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Abstract

SUOWA operators are a new family of aggregation functions that simultaneously generalize weighted means and

OWA operators. Semi-uninorms, which are an extension of uninorms by dispensing with the symmetry and associa-

tivity properties, play a fundamental role in their definition. In this paper we show several procedures to construct

semi-uninorms. The first one allows us to obtain continuous semi-uninorms by using ordinal sums of aggregation op-

erators while the second one is based on a combination of several given semi-uninorms. We also pay special attention

to the smallest and the largest idempotent semi-uninorms and we point out some advantages of SUOWA operators

over WOWA operators.

Keywords: Choquet integral, weighted means, OWA operators, semi-uninorms, SUOWA operators, WOWA

operators.

1. Introduction

There exists a great variety of functions proposed in the literature for the task of aggregating information. Weighted

means and ordered weighted averaging operators (OWA), introduced by Yager [1], are two of the best known. Al-

though both families of functions are defined through weighting vectors, their behavior is completely different: in

the case of weighted means, the values are weighted according to the reliability of the information sources, while

in the case of OWA operators, the values are weighted in accordance with their relative position. The need of both

weightings in fields as diverse as robotics, vision, fuzzy logic controllers, constraint satisfaction problems, schedul-

ing, multicriteria aggregation problems and decision making has been reported by several authors (see, for instance,

Torra [2, 3], Torra and Godo [4, pp. 160–161], Torra and Narukawa [5, pp. 150–151], Roy [6], Yager and Alajlan [7],

Llamazares [8] and references therein). This fact has prompted the emergence of specific functions to deal with this

class of problems.

A common approach in this context is to consider families of functions parametrized by two weighting vectors

that generalize weighted means and OWA operators in the sense that one of these functions is obtained when the
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other one has a “neutral” behavior; that is, its weighting vector is that of the arithmetic mean (for an analysis of some

of them, see Llamazares [9]). Two of the best-known solutions are the operator proposed by Engemann et al. [10],

and the weighted OWA operator (WOWA) introduced by Torra [3]. The operator proposed by Engemann et al. [10],

which has been rediscovered as MO2P (Roy [6]), IP-OWA operator (Merigó [11]), and HWAA operator (Lin and

Jiang [12]), has some interesting properties but also has an important shortcoming: it is not monotonic (see Liu [13],

Llamazares [9], Wang [14] and Lin [15]). For its part, WOWA operators have good properties given that they are

Choquet integral-based operators with respect to normalized capacities (see Torra [16]). However, in some cases,

their behavior is unsuitable to model certain problems (see Llamazares [9, 8]).

Semi-uninorm based ordered weighted averaging operators (SUOWA) were introduced by Llamazares [8] as an

alternative to the previous functions. They are also defined as Choquet integral-based operators associated with

normalized capacities that are defined in terms of two weight distributions (one for the weighted mean part, the

other for the OWA operator part) and “assembled” by semi-uninorms. Since SUOWA operators are representable

as Choquet integral with respect to normalized capacities, they share some good properties with WOWA operators.

In addition, in the case of using idempotent semi-uninorms, they present some interesting additional properties (see

Llamazares [8]).

Given that semi-uninorms play a fundamental role in the definition of SUOWA operators, in this paper we show

two procedures to construct semi-uninorms. The first one, based on the notion of ordinal sums of aggregation op-

erators, allows us to obtain continuous semi-uninorms. The second one, based in the combination of several semi-

uninorms, allows us to construct new semi-uninorms that keep some properties of the former semi-uninorms. Es-

pecially interesting is the case where semi-uninorms are combined by means of weighted means. Under certain

assumptions, the value of the SUOWA operator associated with the new semi-uninorm can be straightforward ob-

tained combining with the same weighted mean the values of the SUOWA operators associated with the former

semi-uninorms.

Another issue addressed in this paper is the analysis of the capacities and the SUOWA operators associated with

the smallest and the largest idempotent semi-uninorms (which are, in fact, two well-known uninorms given by Yager

and Rybalov [17]). We conclude the paper with some comparisons between SUOWA operators and WOWA operators.

The paper is organized as follows. In Section 2 we recall some basic properties of aggregation functions and the

definition of the discrete Choquet integral. We also show that weighted means, OWA operators, WOWA operators

and SUOWA operators are particular cases of this integral. Section 3 is devoted to the construction of semi-uninorms,

which play a fundamental role in the definition of SUOWA operators. In Section 4 we analyze the SUOWA operators

obtained from the smallest and the largest idempotent semi-uninorms. Finally, Section 5 is dedicated to show some

advantages of SUOWA operators over WOWA operators.
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2. Preliminaries on aggregation functions

Throughout the paper we will use the following notation: N = {1, . . . , n}; given A ⊆ N, |A| denotes the cardinality

of A; vectors are denoted in bold; η denotes the tuple (1/n, . . . , 1/n) ∈ Rn. We write x ≥ y if xi ≥ yi for all i ∈ N. For

a vector x ∈ Rn, [·] and (·) denote permutations such that x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n).

We now recall well known properties of aggregation functions.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if F(xσ(1), . . . , xσ(n)) = F(x1, . . . , xn) for all x ∈ Rn and for all permutation σ of N.

2. F is monotonic if x ≥ y implies F(x) ≥ F(y) for all x, y ∈ Rn.

3. F is idempotent if F(x, . . . , x) = x for all x ∈ R.

4. F is compensative (or internal) if min(x) ≤ F(x) ≤ max(x) for all x ∈ Rn.

5. F is homogeneous of degree 1 (or ratio scale invariant) if F(rx) = rF(x) for all x ∈ Rn and for all r > 0.

2.1. Choquet integral

Choquet integral-based operators have a wide variety of applications (see, for instance, Grabisch et al. [18] and

Grabisch and Labreuche [19]). Choquet integral is based on the notion of capacity (see Choquet [20] and Murofushi

and Sugeno [21]). The concept of capacity resembles that of probability measure but in the definition of the former

additivity is replaced by monotonicity (see also fuzzy measures in Sugeno [22]). A game is then a generalization of a

capacity where the monotonicity is no longer required.

Definition 2.

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.

2. A capacity (or fuzzy measure) µ on N is a game on N satisfying µ(A) ≤ µ(B) whenever A ⊆ B. In particular, it

follows that µ : 2N −→ [0,∞). A capacity µ is said to be normalized if µ(N) = 1.

A straightforward way to get a capacity from a game is to consider the monotonic cover of the game (see Maschler

and Peleg [23] and Maschler et al. [24]).

Definition 3. Let υ be a game on N. The monotonic cover of υ is the set function υ̂ given by

υ̂(A) = max
B⊆A

υ(B).

Some basic properties of υ̂ are given in the sequel.

Remark 1. Let υ be a game on N. Then:

1. υ̂ is a capacity.

2. If υ is a capacity, then υ̂ = υ.
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3. If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1, then υ̂ is a normalized capacity.

Although the Choquet integral is usually defined as a functional (see, for instance, Choquet [20], Murofushi and

Sugeno [21] and Denneberg [25]), in this paper we consider the Choquet integral as an aggregation function over Rn

(see, for instance, Grabisch et al. [26, p. 181]). Moreover, we define the Choquet integral for all vectors of Rn instead

of nonnegative vectors given that we are actually considering the asymmetric Choquet integral with respect to µ (on

this, see again Grabisch et al. [26, p. 182]).

Definition 4. Let µ be a capacity on N. The Choquet integral with respect to µ is the function Cµ : Rn −→ R given

by

Cµ(x) =

n∑
i=1

µ(B(i))
(
x(i) − x(i−1)

)
,

where B(i) = {(i), . . . , (n)}, and we use the convention x(0) = 0.

It is worth noting that Choquet integral-based operators possess desirable properties which are useful in certain

information aggregation contexts (see, for instance, Grabisch et al. [26, p. 193 and p. 196]).

Remark 2. Let µ be a capacity on N. Then Cµ is continuous, monotonic and homogeneous of degree 1. Moreover, it

is idempotent and compensative when µ is a normalized capacity.

Choquet integral can also be represented by using a decreasing sequences of values (see, for instance, Torra [16]

and Llamazares [8]):

Cµ(x) =

n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
(1)

where A[i] = {[1], . . . , [i]}, and we use the convention x[n+1] = 0.

From the previous expression, it is straightforward to express the Choquet integral as follows

Cµ(x) =

n∑
i=1

(
µ(A[i]) − µ(A[i−1])

)
x[i], (2)

with the convention A[0] = ∅, where the weights of the values x[i] are shown explicitly.

2.2. Weighted means and OWA operators

Weighted means and OWA operators (introduced by Yager [1]) are well-known functions in the theory of aggre-

gation operators. Both classes of functions are defined in terms of weight distributions that add up to 1.

Definition 5. A vector q ∈ Rn is a weighting vector if q ∈ [0, 1]n and
∑n

i=1 qi = 1.

Definition 6. Let p be a weighting vector. The weighted mean associated with p is the function Mp : Rn −→ R given

by

Mp(x) =

n∑
i=1

pixi.
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Definition 7. Let w be a weighting vector. The OWA operator associated with w is the function Ow : Rn −→ R given

by

Ow(x) =

n∑
i=1

wix[i].

It is well known that weighted means and OWA operators are a special type of Choquet integral (see, for instance,

Fodor et al. [27], Grabisch [28, 29] or Llamazares [8]).

Remark 3.

1. If p is a weighting vector, then Mp is the Choquet integral with respect to the normalized capacity µp(A) =∑
i∈A pi.

2. If w is a weighting vector, then Ow is the Choquet integral with respect to the normalized capacity µ|w|(A) =∑|A|
i=1 wi.

So, according to Remark 2, weighted means and OWA operators are continuous, monotonic, idempotent, compen-

sative and homogeneous of degree 1. Moreover, in the case of OWA operators, given that the values of the variables

are previously ordered in a decreasing way, they are also symmetric.

2.3. WOWA operators

WOWA operators were introduced by Torra [3] in order to consider situations where both the importance of in-

formation sources and the importance of values had to be taken into account. Initially they were defined by using

monotonic functions that interpolates the points
(
i/n,

∑i
j=1 w j

)
together with the point (0, 0). But, given that quanti-

fiers satisfy these properties, Torra and Godo [30] suggested an alternative definition by using these functions. The

relationship between quantifiers and the weighting vectors w was given by Yager [31].

Definition 8. A function Q : [0, 1] −→ [0, 1] is a quantifier if it satisfies the following properties:

1. Q(0) = 0, Q(1) = 1.

2. x > y ⇒ Q(x) ≥ Q(y); i.e., it is a monotonic function.

Given a quantifier Q, we can obtain a weighting vector w by means of the following expression:

wi = Q
( i
n

)
− Q

(
i − 1

n

)
, i = 1, . . . , n.

In this case, we will say that the quantifier Q generates the weighting vector w. Notice that Q interpolates the

points
(
i/n,

∑i
j=1 w j

)
together with the point (0, 0).

Definition 9. Let p and w be two weighting vectors and let Q be a quantifier generating the weighting vector w. The

WOWA operator associated with p, w and Q is the function WQ
p,w : Rn −→ R given by

WQ
p,w(x) =

n∑
i=1

qix[i],
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where the weight qi is defined as

qi = Q

 i∑
j=1

p[ j]

 − Q

 i−1∑
j=1

p[ j]

 .
It is worth noting that, in order to generalize the weighted mean Mp, it is necessary that the quantifier Q be the

identity when w = η. Likewise, notice that WOWA operators are a specific case of Choquet integral (see Torra [16]).

Remark 4. If p and w are two weighting vectors and Q is a quantifier generating the weighting vector w, then

µ(A) = Q
(∑

i∈A pi
)

is a normalized capacity on N and Cµ is the WOWA operator WQ
p,w. Moreover, according to (1),

the WOWA operator can also be written as

WQ
p,w(x) =

n∑
i=1

Q

 i∑
j=1

p[ j]

 (x[i] − x[i+1]
)
. (3)

WOWA operators generalize weighted means and OWA operators in the sense that WQ
p,η = Mp and WQ

η,w = Ow.

Moreover, according to Remark 2, they are continuous, monotonic, idempotent, compensative and homogeneous of

degree 1 (see Torra [3]).

2.4. SUOWA operators

SUOWA operators were introduced by Llamazares [8] as an alternative to WOWA operators. These functions are

defined through Choquet integral where their capacities are constructed by using semi-uninorms and the values of

the capacities associated with the weighted means and the OWA operators. Semi-uninorms, studied by Liu [32], are

monotonic functions with a neutral element in the interval [0, 1]. These functions were introduced as a generalization

of uninorms, by dispensing with the symmetry and associativity properties. In turn, uninorms were proposed by

Yager and Rybalov [17] as a generalization of t-norms and t-conorms (see also Fodor et al. [33], and Fodor and De

Baets [34]).

Definition 10. Let U : [0, 1]2 −→ [0, 1].

1. U is a semi-uninorm if it is monotonic and possesses a neutral element e ∈ [0, 1] (U(e, x) = U(x, e) = x for all

x ∈ [0, 1]).

2. U is a uninorm if it is a symmetric and associative (U(x,U(y, z)) = U(U(x, y), z) for all x, y, z ∈ [0, 1]) semi-

uninorm.

We denote by Ue (respectively, Ue
i ) the set of semi-uninorms (respectively, idempotent semi-uninorms) with

neutral element e ∈ [0, 1]. The structure of semi-uninorms and idempotent semi-uninorms has been studied by

Liu [32, Propositions 2.1 and 2.2] and it is represented in Figure 1.

SUOWA operators are Choquet integral-based operators where their capacities are the monotonic cover of specific

games. These games are defined by using semi-uninorms with neutral element 1/n and the values of the capacities

6



0 e 1

e

1

m
ax

m
in

min max

0≤U≤min

min≤U≤max max≤U≤1

min≤U≤max

0 e 1

e

1

min

min≤U≤max max

min≤U≤max

Figure 1: The structure of semi-uninorms and idempotent semi-uninorms, respectively.

associated with the weighted means and the OWA operators. To guarantee that the monotonic cover of the game is a

normalized capacity, we restrict our attention to the following subset of semi-uninorms (see Llamazares [8]):

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.

Obviously U1/n
i ⊆ Ũ1/n. Moreover, it is easy to check that the smallest and the largest elements of Ũ1/n are,

respectively, the following semi-uninorms:

U⊥(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

0 if (x, y) ∈ [0, 1/n)2,

min(x, y) otherwise,

and

U>(x, y) =


1/k if (x, y) ∈ Ik \ Ik+1, where Ik =

(
1/n, 1/k

]2 (
k ∈ N \ {n}

)
,

min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In the case of idempotent semi-uninorms, the smallest and the largest elements of U1/n
i are, respectively, the

following uninorms (which were given by Yager and Rybalov [17]):

Umin(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

and

Umax(x, y) =


min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.
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The games from which SUOWA operators are built are defined as follows.

Definition 11. Let p and w be two weighting vectors and let U ∈ Ũ1/n.

1. The game associated with p, w and U is the set function υU
p,w : 2N −→ R defined by

υU
p,w(A) = |A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
if A , ∅, and υU

p,w(∅) = 0.

2. υ̂U
p,w, the monotonic cover of the game υU

p,w, will be called the capacity associated with p, w and U.

Notice that υU
p,w(A) ≤ 1 for all A ⊆ N and υU

p,w(N) = 1. Therefore, according to the third item of Remark 1, υ̂U
p,w is

always a normalized capacity.

Definition 12. Let p and w be two weighting vectors and let U ∈ Ũ1/n. The SUOWA operator associated with p,w

and U is the function S U
p,w : Rn −→ R given by

S U
p,w(x) =

n∑
i=1

six[i],

where si = υ̂U
p,w(A[i])− υ̂U

p,w(A[i−1]) for all i ∈ N, υ̂U
p,w is the capacity associated with p,w and U, and A[i] =

{
[1], . . . , [i]

}
(with the convention that A[0] = ∅).

According to (1), the SUOWA operator associated with p,w and U can also be written as

S U
p,w(x) =

n∑
i=1

υ̂U
p,w(A[i])

(
x[i] − x[i+1]

)
. (4)

By the choice of υ̂U
p,w we have S U

p,η = Mp and S U
η,w = Ow for any U ∈ Ũ1/n. Moreover, by Remark 2 and

given that υ̂U
p,w is a normalized capacity, SUOWA operators are continuous, monotonic, idempotent, compensative and

homogeneous of degree 1.

3. Constructing semi-uninorms

A central issue in the field of SUOWA operators is the choice of the semi-uninorm used for constructing the

game υU
p,w. So, this section is devoted to illustrate the construction of semi-uninorms. Firstly, we show how to get

continuous semi-uninorms belonging to Ũ1/n by using ordinal sums of aggregation operators. After that, we focus on

how to combine several semi-uninorms belonging to Ũ1/n to obtain another semi-uninorm of Ũ1/n.
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3.1. Continuous semi-uninorms

Notice that the semi-uninorms U⊥, U>, Umin and Umax can also be obtained as ordinal sums of aggregation op-

erators (see De Baets and Mesiar [35]). By using also ordinal sums (adapting to our context the result shown by

Calvo et al. [36, pp. 37–38] and Grabisch et al. [26, pp. 264–265]) we get continuous semi-uninorms that coincide

with a given semi-uninorm at the subset [0, 1/n]2 ∪ [1/n, 1]2 (obviously under the assumption that the restrictions of

this semi-uninorm to the sets [0, 1/n]2 and [1/n, 1]2 are continuous). We will denote by Ũ1/n
c the set of continuous

semi-uninorms belonging to Ũ1/n; that is,

Ũ1/n
c =

{
U ∈ Ũ1/n | U is continuous

}
.

Proposition 1. Let h : [0, 1] −→ [−∞,∞] be any continuous strictly monotonic function with ran(h) , [−∞,∞], let

U ∈ Ũ1/n be such that U
∣∣∣
[0,1/n]2 and U

∣∣∣
[1/n,1]2 are continuous, and let Uh : [0, 1]2 −→ [0, 1] be the mapping defined by

Uh(x, y) = h−1
(
h
(
U(min(x, 1/n),min(y, 1/n))

)
+ h

(
U(max(x, 1/n),max(y, 1/n))

)
− h(1/n)

)
.

Then we have Uh

∣∣∣
[0,1/n]2∪[1/n,1]2 = U

∣∣∣
[0,1/n]2∪[1/n,1]2 and Uh ∈ Ũ

1/n
c .

Notice that Uh can also be represented as

Uh(x, y) =


U(x, y) if (x, y) ∈ [0, 1/n]2 ∪ [1/n, 1]2,

h−1(h(x) + h(y) − h(1/n)
)

otherwise.

Two important families of continuous semi-uninorms are obtained when we consider the functions h(x) = x and

h(x) = ln x. In the first case, the semi-uninorm Uh is given by

Uh(x, y) = U(min(x, 1/n),min(y, 1/n)) + U(max(x, 1/n),max(y, 1/n)) − 1/n

=


U(x, y) if (x, y) ∈ [0, 1/n]2 ∪ [1/n, 1]2,

x + y − 1/n otherwise,

while in the second case, when h(x) = ln x, the semi-uninorm Uh is defined as

Uh(x, y) = n U(min(x, 1/n),min(y, 1/n)) U(max(x, 1/n),max(y, 1/n))

=


U(x, y) if (x, y) ∈ [0, 1/n]2 ∪ [1/n, 1]2,

nxy otherwise.

There is also another interesting class of continuous semi-uninorms that falls into the family obtained when h(x) =

x. If R : [0, 1]2 −→ [0, 1] is a quasi-copula (see Alsina et al. [37] and Genest et al. [38]), then the continuous

semi-uninorm

UR(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

R(nx, ny)/n if (x, y) ∈ [0, 1/n)2,

x + y − 1/n otherwise,
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is a 1-Lipschitz aggregation operator with neutral element 1/n (see Kolesárová [39]). Notice that when we consider

the largest quasi-copula, i.e. the minimum operator, we obtain the idempotent semi-uninorm

UTM (x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) if (x, y) ∈ [0, 1/n)2,

x + y − 1/n otherwise.

On the other hand, when we consider the smallest quasi-copula, i.e. the Łukasiewicz t-norm, we get

UTL (x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

max(x + y − 1/n, 0) otherwise.

Notice that in the semi-uninorm UTL the expression x + y − 1/n is extended to the region [0, 1/n]2 as much as

possible. Based on this idea, in Proposition 1 we can consider U ∈ Ũ1/n such that U(x, y) = h(−1)(h(x) + h(y)−h(1/n)
)

for all (x, y) ∈ [0, 1/n]2, where h(−1) is the pseudo-inverse of h (see Klement et al. [40, 41]). From the properties of

h(−1), we have the following corollary.

Corollary 1. Let h : [0, 1] −→ [−∞,∞] be any continuous strictly monotone function with ran(h) , [−∞,∞], let

U ∈ Ũ1/n be such that U
∣∣∣
[1/n,1]2 is continuous, and let U(h) : [0, 1]2 −→ [0, 1] be the mapping defined by

U(h)(x, y) =


U(x, y) if (x, y) ∈ [1/n, 1]2,

h(−1)(h(x) + h(y) − h(1/n)
)

otherwise.

Then U(h) ∈ Ũ
1/n
c .

For instance, when U
∣∣∣
[1/n,1]2 = max and we consider the functions h(x) = x and h(x) = ln x, we get, respectively,

UTL and

U(h)(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

nxy otherwise.

This last semi-uninorm will be denoted by UP̃.

To finish with this subsection, notice that Proposition 1 also allows us to obtain continuous idempotent semi-

uninorms. For any U ∈ U1/n
i , we have that Uh ∈ U

1/n
i and

Uh(x, y) = h−1
(
h
(

min(x, y, 1/n)
)

+ h
(

max(x, y, 1/n)
)
− h(1/n)

)

=


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) if (x, y) ∈ [0, 1/n)2,

h−1(h(x) + h(y) − h(1/n)
)

otherwise.
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The particular cases of h(x) = x and h(x) = ln x allow us to get, respectively, the continuous idempotent semi-

uninorms

Uh(x, y) = min(x, y, 1/n) + max(x, y, 1/n) − 1/n = UTM (x, y)

and

Uh(x, y) = n min(x, y, 1/n) max(x, y, 1/n) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) if (x, y) ∈ [0, 1/n)2,

nxy otherwise.

This last semi-uninorm will be denoted by UP. The relationship between UTM and UP is given in the following

proposition.

Proposition 2. For each n ∈ N, UTM ≥ UP.

Proof. By definition of UTM and UP, the equality between both semi-uninorms holds on [0, 1/n]2∪[1/n, 1]2. Consider

now (x, y) ∈ (1/n, 1] × [0, 1/n). Then

x + y −
1
n
≥ nxy ⇔ x(1 − ny) + y ≥

1
n
,

and the last inequality is derived as follows:

x(1 − ny) + y ≥
1
n

(1 − ny) + y =
1
n
.

The case (x, y) ∈ [0, 1/n) × (1/n, 1] can be proven in a similar way.

3.2. Combining semi-uninorms

Besides the ordinal sums of aggregation operators, another way for constructing semi-uninorms belonging to the

set Ũ1/n is by means of monotonic and idempotent functions that combine elements of Ũ1/n.

Proposition 3. Let U1, . . . ,Um ∈ Ũ
1/n, let f : [0, 1]m −→ [0, 1] be monotonic and idempotent, and let U =

f (U1, . . . ,Um) (that is, U(x, y) = f
(
U1(x, y), . . . ,Um(x, y)

)
for all (x, y) ∈ [0, 1]2). Then the following holds:

1. U ∈ Ũ1/n.

2. If U1, . . . ,Um ∈ U
1/n
i , then U ∈ U1/n

i .

3. If U1, . . . ,Um ∈ Ũ
1/n
c and f is continuous, then U ∈ Ũ1/n

c .

4. If U1, . . . ,Um are symmetric, then U is also symmetric.

Proof. It is straightforward and therefore omitted.

As we show in the following proposition, if we combine semi-uninorms through monotonic, idempotent and

homogeneous of degree 1 functions, then the games associated with these new semi-uninorms can be straightforward

obtained combining with the same functions the games associated with the former semi-uninorms. Moreover, the fact

of being a normalized capacity are retained from the former semi-uninorms.
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Proposition 4. Let p and w be two weighting vectors, let U1, . . . ,Um ∈ Ũ
1/n, let f : [0, 1]m −→ [0, 1] be monotonic,

idempotent and homogeneous of degree 1,1 and let U = f (U1, . . . ,Um). Then:

1. υU
p,w(A) = f

(
υU1

p,w(A), . . . , υUm
p,w(A)

)
for any subset A of N.

2. If υU1
p,w, . . . , υ

Um
p,w are normalized capacities, then υU

p,w is also a normalized capacity.

Proof. It is straightforward and therefore omitted.

Notice that the property υ̂U
p,w(A) = f

(
υ̂U1

p,w(A), . . . , υ̂Um
p,w(A)

)
is not satisfied in general. For instance, consider Ex-

ample 3 in Llamazares [8], where p = (0.6, 0.2, 0.1, 0.1), w = (0.4, 0, 0, 0.6), m = 2, U1 = Umin, U2 = Umax, f is the

arithmetic mean and A = {1, 2}. Then,

υ̂Uam
p,w ({1, 2}) = 0.6

f
(
υ̂Umin

p,w ({1, 2}), υ̂Umax
p,w ({1, 2})

)
= f (0.6, 0.8) = 0.7.

Some typical examples of monotonic, idempotent and homogeneous of degree 1 functions are the following:

1. The weighted mean f (x) =
∑m

j=1 λ jx j, where λ is a weighting vector.

2. The weighted geometric mean f (x) =
∏m

j=1 xλ j

j , where λ is a weighting vector.

3. The weighted root-mean-power f (x) =
(∑m

j=1 λ jxαj
)1/α

, where λ is a weighting vector and α , 0.

In the case of combining semi-uninorms through weighted means, if the games associated with the semi-uninorms

are normalized capacities, then the value of the SUOWA operator associated with the new semi-uninorm can be

straightforward obtained combining with the same weighted mean the values of the SUOWA operators associated

with the former semi-uninorms.

Proposition 5. Let p and w be two weighting vectors, let U1, . . . ,Um ∈ Ũ
1/n such that υU1

p,w, . . . , υ
Um
p,w be normalized

capacities, let λ be a weighting vector, and let U =
∑m

j=1 λ jU j. Then

S U
p,w(x) =

m∑
j=1

λ jS
U j
p,w(x)

for all x ∈ Rn.

Proof. According to expression (4) and Proposition 4, given x ∈ Rn we have

S U
p,w(x) =

n∑
i=1

υU
p,w(A[i])

(
x[i] − x[i+1]

)
=

n∑
i=1

m∑
j=1

λ jυ
U j
p,w(A[i])

(
x[i] − x[i+1]

)
=

m∑
j=1

λ j

n∑
i=1

υ
U j
p,w(A[i])

(
x[i] − x[i+1]

)
=

m∑
j=1

λ jS
U j
p,w(x).

1Since f is defined on [0, 1]m, we consider the following definition of homogeneity of degree 1 instead of (5) in Definition 1: f (rx) = r f (x) for

all r > 0 and all x ∈ [0, 1]m such that rx ∈ [0, 1]m.

12



4. The cases Umin and Umax

Among the great variety of semi-uninorms belonging to Ũ1/n that could be chosen to generate a SUOWA operator,

idempotent semi-uninorms are of specific interest owing to their notable properties (see Llamazares [8]).

Proposition 6. Let p and w be two weighting vectors, and U ∈ U1/n
i . Then the following holds:

1. For any nonempty subset A of N, we have

min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
≤ υU

p,w(A) ≤ υ̂U
p,w(A) ≤ max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

2. Let x ∈ Rn such that p[i] = wi for all i ∈ N. Then si = p[i] = wi for all i ∈ N and, consequently,

S U
p,w(x) = Mp(x) = Ow(x).

3. For any x ∈ Rn we have

S Umin
p,w (x) ≤ S U

p,w(x) ≤ S Umax
p,w (x).

The third item of the previous proposition shows that the SUOWA operators S Umin
p,w and S Umax

p,w are the bounds when

we consider idempotent semi-uninorms. For this reason, in the next subsections we will focus on Umin and Umax, and

the corresponding SUOWA operators. Our aim is to show some interesting cases where the game associated with

some weighting vectors and these uninorms is a normalized capacity.

4.1. The uninorm Umin

The uninorm Umin can also be expressed as

Umin(x, y) =


min(x, y) if min(x, y) < 1/n,

max(x, y) otherwise,

and, as we show in the following remark, the game associated with p, w and Umin can be represented through this

expression.

Remark 5. Let p and w be two weighting vectors. Then, for any nonempty subset A of N, we get

υUmin
p,w (A) = |A|Umin

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
=


min

( ∑
i∈A

pi,
|A|∑
i=1

wi

)
if min

( ∑
i∈A

pi,
|A|∑
i=1

wi

)
<
|A|
n
,

max
( ∑

i∈A
pi,
|A|∑
i=1

wi

)
otherwise.

Since

υ̂Umin
p,w (A) = max

B⊆A
υUmin

p,w (B),

13



we have that υ̂Umin
p,w (A) > υUmin

p,w (A) if and only if there exists B ( A such that υUmin
p,w (B) > υUmin

p,w (A). For this, it is necessary

and sufficient that the following conditions be satisfied:

υUmin
p,w (A) = min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
, υUmin

p,w (B) = max
(∑

i∈B

pi,

|B|∑
i=1

wi

)
, max

(∑
i∈B

pi,

|B|∑
i=1

wi

)
> min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

This fact is stated in the following proposition.

Proposition 7. Let p and w be two weighting vectors. Given a nonempty subset A of N, υ̂Umin
p,w (A) > υUmin

p,w (A) if and

only if

min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
<
|A|
n

and there exists a nonempty B ( A such that

min
(∑

i∈B

pi,

|B|∑
i=1

wi

)
≥
|B|
n

and max
(∑

i∈B

pi,

|B|∑
i=1

wi

)
> min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

In the sequel we give a condition on the weighting vector w that ensures that υUmin
p,w is a normalized capacity for all

weighting vectors p. When this condition is satisfied, we also prove that the value returned by the SUOWA operator

is less than or equal to the values returned by the weighted mean and the OWA operator. In addition, if the capacity

associated with the OWA operator is less than or equal to the capacity associated with the weighted mean, then the

SUOWA operator coincides with the OWA operator.

Proposition 8. Let w be a weighting vector such that
∑ j

i=1 wi < j/n for all j ∈ {1, . . . , n − 1}. Then, for all weighting

vector p, we have:

1. υUmin
p,w is a normalized capacity on N.

2. For any nonempty subset A of N,

υUmin
p,w (A) = min

(
µp(A), µ|w|(A)

)
= min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

3. For all x ∈ Rn,

S Umin
p,w (x) =

n∑
i=1

six[i],

where, for all i ∈ N,

si = min
( i∑

j=1

p[ j],

i∑
j=1

w j

)
−min

( i−1∑
j=1

p[ j],

i−1∑
j=1

w j

)
.

4. For all x ∈ Rn,

S Umin
p,w (x) ≤ min

(
Mp(x),Ow(x)

)
.

5. If µ|w|(A) ≤ µp(A) for all A ⊆ N, then S Umin
p,w = Ow.
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Proof. Since
∑ j

i=1 wi < j/n for all j ∈ {1, . . . , n − 1}, given a nonempty A ( N we always have that

min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
<
|A|
n
.

Therefore,

1. It is obvious by Proposition 7.

2. It is obvious by Remark 5.

3. It is obvious from the definition of SUOWA operator and the second item.

4. It is obvious from expression (1), Remark 3 and the second item.

5. It is obvious from the second item.

From this result we can guarantee that, irrespective of the weighting vector p, υUmin
p,w is a normalized capacity on N

when w = (w1, . . . ,wn) is an increasing sequence of weights. Before that, we establish the following lemma.

Lemma 1. Let w be a weighting vector such that w1 ≤ w2 ≤ · · · ≤ wn. Then w1 = · · · = wn = 1/n or
∑ j

i=1 wi < j/n

for all j ∈ {1, . . . , n − 1}.

Proof. Let w be a weighting vector such that w1 ≤ w2 ≤ · · · ≤ wn. We distinguish two cases:

1. If w1 = 1/n, then, since
∑n

i=1 wi = 1, we have w2 = · · · = wn = 1/n.

2. If w1 < 1/n, we are going to prove that
∑ j

i=1 wi < j/n for all j ∈ {2, . . . , n − 1}. This is proven by contradiction.

Suppose that there exists k ∈ {2, . . . , n − 1} such that
∑k

i=1 wi ≥ k/n. In this case, we have wk > 1/n. Moreover,

since
∑n

i=1 wi = 1, we have

1 =

k∑
i=1

wi +

n∑
i=k+1

wi ≥
k
n

+

n∑
i=k+1

wi.

Therefore
∑n

i=k+1 wi ≤ (n − k)/n and, consequently, wk+1 ≤ 1/n, which clearly contradicts that wk > 1/n.

Corollary 2. Let w be a weighting vector such that w1 ≤ w2 ≤ · · · ≤ wn. Then, for all weighting vector p, υUmin
p,w is a

normalized capacity on N, and S Umin
p,w = Mp or S Umin

p,w (x) ≤ min
(
Mp(x),Ow(x)

)
for all x ∈ Rn.

Proof. Let p be a weighting vector. By Lemma 1 we distinguish two cases:

1. If w1 = · · · = wn = 1/n, then υUmin
p,w (A) = υUmin

p,η (A) = µp(A) for all A ⊆ N. Therefore, υUmin
p,w is a normalized

capacity on N and S Umin
p,w = Mp.

2. If
∑ j

i=1 wi < j/n for all j ∈ {1, . . . , n − 1}, then, by Proposition 8, υUmin
p,w is a normalized capacity on N and

S Umin
p,w (x) ≤ min

(
Mp(x),Ow(x)

)
for all x ∈ Rn.
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4.2. The uninorm Umax

The analysis for the uninorm Umax is similar to that of the uninorm Umin; so, the proofs are omitted. The uninorm

Umax can also be expressed as

Umax(x, y) =


max(x, y) if max(x, y) > 1/n,

min(x, y) otherwise,

and, consequently, the game associated with p, w and Umax can be represented by means of the following expression.

Remark 6. Let p and w be two weighting vectors. Then, for any nonempty subset A of N, we have

υUmax
p,w (A) = |A|Umax

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
=


max

( ∑
i∈A

pi,
|A|∑
i=1

wi

)
if max

( ∑
i∈A

pi,
|A|∑
i=1

wi

)
>
|A|
n
,

min
( ∑

i∈A
pi,
|A|∑
i=1

wi

)
otherwise.

We now characterize the nonempty subsets A of N for which the game and the capacity associated with p, w and

Umax take different values.

Proposition 9. Let p and w be two weighting vectors. Given a nonempty subset A of N, υ̂Umax
p,w (A) > υUmax

p,w (A) if and

only if

max
(∑

i∈A

pi,

|A|∑
i=1

wi

)
≤
|A|
n

and there exists a nonempty B ( A such that

max
(∑

i∈B

pi,

|B|∑
i=1

wi

)
>
|B|
n

and max
(∑

i∈B

pi,

|B|∑
i=1

wi

)
> min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

Next we give a condition on the weighting vector w that ensures that υUmax
p,w is a normalized capacity for all weighting

vectors p. When this condition is satisfied, the value returned by the SUOWA operator is greater than or equal to

the values returned by the weighted mean and the OWA operator. Moreover, if the capacity associated with the

OWA operator is greater than or equal to the capacity associated with the weighted mean, then the SUOWA operator

coincides with the OWA operator.

Proposition 10. Let w be a weighting vector such that
∑ j

i=1 wi > j/n for all j ∈ {1, . . . , n− 1}. Then, for all weighting

vector p, we have:

1. υUmax
p,w is a normalized capacity on N.

2. For any nonempty subset A of N,

υUmax
p,w (A) = max

(
µp(A), µ|w|(A)

)
= max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.
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3. For all x ∈ Rn,

S Umax
p,w (x) =

n∑
i=1

six[i],

where, for all i ∈ N,

si = max
( i∑

j=1

p[ j],

i∑
j=1

w j

)
−max

( i−1∑
j=1

p[ j],

i−1∑
j=1

w j

)
.

4. For all x ∈ Rn,

S Umax
p,w (x) ≥ max

(
Mp(x),Ow(x)

)
.

5. If µ|w|(A) ≥ µp(A) for all A ⊆ N, then S Umax
p,w = Ow.

As a consequence of this result we obtain that, irrespective of the weighting vector p, υUmax
p,w is a normalized capacity

on N when w = (w1, . . . ,wn) is a decreasing sequence of weights. Before that, we establish the following lemma.

Lemma 2. Let w be a weighting vector such that w1 ≥ w2 ≥ · · · ≥ wn. Then w1 = · · · = wn = 1/n or
∑ j

i=1 wi > j/n

for all j ∈ {1, . . . , n − 1}.

Corollary 3. Let w be a weighting vector such that w1 ≥ w2 ≥ · · · ≥ wn. Then, for all weighting vector p, υUmax
p,w is a

normalized capacity on N, and S Umax
p,w = Mp or S Umax

p,w (x) ≥ max
(
Mp(x),Ow(x)

)
for all x ∈ Rn.

5. Discussion

SUOWA and WOWA operators are obtained from Choquet integral with respect to normalized capacities. There-

fore, both classes of operators are continuous, monotonic, idempotent, compensative and homogeneous of degree 1.

Although they share many properties, they are different classes of aggregation operators as it has been pointed out by

Llamazares [8]. In the case of WOWA operators, there is not a wide variety of interpolations methods for obtaining

the quantifier Q, and they are relatively complex except in the case of linear interpolation (see Torra and Lv [42]).

However, as we have seen in Section 3, there exits a wide variety of semi-uninorms by means of which we can gener-

ate a SUOWA operator associated with two weighting vectors p and w. This fact allows us a great flexibility when it

comes to choosing a SUOWA operator, as we show in the following example.

Example 1. Let us consider the situation described by Torra and Godo [4, p. 160], where a robot is equipped

with four sensors to determine the distance to the nearest object in the direction of its movement. Since the robot

should give more importance to nearest objects than those that are further, a possible set of weights would be

w = (0.1, 0.2, 0.3, 0.4). Suppose also that the sensors are of different quality and precision. This fact is easily modeled

by using a weighting vector p. In this example we take p = (0.3, 0.3, 0.2, 0.2).

Due to their good properties, we are going to focus on idempotent semi-uninorms. In the case of Umin, Corollary 2

guarantees that υUmin
p,w is a normalized capacity. As we can see in Table 1, this is also the case when we consider the

semi-uninorms UP, UTM and Umax.
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Table 1: Capacities associated with Umin, UP, UTM and Umax

Set υ̂Umin
p,w υ̂UP

p,w υ̂
UTM
p,w υ̂Umax

p,w

{1} 0.1 0.12 0.15 0.3

{2} 0.1 0.12 0.15 0.3

{3} 0.1 0.1 0.1 0.1

{4} 0.1 0.1 0.1 0.1

{1, 2} 0.3 0.36 0.4 0.6

{1, 3} 0.3 0.3 0.3 0.3

{1, 4} 0.3 0.3 0.3 0.3

{2, 3} 0.3 0.3 0.3 0.3

{2, 4} 0.3 0.3 0.3 0.3

{3, 4} 0.3 0.3 0.3 0.3

{1, 2, 3} 0.6 0.64 0.65 0.8

{1, 2, 4} 0.6 0.64 0.65 0.8

{1, 3, 4} 0.6 0.6 0.6 0.6

{2, 3, 4} 0.6 0.6 0.6 0.6

N 1 1 1 1

Consider now x = (9, 10, 5, 7). By expression (4), for any idempotent semi-uninorm U we have

S U
p,w(9, 10, 5, 7) = υ̂U

p,w
(
{2}

)
· 1 + υ̂U

p,w
(
{1, 2}

)
· 2 + υ̂U

p,w
(
{1, 2, 4}

)
· 2 + υ̂U

p,w(N) · 5.

So, the values obtained by using Umin, UP, UTM and Umax are

S Umin
p,w (9, 10, 5, 7) = 6.9, S UP

p,w(9, 10, 5, 7) = 7.12, S
UTM
p,w (9, 10, 5, 7) = 7.25, S Umax

p,w (9, 10, 5, 7) = 8.1.

Notice that, by the fifth item of Proposition 8, we have S Umin
p,w (9, 10, 5, 7) = Ow(9, 10, 5, 7). Moreover, in this exam-

ple also happens S Umax
p,w (9, 10, 5, 7) = Mp(9, 10, 5, 7). Likewise, by the third item of Proposition 6, for any idempotent

semi-uninorm U we get

6.9 ≤ S U
p,w(9, 10, 5, 7) ≤ 8.1.
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Notice that, by Proposition 5, we can easily obtain an idempotent semi-uninorms that allows us to get a SUOWA

operator which takes in (9, 10, 5, 7) a specific value in the range 6.9 to 8.1. For instance, if we look for an idempotent

semi-uninorm U such that S U
p,w(9, 10, 5, 7) = 7.8, then, since 7.8 = 0.25 · 6.9 + 0.75 · 8.1, it is sufficient to consider

U = 0.25 Umin + 0.75 Umax.

Llamazares [8] also shows an example where SUOWA operators return a value which seems more consistent

(regarding the values given by the weighted mean and the OWA operator) than the value returned by WOWA operators.

In addition to the remarks made by this author, in the sequel we show other two differences between the behavior of

SUOWA operators and WOWA operators. The first one is the following. Given x ∈ Rn, each value x[i] is associated

with the weights p[i] and wi. As we have seen in the second item of Proposition 6, if both weights are equal for all

i ∈ N and we consider idempotent semi-uninorms, then the corresponding weights of the SUOWA operator coincide

with them and, consequently, the value provided by the SUOWA operator is the same as the value returned by the

weighted mean and the OWA operator. This property is not satisfied in the case of WOWA operators, as we illustrate

in the following example.

Example 2. Let us consider the weighting vectors p = w = (0.4, 0.2, 0.2, 0.1, 0.1) and x = (10, 9, 7, 4, 4). It is

easy to check that Mp(10, 9, 7, 4, 4) = Ow(10, 9, 7, 4, 4) = 8 and, according to the second item of Proposition 6,

S U
p,w(10, 9, 7, 4, 4) = 8 for all U ∈ U1/n

i .

Now, let Q be a quantifier generating the weighting vector w; that is, a monotonic function that interpolates the

points (0, 0), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 0.9) and (1, 1). The weights of the corresponding WOWA operator

are
q1 = Q(0.4) − Q(0) = 0.6,

q2 = Q(0.6) − Q(0.4) = 0.2,

q3 = Q(0.8) − Q(0.6) = 0.1,

q4 = Q(0.9) − Q(0.8) = Q(0.9) − 0.9,

q5 = Q(1) − Q(0.9) = 1 − Q(0.9),

and WQ
p,w(10, 9, 7, 4, 4) = 8.9. So, whatever the quantifier used, q1 , p[1] = w1, q3 , p[3] = w3, and the value returned

by the WOWA operator does not coincide with the value provided by the weighted mean and the OWA operator.

The second difference between SUOWA operators and WOWA operators is also related to the weights p[i] and wi

associated with x[i]. Under certain conditions, SUOWA operators have a symmetrical behavior between the weighting

vectors p and w.

Proposition 11. Let p and w be two weighting vectors, U a symmetrical semi-uninorm belonging to Ũ1/n and x ∈ Rn.

If p′ and w′ are two weighting vectors such that p′[i] = wi and w′i = p[i] for all i ∈ N, and υU
p,w and υU

p′,w′ are normalized

capacities, then S U
p,w(x) = S U

p′,w′ (x).
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Proof. According to (4), it is sufficient to prove that υU
p,w(A[i]) = υU

p′,w′ (A[i]) for all i ∈ N. Given i ∈ N,

υU
p′,w′ (A[i]) = i U

1
i

i∑
j=1

p′[ j],
1
i

i∑
j=1

w′j

 = i U

1
i

i∑
j=1

w j,
1
i

i∑
j=1

p[ j]

 = i U

1
i

i∑
j=1

p[ j],
1
i

i∑
j=1

w j

 = υU
p,w(A[i]).

The previous property is not preserved by WOWA operators, as we show in the following example.

Example 3. Consider the weighting vectors of Example 2, p = w = (0.4, 0.2, 0.2, 0.1, 0.1), and x = (7, 9, 10, 4, 4). If

Q is a quantifier generating the weighting vector w, then Q interpolates the points (0, 0), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8),

(0.8, 0.9) and (1, 1). According to expression (3) we get

WQ
p,w(7, 9, 10, 4, 4) = Q(0.2) · 1 + Q(0.4) · 2 + Q(8) · 3 + Q(1) · 4 = 8.3.

Let us consider now the weighting vectors p′ = w′ = (0.2, 0.2, 0.4, 0.1, 0.1). Notice that p′[i] = wi and w′i = p[i]

for all i ∈ {1, . . . , 5}. If Q′ is a quantifier generating the weighting vector w′, then Q′ interpolates the points (0, 0),

(0.2, 0.2), (0.4, 0.4), (0.6, 0.8), (0.8, 0.9) and (1, 1). According to expression (3) we get

WQ′
p′,w′ (7, 9, 10, 4, 4) = Q′(0.4) · 1 + Q′(0.6) · 2 + Q′(8) · 3 + Q′(1) · 4 = 8.7.
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