-linkable dense films, the improvement in diffusivity coefficient was more 

moderate due to the absence of cross-linking. Owing to the cross-linking, the diffusivity 

coefficient increased 18-fold from 0.80 (XHPI-DB) to 14.1 (XTR-450) during thermal 

rearrangement. This was more pronounced than the 6-fold increase in diffusivity coefficient 

due to the absence of cross-linking.  
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Figure 5-9  Sorption isotherms of CO2 and CH4 for (a) HPI-DB, XHPI-DB, and XTR-

450 as representatives of XTR-PBOI (b) HPI-mPD and TR-450 are representative of XTR-
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PBOI. 

 

Table 5-4 Dual-mode sorption model parameters for pure CO2 and CH4 in XTR-PBOI and 

TR-PBOI membranes and precursor membranes a 

 
CO2  

 

CH4

kD b C’H KD b C’H 

HPI-DB 1.32 0.80 30.5 0.60 0.40 9.65 

XHPI-DB 1.07 0.71 28.9 0.70 0.19 8.86 

XTR -450 1.15 0.40 38.2 0.90 0.04 11.0 

HPI-mPD 1.12 0.77 35.2 0.61 0.50 10.1 

TR -450 1.37 0.53 35.5 0.73 0.60 11.0 
a KD (cm3STP(cm3

polymer bar) ), b (1/bar), C’H (cm3
STP/cm3

polymer) 

 

Table 5-5. CO2 and CH4 diffusion coefficients (D), solubility coefficients (S), permeab

ilities (P), diffusion selectivities (D), and solubility selectivities (S) for XTR-PBOI and 

TR-PBOI membranes and precursor membranes 

 Da 
 

Sb  P  CO2/CH4 

 CO2 CH4 CO2 CH4 CO2 CH4  D S  

HPI-DB 0.44 0.04 14.9 3.36 6.60 0.12 12.4 4.43 55.0 

XHPI-DB 0.80 0.10 13.1 2.11 10.5 0.21 8.09 6.18 50.0 

XTR -450 14.1  3.37  12.1  1.32  169.7  4.46  4.17  9.12 38.0 

HPI-mPD 0.56 0.04 16.4 3.98 9.28 0.14 16.0 4.13 66.3 

TR -450 3.26 0.22 13.7 4.86 44.6 1.05 15.1 2.82 42.5 
a Diffusivity coefficient (D) (10-8cm2/s) is calculated from P=DS. 
b Solubility coefficient (S) (10-2cm3/ cm3cmHg) is obtained from sorption isotherm experiments and calculated 

using Equation (5-8) and data from Table 5-3 when fugacity equals 1 bar.  

 

5.3.6 Effect of Cross-linking on Mixed Gas Permeation and Plasticization.  

A 1:1 volume ratio of CO2/CH4 gas mixture was used to evaluate the effect of cross-linking 

on plasticization mitigation under a mixed-gas environment. As shown in Figure 5-10, CO2 

and CH4 permeabilities of both membranes slightly dropped with increased pressure, which 

was related to the dual-mode sorption. Within the range of pressures assessed up to 36 bar (CO2 

partial pressure of 18 bar), no increase in CO2 permeability was observed for either membrane, 
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indicating excellent resistance to plasticization. Both membranes experienced a gradual 

decrease in selectivity, suggesting that the dual-mode sorption effect was governed by the 

Langmuir capacity saturation.  
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Figure 5-10. Mixed gas permeation results: (a) CO2 permeabilities (black), CH4 (blue) 

permeabilities and (b) CO2/CH4 selectivities for XTR-450 (○) and TR-450 (△). The CO2/CH4 

(1:1 volume ratio) gas mixture was at 35oC. 

 

 Conclusion 

In this study, the influences of thermally induced cross-linking using DABA on the 

morphological and permeation properties of TR polymers were thoroughly investigated. The 

results revealed that (i) cross-linking by dianhydride or partial decarboxylation of the 

carboxylic acid groups of DABA at temperatures below the initial thermal rearrangement and 

Tg (350 ºC) improved polymer chain rigidity while disrupting polymer chain packing; and (ii) 

the subsequent thermal rearrangement with cross-linking synergetically increased the polymer 

chain distance (d-spacing), and with it, the gas diffusivity and permeability. Finally, the XTR-
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PBOI dense films displayed unprecedented CO2 permeabilities, 25-times higher than their 

precursor membranes, as well as excellent plasticization resistance. It was concluded that the 

act of disrupting polymer chain packing by cross-linking benefitted the TR polymer and 

allowed membranes to achieve higher permeabilities during thermal rearrangement since 

polymer chain rigidity and free volumes were enhanced.  
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 Introduction  

In previous chapters, comprehensive studies on the dense film preparation using TR 

polymers were reported to gain in-depth knowledge on the relationship between polymer 

structure and gas transport properties. In dense films, the inherent gas transport properties were 

only associated with the chemical structures and free volumes of the polymers. However it 

should be noted that more than 80% of the gas separation membrane market are dominated by 

the hollow fiber membranes with asymmetric structure due to their high packing density and 

high effective surface area. The fabrication of asymmetric TR membranes in hollow fiber 

geometry has been studied in our group [1-3]. TR-PBO hollow fiber membranes were prepared 

using hydroxyl poly(amic acid) (HPAAc) dope solution [1]. The results revealed that the 

performance of hollow fiber membranes was significantly relied on the dope composition and 

the spinning conditions. With the optimized spinning conditions, the resultant TR-PBO hollow 

fiber membranes achieved an impressive CO2 permeance of almost 2500 GPU with CO2/N2 

selectivity around 16. However, scaling-up of TR-PBO hollow fiber membranes remained a 

major challenge due to (i) the poor chemical stability of the HPAAc dope solution which 

undergoes degradation in atmosphere; and (ii) poor mechanical properties of the resultant fibers. 

With this concern, the use of TR-PBOI to fabricate hollow fiber membranes were investigated 

in our group by Woo et al., in order to overcome the aforementioned issues with TR-PBO and 

also to facilitate the advantages brought by the azeotropic imidized HPI dope solution [2]. 

However the studies also revealed that, unlike the TR-PBO hollow fiber membranes prepared 

by thermal imidization route, the TR-PBOI showed strong densification behavior during the 

thermal treatment, which compromised the gas transport properties.  
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To overcome this undesired densification behavior, here, a new hydroxy copolyimide 

consists of three diamines: TR-able diamine (HAB), non-TR-able diamine (DAM), and cross-

linkable diamine (DABA) was synthesized by using 6FDA as a dianhydride, based on the 

knowledge from previous chapters which stated that TR-PBOI was mechanical strong enough, 

and cross-linking from DABA improved not only the permeabilities but also the resistance to 

shrinkage during thermal treatment. Subsequently, hollow fiber membrane using this material 

was fabricated and then thermally converted to XTR-PBOI. The CO2 and N2 permeance of a 

series of XTR-PBOI hollow fiber membranes thermally treated at various temperatures up to 

425oC were investigated. The main focus of this chapter is to discuss and demonstrate the 

crosslinking effect on the physical and gas transport properties of the XTR-PBOI hollow fibers 

fabricated under the optimal spinning condition. Therefore the details of the optimization of 

hollow fiber fabrication conditions were not reported in this chapter. In addition, the results 

obtained from uncross-linked TR-PBOI, 6FDA-HAB-DAM were also reported and used for 

comparisons with the XTR-PBOI hollow fiber membranes.  

 Experimental 

6.2.1 Materials 

In order to synthesis HPI-DB5, 4,4’-(hexafluoroisopropylidene) diphthalic anhydride 

(6FDA) purchased from Daikin Industries, Ltd. (Osaka, Japan), 3,3′-dihydroxyl-4,4′-diamino-

biphenyl (HAB) was acquired from Wakayama Seika Kogyo Co., Ltd. (Wakayama, Japan), and 

2,4,6-trimethyl-m-phylnendiamine (DAM) from Dottikon Exclusive Synthesis AG (Dottikon, 

Switzerland) and used without further purification. 3,5-diaminobenzoic acid (DABA) were 
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purchased from Sigma-Aldrich Co. LLC (St. Louis, USA) and were sublimated before use. N-

methyl-2- pyrrolidone (NMP) and o-xylene were purchased also from Sigma-Aldrich and used 

without further purification. Ethylene glycol (EG) and propionic acid (PA) which used 

for preparing hollow fiber membranes were also purchased from Sigma-Aldrich Co. LLC.  

 

6.2.2 Preparation of dense and hollow fiber membranes  

  In this study, a hydroxy copolyimide based on 6FDA and three diamines HAB, DAB, 

and DABA with a molar ratio of 0.5, 0.45, and 0.05 (labeled as HPI-DB5) was synthesized by 

azeotropic imidization as described in Chapter 5. 5 wt.% polymer solution was prepared using 

NMP as solvent, and 15 m thick films were obtained by casting on glass plate. 3 cm x 3 cm 

dense films were thermally treated at 375, 400 for 1 h and 425 oC for 30 min, respectively, with 

a ramping rate of 5 oC/min in furnace purged with high purity argon gas after treating at 300 

oC for 1 h to enable cross-linking as shown in Scheme 6-1.  

Hollow fiber membranes were prepared using coHPI-DB5 by a dry-jet/wet-quench method 

using hollow fiber spinning apparatus as shown in Figure 6-1[1, 3]. The dope solution of 

coHPI-DB5 was prepared using a mixture of NMP and PA (1:1) as solvent and EG as an 

additive to promote phase separation. The dope solution which consists of polymer, solvent, 

and additive (25:60:15) was homogenously mixed before extrusion. Prior to extrusion, the dope 

solution was heated up to 60 oC. Pure water was chosen as the bore solution, and the dope and 

bore solutions were extruded with a flow rate of 20 ml/s from the spinneret. The inner diameter 

of the spinneret was 200 m, and the outer diameter 440 m. The extruded dope solution was 
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coagulated in the coagulation bath filled with water (80 oC) via a 5 cm air-gap. The nascent 

hollow fiber membranes were then passed the water godet bath to remove residual solvent, and 

subsequently collected on a take-up roll. Finally, the hollow fiber membranes were dried in air 

for several days. Similar spinning protocol was adopted to fabricate HPI-DB5, XHPI-DB5, and 

XTR-PBOI-DB5 hollow fiber membranes.  

 

6.2.3 Characterization  

Gel permeation chromatography (GPC, TosohHLC-8320GPC, Seoul, Korea) with a 

TSKTM Super Multi pore HZ-M column and a refractive index (RI) detector in THF on the 

basis of standard polystyrenes. Thermo-Gravimetric Analyzer (TGAQ500, TA Instruments) 

confirmed cross-linking and the formation benzoxazole by thermal rearrangement and 

analyzed thermal rearrangement temperatures. Isotherm test was also carried out using TGA to 

study the amount of CO2 emitted during thermal rearrangement. The morphology of the hollow 

fiber membranes was studied using FE-SEM (JEOL, JSM-6330F, Tokyo, Japan).  

 

6.2.4 Gas permeation measurements 

Single CO2 and N2 permeabilities of the dense films were measured by time-lag method at 

35 oC with constant downstream volume. The equations below were used to calculate the gas 

permeability and ideal selectivity.    
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P = (
𝑉(𝑆𝑇𝑃) ∙ 𝑙

∆𝑝 · 𝐴 · 𝑇
)

𝑑𝑝

𝑑𝑡
                                                         (6-1) 

α =
P1

P2
                                                                      (6-2) 

 

where P (cmHg) is the gas permeability, V (cm3) is the volume rate, l (cm) is the membrane 

thickness, A (cm2) is the effective area of membrane, and T (K) is the temperature. The unit of 

permeability is Barrer and it is based on the standard temperature and pressure (STP) condition 

(1 Barrer = 10-10 cm3(STP)·cm /cm2·s·cmHg), denotes ideal selectivity which is the ratio of 

pure gas permeabilities of gas 1 over gas 2. 

TR-PBO hollow fiber membrane modules were fabricated, and the pure gas permeation 

tests were performed using N2 (3.64 Å ) and CO2 (3.3 Å ). A shell side feed configuration was 

adopted for all the permeation experiments, with the feed pressure increasing from 1 to 6 bar 

(1 bar increment) at 25 °C. The gas permeance (P/l) was calculated based on the following 

equation 

𝑃

𝑙
=

𝑄 

∆𝑝𝐴
                                                                          (6-3) 

where Q, Δp, and A are the volumetric gas flow rate (cm3 (STP)/s), the pressure difference 

between the feed and permeation side (cmHg), and the membrane effective area (cm2), 

respectively. The unit of gas permeance (P/l) is GPU (gas permeation unit), defined as 1 

GPU=1×10−6 cm3 (STP)/cm2 s cmHg. The membrane ideal selectivity is defined as the ratio of 

the permeances of different gas species 
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α =
P1

P2
=

P1/𝑙

P2/𝑙
                                                                      (6-4) 

𝑙𝑠𝑘𝑖𝑛 =
𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑑𝑒𝑛𝑠𝑒)

𝑃𝑒𝑟𝑚𝑒𝑎𝑛𝑐𝑒 (𝐻𝑜𝑙𝑙𝑜𝑤 𝑓𝑖𝑏𝑒𝑟)
=

𝑃

𝑃/𝑙𝑠𝑘𝑖𝑛
                                     (6-5) 

 

 

 

Scheme 6-1 Proposed reaction pathway and chemical structures of 5% DABA and 45% DAM 

contained cross-linked thermally rearranged poly(benzoxazole-co-imide) membrane (XTR-

PBOI-DB5) derived from hydroxy copolyimide (HPI-DB5) 
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Figure 6-1 Experimental set-up for hollow fiber spinning (1: nitrogen gas tank, 2: spinneret, 3: 

air gap, 4: coagulation bath, 5: fiber guiding wheel, 6: godet bath, 7: hollow fiber membrane, 

8:take-up roll, 9: take-up bath) 

 

 Results and Discussions 

6.3.1 Preparation of polymer and dense membranes 

In this study, the 5 mol% contained hydroxy copolyimides based on 6FDA-HAB-DAM 

(HAB/ DAM/ DABA: 50/ 45/ 5) was synthesized via azeotropic imidization and designated as 

HPI-DB5. 6FDA-HAB/DAM/DABA was chosen because 6FDA-HAB-DAM in main 

backbone showed high mechanical strength and gas permeability after thermal rearrangement 

(Chapter 3) and DABA functioned as cross-linker during thermal treatment (Chapter 5). The 

weight average molecular weight of polymer was 125,000 g/mol and poly-dispersity index 

(PDI) was 2.7. The intrinsic viscosity was 0.9 dg/L. The synthesized HPI-DB5 was dissolved 

in NMP (5 wt%) and casted on the glass plate and 50 m thick dense films were prepared.   

Prior to the thermally rearrangement using HPI-DB5, the thermal behavior of HPI-DB5 
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using TGA was investigated as shown in Figure 6-2. HPI-DB5 membrane showed the weight 

loss around 300 °C indicating the removals of residual solvent and anhydride cross-linking in 

DABA moiety. All samples were treated at 300 oC for 1 h to enable the cross-linking (the cross-

linked membranes were labeled as XHPI-DB5). The TGA results of XHPI-DB5 membrane 

reflected the completely removal of the residual solvent and the formation of cross-linking of 

DABA and clearly showed two major weight losses by thermal rearrangement from 350 oC and 

carbonization from 480 oC respectively. XTR-DB5-350 showed a major CO2 emission in the 

thermal rearmament region indicating a slight percentage of conversion; whereas XTR-DB5-

400 showed only slightly decrease in weight loss which indicated a high conversion percentage. 

The XTR-DB5-425 showed only carbonization region indicated the membrane was highly 

converted and cross-linked.     
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Figure 6-2 Weight loss and derivative weight loss comparisons of each XTR-PBOI dense 

membranes measured by TGA while heating up to 800 oC (5 oC /min) purged with nitrogen. 
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Mechanical properties of XTR-DB5 membranes were measured by UTM. The averages of 

tensile strength and elongation at break of each films were summarized in Table 6-1. The tensile 

strength and elongation at break of XTR-DB5s decreased as increasing in the treatment 

temperatures. The almost completely thermally rearranged XTR-DB5-425 results in 13% loss 

of tensile strength and 38% loss of elongation at break as comparing with XHPI-DB5. It is 

noticeable that XTR-DB5-400 and 425 showed much higher tensile strength more than 95 MPa 

and 20 % of elongation at break than TR-PBOI membrane, HAB5-DAM5, which obtained 15% 

of elongation at break and 80 MPa of tensile strength (noted that it was treated at 400 oC for 2 

h) in previous study [4]. 

 

Table 6-1 Summary of the mechanical properties of XTR-PBOIs 

 Mechanical properties 

 Tensile Strength (MPa) Elongation at break (%) 

XHPI-DB5 109 32 

XTR-DB5-375 102 30 

XTR-DB5-400 97 25 

XTR-DB5-425 95 20 

 

6.3.2 Preparation of hollow fiber membranes, gas permeation and effect of cross-

linking on hollow fiber membrane 

The fabricated asymmetric hollow fiber membranes were thermally treated using the same 

conditions as in dense membranes. The morphology of XHPI-DB5 and XTR-DB5-425 hollow 

fiber membranes were representatively shown in Figure 6-3. Using the optimized spinning 

condition, sponge-like hollow fiber membranes were fabricated without any finger-like micro-
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voids in support layer.  

Pure gas transport properties of CO2 and N2 were investigated to demonstrate the feasibility 

of using such membranes for post-combustion CO2 capture process. The results of CO2 

permeance and CO2/N2 selectivities results are summarized in Table 6-1 along with the CO2 

permeabilities and selectivities measured using dense membranes for comparison. For the 

dense membranes, CO2 permeability of XHPI-DB5 was obtained only 92 Barrer with CO2/N2 

selectivity of 24.4. As increasing in treatment temperatures, the CO2 permeability increased 

gradually and selectivity slightly dropped which was well corresponded with the typical 

behavior of TR membranes by enlarging free volumes at higher thermal treatment temperatures. 

Finally, the XTR-DB5-425 membrane obtained 785 Barrer and 19.8 of CO2/N2. As comparing 

with uncross-linked TR-PBOI membranes based on 6FDA-HAB-DAM, the permeabilities and 

selectivities were shown similar or slightly higher values due to the small portion of DABA.  

CO2 permeance of hollow fiber also increased as increasing in treatment temperatures. 

Absolute gas permeance results of TR and XTR hollow fiber membranes were not comparable 

because the performances were significantly dependent on the dope compositions and the 

spinning conditions. However, skin layer variation was compared to indicate the effect of cross-

linking as shown Figure 6-4 and Table 6-2. The effective skin layer was calculated using the 

Equation (6-4) based on CO2 permeability and permeance. The calculated thickness of effective 

skin layer of XTR-PBOI membrane sustained around 0.27~0.38 nm up to 425 oC and CO2 

permeance kept increasing as increasing in treatment temperature. On the other hand, the un-

cross-liked TR-PBOI membrane showed substantial drops of CO2 permeance at temperatures 

higher than 375 oC. This drop of permeance was attributed to the densification of polymer chain 
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matrix by passing chain relaxation temperatures and glass transition temperature around 383 

oC [2, 4]. Unlike the permeability increment of dense membranes by thermal rearrangement 

after 400 oC, the densified skin layer of hollow fiber membranes, consequently, caused in the 

loss of gas permeance. On the other hand, XTR-PBOI hollow fiber membrane showed 

continuous increment of gas permeance even higher than 400 oC. It was postulated that the 

cross-linking suppressed the polymer chain relaxation and prevented the polymer matrix from 

collapsing and thus, limiting the degree of densification of skin layer. It was also found that the 

cross-linked structure also sustained the polymer matrix in all layers (skin, transition, and 

support layer) and avoided the undesired densification. As a result, a CO2 permeance of over 

1000 GPU was achieved. This effect of cross-linking was in good agreement with the result of 

tPBO hollow fibers which showed high permeance at high temperatures.   

The densification that TR-PBOI hollow fibers experience when passing Tg presented a 

major challenge for the TR membranes for industrial scale implementation. The results 

presented here clearly indicated that the cross-linking of TR-PBOI using only a small portion 

of DABA was the solution to overcome this issue by suppressing densification, and therefore 

resulted in an increased CO2 permeance up to 1000 GPU with CO2/N2 selectivity 21.  
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(a) XHPI-DB5 

 

(b) XTR-DB5-425 

Figure 6-3 Scanning electron microscopy (SEM) images of the asymmetric hollow fiber 

membrane of (a) XHPI-DB5 and (b) XTR-DB5-425: entire cross-section (magnification 150x) 

(right), fiber wall cross-section (600x) (center), and top layer (15,000x) (left)   
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Table 6-2 Pure CO2 and N2 permeance and selectivities of XHPI and XTR-PBOI hollow fiber 

membranes, apparent thickness of effective skin layer of each fiber, comparing with TR-PBOI 

hollow fiber performances. 

Cross-linked 

TR-PBO 

Membrane 

Gas transport properties in dense 

membranes 

Gas transport properties in 

hollow fiber membranes 
Calculated 

Effective 

Skin Layer 

(nm) 
PCO2 

(Barrer) 

PN2 

(Barrer) 
CO2/N2 

PCO2 

(GPU)  

PN2 

(GPU)  
CO2/N2 

XTR-PBOI membranes 

(6FDA-HAB50/DAM45/DABA5) 

XHPI-DB5 92 3.8 24.3 245 13.8 17.8 0.38 

XTR-DB5-375 105 4.3 24.6 341 17.7 19.2 0.31 

XTR-DB5-400 210 10.1 20.8 624 28.6 21.9 0.34 

XTR-DB5-425 270 13.6 19.9 1001 48.4 20.7 0.27 

TR-PBOI membrane 

(6FDA-HAB50/DAM50) [2] 

HPI 26 0.5 52.0 120 4.2 28.9 0.22 

TR-375 105 4.6 22.7 560 33.3 16.8 0.19 

TR-400 196 9.4 20.9 253 12.9 19.6 0.77 

TR-450 747 37.1 20.1 97 3.5 27.7 7.70 
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Figure 6-4 Profiles of CO2 permeance and skin thickness of hollow fiber as a function of 

increased thermal rearrangement temperatures, (a) XTR-PBOIs, (b) TR-PBOI. 

 

 Conclusion  

 XTR-PBOI hollow fiber membranes were prepared using 6FDA-HAB/DAM/DABA 

(50/45/5) polymer containing 5% DABA, synthesized by azeotropic imidization route to 

understand the cross-linking effect on hollow fiber membranes. Gas transport properties of the 

un-cross-linked TR-PBOI, 6FDA-HAB/DAM (50/50), were also prepared to compare with the 

XTR-PBOI membranes. The XTR-PBOI dense membrane only containing 5% DABA showed 

slight increase in gas permeability when comparing with the un-cross-linked TR-PBOI 

membranes. However, the CO2 permeance of XTR-PBOI hollow fiber membrane experienced 

significant increase as increasing in temperatures which was mainly owing to the cross-linking 

effect which preserved the micro-cavity structure of the polymer matrix, while the CO2 

permeance of TR-PBOIs dropped when passing the glass transition and relaxation temperatures. 
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In conclusion, cross-linking showed positive effects on restricting the polymer matrix from 

collapsing, and therefore sustained the polymer matrix and micro-cavity structure, and 

consequently, suppressing the undesired densification of skin layer to prevent the permeance 

drop.   
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 Conclusions and Future Studies  

In this final chapter, the main conclusions of each study carried out and the proposal of 

further studies regarding thermally rearranged polymers for practical gas separation 

applications derived from the use of well-designed modifications of the chemical structure of 

polymers are proposed.  

In Chapter 1, recently developed polymer membranes in gas separation were introduced as 

an obligation of making changes in the accepted trends of gas separation technologies owing 

to the duty of reducing and sequestrating CO2, which is the main greenhouse gas that produces 

global warming. Various high performance polymer membranes such as Polymers of Intrinsic 

Microporosity (PIMs), Carbon Molecular Sieves (CMSs), novel aromatic polyimides (PIs) and 

Thermally Rearranged Polybenzoxazoles (TR-PBOs) were chosen as the representative 

examples of novel polymer membrane materials and their high permeabilities were attributed 

to the existence of a rigid polymer backbone. Thermally Rearranged (TR) polymers, developed 

in the last decade, have been developed and their properties have been tuned by changing their 

chemical structures as well as exploring the search of relationships between the gas separation 

properties and the mechanical properties as a function of the thermal treatment conditions. It 

has been clearly stated that the fragility, low mechanical properties, inherent to TR membranes 

is an issue to be solved in order to implement these materials in real-world applications. Also, 

the rational modification of the precursor chemical structure on thermal rearrangement to 

achieve very high productivity materials is necessary for the implementation of TR polymers 

in industrial applications.  

In Chapter 2, the study of the main characteristics of polymers as a function of their thermal 
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treatments and also as a function of the chemical structure of precursors of TR-PBO and 

poly(TR-polybenzoxazole-co-imide) (TR-PBOI) has permitted to find a linear relationship 

between the gas separation properties and the value of the glass transition temperature (Tg) and 

the thermal rearrangement temperature applied to the polymer (TTRs). It has been determined 

the importance of understanding Tg and TTRs for each TR polymers before thermal 

rearrangement due to its different thermal behavior, which is depending on the chemical 

structure. Moreover, this assumption has been able to suggest that if the hydroxy polyimide 

precursor haves a lower Tg, the employed thermal rearrangement temperature can be reduced. 

This fact could decrease the cost of making TR materials. 

In Chapter 3, the existence of new relationships between chemical structures of precursors 

and the gas transport properties of final TR-PBO and TR-PBOIs were introduced. Here, in 

order to obtain materials easy to be employed in industrial applications, the use of 

copolymerization with polyimide derived from non-TR able part (common aromatic diamines) 

was strongly suggested to solve the fragility of TR-PBO. This approach has been able to 

produce TR materials having mechanical properties with more than 15% elongation at break 

and with 80MPa of tensile strength. In particular, the use of rigid non-TR-able diamine such as 

2,4,6-trimethyl-MPD (DAM) improved the gas permeability while flexible non-TR-able 

diamine such as oxy-dianiline (ODA) decrease the gas productivity. In addition, it has been 

obtained a relationship from the ratio of non-TR-able diamines and TR-able ones, what can 

tune the gas permeabilities of TR materials by controlling the diamine compositions and hence 

the final macromolecular structure. TR-PBOIs have been proposed as good candidate s for the 

implementation in gas separation applications and the obtained results data have served as a 
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guideline for optimization of polymer composition.  

In Chapter 4, the use of spirobisindane moieties have been introduced into TR polymer 

backbones. By using this approach, the mechanical properties of spiroTR-PBOs were strongly 

enhanced. Moreover, the gas permeabilities were highly enhanced by the losing chain packing 

introduced by the ladder-like structure of the spirobisindane groups along with the presence of 

rigid benzoxazole groups. SpiroTR-PBOs have been demonstrated as excellent candidates to 

apply in practical gas separation processes. However, the complicated synthetic route and the 

low yield of spiro-monomer obtained during its synthesis should be clearly improved in order 

to apply these materials in industrial gas separation applications. 

In Chapter 5, a fundamental study of cross-linked thermally rearranged polymers was 

carried out, and the results have permitted to establish that there is dependence between the 

final properties and the amount of cross-linking introduced by the carboxylic acid groups of 

DABA. As a main conclusion, loss of the carboxylic moieties induced cross-linking from 

DABA moieties by formation of a pillar-like structure which is able to sustain the free volume 

elements among the polymer chains and also by increasing rigidity of the polymer backbones. 

This fact became much effective during thermal rearrangement, and consequently, it was 

observed an improving of 25 times in the permeability values, which is 4-folded higher than 

the observed values for uncross-linked TR-PBO membranes.  

In Chapter 6, it was observed that cross-linking also influences the formation of hollow 

fiber membranes which showed additional densification by treating at high temperature. 

Definitely, the resistance to the formation of shrinkage (inherent to the formation of TR 
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materials due to the loss of mass in the thermal treatment) by cross-linking could provide 

materials with economic advantages. As one of the good candidate for implementation to gas 

separation area, crosslinked poly(benzozaxole-co-imide) (XTR-PBOIs) requires additional  

research, for instance, to determine the effect of film thickness and heating rate in dense film 

form. Also, sub- Tg cross-linked TR polymers were only studied in this research, and hence the 

use of temperatures above Tg or the search of relationship between gas separation properties 

with Tg should be more precisely defined with the aim of improving the final properties of 

membranes. As a next step, hollow fiber membranes are going to be thoroughly studied to 

understand the effect of cross-linking on these fibers and also to figure out the final gas 

performances in real-world operations.   
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