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SUMMARY 

 

As it is widely known, most of the compounds that determine the sensory 

characteristics of wines are produced during the ripening of grapes. Along this period, 

the concentration of sugars, aminoacids, phenolic compounds and potassium increase, 

while the content of organic acids, particularly malic acid, decreases. These changes 

do not necessarily occur simultaneously and therefore winemakers need to consider 

the technological maturity (i.e. sugar content and acidity), and also the phenolic 

(especially anthocyannins and tannins) and aroma maturity of grapes in order to set the 

harvest date.  

Along the last years, due to climate change, various world winemaking regions 

have provided evidence of modified vine development and fruit maturation patterns as 

a consequence of global warming. Among the most important climate change-related 

effects there is a higher sugar content, lower acidities and modification of varietal 

aroma compounds. Fermentation of this must leads to alcoholic degrees higher than 

desired, as they may be too burning in the mouth and mask the fruity aromas and taste 

of wine. Premature grape harvest and winemaking should affect the final wine quality, 

leading to more acid and less colored wines, because the phenolic maturity would not 

be yet fully achieved. A commendable oenological practice establishes that the quality 

of wines depends essentially on the maturity of phenolic components contained in the 

grape berries. Therefore, in order to produce a full flavored wine, the harvest should be 

carried out in the optimum ripeness of the fruits and then innovative techniques to 

reduce the final alcohol content should be applied.  

Winemakers have applied these methods mainly to two different sources: wine 

and grape must. The most used dealcoholisation method in the industry is the spinning 

cone column (SCC) for the separation of volatile components from liquids and slurries. 

This procedure requires several steps to remove first the wine aromas and afterwards 

alcohol and finally the aromas are returned to the dealcoholized wine. Because it is a 

time consuming and expensive process, other dealcoholization techniques have been 

used too. Some examples are the thermal processes such as distillation columns, 

evaporators, or freeze concentration. Heat-based processes can produce wines with 

very low alcohol content, however most of the volatile aroma compounds are also lost 

during the ethanol removal. Reverse osmosis (RO) is also used to reduce alcohol in 

wines, but the problem is that RO membranes are permeable to both alcohol and 

water, and after the filtration it is necessary to add water again to the dealcoholized 

wine. This creates legal problems in some countries where the addition of water is 



Summary 

2 

forbidden by law. Membrane processes, namely dialysis, pervaporation and vacuum 

membrane distillation are also being used to get low-alcohol drinks. 

An adequate control of sugars in musts can also be useful to obtain low alcohol 

degree wines. Examples of this are the use of enzymes or yeasts that use sugars for 

cell growth. However these methods also produce high levels of microbiological side 

products such as gluconic acid or esters which alter the sensory quality of the resulting 

wine. 

Processes involving membranes have also been used for reducing the sugar 

content. If the molecular weight of sugars in must is taken into account, nanofiltration 

(NF) should be the membrane process to be chosen to control them. Several studies 

have revealed the feasibility of NF for sugar control in grape must and the alcohol 

reduction of the resulting wine. However, a slight loss of color and aroma intensity and 

a slender unbalancing of some important substances (potassium, malic and tartaric 

acid) were detected. Moreover, these experiments of must nanofiltration, showed that 

there are some problems that are common in membrane separation processes, among 

them especially relevant trouble is caused by fouling and the permeate flux decline.  

For all these reasons, the main scope of this PhD thesis is to optimize the 

nanofiltration process for sugar control in grape must in order to produce full flavored 

wines with reduced alcohol content. For this purpose different aspects had to be 

evaluated and studied. 

First of all, it was intended to analyze the reduction of the nanofiltration 

permeate volume flux (Jv) due to fouling, resistances (Rj) and osmotic pressure 

generated by the different compounds present in must. In that sense, a detailed 

method for the study of the individual influence in must NF of its main low and high 

molecular weight compounds (LMW and HMW respectively) was developed. For this 

purpose a synthetic solution containing the typical LMW of natural must, namely 

glucose, fructose, malic and tartaric acids, potassium, sodium, calcium and magnesium 

was nanofiltered. The results were compared with those obtained from the filtration, 

under the same operation conditions, of commercial red must; which, besides the 

already mentioned solutes, contains HMW such as polyphenols, polysaccharides and 

proteins. Experiments were carried out at laboratory scale using a NF270 flat sheet 

membrane from Dow Filmtech in a crossflow module. The rapid formation and 

thickening of the gel layer on the membrane surface, during must filtration caused 

extreme conditions of analysis: small increase in the concentration of sugars in the 

retentate and rapid decline in Jv, obtaining a small volume of permeate. In spite of this, 

the analytical method proposed enabled the individual study of the resistances and 

fouling mechanism generated by LMW and HMW. The results proved that HMW have 
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more influence on the permeate flux decrease since they are the main responsible of 

the fouling phenomenon (cake filtration fouling mechanism), while LMW contribute to 

the flux decay mostly through an increase of osmotic pressure during the process. 

Regarding the resistances generated individually by LMW and HMW (RfLMW and RfHMW 

respectively) two different evolutions were observed. RfLMW remained practically 

constant in comparison to the RfHMW which increased progressively until reaching a 

maximum, beyond which there is a progressive slight decrease. The decay of RfHMW at 

the end of the red must filtration suggested that the cake formed may be compressible 

causing an osmotic pressure increase which reduces the effective pressure drop 

across the cake and so its resistance to Jv. Moreover, the formation of the gel layer on 

the membrane surface changed the selectivity to sugars, but the compression of this 

cake increases the retention even more. 

According to these results, the next issue to be assessed consisted on the 

selection of the most suitable NF membrane. It should show an appropriate sugars 

retention (pore size), about 50%, and a low affinity to HMW (manufacturing polymer) in 

order to maintain substantially unaltered its retention characteristics due to the 

accumulation of these substances on the membrane surface. In this sense, the method 

previously proposed was used for the systematical study and comparison of different 

NF membranes. The parameters evaluated were membrane fouling, resistances to 

permeate flux and osmotic pressure gradients through the membrane system 

generated individually by LMW and HMW during grape must filtration. Here, the 

performance of three flat sheet NF membranes was studied: NF270, from Dow 

Filmtech; HL, from GE: Water & Proccess technologies, and KMS SR3 from Koch 

Membrane Systems. Figure 1a shows that, for the three membranes, the kinetics of 

fouling when HMW compounds were present included three consecutive steps: pore 

blocking followed by cake deposition and an increase in compression until arriving to 

compaction (arrows in Figure 1a). Moreover, it was observed that while the cake was 

being assembled, sugar retention increased and arrived to a maximum when the cake 

was completely built. During the process, the osmotic pressure of the system increased 

and the effective pressure decreased in the three membranes. Once again, RfHMW 

increased progressively until reaching a maximum beyond which a gradual small 

decrease was observed. Figure 1b shows the comparison of the resistances due to 

fouling for the three membranes studied. Relating the cake fouling mechanism with this 

resistances analysis for the three membranes it was observed that, the maximum 

RfHMW agreed fairly well with the beginning of the third fouling mechanism, where the 

cake starts to be compacted.  
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Figure 1 (a) (t/VP) versus VP for each membrane during red must NF. Open symbols 

correspond to intermediate zone; filled symbols correspond to cake formation mechanism zone; 

(b) Comparison of the total fouling (Rf) resistance for the three membranes. Arrows point to the 

respective maxima 

 

Apparent membrane pore size can also be used to study flux decay through the 

analysis of its evolution. In order to estimate pore size, a convection-difussion model 

was used. The model used considers only the steric partitioning in the interface, with 

the introduction of the applied pressure gradient term. According to it, the retention 

coefficient, R, is a function of the pore radius, rp. From a set of data, of Jv and R, the 

pore radius was estimated for the three membranes along the filtrations of the LMW 

model solution and grape must. In this way the evolution of the retention and effective 

pore radii was studied. Results showed that during the permeation of must, there was a 

continuous increase of retention while flow decreases slowly. This progressive increase 

of retention was so high that it seemed inappropriate to assume a single pore size. In 

this case, the model was applied to each measurement and the pore radius obtained 

as a function of the permeated volume. In Figure 2, the effective pore radii evaluated 

from must retention experiments are shown. It can be seen that there was a clear 

reduction of the effective pore size of the membrane (much slower, although a little 

larger, for the SR3 membrane). The mean pore radii for the synthetic solution are also 

shown here by horizontal lines. The evolution of retention and the effective pore size 

shows that for long filtration periods the three membranes show similar final effective 

pore size. In spite of the final convergence in equivalent pore radii, initial details do 

show differences between the membranes, especially between SR3 and the other two. 

Figure 2 shows a clear and pronounced drop of pore radii during the very first filtration 

moments for NF270 and HL. This happened as a consequence of the initial pore 

blocking mechanism. It appears clear that, for HL and NF270, pore blocking was the 
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main factor determining the effective pore size with a final smooth additional reduction 

of pore size caused by the formation of the cake. The SR3 membrane was only slightly 

influenced by pore blocking with a final deep reduction due to the cake deposit and its 

compaction. Vertical solid lines arrows in Figure 2 correspond to the maximal 

resistances. Thus, it seems clear that maximal resistance occurs when the trend of 

decrease in pore size due to the cake formation starts to stabilize. This is especially 

apparent for the SR3 membrane. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.-Time evolution of pore radii calculated for each single data point of  NF270 (Glu),  

HL (Glu),  SR3 (Glu) of the red must NF process. As example the glucose (GLU) data are 

shown. Horizontal lines represent the average values obtained for the synthetic solution (SS) 

NF along the complete process. Arrows correspond to the maximum total fouling resistance for 

each membrane (according to Figure 1) 

 

The analysis of the flux decay and retention of sugar in musts showed that, two 

of the three membranes studied, HL and SR3 are appropriate to reduce the content of 

sugar of red must. Specifically SR3 showed the best passage of sugar and less fouling 

as shown in Figure 1a. Therefore SR3 membrane was selected to continue the studies. 

Membranes can be presented in several configurations such as: spiral wound, 

hollow fibers, tubular and plate-and-frame modules. Amongst them, spiral wound 

modules (SWM) are often preferred in industry because they offer a good balance 

between ease of operation, fouling control, permeation rate and packing density. 

Therefore, as a continuation of this research, the scale-up of the selected NF process 

was tested using the SR3 membrane in a spiral wound configuration. The analysis of 

the differences between red grape must NF at laboratory and at pilot plant scale using 
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the same membrane were considered as the first stage of the optimization of the 

procedure for sugar reduction of must at a higher scale. Specifically the fouling 

mechanisms, sugars rejection and osmotic pressure were compared. For this purpose, 

the previous results obtained for the NF of grape must using the SR3 membrane in a 

flat sheet crossflow module were compared with those obtained for the filtration of must 

using the same membrane in a spiral wound module. Moreover, because in previous 

studies the increase of the osmotic pressure was considered to be a limiting factor of 

the permeate flux, the study of the increase of the applied transmembrane pressure 

was relevant. Therefore the effect of the variation of the applied pressure in the 

performance of the SWM was also analyzed in order to continue with the optimization 

process. The comparison of the performance of both modules allowed the analysis of 

the influence of feed spacers on fouling mechanism, time evolution of sugar retention 

and osmotic pressure during must nanofiltration. Results showed that the flow 

destabilization and eddy promotion caused by spacers in the SWM mitigated the rate at 

which the cake thickens and compacts on the membrane surface. The latter caused a 

less-sharp Jv decrease with more appropriate almost constant sugars rejection and 

small osmotic pressure differences.  

Furthermore, higher applied pressure promoted a higher membrane fouling and 

osmotic pressure that worsen the flux decay. In this sense, the optimization of the 

system wouldn’t consist in a simple increase of the applied transmembrane pressure 

but in promoting higher shear stress (presumably with a higher effective velocity) on 

the membrane surface combined with higher driving force (applied pressure). Thus, Jv 

would be increased and concentration polarization would be mitigated decreasing also 

the resistance toward mass transport (i.e. osmotic pressure and fouling). 

Aiming to select the most appropriate NF technique at pilot plant scale to 

reduce the alcohol content of wines different NF tests were carried out for sugar control 

before fermentation. Therefore the performance of single- stage and two-stage 

nanofiltration processes were compared for white must (Spanish Verdejo) while for red 

must (Spanish Garnacha) a two-stage procedure was tested. Moreover, during the 

single stage procedure 2-minutes-stops were performed every 30 minutes. In this way, 

only the osmotic pressure acts as driving force creating a backflush of permeate to the 

retentate. This overturn of the flow promotes shear, which may affect the deposition 

and detachment behavior of the fouling species on the membrane surface. Figure 3 

provides as an example the scheme of the techniques tested and the mixtures of must 

white must carried out before fermentation. 
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Figure 3. Scheme of the Nanofiltration procedures carried out for the Verdejo white must and 

ulterior fermentation. (a) two-stage and (b) single-stage nanofiltration 

 

The analysis of the permeate flux of the different techniques showed that the 

use of backflush during the single-stage NF of Verdejo must was not appropriate since 

it caused lower permeate flow values. This means that it did not improve the 

productivity of the process. Apparently, the permeate backflush affects in an 

unexpected way the deposition of foulants and their attachment on the membrane 

surface, this is, on the growing cake surface. Results suggest that the re-suspension of 

the deposited molecules promoted by shear leads to a thinner cake or the formation of 

smaller aggregates. This may have higher resistance to the permeate flux and 

therefore be more effective in reducing the permeate flow. 

After the NF processes, permeate one (P1) of the single-stage or two (P2) of 

the two-stage were blended with untreated juice and with first retentate (R1) 

respectively. Mixtures were carried out in order to preserve the specific grape features 

linked to the high molecular weight components present the original must or retained in 

R1 but with lower sugar content in comparison to the original must. These blends were 

chemically analyzed revealing the feasibility of single-and-two- stage NF processes for 

sugar reduction in grape must without a significant alteration of important compounds 

such as polyphenols, malic and tartaric acids. Moreover, results showed that the 



Summary 

8 

mixture (P2+R1) promoted a higher recovery of polyphenolic compounds (IPT) than 

with untreated must (P1+C). 

Three different Garnacha red wines were elaborated: A control made from the 

control must (GC) and two low alcohol content wines obtained from the mixture of 

musts (P2+R1): G2NF1 and G2NF2. Also, three different Verdejo white wines were 

manufactured: a control (VC), and two low alcohol content wines: one made from the 

mixture proceeding from the single-stage nanofiltration (P1+C): V1NF and one 

produced from the mixture (P2+R1) obtained from the two-stage nanofiltration process: 

V2NF. The corresponding wines obtained by adequate mixing of permeated and 

retained or control musts showed a 1 to 2 degrees alcohol reduction. Moreover, they 

were submitted to a sensory evaluation which revealed that none of the wine samples 

was particularly preferred by the consumers, showing that there were no significant 

differences between the control and the filtered wines. Furthermore, this evaluation 

showed that NF did not affect significantly the odor and color of the resulting red wines, 

since the G2NF1 had the highest color and odor acceptance. Regarding white wines, 

they showed the highest acceptance in flavor and overall liking. But sample V1NF 

presented lower persistence in mouth. This feature could be related, from the sensorial 

point of view, to a wine with a lower alcohol degree. Besides, Verdejo is a wine variety 

characterized by its aroma components (volatile compounds). That is why nanofiltration 

could be more effective in the loss of these compounds in this variety. 

All in all, it can be said that among the processes studied, the best NF 

technique is the two- stage process without backflush. This technique allows not only 

an appropriate sugar content reduction, but also the mixture (P2+R1) promotes a 

higher recovery of polyphenolic compounds (i.e. color). Besides it minimizes volume 

losses since the retentate of the first stage and the permeate of the second stage are 

used for the appropriate blend of must .Therefore, this technique could be applied at a 

larger scale for the production of low alcohol content wines. 

In order to minimize the resulting impairment of the aroma and flavor quality of 

the final wine, the primary aroma compounds could be recovered from the grape juice 

before NF and then added back to the filtered must before fermentation. In view of their 

intrinsic characteristics, namely high selectivity and possibility of operation at moderate 

temperatures, pervaporation (PV) is a membrane process that seems highly 

appropriate for the separation of dilute species in liquid solutions. Specifically, 

organophilic PV membranes have a high potential for recovering natural and natural-

identical aroma compounds, highly diluted in complex aqueous media. For the 

selection of the appropriate PV membrane the performance of two membranes was 

assessed. One was coated with polyether-block-amide (PEBA) and the other with 
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polydimethylsiloxane (PDMS). For this purpose, PV experiments were carried out using 

a model aqueous solution made of six of the main aroma compounds present in grape 

must. These substances were two aldehydes: Hexanal and Benzaldehyde and four 

alcohols: isoamylalcohol, 1-hexanol, benzylalcohol and 2-phenylethanol. The 

concentration of each compound was in ppm levels. Results were then tested using 

natural grape must as feed of the experiments. The module used was a flat sheet 

crossflow module. During model solution experiments it was observed that both 

membranes have higher selectivity for aldehydes than for alcohols. But PEBA 

membrane was not selective to benzylalcohol since this compound could not be 

detected in its permeate. In general, PDMS membrane presented better permeation 

performance parameters. Both membranes showed a different permeation behavior 

during pervaporation of grape juice tests changing to a higher selectivity for alcohols. 

This means that probably aldehydes have stronger interactions than alcohols with the 

rest of the components of grape must. This study revealed the feasibility of 

pervaporation for natural aroma recovery in beverages to decrease aromatic depletion 

before their processing. Even though both membranes exhibited similar performance, 

PDMS showed the best permeation behavior to all compounds of interest and for both 

feeds. 

The last study of the present work evaluates the performance of the 

combination of pervaporation and nanofiltration at a higher pilot plant scale, for the 

elaboration of a full flavored low alcohol content wine. Based on the results obtained in 

the previous work, the PV SWM used was a PV-SR1 (Pervatech) with a PDMS based 

membrane inside for aroma recovery of grape must before NF and fermentation. 

Moreover, in order to reduce the time required for the NF procedure, the effective 

membrane area was increased in the first NF-stage (two NF SWMs arranged in 

parallel) and the effective crossflow velocity was increased in both stages. Two 

processes were studied and compared in this work in order to assess the effectiveness 

of PV for aroma recovery of grape must. The first process consisted of the use of a two 

stage NF process for the reduction of the sugar content of must. The second combined 

the use of PV for aroma recovery of grape must followed by the two-stage NF process 

for sugar reduction. A scheme that summarizes the steps and operating conditions of 

each process and the combination of them is depicted in Figure 4. Six different wine 

samples were obtained from the must blends shown in Figure 4. Two control wines (C1 

and C2); two nanofiltered wines (2NF1 and 2NF2) and two pervaporated -nanofiltered 

wines (PV+2NF1 and PV+2NF2). 
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Figure 4. Experimental steps carried out during the different methods proposed. Dashed blue 

arrows stand for PV; red dotted arrows are only for NF and purple arrows are common for both 

processes. 

 

The assessment of the permeate flux showed that in terms of the PV tests the 

values were remarkably lower than those obtained in the previous test using the PDMS 

flat sheet module. This decrease is only attributable to the difference in the 

configuration of the modules used. On one hand the configuration in a SWM modifies 

the effectivity of the vacuum in the permeate side. On the other hand, as studied 

before, the presence of spacers modifies the hydrodynamic conditions in the retentate 

side modifying concentration polarization and fouling effects. Regarding the NF tests, 

the new experimental set up allowed the reduction of the NF time necessary for the 

intended sugar control. Moreover, the analysis of the aromatic profile revealed that the 
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mixture of musts (P1+R2+aromas) corresponding to the process PV+ 2NF exhibited an 

aroma content more similar to the original grape must with the exception of 

benzaldehyde and 1-hexanol.   

The wines produced were sensorial analyzed and Consumers’ overall liking 

scores showed that Sample C1 and (PV+2NF1) were the most liked. Moreover, results 

exhibited that consumers found the wine samples corresponding to the PV tests more 

similar to the control samples. The analysis of the aroma compounds of the resulting 

wines showed that in comparison to the most liked control wine, wines coming from the 

PV experiments had a more similar aromatic profile than the ones coming only from the 

NF tests.  

According to this study, it can be concluded that among the membrane 

processes assessed, the combination of PV and a 2 stage NF process presented the 

best results for the elaboration of a full flavored low alcohol content wine. Nevertheless 

mass transfer during the PV process needs to be enhanced. This can be presumably 

achieved by increasing the time of PV. Also a higher feed tangential flow or feed 

pressure should improve the aroma transfer if care was taken to avoid exceeding the 

maximal pressure drop through SWM recommended by the manufacturer. 
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RESUMEN 

 

Como es ampliamente conocido, la mayoría de los compuestos que determinan 

las características sensoriales del vino son sintetizados durante la maduración de las 

uvas. A lo largo de este periodo, la concentración de azúcares, aminoácidos, 

compuestos fenólicos y sodio crece, mientras el contenido de ácidos orgánicos, 

principalmente el ácido málico, decrece. Estos cambios no ocurren necesariamente al 

mismo tiempo. Por lo tanto, para establecer la fecha de vendimia, los productores 

deben considerar la madurez tecnológica (es decir contenido de azúcares y acidez) y 

también la madurez fenólica (especialmente antocianos y taninos) y aromática de los 

frutos. 

A lo largo de los últimos años, debido al cambio climático, varias zonas 

productoras de vino han proporcionado evidencia de modificaciones en el desarrollo 

de las viñas y patrones de maduración de las bayas. Dentro de los efectos más 

importantes relacionados con el cambio climático se ha observado un mayor contenido 

de azúcares, menor acidez y la modificación de aromas varietales. La fermentación de 

estos mostos conduce a contenidos alcohólicos mayores a los deseados, puesto que 

estos vinos resultan demasiado ardientes en boca, lo cual enmascara los aromas y 

sabores frutales característicos. Una vendimia y fermentación anticipadas afectaría la 

calidad del producto puesto que se obtendrían vinos más ácidos y con menor color ya 

que el fruto no habría alcanzado su madurez fenólica. Las prácticas enológicas 

apropiadas establecen que la calidad de los vinos depende esencialmente de la 

madurez fenólica de los frutos. Por lo tanto, para elaborar un vino de calidad la 

vendimia debe ser realizada en la madurez adecuada de los frutos y luego reducir el 

contenido alcohólico final del producto mediante técnicas novedosas y adecuadas. 

Los productores han aplicado estos métodos principalmente a dos fuentes: vino 

y mosto de uva. El método de desalcoholización más utilizado en la industria 

alimentaria es la columna de cono giratorio mediante la cual se logra la separación de 

los compuestos volátiles de los líquidos. Este proceso requiere varias etapas para 

recuperar primero los aromas del vino, luego el alcohol y finalmente devolver los 

aromas al vino desalcoholizado. Puesto que ésta es una técnica cara y que requiere 

mucho tiempo, se han utilizado otros métodos de desalcoholización. Ejemplos de 

éstos son las columnas de destilación, evaporadores o concentradores por 

congelación. Los procesos térmicos de desalcoholización pueden producir vinos de 

baja graduación alcohólica, sin embargo, la mayoría de los compuestos volátiles son 

eliminados o deteriorados durante la recuperación del alcohol. La ósmosis inversa (OI) 

también se utiliza para la desalcoholización de vinos. El problema es que las 
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membranas de OI son permeables tanto al alcohol como al agua y por lo tanto tras la 

filtración es necesaria la adición de agua al vino desalcoholizado. En algunos países 

esto genera problemas legales puesto que la adición de agua está prohibida por ley. 

Es conocido también que procesos de membrana tales como la diálisis, pervaporación 

y destilación por vacío con membranas también han sido utilizados para la producción 

de bebidas de baja graduación alcohólica. 

Un control adecuado de los azúcares del mosto también se considera útil para 

la obtención de vinos de bajo contenido alcohólico. Ejemplos de éstos es el uso de 

enzimas o levaduras que utilizan los azúcares para el crecimiento celular. Sin 

embargo, durante estos procesos, se generan elevadas cantidades de compuestos 

microbiológicos secundarios como ácido glucónico o diversos ésteres. Éstos alteran la 

calidad sensorial del vino final. 

También se han utilizado procesos de membrana para la reducción del 

contenido de azúcares en bebidas de fruta. Si se tiene en cuenta el peso molecular de 

los azúcares del mosto, la nanofiltración (NF) debe ser el proceso de membrana 

adecuado para controlarlos. Varios estudios han revelado la habilidad de la NF para el 

control de azúcares y la reducción del grado alcohólico del vino resultante. Sin 

embargo, se detectó una leve pérdida de color y de compuestos aromáticos además 

de un leve desajuste en la concentración de sustancias importantes como potasio y 

ácidos málico y tartárico. Conjuntamente, estos experimentos mostraron la existencia 

de problemas comunes en los procesos de separación por membrana. Entre éstos, los 

más importantes son los causados por el ensuciamiento de membrana y los 

relacionados con la disminución de flujo de permeado. 

Por las razones mencionadas, el objetivo principal de la presente tesis doctoral 

es la optimización del proceso de nanofiltración para el control de azúcares de mosto 

de uva con el objetivo de producir vinos de contenido alcohólico reducido que, a su 

vez, conserven sus características sensoriales. Para tal finalidad, se debieron evaluar 

y estudiar distintos aspectos. 

Primeramente, se realizó el análisis de la reducción del flujo de permeado (Jv) 

debido al ensuciamiento, las resistencias (Rj) y la presión osmótica generadas por los 

distintos compuestos característicos del mosto. En tal sentido, se desarrolló un método 

para el estudio de la influencia individual de los principales compuestos de alto y bajo 

peso molecular (LMW y HMW respectivamente) del mosto durante el proceso de NF. 

Para ello, se nanofiltró una disolución sintética que contenía los LMW característicos 

del mosto de uva, principalmente: glucosa, fructosa, ácidos málico y tartárico, potasio, 

sodio, calcio y magnesio. Los resultados fueron comparados con aquellos generados 

de la filtración (bajo las mismas condiciones de operación) de mosto tinto de uva 
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comercial, el cual además de contener los solutos mencionados contiene HMW como 

polifenoles, polisacáridos y proteínas. Los experimentos se llevaron a cabo a escala 

laboratorio utilizado la membrana plana NF270 de Dow Filmtech en un módulo de flujo 

tangencial. La rápida formación y crecimiento de la capa de gel sobre la superficie de 

la membrana durante la NF de mosto, provocó condiciones extremas de análisis. 

Estas fueron un bajo incremento de la concentración de azúcares en el retenido y una 

rápida disminución de Jv, causando un pequeño volumen de permeado. A pesar de 

esto, el método analítico propuesto permitió el estudio de las resistencias y 

mecanismos de ensuciamientos generados individualmente por los LMW y HMW. Los 

resultados probaron que los HMW tienen mayor influencia sobre la disminución de Jv, 

puesto que son los principales responsables del fenómeno de ensuciamiento por 

formación de torta sobre la superficie de la membrana (cake filtration fouling 

mechanism). Mientras tanto, los LMW contribuyen a la caída de Jv  principalmente a 

través del incremento de la presión osmótica durante el proceso. Respecto a las 

resistencias generadas individualmente por los LMW y HMW (RfLMW y RfHMW ) se 

observaron dos evoluciones diferentes. RfLMW se mantuvo prácticamente constante en 

comparación a RfHMW  la cual aumentó progresivamente hasta alcanzar un máximo a 

partir del cual se observó una leve disminución. La caída de RfHMW al final de la 

filtración de mosto sugirió que la torta formada sobre la superficie de la membrana 

puede ser compresible, lo cual provoca un aumento de la presión osmótica. Ésto 

reduce la caída de presión efectiva a través de la torta formada y por lo tanto su 

resistencia a Jv. Además se observó que la formación de la capa de gel sobre la 

superficie de la membrana provocó el cambio de la retención de los azúcares, pero la 

compresión de esta capa aumento aún más la retención. 

De acuerdo a estos resultados, el siguiente aspecto que debía ser abordado 

era la selección de la membrana de NF más apropiada para el objetivo planteado. 

Para ello, ésta debe poseer una retención a los azúcares apropiada (tamaño de poro): 

aproximadamente 50% y baja afinidad hacia los HMW (polímero de fabricación) para 

evitar la acumulación de estas sustancias sobre su superficie y así conservar sus 

propiedades de retención sustancialmente inalteradas. En tal sentido, el método 

anteriormente propuesto se utilizó para el estudio sistemático y comparación de 

diferentes membranas de NF. Los parámetros evaluados fueron: ensuciamiento, 

resistencias al Jv  y gradiente de presión osmótica a través del sistema de membrana 

generados individualmente por los LMW y HMW a lo largo de la NF de mosto tinto de 

uva. En este trabajo se estudió el funcionamiento de tres membranas de NF planas: 

NF270, de Dow Filmtech; HL, de GE: Water & Proccess technologies, y KMS SR3 de 

Koch Membrane Systems. La Figura 1a muestra que para las tres membranas el 
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mecanismo de ensuciamiento, en presencia de los HMW estuvo compuesto de tres 

etapas consecutivas: bloqueo de poros, seguido de deposición de la torta y un 

crecimiento y compresión de la misma hasta alcanzar la compactación (flechas en la 

Figura 1a). A su vez, se observó un aumento en la retención de azúcares durante el 

crecimiento de la torta, el cual alcanzó un máximo cuando ésta estaba completamente 

formada. Para las tres membranas se observó que durante este proceso, la presión 

osmótica del sistema aumentó y por lo tanto la presión efectiva disminuyó. La RfHMW 

incrementó progresivamente hasta alcanzar un máximo a partir del cual se observó un 

leve decrecimiento. En la Figura 1b se muestra la comparación de las resistencias 

debidas al ensuciamiento (Rf) para las tres membranas estudiadas. Relacionando el 

mecanismo de ensuciamiento por formación de torta con las resistencias, se apreció 

que en los tres casos el máximo de Rf coincide con el comienzo del tercer mecanismo 

de ensuciamiento, es decir cuando la torta comienza a compactarse. 

 

 

 

 

 

 

 

 

 

 

 

Figura 1 (a) (t/VP) versus VP para cada membrana durante la NF de mosto tinto. Los círculos 

blancos correponden al mecanismo intermedio, los símbolos coloreados representan en 

mecanismo de formación de torta. (b) Comparación de la resistencia total debida al 

ensuciamiento Rf para las tres membranas. Las flechas muestran el máximo en Rf  

correspondiente 

 

Mediante el análisis de la evolución del tamaño de poro aparente también 

puede estudiarse la caída de flujo de permeado. El modelo utilizado considera 

únicamente la partición estérica en la interface con la introducción del término de 

gradiente de presión aplicada. De acuerdo a él, el coeficiente de retención, R, es una 

función del radio de poro rp. A partir de los valores de Jv y R obtenidos durante la 

filtración de LMW y de mosto tinto se estimó el radio de poro para las tres membranas. 

De esta forma, se estudiaron la evolución del radio de poro efectivo y la retención. Los 

resultados mostraron que durante la permeación de mosto ocurría un aumento 

progresivo en la retención mientras que el flujo disminuía lentamente. Este incremento 
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progresivo de la retención fue tan pronunciado que pareció inapropiado asumir un 

tamaño de poro único. En nuestro caso, el modelo fue aplicado para cada par de 

valores y así se obtuvo el radio de poro en función del volumen permeado. En la 

Figura 2 se muestra el radio de poro efectivo evaluado de los experimentos de 

filtración de mosto. Se puede apreciar una clara reducción en el tamaño de poro de la 

membrana el cual fue mucho más lento pero finalmente mayor para el caso de la 

membrana SR3. El radio de poro medio calculado para la disolución sintética se 

muestra en la figura mediante líneas horizontales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2 Evolución del tamaño de poro calculado para cada par de valores de  NF270 (Glu), 

 HL (Glu),  SR3 (Glu) en la filtración de mosto tinto. Como exemplo se muestran los valores 

generados para la glucosa (GLU). Las líneas horizontales representan los valores medios 

obtenidos durante la filtración de la disolución sintética (SS). Las flechas corresponden al 

máximo de la resistencia debida al ensuciamiento de cada membrana (de acuerdo a la Figura 

1) 

 

La evolución de la retención y el tamaño efectivo de poro muestra que para 

periodos de filtración largos las tres membranas alcanzan un valor mínimo similar. A 

pesar de la convergencia final, los valores iniciales sí mostraron diferencias entre las 

tres membranas, especialmente entre la SR3 y las otras dos. La Figura 2 muestra una 

clara y pronunciada reducción del tamaño de poro durante los primeros instantes de 

filtración para las membranas NF270 y HL. Este suceso ocurrió como consecuencia 

del mecanismo inicial de bloqueo de poro. Claramente se aprecia que este mecanismo 

es el factor determinante del tamaño de poro de las membranas NF270 y HL en tanto 

que la formación de la torta ocasiona una pequeña disminución adicional del poro 
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efectivo. En cambio la membrana SR3 fue mínimamente influenciada por el bloqueo 

de poros y se observó una pronunciada disminución final debida a la formación y 

compactación de la torta. Las flechas en la Figura 2 corresponden a los máximos 

observados en Rf. Por lo tanto, parece claro que el máximo en la resistencia ocurre 

cuando el tamaño de poro tiende a decrecer debido a la formación de la torta. Este 

hecho es especialmente notorio para la membrana SR3. 

El análisis de la disminución de flujo de permeado y la retención de azúcares 

demostró que dos de las tres membranas evaluadas, HL y SR3, son apropiadas para 

la reducción de azúcares en el mosto. Particularmente la SR3 mostró el mejor pasaje 

de azúcares y menor ensuciamiento como puede apreciarse en la Figura 1a. Por lo 

tanto la membrana SR3 fue seleccionada para la continuación de los estudios de la 

presente tesis. 

Como es sabido, las membranas pueden presentarse en diferentes 

configuraciones, tales como módulos en espiral, de fibras huecas, tubulares o de 

placas y marcos. Entre todos ellos, los módulos en espiral (SWM) son mayormente 

preferidos en la industria puesto que ofrecen una mejor relación entre facilidad de 

operación, ensuciamiento, flujo de permeado y densidad de empaquetamiento. Por lo 

tanto, como continuación de este trabajo se estudió el escalado del proceso de NF 

utilizando la membrana SR3 en una configuración en espiral. Para la optimización del 

proceso a mayor escala, se consideró apropiado primeramente analizar las diferencias 

principales entre las filtraciones de mosto a escala laboratorio y escala piloto utilizando 

la misma membrana. Concretamente se compararon los mecanismos de 

ensuciamiento, retención de azúcares y presión osmótica. Para ello, los resultados 

obtenidos previamente, utilizando la membrana plana SR3 en el módulo de flujo 

tangencial, se compararon con aquellos obtenidos de la filtración de mosto de uva tinto 

utilizando la misma membrana en un SWM. Además, puesto que en el estudio previo 

se concluyó que la presión osmótica es un factor limitante en el flujo de permeado, se 

consideró apropiado el estudio de la influencia del incremento en la presión aplicada 

en el funcionamiento del SWM. La comparación del rendimiento de ambos módulos 

permitió el análisis de la influencia de los espaciadores en el mecanismo de 

ensuciamiento, evolución de la retención de azúcares y presión osmótica durante la 

filtración de mosto. Los resultados probaron que la desestabilización de flujo y la 

promoción de vórtices generada por los espaciadores en el SWM mitigaron la 

velocidad de crecimiento de la torta sobre la superficie de la membrana. Ésto se 

tradujo en una disminución menos pronunciada de Jv, una retención de azúcares 

constante y una diferencia de presión osmótica pequeña. A su vez, se observó que un 

incremento en la presión aplicada promueve un mayor ensuciamiento de la membrana 
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y presión osmótica lo cual provocó una mayor disminución de Jv.  En tal sentido, la 

optimización del proceso no consistiría en un simple incremento de la presión aplicada. 

Lo que debe hacerse es promover un mayor esfuerzo de corte sobre la superficie de la 

membrana (presumiblemente mediante una mayor velocidad efectiva) combinada con 

una mayor fuerza motriz (presión aplicada). De esta forma se incrementaría Jv y los 

efectos de la polarización por concentración se mitigarían reduciendo también las 

resistencias al transporte de masa (presión osmótica y ensuciamiento). 

Con el objetivo de seleccionar a escala piloto la técnica de NF más apropiada 

para la reducción del contenido de alcohol en vinos, se realizaron distintas pruebas de 

NF para la reducción de azúcares antes de la fermentación. Para ello se comparó el 

rendimiento de un proceso de etapa simple de NF y uno de doble etapa de NF 

utilizando mosto de uva blanco (Verdejo). A su vez se estudió el rendimiento en mosto 

tinto (Garnacha) de un proceso de doble etapa de NF. Además durante el proceso de 

etapa simple se realizaron paradas de 2 minutos cada 30 minutos. De esta forma sólo 

actúa como fuerza motriz la presión osmótica creando un flujo inverso desde el 

permeado hacia el retenido. Esta inversión en el sentido del flujo provoca esfuerzos de 

corte los cuales pueden afectar a la deposición y adhesión de los compuestos 

acumulados sobre la superficie de la membrana. La Figura 3 proporciona un esquema 

que ejemplifica las técnicas estudiadas y las mezclas de mosto blanco realizadas 

antes de la fermentación.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Esquema de los procesos de NF llevados a cabo para el mosto blanco Verdejo y 

posterior fermentación. (a) NF de doble etapa, (b) NF de etapa simple 
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El análisis del flujo de permeado de las diferentes técnicas propuestas 

demostró que la aplicación del retro flujo durante la NF de etapa simple no fue 

adecuado, puesto que produjo una mayor caída de Jv. Esto significa que no mejoró la 

productividad del proceso. Aparentemente el retro flujo de permeado afecta 

inesperadamente el depósito y adhesión de las partículas sobre la superficie de 

membrana. Los resultados sugieren que la re-suspensión de las moléculas 

depositadas ocasionada por los esfuerzos de corte se traducen en la formación de una 

torta más delgada compuesta de agregados más pequeños. Ésta puede tener mayor 

resistencia al flujo de permeado y por lo tanto ser más efectiva en la reducción de Jv.  

Tras los procesos de NF, el primer permeado (P1) del proceso de etapa simple 

o el segundo (P2) del proceso de doble etapa se mezclaron respectivamente con 

mosto original o con el primer retenido (R1). Así estas mezclas preservan 

características de las uvas relacionadas con los HMW presentes en el mosto o 

retenidas en R1, pero con un contenido de azúcares menor al original. Las mezclas 

fueron analizadas químicamente revelando la habilidad de ambos procesos para la 

reducción de azúcares sin alterar significativamente la concentración de otros 

compuestos tales como polifenoles y ácidos málico y tartárico. A si mismo, los 

resultados mostraron que la mezcla (P2+R1) promueve una mayor recuperación de 

compuestos polifenólicos que la mezcla (P1+C). 

Se elaboraron tres vinos tintos de la variedad Garnacha: Un testigo (GC) y dos 

de baja graduación alcohólica a partir de la mezcla (P2+R1): G2NF1 y G2NF2. A su 

vez se elaboraron tres vinos blancos de la variedad Verdejo: un testigo (VC) y dos 

vinos de bajo contenido alcohólico, uno proveniente de la mezcla (P1+C): V1NF y otro 

producido a partir de la mezcla  (P2+R1): V2NF. Los vinos obtenidos mostraron una 

reducción del contenido alcohólico entre 1 y 2 grados. Además éstos fueron evaluados 

sensorialmente por un panel de consumidores. Los resultados afirmaron que ninguno 

de los vinos fue particularmente preferido por los consumidores. Esto significó que no 

existieron diferencias significativas entre los vinos testigo y los nanofiltrados. A su vez, 

este análisis reveló que la NF no afectó el olor y color de los vinos obtenidos. 

Particularmente los vinos blancos presentaron los valores más altos en sabor y 

aceptabilidad global. Pero la muestra V1NF exhibió los valores de persistencia en boca 

más bajos. Este atributo puede estar relacionado sensorialmente con una baja 

graduación alcohólica. Además la variedad Verdejo se caracteriza por ser muy 

aromática, es decir por poseer una mayor cantidad de compuestos volátiles. Es por 

ello que la NF puede ser más efectiva en la pérdida de estos compuestos en esta 

variedad de vino. 
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En general, puede decirse que entre los procesos estudiados, la mejor técnica 

de NF fue el proceso de doble etapa sin retro flujo. Este método permitió no solamente 

una correcta reducción de azúcares sino que a su vez la mezcla (P2+R1) promueve 

una mayor recuperación de compuestos polifenólicos (color) y una menor pérdida de 

volumen útil. 

Con la finalidad de minimizar el deterioro de la calidad aromática y de sabor 

detectados, los compuestos aromáticos primarios podrían ser recuperados de la 

alimentación antes de la NF y ser agregados nuevamente al mosto filtrado antes de la 

fermentación. Debido a sus características intrínsecas, principalmente alta selectividad 

y posibilidad de trabajo a temperaturas moderadas, la pervaporación (PV) parece ser 

el proceso de membrana más apropiado para la recuperación de compuestos 

altamente diluidos en matrices acuosas complejas. Para la selección de la membrana 

de PV más apropiada se evaluó el funcionamiento de dos membranas. Una de ellas 

recubierta del polímero polyeter-block-amida (PEBA) y la segunda de 

polydimetilsiloxano (PDMS). Para tal fin se llevaron a cabo experimentos de PV 

utilizando una disolución modelo acuosa compuesta de seis de los principales 

compuestos aromáticos característicos del mosto de uva. Estas sustancias fueron, dos 

aldehídos: hexanal y benzaldehído y cuatro alcoholes: alcohol isoamílico, 1- hexanol, 

alcohol bencílico y 2- feniletanol. La concentración de cada compuesto fue del orden 

de los ppm. Los resultados fueron luego comparados con aquellos generados de la PV 

de mosto de uva natural. Los experimentos se llevaron a cabo a escala laboratorio en 

un módulo de membrana de flujo tangencial. Durante los experimentos utilizando la 

disolución modelo, se observó que ambas membranas tienen una mayor selectividad 

hacia los aldehídos que hacia los alcoholes. Sin embargo, la membrana de PEBA no 

fue selectiva hacia el alcohol bencílico puesto que no se detectó su presencia en el 

permeado. En general la membrana de PDMS demostró mejores parámetros de 

funcionamiento. Ambas membranas exhibieron un comportamiento de permeado 

distinto durante la PV de mosto de uva. En este caso, ésta fue mayor hacia los 

alcoholes. Ello significa que probablemente los aldehídos poseen mayor interacción 

con los compuestos de la matriz del mosto que los alcoholes. Por lo tanto, este estudio 

reveló la habilidad de la PV para la recuperación de aromas naturales antes del 

procesado de bebidas con el objetivo de disminuir el deterioro aromático del producto. 

Finalmente, a pesar de que ambas membranas mostraron un rendimiento similar, la de 

PDMS presentó una mejor permeación hacia todos los compuestos de interés en 

ambas alimentaciones. 

El último estudio realizado en este trabajo, evalúa el funcionamiento de la 

combinación de los procesos de pervaporación y nanofiltración a escala piloto para la 
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elaboración de un vino de bajo contenido alcohólico que conserve sus propiedades 

organolépticas completas. Basados en los resultados obtenidos en el estudio previo, el 

SWM de pervaporación utilizado para la recuperación de aromas antes de la NF, fue el 

PV-SR1 (Pervatech) con una membrana recubierta de PDMS en su interior. Además, 

con el objetivo de reducir el tiempo necesario para el proceso de NF, se incrementó 

durante la primera etapa el área efectiva de membrana utilizando dos módulos en 

paralelo y aumentando la velocidad efectiva del proceso. En esta investigación se 

estudiaron y compararon dos técnicas con el objetivo de evaluar la efectividad de la 

aplicación de la PV. La primera experiencia consistió en el uso de un proceso de NF 

de doble etapa para la reducción de azúcares. El segundo proceso estudiado combinó 

el uso de PV para la recuperación de compuestos aromáticos seguido de un proceso 

de NF de doble etapa para la reducción de azúcares. La Figura 4 proporciona un 

esquema que resume las etapas y condiciones de operación de cada proceso. Tras 

las filtraciones se elaboraron seis muestras de vino. Dos vinos testigos (C1 y C2), dos 

nanofiltrados (2NF1 y 2NF2) y dos pervaporados y nanofiltrados (PV+2NF1 y 

PV+2NF2). 

El análisis del flujo de permeado de las pruebas de PV mostró que los valores 

obtenidos fueron considerablemente menores que los correspondientes a las pruebas 

realizadas a escala laboratorio. Esta disminución es únicamente atribuible a la 

diferencia en la configuración de los distintos módulos utilizados. Por una parte,, la 

configuración en un SWM modifica la efectividad del vacío en el lado del permeado. 

Por otro, como se estudió anteriormente, la presencia de los espaciadores modifica las 

condiciones hidrodinámicas en el lado del retenido, variando los efectos del 

ensuciamiento y de concentración por polarización. Con respecto a las pruebas de NF, 

el nuevo dispositivo experimental permitió disminuir del tiempo necesario para la 

reducción de azúcares. Además, el análisis del perfil aromático reveló que la mezcla 

de mostos (P1+R2+ aromas) correspondiente al proceso de PV+2NF poseía un 

contenido aromático más parecido al mosto original a excepción del benzaldehído y el 

1-hexanol. 

Los vinos elaborados fueron analizados sensorialmente por un panel de 

consumidores. Los valores de aceptabilidad global exhibieron que las muestras C1 y 

(PV+2NF1) fueron las más preferidas. Además, los resultados demostraron que los 

consumidores detectaron las muestras correspondientes a las pruebas de PV más 

parecidas a las muestras testigo. El análisis aromático de los vinos obtenidos 

demostró que, en comparación con C1, los vinos provenientes de las pruebas de PV 

poseían un perfil aromático más parecido que los respectivos al proceso de NF. 
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Figura 4 Etapas llevadas a cabo durante los procesos de membrana propuestos. Las líneas de 

trazos azules corresponden a la PV, las líneas de puntos rojas corresponden al proceso de NF 

y las líneas moradas representan a las etapas comunes en ambos procesos 

 

De acuerdo a este estudio se puede concluir que entre los procesos de 

membrana evaluados, la combinación de PV y un proceso de doble etapa de NF 

presentaron los mejores resultados para la elaboración de vinos de baja graduación 

alcohólica y elevada calidad organoléptica. Sin embargo, hay que incrementar la 

transferencia de masa durante el proceso de PV. Esto se puede lograr 

presumiblemente elevando el tiempo de PV. A su vez, una mayor velocidad de flujo 

tangencial o presión aplicada incrementarían la transferencia de aromas. Es 

importante mencionar que esto debe realizarse teniendo en consideración las 
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condiciones límite de gradiente de presión dentro del SWM recomendadas por el 

proveedor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

SECTION I. INTRODUCTION AND GENERAL 

METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

Chapter 1 
 

 

 

 

From grapes to wine. Analysis of current 

situation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section I: Chapter 1 

31 

Chapter 1. From Grapes to wine. Analysis of current situation 

 

1.1 Problematic and Motivation: Influence of climate change on grape 

maturation and wine quality 

 

Ripening of grapes is considered to be the physiological period of the plant that 

starts with veraison and ends with berry maturity. During it, the majority of the 

compounds that determine the sensory characteristics of wines are synthetized [1]. 

Along this period, the concentration of sugars, aminoacids, phenolic compounds and 

potassium increase, while the content in organic acids, particularly malic acid, 

decreases. These changes do not necessarily occur simultaneously and it is therefore 

necessary to control all of them to determine the optimal date of harvest. Classical 

parameters based on technological maturity, i.e. sugar content, total acidity and pH are 

used to identify the harvest date. However analysis of phenolic and volatile compounds 

is important to monitor the varietal characteristics of grapes and to obtain the maximum 

wine quality. The phenolic composition of the grape at maturity, especially regarding 

anthocyanins and tannins, has significant influence on the quality of the resulting wine. 

These compounds play a crucial role since they are related to color, aroma, bitterness 

and mouthfeel. Therefore, winemakers need to consider the technological maturity (i.e. 

sugar content and acidity), and also the phenolic and aroma maturity of grapes in order 

to set the harvest date [1-4]. 

Due to climate change, last years have been warmer and dryer in some areas. 

Over this period, observations from various world winemaking regions have provided 

evidence of modified vine development and fruit maturation patterns. Among the most 

important climate change-related effects there is higher sugar content, lower acidities 

and modification of varietal aroma compounds.  

Regarding the sugar content, high temperatures accelerate grape maturation, 

but temperature effects on final sugar accumulation are relatively small. Although 

higher temperatures (30 ºC) may lead to higher suspended solid concentrations. This 

higher Brix levels (higher than 24–25 ºBrix) are likely not due to photosynthesis and 

sugar transport from leaves and wood, but to concentration by evaporative loss. A 

more considerable temperature effect is known for total acidity since higher pH values 

in grapes have been measured. While the main grape acid, tartaric acid, is relatively 

stable with regards to temperature effects, malic acid levels decrease with higher 

temperatures. It has also been observed that higher temperatures lead to increased 

potassium levels. Besides sugars, acids and potassium, higher temperatures also 

modify the accumulation and formation of polyphenols which may be less important 
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quantitatively but highly relevant for wine color and aroma quality. Temperatures of 30 

ºC and higher lead to lower anthocyanin synthesis, which may be completely and 

irreversibly inhibited at very elevated temperatures and hence reduce grape color [2] . 

All in all, it can be said that during last years higher temperatures have 

promoted a gap between the technological and polyphenolic maturities in grapes. 

Therefore, if grapes are picked when the phenolic and aromatic maturity is reached, 

they would have a high potential alcohol content, up to 17% with low acidity [5].  

The International Organization of Vine and Wine (OIV), defines wine as the 

beverage resulting exclusively from the partial or complete alcoholic fermentation of 

fresh grapes, or grape must, having an ethanol content higher than 8.5% [6]. But in 

some countries, as USA, wine producers have to struggle with a supplementary tax 

added to beverages with alcohol content over 14.5%. Moreover, this over maturity 

leads to problems in wine making as some difficulties appear in alcoholic fermentation 

and in microbiological stabilization. It also causes a gustatory disequilibrium since the 

strengthening of warm sensation in mouth could mask the fruity aromas and taste of 

wine. Meanwhile, consumers show an increasing interest and demand in reduced-

alcohol, low-alcohol (between 9 and 13%) and dealcoholized wines. Some of the 

reasons for this tendency are the social consciousness for the moderate consumption 

of alcohol, the regulations of these products [7, 8] and the demand of low calorie 

products [9]. Premature grape harvest and winemaking should affect the final wine 

quality, because the acidic and phenolic maturity should not be fully achieved [10] 

leading to more acid and less colored wines. A commendable oenological practice 

establishes that the quality of wines depends essentially on the maturity of phenolic 

components contained in the grape berries. At the same time, there is a growing 

demand, by consumers, of more powerful and full flavored wines that are achieved with 

greater maturity of the grapes, both skin and seeds. This means that producers 

struggle to achieve the same levels of phenolic ripeness and tannic characteristics 

without an increase in alcohol content. Therefore, in order to produce a full flavored 

wine, the harvest should be carried out in the optimum ripeness of the fruits and then 

innovative techniques to reduce the final alcohol content should be applied.  

 

1.2 Alcohol control techniques used in the grape and wine industry 

 

Wine producers have used many dealcoholisation processes or methods to 

produce low alcohol-content wine. The most used method in the industry is the 

spinning cone column (SCC). SCC is used in the food industry for the separation of 

volatile components from liquids and slurries. This procedure requires several steps to 
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remove first the wine aromas and afterwards alcohol and finally the aromas are 

returned to the dealcoholized wine [11, 12]. Because it is a time consuming and 

expensive process, other dealcoholization techniques have been used too. Some 

examples are thermal processes such as distillation columns, evaporators, or freeze 

concentration [9]. Heat-based processes can produce wines with very low alcohol 

content (< 0.5 vol.%), however most of the volatile aroma compounds are also lost 

during the ethanol removal [13]. 

An adequate control of sugars in musts can also be useful to obtain low alcohol 

degree wines. In their work, Pickering et al. [14] studied the use of an enzyme system 

(glucose oxidase (GOX)-catalase) to reduce the glucose content in must by converting 

it to gluconic acid. However, this method produces musts and wines with higher acidity 

due, precisely, to the higher content of gluconic acid (ca. 73 g / L). Another method is 

the use of aerobic yeasts (Pichia and Williopsis) that are capable of a limited ethanol 

production during the fermentation of must. These yeasts use sugars for cell growth 

with the production of esters and other flavors of wine with a minimal ethanol 

production. However, for the production of low alcohol wines (<3%) non-traditional 

equipment is required to provide agitation and aeration during fermentation. Although 

these yeasts are capable of an extreme alcohol reduction, the high levels of esters 

produced may affect the wine flavor [15]. 

Processes involving membranes have also been used for reducing the sugar 

content. Since June 2010 the International Organization of Vine and Wine (OIV) 

introduced in the "International Code of Oenological practices" the application of 

membrane techniques for the treatment of musts and wine in order to enable the 

selective holding back or passing of some compounds. The objectives sought by the 

application of these techniques are: to elaborate more balanced wine or other 

vitivinicultural products in terms of organoleptic characteristics; to compensate effects 

of adverse weather conditions and climate change; and to resolve certain organoleptic 

issues; in addition to expand the techniques available for development of products 

more adapted to consumer expectations [6]. 

Membrane filtration has been applied to wine for a long time: cross – flow 

microfiltration (MF) and ultrafiltration (UF) to clarify white grape must [16], sugar 

concentration using nanofiltration (NF) [17] and reverse osmosis (RO) [18] in musts. 

Reverse osmosis is also used to reduce alcohol in wines, but the problem is that RO 

membranes are permeable to both alcohol and water, and after the filtration it is 

necessary to add water again to the dealcoholized wine which creates legal problems 

in some countries where the addition of water is forbidden by law [19]. Membrane 

processes, namely dialysis [19], pervaporation [20]  and vacuum membrane distillation 
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[2] are also being used to get low-alcohol drinks. The advantage of the use of 

membrane technologies in the food industry, is that the high sugar containing by-

products could be used to manufacture liquors or as additives to other foodstuffs [21]. 

Concentrated must plays an important role in the beverage and wine industry; it is a 

natural sweetener in wine production, and a vitamin- and aroma-rich drink [22].  

According to the molecular weight of the sugars (i.e. glucose and fructose) 

present in grape must, nanofiltration should be the membrane process to be chosen to 

retain them [21].  

In their studies, Garcia - Martin et al. [21] analyzed the use of different 

ultrafiltration and nanofiltration membranes to control the sugar content in must. 

Specifically, they studied the retention of glucose and fructose in model solutions and 

commercial musts. Also the rejection of the most important high and low molecular 

weight compounds was analyzed in this work. The results showed that nanofiltration is 

the most appropriate technique for controlling sugars and a moderate retention of low 

molecular weight compounds. 

Moreover, in their research Kiss and coworkers [22] regulated the resulting 

sugar content of must to allow its preservation. They concluded that NF is a process 

alternative to conventional evaporation attending to economic considerations. 

Nanofiltration has also been used to increase the sugar content of grape must (to 

increase the final alcohol degree) in wine production [17]. Using a two stage NF 

process of grape must, Versari, et al. [17] obtained relatively high sugar retentions (7–

97%) with low retention of malic acid (ranging from 2% to 14%). 

In subsequent work García – Martin and coworkers (2010, 2011) [10, 19] 

studied the sugar reduction in musts by nanofiltration to obtain wines with a slight 

alcohol reduction. Specifically, sugar reduction was achieved by two successive 

nanofiltration steps. To this end, they worked with two types of musts: one white, from 

Verdejo grape variety, and one red from Tinta de Toro grapes. In the first stage 

untreated must is filtered to obtain a retentate rich in sugars and high molecular weight 

compounds and a permeate with a medium sugar content. In the second stage the first 

permeate is filtered providing a second retentate and a second permeate with a low 

sugar content. The results showed that the second permeate mixed with untreated 

must or with the retentate of the first nanofiltration stage in adequate proportions 

reduced the alcohol content of the resulting wines by 2º.  

However, during this experience some problems present in membrane 

separation processes were observed. The most relevant were: 

 Fouling due to accumulation of particles of high molecular weight on the 

surface of the membranes. 
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 Slender decompensation of certain charged substances after the filtering 

process such as potassium, malic and tartaric acids, which are important for the 

organoleptic properties of wine. 

 Problems of the proposed filtration process: volume losses, high filtration 

times and temperature increase of the must which could promote alterations to 

it. 

 A slight loss of color and aromatic intensity of the wine obtained from the 

mixture of must in wine compared to the control. 

 

1.3 Grape must and its composition 

 

Grapes and grape must are the most important raw material for wine 

elaboration. A good understanding of grape composition is essential to understand the 

process of winemaking and the quality of the resulting product. For the purpose of this 

thesis the knowledge of the different compounds of grape must is important in order to 

understand not only their significance in the obtained wine but to assess their influence 

during the membrane processes carried out. 

In the resolution Oeno 18/73, of the International code of eonological practices 

created by the International Organization of Vine and Wine (OIV), grape must is 

defined as “liquid product obtained from fresh grapes, whether spontaneously or by 

physical processes such as: crushing, removing stems from grape berries or crushed 

grapes, draining, pressing” [6].  

Even within the same winemaking region, must composition varies according to 

several factors, such as: 

 

 The type and variety of grapes used. 

 The ripeness and health of the grapes (ripeness depends on a range of 

factors, such as the climate during the growing season, the type of soil, 

and the fertilizers used). 

 The pressure exerted on the grapes. 

 

Table 1.1 shows the average quantitative composition and characteristics 

exhibited as substances or groups of substances.  
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Table 1.1 Average quantitative composition of grape must [23] 

pH 3 – 4.5 

Water 700 – 800 gL-1 

Sugars 140 – 250 gL-1 

Organic acids 4 – 17 gL-1 

Nitrogen compounds 4 – 7 gL-1 

Polysaccharides 3 – 5 gL-1 

Minerals 0.8 – 2.8 gL-1 

Polyphenols 0.5 gL-1 

Vitamins 0.25 – 0.8 gL-1 

Aromatic compounds < 0.5 gL-1 

 

1.3.1 Carbohydrates: Sugars in must 

 

The generic term carbohydrates encompasses a wide variety of very important 

compounds of highly complex composition which are found in grapes and wine. The 

carbohydrate content of both, grapes and wine, is very important in winemaking as 

these compounds intervene in practically all the molecular processes that occur from 

the onset of berry ripening to the transformation of must into wine. They are also key to 

the quality of the final product because they influence alcohol content, flavor and other 

organoleptic properties, and clarity. 

Carbohydrates can be classified by size, with a distinction being made between 

monosaccharides, oligosaccharides (di or trisaccharides), and polysaccharides (>10 

monomers). Winemakers, however, tend to classify carbohydrates according to their 

origin and biological function as shown in Table 1.2 [24]. 

 

Table 1.2 Classification of carbohydrates in winemaking according to origin and biological 

function [24] 

Simple sugars 
Fermentable 

Non- fermentable 

Monosaccharide and oligosaccharide 

derivatives 

Derived from the vine 

Derived from microorganisms 

Polysaccharides 
Derived from plant cell wall structures 

Derived from microbial cell walls 

 

Simple sugars belonging to the hexoses are easily metabolized by yeasts and 

bacteria, and are also known as fermentable sugars. Glucose, fructose, and mannose, 
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which have analogous configurations, are the most relevant simple hexoses in the 

study of grapes and wines.  

Galactose can also be fermented by certain strains of yeast, albeit with difficulty 

and only after a period of adaptation to the medium. 

Small quantities of pentose sugars such as arabinose, xylose, and ribose are 

naturally non fermentable monosaccharides present in must and wine [25]. 

The main disaccharides found in grapes and wine are sucrose and trehalose, 

although maltose, melibiose, and lactose may also be present. Trehalose is a 

fermentable disaccharide and sucrose is hydrolyzed in the berries by the enzyme 

invertase to glucose. There have also been reports of small quantities of the 

trisaccharide raffinose which is hydrolyzed to fermentable sugars. 

Other carbohydrates found in musts and wines are polysaccharides, which are 

derived from berry or yeast cell walls, or from the microbial flora present on the grape. 

These materials are formed from an enormous variety and number of monomers, have 

a high molecular weight, and are extremely complex in terms of composition, structure, 

and properties. Polysaccharides are high-molecular-weight carbohydrates formed by 

the polymerization of monosaccharides or monosaccharide derivatives via glycosidic 

bonds. They are a key component of the cell wall of grapes and are therefore indirectly 

related to the extraction of the color and odorant compounds from these cells. Their 

presence in must and wine is due to the degradation and solubilization of a portion of 

the pectins found in the cells of grape skin and pulp. The classification of 

polysaccharides has always been subject to debate. In certain wine fields, they are 

divided into pectins and gums [24, 25].  

Among the carbohydrates of interest to winemakers the most abundant sugars 

in grapes are [23, 24]: 

 

 Glucose: 6-carbon aldose (dextrose) 

 Fructose: 6-carbon ketose (levulose) 

Therefore, the term “sugars” along the present PhD thesis will refer to the 

concentration of glucose and fructose.  

 

Sugars are produced during photosynthesis, a process that occurs in the green, 

chlorophyll- containing organs of the plant. Most of the sugar produced is transported 

from the photosynthetic organs to the rest of the plant in the form of sucrose. The 

berries continue to accumulate sugar as they ripen. The final concentration is related to 

photosynthetic activity, but it can be adversely affected by climate factors such as 

rainfall or temperature. 



Section I: Chapter 1 

38 

The glucose to fructose (G:F) ratio in ripened berries tends to 1:1.  

During fermentation, yeasts can grow in aerobic conditions, producing CO2 and 

H2O, or in anaerobic conditions, producing ethanol and CO2 as waste products [26]. 

The general fermentation reaction is shown below: 

 

C H O CH CH OH CO6 12 6 3 2 22 2   

 
Therefore, sugar levels indicate potential alcohol yield after fermentation and 

the likelihood of residual sugars remaining [4, 25]. The sugar content of the juice is 

often expressed in terms of ºBrix which represent grams of sugar per 100 grams of 

juice. 

 

1.3.2 Organic acids 

 

The principal organic acids found in grapes are tartaric, malic, and to a small 

extent, citric. The content of them can be measured by titration and expressed as total 

acidity (TA). During the early period of berry growth, concentration of both acids 

increases in the fruit. During ripening, as the sugar accumulates in the fruit, the acid 

concentration decreases. The reduction of TA during maturation is related to the 

respiration rate of the berry and is a function of temperature [4]. Generally the reduction 

in malic acid is greater, and consequently, at maturity, the fruit contains more tartaric 

acid than malic.  

 

1.3.3 Minerals 

 

The mineral content of must and wine refers mainly to the cations and elements 

that these contain. Musts contain many mineral substances, which can be classified 

according to their electric charge and abundance as shown in Table 1.3 [23]. 

 

Table 1.3 Classification of minerals in musts 

Abundance Cation Anion 

Abundant 
K+; Na+; Ca2+; Mg2+; Si4+ 

Plant macronutrients 
PO4

3-; SO4
2-; Cl- 

Less abundant 

Mn2+; Zn2+; Al3+; Cu2+; Ni2+; 

Li+; Mo4+; Co2+; V3+ 

Plant micronutrients 

Br-; I- 

Trace levels 

(ppb) 

Pb2+; As3+, Cd2+, Se4+; 

Hg2+; Pt2+ 
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Must and wine contain inorganic anions derived from dissociation of the soluble 

salts that form inorganic acids and the metal cations absorbed from the soil by the 

roots of the vine. The mineral or inorganic anions represent a small fraction of the total 

anion content of the must and wine, in which most anions are organic. 

Contrary, metal cations present in wine are important because they form 

relatively insoluble salts with certain anions. The alkaline cations K+ and Na+, the 

alkaline earth metals Ca2+ and Mg2+, and the metal ions Fe3+ and Cu2+ are particularly 

important. Potassium is the main cation present in wine [27]. During ripening, the 

potassium content of the grape increases. Its movement into fruit leads to the formation 

of potassium bitartrate, which reduces the acidity and increases the juice pH. 

Therefore, it is important to control the concentrations of potassium and calcium to 

prevent precipitation of bitartrate and tartrate, respectively. However, other metals 

particularly iron and copper, can affect the clarity of wines and cause the appearance 

of a type of haze known as casse. 

 

1.3.4 Nitrogen compounds 

 

The main nitrogen compounds found in must are amino acids, either in free 

form or as polypeptides or proteins. Nitrogen compounds can be classified as mineral 

or organic. Mineral compounds are essentially formed by the ammonium ion (NH4
+), 

which is generated when ammonium salts are dissolved in water. Organic compounds, 

in contrast, are carbon and hydrogen compounds that contain a nitrogen atom.  

 

Table 1.4 Nitrogen fractions of interest in winemaking [28] 

Fraction Compounds 
Used by 

microorganisms 

Inorganic nitrogen 
Ammonia (NH3) 

Ammonium (NH4
+) 

Easily assimilated 

Organic nitrogen 

Amino acids with molecular 

weight < 200Da 

Polypeptides with molecular 

weight= 200-10000 Da 

Proteins with molecular 

weight >10000 Da 

Non - assimilable 

 

Nitrogen containing compounds are important because they serve as the 

nutrient for yeast and lactic acid bacteria. Nitrogen influences biomass formation (cell 

population or cell yield), rate of fermentation, and production of various byproducts, 

which in turn affects the sensory attributes of wine. Insufficient nitrogen in must can 
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stuck fermentation. Therefore, another classification system, which is of more interest 

in winemaking, is based on how nitrogen compounds are used by microorganisms; that 

is, it distinguishes between assimilable and non-assimilable compounds. Examples of 

the former are the ammonium ion and free amino acids, and examples of the latter are 

peptides and proteins [23, 28] as shown in Table 1.4.  

 

1.3.5 Phenolic compounds 

 

Grapes acquire their color from different compounds in the berries. The most 

noteworthy of these are [23]: 

 

 Chlorophyll 

 Carotenoids 

 Betalains 

 Polyphenols 

 

Polyphenolic compounds play an essential role in both grapes and wine, as 

they are responsible for sensory properties, such as appearance (color), taste 

(astringency, bitterness), and aroma (volatile phenols). They can be mainly classified 

as: 

 

 Simple (non-flavonoid) polyphenols 

 Flavonoids 

 

Figure 1.1 exhibits the phenolic compounds that are present at the highest 

concentrations, their role and location in grapes. 

Polyphenols are primarily located in the seeds and skins of the berry and they 

are by-products of sugar catabolism. They are formed from the beginning of 

development in all of the organs of the vine. From veraison to the ripened grape, the 

skin becomes progressively enriched in phenolic compounds. The anthocyanins 

appear during veraison and are responsible for the characteristic color change 

observed during this physiological phenomenon; they then accumulate during ripening 

and are partially degraded at the end of the process. The tannins in the skin exhibit a 

similar temporal profile although they are already found at notable concentrations 

during veraison [29]. 
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Figure 1.1 Summary of the main polyphenols found in grapes 

 

1.3.6 Aromatic compounds 

 

Aroma is one of the most important factors determining a wine’s character and 

quality. There is a direct relationship between wine character and grape/must volatile 

composition [30]. 

Substances that contribute to the aroma of musts can be classified according 

different criteria. For the purpose of the present thesis, aromatic compounds have been 

divided into two main categories:  

  

 those that are already present in the grapes: terpenes, carotenoids, and 

pyrazines 

 those that are generated during must extraction and as a result of the 

treatments applied prior to fermentation: C6-alcohols, benzene compounds 

and aldehydes [31, 32]. 

These aromatic components are present in the berry in their free form, playing a 

key role in the quality and the peculiar aroma, or bound to sugar molecules in the form 

of glycosides being odourless [32-34]. 

 

1.3.6.1 Terpens, Carotenoids and pyrazines 

Terpenes are usually found at concentrations below 1 mg/L, and are more 

abundant in aromatic white grape varieties such as Muscat, Souvignon blanc, Riesling 

and Gewürztraminer. These compounds constitute the primary aroma of the wine and 

are largely responsible for the varietal character [4, 31]. As mentioned they can be 

present as free or glycosidically bound forms. Free terpenes are volatile and largely 
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responsible for the distinctive aroma of grapes and must. Bound terpenes are non-

volatile and constitute what is known as the “hidden aroma” of the grapes. The 

concentration of bound terpenes begins to increase at veraison and exceeds that of 

free forms [31]. 

Carotenoids belong to the family of C40-terpenes. These substances are light 

sensitive and can be degraded by oxidases from the grape through a process of 

coupled oxidation that gives rise to C9, C10, C11, and C13 compounds that are more 

volatile, and more odorant than their precursors.  

Pyrazines, specifically methoxipyrazines, are responsible of “vegetal” or “green” 

aroma in musts and wines from the Chardonnay, Riesling, Pinot Noir, and 

Gewürztraminer grape varieties. Usually they are present at levels below the 

perception threshold. Given the very low concentrations of these compounds in grapes 

and wine (a few nanograms per liter), they are very difficult to detect and quantify. 

 

1.3.6.2 C6-alcohols and aldehydes 

These compounds are generated through the activity of lipoxygenase enzymes 

present in the grapes. These enzymes come into contact with linoleic and linolenic 

(C18:2 and C18:3) fatty acids during pressing or crushing of the grapes generating 

saturated and unsaturated C6-alcohols and aldehydes. Hexanal, (E)-2-hexenal, (Z)- 3-

hexenal, hexanol-1, (E)-2-hexen-1-ol, and (Z)-3-hexen-1-ol have all been detected and 

mentioned as some of the characteristic aroma compounds in grape must [31, 32, 34]. 

The synthesis of these compounds is schematized in Fig. 1.2. This process occurs in 

the grape and it is enhanced by the mechanical processes that are used at different 

points between harvesting and alcoholic fermentation. These mechanical processes 

rupture the berries and cause release of the juice, and as a result, the fattyacid 

substrates come into contact with the relevant enzymes and give rise to the 

corresponding C6 compounds [31]. Oxygen plays a fundamental role in the production 

of these C6 compounds. Consequently, must from harvests that are subjected to 

intense mechanical processing, such as destemming, have higher concentrations than 

must from harvests that have not undergone such a process. Crushing also increases 

the levels of C6 compounds found in musts. Other factors that influence on the 

concentration of these compounds are for example the variety and ripeness of the 

grapes [32], climate and cultivar factors [34] treatments prior to fermentation, and 

temperature and duration of contact with the skins. 

The presence of C6-alcohols and aldehydes compounds in grapes and must 

has been widely studied [32, 34], since they can potentiate the vegetal aroma and 

flavor that contributes undesirable sensory characteristics to the wine, despite being at 
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very low concentrations. For example hexanol contributes as an aroma that is 

described in terms such as “green”, “peanut”, and “spicy”, and it appears in wines at 

concentrations of between 0.3 and 12 mg/L.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Synthesis of C6-alcohols and aldehydes in grapes [31] 
 

 

Among all the aromatic substances and precursors mentioned here, C6- 

alcohols and aldehydes are in general extremely volatile. The depletion of these 

compounds during beverage processing is often inevitable [35]. In this sense, the loss 

of them during nanofiltration of grape must will be studied in section III and IV of the 

present thesis in order to study the aroma depletion mentioned in Chapter 1. 

 

1.4 Aims and outline of the PhD thesis 

 

Now that the motivation of this thesis has been introduced, it is appropriate to 

define the aims of it. 

The main objective of this work is to optimize the nanofiltration process for 

sugar control in grape must in order to produce full flavored wines with reduced alcohol 

content. 

The specific aims (side objectives) established for the concretion of the main 

scope are:  
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 To study the mass transfer and membrane fouling due to the presence 

of compounds with different molecular weight and chemical nature during the 

nanofiltration of grape must. 

 To improve the filtration procedure and set-up in order to minimize 

volume losses, filtration times and temperature variations. 

 To control the aroma depletion during the nanofiltration procedure. 

  

For this purpose, the present work has been structured in five different sections. 

Section I is divided in two chapters. Chapter 1 is focused on the motivation of the 

present PhD thesis. It introduces the current problems related to the viticultural sector 

and to the methods and processes which are nowadays available to solve them. The 

different compounds present in grape must play an essential role not only in wine 

quality but also in the membrane processes involved in this work. Therefore Chapter 1 

also provides a brief summary of grape must and its composition. Chapter 2 is aimed to 

present the general principles of the membrane processes used along this work.  

Section II is focused on the study of the influence of the different molecular 

weight compounds present in grape must on the membrane and on permeate flux 

decrease. Chapter 3 entitled “Influence of low and high molecular weight compounds 

on the permeate flux decline in nanofiltration of red grape must” presents the 

development of a method proposed to study individually the influence of low and high 

molecular weight compounds on the permeate flux decrease during the nanofiltration of 

grape must. In Chapter 4, named “Fouling study of Nanofiltration membranes for sugar 

control in grape must. Analysis of resistances and the role of the osmotic pressure”, the 

method proposed in Chapter 3 is used for the study and comparison of fouling, 

resistances to permeate flux and osmotic pressure generated during grape must 

filtration using different nanofiltration membranes. Section III, divided in two chapters, is 

focused on the scale-up of the nanofiltration process of grape must using the most 

appropriate membrane according the conclusions presented in Chapter 4. Therefore, 

the scope of Chapter 5 entitled “Comparative study of red grape must nanofiltration: 

Laboratory and pilot plant scales” is to analyze the main differences between red grape 

must nanofiltration at laboratory and at pilot plant scale using the same membrane. 

Specifically the hydrodynamics, fouling mechanisms, sugars rejection and osmotic 

pressure are compared. Furthermore, in Chapter 6 named “Alcohol reduction in red 

and white wines by nanofiltration of musts before fermentation” the first vintage and 

wine production during this thesis is described. This chapter is aimed to the selection of 

the most appropriate nanofiltration technique at pilot plant scale to reduce the alcohol 

content of wines by controlling the sugar content of the grape must before its 
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fermentation. For that purpose the performance of single- stage and two-stage 

nanofiltration processes using a spiral wound unit were compared. 

The scope of Section IV is to minimize the aroma depletion detected during 

nanofiltration. For that purpose, the use of pervaporation for aroma recovery of grape 

musts before the nanofiltration is proposed. In Chapter 7 entitled, “Experimental 

investigation of pervaporation membranes for aroma recovery of white grape must”, the 

performance of different organophilic pervaporation membranes is analyzed for the 

recovery of primary aromas present in grape must. Chapter 8 named “Application of 

pervaporation and nanofiltration membrane processes for the optimization of sugar 

reduction in grape must in order to produce a full flavored low alcohol content wine” 

represents the scale-up of the best nanofiltration technique studied in Chapter 6. Here, 

the second vintage and wine production of the thesis is described. This chapter 

assesses the performance of the combination of pervaporation and nanofiltration at a 

higher pilot plant scale, for the elaboration of low alcohol content wine. 

Finally, Section V brings together the main conclusions of this PhD thesis with a 

recapitulation of the main results gathered in order to fulfill the mentioned aims In 

accordance to these results a critical prospective of future research is also suggested 

here in order to enhance the membrane process proposed. 
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Chapter 2. Nanofiltration and Pervaporation membrane processes.  

                  Basic principles 

 

2.1 Introduction 

 

As mentioned in the first chapter, the scope of the present PhD thesis is to 

optimize the process of grape must nanofiltration in order to produce good quality 

wines with a reduced alcohol degree. Moreover, for this purpose the membrane 

technology pervaporation was also studied in this thesis in order to avoid the aroma 

depletion detected during nanofiltration. Therefore, the scope of this chapter is to 

collect the basic concepts and principles the membranes and membrane processes 

studied along this work: nanofiltration and pervaporation.  

This part mentions the general principles and equations in a generic way; more 

details of them are shown in the corresponding chapter. 

 

2.2 Nanofiltration 

 

2.2.1 Basic concepts 

 

Nanofiltration (NF) is a type of pressure-driven membrane process with 

properties in between reverse osmosis (RO) and ultrafiltration (UF) processes. The 

history of NF dates back to the 1970s when efforts started to develop RO membranes 

with a reasonable water flux at relatively low pressures. The high pressures used in RO 

resulted in a considerable energy cost, but, on the other hand, the quality of the 

obtained permeate was very good, and often even too good. Thus, membranes with 

lower rejections of dissolved components, but with higher water permeability, would be 

a great improvement for separation technology. Such low-pressure RO membranes 

became known as nanofiltration membranes [1]. 

The retention behavior versus pressure relationship reveals something of the 

nature of the separation mechanisms of a membrane. For example, with RO the solute 

retention increases with increasing pressure for most solutes which can be described 

by the non-porous Solution-Diffusion model, where solute and solvent are uncoupled. 

In contrast, for microporous UF the effect of pressure is often a decrease in the 

observed retention due to convective solute transport and concentration polarization 

effects. Figure 2.1 shows that NF behaves more like a non-porous RO membrane, in 

spite of the strong evidence for pores which characterize NF membranes. The similar 

behavior between the NF and RO can also be related to the importance acquired by 
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the osmotic pressure in both processes. An increase of the applied pressure enhances 

the concentration polarization phenomenon which results in an increased osmotic 

pressure and the consequent reduction of the effective pressure. Usually in UF process 

the effects of the osmotic pressure are negligible. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Retention as a function of transmembrane pressure. Trends for UF,NF and RO [2] 

 

In fact, NF membranes possess pore size typically of 1 nm which corresponds 

to molecular weight cut-off (MWCO) of 150 [2]–500 [3] Da. Similar to RO membranes, 

NF membranes are potent in the separation of inorganic salts and small organic 

molecules. Key distinguishing characteristics of NF membranes are low rejection of 

monovalent ions, high rejection of divalent ions and higher flux compared to RO 

membranes. Therefore another distinctive feature of NF membranes is the rejection of 

ions with more than one negative charge like sulfate (SO4
2-) and phosphate (PO3

4-) 

which is virtually total [2, 4]. 

The market for NF membranes is growing dramatically. For example, by 2000, 

the installed capacity was about 6000 ML/day, which is 10 times higher than in 1990 

[1]. Moreover, according to the market researcher bcc Research, the global membrane 

market was estimated to be valued at nearly $12 billion in 2013. Nanofiltration 

membranes represent a very small share of this market (less than 2%) but their market 

is growing at a faster rate compared to other membrane technologies. The increased 

market penetration of these products can be attributed to different factors, including a 

rising demand for potable water and reduced freshwater sources, environmental 
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restrictions on industrial and municipal wastewater discharges, and lower operating 

costs compared to, for example, reverse osmosis [5]. In fact, as shown in Figure 2.2, 

the global market for nanofiltration membranes increased from $172.8 million in 2012 

to $190.2 million in 2013, and is estimated to grow to $445.1 million by 2019, with a 

five-year compound annual growth rate (CAGR) of 15.6%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Global market for nanoniltration membranes, 2012-2019 [5] 
 

 

NF is now widely used for water softening and has found application in the 

removal of natural organic matter and emerging pollutants such as pesticides in 

drinking water treatment. A wide range of process industry applications have been 

developed over the past decade [2]. Taking into account the number of possible 

applications, for example, the chemical and pharmaceutical industry, in addition to the 

applications that are still to be implemented but can be considered as state-of-the-art, it 

can be assumed that the increase of installed capacity will continue for many more 

years [1]. 

The development in NF membranes to the early 1990s has brought NF 

technology to its current status. As research continues, membranes become better 

defined, less prone to fouling, and more resistant to harsh conditions. More and more 

types, materials and configurations are used to prepare these membranes. Thus a NF 

membrane can be homogeneous or heterogeneous according to its morphology, 

symmetric (isotropic) or asymmetric (anisotropic) in structure and can be neutral or 

carry positive, negative or both charges. Among the anisotropic type, there are two 



Section I: Chapter 2 

54 

important groups of NF membranes: thin film composite membranes (TFC) and 

integrally skinned asymmetric membranes.  

A typical composite membrane consists of a thick, porous, nonselective 

supporting layer formed in a first process step, which is subsequently over coated with 

an ultrathin barrier layer on its top surface in a second process step. The multilayer 

approach allows a more flexible optimization of each layer. The supporting layer 

consists of a woven or a nonwoven fabric (commonly a polyester) overcoated with a 

layer of an asymmetric microporous polymer (usually polysulfone); this support layer 

should offer a maximal mechanical strength combined with a minimal resistance to 

permeation. The surface of the microporous support is coated with an ultrathin layer of 

a polymeric composition, which provides the controlling and permeability properties. 

The two layers are almost always different from one another in chemical composition. 

This contrasts with the second group mentioned, wherein a polymer-containing dope is 

cast into a homogeneous film by a single-step phase inversion method. A membrane of 

this latter type has an anisotropic structure consisting of a dense surface skin on a 

porous sublayer, both skin and sublayer having the same composition [2, 6]. Examples 

of the most used materials for NF membranes are cellulose acetate, polysulfones and 

polyamide [2, 3].  

NF membranes in contact with an aqueous solution are also slightly charged 

due to the dissociation of surface functional groups or adsorption of charged solutes. 

For example, polymeric NF membranes contain ionizable groups such as carboxylic 

groups and sulfonic acid groups which result in charged surface in the presence of the 

feed solution. This is the reason why most of the NF membranes are highly effective in 

the ionic separation due to the electrostatic repulsion. This also allows working at lower 

pressures than for RO [7]. Normally the operating pressures are in the range 0.3 and 

1.4 MPa [8]. The typical operating conditions in a NF process are: 1-4 MPa, pH 

between 2-11 and temperature up to 55 ºC.These properties have allowed NF to be 

used in many applications and areas such as water and wastewater treatment, 

pharmaceutical and biotechnology, pulp and paper industry and food industry [2, 3]. 

 

2.2.2 Separation mechanisms 

 

The ability of NF membranes for separating substances or complex solutions 

with charged and neutral substances is based on the different effects that influence 

separation mechanism and the combination of them. These are the steric, Donnan, 

dielectric and transport effects. The transport of neutral solutes is via the steric 

mechanism, this means that rejection depends on the molecular size and the pore 
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diameter (size based exclusion). The Donnan effect describes the equilibria and 

membrane potential interactions between a charged species and the interface of the 

charged membrane. The membrane charge attributed to the dissociation of ionizable 

groups at the membrane surface and inside the membrane pores. The dissociation of 

these surface groups is strongly influenced by the pH of the contacting solution and 

where the membrane surface chemistry is amphoteric in nature, the membrane may 

exhibit an isoelectric point at a specific pH. Electrostatic repulsion or attraction takes 

place according to the ion valence and the fixed charge of the membrane that may vary 

depending on the localized ionic environment as a result of the phenomena mentioned 

before [3]. The phenomena of dielectric exclusion are less understood and there are 

two main competing hypotheses for the exact nature of the interaction. These are the 

so called ‘image forces’ phenomenon and the ‘solvation energy barrier’ mechanism [8]. 

These describe effects associated with the dielectric constant material and dielectric 

constant change inside the pore. This transport model through the membrane is well 

described by the Nernst-Planck equation. An advanced form of this model for charged 

or uncharged solutes, which also takes into account the variation of concentration 

along the pores can be found in the work of Silva and coworkers [9]. In Chapter 4, a 

version for uncharged solutes of this model is used in order to determine the pore radii 

of NF membranes as a function of the rejection of solutes. 

 

2.2.3 Mass transport 

 

In general, in the filtration process of small and medium size molecules, for 

applied pressures (Δp) over a certain critical value the permeability decreases until a 

more or less constant permeate flux is reached regardless of ulterior increases in Δp. 

This reduction of flux has been attributed to the phenomenon of concentration 

polarization, which is due to the building up of a layer of rejected solute in the boundary 

layer near the membrane surface. There are two fundamental factors that justify this 

[10-12]: 

 

1. The osmotic pressure increase, Δπ 

2. The evolution of the total resistance of the membrane system, Rsys 

 

When the overall process is taken into account, the evolution of the flux (flow 

per unit of area through the membrane and per unit time) can be written as: 
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                                                                                                                  (1) 

 

where Δp is the applied transmembrane pressure, Δπ is the osmotic pressure gradient 

which depends on the concentration difference between both sides of the membrane, 

ηf  is the feed viscosity and, Rsys is the system resistance. Rsys is the sum of the 

membrane resistance, Rm plus a series of terms that depend on the fouling caused by 

the solute (shape and size), the membrane itself (pore size, geometry and polymer) 

and their interaction (adsorption). This resistance will be once again mentioned in this 

chapter during the description of the membrane fouling mechanism and with more 

detail in Section II.  

Assuming that the osmotic pressure follows the van’t Hoff’s law, the osmotic 

pressure difference generated by all components, can be calculated as: 
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where Cm,i is the concentration on the membrane surface and Cp,i the permeate 

concentration of each component i. In order to use this equation, it is necessary to 

know the concentration on the membrane active layer, Cm,i. This can be done by taking 

into account the concentration polarization model as described in the next paragraphs. 

 

2.2.4 Concentration Polarization. Film Theory 

 

The so called concentration polarization phenomenon inevitably appears in 

membrane processes such as NF since the selective transport causes an accumulation 

of the retained solutes in the adjacent membrane surface at the feed side. It results in 

the formation of a high solute concentration at the membrane surface compared to the 

bulk solution. Consequently, this polarization reduces the effectiveness of a membrane 

by: reducing the flow, decreasing separation capacity and increasing membrane 

fouling.  The reduction of the separation capacity is not a result of the phenomenon of 

polarization itself. In an ideal separation process, the efficiency of a membrane is a 

constant factor related to the concentrations in both sides of the membrane. If the 

effects of concentration polarization increase the concentration on the side of high 

pressure it will consequently increase in the permeate side, reducing hence the 

efficiency. Concentration polarization can be reduced with an increase of the tangential 
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velocity since this promotes shear (turbulence) on the retentate side and reduces the 

accumulation of solutes near the membrane. 

The mentioned phenomenon can be studied by the Film theory. The later 

correlates the feed concentration, Cf,i, the concentration on the membrane active layer, 

Cm,i, the permeate flux and the retentate flux along the perpendicular to the membrane 

surface. This theory is based on the calculation of a mass transfer coefficient, Km,i, in 

order to describe the solute transport [12, 13] as: 

 

   v m iJ K

m i p i f i p iC C C C e ,/

, , , ,                                                                                          (3) 

 

here Km,i is the mass transfer coefficient of the i-th component  that can be evaluated 

from laborious experimental procedures such as velocity variations (velocity boundary 

layer) or concentration variation (concentration boundary layer) [4, 14].  A more simple 

method, which also implies greater error, is the use of an appropriate correlation of 

dimensionless numbers: 

 

·ReSh A Sc                                                                                                              (4) 

 

where Sh, Re and Sc stand for the Sherwood, Reynolds and Schmidt numbers 

respectively. The constants A, α  and β can be different according to the system and 

process conditions under study. The values given to them will be explained in the 

different chapters of this thesis in accordance to the different conditions studied in each 

one of them. 

 

2.2.5 Fouling mechanisms 

 

The aforementioned resistance attributed to the fouling process, represents 

both, the reversible and irreversible fouling and depends on the fouling mechanism or 

mechanisms acting in the process. This resistance has been related with phenomena 

such as concentration polarization, gelation, deposition, adsorption of solute molecules 

inside the pores or pore blocking when the pore size is similar to the molecular 

dimensions [15-19]. All these processes should influence in a more or less balanced 

equilibrium, and they can be accounted by using several theoretical kinetic models 

commonly used for systems showing flux decline [18, 20]. 

The most usually followed models are: 
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 Intermediate blocking 

 Standard blocking 

 Cake filtration 

 

 These three mechanisms can be described within the frame of the following 

expression: 
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where, Jv,0 is the permeate flux per unit or area through the membrane at time t=0 in 

(m/s); k is the general kinetic constant for the fouling models in (s-1) and n is a 

dimensionless exponent which depends of the fouling model.  

The fouling mechanisms studied in the present thesis will be explained with 

more detail in Section II. 

 

2.3 Pervaporation 

 

2.3.1 Basic concepts 

 

Pervaporation (PV) is a membrane separation process in which the components 

from a liquid mixture permeate selectively through a dense membrane [21]. When the 

membrane is in contact with the liquid mixture, one or more of the components can be 

preferentially removed from the mixture due to its higher affinity  with, and/or quicker 

diffusivity in the membrane [22]. In contrast to pressure-driven membrane processes, 

the driving force of pervaporation is a chemical potential gradient between the feed and 

de permeate (downstream) side [23]. This difference is obtained by partial pressure 

reduction on the permeate side, which can be accomplished, for example, by applying 

vacuum or blowing a sweep inert gas on this side. The latter provides low driving forces 

for industrial applications; therefore vacuum pervaporation represents the common 

choice. Maintaining very low absolute pressures at the downstream side (133.3-400.0 

Pa) the continuous mass transport is ensured since all the molecules that migrate to 

the permeate face are removed. Therefore the concentration difference across the 

membrane is maintained [22]. The partial pressures of the permeant components are 

usually lower than their corresponding saturation pressures, and these components are 
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therefore removed as vapor. The permeate is collected in traps, which at laboratory 

scale are normally cooled by using liquid nitrogen (−196 ◦C) [21]. 

 

 

 

 

 

 

 

 

Figure 2.3 Milestones in the development of pervaporation [24] 

 

As briefly shown in Figure 2.3, PV has been known to the scientific world since 

the early 1900s. In 1906 Kahlenberg reported some qualitative observations 

concerning the selective transport of hydrocarbon–alcohol mixtures through a thin 

rubber sheet. The term pervaporation was first introduced by Kober in a study 

published in 1917. In 1949 Schwob demonstrated dehydration of alcohols by using 20-

mm-thin membranes during his scientific work. In the early 1960s Binning and 

coworkers from The American Oil Company (Texas City, Texas), carried out several 

experiments to separate various hydrocarbons by using PV experiments. However, 

after several years of work, the technology was not commercialized. Academic 

research on pervaporation was also carried out by Aptel, Neel and others at the 

University of Toulouse [24, 25]. By the 1980s, advances in membrane technology 

made it possible to prepare economically viable pervaporation systems. Pervaporation 

systems are now commercially available for two applications. The first and most 

important is the removal of water from concentrated alcohol solution. In 1982 G.F.T., a 

German company now owned by Sulzer Chemtech, commercialized a PV plant for 

alcohol dehydration. This plant could produce 1300 L of ethanol per day of 99.2% 

purity from predistilled ethanol. The current largest plant was installed at Bethenville, 

France in 1988; this unit contains 2400 m2 of membranes and processes 5000 kg/h of 

ethanol. The second commercial application of PV is the removal of small amounts of 

volatile organic compounds (VOCs) from contaminated water. This technology was 

developed by Membrane Technology and Research; the first commercial plant was 

sold in 1996. Current membrane technology makes PV systems also appropriate for 

the separation of organic/organic mixtures and the process is being actively developed 

by a number of companies. The first pilot-plant results for an organic–organic 
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application, the separation of methanol from methyl tert-butyl ether/isobutene (MTBE) 

mixtures, was reported by Separex in 1988 [24, 25]. 

More recently, hydrophilic pervaporation has been used for the dehydratation of 

organic solvents and it is the most successful application of pervaporation [21, 22]. 

Several hundred plants have been installed for the dehydration of ethanol by 

pervaporation. This is a particularly favorable application for pervaporation because 

ethanol forms an azeotrope with water at 95% and a 99.5% pure product is needed. 

Because the azeotrope forms at 95% ethanol, simple distillation does not work. 

Morever, pervaporation has also been applied to dehydration of other solvents, 

particularly isopropanol which is used as a cleaning solvent. Dehydration of other 

solvents, including glycols, acetone and methylene chloride, has been considered. [24]. 

Organophilic membranes have been used for the recovery of high added-value 

components, such as aromas [26-28], but also for the removal of VOCs from either 

ground water [29] or aqueous effluents and process streams in the chemical industry 

[24]. In the food industry organophilic pervaporation has been used for the 

dealcoholization of beverages, such as wine and beer [30], it can also be employed for 

the separation of anhydrous organic mixtures [31, 32] and the recovery of volatile flavor 

and aroma elements from streams produced in the processing of fruits and vegetables 

[24].  

In pervaporation, asymmetric composite membranes are normally used. In this 

case, an integral asymmetric membrane formed by phase inversion technique is used 

as support, which is, afterwards, coated by an elastomeric polymer, forming a thin 

dense skin, the actual responsible for the membrane selectivity. The type of polymer 

used for the dense active layer determines the selectivity and hence the application of 

the membranes. There are two categories of membranes and thus the two 

aforementioned types of applications [33]. Hydrophilic polymers such as polyvinyl 

alcohol or cellulose acetate allow the permeation of water. Whereas hydrophobic 

polymers such as poly(dimethylsiloxane) (PDMS), poly(trimethylsilypropyne) (PTMSP) 

or poly(etherbolckamide) (PEBA) preferentially allow the permeation of organic 

substances.  

 

2.3.2 Mass transport. Solution – diffusion theory 

 

Solution-diffusion is the generally accepted mechanism of mass transport 

through non-porous (dense) membranes, which was first proposed by Graham [21, 22]. 

According to this mechanism, one or more components in a liquid mixture are 

transferred through  the membrane in three steps [23, 34]: 
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1. Sorption into the membrane polymer 

2. Diffusion through the polymer film 

3. Desorption and evaporation on the permeate side  

 

The main parameters involved in sorption and diffusion steps are: temperature, 

pressure, concentration, molecular weight, size and shape of the molecule, 

polymer/penetrant compatibility, reticulation level and cristallinity of the polymer 

material. Sorption involves thermodynamic aspects (molecule penetration) while 

diffusion is related to kinetic factors (molecule mobility within the polymer) [21]. These 

three fundamental processes also govern the mass transport across pervaporation 

membranes. When a pervaporation membrane is in contact with a liquid feed mixture, it 

is generally assumed that the thermodynamic equilibrium is instantly reached at the 

membrane–feed interface, therefore [22]: 
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where Cm,i and Cf,i represent the concentrations of the species i in the membrane 

surface and the feed, respectively, and Ki is thus the partition coefficient of this species 

between the membrane and the feed phase, which is a characteristic parameter 

dependent upon the interaction of the species with the membrane.  

Assuming small concentration gradients through the membrane, diluted 

solutions and a negligible partial pressure of all compounds in the downstream side, 

membrane transport can be described by the Fick’s first law [28] as: 
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where Ji is the permeation flux of the i-th species through the membrane, Di,m the 

diffusion coefficient of the i-th species in the membrane, and x is the position variable. 

By introducing the partition coefficient K of the species at the membrane/feed, and 

membrane/permeate interface, the concentrations of a species in the faces of the 

membrane can be expressed in its concentrations in the feed and the permeate, 

respectively, and the Fick’s first law thus becomes: 
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where both the diffusion, and the partition coefficient are treated as constant. If the 

transmembrane concentration (ΔCi) is taken as the driving force for the mass transport, 

the permeability of the i-th species in the membrane can thus be defined as: 

 

i i m iP D K,                                                                                                                      (9) 

 

The permeability is an index for the measuring of the intrinsic mass transport 

capability of a membrane for a species. The ideal separation factor or selectivity of a 

membrane for species i and j can thus be defined as: 
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The performance of a PV process is often described by three parameters: The 

permeate flux, Ji, The mass concentration enrichment factor, βi, for a component i and 

the selectivity i of a membrane for species i in comparison to j. Experimentally these 

can be obtained respectively by: 
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where Qi is the quantity of permeate of i collected in a time interval Δt, Am is the 

effective membrane area, Cp,i is the permeate and Cf,i the mass concentration of i in the 

feed.  

Finally, the ratio of enrichment factors of a compound i and a compound j 

indicates the selectivity, αi,j, that a membrane has for a compound i in comparison with 

compound j. 
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Chapter 3. Influence of low and high molecular weight compounds on the 

permeate flux decline in nanofiltration of red grape must 

 

Abstract 

 

The individual influence of the main low molecular weight compounds present in 

red  grape must, such as glucose and fructose,  and the high molecular weight ones 

such as polyphenols, polysaccharides and proteins, on the permeate flux (Jv) decline in 

the nanofiltration of red must was studied. For this purpose, a synthetic solution 

containing the typical low molecular weight compounds of natural must was 

nanofiltered. The results were compared with those obtained by the nanofiltration of 

commercial red must.  

During red must filtration the formation and thickening of a gel layer on the 

membrane surface caused a rapid decrease in Jv followed by a slow increase of sugars 

concentration in the retentate due to the small permeate volume recovery. Under these 

extreme conditions an analytical method was tested allowing the individual study of the 

resistances and fouling mechanism generated by the sugars and the high molecular 

weight solutes. The results proved that high molecular weight compounds have more 

influence on the permeate flux decrease since they are the main responsible of the 

fouling phenomenon (cake filtration fouling mechanism), while low molecular weight 

compounds contribute to the flux decay mostly through an increase of osmotic 

pressure during the process. 

 

Keywords: 

Red grape must, Nanofiltration, permeate flux decrease, Low molecular weight 

compounds, cake formation mechanism 
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3.1 Introduction 

 

Partly due to the climate change, the last years have been warmer and dryer in 

some regions. As a consequence of that, an early ripening of grapes takes place which 

increases sugar content. Thus, fermentation should lead to alcoholic degrees higher 

than desired [1]. A premature winemaking should affect the final wine quality, leading to 

more acid and less colored wines, because the phenolic maturity should not be fully 

achieved [2]. 

Over the past decade the interest and consumer demand for reduced-alcohol, 

`low-alcohol' and dealcoholized wines have increased [3]. Some of the reasons are the 

social consciousness for the moderate consumption of alcohol, the regulations of these 

products [4, 5] and the demand of low calorie products [6]. But, at the same time, there 

is a growing demand, by consumers, of more powerful and full flavored wines that are 

achieved with greater maturity of the grapes, both skin and seeds. This means that 

producers struggle to achieve the same levels of phenolic ripeness and tannic 

characteristics without an increase in alcohol content. Therefore the harvest should be 

carried out in the optimum ripeness and then innovative techniques to reduce the final 

alcohol content should be used.  

Wine producers have used many dealcoholisation processes or methods to 

produce low alcohol-content wine. The most used method in the industry is the 

spinning cone column (SCC). SCC is used in the food industry for the separation of 

volatile components from liquids and slurries. This procedure requires several steps to 

remove first the wine aromas and afterwards alcohol and finally the aromas are 

returned to the dealcoholized wine [7, 8]. Because it is a time consuming and 

expensive process, other dealcoholization techniques have been used too. Some 

examples are the thermal processes such as distillation columns, evaporators, or 

freeze concentration [6]. Heat-based processes can produce wines with very low 

alcohol content (< 0.5 vol.%), however most of the volatile aroma compounds are also 

lost during the ethanol removal [9]. 

An adequate control of sugars in musts can also be useful to obtain low alcohol 

degree wines. In their work, Pickering et al. [10] studied the use of an enzyme system 

(glucose oxidase (GOX)-catalase) to reduce the glucose content in must by converting 

it to gluconic acid. However, this method produces musts and wines with higher acidity 

due, precisely, to the higher content of gluconic acid (ca. 73 g / L). Another method is 

the use of aerobic yeasts (Pichia and Williopsis) that are capable of a limited ethanol 

production during the fermentation of must. These yeasts use sugars for cell growth 

with the production of esters and other flavors of wine with a minimal ethanol 
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production. However, for the production of low alcohol wines (<3%) non-traditional 

equipment is required to provide agitation and aeration during fermentation. Although 

these yeasts are capable of an extreme alcohol reduction, the high levels of esters 

produced may affect the wine flavor [11]. 

Processes involving membranes have also been used for reducing the sugar 

content. Since June 2010 the International Organization of Vine and Wine (OIV) 

introduced in the "International Code of Oenological practices" the application of 

membrane techniques for the treatment of musts and wine in order to enable the 

selective holding back or passing of some compounds. The objectives sought by the 

application of these techniques are: to elaborate more balanced wine or other 

vitivinicultural products in terms of organoleptic characteristics; to compensate effects 

of adverse weather conditions and climate change; and to resolve certain organoleptic 

issues; in addition to expand the techniques available for development of products 

more adapted to consumer expectations [12]. 

 Membrane filtration has been applied to wine for a long time: cross – flow 

microfiltration (MF) and ultrafiltration (UF) to clarify white grape must [13], sugar 

concentration using nanofiltration (NF) [14] and reverse osmosis (RO) [15] in musts. 

Reverse osmosis is also used to reduce alcohol in wines, but the problem is that RO 

membranes are permeable to both alcohol and water, and after the filtration it is 

necessary to add water again to the dealcoholized wine which creates legal problems 

in some countries where the addition of water is forbidden by law [16]. Membrane 

processes, namely dialysis [16], pervaporation [17]  and vacuum membrane distillation 

[1] are also being used to get low-alcohol drinks. The advantage of the use of 

membrane technologies in the food industry, is that the high sugar containing by-

products could be used to manufacture liquors or as additives to other foods [18]. 

Concentrated must plays an important role in the beverage and wine industry; it is a 

natural sweetener in wine production, and a vitamin- and aroma-rich drink [19].  

Of course, if the molecular weight of sugars in must is taken into account, 

nanofiltration should be the membrane process to be chosen to retain them [18]. In 

their work, Kiss et al. [19] regulated the resulting sugar content to allow the 

preservation of must and they concluded that NF is a process alternative to 

conventional evaporation attending to economic considerations. Nanofiltration has also 

been used to increase the sugar content of grape must (to increase the final alcohol 

degree) in wine production[14]. Using a two stage NF process of grape must, Versari et 

al.[14] obtained relatively high sugar retentions (7–97%) with low retention of malic acid 

(ranging from 2% to 14%). 
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In their work García – Martin, et al. [2, 16] studied the sugar reduction in musts 

by nanofiltration to obtain wines with a slight alcohol reduction. Specifically, sugar 

reduction was achieved by two successive nanofiltration steps. To this end, they 

worked with two types of musts: one from the Verdejo variety of white grapes and the 

other from red grapes of the Tinta de Toro variety. The results showed that the musts 

obtained from the nanofiltration treatment mixed with untreated must or with the 

retentate of the first nanofiltration stage in adequate proportions reduced the alcohol 

content of the resulting wines by 2 º. However, a slight loss of color and aroma intensity 

and a slender unbalancing of some important substances (potassium, malic and 

tartaric acid) was detected. Moreover, these experiments of must nanofiltration, 

showed that there are some problems that are common in membrane separation 

processes, among them specially relevant trouble is caused by the permeate flux 

decline.  

The aim of the present work is to study the influence in must nanofiltration of its 

main low molecular weight compounds in comparison to their higher molecular weight 

components. In particular we intended to analyze the reduction of the nanofiltration 

permeate volume flux (Jv).For this purpose a synthetic solution containing the typical 

low molecular weight compounds (LMW) of natural must, namely glucose, fructose, 

malic and tartaric acids, potassium, sodium, calcium and magnesium was nanofiltered. 

The results were compared with those obtained from the filtration, under the same 

operation conditions, of commercial red must; which, besides the already mentioned 

solutes, contains high molecular weight compounds (HMW) such as polyphenols, 

polysaccharides and proteins.  

 

3.2 Theory 

 

3.2.1 Permeate Flux Limit 

 

In general, in the filtration process of small and medium size molecules, for 

applied pressures (Δp) over a certain critical value the permeability decreases until a 

more or less constant permeate flux is reached regardless of ulterior increases in Δp. 

This reduction of flux has been attributed to the phenomenon of concentration 

polarization, which is due to the building up of a layer of rejected solute in the boundary 

layer near the membrane surface. There are two fundamental factors that justify this 

[20-22]: 

 

1. The osmotic pressure increase, Δπ 
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2. The evolution of the total resistance of the membrane system, Rsys 

 

When the overall process is taken into account, the evolution of the flux (flow 

per unit of area through the membrane and per unit time) can be written as: 

 

sys

v

f

p
J

R





  
                                                                                                                  (1) 

 

where Δp is the applied transmembrane pressure, Δπ is the osmotic pressure gradient 

which depends on the concentration difference between both sides of the membrane, 

ηf is the feed viscosity and, Rsys is the system resistance. Rsys is the sum of the 

membrane resistance, Rm plus a series of terms that depend on the fouling caused by 

the solute (shape and size), the membrane itself (pore size, geometry and polymer) 

and their interaction (adsorption), Rf : 

 

sys m fR R R                                                                                                                 (2) 

 
According to their different molecular weight, the solutes in red must would give 

two contributions to Rf: the resistance due to the fouling by low, Rf LMW, and by high 

molecular weight compounds, Rf HMW, respectively. 

 

LMW HMWf f fR R R   (3) 

 

Assuming that the osmotic pressure follows the van’t Hoff’s law, the osmotic 

pressure difference generated by all components, can be calculated as: 
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       (4) 

 

where Cm,i is the concentration on the membrane surface and Cp,i the permeate 

concentration of each component i. In order to use this equation, it is necessary to 

know the concentration on the membrane active layer, Cm,i. This can be done by taking 

into account the concentration polarization model as described in the next paragraphs. 

 

 



Section II: Chapter 3 

76 

 3.2.2 Concentration Polarization. Film Theory 

 

The Film Theory correlates the feed concentration, Co,i, the concentration on the 

membrane active layer, Cm,i, the permeate flux and the retentate flux along the 

perpendicular to the membrane surface. This theory is based on the calculation of a 

mass transfer coefficient, Km,i, in order to describe the solute transport in the membrane 

active layer [22, 23] as: 

 

   ,/

, , 0, ,
v m iJ K

m i p i i p iC C C C e    (5) 

 

here Km,i is the mass transfer coefficient of the i-th component  that can be evaluated 

by means of an appropriate correlation of dimensionless numbers for the system and 

process conditions: 

 

·ReSh A Sc   (6) 

 

where Sh is the Sherwood number, Re is the Reynolds number, Sc is the Schmidt 

number and α and β are constants. They are defined as: 
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    (7) 

 

where, v is the velocity inside the channel (average tangential velocity on the 

membrane surface), ρf the density and ηf the viscosity of the feed, Di the diffusion 

coefficient of the i-th component and dh the hydraulic diameter of the membrane 

channel. This diameter in terms of the transversal area, AT, and the transversal 

perimeter of the channel, PT, is: 
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The Km,i calculated according to Eq. (6) is the conventional mass transfer 

coefficient used for impermeable walls. In the case of semipermeable membranes, 

such as a nanofiltration membrane, this coefficient can be corrected applying the 

correction factor Ξi as [24]: 
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m i m i iK K*

, ,   (9) 

 

And defining:  
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For low permeation fluxes (Φi ≤ 1), the correction factor can be calculated 

according to: 
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The membrane efficiency can be evaluated by determining the time evolution of 

the true retention, Ri, of the i-th component, which is calculated through the following 

equation: 
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3.2.3 Fouling mechanism and models 

 

The additional resistance attributed to the fouling process involved, Rf, 

represents both, the reversible and irreversible fouling and depends on the fouling 

mechanism or mechanisms acting in the process. This resistance has been related 

with phenomena such as concentration polarization, gelation, deposition, adsorption of 

solute molecules inside the pores or pore blocking when the pore size is similar to the 

molecular dimensions [25-29]. All these processes should influence in a more or less 

balanced equilibrium, and they can be accounted by using several theoretical kinetic 

models commonly used for systems showing flux decline [28, 30]. 

The most usually followed models can be described within the frame of the 

following expression: 

 

 ,0 1
nv

v

J
kt

J
   (13) 

 



Section II: Chapter 3 

78 

where, Jv,0 is the permeate flux per unit or area through the membrane at time t=0 in 

(m/s); k is the general kinetic constant for the fouling models in (s-1) and n is a 

dimensionless exponent which depends of the fouling model. 

Assuming that each particle can settle on other particle previously arrived and 

already blocking some pores or it can also directly block some membrane area, the 

resulting model corresponds to the so called “intermediate blocking” phenomenon 

(n=1). In this case the kinetic constant, ki (in m-1), appears as: 

 

,i v ok k J   (14) 

 

This kinetic constant represents the membrane surface blocked per unit of total 

volume permeated through the membrane.  

It is also possible that each particle arriving to the membrane was deposited 

onto the internal pore walls leading to a decrease in the pore volume. Moreover, if the 

membrane is supposed to consist in a bunch of equal cylindrical pores, it occurs the so 

called "standard blocking" phenomenon (n=2). With k being: 

 

1
,02 m v sk A J k  (15) 

 

Am is the membrane and kS (in m-3) is the kinetic constant for this model [28]. 

Finally, if each particle locates on others already arrived and already blocking 

some pores and there is no room for a direct obstruction of any membrane area. In 

such a way the resulting mechanism corresponds to the “cake filtration” model (n=1/2). 

In this case the kinetic constant is kC (in s/m6) that is correlated with the k constant of 

Eq.(13) by: 

 

2 2

,02 m v ck A J k  (16) 

 

Actually none of these models predicts usually a complete flux decline curve for 

the whole time range which seems to be rather divided into several successive steps 

[28, 30, 31]. The predominant mechanism and the sequential appearance of them 

would depend on the size relation within the solute and the pore and on the solute-

membrane interaction. For big solutes as those characterizing musts a pore blocking 

mechanism normally should appear first followed by the formation of a cake that would 

dominate most of the filtration kinetics. The standard blocking doesn’t appear usually 

for nanofiltration because solute and pore sizes are comparable. 
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For the intermediate blocking mechanism the integration of Eq. (13) with n=1 

gives:  

 

,0ln lni p vJv kV J    (17) 

 

While for the cake model, with n=1/2 : 
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where Vp is the permeate volume. Both the equations (17) and (18) should 

allow linear plots to obtain the corresponding kinetic constants.  

Depending on the foulants characteristics (molecular weight and size) and the 

interactions between foulant – foulant (if they form loose coloids or more coiled 

molecules) and foulant – membrane (if the cake is cohesively bounded to the 

membrane or not), the cake layer formed on the membrane surface may be 

compressible and become more compact and dense after a certain period of filtration 

time. If the cake is compressible, Schippers and Verdouw [32] described that a third 

mechanism may occur during the flux decline, the so called “cake filtration with 

compression model”. In that case, the slope of the plot of Eq. (18) can gradually 

change to an empirical form as: 
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where a is a constant dependence on the compressibility of the cake. 

 

3.3 Materials and Methods 

 

3.3.1 Membrane and Experimental Setup 

 

The nanofiltration membrane used for the filtrations was a NF270, made and 

commercialized by Dow- Filmtec. The main nominal properties of the membrane are 

shown in Table 3.1. The membrane selection criterion was based on two aspects. First, 

the ratio between its MWCO (Table 3.1) and the molecular weight of glucose and 

fructose (180 g/L).The second factor was based on the results obtained by Kuhn et al 

[22] were the NF270 presented the highest glucose and fructose retention values 
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between five other nanofiltration membranes. Furthermore, this membrane has a 

higher permeability and undergoes less fouling than the membrane used in previous 

studies [2,16].  

 
Table 3.1. Manufacturer´s nominal data of the membrane NF270 

Membrane 
MWCO         

(Da) 

Water 

Permeability           

(10
-11

 m/Pa s) 

Max. 

pressure 

(10
5
 Pa) 

Max. T 

(ºC) 

pH 

range 

Rejection 

(%) 

NF270 300 - 400 3.62 a 41 45 3 - 10 85b 

a
Test measurements with CaCl2 

b
MgSO4 2000 mg/L at 4.8 bar 

 

The experimental set-up used for must filtration is shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Diagram of the experimental setup used in the nanofiltration processes 

 

It consists of a feed vessel, with a cryogenic unit to maintain the feed 

temperature at 20ºC. The feed was extracted from the thermostated reservoir by 

means of a regulatable piston pump Hydra – Cell G03. The retentate flow was 

measured with a flowmeter ranging from 0 to 10 L/min. Two pressure transducers were 

placed before and after the membrane module to measure the inlet and outlet 

pressure. In order to control the pressure inside the module, a needle valve was used. 

In this flow range the pressure drop across the cell is small enough to assume that the 
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pressure drop through the membrane is approximately equal to that indicated by the 

input and output transducers. Since the retentate temperature could rise due to the 

friction inside the membrane module, a heat exchanger was placed before its return to 

the feed vessel in order to support the cryogenic system of the reservoir to assure that 

the feed temperature is kept at 20 ºC and to reduce power consumption. 

The experiments were performed by using a flat sheet crossflow module with a 

single channel of length L=110 mm, width W=60 mm and height H=0.5 mm. This cell´s 

dimensions provide a membrane active area Am= 6.6·10-3 m2, a transversal membrane 

channel area AT=3·10-5 m2 and a transversal perimeter PT= 121·10-3 m, so the 

hydraulic diameter of the channel dh= 9.917·10-4 m. 

 

3.3.2 Synthetic Solution and Must 

 

Firstly, a synthetic solution was filtered. This solution contained the main low 

molecular weight compounds present in natural red must and it was isomolecular of 

glucose and fructose. Its pH was set to be similar to that of a natural must: pH= 3.51 

and its composition is shown in Table 3.2 [33, 34]. The conductivity, measured at 25 ºC 

was 2.37 mS/cm. 

 

Table 3.2. Composition of the synthetic solution filtered 

a 
[33], 

b 
[34] 

MH2= malic acid; TH2= tartaric acid; K= potassium; Na= sodium; Ca= calcium; Mg= magnesium 

 

Afterwards, the filtration of a commercial red must was performed. Normally, the 

content of sugars, salts and acidity (mainly tartaric acid) of natural musts is reduced for 

its commercialization in order to satisfy consumers demands (lower sugar and no 

sodium content) and to avoid undesirable precipitations mainly due to the formation of 

tartaric aggregates. Besides, natural must is stabilized by adding citric acid in order to 

avoid spontaneous fermentations. Therefore the original contents of glucose, fructose, 

potassium, malic and tartaric acid were analyzed, as showed in Table 3.3 and then, if 

necessary, they were modified to approach those of the natural must and so the 

synthetic solution. The sodium, calcium and magnesium contents were adjusted in the 

must until a pH equal 3.51 using solutions of NaOH, Ca(OH)2, Mg(OH)2, in adequate 

quantities in order to keep the proportions shown in Table 3.2. The conductivity of the 

Substance 
Total Sugar a 

(g/L) 

MH2 
a 

(g/L) 

TH2 
a 

(g/L) 

K a 

(mg/L) 

Na b 

(g/L) 

Ca b 

(g/L) 

Mg b 

(g/L) 

Concentration 204.50 2.36 6.37 1550 0.11 0.27 0.18 
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resulting commercial must was 2.55 mS/cm. Since the color index of the commercial 

must used was similar to other natural red musts used in previous works [16], it was 

assumed that the concentration of the high molecular weight compounds in this work 

was similar, since a significant portion of these compounds contribute to the color. The 

addition of sugar and other additional compounds does not change the color index, 

which allowed assuming that this addition does not change the balance of the high 

molecular weight substances. 

 

Table 3.3.  Original composition of the natural red must 

Substance 
Glucose 

(g/L) 

Fructos

e (g/L) 

MH2 
a 

(g/L) 

TH2 
a 

(g/L) 

K 

(mg/L) 

Na a 

(g/L) 

Concentration 69.56 68.29 2.31 1.44 1570 0.0 

a 
Provided by manufacturer on the must label 

MH2= malic acid; TH2= tartaric acid; K= potassium; Na= sodium 

 

3.3.3 Procedure 

 

In order to avoid any irreversible change during operation, the membrane was 

pressurized at the highest pressure to be used for a sufficient period of time. Here, the 

NF270 was pressurized filtering Milli – Q water at 35 105 Pa with a recirculation flow of 

5 L/min during one hour. After that, water permeability was measured. This 

measurement was repeated before and after all filtration and cleaning steps. 

The operating conditions for both filtrations (synthetic solution and commercial 

must) were: a feed temperature of 20ºC; an applied pressure of 35•105 Pa; a 

recirculation flow of 5 L/min, which supposes a feed tangential velocity on the 

membrane surface of 2.78 m/s. 

The permeate flux was determined by timing and measuring the volume 

collected in a test tube during the filtration, first every 15 minutes and then, when the 

permeate flux reached less variable values, every 45 minutes. Samples of permeate, 

retentate and accumulated permeate were taken in order to determine their glucose 

and fructose content by liquid chromatography. Filtrations were performed until the 

permeate flux decreased to a more or less constant value for a reasonable period of 

time.  

The volumes filtered where of the order of 2500 mL of both, synthetic solution 

and red must. The nanofiltration processes were performed by duplicate and similar 

results were obtained for both experimental determinations. 
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3.3.4 Cleaning 

 

Even though the membrane flat sheets were not re - used after each filtration 

process, both were cleaned in order to determine the permanent water permeability 

loss caused individually by the LMW and the HMW. 

After the filtration of the solution, the membrane was rinsed with water, under 

the same operating conditions of temperature, pressure and recirculation flow, during 

one hour. Then it was rinsed with Milli–Q water and the hydraulic permeability was 

determined. 

In the case of must filtration, an important reduction in permeability was 

observed due to the fouling of the membrane. That is why the following cleaning 

procedure was performed, in this case: 

 

1) Rinsing with water under the operation conditions during one hour. 

2) Rinsing with Milli-Q water and permeability measure. 

3) After this, a solution of 0.1 % of sodium dodecyl sulfate was used, to clean the 

membrane module, according to the literature [35].This reduces the surface 

tension of the liquid, making easier to remove the dirt. According to the 

membrane manufacturer´s cleaning conditions specifications, pH was adjusted 

to 9 with NaOH and, if necessary, HCl. This cleaning step was performed 

during one hour under the operation conditions. 

4) Rinsing with water during one hour at the operation conditions. 

5) Once more, rinsing with Milli-Q water and permeability measurement. 

6) Storage in phenol solution, with pH=6. 

 

3.3.5 Analytical Methods 

 

Glucose and Fructose determination 

Identification and quantification of the concentration of glucose and fructose 

was achieved by using an HPLC LC-9A apparatus from Shimadzu, with a Refractive 

Index detector Shimadzu RID 6A, a Rheodyne injector with a 20µL loop and the 

software Class-VP. Separation was carried out isocratically in 100% deionized water at 

a flow rate of 0.5 mL/min at 85 ºC using a SUPELCO ion exchange guard column and 

a Supelcogel Pb column. In order to improve the resolution and precision, the samples 

were diluted 1:10 (V/V) with the mobile phase and then filtered through a 0.2 µm nylon 

membrane before the direct injection.  
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L- malic acid determination 

The quantification of the malic acid content present in the commercial must was 

performed according to the enzymatic method described by the OIV [36]. For this 

purpose the Novakit “L-malic acid” enzymatic kit was used. The NADH formation during 

the enzymatic reaction was determined by measuring the absorbance at a wavelength 

of 340nm with an UV-vis Shimadzu UV160A spectrophotometer.  

 

L- tartaric acid determination 

The tartaric acid content of the commercial must was determined by using the 

colorimetric technique according to the Rebelein modified method [37]. For the 

absorbance measurements an UV-vis Shimadzu UV160A spectrophotometer at a 

wavelength of 530 nm was used. 

 

Potassium determination 

Potassium content of the commercial must was determined by measuring the 

potassium ion activity according to a potentiometric method [38]. For this purpose a 

potassium selective CRISON 96 61 and a reference CRISON 50 44 electrodes were 

used. The potential measurements were determined with a multimeter YOKOGAWA 

7562.  

 

3.4 Results and Discussion  

 

3.4.1 Nanofiltration Processes  

 

As mentioned, water permeability (Lp) was measured, before and after every 

filtration or cleaning process as the slope of the Jv versus ΔP plot with Milli-Q water. 

From Lp data, the initial and final membrane resistances, Rm (t), were calculated 

according to Eqs. (1) and (2) where Rf(t)=0 and Δπ=0. These measurements determine 

the loss of membrane permeability or the increase of resistance, due to fouling during 

filtration and the recovery after the cleaning process. Results are presented in Table 

3.4. After synthetic solution filtration and membrane rinse, water permeability was 

slightly reduced (there is a final reduction of 13 % from the original permeability) which 

is attributed to the irreversible fouling of the membrane due to the adsorption of low 

molecular weight substances on the surface or inside the pores. After must 

nanofiltration and membrane rinsing, water permeability was reduced by 45% and it 

can be noticed that there is a slight recovery after the cleaning process, without 

reaching the original value of the brand new membrane (final reduction of 37 %). This 
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means that the filtration of must causes a higher irreversible fouling (permeability 

permanent loss) due to the presence of high molecular weight compounds. 

 

Table 3.4. Hydraulic permeability and membrane resistance of the NF270, both initially and 

after filtration and cleaning stages 

Process 
Before 

filtration 

After synthetic 

solution rinse 

After red 

must rinse 

After must 

cleaning with SDS 

Water 

Permeability Lp 

(10
-11

m/Pa·s) 

3.84 3.34 2.10 2.45 

Membrane 

Resistance            

Rm (10
13 

m
-1

) 

2.60 2.98 4.75 4.07 

 

Figure 3.2a and b present the kinetics of permeate flux and total volume flow 

respectively of both, the must and synthetic solution filtrations. As shown (see Figure 

3.2a), there is a remarkable decrease of the flow during the first period until reaching a 

more or less flat plateau. It is worth noting that the synthetic solution permeates 

approximately 8 times more volume than must while flux is around 10 times higher. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Permeate flux (a) and total volume (b) permeated through the membrane per unit 

area versus filtration time   

 

This decreasing could be expected since there are several factors that promote 

the corresponding flux decay: 

1. The osmotic pressure increase due to the increment of the concentration of 

small molecules, mainly glucose and fructose, in the retentate, (Co,i) and 

consequently on the membrane surface (Cm,i). 



Section II: Chapter 3 

86 

2. Increase of the viscosity of the fluid that goes through the membrane pores. 

3. Fouling due to the reversible or irreversible adhesion of the molecules on the 

membrane surface or inside the pores which reduces their diameter and so the 

flux too. 

4. Formation and thickening of a gel layer (cake) on the membrane surface due to 

the rise of the concentration of high molecular weight species and colloids on 

the membrane surface. 

 

In the case of the synthetic solution filtration only the three first factors must be 

taken into account, since there are no high molecular weight compounds. Therefore in 

Eq. (3) the resistance RfHMW=0. Of course, for the must filtration none of the four factors 

can be neglected.  

All in all, there are three main differences between both filtrations. First, the 

initial value of the must permeate flux is practically ten times lower than the 

corresponding for the solution (1.91•10-6 and 1.15•10-5 m/s respectively). Second, the 

must could be filtered for a longer period of time than the solution, since there was no 

significant increment on the osmotic pressure and/or viscosity of the retentate. In the 

case of the synthetic solution these factors made that the filtration had to be stopped. 

However, a minimum and almost constant permeate flux was reached at half the total 

filtration time, as shown in Figure 3.2a. The third important difference is the 

accumulated volume of permeate, that for the must was less than for the solution, 

although the period of filtration was longer.  

These permeate flux differences were expected, because of the presence of 

high molecular weight compounds in must. In this case the four mentioned factors have 

to be taken into account, so the formation and thickening of the gel layer (cake) on the 

membrane surface generates another resistance to permeate flux, Rf HMW, which has to 

be considered in Eq. (3). 

It is worth mentioning that from the first instants of the must filtration a reduction 

of color in the permeate samples was observed which increased along the process. 

This means that the high molecular weight substances responsible for the color 

(polyphenolic compounds mainly anthocyanins) are retained by the membrane and 

during the process the accumulation of all high molecular weight compounds forms a 

pseudo membrane which increases the retention of anthocyanins and other 

compounds. These agrees with the work of García- Martin et al. [16], where a different 

nanofiltration membrane with similar MWCO was used and their results showed than 

high molecular weight compounds are almost completely retained.  
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3.4.2 Fouling Analysis 

 

A description of the flux decline observed in Figures 3.2a and 3.2b can be done 

in terms of the fouling mechanisms summarized in Eq. (13). In nanofiltration, usually 

appears first a pore blocking mechanism eventually followed by the formation of a 

cake.  

Eq. (17), predicted by the intermediate blocking model is plotted in Figure 3.3a, 

showing that such a mechanism seems to be compatible with data corresponding to 

the filtration of the synthetic solution and with the first steps of must filtration (a second 

step of intermediate blocking with a different kinetics should be difficult to justify 

although it could be fitted to the resulting plot). 

Eq. (18) corresponding to the “cake formation” mechanism is plotted in Figure 

3.3b where it is clearly seen that this mechanism could be followed with the synthetic 

solution filtration (like the “Intermediate Blocking” model) and with the second step of 

the nanofiltration of must. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Ln(Jv) versus permeate volume fitted to the intermediate blocking (a) and t/Vp versus 

Vp fitted to the cake filtration model (b). 

 

For the synthetic solution, because of the exclusive presence of low molecular 

weight species, both the “intermediate” and the “cake” mechanisms could occur. 

Although if the pore-to-size relation is taken into account and since the low predictable 

adsorption of sugars on the membrane seems improbable [39], it seems that an 

“Intermediate Blocking” should be more feasible. Moreover in Figure 3.3a it is clearly 

seen that the slope is much higher for the must (ki=12030 m-1) than for the synthetic 

solution (ki=6.800.19 m-1). These agrees with several results reported by Listiarini et 

al. [40, 41] for the study of fouling of nanofiltration membranes where minimal or not 

pore blocking of the nanofiltration membrane was detected during the filtration of 
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systems containing high molecular weight substances (organic matter) such as sodium 

alginate and humic acid and different ions (calcium and/or alum) . 

For the must it seems clear that a change in kinetics appear probably 

corresponding to an initial pore blocking followed by a formation of a cake when the 

high molecular weight molecules start to be deposited onto the first arrived ones. The 

fitting of Eq. (18) leads to the cake formation the following kinetic constants: (kc=3.02 

0.08)·1016 s/m6 for the red must and (kc=9.70.3)·1014 s/m6 for the synthetic solution. 

According to these values, the presence of high molecular weight compounds 

accelerates the fouling mechanism in red must nanofiltration by approximately 30 

times.  

According to Schippers and Verdouw [32] the plot of Eq. (18) can be divided in 

three regions that differentiate the fouling mechanisms over the filtration period: (I) 

Pore blocking region, (II) cake formation without compression and (III) cake formation 

with compression. In our case, as shown in Figure 3.3b, the nanofiltration of must 

showed: first a pore blocking process (I) then, during a longer period, a cake formation 

phenomenon (II). No appreciable cake compression (region (III)) has been noticed. 

 

3.4.3 Evolution of concentration of sugars and membrane efficiency 

 

The time evolution of the content of sugars in both permeate and retentate for 

both filtrations is shown in Figure 3.4. A clearly linear, and quite similar, increase of 

concentrations of both glucose and fructose can be noticed for the synthetic solution 

retentate. In the case of the synthetic solution permeate at the beginning there is a 

slight decrease of concentration followed by a clear increase. This phenomenon is 

attributed to the increase of concentration of glucose and fructose on the retentate side 

that finally cross the membrane. The accumulated permeate gave 77% lower sugars 

concentration and the retentate 30% higher concentration than the initial feed solution. 

On the contrary, in the case of the must permeate (see Figure 3.4), there is a 

progressive decrease of the concentration of total sugars until reaching very low 

values. This difference is mainly attributed to the formation of a gel layer on the 

membrane surface that acts as a pseudo-membrane which lowers even more the 

passage of sugars through the membrane by changing both: permeability and 

selectivity of the overall membrane. The final sugars concentration of must permeate 

was 67% lower than the initial feed. The must retentate concentration also presented a 

lineal increase during the filtration, However it´s important to remember that a small 

volume of must permeate was obtained, therefore the increase in sugars concentration 

was only 4% of the initial feed must. Figure 3.4 shows that the synthetic solution is 
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initially more diluted than the values presented in Table 3.2, but the desired values are 

reached throughout the process. The experiment was carried out in this way because it 

allowed analyzing the trend of osmotic pressure without excessively increasing the 

experimental operation time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Time evolution of the Glucose (Glu) and Fructose (Fru) content of the synthetic 

solution retentate (SSR), synthetic solution permeate (SSP), must retentate (MR) and must 

permeate (MP). 

 

As mentioned, the sugars concentration measurements for the permeate and 

retentate allow the determination of the membrane efficiency by calculating the time 

evolution of the true retention of each sugar, Ri, according to Eq.(12). 

For the synthetic solution as well as for must, the mass transfer coefficient of 

each sugar (Km,i) was calculated by the dimensionless numbers correlation given in Eq. 

(6). When there is a turbulent flow and when 430< Sc< 105, Eq. (6) can be written as 

the Harriot – Hamilton equation [42]: 

 

0.91 0.350.0096 ReSh Sc                                                                                               (20) 

 

The density values used for the synthetic solution were the mean density of 

glucose and fructose solutions as a function of their concentration (mol / L) at 20 °C 

obtained from literature [43]. For red must, the correlation between density and its 

sugar content (ºBrix) was extracted from literature too [44]. 

For the viscosity increase during the synthetic solution filtration, the mean 

viscosity value between glucose and fructose solutions was used as a function of their 

concentration at 20 ºC obtained from the literature [43]. In the case of red must the 

viscosity values used were obtained by a correlation as a function of the concentration 
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(ºBrix) according to the procedure proposed by Zuritz et al. [45], in which the Arrhenius 

equation is used according to: 

 

 /

0
aE RT

e                                                                                                                (21) 

 

here η is de viscosity in mPa·s; η0 is a constant in mPa·s; Ea is the activation energy; R 

is the ideal gas constant and T the absolute temperature. The experimental η0 values 

of Zuritz et al, were logarithmically correlated as a function of ºBrix of must with a 

second degree polynomial equation. In order to obtain the Ea/R values as a function of 

ºBrix, the second degree polynomial equation proposed by Zuritz et al. was used.  

Since the variation of the diffusion coefficients, Di, with concentration is low, the 

values at infinite dilution for glucose and fructose were used: 6.75•10-10 and 7.002•10-10 

m2/s respectively [46].  

The values of Km,i were corrected by using Eq. (9) and  Cm,i was obtained for 

each Jv according the Thin Film Theory equation (Eq. 5). 

Figure 3.5 shows the results obtained for the retention of sugars in both 

filtrations. It can be noted that, mainly at the beginning, the retention of sugars in must 

is lower than in the synthetic solution. Furthermore, it can be seen that the sugars 

retention in the synthetic solution remains practically constant, while in must it 

increases remarkably in a first step. These differences are due to the presence of other 

substances that, as commented, change the permeability and selectivity properties of 

the membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Time evolution of the True Retention (R) of Glucose and Fructose in the synthetic 

solution (SS) and red must (RM) nanofiltration  
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As shown in Figures 3.4 and 3.5, the filtration of neither the synthetic solution 

nor the red must caused a de-compensation between glucose and fructose. This 

means that even though the total sugar content of the feed varies, the original relation 

of glucose and fructose is not modified by the process. For a proper fermentation, it is 

important that the membrane process does not alter this natural grape must property. 

 

3.4.4 Determination of the resistances to the permeate flux 

 

First, the values of Rf LMW for the synthetic solution permeate flux where 

calculated by according to Eqs. (1) and (2) when RfHMW=0.  

The osmotic pressure increase in the synthetic solution and in red must, was 

determined using Eq. (4), taking into account only the contribution of glucose and 

fructose. This was considered appropriate since the concentration of charged low 

molecular weight substances (potassium, calcium, sodium and magnesium) is quite 

similar on both sides of the membrane. Besides, the organic acids concentration is 

much lower than that of sugars so their contribution to the osmotic pressure can be 

considered negligible compared to those of glucose and fructose. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Evolution of RfLMW as a function of filtration time (a) and as a function of sugars 

concentration in the membrane surface (CmT) (b) for the synthetic solution filtration  

 

Figure 3.6a represents the kinetics of RfLMW during the synthetic solution 

filtration. The correlation between this resistance and the total sugars concentration 

(glucose and fructose) on the membrane surface, CmT is shown in Figure 3.6b. It can 

be noted that there is a progressive increase in this resistance during the filtration 

(Figure 3.6a) and according to Figure 3.6b, there is parallel increment of the sugars 

concentration on the membrane surface. Besides, it can be observed that the 
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correlation between RfLMW and Cm,T is practically lineal, so it can be assumed that the 

accumulation of sugars on the membrane surface is proportional to the concentration 

increase. 

The values of RfLMW for the red must filtration were determined by the 

calculation of CmT and the use of the correlation between RfLMW and CmT obtained for 

the synthetic solution. Figure 3.7a shows the variation of RfLMW with time along the 

process of must filtration. As can be seen, there is not a significant increase of this 

resistance as in the case of the solution. This difference is due to the lower sugars 

concentration increment in the retained must.Finally, replacing the values RfLMW 

obtained in Eqs. (1) and (2), the resistance RfHMW during the red must filtration could be 

determined. Figure 3.7b shows the time evolution of the resistances to the permeate 

flux during must filtration: RfLMW and RfHMW and the sum of them, Rf. Here, it can be 

noted how, in the same period of analysis, RfLMW remains practically constant in 

comparison to the RfHMW which increases progressively until reaching a maximum, 

beyond which there is a progressive slight decrease.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Time evolution during must filtration of the resistance due to fouling by low molecular 

weight compounds: RfLMW (a) and comparison of the individual resistances due to fouling caused 

by all compounds present in red must (b)  

 

According to the studies of Foley et al. [47] a reduction in the (specific) cake 

resistance can be caused in compressible cakes due to a reduction in the pressure 

drop across the filter cake. This phenomenon is possible considering that the overall 

pressure drop (applied transmembrane pressure Δp) at any time is the sum of pressure 

drops over membrane, Δpm, cake, Δpc and osmotic pressure, Δπ. It has to be taken 

into account that Rm may vary with the pressure drop Δpm, due to the reversible or 

irreversible adhesion of the molecules on the membrane surface or inside the pores. 

But this resistance variation is important only during the first stages of filtration. During 
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the important stage of the filtration, when the cake is of appreciable thickness Δpm is 

small in comparison with Δpc. So, a reduction in Δpc (and so in RfHMW) may occur due to 

a remarkable osmotic pressure increase which leads to a decay of the effective 

pressure across the cake. This suggested that the cake formed may be slightly 

compressible and its compression begins when the maximum RfHMW is reached. After 

this, an osmotic pressure increase should take place since sugars may be more 

retained by the more compacted gel layer. 

In order to analyze this, the osmotic pressure during red must nanofiltration was 

plotted in Figure 3.8. It can be appreciated that exactly when the maximum of RfHMW is 

reached, the osmotic pressure starts, in effect, to increase, promoting a cake pressure 

drop as mentioned.  

Furthermore, when osmotic pressure starts to increase, sugars begin to be 

more retained by the membrane system as can be noticed in Figures 3.3 and 3.4. So, 

as already mentioned, the sugars retention increase can be attributed to the formation 

of a gel layer on the membrane surface but a compression of it may be the cause of 

the significant retention increase (and osmotic pressure increase) at the end of the 

filtration period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Time evolution of the osmotic pressure difference (ΔΠ) due to sugars during red 

must nanofiltration  

 

After the comparison of both filtrations it could be said that the presence of high 

molecular weight compounds, which are characteristic of red must, enhances the gel 

layer formation (which plays the role of a pseudo-membrane that changes both: the 
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permeability and the selectivity properties) which induces different phenomena such 

as: 

 

1) Lower values of permeate flux from the beginning of the process. 

2) Progressively lower sugar concentration in the permeate. 

3) Less water permeability recovered after the cleaning process, which means that 

these compounds have a higher irreversible adsorption on the membrane 

surface or inside the pores. 

4) Lower permeate volume recovery. 

 

It is worth considering that the last three facts mentioned above may be due to 

the manufacturing characteristics (polymer and pore size) of the nanofiltration 

membrane used, NF270. These membrane characteristics can cause a fast formation 

and thickening of the gel layer on the active layer of the membrane, which leads to a 

fast decrease of the permeate flux that afterwards slows down the process very 

steeply. Due to this, the permeate flux reached a minimum in such a short time that a 

higher permeated volume would need an excessive operation time.  

 

3.5 Conclusions 

 

The rapid formation and thickening of the gel layer on the membrane surface, 

during red must filtration caused extreme conditions of analysis: small increase in the 

concentration of sugars in the retentate and rapid decline in Jv, obtaining a small 

volume of permeate. The analytical method proposed seems adequate, since it 

enabled the individual study of the influence of the LMW and HMW on the permeate 

flux decay, even under these very fast and strong irreversible fouling.  

 

According to the methodology of analysis proposed, the following main 

conclusions can be raised: 

1) Since the concentration of sugars in the retentate did not cause a significant 

increase in RfLMW, the primary responsible of the permeate flux decline in the 

nanofiltration of red must is the formation and thickening of the gel layer on the 

membrane NF270 caused by the high molecular weight substances. Therefore, 

low molecular weight compounds influence on the permeate flux decrease is 

mainly represented by the osmotic pressure increase. 

2) The presence of HMW increases the membrane fouling mechanism by around 

30 times. 
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3) The decay of RfHMW at the end of the red must filtration suggests that the cake 

formed may be compressible causing an osmotic pressure increase which 

reduces the effective pressure drop across the cake and so its resistance to Jv. 

4) The formation of the gel layer on the membrane surface changes the selectivity 

to sugars, but the compression of this cake increases the retention even more. 

 

Finally, the optimization of the process will consist on the selection of a 

nanofiltration membrane with an appropriate sugars retention (pore size), about 50%, 

and a low affinity to high molecular weight substances (manufacturing polymer) in order 

to maintain substantially unaltered its retention characteristics due to the accumulation 

of these substances on the membrane surface. 
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3.7 Nomenclature 

Roman 

a  cake compressibility constant 

Am  Membrane active area (m2) 

AT  Transversal membrane channel area (m2) 

C0,i  Feed concentration of each component (kg m-3)   

Cm,i  Concentration of each component on the membrane active layer (kg m-3)  

Cp,i  Permeate concentration of each component (kg m-3)  

dh  Hydraulic diameter of the membrane channel (m) 

Di  Diffusion coefficient of each component (m2 s-1) 

Ea  Activation energy (kcal mol-1) 

R  ideal gas constant (1.987·10-3 kcal mol-1 K-1) 

T  Absolute temperature (K) 

HMW  High molecular weight compounds 

Jv  Permeate flux per unit of area through the membrane (m3 m-2 s-1) 

Jv,0   Permeate flux per unit of area through the membrane at time t =0  

  (m3 m-2 s-1) 

k  General kinetic constant for the fouling models (s-1)  

kc  Kinetic constant for the cake model (s m-6) 

ki  Kinetic constant for the intermediate blocking model (m-1) 

ks  Kinetic constant for the standard blocking model ( m-3) 

Km,i  Mass transfer coefficient (m s-1) of each component at impermeable 

membranes (m s-1) 

K*
m,i  Mass transfer coefficient of each component at semipermeable 

membranes (m s-1) 

LMW  Low molecular weight compounds 

Lp  Water permeability (m Pa-1 s-1)  

PT  Transversal channel perimeter (m) 

Re  Reynolds number  

Rf  Total resistance due to fouling (m-1) 

Rf HMW  Resistance due to fouling by high molecular weight compounds (m-1) 

Rf j   General resistance due to fouling (m-1) 

Rf LMW  Resistance due to fouling by low molecular weight compounds (m-1) 

Ri  Membranes true retention of each component 

Rm  Membrane resistance (m-1) 

RSys  System resistance (m-1) 

Sc  Schmidt number 
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Sh   Sherwood number 

v  Average velocity inside the channel (m s-1) 

Vp  Permeate volume (m) 

CmT  Total sugar concentration on the membrane active layer (kg m-3)  

 

Greek 

Δp  Applied transmembrane pressure (Pa) 

Δπ  Osmotic pressure gradient (Pa) 

ηf   feed viscosity (Pa s) 

ϕi  ratio of the permeate flux by the mass-transfer coefficient of the 

component i at impermeable membranes 

ρf  Feed density (kg m-3) 

Ξi  Correction factor by which Km,i  must be multiplied to obtain K*
m,i 
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Chapter 4. Fouling study of Nanofiltration membranes for sugar control in grape 

must. Analysis of resistances and the role of osmotic pressure 

 

Abstract 

 

Three membranes are analyzed attending to their retention, flux and fouling 

when used to nanofiltrate sugars in red grape musts. In presence of high molecular 

weight compounds, i.e. when filtering must, fouling develops from initial pore blocking 

to final cake deposition. A decrease of resistance appears due to a decrease of the 

effective transmembrane pressure and cake compaction. The final effective pore size 

corresponds to that of the compacted cake.  

Attending to flux decay and sugar retention, two membranes, HL and SR3, are 

appropriate to reduce the content of sugar of red must. Specifically SR3 shows the best 

passage of sugar and less fouling. 
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4.1 Introduction 

 

Membrane technology has been increasingly used in the beverage industry. For 

example, it has been successfully used for the recovery of low molecular weight 

polyphenols and polysaccharides coming from winery effluents [1]. Moreover, it is 

considered as an alternative concentration method of different fruit juices such as 

apple, pear [2] or grape must [3]. These processes play an important role in the 

beverage and wine industry as preservation and concentration methods. The 

concentrates are a natural sweetener in the production of wine and vitamin- and 

aroma-rich drinks.  

If the molecular weight of sugars in must is taken into account, nanofiltration 

(NF) is the membrane process to be chosen to retain them. It has been successfully 

used to increase the sugar content of grape must (to increase the final alcohol degree) 

in wine production [4]. Using a two stage NF process of grape must, Versari et al. [4] 

obtained relatively high sugar retentions (7–97%). Moreover, in their work García-

Martin et al. [5, 6] studied the sugar reduction in musts by a two stage nanofiltration 

process to obtain wines with a slight alcohol reduction. 

One of the main obstacles of NF technology is membrane fouling. Fouling in 

general causes deterioration in permeate quality and quantity, and eventually leads to 

a mandatory and expensive membrane replacement routine [7].This is because the 

dominant mechanism of fouling in NF processes is the formation of a layer (a “cake”) 

that can significantly degrade membrane performance [8]. The conventional cake 

filtration theory consists in a compilation of knowledge of the dynamics of cake filtration 

developed by Ruth [9] and successive researchers [10-14]. This approach states that 

during filtration, the cake thickness increases with time. In most cases, it also becomes 

more compact and its resistance to fluid flow increases accordingly. The main features 

of the dynamic behavior of cake filtration are the variation of the cake thickness, the 

evolution of the cake structure, specific cake resistance and total filtered volume for a 

specified set of operating conditions [15, 16]. 

During the last years, there has been a great development and improvement in 

optical and thermal techniques which give unquestionable testimony of fouling and 

allow the study of membrane fouling mechanisms. For example, confocal scanning 

laser microscopy (CSLM) has been used by Ferrando and coworkers [17] to visualize 

and characterize membrane´s surface and pores, after the microfiltration of protein 

solutions. More recently infrared thermography (IRT) has been used to characterize 

fouled membranes by measuring surface temperature and emissivity of different 
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foulants [18]. Moreover, Lanteri et al. [19] developed a streaming potential method for 

the characterization of surface electrical properties of particle deposits during filtration 

by measuring simultaneously transversal streaming potential and permeate flux during 

cake growth.  

However, most studies on membrane fouling characterization focus on the 

evolution of permeate flux and total resistance versus time. Fouling mechanisms during 

membrane filtration processes (i.e. Micro MF, and Ultrafiltration, UF) have been studied 

in deepness along the last century [20-25]. Subsequently, Schippers and Verdow [26] 

studied the mechanisms involved during the performance of Reverse osmosis (RO) 

membranes. More recently, Listiarini and coworkers [7, 27] and Koo et al. [28] applied 

these mechanisms to the analysis of fouling for NF membranes. 

In our previous work [29], a method was proposed to allow studying individually 

the resistances and fouling mechanism generated by low and high molecular weight 

solutes, LMW and HMW respectively, in red grape must NF.  

The aim of the present work is to analyze in deepness the fouling mechanism, 

osmotic pressure and resistances of different NF membranes during the filtration of 

commercial grape must. The assessment of these results and their influence on the 

performance of NF membranes will give elements for an adequate selection of 

appropriate membranes for sugar control in grape must. 

For this purpose, the methodology suggested in previous studies [29] has been 

applied in order to analyze individually the influence of LMW and HMW compounds on 

NF and this information used to select the best out of three particular membranes. 

 

4.2 Theory 

 

4.2.1 Permeate flux decrease and retention model 

 

When the overall filtration process is taken into account, the flux through the 

membrane per unit of membrane area can be written in terms of the applied 

transmembrane (hydraulic) pressure, Δph,s, the osmotic pressure gradient, Δπs, the 

viscosity of the solution that goes through the pores of the membrane, ηp, and the 

system resistance. This is the sum of the membrane resistance, Rm, and the terms that 

depend on the fouling caused by the LMW (RfLMW) and the HMW (RfHMW) solutes [30-

33]. In this way the permeate flow (Jv) can be calculated as 
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Since the concentration of monovalent ionic species (potassium and sodium) is 

similar on both sides of the membrane [5, 6] and the concentration of divalent ions 

(calcium and magnesium) and organic acids is much lower than that of sugars [29], the 

increase of osmotic pressure can be determined by taking only into account the 

contribution of glucose and fructose by means of the van’t Hoff’s law: 
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components contributing to the osmotic pressure drop through the membrane system 

(here N=2 and i is glucose and fructose), R the gas constant and T the temperature. 

Cm,i and Cp,i are the concentrations on the membrane system interfaces at the feed and 

permeate sides respectively. 

The concentration on the feed membrane system interface, Cm,i can be 

calculated by taking into account the concentration polarization phenomenon [34], 

which can be studied by following the Film theory [35-37] as: 
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Here Km,i is the mass transfer coefficient of the i-th component that can be 

evaluated by means of the Harriot – Hamilton equation [38] as mentioned in a previous 

work [29]. 

 

4.2.2 Fouling mechanisms 

 

NF membranes have very narrow pores as compared to the solute size. Hence, 

fouling mechanisms where it is assumed that all the solute molecules plug a pore 

(complete blocking); or are deposited inside the pores (standard blocking) seem 

inappropriate. Rather, molecules could deposit on other previously settled on the 

membrane surface or directly plug a pore as assumed in the so called intermediate 

blocking. Therefore, for the synthetic solution nanofiltration, so as for the first steps of 

must nanofiltration, flux decay should be caused by the intermediate blocking 

mechanism according to [24, 25] 
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where i is the intermediate blocking kinetic constant in m-1,VP is the permeated volume 

in m3 and Am the membrane surface area in m2. 

After saturation of the intermediate mechanism, a cake would be built. 

According to this model Jv can be described as 
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where the kinetic constant c (in s·m-6) is twice the Modified Fouling Index (MFI) that is 

defined as the slope of the plot of t/VP versus VP [26, 28]. 

 

4.2.3 Pressure drops along the membrane system 

 

As mentioned, in cake filtration mechanisms, the feed has to overcome two 

resistances that are placed in series: that of the membrane and that of the layer formed 

due to the fouling (cake).  

In the same way, the effective applied pressure drop, the hydraulic pressure 

applied and the osmotic pressure through the membrane system at any time should be 

the sum of the contributions of both the membrane and the cake. Then: 
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where: 
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Therefore, according to Eq. (1), each effective pressure can be calculated as 
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Now we need to know Δπk to get Δph,k or vice versa from data on the 

resistances.  

 

According to Eq. (2) we can get the osmotic pressure difference once the 

concentration on the membrane active layer, Cm,i is known. When these calculations 

are done for the synthetic solution Cm,i is the concentration of glucose or fructose on the 

membrane active layer because no cake would appear and can be determined with Eq 

(3).   

But, according to the definition of the true retention of the solutes, Ri (i.e. for 

glucose and fructose) [29] is: 
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When grape must is filtered, C`m,i is the concentration of the i-th component on 

the feed-cake interface and can be calculated also by means of Eq (3). In this case, the 

concentration of the i-th component on the membrane-cake interface Cm,i, can be 

calculated by Eq. (9), if it is accepted that the true retention of sugars through the 

membrane is equal to that evaluated for the synthetic solution filtration and that it 

behaves in the same way when the cake appears as when it is not present. This is 

acceptable since true retention is not a concentration dependent parameter for neutral 

species although it wouldn’t be applicable for charged substances. This statement also 

implies that retentions in the synthetic solution do not vary with permeate flux. The later 

will be shown in the experimental results (section 4.4.6) were it will be see that Ri 

varies very little with Jv for all the membranes under study.  

Eq. (2) allows the evaluation of both Δπm and Δπs. Then, by Eqs. (7) and (8), 

Δph,k can be calculated. Consequently, all the osmotic addends and pressure drops 

along the membrane system could be evaluated by using Eqs. (6) and (7). 

 

4.2.4 Specific cake resistance. Principles of cake filtration. 

 

The cake sheet formed over the membrane consists in a thin layer of solid 

particles through which the permeate flows. The specific cake resistance represents 

the fouling resistance caused by the cake on the membrane, Rf, normalized by the 

accumulated cake mass per unit of membrane area [27], so 
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Thus, according to Eq. (1), for the cake: 
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where mc is the mass of the cake deposited on the membrane surface. 

A material balance allows the correlation of mc with the permeate volume VP 

(volume collected up to time t). If Cb is the bulk concentration of foulants, the mass of 

the particles deposited onto the membrane can be correlated to the permeate volume 

as 

 

c p bm V C                               (12) 

 

where γ is a particle deposition factor (less than unity) that accounts for the reduction of 

cake mass due to its partial removal induced by the crossflow conditions. This 

coefficient was first proposed by Sioutopoulos et al. [39] in order to extrapolate specific 

cake resistance calculations to cross flow conditions. 

Therefore Eq. (10) could be used to evaluate  if Cb were known, and Eq. (11) 

can be used to get Δpeff,c. 

In order to calculate Cb along the filtration process, the following assumptions 

must be made: 

The global concentration of foulants is considered to be that of the total dry 

extract of must, CDE, which includes all matter that is non-volatile. This concentration 

was defined and determined in accordance to the OIV methods [40].  

All the HMW compounds are always retained by the membrane; therefore the 

mass of these particles in the retentate side, mHMW, is considered to be constant during 

the process. 

Only the variation of the concentrations of glucose and fructose in the retentate 

were taken into account since their concentration is so high that the variation of the 

other LMW is considered negligible. 

In accordance to these ideas, the concentration of HMW can be obtained as 

 

HMW DE T ,0C C C                     (13) 
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where CT,0 is the initial total sugar concentration (glucose and fructose). Moreover 
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V0  being the initial volume of must. 

Finally, Cb can be evaluated, as a function of time, by 
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where mTR(t) is the total sugar content and VR(t) the volume of the retentate at the 

filtration time t. Then, by using Eqs. (12) and (8), Eq. (11) can be used to calculate . 

Another strategy could be used for the estimation of . In effect, according to 

Eqs. (1), (5) and (11), c, that can be determined from the flux kinetics according to  
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where, Δpeff,s is known because Δπs can be evaluated by Eq. (2). 

 

4.2.5  Pore size evolution 

 

Apparent pore size can be used to study flux decay through the analysis of its 

evolution. In order to estimate pore size, a convection-difussion model was used. This 

model considers only the steric partitioning in the interface , with the introduction of the 

applied pressure gradient term as has been previously described [41]. In these terms, 

the retention coefficient that a NF membrane presents can be written as 
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In this expression, the steric partition coefficient is  
2

= 1- i pr r if a cylindrical 

geometry is assumed for the pores, being ri and rp the i-th component and pore radii 

respectively. The dimensionless Peclet number is given by: 
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where Lp is the water permeability,   the viscosity inside the pore, and Δx and Ak are 

the thickness and porosity of the membrane respectively. Kc and Kd. represent the 

hindrance factors for convection and diffusion, respectively. According to Dechadilok 

and Deen [42] these factors can be calculated according to polynomes that depend on 

λ=ri/rp. 

For the viscosity inside the pore, the model proposed by Wesolowska et al.[43] 

was adopted defining a factor y = d/rp, and d=0.28 nm. 

Through this set of relations, the retention coefficient, R, is a function of the 

pore radius, rp. From a set of data, of Jv and R, the pore radius could be estimated as 

the free parameter in the best fit to Eq. (18). In this work, instead of using the whole 

data set to estimate a unique rp average value, each pair of values (Jv, R) were used to 

calculate the corresponding rp from Eq. (18). As the filtration process modify flux rate 

and retention coefficient along the process, rp changes with time too as logical. 

 

4.3 Materials and methods 

 

4.3.1 Membranes and experimental set-up 

 

Three different nanofiltration flat sheet membranes were tested: NF270 from 

Dow – Filmtec (the flatsheets were kindly supplied by the manufacturer); HL from GE 

Water & Process Technologies and KMS SR3 from Koch Membrane systems. The 

main characteristics of them are shown in Table 4.1. The molecular weight cutoff, 

MWCO, was  provided by the manufacturer for the SR3 and HL and in the case of the 

NF270 it wasobtained from different studies were the membrane was used [44], [35]. 

Drop contact angles were obtained from the literature [45], [46], [47]. 

The experimental set-up used in this study is described in sufficient detail 

elsewhere [29] thus only a brief summary is provided here. All the experiments were 

performed in a batch unit without dilution with a stainless steel flat sheet crossflow 

module with a single channel of length L=110 mm; height H=0.5 mm and width W=60 

mm. These dimensions provide a membrane surface area Am=6.6·10-3 m2.  

The operating conditions for every filtration process were: feed temperature of 

20ºC, applied pressure of 35•105 Pa and retentate recirculation flow of 5 L/min. 
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According to the dimensions of the channel, this supposes a feed tangential velocity on 

the membrane surface of 2.78 m/s. 

 

Table 4.1. Main characteristics of the membranes 

Membrane Manufacturer 
MWCO 

(Da) 

MgSO4 

Rejection 

(%) 

Operating range Drop 

Contact 

angle            

(º) 

pH 
P   

(10
5
Pa) 

T 

(°C) 

NF270 Dow 200a–400b 97c,d 3–10 <41 <45 30g 

HL GE Water 150c–300 c 98c,e 3–10 <40 <50 27.5h 

SR3 Koch 200 c 99c,f 4-10 <44.8 <50 49i 

a
[44], 

b
[35], 

c
According to the information provided by the manufacturers, 

d
MgSO4 2000mg/L at 

480 kPa, 
e
 MgSO4 2000mg/L at 690 kPa, 

f
 MgSO4 5000mg/L at 655 kPa, 

g
 [45], 

h
[46],

i
[47]. 

 

4.3.2 Synthetic solution and commercial grape must 

 

Two NF processes were performed for each membrane. Firstly, a synthetic 

solution prepared in the laboratory containing the main low molecular weight 

compounds (LMW) of grape must was filtered. These are namely glucose (Glu), 

fructose (Fru), malic and tartaric acids, potassium, sodium, calcium and magnesium. 

The concentrations of this synthetic solution were the same that those reported in a 

previous work [29] 

Then it was carried out the filtration of commercial red must, which also 

contains high molecular weight compounds (HMW) such as polyphenols, 

polysaccharides and proteins. Attempting to reproduce the same conditions as in the 

first filtrate, the experiments with grape must were made using a brand new membrane 

flat sheet. 

In this way, it was possible to analyze individually the influence of these HMW 

and LMW compounds on: the permeate flux decline, the true retention, the fouling 

mechanism and the resistances to the permeate flux. 

 

4.3.3 Experimental protocol 

 

The experimental protocol can be summarized as: 

 

1. Membrane compaction was performed during one hour using Milli–Q water at 

35·105 Pa, 20 ºC and a recirculation flow of 5 L/min, in order to avoid 

irreversible changes during operation. Under these conditions water 
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permeability was determined. This measurement was repeated before and after 

all filtration and cleaning steps. 

2. The membrane was soaked in the synthetic solution for 12 hours at 20-25 ºC. 

This was done to allow an initial deposition of foulants. 

3. Nanofiltration of the synthetic solution of LMW at the operating conditions 

mentioned in 4.3.1. 

4. Then, the membrane was cleaned with soft water at low pressure, under the 

same operating conditions of temperature and recirculation flow, during one 

hour sending both permeate and retentate to the drain. Afterwards it was rinsed 

with Milli–Q water using at least a volume equal to the system hold-up volume 

and sending the permeate and retentate to the drain too. Finally, the hydraulic 

permeability was measured. 

5. Compaction and determination of hydraulic permeability of a new membrane 

sheet (step 1). 

6. Soaking of the membrane in commercial red must during 12 hours with the 

same purpose as in step 2. 

7. Nanofiltration of commercial red must at the operating conditions mentioned in 

4.3.1. 

8. A two stage membrane cleaning procedure consisting in a water rinse step 

followed by the use of a tensoactive solution of 0.1% sodium dodecyl sulfate as 

described in [29]. After each step, hydraulic permeability was measured. 

 

In each nanofiltration process, permeate fluxes were determined by recording 

the time required to collect a known volume of filtrate (10 mL), firstly every 15 minutes 

and when the flux reached more stable values, every 45 minutes. At the same time 

samples of permeate and retentate were taken in order to determine their glucose and 

fructose content by liquid chromatography. 

As mentioned, the filtration of both the synthetic solution and the red must were 

carried out in a batch concentration mode. The permeate was sent to the thermostated 

permeate vessel in order to collect it and the retentate was recirculated to the 

thermostated feed vessel. The experiments were performed until the permeate flux 

decreased to a more or less constant value for a reasonable period of time (which 

depended on the membrane).The volumes filtered were of the order of 2.5L of both, 

synthetic solution and red must. 
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4.3.4 Deposition factor (γ) 

 

A significant issue is the extent to which the cross-flow operation may affect 

particle deposition on the membrane surface and therefore the specific cake 

resistance. In the present investigation, the deposition factor γ was estimated by 

determining the ratio of the true amount of must foulants deposited on each membrane 

surface over the theoretical one.  

The true mass deposition was determined by calculating the mass difference 

between each fouled NF membrane and the respective new one. For this purpose, red 

must filtrations were performed using the three membranes.  

Pieces of both, fouled and clean, membrane were dried under temperature (70 

ºC) and pressure (25 mmHg) until reaching a constant weight and the mass difference 

was measured. These conditions were established by the OIV [40] for grape and wine 

dry extract determination. 

The theoretical cake mass was calculated by considering that all the dry extract 

of must filtrated was attached to the cake layer on the basis of the total permeate 

volume of each membrane test.  

 

4.3.5 Analytical methods 

 

The chromatography system used for the identification and quantification of 

glucose and fructose was composed of a ShimadzuTM LC-9A HPLC apparatus, a 

ShimadzuTM Refractive Index device with a detector RID 6A, a RheodyneTM injector 

with a 20 μL loop and the software Class-VPTM. Separation was carried out isocratically 

in 100% deionized water at a flow rate of 0.5 mL/min at 85 °C using a SupelcoTM ion 

exchange guard column and a SupelcogelTM Pb column.  

 

4.3.6 SEM and AFM microscopy 

 

The surfaces of the membranes were imaged by Scanning Electron 

Microscopy, SEM. The samples were put on an aluminum plate and sheltered with a 

thin metal layer by a PolaronTM (SC7640 model) Sputter Coater. The electronic imaging 

device XL30 ES type EM (from PhillipsTM) was used and several accelerating voltages 

were applied to reach different magnifications. 

Topography of the active layers was also studied through AFM. Images were 

acquired in the tapping mode at room temperature, with a Nanoscope IIIA microscope 

from Digital Instruments (of the VeecoTM Metrology Group). The tip was an OlympusTM 
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OTESPA7 made out of an etched silicon probe aluminum coated with a length of 

14 m and an end with a radius of 7 nm. This allowed the minimization of the 

undesirable convolution of the tip shape and the membrane surface topography [48]. 

Images were processed by means of the Nanoscope software version 5.30r3.sr3. 

 

4.4 Results and discussion 

 

4.4.1 Permeate flux and permeability 

 

As mentioned, hydraulic permeability, LP, was determined before and after 

every filtration or cleaning process and for each membrane as the slope of the JV vs Δp 

plot with Milli-Q waterTM. From LP data, the initial and final membrane resistances were 

calculated for Rf =0 and Δπ =0. Results are shown in Table 4.2. It is clear that after the 

filtration and rinse of the synthetic solution, water permeability was slightly reduced for 

the three membranes. The main differences were detected after must nanofiltration and 

cleaning procedure. The SR3 membrane presented the highest permeability recovery 

(93%), followed by the HL membrane (70%) and finally by NF270 (65%). This means 

that SR3 has the most reversible fouling, presumably due to a less adhesion of 

molecules on the membrane surface.  

 

Table 4.2. Hydraulic permeability and resistance of the membranes, initial value and after 

nanofiltration and cleaning processes.  

Membrane 

Water Permeability                        

Lp (10
-11

 m/Pa s) 

Membrane resistance                     

Rm (10
13

 m
-1

) 

Before 

filtration 

After 

synthetic 

solution 

rinse 

After 

must 

rinse 

After 

must 

cleaning 

with SDS 

Before 

filtration 

After 

synthetic 

solution 

rinse 

After  

must 

rinse 

After 

must 

cleaning 

with SDS 

NF270 3.84 3.34 2.10 2.45 2.60 2.98 4.75 4.07 

HL 3.70 3.35 2.21 2.56 2.69 2.98 4.52 3.90 

KMS SR3 2.18 2.10 1.44 1.97 4.57 4.74 6.92 5.06 

 

The permeate flux of the synthetic solution and red must filtrations for each 

membrane are plotted in Figure 4.1. Each point corresponds to an average of three 

experiments and the error bars plotted represent an error around 8%. In all cases, a 

decay of flux is observed. Here it can be noticed that the NF270 membrane has clearly 

the highest flux of the synthetic solution, followed by SR3 and HL. Bigger differences 

were appreciated mainly at the beginning of the red must NF, when the SR3 

membrane presented the highest flux while NF270 and HL presented very similar 

fluxes, 3 times lower than that for the SR3. Besides, SR3 showed a less-sharp initial 
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decline of flux (during approximately the first 170 min = 10.2·103 s) followed by a very 

sharp flux decay. It is worth noting, that after a certain filtration time, the three 

membranes reached a more or less flat plateau around a quite similar value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Permeate flux time evolution of red must (RM) and synthetic solution (SS) NF for 

each membrane. 

 

4.4.2 Sugars retention and passage 

 

In order to test that the increase of osmotic pressure can be determined by 

taking into account only the contribution of glucose and fructose the conductivity of the 

permeates and retentates of each experiment was measured. The difference between 

them was 0.13+0.04 mS cm-1 for the synthetic solution and 0.08 + 0.04 mS cm-1 for the 

grape must. This corroborates that the contribution of the ionic species to this 

parameter can be neglected. Moreover, this is also supported by the studies carried out 

by Garcia- Martin et al [5, 6] using the HL membrane for the NF of grape must. Here 

they confirmed that the concentration of potassium, malic and tartaric acids do not 

significantly vary along the process. 

In this way, true retentions of glucose and fructose have been evaluated using 

the equations of section 4.2. The corresponding results are shown in Figure 4.2a (for 

the synthetic solution) and in Figure 4.2b (for the commercial must) as a function of 
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time. Each point is plotted with its corresponding error bar which is around 10%. Errors 

will not be plotted from now on since they refer to indirect magnitudes derived from the 

actual results shown in Figures 4.1 and 4.2 and they would mask the graphs and 

results obtained.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Glucose (Glu) and fructose (Fru) retentions as a function of time: (a) for the synthetic 

solution, (b) for red must [46]. Arrows correspond to maximum total fouling resistances. 

 

Sugars retention remains practically constant during the synthetic solution 

filtration for the three membranes. Both sugars (glucose and fructose) were retained by 

all the membranes, especially by NF270 and SR3. NF270 presented the highest 

retention values (around 0.8) followed by HL (ranging from 0.65 to 0.72) and finally by 

SR3 (between 0.44 and 0.52); which is in accordance with the estimated radius for 

each of them, as we will show below.  

These retentions do not agree with the nominal data shown in Table 4.1. 

According to them, the SR3 membrane is the most retentive one for MgSO4 while 

NF270 is the less retentive. This different salt rejection could be due to the charge of 

the membranes and/or to their hydrophillicity. Given that the three membranes have 

quite similar isoelectric points, around pH=3.5 [47, 49, 50], the difference must be 

mainly attributable to their contact angles. In fact, SR3 is the most hydrophobic 

membrane (see Table 4.1) [45-47], what should explain its high retention of a charged 

and hydrated salt as MgSO4.   

However, as it is shown in Figure 4.2b, the presence of HMW compounds 

modifies the retention characteristics of the three membranes. The initial retention falls 

drastically, between 0.2, for SR3 and 0.4 for NF270, with the same membrane order as 

shown in the case of the synthetic solution. This decrease in membrane retention 

during the initial period can be attributed to two factors. First, due to the difference in 



Section II: Chapter 4 

120 

the fluid matrices of the synthetic solution and grape must, the osmotic pressure is 

slightly lower in the synthetic solution so that the effective pressure is greater in this 

case and particles are transported to the surface of the membrane more rapidly 

forming a fouling layer on it. The second aspect to consider is the porosity of the fouling 

layer. The initial porosity is higher, for the must, due to steric hindrance between HMW 

molecules that leads to an increase in retention. The long time increase of retention 

occurs equally for the three membranes, although much steeply for SR3; this and HL 

present values of R around 0.9, well above the value (0.8) around which the NF270 

finally stabilizes. 

This evolution, when HMW compounds are present, must be attributed to the 

formation, thickening and compaction of a gel layer on the membrane surface that acts 

as a pseudo–membrane which lowers the passage of sugars through the membrane by 

changing both: selectivity and permeability of the overall membrane. As seen in Figure 

4.2b, the influence of this pseudo–membrane on the membrane retention is more 

significant in the case of SR3. 

 

4.4.3 Analysis of the fouling mechanisms 

 

In order to analyze the fouling kinetics of both the synthetic solution and the red 

must filtrations in a quantitative way, the previously outlined fouling models [7, 24, 25, 

27, 28] have been used to fit the experimental data.  

The intermediate blocking model seems to be compatible with the data 

corresponding to the filtration of the synthetic solution and with the first steps of must 

filtration. The slopes of the synthetic solution fits for the intermediate model, given by 

Eq. (4), were similar for the three membranes. Note that, the slope is related with the 

area of the membrane blocked per unit of total volume flown (through i). The values 

for i are shown in Table 4.3. The highest i was obtained for HL, followed by SR3 and 

finally by NF270.  

 

Table 4.3 Kinetic constants for fouling and the deposition factor  for the synthetic solution (SS) 

and red must (RM) filtrations 

Membrane 

i 

(m-1) 

c (initial) 

(1011 s m-6) 

c (final) 

(1011 s m-6)                                      
(10

-3 
dimensionless) SS 

global 

RM 

initial 
RM RM 

SR3 8.61 88.17 1.60 8.92 1.30 

HL 8.65 100.35 11.62 19.60 3.56 

NF270 6.80 120.18 5.40 6.84 1.04 
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Figure 4.3a shows, as an example, the plots of flux versus the total volume 

permeated over time for the synthetic solution and red must filtration for SR3, fitted to 

the intermediate blocking model.  

Here it can be seen that the slope is much higher for must than for the synthetic 

solution revealing a faster fouling kinetics. This should be due to the additional pore 

blocking caused by the high molecular weight compounds probably affecting the widest 

pores in the membrane.  

The corresponding kinetic constants for the three membranes and the synthetic 

solution are shown in Table 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 ln(Jv) versus (Vp/Am): (a) The case of the SR3 membrane for the synthetic solution 

(SS) and for the red must (RM), (b) The case of the three membranes during red must NF as a 

comparison. Solid lines represent linear fit to the intermediate blocking mechanism zone of the 

data, corresponding to Eq. (4).  

 

In Figure 4.3b, the corresponding flux decay for red must filtration is shown for 

the three membranes studied. The kinetic constants are also shown in Table 4.3. The 

fastest kinetics corresponds now to NF270 followed by HL and finally by SR3. This 

agrees with the order of sugars initial retention (compare Figures 4.2a and 4.2b). What 

seems reasonable, because more retention would lead to more deposition and 

consequently to faster flux decay. Note that i for NF270 was the lowest one (slowest 

kinetics) for the synthetic solution, while it is the highest (fastest kinetics) when HMW 

components are present (red must filtration). This increase in i for the NF270 should 

be due to a high affinity (chemical or electrostatic) of the membrane material to these 



Section II: Chapter 4 

122 

high molecular weight components. Note too that the less blocked area (less i) 

corresponds to SR3 when HMW compounds are present.  

Eq. (5) corresponding to the “cake filtration” mechanism is plotted in Figure 4.4. 

Here it is clearly seen that, for the three membranes, this mechanism is followed after 

the initial intermediate blocking during nanofiltration of must. In general, the three 

membranes suffer little pore blocking, especially SR3, where this mechanism seems to 

occur only during the first 30 mL of filtration. It is worth noting that, in the three cases, 

the cake filtration mechanism seems to be divided into two steps: cake formation and 

cake formation with compaction. In any case both of the cake fouling steps, are faster 

for HL and the corresponding initial c is relatively low for SR3 while the final c is lower 

for NF270 (less compaction). The values of these kinetic constants are shown in Table 

4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 (t/Vp) versus Vp for each membrane during red must NF. Open symbols correspond 

to intermediate zone; filled symbols correspond to cake formation mechanism zone. 

 

4.4.4 Microscopy 

 

Figure 4.5 provides examples of AFM pictures of an SR3 membrane before 

fouling (a) and afterwards (b). It seems clear that, after fouling, there is a quite compact 

thick cake layer that reduces extraordinarily the roughness. 
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Figure 4.5 AFM pictures of the SR3 membrane before (a) and after (b) fouling. Note that after 

fouling roughness has decreased substantially. 

 

In Figure 4.6, two SEM pictures of an HL membrane before and after fouling are 

showed. The two pictures correspond to a 20 μm size. Figure 4.6b shows a small 

square area that reveals how the electron beam damaged the cake layer. The same 

procedure on the clean membrane didn’t leave any similar trace (Figure 4.6a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 SEM pictures of the HL membrane before (a) and after (b) fouling. Note that after 

fouling a smaller square has been imaged and consequently the deposited layer eroded by the 

electron beam 

 

4.4.5 Resistances to the permeate flux. 

 

The resistances to Jv due to the presence of LMW, RfLMW, and HMW, RfHMW, 

were determined and analyzed individually. The values of RfLMW for the synthetic 
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solution were calculated according to Eq. (1) and (2) with RfHMW=0. The kinetics of 

RfLMW for each membrane during the filtration of the synthetic solution increased with 

time as observed in previous studies [29]. In this case, NF270 presented the lowest 

values of resistance due to fouling, followed by HL and by SR3 (see Figure S4.1a from 

the supplementary material). This was to be expected because this order appeared 

also in retention as was shown in Figure 4.2a. Higher retentions lead to increasing 

viscosity and osmotic pressure that resulted in higher resistance to flux and also to 

faster fouling according to their corresponding i in Table 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Resistance due to fouling by low molecular weight, high molecular weight, and all 

compounds (RfLMW, RfHMW and Rf respectively) in commercial red must versus the total 

permeated volume for: (a) NF270,  (b) HL and (c) SR3 membranes. (d) Comparison of the total 

fouling (Rf) resistance for the three membranes. Arrows point to the respective maxima 

 

The correlation between RfLMW and the total sugar concentration (glucose and 

fructose) on the membrane surfaces, CmT was practically linear (refer to Figure S4.1b in 
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the supplementary material), so it can be concluded that the resistance due to the 

accumulation of sugars on the membrane surface is proportional to their surface 

concentration [29].In the case of red must filtrations, the values of RfLMW were 

determined by the calculation of CmT and the use of the correlation between RfLMW and 

CmT obtained for the synthetic solution. Replacing RfLMW in Eq. (1), the values of RfHMW 

were determined for each membrane. Figure 4.7 shows the evolution, with the 

permeated volume, of the individual resistances due to fouling (RfLMW and RfHMW) and 

their addition (Rf) for the three membranes. 

The figure shows that during most of the nanofiltration process there is no 

significant increase of RfLMW as was also the case for the synthetic solution. When 

filtering red musts, RfLMW remains practically constant in comparison to RfHMW which 

increases progressively until reaching a maximum beyond which there is a gradual 

small decrease. This mechanism is clearly followed by SR3 (Figure 4.7c). In all cases, 

RfHMW has more influence on the JV decrease, but this phenomenon seems to be lower 

for the SR3 membrane (Figure 4.7d). It is interesting to relate the cake fouling 

mechanism (Figure 4.4) with the resistances analysis (Figure 4.7).For the three 

membranes, the maximum Rf (or RfHMW) agrees fairly well with the beginning of the 

third fouling mechanism, where the cake starts to be compacted. 

The specific cake resistance,  (total resistance divided by the mass deposited 

per unit membrane area) (see Eq. (10)), can help to somehow normalize the resistance 

to permeate flux due to the fouling generated by all the species present in red must 

(Rf). As mentioned in section 4.2.4, there are two methods proposed for the estimation 

of the specific resistance. First, the specific cake resistance was calculated using Eq. 

(16) with Cb evaluated by Eq. (15). For this purpose the numeric derivative of (t/VP) 

versus VP (Figure 4.4) is performed to get c/2. In this calculation, all the cake formation 

mechanisms (with and without compaction) were included. This was considered 

appropriate to describe the evolution of this parameter along the complete filtration. 

This differs from the methodology applied by Listiarini et al.[7, 27] where a linear 

regression was performed including only the portion corresponding to the cake filtration 

without compression. The deposition factor γ was estimated for each membrane in 

order to take into account the incomplete foulant deposition giving the values shown in 

Table 4.3. Note that γ follows the tendency of c (second step). 

In Figure 4.8, the evolution of this theoretical specific cake resistance as a 

function of the filtered volume is shown for each membrane. It is worth noting, that this 

parameter shows also a maximum followed by a slight decrease. The arrows 

correspond to the maximal values of Rf for each membrane, which are near the zone of 

maxima for their specific cake resistance. As expected, the highest α was shown by HL 
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followed by NF270. SR3 presented the lowest values during the first period of filtration 

(around 175 mL) afterwards the resistance increases following the tendencies 

appearing in c (see Figure 4.5). The results obtained for the resistances (Rf and α), 

and even for the cake formation mechanism, for SR3 explain its different flux decline 

trend. The less sharp flux decline during the beginning of red must nanofiltration is due 

to a lower cake formation with a low resistance (Rf and α). But later, the progressive 

formation and mainly the compaction of the cake cause a flux decay to values close to 

those for the other two membranes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Evolution of the specific cake resistance (α) as a function of the permeate volume 

(Vp) for the three membranes during red must NF. Arrows correspond to the maximum total 

fouling resistance for each membrane (according to Figure 4.7d). 

 

A second method was proposed for the estimation of the specific resistance  

by using Eq. (20) and the experimental data. In Figure 4.9, the experimental total 

fouling resistance, in fact evaluated by using Eq. (1) and (5), is compared with that 

evaluated from the specific resistance  by using Eqs. (10) and (16), for the SR3 

membrane. It can be appreciated that the calculated Rf follows the same trend as the 

experimental one. Note that around maximal resistances, the fouling kinetics give 

values for the resistance which are close to those directly obtained from the Hagen-

Poiseuille equation. For shorter filtration times, fouling kinetics underestimates (while 

for longer filtration times it overestimates) the total fouling resistance. This can be 

attributed to the fact that the fouling kinectics predicts a low cake formation and for 

longer periods the cake mass is over estimated.  
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All in all, Figure 4.9 shows that the method proposed for the estimation of α 

using the fouling kinetics is acceptable since it describes the behavior of the 

experimental data specially in the period where the cake should be completely formed 

(before its compaction). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Resistance due the total fouling (Rf) for the SR3 membrane. Black triangles show 

the experimental resistance (see figure 7d) and white triangles refer to the calculated ones. 

 

4.4.6 Evolution of pore radii 

 

Pore radii were calculated as the value that minimizes the sum of squared 

residuals, (Rcal-Rexp)
2 for each data set, following the theoretical model explained in 

section 4.2.5. The fitted dependence between R and JV obtained for the synthetic 

solution is plotted in Figure 4.10a using grey curves. Here, it can be noticed that the 

evolution of Ri with Jv is almost constant. This means that the statement mentioned in 

section 4.2.3 that data Cm,i coming from the synthetic solution are transportable to must 

is correct. Evidently, it is worth noting that the model was elaborated for a membrane 

with a constant average pore size, rp; while it seems clear that in our case the effective 

mean pore size should change during the process of filtration due to the corresponding 

fouling process that includes pore blocking. Thus, the gray lines in Figure 4.10a 

correspond to the mean pore size of the membrane during the filtration process.  
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Figure 4.10 (a) Retention versus JV for the synthetic solution filtration. Gray lines are the fits 

using theoretical model for pore radius calculation (solid for Glucose, dashed for fructose). 

Arrows indicate time line. (b.)-Time evolution of pore radii calculated for each single data point 

of  NF270 (Glu),  HL (Glu),  SR3 (Glu) of the red must NF process. Horizontal lines 

represent the average values obtained for the synthetic solution NF along the complete 

process. Dashed grey arrows show the initial pore radii obtained for the synthetic solution. Black 

arrows correspond to the maximum total fouling resistance for each membrane (according to 

Figure 4.7d). 

During the permeation of must, there is a continuous increase of retention while 

flow decreases slowly. The progressive increase of retention is so high that it seems 

inappropriate to assume a single pore size. In this case the model has been applied to 

each measurement and the pore radius obtained as a function of the permeated 

volume. In Figure 4.10b, the effective pore radii evaluated from red must retention 

experiments are shown. It can be seen that there is a clear reduction of the effective 

pore size of the membrane (much slower, although a little larger, for the SR3 

membrane). The mean pore radii for the synthetic solution are also shown here by 

horizontal lines. It is important to mention that the initial values obtained for grape must 

are higher than the average pore radii obtained for the synthetic solution. This agrees 

with the assessment of sugar retention by comparing Figure 4.2a and 4.2b in section 

4.4.2. Average values for the synthetic solution are shown in Figure 4.9b for the sake of 

comparison, but in fact these values decrease with filtration time due to membrane 

fouling (intermediate blocking) previously mentioned. Moreover, comparing the initial 

values obtained for the synthetic solution (refer to dashed arrows in Figure 4.10b) with 

those corresponding to must, it can be seen that for HL and NF270 they are almost 

equal. However in the case of SR3 it is still higher for must. This larger pore size 

causes that more sugar molecules are able to enter the porous matrix blocking larger 

pores very quickly (in the first moments of the process). This occurs faster in the model 

solution than in must (due to the lower effective pressure and less flow in the case of 
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must), so, apparently, during the initial moments the membrane fouled with must 

presents greater pore sizes. 

It is clearly observed that SR3 has the biggest pore radii, while the smallest 

ones appear in NF270. It can also be seen that the final pore radii for all the 

membranes are around 0.3 nm. This fact indicates that effective radius is determined 

mainly by the cake formed on the membrane, more than by the membrane itself. 

In spite of the final convergence in equivalent pore radii, initial details do show 

differences between the membranes, especially between SR3 and the other two. 

Figure 4.10b shows a clear and pronounced drop of pore radii during the very first 

filtration moments for NF270 and HL. This happens as a consequence of the pore 

blocking explained in previous paragraphs. In contrast, for SR3, the pore radius does 

not show any significant initial decrease.  

It appears clear that, for HL and NF270, pore blocking is the main factor 

determining the effective pore size with a final smooth additional reduction of pore size 

caused by the formation of the cake. The SR3 membrane is only slightly influenced by 

pore blocking with a final deep reduction due to the cake deposit and its compaction. 

Vertical solid line arrows in Figure 4.10b correspond to the maximal resistances 

(Figure 4.7). Thus, it seems clear that maximal resistance occurs when the trend of 

decrease in pore size due to the cake formation starts to stabilize. This is especially 

apparent for the SR3 membrane. 

 

4.4.7 Pressure drops 

 

Figure 4.11 shows the evolution of osmotic pressures and total effective 

pressures through: the global membrane system, the membrane and the cake itself.  

Referring to the osmotic pressure (Figure 4.11a), it increases for the cake and 

the global membrane system (that seems to be controlled by the cake) and decrease 

for the membrane itself with time (permeated volume). Note that the maximum rate of 

change for all the osmotic pressure terms appear when the fouling resistance Rf has its 

maximum (dashed lines in Figure 4.11). Below this maximum there are negative 

osmotic pressures for the cake which means that concentration is higher at the cake-

membrane interface than at the feed-cake interface. After the maximum in resistance, 

all the interfaces from retentate to permeate (i.e. system and cake) correspond to 

positive concentration gradients. 

It seems clear (see Figure 4.11b) that the effective pressure drop through all the 

components of the membrane system and through the global system decrease with 

time (permeated volume) and that the maximal fouling resistance appears when these 
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pressure drops decrease faster. It seems also clear that most of the effective pressure 

drop happens through the cake.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Osmotic pressures (a) and effective total pressures (b) through the membrane, 

cake and membrane system (membrane plus cake) for the SR3 membrane. 

 

It can be concluded that, in our case, the maximum in the fouling resistance and 

the appearance of a change in cake kinetics occur when the osmotic pressures reduce 

substantially and quickly the effective pressure. Regarding the passage from negative 

to positive osmotic pressures for the cake this would happen when the cake is 

completely build due to compression followed by a gradual (slower) compaction with an 

increase of the concentration at the bulk-cake interface (Cm). 

Note that, for the three membranes, when the osmotic pressure of the system 

starts to increase, sugars are retained at their maxima by the membrane system, as 

can be seen in Figure 4.2b. The highest RfHMW, RfLMW and Rf correspond to the 

beginning of the high retention plateau. This is especially clear for the SR3 membrane. 

So, as already mentioned, the sugar retention increase can be attributed to the 

formation of a cake layer on the membrane surface but its compression (and the 

corresponding osmotic pressure increase through the cake and subsequently through 

the membrane system) may be the cause of the significant retention increase that 

stops increasing when cake is completely built. 

 

4.5 Conclusions 

 

We have systematically studied the fouling mechanism and resistances and 

their influence on the performance of three different NF membranes proposed for sugar 
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control of grape must. Moreover, a method was proposed for the analysis of the 

different osmotic pressure gradients through the resistances of the membrane system. 

The fouling kinetics when high molecular weight compounds are present 

consists in three consecutive steps: An initial pore blocking step followed by a cake 

deposition phase and an increase in compression until arriving to compaction giving a 

slower kinetics. When the cake is completely well assembled, the sugar retention has 

arrived to the maximum and osmotic pressure of the system increases causing a 

reduction of the effective pressure. This later causes a decrease of cake resistance 

that was increasing until this moment. The evolution of retention and the effective pore 

size reveals the convergence of the effective pore size to that of the cake after 

compaction. 

Moreover, when the cake is completely built, its compaction promotes an 

increase of the concentration at the feed-cake interface causing a passage from 

negative to positive osmotic pressures for the cake. 

The analysis of the flux decay and retention of sugar in musts shows that, two 

of the three membranes studied, HL and SR3 are appropriate to reduce the content of 

sugar of red must. Specifically SR3 shows the best passage of sugar and less fouling. 
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4.7 Nomenclature 

 

Roman 

Am  Membrane surface area (m2) 

Ak  Membrane porosity 

C0,i  Feed concentration of the i-th component (kg m-3)   

Cb  Bulk concentration of foulants (kg m-3) 

Cf,i  Feed concentration of the i-th component (kg m-3) 

CDE  Total dry extract of must (kg m-3)  

CHMW  Concentration of HMW (kg m-3) 

Cm,i  Concentration of the i-th component on the bulk-cake interface  

  (membrane active layer) (kg m-3)  

C´m,i  Concentration of the i-th component on the membrane-cake   

  interface (kg m-3)  

CmT  Total sugar concentration on the membrane active layer (kg m-3)  

Cp,i  Permeate concentration of the i-th component (kg m-3) 

CT,0  Initial total sugar concentration (glucose and fructose) of red must          

  (kg m-3) 

Di  Diffusion coefficient of the i-th component (m2 s-1) 

HMW  High molecular weight compounds 

Jv  Permeate flux per unit of area through the membrane (m3 m-2 s-1) 

Jv,0  Permeate flux per unit of area through the membrane at time t =0  

  (m3 m-2 s-1) 

Kc  Hindrance factor for convection given by Eq. (25) 

Kd  Hindrance factor for diffusion given by Eq. (26) 

Km,i  Mass transfer coefficient of the i-th component at semipermeable  

  membranes (m s-1) 

LMW  Low molecular weight compounds 

Lp  Water permeability (m Pa-1 s-1)  

mc  Mass of cake deposited on the membrane surface in (kg) 

mHMW  Mass of HMW in the retentate (kg)  

Mi  Molar weight of the i-th component (kg mol-1) 

mTR(t)   Total sugar content of the retentate at the filtration time t (kg) 

Pe  Peclet number 

R  ideal gas constant (1.987·10-3 kcal mol-1 K-1) 

RfHMW  Resistance due to fouling by high molecular weight compounds   

  (m-1) 
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RfLMW  Resistance due to fouling by low molecular weight compounds  

  (m-1) 

Rf j  General resistance due to fouling (m-1) 

Rf  Total resistance due to fouling (m-1) 

Ri  Membranes true retention for the i-th component 

Rm  Membrane resistance (m-1) 

rp  Pore radii (nm) 

ri  Radii of the i-th component (nm) 

T  Absolute temperature (K) 

t  Filtration time 

V0  Initial volume of grape must (m3) 

Vp  Permeate volume (m3) 

VR(t)   Volume of the retentate at the filtration time t (m3) 

 

Greek 

α  Specific cake resistance (m kg-1) 

γ  Deposition factor on the membrane surface 

Δph,s  Applied transmembrane pressure (Pa) 

Δpeff,c  Effective pressure drop across the cake (Pa) 

Δpeff,m  Effective pressure drop across the membrane (Pa) 

Δpeff,s  Effective pressure drop across the system (Pa) 

Δph,c  Hydraulic Pressure drop across the cake (Pa) 

Δph,m  Hydraulic Pressure drop across the membrane (Pa) 

Δx  Membrane thickness (m) 

Δπc  Osmotic pressure gradient across the cake-active layer interface   

  (Pa) 

Δπm  Osmotic pressure gradient across the membrane-cake interface   

  (Pa) 

Δπs  Osmotic pressure gradient across the membrane system (Pa) 

ηp  Viscosity inside the membrane pore (Pa s) 

c  Kinetic constant for the cake model (s m-6) 

i  Kinetic constant for the intermediate blocking model (m-1) 

λ  Ratio ri/rP  

  Steric partition coefficient 
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4.9 Supplementary Material 

 

The following are the supplementary data provided for this work. 

 

 

 

 

 

 

 

 

 

 

Figure S4.1 Evolution of Rf(LMW) for the synthetic solution for the three membranes: (a) as a 

function of filtration time, (b) as a function of total sugar concentration in the membrane surface 

Cm,T.  
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Chapter 5. Comparative Study of Red Grape Must Nanofiltration: Laboratory and 

Pilot Plant Scales 

 

Abstract 

 

A consequence of global warming is the early ripening of grapes which 

promotes, among others, a higher fermentable sugar (glucose and fructose) content. 

This leads to wines with an alcoholic degree higher than desired. 

In this work, the main differences between red grape must nanofiltration at 

laboratory and pilot plant scale were studied in order to perform the scale-up of a 

nanofiltration process to reduce the sugar content. For this, previous results of the 

nanofiltration of commercial red must using the SR3 membrane in a flat sheet 

crossflow module were compared with those obtained for the filtration of natural red 

must using the same membrane in a spiral wound module at two different applied 

pressures. 

The aim of this publication is to analyze the main differences between red grape 

must nanofiltration at laboratory and at pilot plant scale.  

Results showed that the flow destabilization and eddy promotion caused by 

spacers in the spiral wound module mitigate the rate at which the cake thickens and 

compacts on the membrane surface. This causes a less sharp flux decrease, less 

variable sugars rejection and osmotic pressure difference. Moreover, higher applied 

pressure promotes a higher membrane fouling and osmotic pressure that worsen the 

flux decay.  

 

Keywords:  

Red grape must, Nanofiltration, Scale-up, Spiral wound module, sugar content 

reduction 
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5.1 Introduction 

 

Membrane processes are now widely considered as economical alternatives to 

conventional separation processes. Reverse osmosis (RO), nanofiltration (NF), 

ultrafiltration (UF) and microfiltration (MF) have become standard unit operations [1].  

Membranes can be presented in several configurations such as: spiral wound, 

hollow fibers, tubular and plate-and-frame modules. Amongst these, the hollow fiber 

and the spiral wound modules are the most commonly used, due to their high 

membrane area to volume ratio. Moreover, spiral wound modules are often preferred in 

industry because they offer a good balance between ease of operation, fouling control, 

permeation rate and packing density [1, 2].  

Some membrane processes have been used in winemaking for a long time. For 

example: cross-flow MF and UF to clarify white grape must [3], sugar concentration 

using NF [4] and RO [5] in musts. Reverse osmosis is also used to reduce alcohol in 

wines, unfortunately, RO membranes are permeable to both alcohol and water, and 

after the filtration it is necessary to add water to the dealcoholized wine which creates 

legal problems in some countries where the addition of water is forbidden by law [6].   

Furthermore, more recent research and development activities have focused on 

the application of membrane technologies for sugar control in grape musts in order to 

reduce the alcohol content of the resulting wines [6-8]. As a consequence of global 

warming, an early ripening of grapes has been detected in some regions that causes 

higher fermentable sugar (glucose and fructose) content, lower acidities and some 

modifications of the varietal aroma compounds. Fermentation of this must leads to 

alcoholic degrees higher than desired [9], as they may be too burning in the mouth and 

mask the fruity aromas and taste of wine. Premature grape harvest and winemaking 

should affect the final wine quality, leading to more acid and less colored wines, 

because the phenolic maturity would not be fully achieved [8]. Therefore, in order to 

produce a full flavored wine, the harvest should be carried out in the optimum ripeness 

of the fruits and then innovative techniques to control sugars in musts should be 

applied to keep the alcohol degree of the resulting wines within the desired range. 

Moreover moderated alcohol contents are becoming a trend in the consumers demand. 

If the molecular weight of sugars in must is taken into account, nanofiltration 

seems to be the most appropriate technique to control the concentration of glucose and 

fructose [7]. In their work, Garcia-Martin et al. studied the sugar reduction of 

fermentable sugars in musts such as glucose and fructose by a 2 stage nanofiltration 

process to obtain wines with a slight alcohol reduction [6, 8]. Their results showed that 

the mixture of the final permeate with the retentate or with untreated must in adequate 
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proportions reduced the alcohol content of the resulting wines by 2°. However, a slight 

loss of color and aroma intensity and a slender unbalancing of some important 

substances (i.e. potassium, malic and tartaric acid) were detected. Moreover, these 

experiments of must nanofiltration, showed that there are some problems specially 

related with the permeate flux decline.  

In our previous work [10], a method was proposed to study the influence of the 

different compounds present in red grape must on flux decline. Results showed that 

high molecular weight compounds (namely polyphenols, polysaccharides, proteins, etc) 

have more influence on the permeate flux decay since they are mainly responsible for 

the fouling phenomenon (cake filtration mechanism). While low molecular weight 

compounds (mainly glucose and fructose), contribute to the flux decay mostly through 

an increase of the osmotic pressure during the process. Aiming to select the most 

appropriate NF membrane for sugar control in grape must, further research was 

performed applying the same methodology mentioned in previous works [10]. In this 

work [11], the performance for must nanofiltration of 3 flat sheet NF membranes was 

compared: the NF270 (Dow Filmtec), HL (GE) and SR3 (Koch Membrane System). 

The results obtained showed that the HL and SR3 membranes were appropriate to 

reduce the content of sugar of red must. Specifically, the SR3 membrane showed the 

best passage of sugar and less fouling. Once the membrane is selected at a laboratory 

scale it is reasonable to analyze its performance at a higher scale using a spiral wound 

module. 

The major components of a spiral wound module are the membrane, the feed 

and permeate channels, spacers in the feed and permeate channels, the permeate 

tube and the membrane housing [1, 12]. The feed flow spacers, which usually consist 

in non-woven nearly cylindrical filaments, serve to separate adjacent leaves of the 

membrane and to create flow passages, but also to promote flow unsteadiness and 

therefore, to enhance mass transport. In this way, the undesirable fouling, 

concentration polarization and osmotic pressure on the membrane surface are 

mitigated [13]. The trade-off for a higher mass transfer rate is an increased pressure 

loss along the feed channel [1].  

The geometry of a spiral wound module is described by the number of leaves, 

NL, the leaf length, L, and leaf width, W, of each membrane leaf, the feed channel 

height, H, and permeate channel height, HP. The channels heights are defined by the 

feed and permeate spacer heights. The spacers themselves are characterized by the 

mesh size, lm (distance between filaments); filament thickness, d (d=H/2); the ratio of 

them (lm/d); orientation of the filaments, β; angle of the feed flow, θ; hydraulic diameter, 

dh, and voidage, ε, the volume of the voids divided by the overall volume [1, 14]. Figure 
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5.1 provides the top view of a spacer where the geometric characteristics can be 

appreciated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Geometric characteristics of a spacer; top view. 

 

The hydrodynamics in a spiral wound module is critically influenced by the 

presence of the spacer material. Since the height of the feed channel of the spiral 

wound module is very small (0.5–2 mm), the effect of its curvature on the flow can be 

neglected and hence the flow can be modeled assuming a thin rectangular channel 

filled with spacers [14]. The presence of spacer materials in the channel reduces the 

void volume and hydraulic diameter (dh) while raises the effective velocity (ϑeff). 

Furthermore, due to the small spacer height, the circulating velocity does not 

exceed 0.4 m/s and the pressure drop, recommended by manufacturers, should be 

between 0.4-0.7 bar. Therefore, the Reynolds number, defined on the basis of the 

average velocity and the spacer filament diameter, is less than 200 [13]. 

Due to the low feed flow rates, the role of feed spacers in mass transfer 

enhancement is of utmost importance [2].Several experimental works in plane- 

channels containing different periodic arrays of small-diameter cylinders (mimicking 

spacers) showed that the presence of them caused a flow destabilization [15-17]. In 

fact, it has been concluded [16] that this cylinders act as eddy promoters and their 

presence leads to the destabilization of the flow by essentially the same mechanism as 

in rectangular channels but at much lower Reynolds numbers (on the order of 

hundreds rather than thousands). In more recent studies, [13] the flow inside 
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rectangular channels with non-woven diamond-shaped spacers were studied using 

direct numerical simulation. The results revealed that, for the range of geometrical 

parameters examined, the transition Reynolds number occurs at relatively low values: 

Re= 35–45.  

According to other studies [14], spacer-filled channels exhibit significantly higher 

mass transfer rates compared to empty channels over the same range of Reynolds 

numbers. Further research on the influence of the geometry of the spacers on the 

Sherwood number [18] using numerical simulations and experimental data were 

performed developping dimensionless correlations for mass transfer coefficients of the 

usual form, m nSh a ScRe    for spacer each geometry. 

As mentioned, previous studies at laboratory scale have been performed for the 

application of nanofiltration in order to control the sugar content of red grape must to 

produce low alcohol wine [10, 11]. In the present work the scale-up of the selected 

nanofiltration process is performed as a continuation of the mentioned studies.  

The aim of the present publication is to analyze the main differences between 

red grape must nanofiltration at laboratory and at pilot plant scale using the same 

membrane. Specifically the fouling mechanisms, sugars rejection and osmotic pressure 

are compared. The analysis of these processes can be considered as the first stage of 

the optimization of the procedure for sugar reduction of must at a higher scale. 

For this purpose, the previous results obtained for the nanofiltration of 

commercial red must using the SR3 membrane in a flat sheet crossflow module [11] 

are compared with those obtained for the filtration of natural red must using the same 

membrane in a spiral wound module.  

Moreover, because in our previous studies [10, 11] the increase of the osmotic 

pressure was considered to be a limiting factor of the permeate flux, the study of the 

increase of the applied transmembrane pressure is relevant. Therefore the effect of the 

variation of the applied pressure in the performance of the spiral wound module will be 

also analyzed in order to continue with the optimization process.  

 

5.2 Theory 

 

5.2.1 The Spiral Wound Module  

 

5.2.1.1 Flow conditions in a Spiral Wound Module 

As already mentioned, the flow in a spiral wound module can be modeled 

assuming a thin plane channel filled with spacers, neglecting the effects of the 

curvature of the module.  
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The  overall voidage fraction (ε) can be evaluated by [14, 19] 

 

sp

t

V

V
1                              (1) 

 

where Vsp and Vt are the volume occupied by the spacer and the total channel volume 

respectively. 

Vsp and Vt can be calculated by 

 

sp mV d l20.5                               (2) 

 

t mV l H2                             (3) 

 

The effective area, Aeff, can be calculated from the leaf width (W), height (H) 

and porosity (ε) of the spacer as 

 

eff A W H                              (4) 

 

Therefore, the effective velocity in a spiral wound element can be calculated 

according to 
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where Q is the volumetric recirculation flow. 

For a spacer- filled flat channel the resulting expression for the hydraulic 

diameter, dh, is [14] 
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The specific surface area of the spacer (asp) is defined as the ratio between its 

surface area and its volume: 
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and Asp is defined as  

 

sp mA l d2· · ·                (8) 

 

5.2.1.2 Mass- transport in spacer-filled channels 

Estimates of the mass transfer coefficient in the presence of different spacers 

can be obtained [18] by using the appropriate correlation; that, for the spacer used in 

the present work, states that the Sherwood (Sh) number can be written in terms of the 

Reynolds (Re) and Schmidt (Sc) numbers as 

 

Sh Sc0.64 0.420.14 Re                            (9) 

 

The Sherwood, Schmidt and Reynolds numbers are defined as 

i f h

i i f

K d v d
Sh Sc

D D

m, h f

f

, , Re
 

 
                        (10) 

 

where, Km,i, and Di are the mass transfer and the diffusion coefficient of the i-th 

component respectively and ηf and ρf stand for the viscosity and density of the feed 

respectively. 

Taking into account that the membrane is semipermeable, the value of Km,i 

calculated using Eqs 9 and 10, that should be valid for an impenetrable wall, needs to 

be corrected to ,

s

m iK  according to [20]: 
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5.2.2 Permeate flux decrease 

 

When the overall filtration process is taken into account, the flux through the 

membrane per unit of membrane area can be written in terms of the applied 

transmembrane pressure, Δp, the osmotic pressure gradient, Δπ, the feed viscosity, ηf, 

and the system resistance, Rsys by [21-24] 
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v
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p π
J

R

 




                                (12) 

 

In filtration processes where the concentration of small and medium sized 

molecules increases, the flux decreases with time (or filtered volume). This decrease 

has been attributed to three fundamental factors: the increase of both osmotic pressure 

and viscosity of the solution that passes through the pores of the membrane and the 

evolution of the total resistance of the membrane system, Δπ, η, and Rsys respectively 

[25-27]. 

The overall system resistance, Rsys, is the sum of the membrane resistance, Rm, 

plus a series of terms that depend on the fouling caused by the solute and the 

membrane itself, Rf : 

 

 sys m fR R R
                (13) 

 

Assuming that the osmotic pressure follows the van’t Hoff’s law, the osmotic 

pressure difference generated by all components can be calculated as 
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here Mi is the molar weight, Cm,i the concentration on the membrane surface, CP,i  the 

permeate concentration of the i-th component, R the gas constant, and T the 

temperature. In order to use Eq 15, it is necessary to calculate the experimentally 

inaccessible concentration Cm,i. One of the methods to do this consists in the use of the 

Film Theory of concentration polarization. 

 

5.2.3 Concentration Polarization. Film theory 

 

This model is based on the use of the mass transfer coefficient, Km,i, in order to 

describe the solute transport in the membrane active layer [27, 28] as 

 

   v m iJ K
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here, Jv is the flux through the membrane defined by Eq 12; C0,i and Km,i are the feed 

concentration and the mass transfer coefficient of the i-th component respectively. The 

last one can be evaluated by Eqs 9, 10 and 11. 

 

5.2.4 Fouling mechanism. Cake Filtration 

 

The additional resistance attributed to fouling, Rf, has been related with 

phenomena such as concentration polarization, gelation, deposition, adsorption of 

solute molecules inside the pores or pore blocking when the pore size is similar to the 

molecular dimensions [29-33]. All these processes should influence in a more or less 

balanced equilibrium. They can be accounted by means of four theoretical kinetic 

models commonly used for systems showing flux decline [32, 34]: complete blocking, 

intermediate blocking, standard filtration and cake filtration models. 

In several previous experiments using different flat sheet membranes for grape 

must nanofiltration [10, 11], only the very first instants of filtration seemed to be 

described by an intermediate blocking mechanism. 

During, the second and longest step of must nanofiltration, flux decay follows 

the cake filtration mechanism [10]. According to this model, each particle locates on 

others already arrived and already blocking some pores and there is no room for a 

direct obstruction of any membrane area. In this case the fouling kinetic constant is kC 

(in s/m6) and can be  written as 
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P 0

1

2
 


              (17) 

 

The kinetic constant kc is twice the Membrane Fouling Index (MFI) [35] that is 

defined as the slope of the plot of t/VP versus VP. 

According to several studies [36-39] on fouling of nanofiltration membranes, the 

cake layer formed on the membrane surface may be compressible and become more 

compact and dense after a certain period of filtration time or due to an increase of the 

applied pressure. In fact, another work described that a third mechanism may occur 

during the flux decline, the so called “cake filtration with compression model” [35].  

 

5.2.5 Retention model 

 

The efficiency of a membrane is determined by its true retention, R. This 

coefficient is defined as 
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for the i-th component present as solute in the feed. Cm,i is the concentration of the i-th 

component on the membrane surface (membrane active layer) and Cp,i the permeate 

concentration of the i-th component. 

 

5.3 Materials and Methods 

 

5.3.1 Membrane and Experimental Set-up 

 

The experimental set-up used for must filtrations was similar to the one 

described in a previous work [10] for the laboratory scale experiments using a flat sheet 

cross flow module. The main difference, with the scheme presented there, is that the 

present experiments were performed in a pilot plant scale unit with a spiral wound 

module of nanofiltration. Briefly, it consists in a feed vessel, with a cryogenic unit to 

assure that the feed´s temperature is kept at 16 ºC. The feed is extracted from the 

thermostated reservoir by means of a regulatable piston membrane pump Hydra – Cell 

G03. Two pressure transducers are placed before and after the spiral wound module to 

measure the inlet and outlet pressure. In order to adjust manually the pressure inside 

the module a needle valve is placed at the exit of the unit. Cross flow is adjusted 

through this valve and the speed control of the pump. The retentate flow rate is 

measured with a flowmeter ranging from 0 to 10 L/min. In order to decrease the 

retentate temperature a heat exchanger was placed before its return to the feed vessel. 

The permeate flux was monitored using a three-tube flow system with flow capacity 

from 0 to 10 L/min. 

The membrane used for the nanofiltrations was a KMS SR3 (reference 3839 

SR3- NYV), made and commercialized by Koch Membrane Systems. The main 

characteristics of the membrane and the spiral wound module are shown in Tables 5.1 

and 5.2 respectively. The spacer porosity was assumed to be that determined by 

Vrouwenvelder, et al. [40] in their work using a diamond- shaped spacer with the same 

height as the SR3 (H = 0.787•10-3 m). 
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Table 5.1. Nominal data of the SR3 membrane. 

MWCO 

(Da)a 

Lactose 

Rejection 

(%)a 

pH 

rang

e 

Max. 

Pressure 

(105 Pa) 

Max. 

Temperature 

(ºC) 

200 99.900 3-10 41.400 50.000 
a
5% Lactose at 1380 kPa 

 

Table 5.2. Main characteristics of the SR3 membrane and 3839 SR3-NYV Spiral Wound 

Module 

Active 

membrane 

Area 

Am (m2)a 

Module 

Length 

L (m)a 

Module 

diameter 

(m) a 

Leaf with W 

(m)b 

Feed 

spacer 

height 

H (10-3m) a 

Feed 

spacer 

porosityc 

ε 

7.061 0.984 0.096 3.608 0.787 0.850 
a
 Provided by the manufacturer 

b
 Own determination 

c 
[40] 

 

As mentioned, prior to the selection of the SR3 membrane, different 

nanofiltration membranes in flat sheet configuration were tested using a commercial 

red must and a synthetic solution containing the main low molecular weight compounds 

typically found in red must. Results showed that, among the membranes studied, the 

SR3 presented an appropriate passage of sugars and less fouling [11].  

 

5.3.2 Must 

 

Tempranillo red grapes from D.O. Rueda were transported to the experimental 

winery of the Enological Station of Castilla y Leon (Rueda) in plastic boxes of 15 kg. 

After the reception, grapes were de-stemmed and crushed and sulfite was added (60 

mg/L of SO2). The must was obtained by drawing off, without press. Pectinolytic 

enzymes (10mg/L of Novoclear Speed, Lamothe Abiet, France) were added to 

enhance first clarification. After that, must was filtered through 0.8 μm cellulose plate 

filters in order to prevent sudden membrane fouling and to make nanofiltration easier. 

In this way natural must clarity is similar to that of the commercial must used in the 

previous experiments with the flat sheet cross flow module.  

The main oenological parameters of the red must before the filtration process 

are shown in Table 5.3. 
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Table 5.3. Oenological parameters of the natural red musts before and after the nanofiltration 

process.  

Red 

grape 

must 

Glucose 

(g/L) 

Fructose 

(g/L) 

TH2 

(g/L) 

MH2 

(g/L) 

K 

(mg/L) 
pH 

Total 

acidity 

(g/L) 

Total 

SO2 

(g/L) 

Original 

must 
94.49 97.51 4.82 2.64 930 3.21 5.70 60 

Permeate 

3100 kPa 
25.56 25.91 2.92 2.37 660 3.10 4.18 21 

Retentate 

3100 kPa 
134.74 139.70 4.33 2.55 1050 3.41 4.72 65 

Permeate 

3300 kPa 
23.35 23.76 3.58 2.57 790 3.16 5.01 24 

Retentate 

3300 kPa 
130.14 134.16 4.18 2.36 900 3.28 5.27 68 

MH2= malic acid; TH2= tartaric acid; K= potassium;  

 

5.3.3 Procedure 

 

Prior to the initial use of the brand new spiral wound module, a cleaning 

procedure was performed according to the manufacturer’s recommendations in order 

to remove the preservative solution. Afterwards, to avoid any irreversible change during 

operation, the membrane was conditioned by pressurization at the highest pressure to 

be used for a sufficient period of time. In this case, the SR3 was pressurized filtering 

water at a pressure of 3300 kPa with a recirculation flow of 9 L/min during one hour. 

After this, water permeability was measured. This parameter was determined before 

and after every filtration and cleaning cycle. 

Filtrations were performed in a batch system. The permeate was sent to the 

thermostated permeate vessel in order to collect it and the retentate was recirculated to 

the thermostated feed vessel. 

In order to analyze the influence of the applied transmembrane pressure two 

filtrations were performed the first at 3100 kPa and the second one at 3300 kPa. These 

two single and close values do not constitute a study of filtration versus pressure but 

rather have been chosen to show how increasing pressure without providing extra cake 

disruption media would have detrimental side effects: increasing fouling, worsening flux 

decay, and increasing osmotic pressure as will be shown below. The rest of the 

operating conditions for both filtrations were: a feed temperature of 16 ºC and a 

recirculation flow of 9 L/min, which according to Eq 5 and the spacers dimensions 

(Table 5.2) corresponds to an effective velocity of 6.27·10-2 m/s. Between filtrations, 
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only one cleaning step was performed, which consisted in a flush cycle with soft water 

at a recirculation flow of 9 L/min and low pressure using a minimum of three times the 

system hold–up volume and sending retentate and permeate to the drain. 

The permeate flux was determined by measuring the flow, firstly every 15 

minutes and then, when the permeate flux became less variable, every 45 minutes. 

Simultaneously, samples of permeate and retentate were taken in order to determine 

their content of glucose and fructose by liquid chromatography (HPLC).  

The volumes filtered where of the order of 35L of natural red must. Filtrations 

were performed until the flux decreased to a more or less constant value during a 

reasonable period of time. 

Results of both filtrations were compared with those obtained previously using 

the same membrane in a flat sheet cross flow module [11]. 

 

5.3.4 Analytical methods 

 

Musts were analyzed before and after filtrations according to the methods 

summarized in Table 5.4. With the exception of sugars, malic and tartaric acid, the 

oenological parameters analyzed were determined according to the Organisation 

Internationale de la Vigne et du Vin (OIV) methods [41].  

 

Table 5.4. Summary of the methods used for the determination of some oenological parameters 

of musts. 

Parameter Method 

Glucose and Fructose HPLC 

Tartaric and Malic Acid HPLC 

pH pH- meter 

Total acidity Acid- base titration 

Total SO2 Iodometry 

Potassium Atomic absorption spectroscopy 

 

According also with the recommendations of OIV [41], potassium was 

measured by atomic absorption spectrophotometry using an atomic absorption 

spectrophotometer from Corning, model FP 410, equipped with an air-acetylene 

burner. 

The chromatographic system used consisted in; an HPLC apparatus, with a 

Refractive Index detector, Waters 2414; an isocratic pump Waters 1515; the Waters 

1707 Autosampler; a thermostated column compartment and a control unit 
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commanded by the Breeze 2 software. In order to improve the resolution and precision, 

the samples were diluted 1:10 (V/V) with deionized water and then 20μL of each were 

injected in the HPLC system. A Supelco Supelcogel Pb column, and guard column, 

were used for the sugars (glucose and fructose) separation and a Shodex DE-413 

column, and guard column, for malic and tartaric acids detection. 

 

5.4 Results and Discussion 

 

5.4.1 Permeate flux evolution 

 

As mentioned, water permeability (Lp) was determined before and after the 

filtrations and cleaning procedure. This parameter was calculated as the slope of the 

plot of Jv versus Δp by measuring the permeability of the membrane to Milli–Q water at 

different transmembrane pressures and at 20 ºC. The initial and final membrane 

resistances, Rm, were calculated from Lp data according to Eqs. 12 and 13 when Rf =0 

and ΔΠ =0. Results are presented in Table 5.5. It is shown that after the first red must 

filtration and rinsing, the water permeability was reduced since the recovery was only 

58.3% from the original value. After the cleaning procedure, there is a slight 

permeability recovery without reaching its original value (66% of the permeability of the 

brand new membrane). This permanent loss of permeability is attributed to the 

inevitable and irreversible fouling of the membrane system due to the adsorption of 

substances on the membrane surface or inside the pores. 

 

Table 5.5 Hydraulic permeability and membrane resistance, both initially and after filtration and 

cleaning procedure 

Process 
Water Permeability 

Lp (10-11m/Pa·s) 

Membrane Resistance 

Rm (1013 m-1) 

Before filtration 1.35 7.37 

After red must rinse 

(soft water flush cycle) 
0.79 12.65 

After manufacturers 

cleaning procedure 
0.89 11.16 

 

The evolution of permeate flux with natural red must as a function of time at 

both transmembrane pressures is presented in Figure 5.2a. As also observed in 

previous studies with a SR3 flat sheet module [11], both filtrations throughout the spiral 

wound module follow a typical flux decline kinetic: at the beginning there is a 
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remarkable decrease of flow followed by a less-sharp progressive decay which can be 

assumed to tend to zero. As expected, higher initial fluxes were measured at the 

beginning of the filtration at 3300 kPa. But this process presented a faster flux 

decrease and reached lower values than the one at 3100 kPa. This difference can be 

attributed to the fact that a higher driving force (transmembrane pressure) accelerates 

the cake formation on the membrane surface and promotes a higher compaction of it. 

This issue will be discussed in more detail in section 5.4.4.  Besides, it has to be taken 

into account that the first filtration was performed with the brand new membrane, 

which, as already mentioned, presented less initial fouling. Figure 5.2b shows the 

comparison of the normalized flux decay using the spiral wound module and the flat 

sheet membrane module. Even though the later was performed at a higher tangential 

velocity (2.78 m/s) [11], it is clear that the flat sheet cross flow module reached lower 

permeate fluxes in a shorter period of time. This issue can be attributed to a faster cake 

formation and compaction not only due to the higher applied pressure (3500 kPa) but 

to the absence of spacers that, as already mentioned, mitigate fouling mechanisms.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Permeate flux time evolution of red must: a) for the spiral wound module (SWM) at 

3100 kPa and at 3300 kPa; b) normalized for the SWM at 3100 kPa and at 3300 kPa and for the 

flat sheet module  (FSM) at 3500 kPa as a comparison. 

 

5.4.2 Efficiency of the spiral wound module 

  

5.4.2.1 Analysis of the filtrated musts 

Recalling that the aim of the present study is the analysis of the performance of 

the SR3 spiral wound module for sugar control in grape must, it is essential to analyze 

the main characteristics of the obtained musts. Therefore, the concentrations of the 

resultant permeate and retentate were analyzed. Results presented in Table 5.3 clearly 

show a high reduction of total sugar content of permeates (about 73%) and an increase 
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in retentates. These variations are not so significant for the rest of compounds. 

Furthermore, if the purpose of filtration is to reduce the alcohol content of the final wine, 

the permeate has to be mixed with untreated must or with the retentate in adequate 

proportions before its fermentation. In this way, the reconstructed must will be 

chemically very similar to the original one but with a lower sugar content and the 

variation of the other compounds will be insignificant. 

 

5.4.2.2 Sugars rejection 

Sugar concentration measurements for the permeate and retentate allow the 

determination of the membrane efficiency by calculating the time evolution of the true 

retention of each sugar, Ri. True retentions of glucose and fructose have been 

evaluated according to Eq 18 and using the equations of mass transport and Film 

Theory (Eqs 9 to 11 and 15 respectively). For the density, ρf, of red must a correlation 

between density and its sugar content (ºBrix) was taken from the literature [42]. In the 

case of red must, the viscosity, ηf, values used were obtained by a correlation versus 

concentration (°Brix) [43]. 

The corresponding results are shown in Figure 5.3a. It can be noted that there 

is an almost linear slight decrease of retention of both, glucose and fructose. This true 

retention time evolution differs from the results obtained in previous experiments using 

the flat sheet module procedure, where a progressive increase of this parameter was 

observed [11]. A comparison of the rejection of sugars for both the modules is depicted 

in Figure 5.3b, note that the permeate volume is normalized by the feed volume, V0, of 

each filtration. Although it was expected that both systems presented similar initial 

rejections, it can be appreciated that the flat sheet module system has lower initial 

retentions (0.181 for glucose and 0.185 for fructose) which increase progressively 

exceeding the values observed at the beginning of the filtration using the spiral wound 

module system.  

Apparently, the spiral wound module retention is stabilized faster due to an 

almost instantaneous initial fouling mechanism. Moreover, during the study of the 

individual effects of low and high molecular weight compounds on the nanofiltration of 

grape must using a flat sheet membrane, the significant increase of the retention of 

sugars was also observed in the presence of high molecular weight compounds. This 

feature was mainly attributed to the formation of the cake layer on the membrane 

surface that acts as a pseudo-membrane which lowers even more the passage of 

sugars through the membrane by changing both: permeability and selectivity of the 

overall membrane [10]. Taking into account that the effective velocity in the spiral 

wound module was much lower than in the flat sheet module (6.27·10-2 ms-1 and 2.78 
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ms-1 respectively), it is possible that the formation of this pseudo–membrane occurs 

almost instantly due to the lower shear stress that enables a faster deposition of 

foulants on the membrane surface. Furthermore, in the flat sheet module the 

progressive increase of Ri would be caused by the thickening of the cake layer on the 

membrane surface which could not be avoided by the higher shear stress. This 

corroborates that the presence of feed spacers in the spiral wound module creates 

local flow structures that periodically disrupt the concentration boundary layers avoiding 

the thickening of the pseudo – membrane, that is an increase in Ri. Therefore, the 

slight decrease of the spiral wound module retention could be explained by the 

increase of sugars concentration on the retentate side that finally crosses the 

membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 True glucose (Glu) and fructose (Fru) retentions: a) as a function of permeate 

volume (VP) for the spiral wound module (SWM) at 3100 kPa and at 3300 kPa; b) as a function 

of the normalized volume for the SWM at 3300 kPa and for the flat sheet module (FSM) at 3500 

kPa as a comparison. 

 

All in all, the less variable rejection observed using the spiral wound module is 

more appropriate for the aim of this study (sugar reduction of red must) because it 

leads to a low sugar content of the permeate from the beginning of the filtration. 

Furthermore, Jv is higher and therefore more VP with the appropriate sugars 

concentration is collected. 

 

5.4.3 Resistance to the permeate flux 

 

The resistance to permeate flux due to fouling, Rf, was determined according to 

Eqs. 12 and 13, assuming that Rm increases linearly with time [10]. Figure 5.4 shows 
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the results obtained as a function of the filtration time. Here, it can be noticed that there 

is a slight difference between both the applied pressures. During the filtration at 3100 

kPa, Rf increases progressively until reaching a maximum, beyond which there is a 

slight decrease and possible stabilization. A similar evolution of Rf was observed during 

the filtration using the SR3 flat sheet module [11]. At 3300 kPa, this parameter grows 

continuously reaching higher values and no decay is observed. As reported in previous 

studies [10, 44], a reduction in the resistance due to the cake formation can be caused 

by an increase of the osmotic pressure. For this purpose it has to be considered that 

the overall pressure drop (applied transmembrane pressure Δp) at any time is the sum 

of pressure drops through the membrane, Δpm, and cake, Δpc, plus the osmotic 

pressure, Δπ. Besides when the cake has an appreciable thickness, Δpm is small in 

comparison with Δpc. So, a reduction in the effective pressure across the total 

membrane system could be due to a reduction of the cake pressure drop, Δpc (and so 

in Rf) that may occur due to an increase in osmotic pressure. 

Therefore, it was logic to expect a decrease in resistance for lower 

transmembrane pressures. Moreover, a higher applied pressure may cause the 

formation of a more compact cake layer on the membrane surface contributing also to 

higher values of Rf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Time evolution of the resistance to the permeate flux due to fouling (Rf) for the spiral 

wound module (SWM) at 3100 kPa and at 3300 kPa. 
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In order to analyze the influence of the osmotic pressure, the values calculated 

according to Eq 14 were plotted as a function of the total sugars content of the 

retentante (CRT) in Figure 5.5. In this case, no significant osmotic pressure variation 

can be appreciated. On the contrary, in studies using flat sheet modules, it was 

observed that this parameter increased remarkably during filtration [10, 11] reaching 

higher values than in the spiral wound module. The values obtained for the SR3 flat 

sheet module are presented in Figure 5.5 for the sake of comparison. This shows that, 

as mentioned in 5.4.2.2, spacers increase shear rates, and mass transfer. Therefore, 

phenomena such as fouling, concentration polarization and osmotic pressure on the 

membrane surface are mitigated in the long term, and so the thickening of the cake 

layer is limited. This promotes more stable sugar retention and osmotic pressure 

difference. By contrast, in the flat sheet membrane filtration, the absence of local flow 

structures causes the progressive thickening of the cake layer, and consequently less 

constant osmotic pressure and sugar rejection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Osmotic pressure difference as a function of the total sugars content of the 

retentante (CRT) for the spiral wound module (SWM) at 3100 kPa and at 3300 kPa and for the 

flat sheet module (FSM).  
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5.4.4 Fouling mechanism 

 

A description of the flux decline presented in Figure 5.2 can be performed in 

terms of the outlined fouling mechanisms. The fitting of the experimental data to the 

cake filtration mechanism (Eq 17) is plotted in Figure 5.6. It is observed that for both 

filtrations the cake filtration model satisfactorily describes the experimental data for 

almost the entire filtration period and seems to be divided in two regions, the so called: 

cake formation and cake formation with compaction [35]. Similar results were obtained 

during the filtration of red must using the flat sheet module [11]. As mentioned 

elsewhere [10], during the first minutes of must filtration (or the first 1.5·10-3 m3 of 

permeated volume) other fouling mechanism as the intermediate blocking could be 

expected to play a dominant role, but in the present case the process is so fast that any 

other mechanism rather than cake couldn’t be appreciated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 (t/VP) vs VP fitted to the cake filtration model for the spiral wound module (SWM) at 

3100 kPa and at 3300 kPa. The kinetic constants: kc1 and kc2, for both filtrations, correspond to 

the slope of the region of cake formation and cake formation with compaction respectively 

 

In order to compare the cake formation kinetic constants (kc1 and kc2) of both 

filtrations along the complete experiments, the slope of each region in the plot (t/VP) 

versus VP (Figure 5.6) was obtained. Results are presented in Table 5.6, where it is 



Section III: Chapter 5 

163 

apparent that the filtration performed at 3300 kPa presented a higher slope that is 

higher cake formation kinetic constants in both regions (kc1 and kc2). This agrees with 

the flux decline analyzed in section 5.4.1 where even though filtration at 3300 kPa 

presented a higher initial flux it also reached lower values. Therefore it may be said that 

the initial flux has a clear effect on the rate of fouling since it affects the rate at which 

fouling species are brought to the membrane surface. Furthermore, high initial fluxes 

increase cake compaction and consequently the resistance to the permeate flux (Rf) as 

mentioned in section 5.4.3. This agrees with the results presented in other studies of 

the influence of initial flux on membrane fouling [38]. There they concluded that the 

greater the initial rate, the more severe the fouling of the membrane. 

Aiming to analyze the differences of the fouling mechanism between both 

modules, the results of the cake formation kinetic constants (kc1 and kc2) obtained in 

previous experiments [11] for the flat sheet module are presented in Table 5.6. It is 

clear that kc1 and kc2 are around 1000 times higher for the flat sheet module. This 

agrees with the fact that a higher driving force (applied pressure) promotes the rate of 

fouling and cake compaction. This also corroborates the analysis made in the previous 

sections 5.4.2.2 and 5.4.3. Even though the formation of the pseudo–membrane is 

faster in the spiral wound module, the flow destabilization and eddy promotion caused 

by the spacers mitigates the rate at which the cake thickens on the membrane surface.  

 

Table 5.6 Cake formation kinetic constants of both cake filtration mechanism regions for the 

spiral wound module and flat sheet module. Values were obtained as the slope of the plot t/VP 

vs VP for each region in the 3 filtration processes. 

Module 
Applied pressure 

Δp (kPa) 

kc1 

(sm-6) 

kc2 

(sm-6) 

Spiral wound 3100 8.902 107 1.718 108 

Spiral wound 3300 1.374 108 2.847 108 

Flat sheeta 3500 1.475 1011 8.422 1011 

a
[11] 

 

5.5 Conclusions 

 

The comparison of the performance of both modules allowed the analysis of the 

influence of feed spacers on fouling mechanism, time evolution of sugar retention and 

osmotic pressure during must nanofiltration.  

Even though the formation of the pseudo – membrane is faster in the spiral 

wound module, probably due to a lower tangential velocity, the flow destabilization and 
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eddy promotion caused by the spacers mitigates the rate at which the cake thickens 

and compacts on the membrane surface. The latter causes a less-sharp Jv decrease 

with more appropriate almost constant sugars rejection and small osmotic pressure 

differences.  

Since the latter features were obtained at a lower recirculation flow than with the 

flat sheet module, it can be concluded that the spiral wound module is more energy 

efficient too.  

The results obtained for the filtrations performed with the spiral wound module 

show that a higher applied pressure promotes cake formation and compaction and 

therefore a higher fouling resistance and osmotic pressure that worsen the decrease of 

Jv. The optimization of the system wouldn’t consist in a simple increase of the applied 

transmembrane pressure but in promoting higher shear stress (presumably with a 

higher effective velocity)on the membrane surface combined with higher driving force 

(applied pressure). Thus, Jv would be increased and polarization would be mitigated 

decreasing also the resistance toward mass transport (i.e. osmotic pressure and 

fouling). 
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5.7 Nomenclature 

 

Roman 

Aeff  Effective area (m2) 

Am  Membrane active area (m2) 

asp  Specific surface area of the spacer 

Asp  Surface area of the spacer (m2) 

C0,i  Feed concentration of the i-th component (kg m-3)   

Cm,i  Concentration of the i-th component on the membrane active layer 

  (kg m-3)  

Cp,i  Permeate concentration of the i-th component (kg m-3) 

CRT   Total sugar concentration (glucose and fructose) of the retentate (kg m-3) 

d  Filament thickness (m) 

dh  Hydraulic diameter of the channel (m) 

Di  Diffusion coefficient of the i-th component (m2 s-1) 

H  Feed channel height (m) 

Jv  Permeate flux per unit of area through the membrane (m3 m-2 s-1) 

Jv0   Permeate flux per unit of area through the membrane at time t =0  

  (m3 m-2 s-1) 

k  General kinetic constant for the fouling models (s-1)  

kc  Kinetic constant for the cake model (s m-6) 

Km,i  Mass transfer coefficient (m s-1) of the i-th component at impermeable 

membranes (m s-1) 

Ks
m,i  Mass transfer coefficient of the i-th component at semipermeable  

  membranes (m s-1) 

L  Leaf length (m) 

lm  Mesh size (m) 

Lp  Water permeability (m Pa-1 s-1)  

Mi  Molar weight of the i-th component (kg mol-1) 

n  Dimensionless exponent which depends of the fouling model 

Q  Volumetric recirculation flow (m3 s-1) 

R  ideal gas constant (1.987·10-3 kcal mol-1 K-1) 

Re  Reynolds number  

Rf  Resistance due to fouling (m-1) 

Ri  Membranes true retention for the i-th component 

Rm  Membrane resistance (m-1) 

RSys  System resistance (m-1) 
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Sc  Schmidt number 

Sh   Sherwood number 

T  Absolute temperature (K) 

V0   Initial volume of grape must (m3) 

VP  Permeate volume (m3) 

Vsp   Volume occupied by the spacer (m3) 

Vt   Volume of the total (empty) channel (m3) 

W   Leaf width (m) 

 

Greek 

β  Angle between crossing filaments 

Δp  Applied transmembrane pressure (Pa) 

Δpc  Pressure drop across the cake (Pa) 

Δpm  Pressure drop across the membrane (Pa) 

Δπ  Osmotic pressure gradient (Pa) 

ε  Feed spacer porosity 

η  Viscosity of the solution that passes through the membrane (Pa s) 

ηf   Feed viscosity (Pa s) 

ηp  Viscosity inside the membrane pore (Pa s) 

θ  Angle of the feed flow 

ϑeff  Effective velocity (m s-1) 

ρf  Feed density (kg m-3) 
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Chapter 6. Alcohol reduction in red and white wines by nanofiltration of musts 

before fermentation 

 

Abstract 

A consequence of global warming is the early ripening of grapes which 

promotes, among others, a higher fermentable sugar (glucose and fructose) content. 

This leads to wines with an alcoholic degree higher than desired. 

In this work, the main differences between red grape must nanofiltration at 

laboratory and pilot plant scale were studied in order to perform the scale-up of a 

nanofiltration process to reduce the sugar content. For this, previous results of the 

nanofiltration of commercial red must using the SR3 membrane in a flat sheet 

crossflow module were compared with those obtained for the filtration of natural red 

must using the same membrane in a spiral wound module at two different applied 

pressures. 

The aim of this publication is to analyze the main differences between red grape 

must nanofiltration at laboratory and at pilot plant scale.  

Results showed that the flow destabilization and eddy promotion caused by 

spacers in the spiral wound module mitigate the rate at which the cake thickens and 

compacts on the membrane surface. This causes a less sharp flux decrease, less 

variable sugars rejection and osmotic pressure difference. Moreover, higher applied 

pressure promotes a higher membrane fouling and osmotic pressure that worsen the 

flux decay.  

 

Keywords:  

Red grape must, Nanofiltration, Scale-up, Spiral wound module, Sugar content 

reduction 
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6.1 Introduction 

 

Over the last years, due to global warming, observations from various world 

winemaking regions have provided evidence of modified vine development and fruit 

maturation patterns. Among the most important climate change-related effects there is 

an increased grape sugar concentration that leads to high wine alcohol levels, lower 

acidities and modification of varietal aroma compounds [1]. Premature grape harvest 

and winemaking should affect the final wine quality, because the acidic and phenolic 

maturity should not be fully achieved [2] leading to more acid and less colored wines. A 

commendable oenological practice establishes that the quality of wines depends 

essentially on the maturity of phenolic components contained in the grape berries. 

Since phenolic maturity is directly linked to a high sugar concentration, grapes are 

being picked having high potential alcohol content, up to 17%, with low acidity [3].  

But in some countries, as USA, wine producers have to struggle with a 

supplementary tax added to beverages with alcohol content over 14.5%. Moreover, this 

over maturity leads to difficulties in wine making as some difficulties appear in alcoholic 

fermentation and in microbiological stabilization. It also causes a gustatory 

disequilibrium since the strengthening of warm sensation in the mouth could mask the 

fruity aromas and taste of wine. Meanwhile, consumers show preference and demand 

wines with less alcohol content (between 9 and 13%), tendency reinforced by the new 

social trends of limiting alcohol consumption [3-5].  

Therefore, in order to produce a full flavored wine, the harvest should be carried 

out in the optimum ripeness of the fruits and then innovative techniques to control 

sugars in musts should be applied.  

In order to use a mild and highly specific technology, membranes are a good 

election. Recently, the OIV introduced in the “International Code of Oenological 

practices” the application of membrane techniques for the treatment of musts and wine 

in order to enable the selective holding back or passing of some compounds [6].  

If the molecular weight of sugars in must is taken into account, nanofiltration 

(NF) seems to be the most appropriate technique to control their concentration [7]. In 

our previous work [8], several experiments were performed aiming to select the most 

appropriate NF membrane for sugar control in grape must. Here, the performance on 

must NF of 3 flat sheet membranes was compared: NF270 (Dow Filmtec), HL (GE) and 

SR3 (Koch Membrane System). The results obtained showed that the HL and SR3 

membranes were the most appropriate to reduce the content of sugar of red must. 

Specifically SR3 showed the best passage of sugar and less fouling. As a continuation 
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of the mentioned study, the SR3 membrane was successfully used for sugar control in 

grape must at a higher scale using a spiral wound module (SWM) [9].  

The scope of the present study is to select the most appropriate NF technique to 

reduce the alcohol content of wines approximately 2 degrees by controlling the sugar 

content of the grape must before its fermentation. For that purpose the performance of 

single- stage and two-stage NF processes using a SWM unit were compared. This was 

tested by treating musts coming from two Spanish varieties of grapes, a white one 

(Verdejo) and a red one (Garnacha). 

 

6.2 Theory 

 

When the overall filtration process is taken into account, the permeate flux per 

unit of membrane area can be written in terms of the applied transmembrane pressure, 

Δp, the osmotic pressure gradient, Δπ, the viscosity of the solution, η, and the system 

resistance. This is the sum of the membrane resistance, Rm, plus a series of terms that 

depend on the fouling caused by the solute and the membrane itself, Rf [10-13]. Thus 

the permeate flux can be written as 

 v
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The efficiency of a membrane is determined by its true retention, R, which is 

defined as 
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for the i-th component present as solute in the feed. Here Cm,i is the concentration of 

the i-th component on the membrane active layer and Cp,i the permeate concentration 

of the i-th component. One of the methods to calculate the experimentally inaccessible 

concentration Cm,i. is the use of the Film Theory of concentration polarization. This 

model is based on the use of the mass transfer coefficient, Km,i, in order to describe the 

solute transport in the membrane active layer [14, 15] as 
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here, Jv is the flux through the membrane; C0,i and Km,i are the feed concentration and 

the mass transfer coefficient of the i-th component respectively.  

The hydrodynamics and mass transport in a spiral wound module are critically 

influenced by the presence of the spacer material in the feed channel. The appropriate 

equations for the spiral wound unit and used in the present study have been explained 

in detail in our previous work [9] and according to it Km,I can be evaluated as [16-18] 

 

   m i i h eff f fK xD xd x x x0.58 0.36 0.64 0.22 0.22

, 0.14                                                                      (4) 

 

where Di is the diffusion coefficient of the i-th component, dh and υeff are the hydraulic 

diameter and the effective velocity characteristic of the feed channel respectively, and 

ηf and ρf stand for the viscosity and density of the feed respectively. 

Taking into account that the membrane is semipermeable, the Km,i calculated 

using Eq. 4, that should be valid for an impenetrable wall, need to be corrected to ,

s

m iK  

according to Geraldes and Afonso [19]: 
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6.3 Materials and Methods 

 

6.3.1 Membrane and experimental set-up 

 

Grape must filtrations were performed in a pilot plant scale unit with a NF SWM. 

The experimental set-up used is shown in Figure 6.1. 

It consists in a feed vessel, with a cryogenic unit to assure that the feed´s 

temperature is kept at 16 ºC. The feed is extracted from the thermostated reservoir by 

means of a regulatable piston pump Hydra–Cell G03. Two pressure transducers are 

placed before and after the SWM to measure the inlet and outlet pressure. In order to 

adjust manually the pressure inside the module a needle valve is placed at the exit of 

the unit. Cross flow is adjusted through this valve and the speed control of the pump. 

The retentate flow rate is measured with a flowmeter ranging from 0 to 10 L/min. In 

order to decrease the retentate temperature a heat exchanger was placed before its 

return to the feed vessel. The permeate flux was monitored using a three-tube flow 

system with flow capacity from 0 to 10 L/min. 
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Figure 6.1. Scheme of the experimental device used in the Nanofiltration processes 

 

The membrane used for NF was a KMS SR3 (reference 3839 SR3- NYV), made 

and commercialized by Koch Membrane Systems. As mentioned, the selection of the 

SR3 membrane was based on previous experiments testing different nanofiltration 

membranes in flat sheet configuration using commercial musts [8]. The main 

characteristics of the membrane and SWM have already been exposed in our previous 

study [9], they are summarized in the supplementary material (see Table S6.1). 

 

6.3.2 Grape musts 

 

Two different grape must varieties were used, one white and one red, called 

Verdejo and Garnacha respectively. Both varieties were cultivated in the experimental 

vineyard of the Agriculture Technology Institute of Castilla y León (experimental field of 

Zamadueñas, Valladolid, Spain) from 2012 vintage. Both, grapes, white and red, were 

transported in plastic boxes of 15 kg to the experimental wine cellar of the Agricultural 

Engineering School (University of Valladolid, Palencia, Spain), where the musts were 

elaborated. 

 

Garnacha red must 

After the reception, about 100 kg of Garnacha grapes were destemmed and 

crushed and potassium metabisulphite was added (80 mg/L of SO2) in order to prevent 

oxidation or spoilage caused by bacteria. The must was obtained by drawing off, 

without press. In this case, the solid parts (crushed mass which consist of the grape 

skins, seeds, remaining must and so forth), were cold-stored at 4 ºC in airtight plastic 

boxes for ulterior addition to musts for the fermentation after nanofiltration. The must 
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was filtered first through 3 μm and then through 0.8 μm cellulose filter plates in order to 

prevent fast membrane clogging and to make the nanofiltration easier. 

 

Verdejo white must 

In this case, nearly 200 kg of Verdejo grapes were destemmed, crushed, 

sulphited and pressed to obtain the respective must. Potassium metabisulphite was 

added (80 mg/L of SO2) with the same purpose as for red must. Pectolytic enzymes (10 

mg/L of Enozym Altair, Agrovin) were added to enhance first clarification. 

The cleared must was filtered through 0.8 μm cellulose filter plates in order 

prevent ulterior membrane fouling and thereby facilitating the nanofiltering process.  

The main oenological parameters of the pre-filtered red and white must before 

the nanofiltration process are given in the first column (as control must) of the Tables 

6.2 and6.3, respectively.  

The portions of the musts that were going to be nanofiltered were transported in 

35 L stainless steel vessels to the Laboratory of Membrane Processes of the Faculty of 

Science (University of Valladolid, Valladolid, Spain). The remaining volumes of musts 

were cold-stored at 4 ºC in airtight vessels and kept as control musts in the cold 

chamber of the Agricultural Engineering College (University of Valladolid, Palencia, 

Spain). 

 

6.3.3 Procedure 

 

In order to select the most appropriate nanofiltration process for sugar reduction 

in musts, different techniques were studied. In the case of the white must, two 

nanofiltrations were carried out: a single-stage method and a two- stage one. For the 

red must a two-stage nanofiltration was analyzed. 

Before using the SR3 module, it had to be conditioned following successive 

cleaning steps to enhance its performance (refer to Fig. S6.1 of the supplementary 

material for more detail).  

All must filtrations were carried out in a batch concentration mode. Permeate 

was sent to the thermostated permeate vessel in order to collect it and the retentate 

was recirculated to the thermostated feed vessel. 

Between filtrations, membrane setting was carried out and water permeability 

was determined.  

After all filtration processes, a cleaning procedure, according to manufacturer’s 

instructions (refer to Fig. S6.2 of the supplementary material), was carried out and the 

final water permeability of the membrane was determined.  
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6.3.3.1 Two-stage Nanofiltrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Scheme of the procedure carried out for the Garnacha red must two-stage 

Nanofiltration and ulterior fermentations 

 

25 L of must (red and white) were treated in a double nanofiltration in the 

following steps: 

 

 Nanofiltration (first stage) of untreated must (C) providing a permeate with a 

medium sugar content (P1) and a sugar rich retentate (R1). The later also 

contains the main portion of the high molecular weight compounds such as 

polyphenols, polysaccharides and proteins. 
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 Nanofiltration (second stage) of the first permeate (P1) providing a retentate 

(R2) and a second permeate (P2) with a lower sugar content. 

 For both musts, red and white, the second permeate (P2) was mixed with the 

first retentate (R1) in appropriate proportions to produce the intended moderate 

reduction in the alcohol degree of the final wine. This mixture preserves the 

specific grape features linked to the high molecular weight components retained 

in R1. 

 

A scheme that describes briefly each two-stage nanofiltration procedure and 

operating conditions is depicted in Figure 6.2 for the Garnacha red must and in Figure 

6.3a for the Verdejo white must. 

 

6.3.3.2 Single-stage Nanofiltration  

25 L of white must were treated using one nanofiltration stage. Figure 6.3b 

shows a scheme of the single-stage nanofiltration process carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Scheme of the Nanofiltration procedures carried out for the Verdejo white must and 

ulterior fermentation. a) two-stage and b) single-stage nanofiltration 

 

During this procedure 2-minutes-stops were performed every 30 minutes by 

manually opening the needle valve of the retentate loop, at the exit of the SWM (see 
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Figure 6.1). Thereby, the applied pressure inside the module is zero. In this way, only 

the osmotic pressure acts as driving force creating a backflush of permeate to the 

retentate. This overturn of the flow promotes shear, which may affect the deposition 

and detachment behavior of the fouling species on the membrane surface.  

This process provides a sugar rich retentate (R1) and a permeate (P1) with a 

low sugar content. 

After this, permeate (P1) was blended with untreated white must (VC) in 

adequate proportions to create a mixture with a similar sugar content as in the two-

stage process. 

 

6.3.4 Winemaking process 

 

The elaboration of wines was carried out at the experimental winery of the 

Agricultural Engineering School (University of Valladolid, Palencia, Spain). Both wine 

varieties, red and white, were manufactured following the corresponding traditional 

procedure (detailed in Fig. S6.3 of the supplementary material). 

Three different Garnacha red wines were elaborated: A control made from the 

control must (GC) and two low alcohol content wines obtained from the mixture of 

musts (P2+R1): G2NF1 and G2NF2. These low alcohol samples represent the 

duplicate of the fermentation of the same blend of musts. 

Also, three different Verdejo white wines were manufactured: A control obtained 

from the control must (VC), and two low alcohol content wines: one made from the 

mixture proceeding from the single-stage nanofiltration (P1+C): V1NF and one 

produced from the mixture (P2+R1) obtained from the two-stage nanofiltration process: 

V2NF.  

 

6.3.5 Analytical methods 

 

Musts were analyzed before and after the filtration process according to the 

principles and methods summarized in Table 6.1. 

The chromatographic system used consisted in an HPLC apparatus from 

Waters with a Refractive Index detector Waters 2414, an isocratic pump Waters 1515, 

the Waters 1707 Autosampler, and a thermostated column compartment together with 

the software Breeze 2. A Supelco Supelcogel Pb guard column and column were used 

for the sugars (glucose and fructose) separation and a Shodex DE-413 guard column 

and column for malic and tartaric acid detection. 
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Total and Free SO2 were determined by idometry according to the Ripper 

method [20]. This technique was automated by means of an SO2- Matic 23 apparatus 

from Crison. 

Alcohol Degree of wines was measured by ebulliometry [22] using a Barus 

apparatus from GAB System.  

UV/Vis spectrophotometric methods were performed using the UV/Vis 

spectrophotometer (Lan Optics 2000 UV, Labolan, Spain). 

 

Table 6.1. Methods used for the determination of some oenological parameters of musts. 

Parameter Principle Method 

Glucose and 

Fructose 

Ion exchange 

Chromatography 
HPLC 

Tartaric and 

Malic Acid 
Chromatography HPLC 

pH Potentiometry pH-meter 

Volatile acidity Acid- base titration García-Tena a 

Total acidity Potentiometric titration OIV b 

SO2 T and SO2 F Iodometry Ripper automated 

Alcoholic degree Ebullometry Barus apparatus c 

Total 

Polyphenols 
UV absorbance UV/Vis spectrophotometry 

Anthocyanins Vis absorbance UV/Vis spectrophotometry d 

Color Vis absorbance UV/Vis spectrophotometry b 

a [20]; 
b
 [21]; 

c
 [22]; 

d
 [23], [24] 

SO2T: Total SO2; SO2F: Free SO2 

 

6.3.6 Consumer sensory test 

 

Sensory evaluation of the wines was conducted with 48 consumer volunteers 

from18 to 65 years old of various socioeconomic backgrounds. A total of 68.75% of the 

consumers were male and 85.42 % were between 18 and 34 years of age. 

Consumer tests were carried out in the Sensory Science Laboratory of the 

Agricultural Engineering College at the University of Valladolid, Palencia (Spain), in 

individual booths.  

The sensory analysis session for each panelist consisted in doing first the 

acceptability test of the white wine samples and then of the red wine samples. 

Consumers tasted the samples served sequential monodically. Samples were 
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presented in glasses coded with 3-digit random numbers and served in a randomized 

order. Water and crackers were available for rinsing. 

Here, the wines were evaluated on the basis of the acceptance of the sensory 

descriptors color, odor, flavor, persistence and overall liking on a 9-point hedonic scale. 

The scale of values ranged from ‘‘like extremely’’ to ‘‘dislike extremely’’ corresponding 

to the highest and lowest scores of 9 and 1, respectively. 

Principal component analysis (PCA) was used to know the effect of the different 

filtrations on the sensorial and physicochemical characteristics of the wines. Consumer 

sensory data collected from the acceptability test were subjected to PCA in order to 

see which the favorite wines were. PCA was performed with the correlation matrix 

(derived from the data matrix). SPSS for Windows (version 20.0) was used for data 

processing [25]. 

 

6.4 Results and discussion 

 

6.4.1 Nanofiltration processes 

 

As mentioned, water permeability (Lp) and resistance (Rm) of the SWM were 

determined before each filtration process to control its performance. The values 

obtained are given in Table S6.2 of the supplementary material.  

Figure 6.4 depicts the kinetics of the permeate flux of the three filtration 

processes.  

 

 

 

 

 

 

 

 

 

Figure 6.4. Kinetics of the permeate flux of the three filtration processes. (a) and (c) for  the 

two-stage filtration processes, of red and white must respectively. (b) shows the kinetics of the 

white permeate must during the single-stage NF process. Dashed lines represent the 2-

minutes-stops with osmotic backflushing 
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Figure 6.5 compares the filtration processes of the red and white musts during 

the first and second stages (Figure 6.5a and b respectively), in terms of the initial 

permeate flux (Jv/Jv,0). Thus the influence of the initial membrane fouling is avoided.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Comparison of the filtration processes of the red and white musts during the first (a) 

and second stage (b), in terms of the initial permeate flux (Jv/Jv,0) 

 

According to Eq. (1), the factors that would mainly promote the flux decline 

during the first- stage of nanolfiltration (due to the presence of high molecular weight 

compounds in the feed) are: 

 

1. Formation and thickening of the cake layer on the membrane surface (Rf). 

2. Increase of the viscosity (η) of the fluid that goes through the membrane pores. 

3. Reversible or irreversible fouling of the membrane during the process (Rm). 

 

As expected, the contribution of these factors is more significant in the case of 

Garnacha red must (see Figure 6.5a) because of its higher concentration of molecules 

with a molecular weight higher than 300 Da such as polyphenols (see Total 

polyphenols index in Table 6.2) and proteins (as shown in table S6.1, the molecular 

weight cut-off of the membrane is 200 Da). Moreover, the importance of fouling and 

cake formation is shown in Fig. 6.4a and 6.4c. Here, the initial flow of the first- stage is 

considerably lower than the initial one of the second-stage, where the feed is mainly 

composed of low molecular weight molecules. 

The permeate flow is also influenced by the osmotic pressure (Δπ) increase 

(see Eq. (1)) due to the increment of the concentration of small molecules in the 

retentate, (Co) and therefore on the membrane active layer (Cm). This contribution 

should be similar for both musts, since the concentration of small solutes (such as 



Section III: Chapter 6 

185 

glucose, fructose malic and tartaric acids) is similar in both as shown in Tables 6.2 and 

6.3. This fact can be mainly appreciated in Figure 6.5b, where the flow kinetics in the 

second filtration stage is illustrated. Thus the influence of the high molecular weight 

compounds is avoided. 

The effect of the 2-minutes-stops carried out during the single stage NF process 

of Verdejo must can be assessed in Figure 6.5a. Here, lower permeate flow values 

than for the two-stage NF process are reached. Apparently, the permeate backflush 

affects in an unexpected way the deposition of foulants and their attachment on the 

membrane surface, this is, on the growing cake surface. This agrees with the results 

obtained by [26]. In their research they studied the influence of shear on cake formation 

and fouling of reverse osmosis and ultrafiltration membranes. They observed that when 

applying higher stirring rotation speed (i.e. higher shear) in the dead end filtration cell, 

lower permeate fluxes were obtained. They attributed this to the formation of a thinner 

cake. Results suggest that the re-suspension of the deposited molecules promoted by 

shear leads to a thinner cake or the formation of smaller aggregates. This may have 

higher resistance to the permeate flux and therefore be more effective in reducing the 

permeate flow.  

The concentration of glucose and fructose was measured for the retentate and 

permeate for both musts along all filtration stages and processes. Ri was calculated 

according to Eqs.(2) to (5).  

Figure 6.6 shows a comparison of the sugars rejection during the first (Figure 

6.6a) and the second stages (Figure 6.6b) of filtration of both musts.   

It may be observed a slight reduction in the time evolution of the retention for 

the three processes and also for the 2 stages. This decrease was expected due to the 

rise of the concentration of sugars in the retentate that finally cross the membrane.  

During the first filtration, the retention is higher for the Garnacha must. This is 

due to the presence of higher amounts of high molecular weight compounds (higher 

than 300 Da), which contribute to the membrane fouling and cake formation. As 

observed in previous works [27], this cake layer formed on the membrane surface acts 

as a pseudo-membrane that changes both: permeability and selectivity of the overall 

membrane. In the absence of larger molecules (Figure 6.6b) the phenomena related 

with cake formation are mitigated. Thus, the sugar retention is similar for the musts 

obtained from Garnacha and Verdejo varieties, during the second stage. 

Figure 6.6a shows that the process in which the stops were carried out (Verdejo 

1NF) sugars rejection is higher than in the process without them. This suggests that the 

thinner cake formed, probably composed of smaller aggregates, as mentioned, may be 

less porous and therefore less permeable to sugars too.  
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Figure 6.6. Comparison of the sugars rejection during the first (a) and the second stages (b) of 

filtration of both musts 

 

6.4.2 Analysis of the filtered musts 

 

Concentrations of the resultant permeates and retentates were analyzed, for 

each stage and NF process. Results for the Garnacha red must and for the Verdejo 

white must are shown in Tables 6.2 and 6.3 respectively. Note that some parameters 

have not been determined for some samples because they were considered irrelevant. 

Results show that the general trend is a high reduction of total sugars in the 

permeates and an increase in the retentates.  

Regarding the effect of NF on the concentration of low molecular weight 

compounds such as malic and tartaric acid, Tables 6.2 and 6.3 show that the variations 

are not so significant for these compounds. Furthermore, since the purpose is to 

produce low alcohol wines, the permeate has to be mixed with untreated must (P1+C) 

or with the retentate (P2+R1) in adequate proportions before its fermentation. In this 

way, the reconstructed must will be chemically very similar to the original one but with a 

lower sugar content and the variation of the other compounds will be reduced. In 

accordance to the total sugar content of the mixtures, the probable alcoholic degree of 

the resulting wine can be estimated from tables [20]. In this way, Table 6.2 shows that 

the blend (P2+R1) of red musts predicts a 1.67º reduction of the alcohol content. In the 

case of white musts (Table 6.3), the mixtures (P1+C) and (P2+R1) predict a decrease 

by 2.17º and 1.49º respectively. In all cases this predictive parameter shows that the 

alcohol reduction would be around 2º as intended. Note that the reduction is not exactly 

the same in all cases due to the difficulty involved in determining the exact proportions 

of musts to blend. 
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Table 6.2. Oenological parameters of Garnacha red musts after the two-stage NF process and 

of the control must (C).   

 
Control 

(VC) 

Garnacha two-stage NF 

P1 R1 P2 R2 P2+R1 

Glucose  

(g/L) 
105 ± 2 27.6 ± 0.6 135 ± 3 5.73 ± 0.13 92 ± 2 90 ± 2 

Fructose 

(g/L) 
106 ± 4 27.0 ± 1.0 138 ± 5 7.5 ± 0.3 92 ± 3 93 ± 3 

PA
a
     

(%vol) 
12.5 ± 0.3 --- --- --- --- 10.9 ± 0.3 

TH2          

(g/L) 
4.4 ± 0.5 3.0 ± 0.4 4.3 ± 0.5 1.51 ± 0.19 

4.8 ± 

0.6 
3.9 ± 0.5 

MH2        

(g/L) 
0.59 ± 0.01 

0.53 ± 

0.01 
0.47 ± 0.01 0.43 ± 0.01 

0.58 ± 

0.01 
0.49 ± 0.01 

pH 3.02 ± 0.01 ---- 3.12 ± 0.01 ---- ---- 3.19 ± 0.01 

TA      

(gTH2 /L) 
3.21 ± 0.01 ---- 3.06 ± 0.1 ---- ---- 2.70 ± 0.14 

TPI 8.8 ± 0.3 
1.18 ± 

0.01 
12.9 ± 0.5 0.29 ± 0.01 ---- 7.93 ± 0.18 

CI 0.34 ± 0.04 
0.02 ± 

0.01 
0.28 ± 0.04 N/D N/D 0.20 ± 0.06 

AC 

(mg/L)
b 63 ± 3 ---- 91 ± 7 ---- ---- 56.9 ± 1.2 

VC: Control must; P1: permeate of the first stage; R1: retentate of the first stage; P2: permeate 

of the second stage; R2: retentate of the second stage. 

PA: Probable alcoholic degree; TA Total acidity expressed as g TH2 per liter; TH2: Tartaric acid, 

MH2: Malic acid; TPI: Total Polyphenol Index; CI: Color Index; AC: Anthocyanins content 

N/D: not detectable 
a
 Estimated from tables of the alcoholic degree to be expected on the basis of 16.83 g sugars 

from must per 1% alcohol [20]
 

 b 
expressed as mg malvidin-3 glycoside per liter 

 

The influence of the NF procedures on the phenolic compounds was measured 

in terms of the total polyphenols index (TPI) and the color index (CI), since they are 

related to the color of must (see Tables 6.2 and 6.3). In the case of the main red musts 

samples (i.e. GC, R1 and (R1+P2)), the content of anthocyanins was also measured. 
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Results show that nanofiltration did not allow the passage of polyphenolic 

compounds due to their higher molecular weight. Therefore their concentration 

increased in the retentates and was lower in the permeate samples. Moreover, it can 

be seen that in the case of some permeate samples CI could not be detected (N/D). 

The blending of the permeate with untreated must (single-stage NF) or with the 

retentate (two-stage NF) reduces the final loss of these compounds. Furthermore, as 

shown in Table 6.3, the mixture with the first retentate (P2+R1) promotes a higher 

recovery of these substances than with untreated must. In this way, if the chemical and 

sensory characteristics of the wine obtained from the blend (P2+R1) are similar or 

better than those of the blend (P1+VC) it can be said that the best technique is the two-

stage NF. Besides, this process minimizes volume losses, as it will be discussed later. 

 

6.4.3 Production and analysis of wines 

 

As mentioned in section 6.3.4, six different wines were elaborated. Three 

Garnacha red wines: GC, G2NF1, G2NF2 and three Verdejo white wines: VC, V1NF 

and V2NF. Table 6.4 shows the results of the chemical analysis of the six wine 

samples. 

In the case of the Garnacha wines, after the malolactic fermentation, wines 

G2NF1 and G2NF2 had an alcohol degree lower by 1.2º and 1.4º %vol respectively in 

comparison to the control C wine. In both cases the alcohol reduction achieved was 

lower than the 2º expected. This could be due to the additional input of untreated must 

(i.e. sugar content) remaining in the crushed grape mass that was blended with the 

mixture (R1+P2) prior to the alcoholic fermentation. Regarding the parameters of Total 

Acidity (T.A.) and pH, no significant differences were determined between the 2 

nanofiltered samples and also in comparison with the control wine. Volatile acidity 

(V.A.) is similar for the G2NF1 and G2NF2 but slightly higher when compared to the 

control wine. This could be understood as a minor deterioration of must during the NF 

process, since the V.A. values correspond to the fatty acids including those related with 

the acetic series (i.e. acetic, acetate, formic, propionic, butyric). As also observed for 

the resulting musts, nanofiltration affected the concentration of polyphenols and the 

parameters related (CI and anthocyanins). Table 6.4 shows that wines G2NF1 and 

G2NF2 presented a 14% and 16.5% TPI loss respectively when compared with the 

control wine. 
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Table 6.4.Chemical analysis for the main oenological parameters of the red and white wines  

Chemical 

parameter 

Garnacha Verdejo 

GC G2NF1 G2NF2 VC V1NF V2NF 

pH 
3.21 ± 

0.01 

3.29 ± 

0.01 

3.31 ± 

0.01 

3.37 ± 

0.01 

3.31 ± 

0.01 

3.42 ± 

0.01 

TA 

(gTH2 /L) 

4.60 ± 

0.03 

4.26 ± 

0.03 

4.05 ± 

0.05 

3.75 ± 

0.05 

3.92 ± 

0.03 

3.75 ± 

0.05 

VA 

(g /L) 

0.23 ± 

0.01 

0.31 ± 

0.01 

0.34 ± 

0.01 

0.37 ± 

0.01 

0.18 ± 

0.01 

0.63 ± 

0.05 

TPI 
42.9 ± 

0.4 

36.93 ± 

0.04 

35.85 ± 

0.07 

6.31 ± 

0.08 

5.37 ± 

0.01 

7.75 ± 

0.05 

AC      

(mg/L)
a 

371 ± 

14 
355 ± 2 288 ± 3 4.4 ± 1.9 

2.63 ± 

0.01 
2.2 ± 1.9 

CI 
11.1 ± 

0.2 

8.19 ± 

0.07 

6.94 ± 

0.02 

0.09 ± 

0.01 

0.07 ± 

0.01 

0.10 ± 

0.01 

AD       

(%vol) 

12.40 ± 

0.18 

11.20 ± 

0.01 

11.00 ± 

0.01 

13.88 ± 

0.01 

11.95 ± 

0.01 

14.00± 

0.01 

G C: Garnacha Control wine, G2NF1and G2NF2: Red wines obtained from fermentation of the 

mixture (R1+P2), VC: Verdejo control wine, V1NF: white wine obtained after the fermentation of 

the mixture (VC+P1), V2NF: white wine obtained after the fermentation of the mixture (R1+P2) 

TA: Total acidity expressed as g TH2 per liter; TH2= Tartaric acid; VA: Volatile acidity; TPI: Total 

Polyphenol Index; CI: Color Index; AC: Anthocyanins content; AD: Alcoholic degree 
a
Expressed as mg malvidin-3-glycoside per liter 

 

Regarding the Verdejo samples, after alcoholic fermentation, V1NF wine had a 

1.93º %vol lower alcohol content when compared to the control, but no alcohol degree 

reduction was achieved in the V2NF wine. Note that the sugar content of the must 

mixture (P2+R1) would have led to a lower alcohol degree. It is probable that some 

microbiological contamination could have promoted this. Also, the fermentation of this 

blend took longer than the one of the other musts causing the high VA and IC values 

measured for this sample. The degradation of the wine related to these parameters 

respectively is for example the formation of acetic acid and the oxidation of compounds 

related with the color of it.  

Also a 15% TPI loss was determined for the V1NF sample. 

All in all, it can be said that among the processes studied, the best NF technique 

is the two- stage process without backflush. This technique allows not only an 

appropriate sugar content reduction, but the mixture (P2+R1) promotes a higher 

recovery of polyphenolic compounds (i.e. color). Besides it minimizes volume losses 

since the retentate of the first stage and the permeate of the second stage are used for 

the appropriate blend of must and. Only the permeate of the second stage and the 
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volume retained in the pump and in the module are of no use. At a larger scale 

(industrial scale) these dead volumes are negligible and it is has been estimated that in 

the 2NF technique proposed the volume losses would be around 18%. 

 

6.4.4 Chemical and sensory characteristics of the resulting wines 

 

Sensory evaluation of the wines was carried out only with 5 samples: 3 with 

lower alcohol content (G2NF1, G2NF2 and V1NF) and the respective control samples 

(GC and VC). The V2NF wine was not included in this analysis because fermentation 

was not correct. However, the process of sugar reduction was satisfactory, so the 

results of this experience have been kept. 

Results of the chemical analysis (presented in Table 6.4) and acceptability test 

were put into a matrix form. This data matrix consisted of 5 wine samples (rows) by 12 

variables (columns): 7 physicochemical and 5 sensorial. 

The data matrix of variables analyzed was subjected to PCA in order to 

decrease the number of results associated with the data set while still explaining the 

maximum amount of variability present in the data [28]. In this way, a new set of 

orthogonal variables (PCs) was generated.  

The first 2 PCs explain the 90.32% of the total variance in the data set. Figure 

6.7 shows the plot of the 5 wine samples, the 5 sensorial and 7 physicochemical 

variables in the first 2 PCs. Furthermore, the first principal component, PC1, accounts 

for 69.92% of the variability data and PC2 explains the 20.41% of the data variance. 

Specific patterns of correlations between the variables can be appreciated from 

the plot between the PCs, where the position of the variables respect to one other and 

their corresponding correlations can be visualized. In order to analyze this, the Pearson 

correlation between the sensorial and physicochemical variables tested was 

performed. Results showed that the chemical variables related with color, namely TPI, 

CI and Anthocyanins are strong and positively correlated with the sensorial variable 

color (r=0.945; r=0.972 and r=0.947 respectively with a significance level p<0.05). 

Moreover, the sensorial variable flavor is positively correlated with pH (r=0.959, 

p<0.05) and negatively correlated with total acidity (r=-0.994, p<0.05). Therefore it can 

be said, that these sensorial variables (evaluated by the consumers) are appropriately 

correlated with the chemical variables that describe them. 

From the sensorial point of view it may be appreciated that none of the samples 

was particularly preferred by the consumers. Moreover, since there is no significant 

difference between the control or the filtered samples, this general trend can be 

attributed to an absence of substantial moddifications apart from the alcohol reduction. 
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It can be noticed that red wines, especially the control (GC) and G2NF1, were 

preferred by their odor and color. The sample G2NF2 presented a high volatile acidity 

and lower TPI and therefore it is located further from the other two red wines and was 

less preferred. Since both, G2NF1 and G2NF2 were obtained from the same 

nanofiltrated must, it can be said that the differences of G2NF2 were caused by the 

fermentation and they are not related with the nanofiltration process. Results show that 

the filtration did not affect significantly the odour and color acceptance of the resulting 

red wines, since the G2NF1 had the highest color and odor acceptance. Regarding 

white wines, they showed the highest acceptance in flavor and overall liking, especially 

the control one. But they were not located in the space defined by the color and odor 

descriptors. Moreover, the sample V1NF presented lower persistence in mouth, flavor 

and overall liking. These features could be related, from the sensorial point of view, to a 

wine with a lower alcohol degree, even though the alcohol degree is not strongly 

correlated with any other descriptor. Besides, Verdejo is a variety characterized by its 

aroma components (volatile compounds). That is why nanofiltration could be more 

effective in the loss of these compounds in this variety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Principal Component Analysis of the wine samples and the physicochemical and 

sensorial characteristics. Symbols. Physicochemical variables: Anthocyanins (A); Total Acidity 

(TA); Volatile Acidity (VA); Total Polyphenol Index (TPI); Color Index (CI); Alcoholic Degree 

(AD). Sensory descriptors: Color (C); Odor (O); Flavor (F); Persistence (P); Overall liking (OL).  

Wine samples: Verdejo: Control (VC); single-stage (V1NF). Garnacha: Control (GC); two-stage 

(G2NF1) and fermentation duplicate (G2NF2). 
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6.5 Conclusion  

 

After the assessment of the different NF techniques studied, the main following 

conclusions can be raised: 

 

 The use of backflush during the single-stage NF of Verdejo must is not 

appropriate since it caused lower permeate flow values. This means that it does 

not improve the productivity of the process.  

 The mixture of the second must permeate with the first retentate (P2+R1) 

promoted a higher recovery of polyphenolic compounds than with untreated 

must (P1+C). 

Regarding the wines produced, the following conclusions can be made: 

 The techniques studied here for sugar control in grape juice allow the partial 

reduction of alcohol in the resulting wine. Results show that the two-stage NF 

process promotes a higher IPT recovery and less volume losses. 

 Sensory evaluation and PCA analysis showed that none of the wine samples 

was particularly preferred by the consumers, showing that there were no 

significant differences between the control and the filtered wines. 

 NF did not affect significantly the odor and color of the resulting red wines, 

since the G2NF1 had the highest color and odor acceptance.  

 

Moreover, the depletion of aroma components observed during Verdejo filtration 

may be analyzed in future studies by the recovery of these compounds using 

pervaporation before NF.  

All in all, it can be said that this study reveals the feasibility of single-and-two- 

stage NF processes for sugar reduction in grape must without a significant alteration of 

important compounds such as polyphenols, malic and tartaric acids. This allows the 

production of wines with sensorial and chemical characteristics similar as wines 

obtained of the fermentation of untreated musts. Therefore, this technique could be 

applied at a larger scale for the production of low alcohol content wines. 
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6.7 Nomenclature 

 

Roman 

C0,i  feed concentration of the i-th component (kg m-3)   

Cm,i  concentration of the i-th component on the membrane active layer 

  (kg m-3)  

Cp,i  permeate concentration of the i-th component (kg m-3) 

Di  diffusion coefficient of the i-th component (m2 s-1) 

Jv  permeate flux per unit of area through the membrane (m3 m-2 s-1) 

Jv,0   permeate flux per unit of area through the membrane at time t =0  

  (m3 m-2 s-1) 

Km,i mass transfer coefficient (m s-1) of the i-th component at impermeable 

membranes (m s-1) 

Ks
m,i mass transfer coefficient of the i-th component at semipermeable 

membranes (m s-1) 

Rf  resistance due to fouling (m-1) 

Ri  membranes true retention for the i-th component 

Rm  membrane resistance (m-1) 

 

Greek 

Δπ  osmotic pressure gradient (Pa) 

η   solution viscosity (Pa s) 

ηf   feed viscosity (Pa s) 

υeff  effective velocity (m s-1) 

ρf  feed density (kg m-3) 
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6.9 Supplementary material  

 

The following are the supplementary data provided for this work. 

 

Table S6.1 Main characteristics of the 3839 SR3-NYV spiral wound module 

MWCO 

(Da)
a,b

 

Lactose 

Rejection 

(%)
a,b

 

pH 

range 

Max. P 

(10
5
 

Pa)
b 

Max. T 

(ºC)
b 

Active 

membrane 

Area Am 

(m
2
)
b
 

Feed 

spacer 

porosity
c
 

ε 

Feed 

spacer 

height, H 

(10
-3

m)
b
 

Leaf 

width 

W (m)
d
 

200 99.900 3- 10 41.400 50.000 7.061 0.850 0.787 3.608 
a
 5% Lactose at 1380 kPa 

b
 Provided by the manufacturer 

c
 [29]

 

d 
Own determination 

 

Table S6.2 Hydraulic permeability, Lp, and membrane resistance, Rm, both initially and after 

filtration and cleaning procedure. 

Process 

Water 

Permeability Lp 

(10-12m/Pa·s) 

Membrane Resistance Rm             

(1014 m-1) 

Initial: Before filtrations 7.88 1.27 

After red must two- stage NF 6.15 1.62 

After white must single- 

stage NF 
6.04 1.65 

After white must two- stage 

NF 
5.78 1.72 

After manufacturers 

cleaning procedure 
7.82 1.27 
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Figure S6.1. Procedure for Membrane conditioning 
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Figure S6.2 Cleaning Procedure for the SR3 Spiral Wound Module according to manufacturer’s 

instructions 
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Figure S6.3 Traditional winemaking procedures for (a) red and (b) white wine 
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Chapter 7. Experimental investigation of pervaporation membranes for aroma 

recovery in white grape must 

 

Abstract 

 

The aroma profile of natural beverages is typically formed by volatile organic 

compounds such as alcohols, aldehydes and esters usually present at low levels. In 

such conditions, pervaporation with organophilic membranes has a high potential for 

recovering natural aroma compounds.  

The aim of this study is to assess the performance of pervaporation through 

membranes made of PEBA and PDMS for the recovery of primary aromas of grape 

juice. For this, pervaporation experiments were carried out using natural grape must 

and model solutions made of seven of the main aroma compounds present in it. 

Results showed that during pervaporation of the model solution both 

membranes had higher selectivity for aldehydes than for alcohols. Even, the PEBA 

membrane was not able to permeate benzylalcohol. Moreover, higher selectivity for 

alcohols appeared through both membranes during pervaporation of natural grape 

juice, probably due to a higher interaction of aldehydes with the must liquid matrix. 

Finally, the analysis of the pervaporation performance revealed that the overall 

separation of the PDMS membrane is more efficient for aroma recovery of both feeds. 

This research reveals that pervaporation is a powerful tool for the extraction of 

natural primary aroma for the grape juice and winemaking industries.  

 

Keywords 

Pervaporation, Organophilic membranes, Aroma recovery, Grape juice, 

Winemaking. 
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7.1 Introduction 

 

Aromas are of key relevance for foods and beverages since they are directly 

linked to the product quality and the consumer´s acceptance [1]. A characteristic aroma 

profile is typically formed by a mixture of hundreds of different organic compounds 

usually present at ppm or ppb levels. They consist mainly in esters, alcohols, 

aldehydes, ketones, carboxylic acids, hydrocarbons, amines, mercaptans, terpenes, 

ethers, phenols, lactones, etc [2]. Among them, alcohols, aldehydes and esters, are in 

general extremely volatile. The loss of these compounds during beverage processing is 

often inevitable [3]. For example the concentration of beverages by evaporation would 

result in considerable losses and in some cases even total disappearance of all the 

volatile compounds in the evaporator. More recently, nanofiltration (NF) processes 

have been proposed in the wine industry to reduce the sugar content of grape juice and 

therefore to produce low alcohol content wines [4-6]. In their work, Garcia Martin et al. 

[4, 5] reduced by 2 degrees the alcohol content of wines fermenting grape musts by 

previously reducing their  sugar content using NF membranes. The disadvantage of 

this process was that wines made from the nanofiltered musts showed a profile of 

volatile compounds that was poorer than that of the control wines. It seemed that 

during sugar reduction some of the primary aroma compounds or aroma precursors of 

wine were decreased. 

Wine flavor and aroma profiles result from a combination of nonvolatile and 

volatile aromatic compounds. The first group is present in the grape juice and is 

responsible for the basic taste sensations (acidity, bitterness and astringency). The 

second group can be classified into primary, secondary and tertiary aroma compounds. 

The primary compounds, which correspond to the varietal characteristics, are present 

in the grapes and then in the wine; secondary aroma compounds are formed during 

fermentation and the tertiary aroma compounds are formed during maturation [7, 8]. 

The varietal aroma is mainly due to the volatile compounds which are whether in free 

volatile form or in bound form, usually as glycosides (having the aroma compound as 

aglycone) [8, 9]. The free form corresponds mainly to alcohols, aldehydes and esters, 

in a wide range of concentrations. As mentioned, these substances are extremely 

volatile. 

In order to minimize the resulting impairment of the aroma and flavor quality of 

the final wine, the primary aroma compounds could be recovered from the grape juice 

before processing (by NF, for example) and then added back to the filtered must before 

fermentation. 
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In view of their intrinsic characteristics, namely high selectivity and possibility of 

operation at moderate temperatures, pervaporation (PV) is a membrane process that 

seems highly appropriate for the separation of dilute species in liquid solutions. The 

possibility to operate PV at low temperatures is quite important when the aroma 

compounds of interest or the feed itself are susceptible of heat-induced deterioration. 

Moreover low temperatures imply less energy consumption [2, 3]. Specifically, 

organophilic PV membranes have a high potential for recovering natural and natural-

identical aroma compounds, highly diluted in complex aqueous media. 

In this process a liquid feed mixture is separated by partial vaporization through 

a non-porous permselective membrane. Its separation mechanism is based on 

favorable molecular interactions between the dense membrane top-layer and the target 

compounds, allowing for their selective solubilisation in the membrane matrix and 

recovery in the permeate stream. The process results in a vapor permeate and a liquid 

retentate. The partial vaporization through the membrane is responsible for the 

separation potential of pervaporation. The driving force for the mass transfer of 

permeants from the feed side to the permeate one is a gradient in chemical potential, 

which is established by the application of a difference in the partial pressures of the 

permeants across the membrane. This difference in partial pressure can be created by 

partial pressure reduction on the permeate (downstream) side, which can be 

accomplished, for example, by applying vacuum or blowing a sweep inert gas on this 

side. Vacuum PV, is the most common way of performance, because it makes easy to 

reach low solute downstream partial pressures, assuring high driving forces for solute 

transport. The partial pressures of the permeant components are usually lower than 

their corresponding saturation pressures, and these components are therefore 

removed as vapor. The permeate is collected in cold traps, which at laboratory scale 

are normally cooled by using liquid nitrogen (−196 ºC) [2, 3, 10]. 

Aiming to recover organic compounds, the membrane naturally employed is 

organophilic. Elastomers normally present higher chain mobility than glassy polymers 

and contain non-polar side groups. Consequently, they preferentially permeate organic 

substances. Polydimethylsiloxane: PDMS is the most used material in the available 

literature studies on aroma recovery by pervaporation. A non-silicone membrane that is 

also available for this purpose consists in a thermoplastic polymer called polyether-

block-amide: PEBA. It is composed of rigid polyamide segments and flexible 

elastomeric polyether blocks [2]. The aim of the present work is to analyse the 

performance of the organophilic PV membranes made of PEBA and PDMS for the 

aroma recovery of primary aromas of grape juice. For this purpose, PV experiments will 

be carried out using a model solution made of the main aroma compounds present in 
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grape must. Results will be then tested using natural grape must as feed of the 

experiments.  

 

7.2 Experimental  

 

7.2.1 Materials 

 

7.2.1.1 Model solution 

Grape must contains a great number of compounds making identification, 

quantification and analysis very complicated. Therefore, a model aqueous solution 

containing 6 of the most important aroma compounds of must, as found in the literature 

[8, 9, 11], was used to simulate grape juice. These substances were two aldehydes: 

hexanal and benzaldehyde and four alcohols: isoamylalcohol, 1-hexanol, benzylalcohol 

and 2-phenylethanol. The concentration of each compound was 3.5 + 0.5 ppm.  

The main physicochemical properties of water and the aroma substances are 

shown in Table 7.1. The data presented here for the molecular surface and Henry 

constant (Hi) at 16 ºC are necessary to calculate the theoretical selectivity that a PV 

membrane has for these compounds. This will be explained with more detail in section 

7.2.5. These data were obtained using the Conductor-like Screening Model for Real 

Solvents (COSMO-RS) [12, 13] using the software COSMOthermX (COSMOlogic 

GmbH, Leverkusen, Germany).  

 

7.2.1.2 Verdejo Grape Juice 

The grapes used for the experiments came from a Spanish white variety named 

Verdejo. They were cultivated in the experimental vineyard of the Institute of 

Agricultural Technology of Castilla y León (trial fields of Zamadueñas, Valladolid, 

Spain) from 2013 vintage. Verdejo grapes were destemmed, crushed, sulphited and 

pressed to obtain the respective must. Potassium metabisulphite was added (80 mg/L 

of SO2) in order to prevent oxidation or spoilage caused by bacteria. Pectolytic 

enzymes (10 mg/L of Enozym Altair, Agrovin) were added to enhance first clarification.  

The cleared must was filtered through 0.8 μm cellulose filter plates in order to 

prevent ulterior membrane fouling. 
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Table 7.1 Main properties of the aroma compounds present in the model solution 

Compound Abbreviation 
Sensory 

descriptor 

Molecular 
Weight 
(g/mol) 

Boiling 
Point 

(ºC) (at 
1atm) 

Molecular 
Surface   

Å² 

Hi 
(kPa) 

Hexanal HexAL 

Herbaceou
s, green, 
crushed 
grapes 

100.16 130 163.09 575.21 

Isoamylalcohol i-AmOL 

Marzipan, 
burnt, 

alcoholic, 
malty, 
solvent 

88.08 132 144.98 18.169 

1-Hexanol 1-HexOL 

Floral, 
grass, 

herbaceous  
sweet 

102.16 158 169.50 35.301 

Benzaldehyde BezAL 

Dry, plastic, 
bitter 

almonds, 
cherry 

106.12 178.1 145.46 32.572 

Benzylalcohol BezOL 
Sweet, 
fruity 

108.14 205 151.55 0.9427 

2-
Phenylethanol 

2-PhetOL 
Roses, 

honey, dry 
fruits 

122.16 219 170.78 0.9721 

Water H2O 
 

18.015 100 43.10 1.7711 

 

After filtration, the content of total sugars (glucose and fructose), ºBrix, pH, 

hexanal, isoamylalcohol, 1-hexanol, benzaldehyde, benzylalcohol and 2-phenylethanol 

were measured. Results are presented in Table 7.2. 

 

Table 7.2 Original composition of Verdejo grape must 

 

Glucose

+Fructos

e (g/L) 

ºBrix pH 

Aroma compound (ppb) 

H
e
x

A
L

 

i-

A
m

O
L
 

1
-

H
e
x

O
L
 

B
e
z

A
L
 

B
e
z

O
L
 

2
-

P
h

e
t

O
L
 

Verdejo 

grape 

must 

215 ± 9 
19.95 

± 0.07 

3.09 ± 

0.04 

8.06 ± 

0.73 

188 ± 

13 

1372 ± 

9 

23.5 ± 

1.8 

19 ± 

7 

68 ± 

6 

 

7.2.1.3 Membranes tested 

Two different organophilic flat sheet membranes manufactured and 

commercialized by Pervatech (Pervatech BV, Rijssen, The Netherlands) were tested in 

this research. One of them was coated by the manufacturers with PDMS and the other 

with PEBA. 
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The membrane morphology was investigated by scanning electron microscopy 

(SEM) using a Quanta 200 FEG (field emission gun) equipment of FEI (FEI Company 

Hillsboro, Oregon, USA). For this purpose, membranes were fractured with liquid 

nitrogen. Figures 7.1a and 7.1b show the cross section of the PDMS and PEBA 

membranes respectively. The upper dense layer, which is the selective part, can be 

seen. This active layer should be as thin as possible to minimize transport resistance.  

This layer is cast on a porous asymmetric support layer which shows the usual 

morphology of a membrane prepared by phase inversion. To further increase the 

mechanical stability of the membrane, this microporous support membrane is usually 

cast on a fabric fleece. As can be seen, the thickness of the PDMS active layer was 

smaller than that of the PEBA one. SEM images of transversal sections allowed 

determining the average thickness of both active layers. The PDMS selective layer 

thickness was 1.51 + 0.14 μm while for PEBA it was equal to 2.07 + 0.15 μm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 SEM images of the cross section of the membranes used here: PDMS (a) and PEBA 

(b) 
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7.2.2 Experimental Set-up  

 

An installation was designed and built for the test of the membranes for 

recovery of aroma compounds present in the model solution and grape must. It 

comprised a thermostated feed vessel; a pervaporation cell with the feed stream 

operated under controlled temperature and flow-rate and a downstream circuit with a 

condenser (Figure 7.2). 

The module used was a stainless steel flat sheet crossflow module which is 

described in detail by Schäfer and Crespo [14]. According to it, the cell´s dimensions 

provide a membrane active area Am=5·10-4 m2 and a hydraulic diameter dh=2·10-3 m. 

The upstream tubing was in Viton and Teflon and the metal used in the permeate 

stream piping was made in stainless steel. The vacuum conditions in the downstream 

side were assured by a vacuum pump from Pfeiffer (Pfeiffer Vacuum Technology AG, 

Asslar, Germany). The unit was equipped with a pressure gauge on the permeate 

circuit consisting on a Capacitance Manometer, a transducer power supply and a 

monitor from Edwards (Atlas Copco, Nacka, Sweden), with readings of the permeate 

pressure, pperm, independent from the nature of the gas or vapor present. The 

condenser was a glass U-shaped trap immersed in liquid nitrogen. 

 

 

 

 

 

 

 

 

 

  

Figure 7.2 Scheme of the experimental set up 

 

7.2.3 Operating conditions  

 

In each set of experiments, with a defined feed solution, the following 

parameters were controlled: temperature of the feed stream, Tfeed =16±1 ºC, 

temperature of the condenser, Tcondens, which was kept constant at −196 ºC and the 

feed flow rate. The gear pump was set at the highest possible constant feed velocity. 
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This gave two different limit feed tangential velocities , due to the different viscosity of 

the model solution and grape juice, namely about 5.96 ms-1 for the model solution and 

4.93 ms-1 for the must. These corresponded to Reynolds numbers of 1.08·104 and 

6.85·103 respectively. The downstream pressure was kept constant at pperm = 1.5±0.5 

mbar. 

In order to minimize the depletion of aromas during each experiment the feed 

vessel was kept closed and with a small headspace. The volume of the feed solution 

was 500 mL for the model solution and 250 mL for grape juice.  

The duration of the experiments was 3 h when the model solution was used and 

6 h when grape must was employed. In the first case, the duration of the experiment 

was shorter because the concentration of aromas was higher and condensation in the 

cold-trap tubing caused obstruction and vacuum was reduced. In the first case, the 

duration of the experiment was shorter since the concentration of aromas was higher 

and their condensation could cause obstruction of the cold traps. 

Before each experiment the PV membrane was conditioned. Here, the PDMS 

and PEBA membranes were treated by filtering Milli-Q (Merck Millipore, Billerica, 

Massachusetts,USA) water under the same operating conditions. This is: Tfeed =16±1 

ºC, pperm = 1.5±0.5 mbar and Tcondens=-196 ºC. In this case, the experiment lasted for 2 

h. 

 

7.2.4 Analytical Methods 

 

Samples coming from the experiments carried out using the model solution (i.e. 

feed, permeate and retentate) were analysed using an Agilent (Agilent Technologies) 

gas chromatograph equipped with a FID (flame ionization detector) and a split/splitless 

injector. Separations were conducted on a HP-INNOWax capillary column (60 m × 0.25 

mm i.d., and film thickness 0.5 μm) from Agilent Technologies. Helium was used as 

carrier gas at a constant linear velocity of 23.19 cm s−1. Injections (1 μL) were done at 

275  C in the splitless mode. The oven temperature was held at 35 ºC for 1 min. Then it 

was increased at a rate of 3 ºC min−1 to 215 °C (held for 5 min) and then at 3°C min−1 

to 250 ºC. The FID temperature was maintained at 250 °C. Hydrogen gas was used for 

FID at a flow rate of 30 mL min−1. The flow rate of air for FID was 400 mL min−1. The 

make-up gas (helium) flow rate was 45 mL min−1. The compounds were quantified by 

standard curves obtained of pure commercially available standards injected under the 

same conditions.  

Due to the low concentration of compounds present in grape must, samples of 

the original juice, retentante and permeates had to be conditioned for their analysis. 
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For this purpose a solid-phase microextraction (SPME) device from Supelco (Sigma-

Aldrich Corporation) with a 10 mm fiber coated with 65 μm PDMS/DVB was used. The 

grape extracts were analyzed by an Agilent Technologies Gas chromatography–mass 

spectrometry system (GC-MS). The gas chromatograph was equipped with a HP-

INNOWax capillary column (60m x 0.25mm i.d. x 0.5 μm) from Agilent and the carrier 

gas used was helium at a flow of 1.2 mL min-1. Prior to the first extraction, the fiber was 

conditioned in the GC injector port at 270ºC for 30 min according to manufacturer´s 

recommendations.  

The major parameters that influence the SPME process had to be firstly 

optimized and the best conditions for the extraction of the volatile compounds were: 2 

mL of the sample were transferred to a 4 mL vial; the ionic strength was adjusted with 

0.8 g NaCl. The vial was sealed and the headspace extraction was performed for 60 

min at 50 ºC keeping the sample under continuous stirring. After this the fiber was 

withdrawn into the needle, removed from the vial and inserted into the injector of the 

GC-MS system in splitless mode at 270 ºC for 15 min. 

The GC oven temperature was programmed from 40 ºC (held for 2 min) to 215 

ºC at 3.1 ºC min-1 (held for 3 min) and then to 250 ºC at 10 ºC min-1. Agilent MSD 

ChemStation D.01.00 Build 75 (26-Aug-2003) software was used to acquire the GC/MS 

data. Compounds were identified by matching the mass spectra of the unknown peaks 

with the data stored in the Wiley Registry of Mass spectral Data, 7th Edition (Agilent 

Part No.1730 A) library and were confirmed and quantified by standard curves obtained 

by the SPME of pure commercially available standards injected under the same 

conditions. 

Standard curves were acquired using solutions in the appropriate 

concentrations of the standards hexanal (98%), benzaldehyde (>99%), isoamylalcohol 

(98%), 1-hexanol (>99%), benzylalcohol (TraceCERT®) and 2-phenylethanol (>99%). 

All substances were purchased from Sigma Aldrich, Spain.  

 

7.2.5 Methods of Calculation 

 

The performance of a PV process is often described by the following three 

parameters. The permeate flux, Ji, which is the flow rate of permeate of the i-th 

component per unit of membrane area expressed in gh-1m-2. The mass concentration 

enrichment factor, βi, for the component i defined as the ratio of the mass concentration 

of i in the permeate CP,i and the mass concentration of i in the feed, Cf,i 
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P i

i

F i

C

C

,

,

                    (1) 

 

The ratio of enrichment factors of a compound i and a compound j indicates the 

selectivity or separation factor, αi,j, that a membrane has for a compound i in 

comparison with compound j:  

 

i
i j

j

,





                   (2) 

 

Usually, the permeation and selectivity of a membrane are inversely correlated; 

this is, when one factor increases, the other decreases. Therefore a composite 

parameter called pervaporation separation index (PSI) has been widely accepted to 

evaluate the overall performance of a membrane [15-17]. PSI is defined as: 

 

 i j iPSI J, 1                  (3)  

 

According to del Olmo and coworkers [18] the selectivity of a membrane can be 

predicted and compared to the experimental one using 

 

j j i

i j

i i j

A H

A H

2

, 2










                (4) 

 

where A represents the molecular surface area (in Å 2) and H (in kPa) is the Henry 

constant of the component i or j. The terms Δδi 
2 and Δδj 

2 give an idea of the distance 

between the component i or j and the polymer p in the space of the Hansen solubility 

parameters, calculated as: 

 

d d p p h h

i p i p i p

2 2 2 24( ) ( ) ( )                          (5) 

 

where δd is the Hansen dispersion parameter, δp, the Hansen polarity parameter and δh 

the Hansen hydrogen-bonding parameter, of the component i or j and the membranes 

polymer p.  As stated by Hansen [19, 20], the total energy of vaporization of a liquid 

can be divided in three individual parts: non-polar (atomic) dispersion forces, 

(molecular) permanent dipole-permanent dipole forces, and hydrogen bonding forces.  
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The distance parameter describes all these cohesive forces which hold liquid 

molecules together and cause interactions between the membranes polymer and the 

feed solution molecules.  

 

7.3 Results and discussion 

 

7.3.1 Model solution experiments 

 

Figure 7.3 shows the concentration results for the permeate and retentate 

obtained using the PEBA (a) and the PDMS (b) membranes in comparison to the feed 

of each experiment. As can be seen, both membranes have the same trend of 

permeation: aldehydes are more permeated than alcohols since the former ones are 

less polar. The less polar the aldehyde and/or alcohol is the higher its permeation. A 

very small amount of benzylalcohol (1.19 ± 0.01 ppm) was measured for the PDMS 

permeates and it was not detected in the case of PEBA ones.  

 

 

Figure 7.3 Concentration of aroma compounds in the permeate and retante for the synthetic 

solution, using the PEBA (a) and PDMS (b) membranes, in comparison to the feed.  

 

After the conditioning procedures, the water flux of each membrane was 

measured and results showed (see Table 7.3) that PDMS has a higher hydraulic flux 

than PEBA. Actually this difference may be more related to the dissimilarity in the 

thickness of the dense layer of both membranes (see Figure 7.1), rather than to 

differences in the intrinsic permeability of both polymers. 
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Table 7.3 Total and partial fluxes obtained of the Pervaporation of the aqueous model solution 

using PEBA and PDMS membranes. Also the water flux of the conditioning procedure of each 

membrane is presented here 

Membrane 

JH20 
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(10
3 

g/hm
2
) 
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H
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·(
1

0
3
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PEBA 1.14 1.06 3.1 3.78 7.63 1.03 ND 1.63 1.06 

PDMS 1.38 1.22 4.12 4.30 7.66 1.33 1.46 1.70 1.22 

 

Based on the mass of model solution that permeated through the membrane 

area during the experimental time (3 hours) the overall flux J,tot was calculated. The 

PDMS membrane presented also a higher Jtot, as can be appreciated in Table 7.3. 

Although when aroma compounds are present (as is the case of the model solution), 

PDMS membrane showed a Jtot, 15% higher than PEBA, although 20% higher Jtot, was 

observed for pure water. 

By using the permeate mass fraction of solvents in the permeate, the partial flux 

of each aroma compound Ji was calculated (see Table 7.3). Higher partial fluxes were 

measured for the PDMS membrane for all the aroma compounds. As expected from 

the conditioning results, this membrane presented also a higher JH2O. Moreover, both 

membranes showed partial fluxes of aromas 4 to 6 orders of magnitude smaller than 

the water flux. This is a consequence of the low concentration of these compounds in 

the feed. However, as seen in Figure 7.3 the increase of concentration of aromas in the 

permeate is significant.  

To quantify the separation capacity of these membranes the enrichment factor 

(βi) and selectivity towards water (αi,H2O) was calculated using Eqs. (1) and (2) for each 

solvent. The results obtained for these performance parameters are presented in 

Figure 7.4 versus one divided by the difference of the Hildebrand solubility parameter 

(1/Δδ) of each component and of the polymer for both membranes. The Hansen 

solubility constants and Δδ are presented in Table 7.4. Regarding βi and αi,H2O some 

observations can be made. Both parameters show an exponential growth with (1/Δδ). 

This indicates that an increase of the solubility of the different solvents in the polymer 

leads to an increase of both the enrichment factor and the selectivity towards water, as 

expected [18]. Also, both membranes presented higher values for the aldehydes 

followed by alcohols without considerable differences in isoamylalcohol. Moreover, 

PEBA showed the best performance parameters for the alcohols 1-hexanol and 2- 

phenylethanol but no benzyalcohol could be detected in the PEBA permeates. 
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Table7.4 Hansen solubility parameters of PDMS [20], PEBA [21] and aroma compounds [19] 

Compound 

Hansen solubility constants   

(Mpa)1/2 

Distance parameter 

(Mpa) 

δD 

Dispersion 
δP Polar 

δh 

Hydrogen 

Bonding 

(ΔδPDMS)2 (ΔδPEBA)2 

Hexanal 15.8 8.5 5.4 15.73 71.09 

Isoamylalcohol 15.8 5.2 13.3 60.97 100.01 

1-Hexanol 15.9 5.8 12.5 47.29 93.33 

Benzaldehyde 19.4 7.4 5.3 15.25 102.65 

Benzylalcohol 18.4 6.3 13.7 51.86 144.44 

2-Phenylethanol 19.0 5.8 12.8 47.08 136.54 

Water 15.5 16.0 42.3 1348.00 1667.00 

PDMS 15.9 0.1 4.7 
  

PEBA 18.8 5.4 11.2 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 (a) Enrichment factor, βi, of the i-th aroma in the synthetic solution and (b) its 

selectivity towards water αi,H2O versus the inverse the Hildebrand solubility parameter, (1/Δδ). 

 

In order to predict αi,H2O, the model proposed in Eq. (4) [18] was used. For this 

purpose the physicochemical data provided in Table 7.1 for each aroma compound and 

the Hansen solubility constants, presented in Table 7.4, were used. Figure 7.5a shows 

the plot of the experimental selectivity (αi,H2O experimental) as a function of the theoretical 

(predicted) one (αi,H2O theoretical). For both membranes it can be seen that the accordance 

is far from being accurate as it should be if the points of the figure were on the plotted 

bisecting line. As also mentioned by del Olmo et al. [18], this difference can be 

explained because in Eq. (4) factors like the interaction solute-solute (mutual influence) 

or flux coupling are not taken into account.  
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Figure 7.5b shows the difference (αi,H2O theoretical -αi,H2O experimental) for each 

membrane. As can be seen, PDMS data have smaller differences than PEBA. This 

means that the selectivity of the PDMS membrane can be better predicted by this 

model for all aroma compounds present in grape juice. Higher αi,H2O and flow and 

similar or higher values of enrichment for the PDMS membrane mean that this 

membrane has an overall higher performance, in separating aromas from water, than 

PEBA. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 For both membranes: (a) Experimental selectivity to water in the synthetic solution 

(Eq. (2)) versus. the theorical one (Eq. (3)) and (b) difference (αi,H2O theorical –αi,H2O experimental)  

 

7.3.2 Pervaporation of grape must 

 

Results obtained from the PV experiments using grape must are presented in 

Table 7.5. Higher Jtot values were measured for the PDMS membrane similarly to the 

case of the model solution. Also PDMS shows the highest partial fluxes for all 

compounds except for 1-hexanol and hexanal.  

 

Table 7.5 Total and partial fluxes obtained of the Pervaporation of grape must using PEBA and 

PDMS membranes.  
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PEBA 9.41 12.07 3.13 3.76 2.92 7.13 9.97 9.41 

PDMS 9.87 6.94 3.65 3.08 4.13 33.56 99.71 9.87 
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Once again, using Eq. (1) the enrichment factor of each compound was 

calculated for both membranes. The selectivity of each aroma towards the compounds 

present in grape juice except the aromas studied αi,must was calculated. Results of both 

parameters obtained for the experiments with grape must are compared with those 

obtained using the model solution as feed in Figure 7.6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Comparison of the enrichment factor, βi, (a) and selectivity towards water, αi,H2O, (b) 

of grape must vs. model solution for both membranes PEBA and PDMS. The lines are simply 

for orientation purposes 

 

According to the results shown in Tables 7.3 and 7.5 and Figures 7.4 and 7.6, 

some particular differences can be observed: 

 

 In the presence of grape juice, the trend of passage of the compounds through 

the membrane changes, especially for the PDMS. Now it is higher for alcohols 

than for aldehydes.  

 It should be noticed that the values of αi,must (and also for i) are lower than 

those for the synthetic solution for aldehydes and higher for alcohols. 

 For the must, PDMS shows the highest partial fluxes (and therefore greater 

enrichments) for all compounds except for 1-hexanol and hexanal. In the case 

of the synthetic solution these exceptions do not appear. 

 Both membranes allow a high passage of benzylalcohol in comparison to the 

other aromas. 

 

Results show that both membranes exhibit, in general, the same differences in 

their separation behavior when comparing their performances during the PV of the 

model solution and grape must. These can be attributed to several factors. One of 
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them is the different environment of the feeds studied. It seems that in the case of 

grape must aldehydes have a stronger interaction with the liquid matrix than in the 

model solution. That is why in the former, aldehydes showed lower selectivities than 

expected, contrary to alcohols. Another factor can be the different ratios of aroma 

compounds in both feeds. While the model solution had approximately the same 

content of each aroma compound (3.5 ppm), in grape juice different ratios, with much 

lower concentrations, were measured for them (see Table 7.2). Of course, solutes can 

show quite different permeation behavior when their concentrations or ratios in the feed 

change. This mutual influence was observed by Heitmann and coworkers [21] when 

they studied the performance of PDMS and PEBA membranes for the recovery of 

acetone, butanol and ethanol compounds from feeds which contained different ratios of 

solutes. 

To evaluate the separation efficiency of the different investigated membranes, 

pervaporation separation index (PSI) (Eq. (3) was calculated. Figure 7.7 shows the 

corresponding PSI of the pervaporation of both, model solution and grape juice using 

the PDMS membrane versus the one using the PEBA membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Pervaporation separation index (PSI) of the PDMS membrane versus PEBA 

membrane for both, model solution (green circles) and grape juice (red circles).  

 

As can be appreciated, for model solution and grape juice, more PSI values are 

located over the bisecting line plotted. This means that PDMS membrane presents 

higher PSI for more aroma compounds than the PEBA membrane. The pervaporation 

separation of the PEBA membrane was higher only for 2 of the 7 aroma compounds 
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studied here. Specifically, in the pervaporation of the model solution and grape juice, 1-

hexanol exhibited a more efficiently separation using the PEBA membrane. Also 

hexanal was better recovered from grape juice using this membrane but not from the 

model solution. 

Results obtained for the PDMS and PEBA membranes tested within this 

research show that both membranes could be appropriate for aroma recovery in grape 

juice since the performance differences between them are scarce. But it seems that the 

use of a PDMS membrane could be better suited for our aim. First of all, this 

membrane showed higher Jtot for both feeds, model solution and grape juice. Despite 

both membranes presented different permeation behaviors during the pervaporation of 

the model solution and grape juice, the PDMS membrane showed an appropriate 

selectivity to all compounds of interest and for both feeds. Moreover, the analysis of 

PSI showed that the recovery of more aroma compounds of the model solution and 

grape juice is more efficient using the PDMS membrane.  

This means that the results obtained here show signs of future success in the 

use of PDMS membranes for aroma recovery in the wine industry and, in general, in 

beverage production. 

 

7.4 Conclusions 

 

During model solution experiments it was observed that both membranes have 

higher selectivity for aldehydes than for alcohols. But PEBA membrane is not selective 

to benzylalcohol since this compound could not be detected in its permeate. In general, 

PDMS membrane presented better permeation performance parameters.  

Both membranes showed a different permeation behavior during pervaporation 

of grape juice tests changing to a higher selectivity for alcohols. This means that 

probably aldehydes have stronger interactions than alcohols with the rest of the 

components of grape must. 

This study reveals the feasibility of pervaporation for natural aroma recovery in 

beverages to decrease aromatic depletion before their processing. Even though both 

membranes exhibited similar performance, PDMS showed the best permeation 

behavior to all compounds of interest and for both feeds.  
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7.6 Nomenclature 

 

Roman 

A   Surface area (Å2) 

Am   Membrane active area (m2) 

CF,j    Mass concentration of the i-th compound in the feed (kgm-3) 

CP,j    Mass concentration of the i-th compound in the permeate (kgm-3) 

dh   Hydraulic diameter (m) 

Hi   Henry constant of the (kPa) 

Ji   Permeate flux of the i-th compound (gh-1m2) 

PSI  Pervaporation separation index (gh-1m-2) 

 

 

Greek 

αi,j  Selectivity for the i-th compound towards the j-th compound.   

  (dimensionless). With j=H2O for the model solution and j=must in grape  

  must  

βi   Mass concentration enrichment factor (dimensionless) 

Δδ 2   Distance between the i-th or j-th component to the polymer p (MPa) 

Δδ d   Hansen dispersion parameter (MPa0,5) 

Δδ h   Hansen hydrogen-bonding parameter (MPa0,5) 

Δδ p   Hansen polarity parameter (MPa0,5) 
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Chapter 8. Application of pervaporation and nanofiltration membrane processes 

for the optimization of sugar reduction in grape must in order to produce a full 

flavored low alcohol content wine 

 

Abstract  

 

In the present work the performance of the combination of pervaporation and 

nanofiltration at pilot plant scale was studied for the elaboration of a full flavored low 

alcohol content wine. Two processes were compared in this work in order to assess the 

effectiveness of PV for aroma recovery of grape must. The first process consisted of 

the use of a two stage NF process for the reduction of the sugar content of must. The 

second combined the use of PV for aroma recovery of grape must followed by the two-

stage NF process for sugar reduction. Six different wine samples were obtained from 

the must blends. Two control wines (C1 and C2); two nanofiltered wines (2NF1 and 

2NF2) and two pervaporated -nanofiltered wines (PV+2NF1 and PV+2NF2). 

The assessment of the permeate flux showed that in terms of the PV tests the 

values were remarkably lower than those obtained in the previous test using the PDMS 

flat sheet module. Moreover, the analysis of the aromatic profile revealed that the 

mixture of musts (P1+R2+ aromas) corresponding to the process PV+2NF exhibited an 

aroma content more similar to the original grape must with the exception of 

benzaldehyde and 1-hexanol.   

The wines produced were sensorial analyzed and consumers’ overall liking 

scores showed that Sample C1 and (PV+2NF1) were the most liked. Moreover, results 

exhibited that consumers found the wine samples corresponding to the PV tests more 

similar to the control samples. The analysis of the aroma compounds of the resulting 

wines showed that in comparison to the most liked control wine, wines coming from the 

PV experiments had a more similar aromatic profile than the ones coming only from the 

NF tests.  

 

Keywords: 

Pervaporation, Nanofiltration, Full flavored low alcohol content wine, aromatic 

profile 
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8.1 Introduction 

 

During the ripening of grapes, most of the compounds that determine the 

sensory characteristics of wines are produced [1]. Along this period, the concentration 

of sugars, aminoacids, phenolic compounds and potassium increase, while the content 

in organic acids, particularly malic acid, decreases. These changes do not necessarily 

occur simultaneously and it would be necessary to control all of them to determine the 

optimal harvesting date. 

Along the last years, various world winemaking regions have provided evidence 

of modified vine development and fruit maturation patterns as a consequence of global 

warming. Among the most important climate change-related effects there is a higher 

sugar content, lower acidities and modification of varietal aroma compounds. 

Fermentation of this must leads to alcoholic degrees higher than desired [2], as they 

may be too burning in the mouth and mask the fruity aromas and taste of wine. 

Premature grape harvest and winemaking should affect the final wine quality, leading 

to more acid and less colored wines, because the phenolic maturity would not be yet 

fully achieved [3]. Therefore, in order to produce a full flavored wine, the harvest should 

be carried out when the optimum ripeness of the fruits has been reached and 

innovative techniques should be applied to musts to control their sugars to keep the 

final alcohol degree within the desired range.  

Several studies have successfully used membrane processes, specifically 

nanofiltration (NF) for sugar control in beverages such as grape must [3-7]. Moreover, 

in our previous studies the performance of single- stage and two-stage NF processes 

for sugar control in red and white grape musts were compared at a pilot plant scale 

(see Chapter 6). Results showed that the best NF technique was a two-stage NF 

process. It promoted a higher recovery of the chemical properties of grape must and 

less volume losses before fermentation. But the sensory evaluation of the white wines 

obtained showed that they were less persistent in mouth and had lower flavor in 

comparison to the control wines. This aroma depletion was attributed to the possible 

loss of volatile compounds (primary aroma compounds) during grape must NF. 

In order to minimize the resulting impairment of the aroma and flavor quality of 

the final wine, primary aroma compounds could be recovered from the grape juice 

before NF and then added back to the filtered must before fermentation. Traditional 

aroma recovery processes such as distillation, adsorption and solvent extraction are 

not advisable since they operate at high temperatures [8] which could deteriorate the 

feed and its aromas. In view of their intrinsic characteristics, namely high selectivity and 

possibility of operation at moderate temperatures, pervaporation (PV) is a membrane 
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process that seems highly appropriate for the separation of dilute species in liquid 

solutions [9, 10]. Specifically, organophilic PV membranes have a high potential for 

recovering natural and natural-identical aroma compounds, highly diluted in complex 

aqueous media [11]. 

In our previous work (refer to Chapter 7), different PV experiments were carried 

out in flat sheet configuration at laboratory scale. In them PEBA and PDMS 

membranes were tested for aroma recovery of natural grape must and of a model 

solution containing the main aromas characterizing musts. Results showed that among 

the membranes studied, the PDMS one presented an appropriate performance. 

The scope of the present research is to optimize sugar reduction in grape must, 

using NF and PV, in order to produce a full flavored white wine with reduced alcohol 

content. In that sense two aspects of the previously studied two-stage NF process will 

be addressed. First, the use of PV for aroma recovery of grape must before NF and 

fermentation will be assessed in order to minimize aroma depletion.  Second, the time 

required for the NF procedure will be reduced by improving the NF set up described 

elsewhere [7]. 

 

8.2 Materials and Methods 

 

8.2.1 Pervaporation experimental set up 

 

Aroma recovery of grape must prior to NF was carried out in a pilot plant scale 

unit equipped with a PV spiral wound module (SWM). The installation built for the 

experiments is schematized in Figure 8.1. It consisted in a 60L stainless steel feed 

vessel equipped with a TAE 051 water chiller to assure that the must is kept at 

constant temperature. The feed was extracted from the feed reservoir by means of a 

Tuthill gear pump. Two manometers were placed before and after the SWM to 

measure the inlet and outlet pressure. The upstream tubing was made of Teflon and 

the metal used in the permeate stream piping was stainless steel. The vacuum 

conditions in the downstream side were assured by a vacuum pump from Agilent 

Technologies. The unit was equipped with a vacuum pressure transducer from MKS, 

giving the permeate pressure, pperm, independently from the nature of the gas or vapor 

in presence. The condenser system consisted in two cold traps immersed in liquid 

nitrogen connected in parallel by three-way valves. This system allowed to take 

permeate samples at different filtration times. 
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Figure 8.1. Experimental set-up used for the pervaporation of must 

 

The PV SWM used was a PV-SR1 with a PDMS based membrane inside made 

and commercialized by Pervatech. The main characteristics of it are shown in Table 

8.1.  

 

Table 8.1. Main characteristics of the PV-SR1 pervaporation Spiral Wound Module 

Max.   P
 
 

(10
5
 Pa) 

Max. ΔP
  

(10
5
 Pa) 

pH 

range 

Max

. T 

(ºC) 

Active 

membrane 

Area 

Am (m
2
)
a
 

Module 

Length 

L (m)
a 

Module 

diameter 

(m)
 a
 

Leaf 

with W 

(m)
b
 

Feed 

spacer 

height 

H      

(10
-3

m)
 a

 

Feed 

spacer 

porosity
a
 

ε 

3 1 3 - 8 80 0.550 0.505 0.062 0.545 2.000 0.750 
a
 Provided by the manufacturer 

b
 Own determination 

 

As mentioned, the selection of the PDMS membrane and module was based on 

the results obtained in a previous work (refer to Chapter 7), testing the performance of 

different organophillic PV membranes in flat sheet configuration. Results showed that 

among the membranes studied, the PDMS presented an appropriate performance for 

aroma recovery of grape juice. 

 

8.2.2 Nanofiltration experimental set up 

 

Grape must nanofiltrations were performed in a pilot plant scale unit with two 

NF SWMs arranged in parallel. The experimental set-up used is shown in Figure 8.2. It 
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consisted in the same thermostated 60L stainless steel feed vessel used for the PV 

test. The feed was extracted from the reservoir by means of a diaphragm pump Hydra 

– Cell D25. Two pressure transducers were placed before and after the SWM 

configuration to measure the inlet and outlet pressure. In order to adjust manually the 

pressure inside the module a needle valve was placed at the exit of the unit. Cross flow 

was adjusted through this valve and the speed control of the pump. The retentate flow 

rate was measured with a flowmeter ranging from 0 to 150 L/min. The permeate flux 

was monitored using a multi-tube flow system with flow capacity from 0 to 10 L/min. 

The NF membranes used in the spiral wound configuration were the KMS SR3 

(reference 3839 SR3- NYV), made and commercialized by Koch Membrane Systems. 

The selection of the SR3 membrane was based on previous experiments testing 

different nanofiltration membranes in flat sheet configuration using commercial musts 

[12].The main characteristics of the membrane and SWM have already been exposed 

in our previous work [7] where a single SWM was used for the filtration of natural grape 

must. 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 Experimental set-up used for the nanofiltrations of must 

 

8.2.3 Verdejo white grape must 

 

The grapes used for the experiments came from a Spanish white variety named 

Verdejo. They were cultivated in the experimental vineyard of the Institute of 

Agricultural Technology of Castilla y León (fields of Zamadueñas and Rueda, 

Valladolid, Spain) from the 2013 vintage. Nearly 700 kg of Verdejo grapes were 

transported in plastic boxes of 15 kg to the experimental wine cellar of the Agricultural 

Engineering School (University of Valladolid, Palencia, Spain), where the musts were 

elaborated. The fruits were destemmed, crushed, sulphited and pressed to obtain the 

respective must. Potassium metabisulphite was added (40 mg/L of SO2) in order to 
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prevent oxidation or spoilage caused by bacteria. Pectolytic enzymes (10 mg/L of 

Enozym Altair, Agrovin) were added to enhance first clarification. The cleared must 

was filtered through 3 and 0.8 μm cellulose filter plates in order to prevent ulterior 

membrane fouling. 

After this, the content of total sugars (glucose and fructose), density viscosity, 

and main oenological parameters were determined. Some of these results are 

presented in Table 8.2 and the oenological properties of this must are shown in Table 

8.4 as control must (C). 

Grape must contains a great number of aromatic compounds making their 

identification, quantification and analysis very complicated. Therefore six of the most 

important aroma compounds of must, as found in the literature [13-15], have been 

studied in our previous work and also in this research. These compounds are: hexanal 

(HexAL), isoamylalcohol (i-AmOL), 1-hexanol (1-HexOL), benzaldehyde (BezAL), 

benzylalcohol (BezOL) and 2-phenylethanol (2-PhetOL). The concentration of them is 

exhibited in Table 8.2. 

 

Table 8.2. Original composition of pre-filtered Verdejo grape must 

 

Total 

Sugars 

(gL
-1

) 

ρ
a
    

(kgm
-3

) 

η
b
                     

(10
-3

 Pas) 

Aroma compound (ppb) 

H
e
x
A

L
 

i-
A

m
O

L
 

1
-H

e
x
O

L
 

B
e
z
A

L
 

B
e
z
O

L
 

2
-P

h
e
tO

L
 

Verdejo 

grape 

must 

215 ± 9 
1092.2

6 
1.517 

8.06± 

0.73 

188 ± 

13 

1372 ± 

9 

23.5 ± 

1.8 

19 ± 

7 

68 ± 

6 

a
 density of grape must (ρ) as a function of sugar content according to [16] 

b
 viscosity of grape must (η) as a function of sugar content as proposed in [17] 

 

The portions of musts that were going to be used for the filtration experiments 

were transported in stainless steel vessels to the Laboratory of Membrane Processes 

of the Faculty of Science (University of Valladolid, Valladolid, Spain). The remaining 

volumes of musts were kept as control musts in the cold chamber (at 4ºC in airtight 

vessels) of the Agricultural Engineering College (University of Valladolid, Palencia, 

Spain). 

 

8.2.4 Experimental Procedure 

 

Two processes were studied and compared in this work in order to assess the 

effectiveness of PV for aroma recovery of grape must before sugar reduction using NF. 

The first process consisted in the use of a two stage NF process for the reduction of 
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the sugar content of must. The second combined the use of PV of grape must for 

aroma recovery followed by the two-stage NF process for sugar reduction. 

A scheme that summarizes the steps and operating conditions of each process 

and the combination of them is depicted in Figure 8.3.  

 

8.2.4.1 Pervaporation 

During this experiment the operating parameters controlled (refer also to the 

dashed blue arrows in Figure 8.3) were: temperature of the feed stream, Tfeed = 16±1 

◦C, temperature of the condenser, Tcondens, which was kept constant at −196 ◦C. The 

downstream pressure was kept constant at pperm = 0.6 ± 0.2 kPa and the feed flow rate 

was set to 4 L/min. According to the flow conditions in a SWM explained in a previous 

work [7] and the spacers dimensions shown in Table 8.1, this corresponds to an 

effective velocity, of 8.16·10-2 ms-1. Moreover, according to this work and the properties 

of grape must (Table 8.2) this tangential velocity corresponded to a Reynolds number 

of 88.14 in the SWM. This Re number exceeds the transition state as mentioned by 

Koutsou and coworkers [18] assuring turbulent flow.  

In order to minimize the depletion of aromas during each experiment the feed 

vessel was kept closed and with a small headspace.  

Before the test the PV membrane was conditioned. Here, the PDMS membrane 

was treated by filtering Milli-Q (Merck Millipore) water under the same operating 

conditions. In this case, the experiment lasted for 2 h. 

50L of grape must were pervaporated during 6h. Three different permeates 

(PV1, PV2 and PV3) and retentates were collected every two hours alternately in the 

two cold traps of the condenser system. Samples were taken analyzed by gas 

chromatography. 

After the PV experiment the retentate was submitted to the 2-stage NF process, 

described in the next section, for sugar reduction. The permeates were kept in freezing 

conditions until the appropriate mixture before fermentation (see Figure 8.3). 

 

8.2.4.2 Two-stage nanofiltration 

This process consisted of the same sequence of steps mentioned in the 

previous works presented elsewhere [3, 7, 19] (see also Chapter 6). Operating 

conditions were modified in order to reduce the filtration time. For this purpose, the 

membrane active area (Am= 7.1 m2) was increased in the first stage using two SWM 

arranged in parallel. Besides, the feed flow was increased by means of a larger 

diaphragm pump. 
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Operating conditions are presented in Figure 8.3. It is important to remark that 

the recirculation flow in the first stage was of 50 L/min (25 L/min in each module) and 

30 L/min in the second. According to the equations and the spacers dimensions shown 

in a previous work [7] these correspond to an effective velocity, of 1.75·10-1 ms-1 per 

module in the first stage and 2.09·10-1 ms-1 in eachmodule-1 in the second. 

For both processes (2 stage- NF and PV followed by 2 stage- NF), the second 

permeate (P2) was mixed with the first retentate (R1) in appropriate proportions to 

produce the intended moderate reduction in the alcohol degree of the final wine. This 

mixture preserves the specific grape features linked to the high molecular weight 

components retained in R1 but with a lower sugar concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3. Experimental steps carried out during the different methods proposed 
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8.2.5 Elaboration of the corresponding wines  

 

The elaboration of wines was carried out at the experimental cellar of the 

Agricultural Engineering School (University of Valladolid, Palencia, Spain). Three 

different Verdejo white wines were manufactured: A control obtained from the control 

must (C), and two low alcohol content wines: one made from the mixture coming from 

the two-stage nanofiltration (P2+R1) and one produced from the mixture 

(P2+R1+Aromatic compounds) obtained from the pervaporation followed by the two-

stage nanofiltration process (see Figure 8.3).  

Fermentations were performed by duplicate. This means that each must or 

mixture was divided in two and fermented in separated vessels. In this way six different 

wine samples were obtained: two control wines (C1 and C2); two nanofiltered wines 

(2NF1 and 2NF2) and two pervaporated -nanofiltered wines (PV+2NF1 and PV+2NF2). 

All white wines were manufactured following the corresponding traditional 

procedure detailed in Figure S8.1 of the supporting material. 

  

8.2.6 Analytical Methods 

 

8.2.6.1 Oenological parameters 

As mentioned, the main oenological parameters of verdejo musts and 

corresponding wines were determined according to the principles and methods 

summarized in Table 8.3. 

 

Table 8.3. Methods used for the determination of some oenological parameters of musts. 

Parameter Principle Method 

Glucose and 

Fructose 

Ion exchange 

Chromatography 
HPLC 

Tartaric and Malic 

Acid 
Chromatography HPLC 

pH Potentiometry pH- meter 

Volatile acidity Acid- base titration García-Tena a 

Total acidity 
Potentiometric 

titration 
OIV b 

SO2 T and SO2 F Iodometry Ripper automated 

Alcoholic degree Ebullometry Barus apparatus c 

Total Polyphenols UV absorbance UV/Vis spectrophotometry 

Color Vis absorbance UV/Vis spectrophotometry b 
a [20]; 

b
 [21]; 

c
 [22];  

SO2T: Total SO2; SO2F: Free SO2 
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The chromatographic system used consisted in an HPLC apparatus from 

Waters with a Refractive Index detector Waters 2414, an isocratic pump Waters 1515, 

the Waters 1707 Autosampler, and a thermostated column compartment together with 

the software Breeze 2. A Supelco Supelcogel Pb guard column and column were used 

for the sugars (glucose and fructose) separation and a Shodex DE-413 guard column 

and column for malic and tartaric acid detection. 

Total and Free SO2 were determined by iodometry according to the Ripper 

method [20]. This technique was automated by means of an SO2- Matic 23 apparatus 

from Crison. 

Alcohol Degree of wines was measured by ebulliometry [22] using  a Barus 

apparatus from GAB System.  

UV/Vis spectrophotometric methods were performed using the UV/Vis 

spectrophotometer (Lan Optics 2000 UV, Labolan, Spain). 

 

8.2.6.2 Volatile compounds 

Solid-phase microextraction (SPME) was used to analyze the volatile 

compounds of samples coming from grape must and also of the corresponding wines. 

Extracts were analyzed by an Agilent Technologies Gas chromatography–mass 

spectrometry system (GC-MS). 

In the case of samples coming from grape juice, an SPME device from Supelco 

(Sigma-Aldrich Corporation) with a 10 mm fiber coated with 65 μm  

polydimethylsiloxane/divinylbenzene (PDMS/DVB) was used. The gas chromatograph 

was equipped with a HP-INNOWax capillary column (60m x 0.25mm i.d. x 0.5 μm) from 

Agilent and the carrier gas used was helium at a flow of 1.2 mL min-1. The conditions 

for the extraction of the volatile compounds were: 2 mL of the sample were transferred 

to a 4 mL vial; the ionic strength was adjusted with 0.8 g NaCl. The vial was sealed and 

the headspace extraction was performed for 60 min at 50ºC keeping the sample under 

continuous stirring. After this, the fiber was withdrawn into the needle, removed from 

the vial and inserted into the injector of the GC-MS system in splitless mode at 270ºC 

for 15 min. The GC oven temperature was programmed from 40ºC (held for 2 min) to 

215 ºC at 3.1 ºC min-1 (held for 3 min) and then to 250 ºC at 10 ºC min-1.  

For the extraction of wine samples, a 10 mm fiber coated with 100 μm 

polydimethylsiloxane (PDMS) was used. The gas chromatograph was equipped with a 

HP-5MS capillary column (30 m x 0.25 mm i.d. x 0.25 μm) from Agilent, and the carrier 

gas used was helium (1 mL min−1 constant flow). The SPME parameters used were as 

described by Zhang and coworkers [23]. Specifically, 5 mL of wine were added to a 15 

mL glass vial and the ionic strength was adjusted with 1.5 g NaCl. The optimized 

https://www.sigmaaldrich.com/analytical-chromatography/analytical-products.html?TablePage=18156570
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extraction of volatiles from the wine headspace consisted in exposing the fiber at 40 ºC 

for 30 min keeping the sample under continuous stirring. After this, the volatiles were 

desorbed in a splitless injector at 250 ºC for 10 min and transferred directly to the 

analytical column. The GC oven temperature was programmed from 40 ºC (held for 

3min) at 2 ºC min−1 to 120 ºC (for 1min), then at 4 ºC min−1 to 200 ºC (for 1min), then at 

12 ºCmin−1 to 250 ºC (for 2min).   

Agilent MSD ChemStation D.01.00 Build 75 (26-Aug-2003) software was used 

to acquire the GC/MS data. Compounds were identified by matching the mass spectra 

of the unknown peaks with the data stored in the Wiley Registry of Mass spectral Data, 

7th Edition (Agilent Part No.1730 A) library. 

In the case of samples coming from grape juice, the main aromatic compounds 

(i.e.Hexanal, isoamylalcohol, 1-Hexanol, Benzaldehyde, Benzylalcohol and 2-

Phenylethanol) were confirmed and quantified by standard curves obtained by the 

SPME of pure commercially available standards injected under the same conditions. 

 

8.2.7 Consumer sensory test 

 

Sensory evaluation of the wines was conducted with 20 oenology student 

volunteers from18 to 44 years old and with previous experience in wine tasting. 

Consumer tests were carried out in the Sensory Science Laboratory of the 

Agricultural Engineering College at the University of Valladolid, Palencia (Spain), in 

individual booths.  

Consumers tasted the samples served sequentially and monodically, using 

randomized complete block design. Samples were presented in wine- tasting glasses 

coded with 3-digit random numbers and served in a randomized order. Water and 

crackers were available for rinsing. 

The sensory analysis session for each panelist consisted in three tests which 

will be briefly explained. 

 

8.2.7.1 Overall liking 

In the first study consumers were asked to try each of the wines and to evaluate 

their overall liking using a 9-point hedonic scale. The scale of values ranged from ‘‘like 

extremely’’ to ‘‘dislike extremely’’ corresponding to the highest and lowest scores of 9 

and 1, respectively. 
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8.2.7.2 Intensity scales 

Asking consumers to rate the intensity of different sensory attributes using 

scales has been reported as an appropriate alternative to the sensory profile that 

trained assessors could provide [24]. 

In this task, consumers had to rate the intensity of nine sensory attributes using 

a 10 cm unstructured line scale from 0 to 10. The attributes considered were the 

following: color, odor, volume in mouth, bitter, acid, fruity, fennel, herbaceous and 

persistence in mouth. 

 

8.2.7.3 Projective mapping 

The third and last study corresponded to the projective mapping task, also 

known as Napping ® [25]. This method has been used to quantify individual perception 

of overall similarity and dissimilarity between products. In this methodology consumers 

are asked to provide a two dimensional projection of a group of samples, according to 

their own criteria [24]. Here consumers were first asked to try each of the wines. After 

this, consumers were asked to place the samples on a 60x40 cm white sheet according 

to the similarities or dissimilarities between them. Consumers were explained that they 

had to complete the task according to their own criteria and that there were no right or 

wrong answers. They were also explained that samples close together on the sheet 

would correspond to very similar wines and that if they perceived samples as very 

different they had to locate them very distant from each other. Only for this study, 

consumers were briefly told about the wine making and membrane process involved for 

samples production. In this case, information was provided in order to evaluate the 

influence of membrane processes in consumers ‘perception.  

For each consumer map, the X and Y coordinates of each sample were 

determined, considering the left bottom corner of the sheet as origin of the coordinate 

system. 

 

8.2.7.4 Data analysis 

Descriptive statistics (mean, standard deviation) were calculated for each of the 

descriptors evaluated using hedonic and intensity scales. An analysis of variance 

(ANOVA) was performed with the hedonic data using the statistical program SPSS 

Statistics version 20.0. The Tukey test was used to determine statistically significant 

differences between the means. Confidence intervals of 95 % or a significant level of p 

= 0.05 were used. 

For intensity scales, a principal component analysis (PCA) was carried out on 

the data matrix composed of the means of consumers data x samples. Statgraphics 
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Plus for Windows 4.0 (Statistical Graphics Corp., Rockville, MD 20852-4999 USA) was 

used for data processing. 

Data from the projective mapping task consists on the X and Y coordinates of 

the wines in the white sheet, for each consumer. These data were analyzed using 

Multiple Factor Analysis (MFA), to allow an study of the different aspects of such a data 

set [25]. For data analysis, R programming language [26] and the R package 

FactoMineR were used. 

 

8.3 Results and Discussion 

 

8.3.1 Pervaporation experiments 

 

The permeate flux, Ji, which is the flow rate of permeate of the i-th component 

per unit of membrane area expressed in gh-1m-2. Based on the mass of grape must that 

permeated through the PV membrane area every 2 hours, the instantaneous overall 

flux Jtot,j and also the global flux Jtot during the experimental time (6 hours) were 

calculated. In this way, the global permeation of grape juice was Jtot=73.97 (gh-1m-2). 

This value was more than 10 times lower than the global value obtained in the previous 

test using the PDMS flat sheet module: 987.30 (gh-1m-2) (see Chapter 7). This 

decrease is only attributable to the difference in the configuration of the modules used. 

On one hand the configuration in a SWM modifies the effectivity of the vacuum in the 

permeate side. On the other hand, as mentioned elsewhere [7] the presence of 

spacers modifies the hydrodynamic conditions in the retentate side modifying 

concentration polarization and fouling effects. Figure 8.4a shows permeate flux 

decrease every 2 hours. It can be appreciated that there is a remarkable decrease of 

Jtot,j during the first period followed by a less sharp decrease suggesting that a more or 

less constant permeate flux could be reached. This decay can be attributed to the 

process of membrane fouling and also to the reduction of the concentration of volatile 

compounds in the retentate side. 

By using the permeate mass fraction of the i-th component in the permeate, the 

partial flux of each aroma compound Ji was calculated along the pervaporation 

process. Results are shown in Figure 8.4b. The partial fluxes obtained here were 

between 2 and 3 orders of magnitude lower than those for the flat sheet module. 

Nevertheless, the same trend of permeation was detected, i.e. the passage of alcohols 

through the membrane is higher than that of aldehydes. Additionally it may be 

appreciated that alcohols present a decreasing trend along the complete process. This 

is, possibly because a very quick saturation of the membrane and the decrease of the 
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concentration of these compounds with time in the retentate. In contrast, aldehydes 

exhibit a maximum at intermediate filtration time values. This may be due to their lower 

affinity for the polymer, making the process of saturation of the membrane slower. 

Although, as mentioned in Chapter 7, the permeability of aldehydes within grape must 

seems to be strongly influenced by the interactions of these compounds with other 

molecules or macromolecules present in the media. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 Time evolution of the total permeate flux (Jtot,j) (a) and partial fluxes of each aroma 

compound (b) along pervaporation of grape must 

 

The performance of a PV membrane is often described by the separation 

capacity along the process. In order to quantify this, the mass concentration 

enrichment factor, βi, for the component i is defined as the ratio of the mass 

concentration of i in the permeate CP,i and the mass concentration of i in the feed, Cf,i: 
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The ratio of enrichment factors of a compound i and a compound j indicates the 

selectivity or separation factor, αi,j, that a membrane has for a compound i in 

comparison with compound j:  
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Since grape juice is a complex matrix, selectivity was defined as the separation 

of each aroma towards the compounds present in grape juice except the aromas 
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studied. The results obtained for these performance parameters are plotted in Figure 

8.5. Here, it can be observed that the enrichment and separation factors decrease with 

PV time for iIsoamylalcohol, hexanal, 2 phenylethanol and benzaldehyde. This 

suggests a good trend of recovery of these solutes along the process. In the case of 

hexanol and benzylalcohol a progressive increase of these factors is shown but no 

decrease is observed. This means that the depletion of these aromas is not achieved 

during the experimental time studied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Time evolution of enrichment (βi) (a) and separation (αi,must) (b) factors of each 

aroma compound along the pervaporation process Dashed lines correspond to the factors when 

j represents must except the aromas analyzed (j=i) 

 

Once again the values obtained for these performance parameters are about 10 

times lower than the respective values calculated in the previous test using the PDMS 

flat sheet module (see Chapter 7). This was expected due to the lower fluxes 

mentioned before. 

The results obtained for these parameters, compared with those obtained in our 

lower-scale studies, suggest that mass transfer should be enhanced in the SWM (even 

though turbulent conditions were assured). 

 

8.3.2 Nanofiltration experiments 

 

As shown in Figure 8.3, the two-stage nanofiltration process is common to both 

filtration methods studied. The only difference was the feed which in one case 

consisted of the original must and in the other it was the same must but with a lower 

aromatic profile (retentate of the PV process). This difference should not affect the NF 

process. Figure 8.6 shows the kinetics of permeate flow, which is therefore 

representative of two methods. Green filled circles correspond to the first NF- stage 
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while white filled circles represent the second NF- stage. The permeate flux decrease 

for both stages showed the same trend as observed in previous studies using the same 

grape juice variety in Chapter 6 [3, 19]. Here, the initial flow of the first- stage is 

considerably lower than the initial one of the second-stage. The presence of high 

molecular weight compounds in the feed of the first process increases the effects on 

permeate flux decrease of the increase of viscosity, osmotic pressure difference and 

membrane fouling. Although these parameters have the same influence during the 

second filtration, their effect on permeate flux is smaller since the feed is mainly 

composed of low molecular weight molecules. 

It is important to remember that one of the aims of this research is to reduce the 

NF time necessary for the intended sugar reduction. Therefore, in comparison to our 

previous studies [7], the effective membrane area was increased in the first NF-stage 

and the effective crossflow velocity was increased in both stages. Figure 8.6 shows 

that the initial permeate flux of the first stage is around two times higher: 2.36·10-7 ms-1 

vs 5.31·10-7 ms-1 and around four times for the second stage (11.80·10-7 ms-1 vs 

47.21·10-7 ms-1) (see Chapter 6). In this way the filtration times required were also 

remarkably decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Permeate flux decrease of Verdejo grape must during the first (green filled circles) 

and second (white filled circles) NF stages  
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8.3.3 Analysis of the resulting musts 

 

The main oenological parameters of the resultant permeates and retentates 

were determined, for each NF stage and membrane process. These were also 

analyzed for the must mixtures with a lower potential alcohol content coming from the 2 

membrane processes (mentioned in section 8.3.5). Results are shown in Table 8.4. 

Note that some parameters have not been determined for some samples because they 

were considered irrelevant. It can be appreciated that the mixtures (P2+R1) and 

(P2+R1+Aromas) predict a 2.5º reduction of the alcohol content as intended. The 

influence of membrane procedures on the phenolic compounds was measured in terms 

of the total polyphenols index (TPI) and the color index (CI), since they are related to 

the color of must. Table 8.4 shows that the must blends have similar or even higher 

values as the control must. This means that the influence of the membrane processes 

on factors related with color is negligible. It is also important to analyze the total acidity 

(TA) of must and their mixtures since it is one of the parameters controlled to achieve 

an appropriate fermentation.  In this sense TA should not be lower than 5 g/L 

(expressed in g of tartaric acid (TH2) per liter of must) otherwise it should be adjusted 

by adding tartaric acid before fermentation. Table 8.4 shows that the mixtures and even 

the original must had a TA lower than 5 gTH2/L and all of them had to be adjusted. 

Moreover both mixtures: (P2+R1) and (P2+R1+Aromas) had a lower TA than the 

original must. However the blend obtained from the PV process (P2+R1+ Aromas) has 

a TA value that is more similar to the original must than the mixture coming from the 

NF process. This means that the PV process and its musts mixture allows a higher TA 

recovery.  

The performance of the PV process was also analyzed by measuring the aroma 

profile of the mixtures. Results are shown and compared with the control must in Figure 

8.7. It can be observed that none of the mixtures presented the same aromatic profile 

as the original grape must. As expected, NF enhanced the depletion of most of the 

aromatic compounds studied since the mixture of musts coming from this process 

exhibited a lower aromatic profile of them. The mixture corresponding to the process 

PV+ 2NF showed that PV allowed a recovery of the majority of compounds studied 

with the exception of benzaldehyde and 1-hexanol. Nevertheless, results advocate that 

PV shows an appropriate behavior for the aim of this study, but as already mentioned 

mass transfer during this process has to be enhanced. 
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Figure 8.7 Aromatic profile of untreated grape must and the mixtures of must coming from the 

2NF and PV+2NF processes before fermentation 

 

8.3.4 Production and chemical analysis of wines 

 

As mentioned in section 8.2.5, six different wines were elaborated. Two control 

wines (C1 and C2) with a regular alcohol degree; and four low alcohol content wines: 

two nanofiltered (2NF1 and 2NF2) and two pervaporated -nanofiltered (PV+2NF1 and 

PV+2NF2). Table 8.5 shows the results of the chemical analysis of the six wine 

samples. 

In the case of nanofiltered samples 2NF1 and 2NF2 wines had an alcohol 

degree lower by 1.5º and 1.4º %vol respectively in comparison to the control C wine. 

Regarding the pervaporated -nanofiltered samples, PV+2NF1 and PV+2NF2 showed 

an alcohol reduction by 1.7º and 1.5º %vol respectively. 

In terms of pH, no significant differences between the control and filtered 

samples were measured.  In terms of volatile acidity (VA) NF samples presented lower 

values but all samples had a content lower than 1 g/L which describes an appropriate 

fermentation. 

Regarding the parameters related to the color of wines, color index (CI), no 

significant differences were detected. But in terms of total polyphenol index (TPI) the 
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control sample C2 presented a value much lower than C1. This means that the 

reactions during the fermentation  of each control sample were different. 

 

Table 8.5 Chemical analysis for the main oenological parameters of the white wines elaborated 

Paramete

r 

Verdejo Control Verdejo 2NF Verdejo PV+2NF 

C1 C2 2NF1 2NF2 PV+2NF1 PV+2NF2 

AD    

(%vol) 

11.90 ± 

0.07 

11.95 ± 

0.01 

10.45 ± 

0.01 

10.52 ± 

0.01 

10.25 ± 

0.01 

10.43  

±0.04 

pH 
2.89 ± 

0.01 

2.89 ± 

0.01 

2.82 ±  

0.02 

2.79 ± 

0.02 

2.73 ± 

0.01 

2.76 ± 

0.04 

T.A. 

(gTH2 /L) 

7.65 ± 

0.01 

7.61 ± 

0.05 

7.28 ± 

0.08 

8.23 ± 

0.16 

7.31 ± 

0.03 

7.38 ± 

0.01 

V.A. 

(g /L) 

0.67 ± 

0.05 

0.52 ± 

0.01 

0.33 ± 

0.05 

0.28 ± 

0.01 

0.78 ± 

0.04 

0.75 ± 

0.01 

TPI 
4.41 ± 

0.04 

4.06 ± 

0.01 

4.44 ± 

0.06 

4.22 ± 

0.01 

4.12 ± 

0.08 

4.15 ±   

0.9 

CI 
0.07 ± 

0.01 

0.08 ± 

0.01 

0.11 ± 

0.01 

0.12 ± 

0.01 

0.09 ± 

0.01 

0.09 ± 

0.01 

Verdejo C: White control wine, Verdejo 2NF: white wine obtained after the fermentation of the 

mixture (R1+P2), Verdejo PV+2NF: white wine obtained after the fermentation of the mixture 

(R1+P2+Aromas) 

T.A: Total acidity expressed as g TH2 per liter, TH2= Tartaric acid, TPI: Total Polyphenol Index, 

CI: Color Index 

 

8.3.5 Sensory characteristics of the resulting wines 

 

8.3.5.1 Overall liking 

Consumers’ overall liking scores are exhibited in Table 8.6 as the mean of this 

descriptor for each of the six evaluated samples. Standard deviations were relatively 

high, ranging from 0.78 to 1.45, indicating some variability in consumers´ evaluation for 

each sample. Furthermore, the same superscripts within the column indicate that, 

according to the Tukey`s test (p=0.05), no significant differences between the samples 

were detected. Nevertheless scores allowed discriminating between samples. Sample 

C1 and (PV+2NF1) were the most liked whereas C2 was the most disliked. However, 

no high differences were found between them, since the scores ranged from 5.00 to 

6.05. This suggests that samples did not cause highly different affective reactions to 

the consumers. Moreover, all samples were positioned in the middle part of the scale 

corresponding to products classified as indifferent or slightly liked in the 9-point hedonic 

scale. 
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Table 8.6 Mean overall liking for the six evaluated wine samples 

Sample Overall liking 

C1 6.05 ± 0.78a 

C2 5.00 ± 1.45a 

2NF1 5.21 ± 1.23a 

2NF2 5.42 ± 1.22a 

PV+2NF1 5.95 ± 1.27a 

PV+2NF2 5.42 ± 1.17a 

 

8.3.5.2 Intensity scales 

Average scores for the nine evaluated sensory attributes of the six samples 

were subjected to principal component analysis (PCA) in order to decrease the number 

of results associated with the data and get a consensus representation of the samples. 

Results are shown in Figure 8.8, were it can be appreciated that the first principal 

component, PC1, accounts for 44.89% of the variability data and PC2 explains the 

19.34% of the data variance. According to Figure 8.8 wines could be separated into 

three groups. First, sample 2NF1 was located apart from the rest of samples and was 

characterized by high odor intensity. Meanwhile, samples C1, 2NF2 and PV+2NF2 

were located in the group of wines perceived as bitter, fruity and fennel. Whereas 

samples PV+2NF1 and C2 were perceived as herbaceous and more persistent in 

mouth and acid. Specially, sample C2 was located at the highest acid intensity and this 

may be the reason why this sample corresponded to the most disliked one as shown in 

Table 8.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8 Representation of the six wine samples in the first two dimensions of the PCA plot of 

mean scores from intensity scales. 
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8.3.5.3 Projective mapping 

Figure 8.9 represents the location of wine samples in the first two dimensions of 

the MFA of the projective mapping data. The first dimension of the MFA accounted for 

28.67% and the second for 22.24% of the total variance of the experimental data. MFA 

shows that samples can be separated into 2 main groups. One group is composed of 

samples C1, PV+2NF2 and 2NF1 being all samples located in the negative values of 

both dimensions. The second group is composed of samples C2, PV+2NF1 and 2NF2 

even though they are located relatively apart from each other. It is important to see that 

in both groups the low alcohol samples: PV+2NF2 and 2NF1 in the first group and 

PV+2NF1 and 2NF2 in the second, were found more similar between them. It is also 

important to analyze that, in both groups; the samples corresponding to the PV 

experiments are located nearer to the control samples than the ones coming from the 

NF tests. This suggests that consumers found PV samples more similar to the control 

wines than NF samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9. Representation of the six wine samples in the first two dimensions of the MFA plot 

of data from projective mapping  

 

 

8.3.6 Aromatic profile of the resulting wines 

 

The transformation of must into wine trough alcoholic fermentation alters 

considerably the chemical composition of the medium. The alcohol produced by the 
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fermentation of sugars in the must causes both qualitative and quantitative changes in 

its chemical composition. 

In our case the difference in sugar content of the mixtures and control musts 

affects the production of one of the major compounds, ethanol. This compound is also 

associated with the formation of various compounds that provide aroma characteristics 

to wine. For example ethylesters are produced during fermentation by the reaction of 

ethanol with fatty acids.  

Moreover, it is not simple to compare the aromatic profile of the six wines 

elaborated since not only the alcohol content of the blends was different, also each 

fermentation was carried out in a different vessel. Therefore, the aromas of the different 

volatile compounds generated combine to create a new aroma that makes each wine 

unique.  

Thus, in order to compare the aroma profile of the wines obtained by each 

membrane process, the average aromatic content of the filtrated wines were compared 

with the most liked control wine (C1). The comparison of all the compounds identified in 

the three wine samples is beyond the scope of this study. Therefore, only 14 of the 23 

compounds were selected for the assessment of the wines obtained. Results are 

shown in Figure 8.10. Note that the peak areas are normalized (100) to the total peak 

area excluding ethanol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10 Aromatic profile of the resulting average wine samples expressed in normalized 

peak areas (A%) to the total peak area excluding ethanol 
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Results show that the average wine coming from the PV experiments (PV+2NF 

average have a more similar aromatic profile to the control wine (C1) for eight of the 

compounds that compose it. Moreover, this occurs mainly with low molecular weight 

alcohols and esters (see Table 8.7) with the exception of ethyldodecanoate. The 

concentration of higher molecular weight components (such as higher ethylesters) 

occurs during the last stages of alcoholic fermentation and is more influenced by 

reactions of byproducts during this process. Lower alcohols and esters are produced 

during the initial phase of fermentation and are more related with aroma precursors in 

grape juice which are recovered during PV and can be lost during NF. Moreover, as 

shown in Figure 8.7 PV allowed the recovery of isoamylalcohol and 2-phenylethanol 

and it can be expected that it allowed also the recovery of similar compounds as is the 

case of Isobutyl alcohol. In this sense, it is logical that the wine (PV+2NF average) has 

a more similar content of these compounds than (2NF average) when compared to C1. 

Figure 8.10 also shows that (PV+2NF average) has a higher content of aromas related 

to the mentioned precursors such as isoamylacetate, isoamyloctanoate and 

phenylethylacetate. 

 

Table 8.7 Characteristic wine aroma components 

Compound 
Molecular 

weight (g mol-1) 

Boiling Point 

(ºC) 

Aromatic 

descriptor 

Ethyl acetate 88.11 77 Ethereal -fruity 

Isobutylalcohol 74.12 108 
Nail polish, 

pungent 

Isoamylalcohol 88.15 130 Malty, pungent 

Ethylbutanoate 116.16 119 Fruity, sweet 

Isoamylacetate 129.18 215 Banana 

Ethyl hexanoate 144.21 166 Fruity, pleasant 

2 Phenylethanol 122.16 219 Rose, spicy 

Octanoic acid 144.21 237 Rotten fruit 

Ethyl octanoate 172.26 206 Ripe fruit 

2 Phenylethylacetate 164.2 238 Rose, floral 

Ethyl 9 decenoate 198.30 249 Rose 

Ethyl decanoate 200.32 245 Fruity 

Isoamyloctanoate 214.34 267 Oily 

Ethyl dodecanoate 228.37 269 
Sweet, waxy, 

fruity 
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The chemical analysis of the aromas also allowed to evaluate the consumer 

sensory test. As shown in Figure 8.8 C1 and the PV wines were located in the regions 

perceived by the consumers as fruity, herbaceous and fennel. This last descriptor is 

related with herbaceous, sweet notes, similar to anise. These agrees with the aromatic 

descriptors (see Table 8.7) characteristic of these samples such as Isoamylalcohol, 

Ethylacetate, Ethyldodecanoate, Octanoicacid, Phenylethanol, Isoamylacetate and 

Isoamyloctanoate.  

 

8.4 Conclusions 

 

After the assessment of the different membrane processes studied in this work, 

the main following conclusions can be raised: 

 

 The new experimental set up allowed the reduction of the NF time necessary 

for the intended sugar control. 

 The mixture of musts (P1+R2+ aromas) corresponding to the process PV+ 2NF 

showed an aroma content more similar to the original grape must with the 

exception of Benzaldehyde and 1-Hexanol.  

 

Regarding the wines produced, the following conclusions can be made: 

 

 Both of the membrane processes studied here for sugar control in grape juice 

allowed the partial reduction of alcohol in the resulting wine.  

 Consumers’ overall liking scores showed that Sample C1 and (PV+2NF1) were 

the most liked. 

 Projective mapping (Napping ®) results exhibited that consumers found the 

wine samples corresponding to the PV tests more similar to the control 

samples.  

  Analysis of the aroma compounds showed that in comparison to the most liked 

control wine, wines coming from the PV experiments had a more similar 

aromatic profile than the ones coming only from the NF tests.  

 

All in all it can be concluded that among the membrane processes assessed in 

this work, the combination of PV and a 2 stage NF process presented the best results 

for the elaboration of a full flavored low alcohol content wine. Nevertheless mass 

transfer during the PV process needs to be enhanced. This can be presumably 

achieved by increasing the time of PV. Also a higher feed tangential flow or feed 
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pressure should improve the aroma transfer if care was taken to avoid exceeding the 

maximal pressure drop through SWM recommended by the manufacturer. 
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8.6 Nomenclature 

 

Roman 

Am   Membrane active area (m2) 

CF,j    Mass concentration of the i-th compound in the feed (kgm-3) 

CP,j    Mass concentration of the i-th compound in the permeate (kgm-3) 

Ji   Permeate flux of the i-th compound (gh-1m2) 

Jv  Volumetric permeate flux per unit of area through the membrane (m s-1) 

 

 

Greek 

αi,j  Selectivity for the i-th compound towards the j-th compound.   

  (dimensionless).  

βi   Mass concentration enrichment factor (dimensionless) 
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8.8 Supplementary material  

 

The following is the supplementary information provided for this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8.1 Traditional winemaking procedure for white wines 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

SECTION V. MAIN CONCLUSIONS & 

FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions 

265 

Conclusions 

 

The scope of the work described in the present PhD thesis is to optimize a 

membrane process for the appropriate control of fermentable sugar of grape must 

aiming to produce full flavored low alcohol content wines. In general, this research has 

been focused on the development of a complete membrane process capable of solving 

the problems caused by climate change on grapes composition. This process should 

be able to help winemakers to keep the elaboration of wines with a controlled alcohol 

content, which at the same time is liked and accepted by consumers.  

From the different studies carried out for this purpose, several conclusions may 

be raised.  

Regarding the study of reduction of the nanofiltration permeate volume flux (Jv) 

due to fouling, resistances (Rj) and osmotic pressure generated during the 

nanofiltration of grape must a method was proposed. This one allowed the individual 

analysis of the influence of the different molecular weight compounds characteristic of 

grape juice. The results proved that high molecular weight compounds (HMW) have 

more influence on the permeate flux decrease since they are the main responsible of 

the fouling phenomenon (cake filtration fouling mechanism), while low molecular weight 

compounds (LMW) contribute to the flux decay mostly through an increase of osmotic 

pressure during the process. 

 

Moreover, the method was tested using three different nanofiltration 

membranes. This allowed a systematical analysis and comparison of the performance 

and fouling of these membranes during must nanofiltration. Here, it was proven that for 

the three of them: 

 the kinetics of fouling when HMW compounds were present included three 

consecutive steps: pore blocking followed by cake deposition and an increase 

in compression until arriving to compaction  

 it was observed that, the maximum resistances caused by HMW (RfHMW) agreed 

fairly well with the beginning of the third fouling mechanism, where the cake 

starts to be compacted  

 the evolution of the effective pore radii evaluated from must retention showed 

that for long filtration periods they tend to a similar final effective pore size 

which converges in the pore size determined by the cake deposit and its 

compaction. 

According to this study it could also be concluded that the ideal NF membrane 

for the intended process would, have a retention of the main sugars of about 50%. 
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Also, it should have low affinity for HMW since they are the main responsible of flux 

decrease due to fouling. Besides, the process should be designed to operate at low 

concentration polarization conditions in order to reduce the effects of osmotic pressure 

observed. The latter should be achieved working at the highest possible recirculation 

flow and also using effective turbulence promoters inside the membrane module. 

 

The design of a pilot plant-scale experimental set up that would simultaneously 

allow an adequate control, short filtration times and volume, promoted several results. 

First, the systematic study and comparison of different nanofiltration membranes 

helped the selection of the most appropriate spiral wound module (SWM) in terms of 

desired sugars retention and less fouling. Moreover, the tests carried out aiming to 

analyze mass transfer and membrane fouling in the SWM allowed assessing the 

influence of spacers in it. Results showed that the flow destabilization and eddy 

promotion caused by spacers mitigated the rate at which the cake thickens and 

compacts on the membrane surface. The latter caused a less-sharp permeate flux 

decrease with an almost constant sugars rejection and small osmotic pressure 

differences. 

The results of the experiments conducted during the first vintage promoted the 

selection of the most appropriate NF technique. Results showed that for the intended 

sugar reduction and wine elaboration a 2-stage NF process is the best choise. This is 

because the mixture of the retentate of the first stage (R1) with the permeate of the 

second (P2) allowed not only the appropriate control of sugars but it also promoted a 

higher recovery of HMW (i.e. polyphenols) and minimized volume losses. This 2-stage 

process was improved in ulterior experiments carried out during the second vintage. 

This was achieved designing a device with two SWM arranged in parallel and 

increasing the recirculation flow. The new set up reduced the NF time required for 

sugar reduction using the 2-stage process. 

 

The studies of the resulting impairment of the aroma and flavor quality of the 

final wine allowed the analysis of the use of pervaporation (PV) for the recovery of the 

primary aromas of must before NF. 

Experiments at laboratory scale using PV membranes coated with two of the 

most used polymers: polydimetylsiloxane (PDMS) and polyetherblockamide (PEBA) 

promoted different results. First it showed the feasibility of the use of these membranes 

for the recovery of several aroma compounds characteristic of natural beverages. 

Moreover, it was observed during aqueous model solution experiments that both 

membranes have higher selectivity for aldehydes than for alcohols. But, both 
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membranes showed a different permeation behavior during PV of grape juice tests 

changing to a higher selectivity for alcohols. This means that probably aldehydes have 

stronger interactions than alcohols with the rest of the components of grape must. Even 

though both membranes exhibited similar performance, PDMS showed the best 

permeation behavior to all compounds of interest and for both feeds. It is also important 

to mention that one of the major disadvantages of the PV process proposed is the low 

operating temperature. Although it reduces the mass transfer through the membrane of 

the target compounds, it is required to prevent the evaporation of these compounds in 

the tank. Also higher temperatures would promote undesirable reactions in the juice 

such as spontaneous fermentation or spoilage and the formation of side aromas. 

Aroma depletion was evaluated at a higher scale (i.e. pilot plant) in the second 

vintage using a PDMS based SWM. The comparison of the results obtained at both 

scales showed that in terms of permeate flux, enrichment factor and selectivity of the 

PV SWM the values were remarkably lower than those obtained at laboratory scale. In 

spite of this, the analysis of the aroma compounds of the musts mixtures and resulting 

wines, showed that those coming from the PV and NF processes had an aroma profile 

more similar to the control ones. Moreover, consumers´ overall liking scores showed 

that wines coming from PV and NF processes were more preferred than those coming 

only from NF experiments. This leads to the conclusion of the feasibility of the use of 

PV for aroma recovery of grape juice for the elaboration of a full flavored low alcohol 

content wine. 

 

As the main conclusion of the present work it can be said that among the 

different processes studied here, the best one is the combination of pervaporation for 

aroma recovery followed by a 2-stage nanofiltration procedure for sugar reduction. This 

combination will provide a solution to the climate-change related effects detected the 

winemaking industry  
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Future directions 

 

In accordance to the results obtained in this work the following issues could be 

considered for ulterior research and development activities in order to enhance the 

membrane process proposed: 

 

 Study of an online cleaning procedure for the nanofiltration membrane in order 

to enhance the productivity and yield of the process by increasing the volume of 

must to be filtered. An interesting process could be the use of a high flux 

backflush system for the removal of the cake deposited on the membrane 

surface. 

 Detailed study of mass transfer and hydrodynamics in the PV SWM in order to 

enhance the permeation of primary aroma compounds in grape must. 

 Design of a new PV set up capable of operate at higher temperatures inside the 

module (around 30ºC) without increasing the temperature of the feed. This can 

be presumably achieved with two heat exchangers at the ends of the PV 

module. A heater should be placed before the module in order to heat the feed 

and a cooler in the retentate loop aiming to cool the retentate before it returns to 

the feed tank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


